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Abstract
The tight control of a process is important for various reasons, namely econom-

ical (e.g. to maximize profit), environmental (e.g. to reduce toxic components),
or operational (e.g. to guarantee safety). The central question is what parameters
or variables influence the desired outcome the most, and how can they be manipu-
lated to achieve the best result. These issues are in this thesis addressed through
the application of hybrid semi-parametric mathematical systems to process control.

At first, it is conceptually analyzed how different sources of process knowledge
can be integrated into a hybrid modeling framework. The different options regard-
ing the application of nonparametric and parametric models and the associated
parameter identification are reviewed, and the manyfold practical applications of
hybrid models are discussed.
At a second stage, hybrid modeling is investigated in those aspects related to
structure and parameter identification. Two novel hybrid modeling methods are
proposed. One of the methods addresses the incorporation of more mechanis-
tic knowledge, namely the integration of different reaction time scales into hybrid
structures. In this case it can be observed that the novel methodology leads to
higher prediction accuracy than in cases when such knowledge is neglected. Further
this methodology offers the opportunity to discover unknown process mechanisms.
The other methodology, is based on the extension of a Nonlinear Partial Least
Squares (NPLS) model to dynamic cases, namely a NPLS model is embedded into
a hybrid material balance structure. With this hybrid model structure, the extrac-
tion of information from large amounts of (highly correlated) data is enabled. This
hybrid model structure was extensively evaluated regarding its properties and com-
pared to standard dynamic NPLS models, where it was found that, in the hybrid
case, the model predictions are more accurate and the extrapolation properties are
improved.
At a third stage, the Hybrid (N)PLS modeling method was applied for process
monitoring in the context of Process Analytical Technology (PAT), namely to in-
fer the concentrations of lactate, glutamate and biomass from at-time available
NIR spectral data, temperature, dissolved oxygen concentration and pH data. It
was observed that the hybrid (N)PLS not only keeps the classification properties
of static (N)PLS, commonly employed in PAT for fault diagnosis, but also allows
the development of improved regression models for process monitoring, requiring
less calibration data.
At a fourth stage, different process controller structures are investigated that either
are based on the hybrid process model or incorporate structural knowledge along
with Artificial Neural Networks (ANNs) in a hybrid sense. Two complementary
controller tuning methods are proposed. The incorporation of structural knowl-
edge into a hybrid controller is observed to result into a better performance than
pure nonparametric model based control.
At the end the conclusions are drawn anent the proposed methodologies in the
context of process control and directions for future work are sketched.

All in all, this thesis contributes with hybrid model structures and controller
structures which address eminent problems in bioprocesses.





Resumo
O controlo apertado de um processo industrial é importante por diversas razões,

nomeadamente económicas (e.g. maximização de lucros), a nível ambiental (e.g.
de modo a reduzir os componentes tóxicos), ou de um ponto de vista operacional
(e.g. de maneira a garantir os critérios de segurança). A questão fulcral consiste
em manter o processo controlado, i.e. definir quais os parâmetros ou variáveis que
mais influenciam o resultado desejado, e de que maneira estas podem ser manip-
uladas por forma a alcançar o resultado óptimo.
Inicialmente, é explorada a forma como diferentes fontes de informação acerca
dum processo podem ser integradas no contexto da modelação híbrida. São re-
vistas as diversas formas de aplicar os modelos não-paramétricos e paramétricos e
as várias formas de identificar os parâmetros respectivos. São ainda discutidas as
várias aplicações práticas de diferentes estruturas híbridas.
Numa segunda fase, a modelização híbrida é investigada nos aspectos relacionados
com a estrutura e a identificação de parâmetros. São propostas duas metodologias
híbridas novas. Uma das metodologias visa a incorporação de mais conhecimento
mecanístico, nomeadamente, a integração no modelo híbrido de diferentes escalas
de tempo de reacção. Neste caso, constata-se que a metodologia híbrida proposta
é mais exacta na previsão em relação àquelas em que esta informação não é con-
siderada. Adicionalmente, esta metodologia permite a descoberta de mecanismos
desconhecidos do processo. A segunda metodologia proposta é baseada na exten-
são, para uma versão dinâmica, de um modelo não-linear de Mínimos Quadrados
Parciais (NPLS, Nonlinear Partial Least Squares), em que um modelo NPLS é
embebido numa estrutura híbrida de balanços materiais. Este modelo híbrido torna
a tarefa de extracção de informação de bases grandes de dados (altamente cor-
relacionados) possível. Após uma extensa avaliação das propriedades deste modelo
concluiu-se que comparado com modelos dinâmicos NPLS as previsões do modelo
híbrido são mais exactas e as propriedades de extrapolação são melhoradas.
Seguidamente, o modelo híbrido NPLS foi aplicado a um processo de monotor-
ização no contexto de PAT (Process Analytical Technology) com o objectivo de
inferir as concentrações de lactato, glutamato e biomassa a partir de dados NIR
espectrais ”at-time” disponíveis, e ainda temperatura, concentração de oxigénio
dissolvido e dados referentes ao pH. Observou-se que o modelo híbrido não só
mantem as propriedades de classificação dos modelos estáticos (N)PLS, normal-
mente aplicados à detecção de falhas em PAT, como permite o desenvolvimento
de modelos de regressão melhorados para monitorização de processos, requerendo
menos dados para a sua calibração.
Posteriormente, são investigadas diferentes estruturas de controlo processual sendo
estas baseadas em modelos híbridos do processo ou baseadas na incorporação, num
sentido híbrido, de informação estrutural do processo juntamente com Redes Neu-
ronais Artificiais (ANN, Artificial Neural Networks). Dois métodos complementares
de sintonizão de controladores são propostos. Concluiu-se que um controlador
híbrido incorporado com informação estrutural supera o desempenho de um con-
trolador baseado apenas num modelo não paramétrico puro.
Nas conclusões finais, as metodologias propostas são enquadradas em controlo de
processos e são apontadas as direcções futuras.
Em sûmula, esta tese contribui com novas estruturas híbridas e novas estruturas
de controladores que respondem a problemas actuais da indústria de bioprocessos.
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Chapter 1

Introduction

A process consists of a set of operational units in which inputs are transformed to

value added outputs. In this regard, process control seeks to manipulate the supply

of inputs in such a manner that quality and/or quantity of the process outputs can be

guaranteed and/or in relation to either time or supplied resources, maximized.

The concept of control is universal and can be found in all areas of activity (education,

politics, religion, justice, economics, science and others). Control capitalizes the principle

of cause and effect, that is a “controlled” manipulation of the cause should ideally result

into the desired effect, see Fig. 1.1.

Figure 1.1 Control in the context of the principle of cause and effect

A process can be represented as a system in which input signals are transformed to

output signals. The underlying system fundamentals are however a priori many times

not known and can only be observed through cause and effect. Most times the system

is not simple and instead of one cause and one effect there are several for each of which,

i.e. multivariate. Additionally, the determination whether a quantity is a cause or an

effect might be difficult, since the system might be self-triggering (positive or negative

feedback). Moreover, it might be infeasible to either observe all causes or all effects,

wherefore it becomes even harder to understand their interaction.

1
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However, the development of a system effigy, referred to as model, might result into a

“crude” but helpful understanding of the system. The unconsidered causes, effects and

interactions are lumped and constitute stochastic uncertainties, which at least for the

considered interactions should be negligible small. When this is the case then the derived

model can be used to infer how the causes have to be manipulated in order to reach a

certain objective. When applying these manipulations to the system, they ideally result

into the desired effects. However, not all observable causes can be manipulated.

1.1 Biochemical Processes - Process monitoring and control

Control of biochemical processes, which is focused on in this thesis, is of major im-

portance due to a number of reasons, e.g. safe and profitable operation, reduction of

waste or minimization of energy requirements, to name just a few. The control of the

production process usually breaks down to the independent control of several subunits

(Rathore & al., 2010), such as the reactor. When referring to process control, it is

mostly thought of the control of the reactor, since the reactor is the central unit of

a bioprocess (short for biochemical processes), in which the educts are converted to

products. The control strategy for the reactor depends on its operation mode, i.e. the

reactor can be operated in continuous, batch or fed-batch mode. Batch and fed-batch

modes are especially widespread in bioprocesses, due to several reasons Roubos (2002);

Schuegerl (2001); Yamuna Rani and Ramachandra Rao (1999). The control of batch

and fed-batch operations is more difficult than continuous operation, because the lin-

earization of the process model around an operating point, for the design of a linear

controller (e.g. a PID), is infeasible. Further, the control is challenging because the

underlying system is usually dynamic and highly-nonlinear and awards with multi-variable

aspects (Yamuna Rani and Ramachandra Rao, 1999). Additionally, the dynamics of the

states can many times not be directly accessed, since most states cannot be directly

at-time measured, nor measured frequently enough.

For bioprocesses, the development of measurement techniques has evolved signifi-

cantly since the beginnings (Junker and Wang, 2006), because efficient process moni-

toring is needed for better process modeling and process control (Schuegerl, 2001), see

Fig. 1.2. There are now many different techniques available for the monitoring of dif-

ferent state variables (Becker & al., 2007; Clementschitsch and Bayer, 2006; Gnoth &

al., 2008a; Harms & al., 2002; Junker and Wang, 2006; Scheper & al., 1999; Vojinovic
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& al., 2006, 2007). From a process control perspective it is interesting to divide those

techniques into those which reveal measurement information at-time (meaning that they

become available sufficiently fast to be used for feedback in control, which can comprise

e.g. in-line, on-line, at-line techniques) and those which do not provide the information

at-time, namely off-line. Those variables that cannot be measured at-time can some-

times be inferred using a model that has been beforehand calibrated from off-line and

at-time measurements. Thereto it is referred as soft-sensors or software sensors (Becker

& al., 2007; Gnoth & al., 2008a; Junker and Wang, 2006; Kadlec & al., 2009). How-

ever those soft-sensors can produce unreliable values when operating in regions which

have not been accounted for during calibration. In general, there is not one optimal

set of devices which suites all processes, but each process requires a particular set-up

of measurement techniques, allowing to monitor specifically the key-components. For

instance, the values of in-situ, at-time measurements might not be representative, since

local concentration gradients can occur due to non-ideal mixing, which is frequently ob-

served in industrial units. In such cases, so-called integral measurements might be better

(Gnoth & al., 2008a). This also demonstrates the importance of the sensor placement

or accordingly the importance of taking representative samples (van de Merbel & al.,

1996).

In general, the collected data (also referred to as historical data) form a valuable source

of information (Gnoth & al., 2008a; Luebbert and Bay Jorgensen, 2001). They can, for

instance, be exploited to iteratively optimize the process operation policy (Bonvin, 1998).

This means that through the utilization of a process model (derived from the data), e.g.

the optimal feeding rate profile for the maximization of the product yield on substrate can

be off-line identified. Such, the process can, to a certain degree, be optimized without

the knowledge of at-time concentration measurements. However, occurring variations

from the desired value cannot be corrected for, since there is no feed-back regarding the

current values. It is commonly referred thereto as optimal open-loop control (Feyo de

Azevedo & al., 2001). In fact, closed-loop control only makes sense when the current

value of the controlled variable can be determined accurately and fast enough (Gnoth

& al., 2008a). The ideal situation is, therefore, to determine at-time the concentra-

tions and to choose the product concentration as controlled variable. However, since

the product concentrations are typically very difficult to determine accurately enough

at-time, indirect control strategies are sought. For instance, the biomass growth rate

(which sometimes correlates with the product formation rate) is many times tended to

be controlled. Approaches aiming thereat are for instance Dabros & al. (2010); Jenzsch

& al. (2006a); Soons & al. (2006), where in all of which the identification of the biomass
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growth rate is a key-point.

Figure 1.2 The different components for bioprocess control.

The application of advanced control schema to industrial settings remains quite oc-

casional Alford (2006); Gnoth & al. (2008a); Jenzsch & al. (2006b); Rathore & al.

(2010), partly due to the regulations that were imposed by government agencies, i.e.

these processes were carried out manually, following an approved recipe which assumes

that the product forms as defined in the regulatory issues (Clementschitsch and Bayer,

2006; Jenzsch & al., 2006b). Recent changes in the regulatory framework, e.g. the Pro-

cess Analytical Technology (PAT) initiative by the Food and Drug Agency (FDA) in the

United States PAT (2004), now offer industry the opportunity to have variance in their

processes whenever the targeted product quality can be ensured, i.e. Quality by Design.

This leaves room for frequent process re-optimization with respect to changing material,

personal and energy costs. It will be interesting to see, how the at-time knowledge about

the process state can be used for improved operation scheduling strategies, which aim

at a lean process and ultimately at supply chain management (real-time release), since

stock binds capital.

With this renewed interest in bioprocess control, the call is made for the development

of efficient strategies which can be implemented right-away.
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1.2 Modeling - a cornerstone for successful process control

Nonlinear dynamic systems are frequently encountered in biochemical (fed)-batch

processes, but their control remains challenging, in the sense that quality and quantity

of the process product can many times not be guaranteed in advance. Reasons are that:

1. even when the process are run in the same manner, the product properties will vary

since variability enters the process through e.g. the raw materials, the environment

or stochastic effects on the scale of the reactants (Rathore & al., 2010; Read & al.,

2010a);

2. the equipment of the process plants (measurements) may only allow for low-level

closed-loop control (e.g. thermostat, pHstat, DOstat), wherefore product properties

cannot directly be subject to closed-control (Rathore & al., 2010; Read & al., 2010a);

and

3. the underlying process system is predominantly poorly understood (Rathore & al.,

2010).

The first listed point, namely product variability, can partially be accounted for by imme-

diate control action, such as to minimize the effect of the disturbance on the process.

This implies that closed-loop control is implemented on all process levels, wherefore,

obviously, the adequate plant equipment is a prerequisite. The second reason, i.e. the

plant equipment, is more and more ruled out since (i) government agencies recognized

the advantages that closed-loop process control can bring, which already resulted in more

flexible process guidelines, e.g. (PAT, 2004); and (ii) provided with these opportunities,

industry recognized the potential of closed-loop control to minimize production costs

while maximizing yield, wherefore substantial investment into equipment is made (Hinz,

2006). Thus the point that remains is the understanding of the process fundamentals,

which can be achieved through process modeling.

The formulation of a process model can be viewed as an exercise of translation of the a

priori knowledge into a condensed mathematical representation. In engineering science,

the conservation laws, such as material or energy balances, provide an almost universally

applicable modeling framework, which then “only” has to be complemented with the

process specific details, e.g. the formulation of kinetic rate functions. However, the

formulation of those specific details is rather laborious till the model description reaches

the desired accuracy, because neither all details are observable nor are the underlying

relationships a-priori known. Additionally, the inherent system dynamics and the multi-
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variate context complicate the modeling exercise.

A different modeling approach that is rather quickly applicable and requires less

mechanistic knowledge about the system is the one of data-driven models. As the name

indicates this approach relies exclusively on experimental data. The concept bases on

mathematics in order to describe the data underlying relations. As though, data-driven

models can hardly differentiate between cause and effect. In comparison to mechanistic

models (i) the physical meaning of data-driven models can barely be interpreted in terms

of the underlying mechanisms; (ii) more data are necessary for the derivation of data-

driven models; and (iii) their descriptive quality is good only in close vicinity to those

regions for which they were derived. Ponton and Klemes (1993) even show that the

most crude mechanistic model assumptions usually result into better prediction capabil-

ities, than data-driven techniques.

An alternative to pure mechanistic/ phenomenological or pure data-driven modeling

is the fusion of these methodologies in a hybrid model. Hybrid modeling provides a

framework in which the integration of all kind of available process knowledge is intended.

The advantages arising thereby are that (i) the model predictions (in the process regions

the model was developed for) are more accurate than those obtained for each of the

independent techniques alone; (ii) the model development is less cost intensive than the

one for mechanistic modeling; (iii) the extrapolation properties are much better than

those obtained for pure data-driven models; and (iv) the model can reveal mechanistic

understanding. Therefore hybrid modeling provides an optimal platform in order to

address nonlinear dynamic systems. This, of course, was also noted by other researchers

and so the application of hybrid models is currently promoted for the PAT framework

(Gernaey and Gani, 2010; Glassey & al., 2011; Teixeira & al., 2009). As a matter of

fact, the use of hybrid models for bioprocess monitoring and control is promoted all

along the way of their existence, e.g. (Alford, 2006; Bonvin, 1998; Gnoth & al., 2008a;

Schuegerl, 2001; Yamuna Rani and Ramachandra Rao, 1999).

1.3 Objectives

So far, it was outlined that for efficient bioprocess control process understanding is

a critical factor. In this regard, it was formulated that hybrid modeling can be expected

to be an important vehicle to achieve this goal.

The application of hybrid models, comes along with the choice of the model structure
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among many different possibilities, concerning the embedded nonparametric structure

and underlying identification, which can have a large impact on the overall hybrid model

performance, or which can even restrict the applicability of the hybrid model. Thus there

is a need to systematically determine the influence that those decisions can have on the

performance and moreover to investigate what other effects impact thereon.

This is especially important for the application of hybrid models to biochemical process,

in order to be capable to distinguish between model mismatches that are due to the

methodology (numerics) and those that are due to the process underlying cell-system.

The cell-based biological systems are highly complex and highly sensitive to changes

in their environment (Read & al., 2010a). Their complexity stems from multi-variable

interactions across all cell levels and from the different scales of intrinsic cell dynamics.

It is not feasible (at this time) to consider all details about a cell system in an integrated

framework (Stelling, 2004), but the consideration of all the details is also not mandatory

for a lumped representation of the overall process system. Nevertheless, for good coher-

ence of the model with the cell-based biological system, the inherent system dynamics

have to be accounted for. Also changes in the cell environment, which are tented to

be captured with at-time measurements, must be considered by the modeling approach.

In this respect, methods are required that can evaluate and process huge amounts of

highly-correlated data.

For process control there are, two main ways to profit from a process model. Either

the model is integrated into the controller structure, or the model is used to tune a

standalone controller. Both scenarios are interesting for investigation. Further, for the

case of standalone controllers, the hybrid approach, namely the combination of differ-

ent knowledge sources into a controller is interesting to be explored. Thus the list of

objectives adds up to:

1. A systematic analysis of hybrid methodologies and their applications.

2. Development of a hybrid methodology that poses better coherence with the cell

system through the integration of as much as possible information about the cell-

environment, namely the development of a method that can process large amounts

of correlated data.

3. Development of a hybrid methodology that constitutes better coherence with the

cell-system, namely with the intrinsic dynamics that such systems do exhibit.

4. Investigation on the value of hybrid models and/or hybrid principles for process con-

trol.



8 | 1. Introduction

1.4 Thesis Outline

This thesis is divided into four parts. In a first part (Chapter 2), a literature review

on hybrid models is presented, where the focus is on the different hybrid methodologies

and the varying fields of application. The work contained in this thesis is partly covered

therein, in order to classify it in the overall context.

In a second stage, two complementary hybrid methodologies are developed. One method-

ology (Chapter 3) aims at the development of a serial hybrid model in which the non-

parametric model can cope with correlated inputs and outputs, since this data cannot be

adequately processed by the data-driven techniques that are traditionally used in serial

hybrid modeling. In the other case (Chapter 4), a hybrid model is developed, which is

more coherent with the true nature of cell-system dynamics.

In a third stage, hybrid models are applied for process monitoring in a PAT sense. The

hybrid model is applied as a software sensor for processing highly dimensional input data

for at-line monitoring of biomass, lactate and glutamate concentrations in a batch cul-

tivation of Bordetella pertussis, Chapter 5.

In a fourth stage, a general hybrid control framework is developed in which both cases,

i.e. the development of model based control structures and the utilization of the hybrid

model for controller tuning, are considered. Additionally, the impact of knowledge inte-

gration into the controller formulation is studied.

In more detail the chapters deal with the following:

Chapter 2: In this chapter, the different existing structures of hybrid methodologies

are explored. The focus is on (i) the different ways of process knowledge integration;

(ii) the differences in nonparametric models and associated parameter identification; (iii)

the purpose for which hybrid approaches are applied, such as modeling, control, opti-

mization, etc.; (iv) . In such a way the hybrid methodologies state of the art is provided.

(This chapter, in a more brief form, will be submitted to the Journal of Computers and

Chemical Engineering.)

Chapter 3: (Nonlinear) Partial Least Squares (also referred to as (Nonlinear) Pro-

jection to Latent Structures, (N)PLS) is one of the most applied modeling approaches

when large amounts of (highly correlated) data are required to be processed. In this

chapter, a hybrid methodology is developed and evaluated which bases on the integra-

tion of (N)PLS into a material balance framework. This results into a inherent dynamic

(N)PLS model which is shown to be better than other dynamic (N)PLS approaches.
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(This chapter has been published, as von Stosch & al. (2011b).)

