1,830 research outputs found

    Current Trends in Tactical Missile Guidance

    Get PDF
    The problem of tactical missile guidance is very challenging and has been treated using several basic metlfodologies in the past four decades. Major techniques can be grouped underclassical guidance laws, modern guidance laws, l'aws for manoeuvring targets, predictive guidance for endgame scenario, and guidance laws based on intelligent control methods. Each technique has some advantages and disadvantages while implementing in a practical system. Guidance law selection is dictated by nature of flight profile like boost, midcourse, terminal homing, etc, and also miss-distance and a single-shot kill probability. This paper presents a brief survey of the existing techniques and current trends in tactical missile guidance

    GA-Assisted Output-Feedback Sliding Mode Control of Fuzzy Systems via Improved Static Time-Delayed Feedback

    Get PDF

    Full Envelope Control of Nonlinear Plants with Parameter Uncertainty by Fuzzy Controller Scheduling

    Get PDF
    A full envelope controller synthesis technique is developed for multiple-input single-output (MISO) nonlinear systems with structured parameter uncertainty. The technique maximizes the controller\u27s valid region of operation, while guaranteeing pre-specified transient performance. The resulting controller does not require on-line adaptation, estimation, prediction or model identification. Fuzzy Logic (FL) is used to smoothly schedule independently designed point controllers over the operational envelope and parameter space of the system\u27s model. These point controllers are synthesized using techniques chosen by the designer, thus allowing an unprecedented amount of design freedom. By using established control theory for the point controllers, the resulting nonlinear dynamic controller is able to handle the dynamics of complex systems which can not otherwise be addressed by Fuzzy Logic Control. An analytical solution for parameters describing the membership functions allows the optimization to yield the location of point designs: both quantifying the controller\u27s coverage, and eliminating the need of extensive hand tuning of these parameters. The net result is a decrease in the number of point designs required. Geometric primitives used in the solution all have multi-dimensional interpretations (convex hull, ellipsoid, Voronoi-Delaunay diagrams) which allow for scheduling on n-dimensions, including uncertainty due to nonlinearities and parameter variation. Since many multiple-input multiple-output (MIMO) controller design techniques are accomplished by solving several MISO problems, this work bridges the gap to full envelope control of MIMO nonlinear systems with parameter variation

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Guidance and control of an autonomous underwater vehicle

    Get PDF
    Merged with duplicate record 10026.1/856 on 07.03.2017 by CS (TIS)A cooperative project between the Universities of Plymouth and Cranfield was aimed at designing and developing an autonomous underwater vehicle named Hammerhead. The work presented herein is to formulate an advance guidance and control system and to implement it in the Hammerhead. This involves the description of Hammerhead hardware from a control system perspective. In addition to the control system, an intelligent navigation scheme and a state of the art vision system is also developed. However, the development of these submodules is out of the scope of this thesis. To model an underwater vehicle, the traditional way is to acquire painstaking mathematical models based on laws of physics and then simplify and linearise the models to some operating point. One of the principal novelties of this research is the use of system identification techniques on actual vehicle data obtained from full scale in water experiments. Two new guidance mechanisms have also been formulated for cruising type vehicles. The first is a modification of the proportional navigation guidance for missiles whilst the other is a hybrid law which is a combination of several guidance strategies employed during different phases of the Right. In addition to the modelling process and guidance systems, a number of robust control methodologies have been conceived for Hammerhead. A discrete time linear quadratic Gaussian with loop transfer recovery based autopilot is formulated and integrated with the conventional and more advance guidance laws proposed. A model predictive controller (MPC) has also been devised which is constructed using artificial intelligence techniques such as genetic algorithms (GA) and fuzzy logic. A GA is employed as an online optimization routine whilst fuzzy logic has been exploited as an objective function in an MPC framework. The GA-MPC autopilot has been implemented in Hammerhead in real time and results demonstrate excellent robustness despite the presence of disturbances and ever present modelling uncertainty. To the author's knowledge, this is the first successful application of a GA in real time optimization for controller tuning in the marine sector and thus the thesis makes an extremely novel and useful contribution to control system design in general. The controllers are also integrated with the proposed guidance laws and is also considered to be an invaluable contribution to knowledge. Moreover, the autopilots are used in conjunction with a vision based altitude information sensor and simulation results demonstrate the efficacy of the controllers to cope with uncertain altitude demands.J&S MARINE LTD., QINETIQ, SUBSEA 7 AND SOUTH WEST WATER PL

    Advanced Mathematics and Computational Applications in Control Systems Engineering

    Get PDF
    Control system engineering is a multidisciplinary discipline that applies automatic control theory to design systems with desired behaviors in control environments. Automatic control theory has played a vital role in the advancement of engineering and science. It has become an essential and integral part of modern industrial and manufacturing processes. Today, the requirements for control precision have increased, and real systems have become more complex. In control engineering and all other engineering disciplines, the impact of advanced mathematical and computational methods is rapidly increasing. Advanced mathematical methods are needed because real-world control systems need to comply with several conditions related to product quality and safety constraints that have to be taken into account in the problem formulation. Conversely, the increment in mathematical complexity has an impact on the computational aspects related to numerical simulation and practical implementation of the algorithms, where a balance must also be maintained between implementation costs and the performance of the control system. This book is a comprehensive set of articles reflecting recent advances in developing and applying advanced mathematics and computational applications in control system engineering

    Novel strategies for process control based on hybrid semi-parametric mathematical systems

    Get PDF
    Tese de doutoramento. Engenharia QuĂ­mica. Universidade do Porto. Faculdade de Engenharia. 201

    Deep Reinforcement Learning Controller for 3D Path-following and Collision Avoidance by Autonomous Underwater Vehicles

    Full text link
    Control theory provides engineers with a multitude of tools to design controllers that manipulate the closed-loop behavior and stability of dynamical systems. These methods rely heavily on insights about the mathematical model governing the physical system. However, in complex systems, such as autonomous underwater vehicles performing the dual objective of path-following and collision avoidance, decision making becomes non-trivial. We propose a solution using state-of-the-art Deep Reinforcement Learning (DRL) techniques, to develop autonomous agents capable of achieving this hybrid objective without having \`a priori knowledge about the goal or the environment. Our results demonstrate the viability of DRL in path-following and avoiding collisions toward achieving human-level decision making in autonomous vehicle systems within extreme obstacle configurations

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored
    • …
    corecore