Chapter 4: A hybrid methodology is proposed in which the standard framework

that bases on Ordinary Differential Equations (ODEs) is extended to Delay Differen-

tial Equations (DDEs). It is demonstrated that the proposed hybrid model can cope

more accurately with the different orders of magnitude in reaction time scales, than the

standard model. Additionally, it is shown that the ”true” underlying system delay (in a

mechanistic sense) might be unraveled through the novel approach. (This chapter has

been published, as von Stosch & al. (2010).)

Chapter 5: The application of hybrid modeling for process monitoring is investigated

in this chapter, with experimental data of Bordetella pertussis cultivations. In this regard

the methodology, developed in chapter 3, is utilized to calibrate at-time available mea-

surement data, i.e. pH, temperature, dissolved oxygen concentration and NIR spectral

data, to concentration measurements that are only off-line available, and normally are

sparse, infrequent and noisy. The hybrid methodology is benchmarked against static PLS

models, which are usually applied in this context. (This chapter has been published, as

von Stosch & al. (2011a).)

Chapter 6: A general hybrid control methodology is proposed. Different controller

structures are presented that either base on the hybrid process model or incorporate

structural knowledge along with Artificial Neural Networks (ANNs) in a hybrid sense.

Two methodologies for off-line controller tuning are presented, that either use the pro-

cess data or the process hybrid model. (This chapter will be submitted to the Journal

of Process Control.)

Chapter 7: In this chapter the final conclusions are presented and possible directions

for future work are developed.





Chapter 2

20 years of Hybrid gray-box modeling:
A review

2.1 Abstract

Process or systems modeling is in its essence an exercise of translation of knowledge

into a mathematical representation. In the classical view, different types of knowledge

give rise to different model structures and identification schema. White-box modeling,

founded on first principles, mechanisms or observed phenomena (phenomenological),

gives rise to parametric structures. Black-box modeling is based exclusively on process

data giving rise to nonparametric structures. In hybrid gray-box modeling, the distinc-

tive feature is that different types of knowledge are viewed as complementary, thus

their mathematical representation combines parametric and nonparametric into hybrid

semi-parametric structures. The advantages of hybrid gray-box modeling, such as high

prediction accuracy, good extrapolation properties, transparency of the model structure,

small requirements on calibration data and cost-effective model development, have been

widely recognized, not only in academia but also in the industry. However, in compari-

son to the parametric or the nonparametric techniques, hybrid modeling still lives in the

shadows.

In this review, the most common hybrid modeling techniques and their identification

techniques are revisited. Hybrid model applications in the areas of chemical, biochemical

or mechanical engineering are mentioned. Further, the applications of hybrid modeling

to Monitoring, Control, Optimization, Scale-Up and Model Reduction are reviewed. It is

outlined that the application of hybrid techniques does not automatically lead into better

results but that careful knowledge integration can result into significant enhancements.

11
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2.2 Introduction

The beginnings - a sound foundation and source of inspiration.

Hybrid modeling evolved from the field of neural networks and was first reported

in 1992 by Johansen and Foss (1992b); Kramer & al. (1992); Psichogios and Ungar

(1992); Su & al. (1992). Johansen and Foss (1992b); Kramer & al. (1992); Su & al.

(1992) proposed a so called parallel set-up, Psichogios and Ungar (1992) derived a serial

approach. The central idea was to a priori structure the neural network model through

the use of first-principle knowledge. The result was that when trained with the same

amount of available process data, the hybrid model was capable to predict the process

states better, was able to interpolate and extrapolate mostly more accurately and was

easier to interpret than pure neural networks.

2.2.1 What is hybrid gray-box modeling?

Hybrid modeling is more than just the combination of different modeling techniques.

It is a methodology in that all kind of knowledge about a system, which usually is dis-

tributed in several separated sources, can be fused and thus represented by one modeling

approach. The advantage is that several synergistic effects come into play and therefore

the overall representation of the system is, principally, enhanced.

There are various terms to refer to different types of knowledge. Typical terms for

explicit formulated observation based knowledge, expressed mathematically in form of

equations, are:

- first-principles (established laws of physics, no assumptions such as empirical model

and fitting parameters are made);

- mechanistic (tending to explain phenomena only by reference to physical or biological

causes);

- parametric (the knowledge formulated as equations rely on some modeling assump-

tions);

- phenomenological (knowledge that relates empirical observations of phenomena to

each other);

- white-box (associated to be transparent, therefore representing approaches derived

from observations); and
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- empirical (information gained by means of observation).

Frequently used terms for methodologies that can capture data underlying patterns

are:

- nonparametric (not based on any modeling assumptions, nor a priori structured);

- data-driven (data are the driving force behind those models);

- statistical (relating to the fact that those models capture statistical features of the

data);

- black-box (the underlying mechanisms are unknown, thus nontransparent and therefore

the opposite to white box models); and

- chemometric (extracting information from (bio)chemical systems by data-driven means

of highly dimensional sets).

From these model representations the term hybrid modeling or gray-box modeling

evolved, the latter standing for the combination of black-box and white-box modeling.

However the distinction between gray box modeling and hybrid modeling is many times

not clear and the terms therefore considered interchangeable. Gray-box modeling can,

however, be understood as the broader term, in the sense that any kind of prior infor-

mation incorporated into or along with a black-box model results into a gray-box model.

It is proposed to understand hybrid modeling in this respect as a sub category, in that

in a hybrid model, the black-box and the white-box can be separated from one another,

see Sohlberg (2005).

2.2.2 Why hybrid-modeling? What is the gain?

White-box modeling and black-box modeling constitute two approaches which are

different in their traits. While the development of a white-box model requires detailed

knowledge about the process and is many times cumbersome or laborious, data-driven

approaches are rather quickly applicable and require less knowledge. The concept of the

latter bases on mathematics to describe the data underlying relations. In comparison

to phenomenological models more data are necessary for the derivation of data-driven

models; and its descriptive quality is good only in the vicinity to those regions for which

it was derived.
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An alternative to these model, that might be understood as a combination of both

modeling techniques, is hybrid modeling. Hybrid modeling balances the advantages and

disadvantages of pure mechanistic and nonparametric modeling. It awards with several

attractive features, such as:

i) Higher estimation or prediction accuracy which stems from a number of factors,

namely:

a) A lower number of model parameters when compared to pure nonparametric

techniques, which leads to a higher statistical confidence of the hybrid model;

b) The opportunity to easily account for all measurable changes in variables that

might impact on the predictions, i.e. all measurable quantities can be considered

as inputs to the hybrid model structure where the correlation is achieved through

the embedded nonparametric approach, while for phenomenological modeling the

link must be established explicitly.

c) Constraints and bounds can be incorporated into the hybrid model avoiding phys-

ically unfeasible solutions.

ii) Better calibration properties than with pure nonparametric models can be obtained,

which is due the fact that the process operation space can be structured through the

mechanistic or phenomenological knowledge decreasing the possible search space.

Therefore the requirements on the number of data points and on the data quality

are lower for hybrid modeling than for pure nonparametric techniques.

iii) Enhanced extrapolation properties, when compared to pure nonparametric approaches,

can be achieved. The explanation is the same as for calibration, i.e. structuring of

the process operation space. As a matter of fact calibration and extrapolation are

closely related, meaning that the identification from the exact same data yields a

hybrid model that has a lower uncertainty than the nonparametric model. When

extrapolation, the higher uncertainty of the nonparametric models might be ampli-

fied through the lever, given between the region of identification and the region of

application.

iv) Fewer phenomenological knowledge is required to construct a hybrid model than to

develop a white-box model. However, all knowledge available can be integrated into

the hybrid model.
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v) Faster development of hybrid models than of white-box models, since less knowledge

is required and so no additional effort is needed to unravel sufficient details for the

model construction.

vi) The integration of the available phenomenological knowledge leads to a higher trans-

parency of the hybrid model than of the nonparametric models.

Having outlined what hybrid models are, and why they should be considered, the

questions to address in the following concerns the methodology of hybrid modeling and

fields of application.

2.3 Hybrid-modeling - The framework

Hybrid-modeling is understood as the valuable combination of different sources of

process knowledge, i.e. the integration of information which can be captured by miscel-

laneous models into one framework. Questions arising in this context are:

i) How to arrange the models?

ii) What kind of information can be integrated in what way?

iii) How can unknown parts be represented?

iv) How can the unknown parts be identified?

v) What model is performing best?

vi) What is the influence of the data?

These points will be addressed in detail below.

2.3.1 Hybrid model configurations: Parallel or Serial, One- or Multi-step

Two models can be arranged in three ways, see Fig. 2.1, where structure A is

referred to as parallel and structures B and C are called serial, sequential, cascade or

consecutive. These structures are theoretically addressed in Agarwal (1997) considering

that the white box would represent phenomena founded information, and the black box

consists of a nonparametric model. However, in the serial case, the series of the black

and the white model might not always be interchangeable. This is for instance the case

when the white box would represent material balances and the black box the kinetic rate

model.
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Figure 2.1 Schematic sketch of the three ways to combine two models (represented by a
white and a black box). A shows a parallel configuration while B and C a serial
structures.

The Parallel structure

The parallel structure A usually finds application if a process model (white box)

is available, but its prediction power due to whatever reasons (e.g. unmodeled effects,

nonlinearities, dynamic behavior) is limited. The parallel arrangement of a nonparametric

model, in such a case, can lead to significantly improved predictions. Of course the

prediction power of the nonparametric model remains poor in regions that it has not

been trained on. The parallel approach is especially interesting if certain effects in the

system can be uncoupled, e.g. a static non-linear and dynamic linear behavior, and thus

by the separate model representations can accurately be captured (Abonyi & al., 1999;

Chen & al., 2004; Klimasauskas, 1998; Masri, 1994; Narendra and Parthasarathy, 1990;

Potocnik and Grabec, 1999; Su and McAvoy, 1993).

There exist several possible manners to combine the outputs of both models. Two

fundamental ways are superposition and multiplication, see (Hu & al., 2009). The

combination of both fundamental ways is also possible, as e.g. (Johansen and Foss,

1992a,b), wherein several models are combined in parallel and a weighting schema de-

termines their contribution to the model's system representation. In Su and McAvoy

(1993) the weighting schema accounting for the incorporation of the nonparametric

model predictions, is part of the Hammerstein model. The approach proposed by Fellner

& al. (2003) is somewhat the other way around, where the weighting of the mechanis-

tic model outputs is accomplished by the nonparametric model. Klimasauskas (1998)

proposes to use a confidence module for the weighting of the different model outputs.

However, the most frequently applied is probably pure superposition, i.e. the summation

of the outputs, in which case the nonparametric model predicts the residual between

the first-principle model and the experimental data, (Su & al., 1992; Thompson and

Kramer, 1994).
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The Serial structure

The most popular serial combination is the one shown by structure B. In this forma-

tion the white box usually represents a model derived from first-principles that are the

conservation laws, namely material, momentum, impulse, population or energy balances

derived for the process at hand. The black box usually represents the underlying kinet-

ics, for which a general valid model is not available, wherefore in the hybrid modeling

context, nonparametric models are applied.

This serial structure B is especially suitable when no precise knowledge about the

underlying mechanisms is available, but sufficient numbers of process data exist to infer

the underlying patterns. Another scenario in which its application is worth, is addressed

in (Teixeira & al., 2007b; von Stosch & al., 2011b), i.e. huge sets of data, rich in

information about the process state but without direct physical interpretation, can be

exploited by the nonparametric model resulting into more precise estimations of the ki-

netics.

The serial structure C can either be applied as an alternative to the parallel structure,

i.e. the white-box model predictions are considered as inputs to the nonparametric model

or to establish a link between the process state and certain process characterizing param-

eters (Aguiar and Filho, 2001; Hwang & al., 2009; Nascimento & al., 1999; Schenker

and Agarwal, 2000; Zhang & al., 2006). An approach which is somewhat similar to a

serial structure C, was proposed by Martinez and Wilson (1998); Tsen & al. (1996), i.e.

to use a suitable first-principles to augment the number of experimental data, and then

to use these data for the nonparametric model training. The prediction quality for this

type of trained models was shown to be superior to models with structures A or B see

(Tsen & al., 1996), which in this case is not astonishing since the model identification

on the basis of much larger numbers of data will automatically result into more accurate

models. However, neither this hybrid model nor hybrid structure C models did find much

application so far. Further, other studies than the one by Tsen & al. (1996) did not

compare the different structures.

Parallel or Serial

In case that the question is whether a serial or a parallel approach is more suitable

for a given application, the main focus should be on the structural uncertainty of the

mechanistic model. In cases that the structural uncertainty is high, the parallel schema
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can be expected to perform better than the serial one, since the parallel nonparametric

model can partially account for the structural miss-match (Examples would be (Bhutani

& al., 2006; Lee & al., 2002)). Due to the fact that extrapolation properties are heavily

determined by the underlying model structure (Fiedler and Schuppert, 2008; Mogk & al.,

2002; Schuppert, 1999), the serial structure in such a case (high structural uncertainty)

cannot be expected to perform well, i.e. any nonparametric model will probably perform

better (Bhutani & al., 2006; Lee & al., 2002). When the structural uncertainty is low,

then the serial hybrid model will have significantly better extrapolation properties than

the parallel model (van Can & al., 1996) and also the prediction quality of the former

can be expected to be increased (Conlin & al., 1997). In Corazza & al. (2005), the fact

that the serial model will perform best when the provided structure is close to the “true”

underlying structure is used to infer structural mechanistic knowledge.

One-step or Multi-step ahead prediction

Regardless whether the structure is serial or parallel, the hybrid model can be a one-

step or a multi-step ahead predictor, see Fig. (2.2). Whether the model is one or the

other depends on the kind of information that enters in the model. In the case that

measured information is used as an input, the structure is a one-step ahead predictor,

while in case that the only inputs are the model outputs the structure is a multi-step

ahead predictor. It depends on the application and the availability of information which

structure is to prefer or can at all be applied. In van Can & al. (1998) the hybrid models

that are identified as one-step ahead predictors are applied as multi-step ahead predictors,

as a rigorous model test. The different model properties that are associated with the

structure being a one-step or multi-step ahead predictor are analyzed for a serial hybrid

model in von Stosch & al. (2011b). Therein, it was observed that those models which

feedback the state are, in general, better conditioned and provide enhanced predictions

when compared to pure feed-forward models.

2.3.2 Integration of more knowledge into the basic serial or parallel
structures

While the overall hybrid structure is usually assessed to categorize the hybrid ap-

proach into parallel or serial, the substructures can be versatile, because it is usually

worthwhile to include additional knowledge into the hybrid model. This is due to the

fact that additional knowledge, even though increasing the complexity of the hybrid from

a spectator's view, can reduce and structure the space spanned by estimates and the
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Figure 2.2 Schematic sketches of the model structure for one-step and multi-step ahead pre-
dictors.

parameters of the nonparametric model (Fiedler and Schuppert, 2008) (i.e. the curse

of dimensionality). As a result, enhanced extrapolation properties, improved predictions

and better calibration properties (i.e. less data are required for the calibration, the pa-

rameter identification converges faster and less variations in the optimal parameters are

obtained) of the hybrid model are obtained.

Several approaches exist to integrate more knowledge into hybrid models than just

the information provided by the conservation laws or the process data, which is especially

true for the modeling of the kinetics in the serial hybrid structure. In the following the

efforts undertaken to integrate more knowledge and schema for the fusion of knowledge

are presented.

Additional mechanistic information

Many times additional phenomenological information about the studied system is

available. In case that a complete white-box model is at hand, the certainty about the

model structure and the certainty about the components should be used to decide which

hybrid model structure might be the most suitable, i.e. parallel (A) or serial (B and C).
In case that the structural certainty is relatively high it is one option to represent the

most uncertain parts of the model through nonparametric techniques (Fu and Barford,
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1995a; Georgieva & al., 2003), which results into a serial hybrid model (structure B).
Similar thereto is the case in which only some phenomenological knowledge is available,

in that only the completely unknown parts are necessarily represented through the non-

parametric model.

Right from the beginning of hybrid modeling additional knowledge was incorporated,

where it is considered that biomass is a catalyst to the reactions (i.e. the multiplica-

tion of the specific rates by the biomass) (Psichogios and Ungar, 1992; Schubert & al.,

1994a,b; Tholudur and Ramirez, 1996; Zorzetto and Wilson, 1996). A general reaction

schema in which two parameters were modeled by nonparametric models was proposed by

Reuter & al. (1993) for batch and continuous mineral and metallurgical processes. The

generated rate predictions could represent the reactor performance in various situations.

Fu and Barford (1995a) used a complete cell model of hybridoma cell line cultivations

and replaced the most uncertain parts by nonparametric models. In Chen & al. (2000)

it was shown that knowledge about the matrix of stoichiometric/yield coefficients is of

value in the formulation of macroscopic material balances. In Mogk & al. (2002) it is

demonstrated that already the incorporation of the underlying mechanistic structure can

improve the prediction and modeling accuracy. Oliveira (2004) formed a general frame-

work for hybrid models that is based on the general framework of macroscopic material

balances by Bastin and Dochain (1990). Therein (Oliveira, 2004) the reaction term is

represented by a product of three terms, i.e. the stoichiometry, known and unknown

rate terms. Bounded Input Bounded Output (BIBO) stability is discussed, for which a

major point is that a reaction can only occur when all required educts are present. Thus

the incorporation of more mechanistic knowledge can, beside the advantages mentioned

above, also lead to better model properties concerning BIBO stability and/or adherence

to physical constraints (Karama & al., 2010; Oliveira, 2004).

The impact that different levels of knowledge integration have on the model per-

formance was studied by Vande Wouwer & al. (2004), applying three structures with

different levels of sophistication, and similarly but with considerations regarding one-step

and multi-step ahead predictor, studied by von Stosch & al. (2011b). Also Al-Yemni and

Yang (2005) studied the difference between the integration of no knowledge at all and

some knowledge. A state transformation technique, proposed originally by Bastin and

Dochain (1990), was used by Vande Wouwer & al. (2004) to estimate the stoichiometric

coefficients. The same state transformation technique (Bastin and Dochain, 1990) was

chosen by Chen & al. (2000) to decouple the rates for the identification of the non-
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parametric model and also was picked up by Georgieva and de Azevedo (2009) to infer

unmeasured state variables and to on-line adapt uncertain stoichiometric coefficients.

Brendel and Marquardt (2008) used the target factor analysis (proposed originally by

(Bonvin and Rippin, 1990)) to obtain the stoichiometric coefficients. Teixeira & al.

(2007a) applied Elementary Flux Modes to mammalian Baby Hamster Kidney (BHK)

cultivations and integrated the gained information about the stoichiometry and the most

important Elementary Modes (a reduced form of the metabolic network) into a hybrid

model. This approach can be seen as a first step to integrate knowledge gained in sys-

tems biology into a hybrid framework.

In Al-Yemni (2003); Kasprow (2000); Mazutti & al. (2010) it is proposed to use

“standard” formulations of the kinetic rates, and to represent the therein contained pa-

rameters by nonparametric model expressions. In Corazza & al. (2005) this idea was

used to compare several expressions for inhibited kinetic rates, i.e. the inhibition pa-

rameter is given through the nonparametric model, such tenting to identify the “true”

underlying structure and thus, ultimately, to infer mechanistic knowledge. The other

way round, Costa & al. (2010) reported the use of several empirical expression along

with Michaelis-Menten kinetics to determine which empirical expression has the biggest

merits. A symbolic reformulation strategy for the underlying kinetic model is suggested

by Lima and Saraiva (2007), aiming at a semi-empirical model representation that fits

better to the data.

The integration of knowledge directly into the nonparametric model (embedded in

a serial hybrid model) was studied by van Deventer & al. (2004), i.e. a semi-empirical

regression network in which prior knowledge can directly be integrated was proposed.

It was shown that the network structure was easier to identify and that the complete

model has better extrapolation properties, than those networks without prior knowledge.

Karama & al. (2010) investigates the integration of constraints into the nonparametric

models, thus forcing the nonparametric estimates to adhere to physical restrictions. In

the approach proposed by Fellner & al. (2003) the overall model structure is a highly

connected network in which knowledge can be integrated in form of neurons. Also in

this approach, the integration of knowledge leads to better model properties.

Fiedler and Schuppert (2008) addressed the integration of knowledge into a tree-

structured scalar hybrid model, in which several parametric and nonparametric models

can be integrated (Identifiability is also addressed). It is therein theoretically addressed
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that such a structure can avoid the curse of dimensionality of nonparametric structures

and thus also provides better extrapolation capabilities.

Combination of incorporated information

Two general ways to fuse information are superposition (as e.g. in most parallel

structures) and multiplication (as e.g. proposed in Oliveira (2004)). If however the

same quantity is predicted by two different techniques than other fusion approaches

must be considered. Weighting schema can be used, as was already outlined for parallel

structures in the respective section (Fellner & al., 2003; Johansen and Foss, 1992a,b;

Klimasauskas, 1998; Su and McAvoy, 1993). Dors & al. (1995, 1996) applied a weight-

ing function in a serial hybrid model in order to coordinate the predictions of the kinetic

rates by heuristic rules (the Monod model) and the ones by a nonparametric model. The

kinetic rate predictions and the nonparametric predictions were weighted by a clustering

approach (for details see also (Galvanauskas & al., 2004)), where more weight is given

to the nonparametric model in regions where process data are available, while restricting

it when extrapolating. This combination schema was also picked up by Patnaik (2010),

who however determined the weighting iteratively. As an extension thereto the Mixture

of Experts framework proposed by Peres & al. (2000, 2001) can be understood. Therein

several parallel submodels exist, whose contribution to the final prediction, is selected

by a gating function. Note that the construct of the Mixture of Experts is similar to the

structure of Fuzzy models, in that the gating function has its analogy in the rules (atten-

dance part) and the submodel in the Fuzzy consequent part. However, the identification

of the parameters in the mixture of experts approach is considerable more difficult than

that of a Fuzzy model since the partitions (at which certain submodels are active) and

the rules have to be learned from the data and are not given by the user, e.g. see Peres

& al. (2001).

Another option for weighting different predictions of the same quantity is to use a

nonparametric model, where all predictions are inputs to the nonparametric model and

only the final prediction is the output (Bollas & al., 2003; Cao & al., 2004a,b; Fellner

& al., 2003).

Operational knowledge-Rule based information

Knowledge about certain rule-alike procedures can be captured by Fuzzy models.

Those Fuzzy systems make use of a logic structure to describe certain rule-based pro-
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cedures, e.g. if glucose concentration high, then increase biomass growth rate; elseif

glucose concentration low, then decrease biomass growth rate. The expressions such

as low or high are associated to parameters that can either be determined manually,

through the experience of an operator, or can be fitted to experimental data Roubos

(2002); Roubos & al. (2000); Schubert & al. (1994a); van Lith & al. (2002, 2003).

There are several Fuzzy models available. The most popular is maybe the Takagi,

Sugeno Kang (TSK) type (Takagi and Sugeno, 1985), in which the consequent part of

each rule consists of a linear equation, (van Lith & al., 2002). Therefore the approach

could be interpreted as several parallel linear models, where the contribution of each

submodel is chosen according to some specified rule. This makes this type of Fuzzy

model suitable for the modeling of nonlinear relations. As so, they can be used instead

of nonparametric models. The biggest advantage of Fuzzy models, when compared to

nonparametric techniques, is that they are interpretable and such they can offer trans-

parency in situations where physical models are difficult to derive (van Lith & al., 2002,

2003). However, for their derivation considerable more knowledge is required than for

nonparametric models.

The integration of Fuzzy models along with first-principles knowledge can, as before,

be accomplished in parallel (Abonyi & al., 1999; Fu and Barford, 1995b) or in series

(van Lith & al., 2002, 2003; Vieira & al., 2005). Moreover they can be complementary

combined into an existing hybrid approach, e.g. in parallel to a nonparametric model

(Dors & al., 1995, 1996; Peres & al., 2000, 2001) where a gating function decides about

the degree of their involvement in the kinetic rate modeling; or in series as an input to

the nonparametric model, providing a classification of the operational phase (Beluhan

and Beluhan, 2000; Preusting & al., 1996; Schubert & al., 1994a; Simutis & al., 1995).

While the determination of the Fuzzy model parameters in the parallel hybrid case

can be accomplished with standard techniques, not all of those techniques can be directly

used in the serial approach, see (Preusting & al., 1996; Roubos, 2002; Roubos & al.,

2000; Schubert & al., 1994a,b; van Lith & al., 2003) for examples.

2.3.3 Nonparametric Models

The structure of nonparametric models is not specified a priori but is instead de-

termined from data. It is the nonparametric model that gives the hybrid model its



24 | 2. 20 years of Hybrid gray-box modeling: A review

flexibility, e.g. to model systems with partially unknown underlying effects, and that also

gives the hybrid approach its prediction power. The most frequently applied nonparamet-

ric models, are the MultiLayer Perceptron (MLP) (counted in are Feed Forward Neural

Networks (FFNN), Artificial Neural Networks (ANN), Neural Networks (NN), Recurrent

Neural Networks (RNN), and other approaches that base on the MLP concept) and the

Radial Basis Function Network (RBFN), see Table 2.1. Both provide about equally good

predictions (in favor of the former (James & al., 2002)), but the determination of the

MLP takes considerably longer than the one of the RBFN. This is due to the fact that

for the training of the RBFN approach direct use is made of the outputs. The advantage

of the MLP is that the outputs (of the nonparametric model) do not need to be known

explicitly for the model determination. This is especially important in the serial case,

since the kinetic rates cannot be explicitly determined and their calculation from sparse,

infrequent noisy measurements might be critical. The advantage of the RBFN is that

those networks have certain, inherent stability characteristics, which make them suitable

for control and monitoring (James & al., 2002).

However, there exist certain situations (e.g. in case that huge amounts or highly cor-

related data, such as when spectroscopic data, are integrated) where it is advisable to

apply either different nonparametric methodologies, such as (Nonlinear) Partial Least

Square models (Henneke & al., 2005; von Stosch & al., 2011b) or to pre-treat the in-

puts, for instance with Principal Component Analysis (PCA) (Cubillos and Lima, 1997,

1998) (Note that there are also other techniques available such as Independent Compo-

nent Analysis (ICA), Singular Value Decomposition (SVD) etc., see (Clifford, 2005)).

Similar to the structure of NPLS models, but not capable to deal with huge amounts

of highly correlated data, is the one of stacked neural networks. Tian & al. (2001)

uses stacked neural networks in a parallel hybrid structure and found that they provide

better predictions than if one single neural network is used for modeling the same task.

In a similar manner Bollas & al. (2003) used a stack of ANNs whose outputs (various

predictions for the same residual) were combined by an additional ANN to obtain the

final residual prediction.

Table 2.1 List of nonparametric models and Fuzzy approaches that find application in serial
(S) or parallel (P) hybrid models, and the respective publications.
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Nonparametric Hybrid Publications

Model Structure

MLP1 S

Abonyi & al. (2007); Acuna & al. (1999); Aguiar and Filho (2001); Al-Yemni
(2003); Al-Yemni and Yang (2005); Anderson & al. (2000); Andrasik & al.
(2004); Baldi and Chauvin (1996); Bazaei and Majd (2003); Bellos & al. (2005);
Beluhan and Beluhan (2000); Bhutani & al. (2006); Boareto & al. (2007); Bol-
las & al. (2003); Braake & al. (1998); Brendel and Marquardt (2008); Cao
& al. (2004a,b); Ccopa Rivera & al. (2006); Chabbi & al. (2008); Chorukova
and Simeonov (2008); Conlin & al. (1997); Corazza & al. (2005); Cubillos &
al. (1996); Cubillos and Lima (1998); Dadhe & al. (2001); Dors & al. (1995,
1996); Emmanuel & al. (2009); Eslamloueyan and Setoodeh (2011); Feil & al.
(2004); Fellner & al. (2003); Feyo de Azevedo & al. (1997); Fu and Barford
(1995a); Georgieva and de Azevedo (2009); Georgieva and Feyo de Azevedo
(2007); Georgieva & al. (2003); Ghosh & al. (2000); Gnoth & al. (2008b);
Goncalves & al. (2002); Guo & al. (1997); Gupta & al. (1999); Harada & al.
(2002); Hinchliffe & al. (2003); Ibrehem & al. (2011); Ignova & al. (2002);
James & al. (2002); Jenzsch & al. (2007); Kahrs and Marquardt (2007, 2008);
Karama & al. (2001a,b, 2010); Kasprow (2000); Kim and Chang (2000); Lee
& al. (2002); Leifsson & al. (2008); Madar & al. (2004, 2005); Mazutti & al.
(2010); Mogk & al. (2002); Molga and Cherbanski (1999); Molga and Westert-
erp (1997); Molga (2003); Molga & al. (2000); Nascimento & al. (1999); Ng and
Hussain (2004); Oliveira (1998, 2004); Patnaik (2001, 2010, 2003, 2004); Peres
& al. (2008, 2000, 2001, 2003); Piron & al. (1997); Ploemen (1996); Porru & al.
(2000); Preusting & al. (1996,?); Psichogios and Ungar (1992); Qi & al. (1999);
Reuter & al. (1993); Roubos & al. (2000); Saraceno & al. (2010b,c); Saxen and
Saxen (1996); Schenker and Agarwal (2000); Schubert & al. (1994a,b,b); Silva
& al. (2000, 2001); Simon & al. (2006); Simutis & al. (1995); Simutis and Lueb-
bert (1997); Simutis & al. (1997); Teissier & al. (1997); Teixeira & al. (2005b,
2007a, 2006); Thibault & al. (2000); Tholudur and Ramirez (1996); Tsen &
al. (1996); van Can & al. (1996, 1999, 1998, 1997); von Stosch & al. (2010);
Wei & al. (2007); Wilson and Zorzetto (1997); Zabot & al. (2011); Zahedi &
al. (2005); Zander & al. (1999); Zbicinski & al. (1996); Zhang & al. (2006);
Zorzetto & al. (2000); Zorzetto and Wilson (1996); Zuo & al. (2006); Zuo and
Wu (2000)

RBFN2 S

Chen & al. (2000); Cubillos and Acuna (2007); Cubillos & al. (2001); Dadhe & al.
(2001); Graefe & al. (1999); Hanomolo & al. (2000); James & al. (2002); Pat-
naik (2008); Peres & al. (2008); Thompson and Kramer (1994); Vande Wouwer
& al. (2004); Zahedi & al. (2005, 2011)

PLS3 S Carinhas & al. (2011); Henneke & al. (2005)

NPLS4 S von Stosch & al. (2011a,b)

Fuzzy S

Dors & al. (1995); Peres & al. (2000, 2001); Preusting & al. (1996); Roubos &
al. (2000); Schubert & al. (1994a,b); van Lith & al. (2002, 2003); Vieira & al.
(2005); Vieira and Mota (2005)

Wavenet S Safavi & al. (1999)

FLN12 S
Ccopa Rivera & al. (2006); Costa & al. (1999, 1998); Harada & al. (2002);
Henriques & al. (1999); Mantovanelli & al. (2007)

TSE6 S Sohlberg (2005)

SVM8 S Kim and Kim (2005, 2006); Wang & al. (2010a); Yang & al. (2011)

NARX9 S Vieira and Mota (2005)
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ME10 S Peres & al. (2008, 2001, 2003, 2004)

SERM11 S van Deventer & al. (2004)

MLP1 P

Anderson & al. (2000); Bhutani & al. (2006); Bollas & al. (2003); Chen &
al. (2004); Chungui & al. (2009); Conlin & al. (1997); Duarte & al. (2004);
Genc (2006); Guclu and Dursun (2008); Hisbullah & al. (2002); Hussain and
Ho (2004); Hussain & al. (2001, 2002); Johansen and Foss (1992a,b); Jones
& al. (2007); Kamali and Mousavi (2008); Lee & al. (2002, 2005); Leifsson &
al. (2008); Masri (1994); Sohn & al. (2008); Su & al. (1992); Su and McAvoy
(1993); van Can & al. (1996); Vilim & al. (2001); Xiong and Jutan (2002)

RBFN2 P
Kramer & al. (1992); Lee & al. (2005); Linker and Seginer (2004); Potocnik and
Grabec (1999); Potocnik & al. (2000); Vande Wouwer & al. (2004)

PLS3 P Crowley & al. (2001); Doyle & al. (2003); Jia & al. (2011); Lee & al. (2005)

NPLS4 P Klimasauskas (1998); Lee & al. (2005)

QPLS7 P Lee & al. (2005)

Fuzzy P Abonyi & al. (1999)

MARS5 P Duarte & al. (2004); Duarte and Saraiva (2003)

SVM8 P Hu & al. (2011)

Stacked MLP P Tian & al. (2001)

MLP1: MultiLayer Perceptron

RBFN2: Radial Basis Function Network

PLS3: Partial Least Square or Projection to Latent Structures

NPLS4: Nonlinear PLS

MARS5: Multivariate Adaptive Regression Splines

TSE6: Taylor Series Expansion

QPLS7: Quadratic PLS

SVM8: Support Vector Machines

NARX9: Nonlinear AutoRegressive eXogenous

ME10: Mixture of Experts

SERM11: Semi-Empirical Regression Model

FLN12: Functional Link Network

Nonparametric models for specific problems

The concept to use more than one neural network was also explored by Cao & al.

(2004a,b); Gnoth & al. (2008b); Gupta & al. (1999); Patnaik (2001, 2010, 2003); Piron

& al. (1997); Preusting & al. (1996); Reuter & al. (1993); Silva & al. (2000, 2001)

in serial hybrid models. Preusting & al. (1996) used two ANNs in parallel two model

separate phenomena, i.e. one ANN to model the kinetics another to model the viscosity.

Gupta & al. (1999) applies two parallel ANNs, each of which inferring a variable value, in

series with another three parallel ANNs, each of which estimating a quantity that enters

as an input to the mechanistic model. In Gnoth & al. (2008b); Silva & al. (2000, 2001)

the prediction of one central kinetic rate (usually the specific biomass growth rate) by a

first ANN, was used as an input (beside others) to another ANN, which in turn predicts

another rate e.g. the product formation rate. It was shown that by doing so, lag phases

which can occur when e.g. the main substrate in a fermentation is changed, can be

modeled.
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The modeling of each subtask in the hybrid model with one individual nonparametric

model, as e.g. done by Patnaik (2001, 2010, 2003); Piron & al. (1997); Saraceno &

al. (2010b) can help to make the model structure more transparent, and increase the

accuracy of each predicted quantity. A difference to the individualization of the predic-

tions is the structure by Cao & al. (2004a,b) who applied two individual nonparametric

models to predict the same quantity but each model relying on different phenomena i.e.

the inputs are different.

Other approaches incorporate nonparametric models that can, at least to some extent

be analyzed and interpreted, such as a Taylor Series Extrapolation (Sohlberg, 2005), Mul-

tivariate Adaptive Regression Splines (MARS) (Duarte & al., 2004; Duarte and Saraiva,

2003), Semi-Empirical Regression Models (van Deventer & al., 2004) or Nonlinear Au-

toRegressive eXogenous (NARX) models (Vieira and Mota, 2005). The Fuzzy model

applications, named above, could also be counted thereto.

Recently, Support Vector Machine (SVM) models, which are said to be fast and easy

to train, find more and more application (Hu & al., 2011; Kim and Kim, 2005, 2006;

Wang & al., 2010a; Yang & al., 2011). Fast training properties and fast on-line adaption

is also reported for Functional Link Networks (Costa & al., 1999, 1998).

Comparison of nonparametric models

Comparisons between several in the hybrid model embedded nonparametric models

have been carried out, but the findings are sometimes contradicting. This might be due

to the fact that the performance of the nonparametric model is highly case dependent

(what kind of function should be represented, how many data points are available, how

many parameters does the nonparametric model have, what training algorithm is used,

what are the properties of the in- and outputs, etc..) wherefore it is difficult to draw

general conclusions. Nevertheless, the accomplished comparisons are listed in the fol-

lowing in order to provide some intuition for nonparametric model use.

MARS, regression analysis and ANN were compared by Duarte & al. (2004); Duarte

and Saraiva (2003) in a parallel set-up, concluding that if sufficient training data are

available the MARS is the best approach. Lee & al. (2005) made a comparison of

several nonparametric models (FFNN, RBFN, PLS, QPLS and NPLS) embedded in a
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parallel hybrid structure for the modeling of a full scale wastewater process, finding that

the NPLS approach (through which fault detection is also enabled) provides the best

predictions. Predictions of serial hybrid model in which RBFN and RB are embedded

were found to be better than those with embedded ANN by Zahedi & al. (2005), which

however might be due to the relative low number of experimental data. Kim and Kim

(2005) compares an ANN to SVM model in a serial approach, and states that the SVM

approach performs better. Wang & al. (2010a) compared the SVM to RBFN, incor-

porated into a serial structure, finding that the structure of the RBFN is, in general,

greater. Also for a serial structure, Vieira and Mota (2005) compared a NARX to a

Fuzzy approach, concluding that the performance of the NARX model depends stronger

on the a priori knowledge than the one of the TSK Fuzzy model, but that it is consid-

erably easier to adapt the NARX on-line. A comparison of an ANN to a more physical

model, namely a polynomial approach, was already conducted by van Can & al. (1996)

in a serial hybrid approach. Therein it was concluded that the development of the ANN

requires less knowledge, while giving better extrapolation properties.

2.3.4 Identification Schema

The identification of the hybrid model unknown parts, most times comprises only

the identification of the nonparametric model parameters (which is also referred to as

training). This identification is accomplished by minimizing an objective function value

through manipulation of the parameter values. The objective function usually consists

of a part accounting for the fit of the model predictions to the experimental data. Addi-

tionally, the objective function can contain a regulation term which e.g. can enhance the

generalization capabilities of the model (Hu & al., 2011; Kahrs and Marquardt, 2008;

Vande Wouwer & al., 2004). While, in principle the same identification schema can be

applied when also other hybrid model parts are unknown, e.g. yield/stoichiometric co-

efficients, it might, in this case, be advantageous to decompose the identification since

e.g. usually the initial values of such parameters are known which might simplify the

identification. Approaches explicitly dealing with this scenario are given in Kahrs and

Marquardt (2008); Yang & al. (2011), the latter is shortly presented below.

In case of the serial structure C, Fig. 2.1, or the parallel structure A, where in

the latter the nonparametric model predicts the residual between experimental data and

mechanistic model predictions, the identification of the nonparametric models can, in
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principle, be carried out with standard techniques (for instance for MLPs the well known

back-propagation algorithm can find application (Werbos, 1974)).

In case of the serial hybrid structure B, Fig. 2.1, the determination is slightly more

difficult since e.g. the kinetic rates cannot be measured and their reconstruction from

sparse, infrequent and noisy experimental data is prone to error (Oliveira, 2004; Schu-

bert & al., 1994a). Nevertheless, the direct approach, in which their reconstruction is

required, is frequently considered. Two alternative approaches are the indirect approach,

which is based on the sensitivities equations and the incremental approach. All three are

described below.

The direct approach

For the direct approach at first the outputs e.g. the kinetic rates, are calculated

from the experimentally measured state values. This can e.g. be applied through a

Taylor-Series approximation (Tholudur and Ramirez, 1996) or through smoothing spline

approximations (Schubert & al., 1994a). With these calculated outputs and the available

inputs, readily available standard techniques can be used for the weights identification.

However, a fact that has found few attention is the statistical optimality of the model

state estimations with respect to the experimental data. This is interesting, since the

identification is accomplished from kinetic data which were in turn calculated from the

experimental data. Thereby the calculated kinetic data might be biased and so might

be the model estimates.

The incremental approach

The incremental approach, proposed by Kahrs and Marquardt (2008), is ideal for

relatively large systems, since the identification problem is at first decomposed into

four smaller problems which are solved sequentially. During this phase standard training

techniques for the identification of the nonparametric model can be used. Once the

four sub-identifications are accomplished, an overall simultaneous parameter estimation

is carried out in order to obtain predictions which are estimated in a statistically opti-

mal sense. Theoretically, i.e. if the gradients with respect to the parameters can be

analytically determined, the sensitivities approach can be utilized for the simultaneous

identification step.
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The indirect approach – the sensitivities equations

Right from the beginning of serial hybrid modeling, a schema for the identification of

the neural network weights was required and such Psichogios and Ungar (1992) adapted

the well known error back-propagation technique (Werbos, 1974) by using sensitivi-

ties equations (Caracotsios and Stewart, 1985). Acuna & al. (1999); Oliveira (2004);

Schubert & al. (1994a) compared this so called sensitivities method to the direct iden-

tification approach. They noted that in the presence of few noisy measurement data

the reliability of the calculated reaction rate suffers from the accurate determination

of the time-derivative. The sensitivities approach can be used to train both one-step

and multi-step ahead predictor models. Further, in case of a one-step ahead predictor

structure, the number of input data that are used to establish the correlation between

inputs and outputs can be significantly greater than with standard techniques wherefore

better noise rejection properties are yielded, for details see von Stosch & al. (2011a).

Other alternative approaches

A state transformation technique was used by Chen & al. (2000) to decouple the

kinetic rates, such decomposing the identification. Thereupon the application of an

observer based estimator was proposed to estimate the values of the rate expressions.

Subsequently standard techniques can find application for the training of the nonpara-

metric model.

Another identification procedure, referred to as direct optimization (Madar & al.,

2004), only requires the residual (between experimental data and hybrid model predic-

tion), since a derivative free optimization routine is applied in which the prediction error

is minimized through the adaptation of the weights (Madar & al., 2004; McKay & al.,

1998; Roubos & al., 2000). While this approach of course has the advantage that it

does not required the analytic determination of the derivatives, it might result in high

computational costs (Roubos & al., 2000). However, with the ever increasing computa-

tion power and due to the fact that several random initiations of the parameters might

not be required, this is an attractive solution for relatively small systems. Also in the

case that the gradients are not continuous this might be a good choice (Istadi and Amin,

2006).

Another identification approach that addresses the generalization capabilities of par-

allel hybrid models is proposed by Potocnik and Grabec (1999). Therein those data that



2.3. Hybrid-modeling - The framework | 31

are not rich in information are removed from the sample space on which the hybrid model

is trained, in order to determine the “optimal parameters”. However, while this might

be a good procedure to develop hybrid models for certain phases of fermentations, the

overall process representation might, most probably, suffer.

An identification approach for block-oriented hybrid models, that base e.g. on Ham-

merstein, Wiener or on feedback block-oriented models is proposed in Pearson and

Pottmann (2000).

General Remarks about the identification

Two well known problems that are usually encountered during the identification

are over-fitting and local minima. While the former is usually addressed with early-

stopping/cross-validation or the above mentioned penalty term in the objective function,

the latter is tackled by performing several identification runs for one structure starting

from random parameters initializations.

Since convergence and success of the identification depend on the initialized param-

eter values (Kahrs and Marquardt, 2008), and since relatively small weight values are

preferential due to the better generalization capabilities, the initialization values of the

weights are, many times, constrained in size, e.g. smaller than one, greater than minus

one. Additionally, in case that (i) only few experimental values exist and (ii) a simple

model of the kinetic rates is available, the model can be used to provide kinetic rate

data for a pre-identification (before the identification relying on the experimental data is

carried out) of the nonparametric model parameters (Galvanauskas & al., 2004; Graefe

& al., 1999; Henriques & al., 1999; Tsen & al., 1996).

Whenever the balance are posed in the form of Ordinary Differential Equations

(ODEs), then, in principle, some boundary condition must be provided for the numer-

ical integration, such as initial values. Since these initial values when taken from the

experimental data most probably contain a certain amount of measurement noise, error

propagation can occur (von Stosch & al., 2011b). It depends on the underlying set

of ODEs whether the error is amplified or damped along time. In order to diminish

the impact of such errors on the parameter identification, Vande Wouwer & al. (2004)

proposed to include the initial values into the set of parameters (after those have been

optimized to a certain threshold) and to, then, optimize all those values together.
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2.3.5 Model structure and Extrapolation Capabilities

The model structure and the extrapolation capabilities are directly related. This not

only concerns whether the structure is parallel or serial, but also concerns the structure

of the nonparametric model, especially its size.

The nonparametric model and extrapolation

The determination of the nonparametric model size (e.g. in case of MLP the number

of hidden layers and the therein covered numbers of nodes, or in case of PLS the num-

ber of latent variables) can be addressed with the Akaike Information Criterion (AIC)

or Bayesian Information Criteria (BIC), the latter being more suitable for models with

large numbers of parameters (Peres & al., 2008; von Stosch & al., 2010). Also other

statistical criteria can be applied (Bollas & al., 2003; Kim and Chang, 2000) to evaluate

the predictions obtained with different sized nonparametric models. In general, the esti-

mation quality must be balanced against the number of involved parameters and against

the number of data (the data content) that are available for the identification. A manual

assessment, at least of the best candidate structures, is always advisable (Braake & al.,

1998).

The number of parameters and the identified “optimal” parameter values determine

the achievable prediction quality and the error when extrapolating. The larger the num-

ber of parameters and the smaller the number of data these parameters are identified

on, the lower is the statistical confidence in the identified parameter values. This can,

for instance, permit to locate economical process regions during an optimization (Mogk

& al., 2002).

As a matter of fact, the integration of knowledge can significantly reduce the size of

the nonparametric model, while enhancing the extrapolation properties, which is one of

the reasons hybrid, semi-parametric, gray-box and similar techniques find application. A

visual example for the impact that knowledge incorporation can have on the achievable

extrapolation capability and on the size of the nonparametric model is demonstrated

in Mogk & al. (2002); Schuppert (1999). A theoretical assessment of the relation

between knowledge incorporation, the size of the nonparametric models, identifiability

and extrapolation is made by Fiedler and Schuppert (2008) for scalar tree structured

hybrid models.
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Hybrid model structures and Extrapolation

A systematic investigation on the hybrid model extrapolation properties was con-

ducted by van Can & al. (1996, 1999, 1998, 1997), distinguishing between dimensional

extrapolation, range extrapolation, interpolation and frequency extrapolation, see Fig.

2.3.

Figure 2.3 Schematic sketches for dimensional extrapolation, range extrapolation, interpola-
tion and frequency extrapolation.

When testing serial and parallel hybrid models, through their incorporation into a

model predictive control schema, experimentally for their dimensional extrapolation prop-

erties, van Can & al. (1996) observed that the serial hybrid model showed good dimen-

sional extrapolation properties. These properties were found to be due to the accurately

known terms in the balances. The parallel hybrid models, in contrast, did not show any

advantage compared to pure nonparametric models. Similar observations were made by

Anderson & al. (2000). Klimasauskas (1998) proposed to apply some measure, e.g.

a confidence module, to restrict the influence of the parallel non-linear model on the

prediction when extrapolating.

Range, dimensional and frequency extrapolation were studied in van Can & al. (1998)

for different levels of incorporated mechanistic knowledge. It was found that due to

the accurately known terms in the balances, good dimensional and reliable frequency

extrapolation properties were obtained, and that the unknown terms could relatively

easy be identified from the available data. Further, in comparison to more data-driven

models, the serial gray-box models have better frequency and dimensional extrapolation

properties. Thus with the same identification data, the model can be applied to a much

wider range of conditions. This statement can also be translated into the fact that a

smaller domain of identification data for the serial hybrid models is required, wherefore
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the experimental effort is limited. The strong connection between the model properties

and the identification data, which will be subject of experimental data section, is thus

clearly outlined.

Measures for model extrapolation

The application of hybrid models to the off-line process optimization or to the off-line

controller tuning can result in extrapolating situations, i.e. the nonparametric model is

confronted with combinations of input values, which it has not been trained for. The

risk of wrong predictions can be expected to rise, the larger the distance between the

current combination and the trained combinations is. In such a case it is necessary to

constraint the optimization by some measure to avoid false decisions.

As mentioned before, Klimasauskas (1998) proposes to use some kind of confidence

module to restrain the impact of the nonlinear model when extrapolating, however no

specifics are shown. In Simutis & al. (1995) a clustering procedure is applied to the ANNs

inputs, in order to determine the contribution of different ANNs to the rate predictions.

In Teixeira & al. (2005b) clustering of the nonparametric model inputs is carried out

using the k-means algorithm. Then, the optimization is constrained by a user defined

risk level (typically 80%) that takes the minimal distance between the inputs obtained

during the optimization and the closest cluster mean into account. The risk level cal-

culated along the trajectory is used to determine those instances of time in which the

information content of the samples is the largest, i.e. where the risk is the highest.

In Kahrs and Marquardt (2007) two complementary criteria, i.e. convex-hull criteria

and a confidence interval criterion, are proposed to check the validity domain of hybrid

models. It is checked with the convex-hull criteria whether each empirical model only

interpolates the data encountered during model identification, while with the confidence

interval criterion the confidence intervals for the hybrid model predictions are assessed.

When comparing between the convex-hull and the clustering technique, the convex-hull

criteria has the advantage that it can be implemented as a set of linear constraints, while

the clustering technique is a non-linear constraint, but the convex-hull criteria might be

too optimistic when the data distribution is strongly non-uniform, which is not the case

for clustering. Thus a combination of both, even though increasing the computational

cost, might in certain situations be advantageous.

A shortcoming of the clustering and the convex-hull criteria is the case of frequency

extrapolation, mentioned above, since these criteria are somewhat focused on the distri-



2.3. Hybrid-modeling - The framework | 35

bution of the measured points in the space and do not account for the dynamics. When

optimizing for instance the feeding control policy in a fed-batch case, dynamics might

however play a major role since the feeding rate might vary from one discretized instance

to another. Investigations in this respect are especially interesting in cases in which the

transient behavior is of importance such as for controller tuning.

2.3.6 Experimental data and pre-treatment

Data are necessary to identify the structure and the parameters of the hybrid model

and basically all model properties (prediction quality, extrapolation capabilities) depend

heavily not only on the quantity but also on the quality of the data.

Design of Experiments

While it is of course not feasible to manipulate experiments carried out in the past,

and the attitude tellingly described in Sohlberg (2005), i.e. “you have to take what you

can get” is dominant in industrial settings, it needs to be clear what is aimed at (Simutis

& al., 1997). If no data at all, nor any knowledge about the system at hand, is avail-

able, then a systematic exploration of the process design space, through experimental

design, can be a valuable choice. Examples would be factorial design (Ccopa Rivera

& al., 2006; Gupta & al., 1999; Mantovanelli & al., 2007; Saraceno & al., 2010b) or

sequential pseudo-uniform design (Chang & al., 2007). A screening design might, de-

pending on the context, provide a very good starting point. In van Can & al. (1996) it is

outlined that the design of an identification experiment should be such that the unknown

part of the model is almost completely discovered, however it is rather difficult to know

these in advance. Another option, if at least some knowledge or data are available, is to

apply the coverage approach proposed by Brendel and Marquardt (2008), which proved

to be better than the factorial design. Just recently, cell specific knowledge has been

used along with data driven approaches to identify the optimal experimental design for

culture media development (Ferreira & al., 2011).

A different idea is the one of iterative batch to batch optimization, where neither

the exploration of the design space nor the model properties are in spotlight but the

optimization of some objective (Doyle & al., 2003; Teixeira & al., 2006) e.g. the max-

imization of the total amount of product quantity (Teixeira & al., 2006). This means

that the experiment is performed in such a way, i.e. the degrees of freedom are chosen

in such a manner, as to meet the objective. It is of course intelligent to take samples
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during the experiments at those instances of time at which the uncertainty about (the

calculated risk of) the process trajectory is the highest (Teixeira & al., 2006).

The question arising for every case is thus, whether it is generally better to explore

the design space first and to perform an optimization then or whether iterative batch-

to-batch optimization can reach the optimum with less experiments. Of course the best

strategy can also be a mixture of both.

Experimental Data Pretreatment

The pretreatment of the experimental data, especially of those that are inputs to

the nonparametric model, was found to result in significant improvements of the non-

parametric model performance (Bishop, 1995). In hybrid modeling, experimental data

cannot only enter the model as inputs to the nonparametric submodel but also directly,

e.g. as experimental data of the feeding rate or as concentration data considered in the

semi-parametric model. It is for instance pointed out in Chabbi & al. (2008); Schubert

& al. (1994a) that variances in the feeding concentration can cause big errors in the

estimation of the respective substrate concentrations. Similar observations were made

by von Stosch & al. (2011b). Studies on the impact of different levels of experimental

noise on the identification results, performed by Yang & al. (2011), revealed that the

variance of the identified model parameters increases with increasing level of noise. Thus

pretreatment of the experimental data can be a valuable procedure to increase the model

performance. There are many techniques available to filter the noise, remove off-sets,

etc. It depends on the kind of measurement device used and on the context in which the

measurement is performed, which pre-treatment technique is the most suitable. While

the reader is referred to specialized literature, it can be said that AutoAssociative Neu-

ral Networks seem to enjoy great popularity (Galvanauskas & al., 2004; Patnaik, 2003,

2004; Simutis & al., 1995).

2.4 Application of hybrid modeling

In this section the application of hybrid approaches for (i) the modeling of systems in

different areas are briefly presented; and (ii) monitoring, control, optimization, scale-up

and model reduction are discussed.
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2.4.1 Modeling

The number of hybrid models with application to chemical or biochemical engineering

is about the same, see Fig. 2.4. There are also applications in water treatment processes,

mechanical engineering and other areas, all of which are addressed in the following.

Figure 2.4 Number of publications on hybrid modeling over the area of applications and with
respect to the type of data used.

Chemical Engineering

A list of hybrid model applications in the field of chemical engineering are compiled

in Table 2.2. Since the number of applications is relatively large, only some of which

are discussed in the following, namely those that award with solutions of more complex

problems.

The particle size distribution, which is of major interest in many processes, can be

modeled with population balances, for instance in crystallization (Georgieva & al., 2003;

Lauret & al., 2000), milling (Kumar Akkisetty & al., 2010, 2009) or polymerization

(Crowley & al., 2001; Doyle & al., 2003). The application of a complementary non-

parametric model, e.g. in order to enhance the prediction quality, can also be beneficial
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in this context.

While a parallel set-up (Crowley & al., 2001; Doyle & al., 2003) is relatively easy to

apply and might be sufficient in many cases, a serial approach can help to understand

the complex interactions. Further, those elements of the model that, due to variations

in each batch, are uncertain can be linked to current process measurements, thus ac-

counting for these variations (Kumar Akkisetty & al., 2010). For example Georgieva

& al. (2003) applies a full set of mechanistic model equations, namely material, energy

and population balances, wherein the most uncertain parts, namely the nucleation rate,

growth rate and the agglomeration kernel, are modeled through nonparametric tech-

niques. Similarly, Kumar Akkisetty & al. (2010, 2009) model the dynamics in the mass

exchange between the different size intervals of milled ABI ribbons, applying a discrete

one-dimensional population balance framework in which the selection and the breakage

function are represented through ANNs that base on process measurements, such as the

revolutions per minute or the milled mass.

In certain situations it might be necessary or desired to account for gradients in the

temperature or concentration distribution along a spacial component. In Gupta & al.

(1999) the material balances are formulated for the phosphate particles along the height

of a flotation column, wherefore partial derivatives appear, thus resulting into Partial

Differential Equations (PDEs). The reaction rate parameters in those balances, namely

the flotation rate constants for phosphate and the flotation rate constants for gangue,

are modeled through ANNs. Similarly, temperature and concentration gradients along

the reactor length are represented in the component mass and energy balance of solid

and fluid phases, by Zahedi & al. (2011). In Dadhe & al. (2001) the distillation column

is divided into several theoretical stages, each of which assumed to be homogenous,

wherefore the material and energy balances formulated for the liquid and vapor phases

at each stage take the form of ordinary differential equations. The vapor-liquid equilib-

rium in this serial hybrid approach is described by a RBFN. Similar approaches are also

proposed by Arahal & al. (2008); Hinchliffe & al. (2003), where Hinchliffe & al. (2003)

divides the polymerization reactor into several stages whereas Arahal & al. (2008) uses

discrete volume and wall segments. Also in Hinchliffe & al. (2003) the form of the

molecular-weight distribution is specified, namely it is modeled via the weight fraction

of the polymer chain length described by a Flory distribution.
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The difficulty in the just named approaches is that for the training of the nonpara-

metric model, sufficient data must be available, and that a nonparametric model trained

with global data might not perform well locally. However, it is for instance shown in

Molga and Cherbanski (1999) that a complex heterogeneous reaction system can be

well presented by a serial hybrid model which is based on the overall material and energy

balances. Similar observations were also made by Qi & al. (1999) who compared the

hybrid models to two-dimensional models, finding that the hybrid is simpler in model

structure, has lower computational costs and provides about the same prediction quality.

Table 2.2 Hybrid Model applications for the modeling of chemical processes

Reference Application Hybrid Nonparametric
Structure Model

Johansen and
Foss (1992b)

Modeling of a pH neutralization process (exp.1) P ANN

Johansen and
Foss (1992a)

Modeling of a pH neutralization process (exp.1) P ANN

Reuter & al.
(1993)

Modeling of a 1. Zinc ferrite leaching; (exp.1) 2. a Jarosite
precipitation; (exp.1) 3. a Tennessee copper rougher circuit; (
exp.1) and 4. a Nchanga sulphide rougher circuit (exp.1)

S ANN

van Can & al.
(1996)

Modeling and Model Predictive Control of a pressure vessel
(exp.1)

S/P
ANN /
polynomial

Tsen & al. (1996)
Modeling and Model Predictive Control of a batch emulsion poly-
merization of vinyl acetate (exp.1)

SC3 ANN

Cubillos & al.
(1996)

Modeling of the dynamic behavior of two drying systems: 1: A
direct flaw rotary dryer; (vir.2) and 2. A batch fluidized bed dryer
(vir.2)

S ANN

Molga and West-
erterp (1997)

Modeling of the kinetics of a catalytic hydrogenation reaction in a
gas-liquid-solid system, namely the kinetics of the hydrogenation
of 2,4-DNT over a palladium on alumina catalyst (exp.1)

S FNN

Guo & al. (1997)
Modeling of the gasification of two coals, carried out in a batch
feed fluidized bed reactor at atmospheric pressure (exp.1)

S ANN

Qi & al. (1999)
Modeling of a benzene oxidization to maleic anhydride in a wall-
cooled fixed-bed reactor (exp.1)

S NN

Gupta & al.
(1999)

Modeling of a a phosphate flotation column, relating the effects
of operating variables such as frother concentration to the col-
umn performance (exp.1)

S ANNs

Nascimento & al.
(1999)

Modeling of the finishing stage of an industrial nylon-6,6 poly-
condensation in a twin-screw extruder reactor (exp.1)

SC3 ANN

Zander & al.
(1999)

Modeling of: 1. An ethane pyrolysis in a laboratory-scale plug-
flow tubular fixed-bed reactor; (exp.1) 2. A base-catalyzed
ethoxylation of dodecanol in a lab-scale continuous stirred tank
reactor (exp.1)

S ANN

Safavi & al.
(1999)

Optimization of a pilot scale distillation column which separates
a binary mixture of water and ethanol in continuous operation
(exp.1)

S
Wavenet
network



40 | 2. 20 years of Hybrid gray-box modeling: A review

Molga and
Cherbanski
(1999)

Modeling the hydrolysis of propionic anhydrite catalysed with sul-
phuric acid in batch and semibatch stirred tank reactors (exp.1)

S MLP

Porru & al. (2000)
Modeling and Monitoring of a catalytic oxidation of carbon
monoxide in a heterogeneous gas-solid reactor (exp.1)

S FNN

Molga & al.
(2000)

Modeling the oxidation of 2-octanol with nitric acid in a reaction
calorimeter (exp.1)

S NN

Ghosh & al.
(2000)

Integrated product engineering of: 1. Fuel-additive performance;
(exp.1) and 2. Rubber design (exp.1)

S ANN

Potocnik & al.
(2000)

Modeling of the liquid phase methanol synthesis in a continuously
stirred reactor (exp.1)

P RBFN

Lauret & al.
(2000)

Modeling of the crystal growth rate in a batch-type evaporative
crystallizer, called vacuum-pan in the sugar industry (exp.1)

S ANN

Aguiar and Filho
(2001)

Prediction of pulping degree, i.e. prediction of the kappa number
in a pulp mill (exp.1)

SC3 ANN

Guo & al. (2001)
Modeling of the gasification of biomasses conducted in a flu-
idized bed gasifier at atmospheric pressure with steam as fluidiz-
ing medium (exp.1)

S ANN

Tian & al. (2001)
Modeling and optimal control of a free-radical solution polymer-
ization of methyl methacrylate with a water solvent and benzoyl
peroxide initiator (exp.1)

P
Stacked
neural
networks

Vilim & al. (2001) Incipient failure detection for a peristaltic pump (exp.1) P ANN

Mogk & al.
(2002)

1. Modeling of a continous polymerization; (exp.1) 2. Quality
management for polymer compounding; (exp.1) 3. Metal hybride
process development (exp.1)

S ANN

Xiong and Jutan
(2002)

Control of the temperature in 1. An exothermic batch reactor
(vir.2) and 2. A real-time CST process (exp.1)

P ANN

Molga (2003)
Modeling of a catalytic hydrogenation of 2,4-dinitrotoluene at
non-steady state conditions in a multiphase stirred tank reactor
(exp.1)

S ANN

Bollas & al.
(2003)

Up-scaling of a pilot plant for fluid catalytic cracking process to
an industrial unit (exp.1)

S/P ANNs

van Lith & al.
(2003)

Modeling of a batch distillation column, including start-up (exp.1) S Fuzzy TSK

Hinchliffe & al.
(2003)

Modeling of a polyethylene production process, i.e. the predic-
tion of important conditions, such as the reactor temperatures,
conversions, and the molecular-weight distribution of the polymer
(exp.1)

S FNN

Georgieva & al.
(2003)

Modeling of an industrial scale fed-batch evaporative crystalliza-
tion process in cane sugar refining (vacuum-pan) (exp.1)

S ANN

Chen & al. (2004)
Modeling and Internal Model Control of a continuous reactive
industrial distillation column for producing epichlorhydrin (exp.1)

P ANN

Milanic & al.
(2004)

Modeling of an industrial hydrolysis process for the production of
titanium dioxide (exp.1)

S ANN

Feil & al. (2004)
Development of a product quality (melt index) soft sensor for the
monitoring of industrial medium- and high-density polyethylene
polymerization plant (exp.1)

S ANN

Bellos & al.
(2005)

Modeling of an industrial hydrodesulfurization reactor (exp.1) S ANN
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Sohlberg (2005) Modeling of an industrial pickling (steel) process (exp.1) S/(P) TSE
Zahedi & al.
(2005)

Modeling of a differential catalytic hydrogenation of carbon diox-
ide to methanol in a packed bed reactor (exp.1)

S MLP/RBFN

Zhang & al.
(2006)

Control of fuel cell breathing in Proton Exchange Membrane Fuel
Cells (exp.1)

SC3 ANN

Simon & al.
(2006)

Modeling of a three-phase industrial batch reactor (exp.1) S FFNNs

Bhutani & al.
(2006)

Optimization of an industrial hydrocracking unit (exp.1) S/P/SP ANN

Cubillos and
Acuna (2007)

Adaptive-predictive control of the combustion chamber temper-
ature in a pilot-scale vibrating fluidized dryer (exp.1)

S RBFN

Jones & al.
(2007)

Modeling of the final mechanical properties of rolled steel from
the Port Talbot hot strip mill (exp.1)

P ANN

Fiedler and Schup-
pert (2008)

Modeling and optimization of an industrial continuous polymer-
ization plant. (exp.1)

S ANN

Kamali and
Mousavi (2008)

Thermodynamic modeling of the extraction of alpha-pinene using
supercritical carbon dioxide (exp.1)

P ANN

Arahal & al.
(2008)

Modeling of thermal storage tanks in the Plataforma Solar de
Almeria (exp.1)

S -

Georgieva and
de Azevedo
(2009)

1. Modeling of the precipitation of calcium phosphate; (vir.2)
and 2. Monitoring and Control of a sugar crystallization (vir.2)

S ANN

Hwang & al.
(2009)

Modeling the performance of hollow fiber micro-filtration mem-
branes for surface water treatment (exp.1)

SC3 ANN

Kumar Akkisetty
& al. (2010)

Modeling of the particle size distribution for the processing of a
particulate material in a milling unit, i.e. compacted ABI ribbons
milled in a lab scale Quadra conica (exp.1)

S ANN

Rusinowski and
Stanek (2010)

Modeling of a steam boiler system to estimate the heat loss and
the effects on heating (exp.1)

S ANN

Zahedi & al.
(2011)

Modeling of ethylene to ethylene oxide heterogeneous fixed-bed
reactor (exp.1)

S RBFN

Jia & al. (2011)
Monitoring of a copper extraction process in a cobalt hydromet-
allurgy pilot plant (exp.1)

P PLS

Hu & al. (2011)
Modeling of the leaching rate in hydrometallurgical process
(exp.1)

P SVM

exp1: experimental

vir2: virtual

SC3: Serial Structure C model

Biochemical Engineering - Biotechnology

Hybrid modeling is frequently applied for the modeling of bioprocesses, as can be seen

in Table 2.3. Most of the reported applications apply the basic framework formulated

in Psichogios and Ungar (1992); Schubert & al. (1994a). There are some extensions

to this framework, which were already mentioned above in the section on “Additional

mechanistic information” or “Operational knowledge rule based information”. Despite

these, only a few others will be described in more detail below.

The modeling of a crossflow microfiltration process through the application of a serial

hybrid model is considered in Piron & al. (1997). Therein, a physical model is derived for
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the microfiltration process, wherein those parameters that are unknown, namely the cake

resistance, the cake diffusion interface and the concentration gradient, are described by

ANNs.

In Thibault & al. (2000) the spatial distribution of filamentous fungi is considered

by the derivation of the material balance for the surface apex density. This results into

a two-dimensional propagation model for the fungus, wherein the diffusion coefficient is

represented by a FFNN.

The production process of bacterial cellulose with a pilot scale airlift reactor is, in Zuo

& al. (2006), decomposed into two models, which are separately identified. The first

is a standard serial hybrid model, consisting of material balances in which the specific

kinetic rates are represented by ANNs, accounting for the biological part of the process.

The second is a modified tanks-in-series model of the airlift reactor with wire-mesh draft

tube, taking into consideration the hydrodynamic effects. Good results are obtained with

both approaches and so the whole process, i.e. the cultivation systems in a modified

airlift reactor with wire-mesh draft tubes, is appropriately represented.

Table 2.3 Hybrid Model applications for the modeling of biochemical processes

Reference Application Hybrid Nonparametric
Structure Model

Schubert & al.
(1994a)

Monitoring, Control and Optimization of bioprocess, namely fed-
batch Saccharomyces cerevisiae cultivations (exp.1)

S
ANN/
Fuzzy

Schubert & al.
(1994b)

Modeling of a fed-batch Saccharomyces cerevisiae cultivation
performed in a standard pilot-scale fermenter (exp.1)

S ANN Fuzzy

Fu and Barford
(1995a)

Modeling of hybridoma growth and metabolism for monoclonal
antibody production (exp.1)

S ANN

Simutis & al.
(1995)

Process supervision of an industrial beer production process
(exp.1)

S Fuzzy ANN

Fu and Barford
(1995b)

Modeling of hybridoma growth and metabolism for monoclonal
antibody production (exp.1)

S
Expert Sys-
tem

Dors & al. (1995)
Modeling, Monitoring and Optimization of an industrial recom-
binant protein production form mammalian cell cultures (exp.1)

S ANN

Preusting & al.
(1996)

Optimization of an industrial penicillin production process (exp.1) S
ANN
Fuzzy

Dors & al. (1996)
Monitoring, Control and Optimization of an industrial recombi-
nant protein production form mammalian cell cultures (exp.1)

S ANN

Saxen and Saxen
(1996)

Monitoring of a Saccharomyces cerevisiae batch fermentation
process

S FNN/ RNN

Feyo de Azevedo
& al. (1997)

Comparison of three modeling approaches, applied to a baker's
yeast production in a fed-batch fermenter at laboratory scale
(exp.1)

S ANN
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Piron & al. (1997)
Modeling of a crossflow microfiltration for a baker's yeast sus-
pension (exp.1)

S ANN

Simutis and Lueb-
bert (1997)

Considerations for hybrid model developments, demonstrated on
a simulated E.coli fed-batch fermentation (vir.2)

S ANN

Simutis & al.
(1997)

General consideration for model development and process opti-
mizations with examples on 1. A fed-batch Saccharomyces cere-
visiae cultivations; (vir.2) 2. An industrial beer brewing process;
(exp.1) 3. Recombinant protein production by mammalian cell
cultivations (exp.1)

S ANN

van Can & al.
(1997)

Modeling of the enzymatic batch conversion of penicillin G
(exp.1)

S ANN

Costa & al.
(1998)

Optimal control for cell mass production and ethanol fermen-
tation by Saccharomyces cerevisiae; (vir.2) and Modeling of a
ethanol fermentation process by Zymomonas mobilis (exp.1)

S FLN

van Can & al.
(1998)

Modeling of the pH effects on the enzymatic conversion of peni-
cillin G (exp.1)

S NN

van Can & al.
(1999)

Modeling of the enzymatic batch conversion of penicillin G
(exp.1)

S NN

Potocnik and
Grabec (1999)

Modeling of an industrial antibiotic production by a fed-batch
fermentation process in which clavulanic acid is produced as a
secondary metabolite by the microorganisms (exp.1)

P RBFN

Henriques & al.
(1999)

Optimization a fed-batch alcoholic fermentation by Zymomonas
mobilis using Pontryagin's maximum principle and the singular
control theory (exp.1)

S FLN

Chen & al. (2000)
Modeling of a fungus cultivation in fed-batch for production of
an antibiotic species (exp.1)

S RBFN

Peres & al. (2000,
2001)

Modeling of a fed-batch Baker’s yeast fermentation process
(exp.1)

S ME

Zuo and Wu
(2000)

Optimization and control of fed-batch Bacillus thuringiensis cul-
tivations for thuringiensin production (exp.1)

S ANN

Beluhan and
Beluhan (2000)

Modeling of an industrial fed-batch yeast cultivation process
(exp.1)

S ANN Fuzzy

Hanomolo & al.
(2000)

Modeling of a batch animal cell culture (exp.1) S RBFN

Thibault & al.
(2000)

Modeling of 1. the fermentation of glucose to gluconic acid by
the micro-organism Pseudomonas ovalis; (vir.2) 2. the growth
of flamentous fungi in a solid state fermenter; (exp.1) and 3. the
propagation of flamentous fungi growing on a two-dimensional
solid substrate (exp.1)

S FNN

Roubos & al.
(2000)

Comparison of modeling strategies for the production of clavu-
lanic acid in batch fermentations with Streptomyces clavuligerus
(exp.1)

S ANN Fuzzy

Silva & al. (2000)
Modeling and Monitoring of cephalosporin C fed-batch fermen-
tation production with the aerobic fungus Cephalosporium acre-
monium (exp.1)

S FNNs

Ignova & al.
(2002)

Online optimization of the feeding control policy for fed-batch
penicillin production (exp.1)

S ANN

Silva & al. (2001)
Modeling of the duration lag that is cause by differences in in-
oculum of cephalosporium acremonium cultivated in fed-batch
reactors (exp.1)

S FNNs
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James & al.
(2002)

Monitoring of biomass in a PHB production using Alcaligenes
eutrophus fed-batch fermentations (exp.1)

S
ANN/
RBFN

Goncalves & al.
(2002)

Modeling of the synthesis of amoxicillin which is catalyzed by
penicillin G in batch fermentations (exp.1)

S ANN

Fellner & al.
(2003)

Modeling of diacetyl in brewery fermentations (exp.1) Functional
Nodes dynamic neural network

- -

Vande Wouwer &
al. (2004)

Modeling of batch CHO animal cell cultures (exp.1) S/P RBFN

Peres & al. (2004)
Modeling of a Polyhydroxyalkanoates production in a sequencing
batch reactor with mixed cultures (exp.1)

S ME

Corazza & al.
(2005)

A study on substrate and product inhibition observed in the en-
zymatic hydrolysis of cellobiose (exp.1)

S ANN

Teixeira & al.
(2005a,b)

An optimization study of fed-batch Baby Hamster Kidney cul-
tures expressing the human fusion glycoprotein IgG (exp.1)

S ANN

Henneke & al.
(2005)

Modeling and monitoring of PHB concentrations in high cell den-
sity fermentations of Ralstonia eutropha based on spectrofluo-
rometry measurements (exp.1)

S PLS

Zuo & al. (2006)

Modeling of the hydrodynamic and biological effects to describe
the cultivation of Acetobacter xylinum for bacterial cellulose pro-
duction in a modified airlift reactor with wire-mesh draft tubes
(exp.1)

S ANNs

Jenzsch & al.
(2007)

Control of the Carbon-dioxide Production Rate (CPR), hybrid
model based monitoring of the specific biomass growth and in-
ference of the CPR set-points using the hybrid model (exp.1)

S ANN

Teixeira & al.
(2007a)

Optimization of recombinant Baby Hamster Kidney cultures pro-
ducing a recombinant fusion glycoprotein (exp.1)

S ANN

Laursen & al.
(2007)

Modeling of an industrial pharmaceutical process, namely pro-
duction of a foreign protein product in a pilot scale fed-batch
fermentation (exp.1)

S ANN

Boareto & al.
(2007)

Modeling of the lipase production by Candida rugosa in batch
and fed-batch operation (exp.1)

S ANN

Chorukova and
Simeonov (2008)

Modeling of a fed-batch process for the enzymatic superoxide
dismutase production (exp.1)

S ANNs

Gnoth & al.
(2008b)

Monitoring of specific biomass growth in fermentation experi-
ments on the laboratory scale with an E.coli strain producing a
recombinant protein (exp.1)

S ANNs

Wang & al.
(2010a)

Comparison of modeling strategies using a fed-batch penicillin
fermentation (exp.1)

S LS SVM

Mazutti & al.
(2010)

Modeling of an insulinase production in a batch bioreactor using
agroindustrial residues as substrates (exp.1)

S ANN

Saraceno & al.
(2010b,c)

Modeling of a fermentation of “ricotta cheese whey” for the pro-
duction of ethanol (exp)

S ANN

Zabot & al.
(2011)

Modeling of a xanthan gum batch bioproduction process by Xan-
thomonas campestris pv. Mangiferaeindicae (exp.1)

S ANN

Carinhas & al.
(2011)

A metabolic model of Spodoptera frugiperda cells (exp.1) S PLS

Eslamloueyan and
Setoodeh (2011)

Modeling and Optimization of batch and fed-batch fermentation
of xylose-utilizing engineered Saccharomyces cerevisiae (exp.1)

S ANN

exp1: experimental

vir2: virtual



2.4. Application of hybrid modeling | 45

Mechanical Engineering

Even though most of the hybrid model applications are found for chemical or bio-

chemical processes, hybrid modeling constitutes a valuable approach also for mechanical

engineering, whenever different sources of knowledge can be fused. In Table 2.4 a num-

ber of mechanical applications are listed. It can be seen that most applications are

oriented towards the modeling of one component in a complex overall system. The

number of serial and parallel structure applications is about the same.
Table 2.4 Hybrid modeling in mechanical engineering

Reference Application Hybrid Nonparametric
Structure Model

Masri (1994)
Modeling of a physical nonlinear system incorporating the bearing
friction phenomena (vir.2)

P ANN

Ploemen (1996)
Modeling of two degrees of freedom systems; 1. A flexible servo
system; (exp.1) 2. An inverted pendulum (exp.1)

S ANN

Cao & al. (2004a)
Modeling of the dynamic friction component in powertrain sys-
tems (exp.1)

S ANNs

Cao & al. (2004b)
Modeling of the dynamic friction component in a vehicle auto-
matic transmission system (exp.1)

S ANNs

Sohn & al. (2008) Modeling of bushing in vehicle suspension systems (exp.1) P ANN
Chungui & al.
(2009)

Modeling the hysteretic restoring force of a wire cable vibration
isolation system for electronic equipment (exp.1)

P ANN

exp1: experimental

vir2: virtual

Water treatment processes

Several applications of hybrid modeling to water treatment processes, mostly for

wastewater treatment processes, can be found, e.g. see Table 2.5. It can be seen that

parallel and serial approaches are about equally often utilized. The parallel model seems

to provide better estimations than the serial model in case that the whole process is

modeled and that the underlying mechanistic model is the so called ASM1 model (Lee

& al., 2002).

Table 2.5 Hybrid Model of water treatment processes.

Reference Application Hybrid Nonparametric
Structure Model

Cote & al. (1995)
Modeling of an activated sludge process, comprising a biological
reactor and a secondary settler (exp.1)

P FNN
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Conlin & al.
(1997)

Modeling of an industrial drinking water treatment plant (exp.1) S/P ANN

Anderson & al.
(2000)

1. Modeling of an activated sludge wastewater treatment;
(exp.1) 2. Optimization and control of an activated sludge oper-
ation in an alternating aerobic-anoxic system (vir.2)

S/P NN

Karama & al.
(2001b)

Modeling of anaerobic wastewater treatment processes (exp.1) S
Constrained
ANN

Karama & al.
(2001a)

Modeling of anaerobic wastewater treatment processes (exp.1) S FNN

Lee & al. (2002)
Modeling of a coke-plant wastewater treatment process (conven-
tional activated sludge unit) (exp.1)

S/P ANN

Lee & al. (2005)
Modeling of a coke-plant wastewater treatment process (conven-
tional activated sludge unit) (exp.1)

P

ANN/
RBFN/
PLS/
QPLS/
NPLS

Guclu and Dursun
(2008)

Modeling of an activated sludge wastewater treatment plant
(exp.1)

P ANN

Karama & al.
(2010)

Modeling of anaerobic wastewater treatment processes (exp.1) S
Constrained
ANN

exp1: experimental

vir2: virtual

Other areas

The food and beverages industry can profit from hybrid modeling, since the produc-

tion processes are usually well equipped with instrumentation and at least some knowl-

edge about the process streams can be incorporated e.g. in form of material balances.

Other prior knowledge such as physical or chemical knowledge can of course also be

incorporated. Wine and beer production are in fact bioprocesses and could be counted

in above.

Table 2.6 Hybrid modeling in other areas.

Reference Application Hybrid Nonparametric
Structure Model

Teissier & al.
(1997)

Monitoring and Control of a yeast fermentation in a wine base
medium (exp.1)

S RNN

Zorzetto & al.
(2000)

Modeling of a batch beer production process (exp.1) S FNN

Saraceno & al.
(2010a)

Modeling of Food Convective Drying (exp.1) S ANN

Linker and Seginer
(2004)

Modeling of the Greenhouse-climate (exp.1) P RBFN

Leifsson & al.
(2008)

Modeling the fuel consumption of a container vessel (exp.1) S/P ANN

exp1: experimental
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2.4.2 Monitoring

The opportunity to estimate unobserved process parameters and variables during the

process through hybrid modeling was contemplated by Psichogios and Ungar (1992).

A comparison between the hybrid methodology, a Nonlinear Programming (NLP) op-

timization and an Extended Kalman Filter (EKF), carried out on a virtual bioprocess,

revealed that when no a priori model of the unobserved process parameters (specific

kinetic rates) was available then the hybrid model estimates are better than those ob-

tained by the other two approaches. Also, for this simulation case, a state reconstruction

schema was investigated and similar observations regarding the comparison between the

hybrid and the other methods were made.

The application of a serial hybrid methodology, consisting of material balances for

substrate and biomass, an ANN for prediction of the specific kinetic rates from readily

available on-line measurements and a Fuzzy Model for process phase estimation, to a

pilot scale cultivation of Saccharomyces cerevisiae was conducted by Schubert & al.

(1994a). They observed that biomass could be estimated with higher reliability than the

substrate concentration, and that the prediction of the latter is very sensitive to the sub-

strate concentration in the feeding. For a similar experimental set-up, Saxen and Saxen

(1996) utilized a serial hybrid method based on material balances in which the rates,

given by FFNN or RNN, are functions of the estimated biomass, substrate and product

concentrations. When applied on-line, the rate predictions and the network parameters

are adapted to the process conditions by adjusting a set of correction factors according

to element balances and an electroneutrality condition, which can be build upon the

online available measurements. By doing so the biphasic growth could be accurately

described by the networks.

These three approaches illustrate two scenarios (schematically depicted in Fig. 2.5)

to exploit hybrid modeling for monitoring, namely (i) the accurate prediction of certain

quantities from the available on-line measurements and/or the model's own predictions

is feasible; (Predictor/ Soft-sensor) and (ii) along with the hybrid model predictions a

corrector schema can be applied to correct the state predictions and to adapt the model

parameters (Corrector). In the following, these two classes will be used to classify other

hybrid monitoring approaches.
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Figure 2.5 Diagram of two possibilities to use hybrid modeling for monitoring.

Soft-Sensor – Predictor Schema

The serial hybrid model is very attractive for the application as a soft-sensor since the

kinetic rates, represented by a nonparametric model, can many times be estimated from

at-time available measurements and/or the hybrid models' own prediction, see (James &

al., 2002; Schubert & al., 1994a). Requirements for the application of these schema are

that (i) the sampling rate of the at-time available measurements is more or less constant

(a requirement that stems from the numerical integration of the material balances); (ii)

that the sampling is carried out frequently enough (also due to the numerical integra-

tion); and (iii) that all inputs are available at the same time, eventually some kind of

extrapolation schema is required.

When these requirements are met then the serial hybrid model will in principle pro-

vide better predictions than other models, since (a) either less parameters are required

to achieve similar prediction qualities (when compared to pure nonparametric models)

which reduces the statistical uncertainty or full advantage can be taken from the deter-

mined actual process conditions, reflected by a set of at-time available measurements

(when compared to a pure mechanistic model); (b) the integration of the state variables

leads to a smoothing effect which diminishes the influence of noisy measurements on

the quality of the predictions (von Stosch & al., 2011a); (c) the hybrid model has better

calibration properties; and (d) in the case that the sensitivities method is applied for

nonparametric model training, more input data are used for the training (than e.g. for

the direct approach), reducing the hybrid models sensitivity to noise, von Stosch & al.

(2011a). Table 2.7 comprises a list of hybrid model soft-sensor applications.
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The concentrations of cells, glucose and product are on-line inferred using a serial

hybrid model by Silva & al. (2000, 2001) for fed-batch fermentations of the strictly

aerobic fungus Cephalosporium acremonium. While the results do seem convincing, the

presented material balances do not since the dilution terms are missing therein (Silva &

al., 2000, 2001).

In order to infer the biomass concentration for Poly-β-HydroxyButyric acid (PHB)

production in fed-batch fermentations of Alcaligenes eutrophus several possible schema

(Linear model, FFNN, RBFN or serial hybrid models consisting of the material balance

for the biomass concentration in which the specific growth rate is modeled by FFNN

or RBFN) were evaluated by James & al. (2002). The results revealed that the hybrid

model including the RBFN showed the best performance.

The direct prediction of PHB concentrations in high cell density fed-batch fermen-

tations of Ralstonia eutropha through the application of a serial hybrid model (material

balance of PHB wherein the reaction coefficient was modeled through a PLS model) was

proposed by Henneke & al. (2005). Therein, it is stated that the predictions obtained

with this hybrid modeling approach were, in contrast to previously used models for PHB

concentration, for the first time sufficiently accurate. A similar approach is used by von

Stosch & al. (2011b) for the prediction of concentrations from several on-line available

measurements. It is shown that the hybrid approach in this case performs better than

pure PLS, and that fault detection features of PLS are restored by the utilized serial

approach.

The application of a serial hybrid model is also proposed by Gnoth & al. (2008b);

Jenzsch & al. (2007) (same group, same approach, same fed-batch Escherichia coli) for

the prediction of the specific biomass growth and additionally in Gnoth & al. (2008b)

for the prediction of the specific product formation rate. The prediction quality in Gnoth

& al. (2008b) is very good but stated to be due to a relative high number of available

data. The hybrid model in Jenzsch & al. (2007) is not only used to monitor the process,

but also to derive Carbon dioxide Production Rate (CPR) set-points for the control of

CPR.

A somewhat similar approach is reported by Boareto & al. (2007), wherein also

a serial hybrid model finds application and the inputs to the ANN, that estimates the

product formation rate, are the Carbon dioxide Evolution Rate (CER), predicted biomass
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concentration, substrate feeding rate. However, even so the results look promising the

material balances as before in Silva & al. (2000, 2001) do not seem to be correct.

Table 2.7 The predictor (soft-sensor) approaches applying serial material balance based hybrid
methodologies.

Reference Application Nonparametric On-line Predicted
model Inputs Quantity

Schubert & al.
(1994a)

Fed-batch Saccha-
romyces cerevisiae

Fuzzy-
ANN

Carbon Production Rate
(CPR), time, Oxygen Trans-
fer Rate (OTR), Volume,
Ethanol concentration and
others

Biomass and
Substrate concen-
tration

Silva & al.
(2000, 2001)

Fed-batch
Cephalosporium
acremonium

FNN
Exhaust gas concentrations of
carbon dioxide and oxygen

Biomass, Glu-
cose, Product
concentration

James & al.
(2002)

Fed-batch
Alcaligenes eutrophus

FNN,
RBFN

Exhaust gas concentrations of
carbon dioxide and oxygen,
off-gas stream, dissolved oxy-
gen, pH and the models' own
predictions

Biomass concen-
tration

Henneke & al.
(2005)

Fed-batch, high cell
density Ralstonia eu-
tropha

PLS
rate of change of fluores-
cence, the feed rate and pre-
vious PHB predictions

PHB concentra-
tion

Gnoth & al.
(2008b); Jen-
zsch & al.
(2007)

Fed-batch Escherichia
coli

ANN
CPR, the induction time and
the models' own predictions

Specific biomass
growth and specific
product formation
rate

Boareto & al.
(2007)

Fed-batch Candida ru-
gosa

ANN

Carbon dioxide Evolution Rate
(CER), predicted biomass
concentration, substrate
feeding rate

Lipase production

von Stosch &
al. (2011a)

Batch Bordetella per-
tussis

NPLS
Near Infra Red, dissolved oxy-
gen concentration, tempera-
ture and pH measurements

Biomass, gluta-
mate and lactate
concentrations

Corrector Schema

The application of the corrector schema is very interesting if the state variables

(which are e.g. considered in the material or energy balances) can be measured at some

instances during the process, because the predictions can be corrected and the model

parameters can eventually be adapted. However, the corrector schema is subject to

certain restrictions regarding the state observability (Dochain, 2003). The underlying

hybrid model can either rely (as in the case of the soft-sensors) on other at-time available

measurements or solely on its own predictions (Multi-step ahead predictor), such as in

Saxen and Saxen (1996). In case that the hybrid model is serial and uses at-time avail-

able measurements the same requirements formulated above for the soft-sensor case
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hold.

Wilson and Zorzetto (1997); Zorzetto and Wilson (1996) aimed at a general rep-

resentation of the system for on-line state estimation, using an EKF along with hybrid

models. The hybrid model's state estimate and the networks weights are therein cor-

rected by the EKF, wherefore the system is locally linearized. Reliable state estimations

were achieved in both simulation cases. An experimental application of a very similar

EKF and hybrid framework to a catalytic reactor, in which the catalytic oxidation of

carbon monoxide over Pt-aluminia supported by catalysts takes place, was reported by

Porru & al. (2000). Therein it was observed that the reactor dynamics in both the

ignition and extinction regions were well described by the hybrid model, even though the

model was developed only with steady-state data.

The utilization of parallel hybrid model predictions as a basis for fault detection,

demonstrated on a peristaltic pump to detect incipient failure, was reported by Vilim &

al. (2001) to result into lower false alarm and missed detection rates than other meth-

ods. The nonparametric model in this approach was adapted using the online available

state measurements.

A serial hybrid model based soft-senor design was applied by Feil & al. (2004) for

the product quality (melt index) prediction in an industrial polymerization process. On

the hybrid model basis a DD1 filter was used for the state correction and it was stated

that excellent results were obtained.

For a class of serial hybrid models, namely models on which the state transformation

technique (which was proposed in Bastin and Dochain (1990)) can be applied for state

inferring of unmeasured states, an on-line state correction and an ANNs weight adap-

tation is proposed in Georgieva and de Azevedo (2009). Additionally the adaptation of

uncertain stoichiometric coefficients is investigated in one of the two simulation case

studies.

A soft-sensor based on a parallel hybrid model (consisting of a material balanced

based model in parallel to a block-wise PLS schema) for copper extraction process in

cobalt hydrometallurgy pilot plant is reported in Jia & al. (2011). Therein the hybrid

model predictions are corrected by a rectification schema, which can utilize the off-line,

time-lagged measured samples. It is stated that the hybrid model predictions are more
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accurate and efficient than the other conventional models.

Other monitoring schema

An approach for the determination of the ethanol and sugar concentrations in wine

fermentations was discussed in Teissier & al. (1997). This method, consisting of a dy-

namic RNN and a linear regression based on the assumption that the conversion yields

of sugar into ethanol and into carbon dioxide are constant (called therein measurement

model), has nothing of the beauty of the prior discussed approaches, but reliable predic-

tions seem to be obtained.

Other approaches, which incorporate first-principle knowledge into the nonparamet-

ric model and are therefore classified as gray-box models, utilize e.g. on-line available

spectroscopic data for the prediction of component concentrations (Gurden & al., 2001;

Mouton & al., 2011; Ramaker & al., 2002; Ruckebusch & al., 2009). It was shown that

due to the knowledge incorporation also in these cases better prediction qualities can in

general be obtained than when compared to pure nonparametric models. In some of the

cases otherwise ill-defined problem formulations could be avoided.

2.4.3 Control

Since hybrid models can accurately capture the process dynamics and nonlinearities

their application for process control is logical. Various open- and closed-loop applications

are reported, the former will be discussed in the section on optimization.

For the closed-loop case, there are two ways to maximally profit from a hybrid process

model, namely (i) by employing a control structure that directly uses the process model

equations for the calculation of the control action; or (ii) by application of the hybrid

model for the controller tuning.

Hybrid model based controller structure

Schema that directly employ the hybrid process model and that frequently find appli-

cation are for instance Model Predictive Control (MPC), Feedback Linearizing Control

(FLC) and Generic Model Control (GMC).

Whenever the process model equations are invertible, i.e. an analytical explicit ex-

pression can be obtained through suitable manipulation, Direct FLC, GMC or Model
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(Adaptive) Reference Control (MRAC) can be applied since these schema can account

for nonlinearities and are, at the same time, computationally relative inexpensive.

In case that the process model equations are not invertible, FLC or MPC can be

applied where the former is computational less expensive while the latter may provide

better performance. A list of hybrid model based control applications can be found in

Table 2.8.

Model Predictive Control (MPC) In van Can & al. (1996) various investigated hybrid

structures were tested experimentally for their properties through their incorporation into

the MPC schema. The MPC schema was, therefore, tuned without severely constrain-

ing the change of the manipulated variable, such that the closed-loop stability strongly

depends on the models' accuracy. The serial hybrid model containing an ANN showed

very good performance, when confronted with set-point changes and load disturbances,

in this set-up.

The models used for the MPC of the dispersity and molecular weight distribution,

in a batch reactor for emulsion polymerization by Tsen & al. (1996), are rather ANNs

than hybrid models, see section (hybrid structures). However it is shown that the effect

of unmeasured disturbances can be captured by using intermediate measurements which

allows to correct for changing raw material properties and output specifications.

The hybrid parallel model discussed in Klimasauskas (1998) is also rather a collec-

tion of nonparametric modeling techniques than a hybrid model, defined here as the

utilization of different sources of process knowledge. However, the advantages (such as

robustness, adaptable modeling and the possibility for nonlinearity representation) which

are discussed for a virtual simulation case, also hold for those hybrid models that are

built upon different sources of knowledge.

A special form of MPC, namely a predictor corrector control schema, is used by

Abonyi & al. (1999), such accounting for model uncertainties, which results into a good

controller performance over a wide process range.

The adaptation of the hybrid's nonparametric model parameters, namely the output

layer weights in a RBFN, during the MPC was studied by Cubillos & al. (2001). The
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comparison to a pure FFNN-MPC schema revealed that due to the lower number of

parameters of the hybrid model, those were quicker to adapt (maybe partly owed to the

linear adaptation properties of the RBFN). Further, it was noted that the predictions are

hard bound, which retains the model to be physically correct. When applying the hybrid

model based MPC to an experimental case, namely the control of the combustion cham-

ber temperature in a pilot-scale vibrating fluidized dryer (Cubillos and Acuna, 2007), a

rapid adaption to new scenarios and the reduction of perturbation effects were observed.

In Ibrehem & al. (2011) the application of a serial hybrid model based MPC schema

and an ANN based MPC approach are investigated for the control of a fluidized bed poly-

merization system. Both approaches are observed to have about equal performances,

in case of output disturbances the hybrid model based controller performed a little better.

Table 2.8 Hybrid Model based Control Structures.

Reference Application Hybrid Nonparametric Controller
Structure Model Design

van Can & al.
(1996)

Control of a pressure vessel (exp.1) S or P
ANN or
polynomial

MPC

Tsen & al.
(1996)

Control of dispersity and molecular weight
distribution in a batch reactor for emulsion
polymerization of vinyl acetate (exp.1)

SC3 ANN MPC

Klimasauskas
(1998)

Control of pH in two continuously stirred
tank reactors (vir.2)

P
NPLS /
PLS

MPC

Cubillos and
Lima (1998)

1. Control of the product concentration in
a CSTR; (vir.2) 2. Control of a flotation
process (vir.2)

S PCA-ANN MPC / PC

Abonyi & al.
(1999)

Control of pH neutralization process (vir.2) P Fuzzy TSK MPC

Cubillos & al.
(2001)

Control of the quantity and quality of vinyl
polymerization (vir.2)

S RBFN MPC

Cubillos and
Acuna (2007)

Control of the combustion chamber tem-
perature in a pilot-scale vibrating fluidized
dryer (exp.1)

S RBFN MPC

Ibrehem & al.
(2011)

Control of a fluidized bed polymerization
system (vir.2)

S ANN MPC

Cubillos and
Lima (1997)

Control of a flotation process (vir.2) S PCA-ANN
Optimal Con-
trol

Costa & al.
(1998)

Control of the cell mass production
and ethanol fermentation by Sachromyces
cerevisae (vir.2)

S FLN
Optimal Con-
trol

Costa & al.
(1999)

Control of the cell mass production
and ethanol fermentation by Sachromyces
cerevisae (vir.2)

S FLN
Optimal Con-
trol
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Schenker
and Agarwal
(2000)

Profit Maximization (vir.2) SC3 ANN
Optimal Con-
trol

Anderson & al.
(2000)

Minimization of energy costs (vir.2) P ANN
Optimal Con-
trol

Vieira & al.
(2005)

Control of the temperature in a gas water
heater system (vir.2)

S Fuzzy TSK
Smith predictive
controller

Oliveira (1998)
Control of the concentrations of the pre-
cursor and the nitrogen source (exp.1)

S ANN
Model Refer-
ence Control

Xiong and Ju-
tan (2002)

1. Control of an exothermic batch reactor;
(vir.2) 2. Control of real-time CST process
(exp.1)

P ANN GMC

Abonyi & al.
(2007)

Temperature control of a CSTR (vir.2) S ANN GMC

Hussain and
Ho (2004)

1. Control of liquid level in a
non-interacting two-tank-in-series system;
(vir.2) 2. Control of a CSTR with a
first-order irreversible exothermic reaction
(vir.2)

P ANN
Sliding Mode
Control

Madar & al.
(2005)

Temperature control of a continuous
stirred tank (vir.2)

S ANN
Feedback Lin-
earising Control

Hussain & al.
(2001)

1. Control of an exothermic CSTR with
first-order reaction; (vir.2) 2. Control of a
fermentation process in a continuous bio-
chemical reactor (vir.2)

P ANN
Adaptive Feed-
back Linearising
Control

Bazaei and
Majd (2003)

Control of a pressure vessel (vir.2) S ANN
Feedback
Linearisation

exp1: experimental

vir2: virtual

SC3: Serial Structure C model

Optimal Control & Predictive Control The utilization of optimal control strategies

which base on a serial hybrid process model, were proposed by Cubillos and Lima (1997,

1998) for the optimizing control of simulated flotation process. The PCA-ANN model

is adapted online through recursive least square and it is stated that: “The structure

allows a satisfactory treatment of the main problems associated with flotation opera-

tions, such as: non measurable continuous perturbations, time delays, non-linearities,

excessive number of degrees of freedom and multiple objective operation.” Additionally,

in Cubillos and Lima (1998) the serial hybrid model is used as a basis for a MPC of

product concentration in a CSTR.

An adaptive optimal control schema based on a serial hybrid model was proposed by

Costa & al. (1999, 1998) for the on-line determination of the optimal feeding control

policy. The hybrid model predictions and the FLN weights were adapted during the sim-

ulation, and the optimal process trajectory, thereupon, recalculated.
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An optimal control schema was also applied by Schenker and Agarwal (2000) for the

maximization of the profit through manipulation of the switching time in a semi-batch

chemical reactor. They observed that the utilization of on-line available measurements

and the recalculation of the optimal switching time can increase the controller perfor-

mance. The hybrid model performed significantly better for longtime predictions than

all of the other investigated approaches, such as pure FFNN or EKF.

A similar control schema was applied to a virtual wastewater treatment process by

Anderson & al. (2000). While a good fit of the parallel hybrid model estimations and

the experimental data could be observed, the control performance utilizing the parallel

hybrid model was inferior to the one using a linearized model. The reason for the inferior

performance is that a control situation was considered which had an extrapolative char-

acter. That parallel hybrid models have poor extrapolation properties, if not restricted

by some measure Klimasauskas (1998), was already reported in van Can & al. (1996),

which is also resembled by the statement given in Anderson & al. (2000) that the uti-

lization of a hybrid model is not a guaranty for better control performance.

A Smith predictive controller that is based on a serial hybrid model (consisting of

energy balances and a Fuzzy TSK model) is used by Vieira & al. (2005) for the tem-

perature control of a virtual gas water heater system. They state that the application

of this control design is feasible only due to the better interpretability of their hybrid

approach and they present good model predictions and controller performance.

Generic Model Control (GMC) GMC based on hybrid models is applied by Abonyi &

al. (2007); Xiong and Jutan (2002). In Xiong and Jutan (2002) a parallel hybrid model

is used to model the processes and it is stated that the hybrid model based GMC schema

outperformed a self tuning PID and a generalized minimum variance controller in case

of the experimental application. A serial hybrid model based GMC is applied by Abonyi

& al. (2007) for the temperature control of an exothermic CSTR, where the kinetics

are modeled by an ANN.

Feedback linearizing control Feedback linearizing control is used by Bazaei and Majd

(2003); Hussain & al. (2001); Madar & al. (2005). In Hussain & al. (2001) a dynamic

linear model is used in parallel with a neural network which accounts for all higher order

terms. A dead-zone adaptive schema is used to online adapt the network parameters.

The controller performance using the hybrid model is found to be better when compared
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to that using a pure linear model or a pure neural network. Exact feedback linearizing

and approximate feedback linearizing control schema are discussed in Bazaei and Majd

(2003) for affine and non-affine serial hybrid model structures, which constitute the pro-

cess model. It is shown that the knowledge about the structural invertibility can result

in significant better controller performance. The best performance was obtained with an

affine exact feedback linearizing controller. A feedback linearizing control schema based

on serial hybrid models is also proposed by Madar & al. (2005), where Lie derivatives

(which stem from the General linearizing control) are used to establish an invertible

structure. It is demonstrated therein for a simulation case, that the hybrid model based

control schema has certain advantages over the mechanistic model, in that less mecha-

nistic knowledge is required for model derivation and the number of model variables can

be reduced, namely to those which are on-line measurable.

Other model-based Control Schema In Hussain and Ho (2004) a parallel hybrid

model is embedded into a sliding mode control schema with boundary layer approach.

An on-line adaption schema for the ANN model weights is presented. Through the ap-

plication of the hybrid model the modeling uncertainty is decreased (when compared to

a nominal approach) which allows for a higher sensitivity of the controller to the model

predictions, resulting into a good controller performance, being significantly better than

for the nominal approach. However, for an experimental application the approach will

need modifications since it is based on the canonical equations form.

A model adaptive reference control schema that is based on a serial hybrid model

is applied in Oliveira (1998), for the control of an experimental penicillin production

process. An on-line adaption procedure is applied to update the ANN weights during the

process, whenever new data become available. The approach was found to work well

during all fermentations.

Hybrid model based controller tuning

Instead of basing the controller upon the hybrid process model directly, the hybrid

model can be exploited for the tuning of any controller. Frequently employed approaches

comprise Internal Model Control (IMC) and Inverse Model Control (IVMC).

Almost at the beginning of hybrid modeling (Schubert & al., 1994a), an internal

model controller that based on a neural net, was tuned with the hybrid model, (i) prior

to application off-line and (ii) during the application while also updating the hybrid pro-
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cess model weights. The performance was compared to PID control, concluding that

the internal model controller can cope with the difficult nonlinear kinetics, in contrast to

the PID controller. In Chen & al. (2004) the application of an internal model controller,

which bases on the static gain of the parallel hybrid process model, to an industrial reac-

tive distillation column is presented. The IMC is used along with the hybrid model and

along with a detuning filter for the calculation of the control action. Significantly better

controller performance is obtained when the plant is under the control of the proposed

schema. An IMC schema is also used by Zhang & al. (2006), wherein the the controller

is based on a neural network and the hybrid model has a serial structure C. The neural

controller is tuned during the process using the serial hybrid model.

In Ng and Hussain (2004) a hybrid Inverse Model Control (IVMC) schema is pro-

posed that linearizes the model equations and applies a nonparametric model, namely an

ANN, in parallel in order to account for the error introduced through the linearization.

The serial hybrid model functions as a soft sensor and further is applied for the tuning

of the controller ANN in the adaptive schema. The controller was compared to other

approaches such as the PID and the performance was observed to be better. This study

was extended in Wei & al. (2007), where the controller was additionally implemented in

an IMC fashion, which resulted in better performances than the IVMC. When compared

to the same control structures (IMC and IVMC), where the underlying process model

was a pure ANN, worse results were obtained in the ANN case.

A control structure that bases on a FFNN structure is proposed in Patnaik (2003)

for the determination of three dilution rates. The online tuning of the FFNN controller

weights is accomplished in such a way as to maximize the product concentration in the

next interval. It seems that the hybrid serial process model finds application for this

tuning. A comparison between this tuning schema and an optimizing control schema

based on the same serial hybrid process model would in any case be interesting regarding

(i) the maximization of the product concentration and (ii) the associated computational

costs, since in case of the optimizing control schema only three dilution term values

would have to be optimized instead of several weights. Almost the same methodology

is also used in Patnaik (2010, 2004, 2008).

A serial hybrid model is used by Andrasik & al. (2004) for the tuning of a parallel

hybrid PID – ANN controller. This neural-control structure is frequently applied and was

e.g. studied in comparison to pure PI and pure ANN by Hisbullah & al. (2002) or similar
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involving RBFN by Li & al. (2006).

In Georgieva and de Azevedo (2009); Georgieva and Feyo de Azevedo (2007) a Non-

linear MPC schema finds application, namely the MPC is based on an ANN. The serial

hybrid model is in these cases applied to tune the ANN integrated in the MPC structure.

In Georgieva and Feyo de Azevedo (2007) the ANN-MPC performance is compared to a

Feedback Linearizing Control schema, that bases on Nonlinear AutoRegressive-Moving

Average ANN models trained, and it is concluded that the MPC provides better set-point

tracking than the FLC, but is computationally also much more involved.

Table 2.9 Hybrid Model tuned closed-loop controller

Reference Application Hybrid Nonparametric Controller
Structure Model Design

Schubert & al.
(1994a)

Control of Glucose in a fed-batch cultiva-
tion of Saccharomyces cerevisiae (exp.1)

S ANN
ANN -Internal
Model Con-
troller

Patnaik (2003)
Control of recombinant β- galactosidase
production by E. coli in a fed-batch fer-
mentation (vir.2)

S Elman NN
Optimal-
Control FNN

Chen & al.
(2004)

Control of an industrial reactive distillation
column (exp.1)

P ANN
Internal Model
Control

Andrasik & al.
(2004)

Control of biomass concentration in a con-
tinuous Saccharomyces cerevisiae fermen-
tation (vir.2)

S ANN
Parallel PID -
ANN

Ng and Hus-
sain (2004)

Temperature control of a nonlinear semi-
batch polymerization reactor (vir.2)

S ANN
Inverse Hybrid
Control

Patnaik (2004)
Control of the streptokinase activity in fed-
batch fermentations of Streptococcus eq-
uisimilis (vir.2)

S Elman NNs
Optimal-
Control FNN

Zhang & al.
(2006)

Control for a fuel cell stack breathing con-
trol system (exp.1)

SC3 ANN
Internal Model
Control

Wei & al.
(2007)

Temperature control of a nonlinear semi-
batch polymerization reactor (vir.2)

S ANN

Inverse Hybrid
Control / In-
ternal Model
Control

Georgieva and
de Azevedo
(2009);
Georgieva
and Feyo de
Azevedo
(2007)

Control for the supersaturation trajectory
in a fed batch crystallization process (vir.2)

S ANN ANN-MPC
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Georgieva
and Feyo de
Azevedo
(2007)

Control for the supersaturation trajectory
in a fed batch crystallization process (vir.2)

S ANN
Feedback Lin-
earising Control
-NARM-ANN

Patnaik (2008)
Control of the poly-β-hydroxybutyrate
(PHB) production through Ralstonia eu-
tropha (vir.2)

S RBFNs
Optimal-
Control FNN

Patnaik (2010)
Control of the poly-β-hydroxybutyrate
(PHB) production through Ralstonia eu-
tropha (vir.2)

S RBFNs
Optimal-
Control FNN

exp1: experimental

vir2: virtual

SC3: Serial Structure C model

2.4.4 Optimization

The kind of optimization that is usually carried out with hybrid models addresses

process control policies. In this respect, the optimization can be carried out off-line

or on-line. On-line optimization (which essentially devolves to closed-loop (sub)optimal

control) can be expected to achieve better performances than off-line optimization (im-

plemented as open-loop control) (Oliveira, 1998), since e.g. process variations can be

taken into account. However, on-line optimization may become infeasible due to the

lack of reliable online measurements or high computational costs of the optimization. In

industry open-loop control frequently finds application, e.g. in pharmaceutical industry

“approved recipes” is tightly followed.

Model-based optimization is the “core business” for hybrid models, since the hybrid

methodology bears major advantages over other models such as: (i) variables that in-

fluence the product value, e.g. Temperature or pH, can easily be incorporated into the

hybrid model; (ii) hybrid models award with better extrapolation properties than pure

nonparametric models (at least in the serial case); and (iii) the quality of the predictions

is usually significantly increased. In general, it can be stated that the more knowledge

has been used before to optimize the process, the more detailed, needs to be a model

with which further improvements are sought to be obtained (Galvanauskas & al., 2004).

The possibility to apply hybrid models for process optimization was already disclosed

by Psichogios and Ungar (1992), who showed that the optimal feed policy determined

through hybrid model based optimal control, was very similar to the one obtained by the

“true” model. Similarly, Schubert & al. (1994a) applied hybrid modeling for the opti-

mization of a substrate feeding rate for maximization of the biomass yield on substrate.

They also numerically studied different optimized sets and discussed the implications of
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biomass estimation errors on the real process.

The maximization of the biomass growth rate, while limiting the formation of by-

products is aimed at in Dors & al. (1995). Two feeding control strategies with different

levels of complexity are investigated. The hybrid model predictions are adapted all 4-10

hours and the optimization procedure harvesting and optimal feeding are calculated. A

systematic approach for the development of a model to be used in process optimization

is discussed in Simutis & al. (1997).

Tholudur and Ramirez (1996) studied the optimization of the control policies, namely

feeding rate control, for two fed-batch bioreactor case studies using serial hybrid models.

The optimized control profiles obtained through the hybrid models were compared to

those of the actual model and it was concluded that the hybrid model based approach

offers a reliable method for optimizing the system performance. Preusting & al. (1996)

developed a detailed hybrid model for an industrial penicillin process, a process that was

well-studied before, wherefore the effort for further optimization is enhanced. Even so

the optimization constitutes only a few percent in concentration, the gain is significant

due to the process scale.

The derivation of the optimal set-points with respect to the nominal net profit for a

steady-state distillation column through a serial hybrid model is studied by Safavi & al.

(1999). Since, only the separation factor is modeled through a nonparametric model in

the hybrid approach, the therethrough obtained optimized set-points are very similar to

the ones derived for the mechanistic model.

The optimal control schema that was investigated in closed-loop by Costa & al.

(1999, 1998) was applied for open-loop control of an experimental fermentation by

Henriques & al. (1999). The experimental results, obtained for the optimal profile, out-

line the importance of using optimization techniques, especially in process in which high

substrate concentrations inhibits fermentation.

A re-optimization strategy is applied by Zuo and Wu (2000), meaning that the op-

timal feeding policy is re-calculated whenever the new measured state values become

available, i.e. the measured values are used as initial values in the hybrid model based

optimization schema (this leading towards a closed-loop control schema).
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In order to account for the effects of the dissolved oxygen concentration on the

penicillin production, Ignova & al. (2002) applied a serial hybrid model. The derived

hybrid model did however not meet the desired accuracy, wherefore an on-line adapta-

tion schema for the biomass growth rate was developed. The optimization was at first

carried out off-line and the profiles were re-optimized (similar to Zuo and Wu (2000)).

In Tian & al. (2001) two parallel hybrid model, comprising either a stacked ANNs or

a single ANN, are applied to calculate the optimal temperature trajectories for a batch

polymerization reactor. The predictions are assessed with the calculated 95% confidence

interval and compared to the results of the experiments that were carried out using the

optimized trajectories. It was observed that for both hybrid modeling approaches the

process could be optimized, and that, when comparing the predictions to the experiment,

the stacked ANNs are more reliable than the single ANN.

A batch-to-batch optimization schema is proposed in Crowley & al. (2001); Doyle &

al. (2003), in order to meet target specifications in a polymerization process. Therein,

a parallel hybrid model, consisting of a dynamic population balance based framework in

parallel with a PLS model, is embedded into a MPC framework in order to derive the

optimal process trajectory for a given target particle size distribution.

An iterative batch-to-batch approach for the risk-constrained optimization of biopro-

cesses was proposed in Teixeira & al. (2006) and studied on three simulation cases. This

approach was then utilized for the maximization of the final amount of active product

expressed by Baby Hamster Kidney (BHK) cultures in Teixeira & al. (2005a,b). Therein

it was observed that the incorporation of more mechanistic information resulted into

better model predictions, which in turn resulted into more reliable optimization results.

The augmentation of the amount of mechanistic information through the integration

of Elementary Modes, a methodology that allows to decompose metabolic models and

opens the way to the quantification of the relative importance of certain pathways at a

given process stage, was thereupon studied in Teixeira & al. (2007a) for further opti-

mization.

For the modeling and optimization of a hydro cracking unit, Bhutani & al. (2006)

compared the performances of first-principles, parallel, serial, parallel-serial and non-

parametric models. They found that the pure nonparametric model, namely an ANN,

had the best performance, followed closely by the parallel hybrid model. Therefore they
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based the process optimization on the pure nonparametric model. However, the findings

regarding the model performances are in contrast to those frequently reported. Since

the number of available data is relatively large, the good performance of a pure nonpara-

metric model can be expected. Striking is that the time required to derive a pure ANN

process model is significantly lower than the time required for the derivation of those

ANN embedded in the hybrid models. This is in contrary to what would be expected

and points at a complication of the identification problem through the incorporation of

the mechanistic knowledge (which in turn could indicate that the mechanistic structure

is not appropriate). Additionally, in the serial hybrid case, the combination of measured

model inputs and partial first-principle knowledge, might lead to a situation which abets

error propagation, e.g. (von Stosch & al., 2011b).

Similar to a batch-to-batch optimization an incremental optimization is proposed in

Kahrs and Marquardt (2007), i.e. (i) the optimization is constrained by the validity

region of the hybrid process model; (ii) in those regions were the optimization is con-

strained, measurements are performed to enlarge the validity region; (iii) re-identification

of the hybrid model is then performed, whereupon another optimization is carried out,

and so on. The optimization of an industrial continuous polymerization plant, in form of

set-point optimization applying hybrid modeling techniques is also mentioned in Fiedler

and Schuppert (2008), i.e. “The resulting high correlation in the process parameters

had caused the training of pure black-box models to fail. Therefore, optimization and

model-based control of the melt index could only be performed using a structured hybrid

model for the reactor.”

The optimal operating policies for a two-step (aerobic followed by anaerobic step)

fed-batch process of genetically modified Saccharomyces cerevisiae were studied by Es-

lamloueyan and Setoodeh (2011) for the production of ethanol. Therein a detailed intra-

cellular model is constructed from experimental data using Flux Balance Analysis (FBA).

The FBA model can be used for fed-batch simulation along with a reactor model based

on material balances. However for the maximization of the final amount of ethanol,

this modeling approach would result in a bi-level optimization problem since the FBA

model is driven by the maximization of the specific growth rate at each time instance.

In order to avoid the bi-level optimization the FBA is replaced by an ANN model, which

results into a hybrid model. The optimal profiles, derived from the hybrid model, are

then simulated along with suboptimal profiles utilizing the dynamic FBA model and it is

observed that a small deviation from the optimal values can considerably decrease the
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ethanol productivity.

Table 2.10 Hybrid model based optimization.

Reference Application Hybrid
Nonparametric
model

Objective

structure model

Psichogios and
Ungar (1992)

Optimization of Process Operation
Scheduling, i.e. maximization of product
yield through determination of feeding
policy in a fed-batch reactor (vir.2)

S ANN

Maximisation
of the final
amount of
biomass

Schubert & al.
(1994a)

Optimization of the feeding rate for yield
maximisation with respect to the final
amount of biomass in fed-batch process
(exp.1)

S
ANN/
Fuzzy

Yield maximisa-
tion

Tholudur
and Ramirez
(1996)

Optimization of the feeding control poli-
cies in a fed-batch protein production
(vir.2)

S ANN
Maximisation of
the profitability

Dors & al.
(1995)

Optimization of the feeing control policy in
an industrial recombinant protein produc-
tion using mammalin cell cultures (exp.1)

S ANN

Biomass growth
rate maximiza-
tion, restricting
by-products

Preusting & al.
(1996)

Optimization of an industrial penicillin pro-
duction (exp.1)

S
ANN/Fuzzy
Models

Maximisation of
the final peni-
cillin concentra-
tion

Henriques &
al. (1999)

Optimization of the feeding policy in
fed-batch alcoholic fermentations of Zy-
momonas mobilis

S FLN
Maximisation of
the final ethanol
concentration

Safavi & al.
(1999)

Maximisation of the nominal net profit for
a stead-state distillation column process
(exp.1)

S
Wavelet-
based
NN

Profit Maxi-
mization

Zuo and Wu
(2000)

Optimization of fed-batch Bacillus
thuringiensis cultivations for thuringiensin
production (exp)

S ANN

Maximization
of the final
amount of
product

Ignova & al.
(2002)

Optimization of the feeding control policy
with respect to dissolved oxygen concen-
tration limitation (exp.1)

S ANN

Maximisation
of the final
amount of
penicillin

Tian & al.
(2001)

Optimal reactor temperature control poli-
cies for a batch polymerization reactor
(exp.1 )

P
Stacked
NN

Meeting target
specifications

Crowley & al.
(2001); Doyle
& al. (2003)

Optimization of the process trajectories
targeting specific size distributions using
MPC in a semi-batch emulsion polymer-
ization (vir.2)

P PLS
Meeting target
specifications
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Teixeira & al.
(2005b)

Optimization of fed-batch Baby Hamster
Kidney cultures expressing the human fu-
sion glycoprotein IgG (exp.1)

S ANN

Maximisation
of the final
amount of
active product

Teixeira & al.
(2006)

A general risk constraint framework for the
optimization of bioprocesses (vir.2)

S ANN -

Bhutani & al.
(2006)

Optimization of an industrial hydrocrack-
ing unit (exp.1)

- ANN
Maximisation of
the product

Teixeira & al.
(2007a)

Optimization of recombinant Baby Ham-
ster Kidney cultures producing a recombi-
nant fusion glycoprotein (exp.1)

S ANN

Maximisation
of the final
amount of
active product

Kahrs and
Marquardt
(2007)

Maximization of the amount of ethylene
glycol in the product stream of a stead-
state process through optimization of the
educt flowrate, the flash temperature and
the liquid hold- up of the reactor (vir.2)

S ANNs
Yield maximiza-
tion

Fiedler and
Schuppert
(2008)

Optimization of the set-points in an in-
dustrial continuous polymerization plant.
(exp.1)

S ANN -

Eslamloueyan
and Setoodeh
(2011)

Optimization of the feeding policy in a
fed-batch fermentation of Saccharomyces
cerevisiae (exp.1)

S ANN

Maximisation
of the final
amount of
ethanol

exp1: experimental

vir2: virtual

2.4.5 Model Reduction Approaches

Real processes have an overwhelming underlying complexity. In order to derive a

general valid model, simplifications in form of assumptions are usually made. Simplifica-

tions might also be made in order to facilitate the analysis or to obtain a computational

inexpensive solution (Qi & al., 1999; Safavi & al., 1999). In this respect hybrid modeling

can be applied to correct for the unconsidered phenomena therefore maintaining a high

degree of accuracy, while still being computationally efficient.

A model reduction approach based on residualization is proposed in Hahn & al.

(2002). Therein the reduction is based upon the idea that the time derivatives of the

less important states can be approximated by zero (resulting in algebraic equations) while

the rest of the system remains unchanged. The behavior of the approximated algebraic

state equations can then be learned by nonparametric techniques, which is attractive

since the most important components of the system are contained in the remaining

states and the neural network only corrects the system for the reduced states.
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Chen & al. (2004) reduces a model, which was initially obtained by formulation of

the balance equations, through the application of a singular perturbation technique that

can be applied when a system has fast and slow reactions. The obtained reduced model

is then decomposed into a dynamic linear and a non-linear static model which can con-

veniently be modeled by a hybrid parallel approach.

A different hybrid model based reduction approach is proposed by Romijn & al.

(2008). Therein the computational efficient numerical solution of Partial Differential

Equations (PDE) is addressed. At first, a transformation of the model equations to a

reduced independent latent basis using proper orthogonal decomposition, i.e. Principal

Component Analysis, is proposed. Then, in the reduced space, a hybrid model is applied

such avoiding frequently encountered problems, such as (i) the loss of sparsity in the

model formulation after reduction, (ii) computationally expensive function evaluations,

(iii) the inability to cope with nonlinear uncertainty in the model and (iv) the extraction

of relevant features for the specific purpose of the model is enabled.

The simplification of the dynamic FBA model through a hybrid model as proposed in

Eslamloueyan and Setoodeh (2011) (see also the section on “Optimization”), is another

example for the possibility of maintaining the model quality while reducing the compu-

tational effort.

2.4.6 Scale-up

A model developed on small scale, e.g. a pilot plant, cannot necessarily describe the

same process on larger scale, since the dominating effects might differ with the scale.

The situation might even become more precarious when nonparametric techniques are

applied since (i) the therein captured interactions do no stem from mechanistic con-

siderations; and (ii) the data used for their determination might contain scale specific

information.

The development of a “scalable” hybrid model is carefully investigated by Braake &

al. (1998). Beside some heuristics for the development of a scalable hybrid model, an

emphasis is on the experiments (on both scales) that are necessary to develop a hybrid

model with good range and frequency extrapolation properties. It is demonstrated on

a simulation case study that the nonparametric model that is contained in the hybrid
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model could be constructed solely on operational data, while the development of a pure

nonparametric model requires data which are rich in information.

A different approach is investigated by Bollas & al. (2003), i.e. at first a mechanistic

model is developed for a fluid catalytic cracking (FCC) pilot plant, which is then applied

to describe the behavior of an industrial FCC plant. The differences noted between

the data of the industrial plant and the mechanistic model predictions are, beside some

variations in the feed and catalyst properties, assumed to be due to the scale-up factors.

In order to account for these differences, several hybrid models are developed on the

basis of the mechanistic model, and their predictions and extrapolation capabilities, are

compared to those of the pilot plant mechanistic model and to a developed pure non-

parametric model. The best performances, reaching the limitations of the experimental

error, are observed for the hybrid models.

Similar approaches, to the one by Bollas & al. (2003), were used by Bellos & al.

(2005); Simon & al. (2006). Three different industrial hydrotreaters are modeled with

a serial hybrid model by Bellos & al. (2005). While the underlying mechanistic model

was derived for the industrial scale, some of the kinetic parameters where determined at

laboratory scale. It is shown that the application of the hybrid model allows to estimate

the effect of the feed quality on the catalyst reactivity and the catalyst activity level,

from few laboratory data and data from the operation units.

Simon & al. (2006) developed a mechanistic model for a small scale three-phase

batch reactor, which then, for the large scale process, was complemented with neural

network models to account for (i) the assumptions which do not hold true on this scale

and (ii) other scale differences. The large scale hybrid model was carefully applied to

derive process improvements and it was stated that for complex processes, for which

detailed (thermodynamic) knowledge does not exist, hybrid modeling poses a valuable

alternative.

2.5 Summary

Starting from the questions what hybrid modeling is and why it should be applied,

the framework of hybrid modeling has been reviewed in light of all parts that contribute

to the model performance. Various applications of hybrid modeling in several scientific

areas have been discussed and also the utilization of hybrid approaches for monitoring,



68 | 2. 20 years of Hybrid gray-box modeling: A review

control, optimization, scale-up and model reduction have been perused.

The following points have been striking:

i) Hybrid modeling found considerable attention during the last 20 years and the ad-

vantages with which such an approach awards are tremendous.

ii) Throughout the various applications, hybrid models are compared to pure nonpara-

metric models or to pure phenomenological models. In almost all cases it was

reported that the hybrid models performed better than the other two approaches.

In control or optimization cases the better model performance translated usually

into improved control and optimization results.

iii) The combination of different sources of knowledge into a hybrid modeling approach

can, but must not necessarily, result into better system descriptions, than when

compared to models that base on only one source of knowledge. This means that

the application of hybrid approaches does not automatically result into improved

models but that a differentiated perspective has to be kept and an analysis of the

reason for eventual models shortcomings must be applied.

iv) The incorporation of additional phenomenological knowledge has been discussed, and

it was concluded that the model performance can be enhanced when the incorporated

structure has a low uncertainty. On the other hand it was stated that in cases of high

structural uncertainty the application of parallel approaches is generally to prefer.

However a rigorous comparison of the parallel structure to a serial structure C would

be interesting.

v) The utilization of several nonparametric models in hybrid approaches has been re-

ported. In this respect it can be stated that it is case dependent which nonparametric

model is the best to be applied.

vi) Different identification procedures of the nonparametric models have been discussed

and it might be said that the incremental approach together with the sensitivities

approach can be expected to provide the best performance.

vii) Measures for extrapolative situations have been discussed and it was concluded

that those methods mostly take range or dimensional extrapolation into account,

while frequency extrapolation (the dynamics) is not considered. However in cases of

control the dynamics are an important factor and should be taken into account. This
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could for instance be accomplished by augmenting the inputs of the extrapolation

measures by the derivatives.

viii) It was shown that hybrid models can be used for experimental design. The question

whether it is better to systematically explore the process operational space by using

e.g. a coverage approach or whether an iterative batch-to-batch optimization is used

to plan the next experiment might depend on the case and the pursued objective.
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2.7 Nomenclature
Abbreviations

AIC Akaike Information Criterion
ANN Artificial Neural Network
BHK Baby Hamster Kidney
BIBO Bounded Input Bounded Output
BIC Bayesian Information Criterion
CER Carbon dioxide Evolution Rate
CPR Carbon dioxide Production Rate
CSTR Continuous Stirred Tank Reactor
DD1 Divided Difference 1
EKF Extended Kalman Filter
FBA Flux Balance Analysis
FCC Fluid Catalytic Cracking
FFNN Feed Forward Neural Network
FLC Feedback Linearizing Control
FLN Functional Link Network
GMC Generic Model Control
ICA Independent Component Analysis
IVMC Inverse Model Control
IMC Internal Model Control
MARC Model Adaptive Reference Control
MARS Multivariate Adaptive Regression Splines
ME Mixture of Experts
MLP MultiLayer Perceptron
MPC Model Predictive Control
NARX Nonlinear AutoRegressive eXogenous
NLP Nonlinear Programming
NN Neural Network
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NPLS Nonlinear-PLS / Neural Network-PLS
ODE Ordinary Differential Equation
PAT Process Analytical Technology
PCA Principal Component Analysis
PDE Partial Differential Equation
PHB Poly-β-HydroxyButyric acid
PID Proportional Integral Differential
PLS Partial Least Squares / Projection to Latent Structures
QPLS Quadratic-PLS
RBFN Radial Basis Function Network
RNN Recurrent Neural Network
SERM Semi-Empirical Regression Model
SVD Singular Value Decomposition
SVM Support Vector Machine
TSE Taylor Series Extrapolation

TSK
Takagi, Sugeno Kang - type of Fuzzy model (Takagi and Sugeno,
1985)



Chapter 3

A novel identification method for
hybrid (N)PLS dynamical systems with
Application to bioprocesses

3.1 Abstract

This paper presents a method for the identification of Non-linear Partial Least Square

(NPLS) models embedded in macroscopic material balance equations with application

to bioprocess modeling. The proposed model belongs to the class of hybrid models and

consists of a NPLS submodel, which mimics the cellular system, coupled to a set of

material balance equations defining the reactor dynamics. The method presented is an

analog to the NIPALS (Non-iterative Partial Least Square) algorithm where the PLS

inner model is trained using the sensitivity method. This strategy avoids the estimation

of the target fluxes from measurements of metabolite concentrations, which is rather

unrealistic in the case of sparse and noisy off-line measurements.

The method is evaluated with a simulation case study on the fed-batch production of

a recombinant protein, and an experimental case study of Bordetella pertussis batch

cultivations. The results show that the proposed method leads to more consistent

models with higher statistical confidence, better calibration properties and reinforced

prediction power when compared to other dynamic (N)PLS structures.

71
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3.2 Introduction

Partial Least Square (PLS) (also called Projection to Latent Structures) and Non-

linear PLS (NPLS) have been shown to be powerful regression methods for static pro-

cesses when the data is noisy and highly correlated. There are numerous applications

of PLS and NPLS in biotechnology (Clementschitsch and Bayer, 2006; Henneke & al.,

2005; Soons & al., 2008b). The difference between PLS and NPLS lies in the inner

models which correlate the latent variables. In PLS the inner model is based on linear

regression, whereas in most NPLS the inner model is non-linear, mimicked by quadratic

functions (Wold & al., 1989), artificial neural networks (Qin and McAvoy, 1992), radial

basis functions (Baffi & al., 2000) or support vector machines (Wang and Yu, 2004).

Many biotechnological processes are inherently dynamic and the PLS structure cannot

be directly applied. Several attempts in the literature were made in order to extend

the static PLS models for dynamical systems (Baffi & al., 2000; Lakshminarayanan &

al., 1997; Ljung, 1991; Qin, 1993; Ricker, 1988). In most cases modeling of dynamic

systems has been achieved through the augmentation of the inputs with lagged values

of input and output data (Baffi & al., 2000; Ljung, 1991; Qin, 1993; Ricker, 1988).

One-step-ahead prediction was developed inspired on the series–parallel identification

scheme (Eykhoff, 1974) and recurrent training schemes (Qin and McAvoy, 1992; Wer-

bos, 1988) or parallel identification schemes were used (Qin and McAvoy, 1996) for long

term predictions. In the paper by Baffi & al. (2000) NPLS with different inner nonlinear

models is successfully applied for modeling of nonlinear dynamical systems.

A bioprocess is ruled by a large number of complex physical, chemical and biological con-

straints, which are associated with both the cellular system and the bioreactor system.

The above mentioned PLS models completely disregard such constraints since they are

empirical data based techniques.

The dynamic nature of a bioprocess can be established by macroscopic material balances

of the compounds with capacity to influence the physiological state of a cell. Thus an

alternative way to add dynamics to a PLS model is to combine a static (N)PLS submodel

with material balance equations in a hybrid dynamical structure. This type of strategy

has been extensively reported in the literature for artificial neural networks (Lee & al.,

2005; Oliveira, 2004; Peres & al., 2001; Preusting & al., 1996; Schubert & al., 1994a,b;

Simutis & al., 1997) but very rarely for (N)PLS (Henneke & al., 2005; Lee & al., 2005).

In this paper, a generic Non-linear dynamic PLS approach is developed within the hybrid

modeling framework, i.e. by combining a (N)PLS submodel with material balance equa-

tions. There are two possible strategies to develop such a model. The probably simplest
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way is to estimate the reaction rates from the material balance equations and from the

concentrations’ measurements and then to run a static NPLS model with the rates as

target outputs and the state space vector as the inputs (Henneke & al., 2005; Lee & al.,

2005). The difficulty of using this method arises when dealing with a limited number of

observations and noisy measurements. The conjugation of these two factors is frequent

in a real application, leading to very inaccurate estimation of the reaction rates. The

second alternative, which is explored in this paper, follows the simultaneous parameter

estimation strategy, using the well known sensitivity method (Oliveira, 2004; Peres &

al., 2001; Preusting & al., 1996; Schubert & al., 1994a,b; Simutis & al., 1997).

The paper is organized as follows: in section 2 the proposed semi-parametric hybrid

model, the parameter identification algorithm and model performance criteria are de-

scribed; section 3 presents the application, results and discussion of the proposed method

for two complementary case studies - one case with simulation data, specifically a model

on protein synthesis, also known as the Park Ramirez model (Park and Ramirez, 1988),

and another case comprising sparse, infrequent experimental data of Bordetella pertussiss

cultures; then, in section 4, the conclusions are drawn.

3.3 The semi-parametric hybrid model

The semi-parametric hybrid structure here developed can also be referred to as an

intrinsically dynamic NPLS model, which consists of two parts, namely material balances

and a nonparametric/parametric submodel. The general hybrid model structure is de-

scribed in the first subsection. The integration of the nonparametric model, a Nonlinear

Partial Least Square model, is explained in the second subsection and a novel parameter

identification algorithm is presented in the third subsection. The question of choosing

the best model structure is finally addressed.

3.3.1 The general semi-parametric hybrid model structure

The general hybrid model structure proposed is depicted in Fig. 3.2. The concept is

an evolution of the semi-parametric hybrid model proposed originally by Oliveira (2004).

The structure is based on a bioreactor dynamic model, consisting of n material balances

represented in vectorial terms as

dc

dt
= f = r(Lx , wA)−D · c + u, (3.1)
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Figure 3.1 Diagram of the general semi-parametric hybrid model structure and of the incor-
porated submodels (mathematical symbols as in the text).
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where c is the vector of concentrations, D is the dilution rate, u is a vector of

volumetric control inputs and r is the vector of kinetic rates, i.e. the reaction term

mimicking the cell system, which is modeled with a nonparametric/parametric submodel,

using the vector of parameters wA.

The nonparametric/parametric submodel reads as,

r(c, Lx , wA) = K · 〈φj(c)× ρj(Lx , wA)〉j=1,..,m, (3.2)

with K being a n × m matrix of yield coefficients, φ being m kinetic functions and

ρ(Lx , wA) being unknown kinetic functions which include wA and the inputs Lx . These

unknown kinetic functions are modeled with nonparametric techniques, such as Artificial

Neural Networks (Oliveira, 2004; Peres & al., 2001; Preusting & al., 1996; Psichogios

and Ungar, 1992; Schubert & al., 1994a,b; Simutis & al., 1997; Thompson and Kramer,

1994) or, as presented in the following, by a Nonlinear Partial Least Square alike model.

The hybrid model can either be classified as a one-step or a multi-step ahead predictor.

This is due to the unknown kinetic functions, ρ(Lx , wA), in Eq. (3.2), more precisely the

inputs, Lx . When, the inputs cover only measured inputs at discrete time points, equiv-

alent to a Finite Impulse Response (FIR) model, then the hybrid model functions behave

as a one-step ahead predictor. When, alternatively, Lx comprises only the estimates of

the model at discrete time points, equivalent to an AutoRegression (AR) model, then

the hybrid model is a multi-step ahead predictor. It should be pointed out that the

combination of measured and estimated data for Lx , equivalent to an AutoRegression

eXogenous (ARX) model, results in a one-step ahead predictor.

3.3.2 The Nonparametric Model

The proposed nonparametric submodel, hereafter referred to as nonparametric model,

is the key feature of the novel hybrid model. The structure is the one of a NPLS model,

which is embedded into the hybrid framework, as reported to have been successfully ap-

plied in many areas, (Baffi & al., 2000; Henneke & al., 2005; Lee & al., 2005; Qin and

McAvoy, 1996). In fact the structure exhibits all (N)PLS features, such as maximization

of the covariance between input and output variables, minimization of redundant infor-

mation of the inputs and identification of a minimal number of latent variable models.

In the method here proposed the estimation of the unknown kinetic rates from noisy and

sparse concentration measurement data is circumvented.
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The Nonparametric Model Structure

The nonparametric model, for each component, j , of the vector of unknown kinetic

functions, ρj(Lx , wA), is composed of o separate latent variable models (referred to as

submodels i = 1, .., o, see Fig. 3.2), such that

ρj(Lx , wA) =

o∑
i=1

ρi ,j(Lx , wA), j = 1..m, (3.3)

where the index i denotes latent variable i . Note that in the following the term “latent

variable model” is relaxed to latent variable.

Each submodel can further be divided into two parts, an outer and an inner model

(Fig. 3.2): the outer model firstly linearly compresses the respective high dimensional

input, by the use of input loadings, to one inner latent variable; the inner model then

correlates, (non)linearly, the input latent variable, ti , to the output latent variable, ui ;

and subsequently the outer model decompresses the outer latent variable, ui , through

the use of the output loadings, into the respective outer vector ρi ,j(Lx , wA) (for details

see Baffi & al. (2000); Qin and McAvoy (1992)). In Baffi & al. (2000), ANN and RBF

were used as inner models, which proved to be successful. In this approach an ANN

model is applied. Mathematically this nonparametric model is expressed as follows:

ρ1..m,i(Lx , wA) = Wy,i · (w2,i · g(w1,i · h(Wx,i ·Li ,1..k) + b1,i) + b2,i) (3.4)

where Wx,i and Wy,i are the compression factors of the outer model, also called loadings,

w2,i and w1,i are parameters of the ANN inner model, b2,i and b1,i are the biases of the

ANN inner model, h( · ) and g( · ) are transfer functions, here linear and tangential, and

Li ,1..k comprises all inputs 1 to k to the model.

For i = 1 the vector of inputs comprises the estimated state variables or/and additional

measured data xmes,1..n, as illustrated in Fig. 3.2.

For i > 1, the vector of inputs, Li ,1..k is the difference between the previous input vector

and the information captured by the previous input latent variable, i.e. mathematically,

Li ,1..k = Li−1,1..k −Wx,i−1 ·Li−1,1..k ·W T
x,i−1 (3.5)

The arising advantage when compared to the so far used nonparametric model is that

high numbers of redundant experimental data can be considered as inputs to the non-

parametric model. In contrast to (N)PLS models the advantage for the identification of

the involved parameters is that the kinetic rates do not need to be known explicitly, and

that the hybrid structure is inherently dynamic. It should however be stressed that while

the structure is a relevant prerequisite, the parameter identification method is essential

for the success of the overall procedure.
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Identification of the Nonparametric Model Parameters

The identification of the nonparametric model parameters proposed in this paper

differs from the NIPALS identification procedure, but the general idea of this algorithm

is kept. This idea is somehow identical to a twofold objective optimization, where both

the covariance between inputs and outputs and the captured variance of the input are

maximized. The maximizations are accomplished by the application of the sensitivity

approach (Frank, 1978; Oliveira, 2004; Peres & al., 2001; Simutis & al., 1997), as it

was shown to be preferable over the error-prone initial estimation of the kinetic rates

with sequent parameter identification for ANNs ( e.g. see Oliveira (2004)):

a) Maximization of the covariance between inputs and outputs

The maximization of the covariance between the inputs and outputs is analogous to the

minimization of a weighted least-square error function of the state variables, c , which

reads as

min
wA

E1 =
1

P · n

P∑ n∑
j=1

(cmes,j(t)− cj(t, wA))2

cσ,j

 , (3.6)

and where wA are the model parameters, cmes,1..n is the vector of measured-known state

variables, and cσ,j is the standard deviations of the experimentally measured concentra-

tion.

This objective function requires the determination of the number of latent variables

prior to application, which is in contrast to (N)PLS models where consecutive latent

variables are added till the desired level of abstraction is reached.

b) Maximization of the captured input variance

The first objective function E1 serves only to maximize the covariance between the

inputs and outputs, while the NIPALS algorithm also provides orthogonality of the latent

variables that span the subspace (Baffi & al., 2000). This feature is important, because

parameter identification problems arising from redundant input information are prevented

and the dimension of the solution space is reduced. As for (N)PLS structures, redundant

information is minimized on one hand by the compression of the input dimensions and

on the other hand by subtraction of the information covered by the respective latent

variable from the input information, Eq. (3.5), i.e. capturing the variance of the inputs.

In analogy to this intrinsic feature of the NIPALS algorithm, the objective defined in the

following seeks to account for such.

Capturing the variance of the inputs is analogous to the minimization of the residual of
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the inputs, i.e. minimizing

Lres,1..k = L0,1..k −
o∑
i

Wx,i−1 ·Li−1,1..k ·Wx,i−1. (3.7)

A direct application of this equation for optimization is not feasible as uncorrelated

inputs hinder the convergence of the optimization. In order to circumvent this problem

the following procedure was developed:

i) The first step therein is to regress the matrix of inputs Li ,1..k with the input scores,

ti , in order to obtain the input loadings in a PCA manner, i.e.:

Wx,i ,l in,un =
Li ,1..k · ti
tTi · ti

. (3.8)

The obtained solution is then normalized to unit length,

Wx,i ,l in =
Wx,i ,l in,un∥∥Wx,i ,l in,un

∥∥ . (3.9)

ii) The second step is the calculation of the residual between the input loading which

is incorporated in the system of model equations, Wx,i , and the one obtained from eqs.

(3.8) and (3.9), Wx,i ,l in. The minimization of this residual is thought to be similar to the

minimization of eq. (3.7). For the minimization a least square error function is adopted,

i.e.:

min
wA

{
E2 =

1

o · k

o∑
i=1

(Wx,i ,l in −Wx,i)
2

}
. (3.10)

In such a way the inputs that are not correlated to other inputs or to the outputs are

taken into account.

For the minimization of the error functions, E1 and E2, the sensitivity equations are

employed. This means that the objective functions are differentiated with respect to the

parameters wA.:

Sensitivity equations for E1

The sensitivity equations are obtained by differentiating eq. (3.6) with respect to wA,

which in general implies the derivation of eq. (3.1) with respect to wA.
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For the inner models, i.e. the ANN's, this reduces to the derivation of eq. (3.1) with

respect to w1,i and w2,i ( embodied in the following by w ) resulting in:

d

dt
·
dc

dw
=
∂f

∂c
·
dc

dw
+
∂f

∂w
, (3.11)

where the first term on the right hand side of eq. (3.11) is due to the optional

consideration of estimated state variables as inputs to the nonparametric model, as

displayed in Fig.3.2.

For the outer models the sensitivity equations are similarly obtained by differentiating

eq. (3.6) with respect to the input and output loadings Wx,i and Wy,i (which are in the

following embodied byWx/y,i ). Not yet mentioned, but essential to report in this context

is the normalization of the loadings Wx/y,i . This normalization carried out by analogy

with the NIPALS algorithm facilitates mathematical operations since W T
x/y,i = W−1

x/y,i ,

where:

Wx/y,i =
W up
x/y,i∥∥W up
x/y,i

∥∥ , (3.12)

withW up
x/y,i being the vector of parameters obtained from the optimization procedure.

For the derivation of the sensitivity equation, eq. (3.12) is accounted for by the chain

rule, i.e. the chain factor resulting from eq. (3.12) reads:

dWx/y,i

dW up
x/y,i

=



(

∥∥W up
x/y,i

∥∥−W up
x/y,i ,1,1

·W up
x/y,i ,1,1

)∥∥W up
x/y,i

∥∥2 · · ·
(−W up

x/y,i ,1,1
·W up

x/y,i ,1,p
)∥∥W up

x/y,i

∥∥2

...
. . .

...
(−W up

x/y,i ,1,1
·W up

x/y,i ,q,1
)∥∥W up

x/y,i

∥∥2 · · ·
(

∥∥W up
x/y,i

∥∥−W up
x/y,i ,q,p

·W up
x/y,i ,q,p

)∥∥W up
x/y,i

∥∥2

 (3.13)

The sensitivity equations can then, similarly to Eq. (3.11), be obtained by differen-

tiating eq. (3.1) with respect to W up
x/y,i

which for the output loadings results in

d

dt
·
dc

dW up
y,i

=
∂f

∂c
·
dc

dW up
y,i

+
∂f

∂Wy,i
·
dWy,i

dW up
y,i

, (3.14)

and for the input loadings gives:

d

dt
·
dc

dW up
x,i

=
∂f

∂c
·
dc

dW up
x,i

+
∂f

∂Wx,i
·
dWx,i

dW up
x,i

+
∂f

∂Li ,1..k
·
dLi ,1..k
dWx,i

·
dWx,i

dW up
x,i

. (3.15)
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The sensitivity equations of the input loadings, eq. (3.15), bare the specialty that

the subtraction of the covered information from the input information, namely eq. (3.5),

must be taken into account, what is accomplished by the third term on the right hand

side in eq. (3.15) (for details see the appendix). The derivation of ∂f /∂c and ∂f /∂wA is

straightforward and similar to the nonparametric structure given e.g. in (Oliveira, 2004)

wherefore they are not described in detail.

Sensitivity equations for E2

The sensitivity equations for the second objective function, E2, are obtained by the

differentiation of Eq. (3.10) with respect to wA (i.e. the in-/output loadings and the

ANN parameters). In the case of Wx,i , the derivative is obtained in a relatively straight

forward way, resulting in Eq. (3.13) for the input loadings, while being zero for the

output loadings and ANN parameters. In contrast, deriving the gradients of Wx,i ,l in with

respect to wA is operose. The chain rule can be applied using Eq. (3.13) to account

for Eq. (3.9) and differentiating Eq. (3.12) with respect to wA (i.e. the input loadings,

output loadings and ANN parameters), as shown in the Appendix.

The least square problem functions, E1 and E2, are optimized simultaneously by us-

ing the “lsqnonlin” MATLAB function, which uses a subspace trust region method and

is based on the interior-reflective Newton method (MATLAB Optimization toolbox),

therefore gradient based, i.e. the sensitivity equations are required. However, when

estimates of the state space variables are considered as inputs, then all parameters of

the nonparametric model are also used to maximize the captured input variance, which

is not desirable.

In order to account for this, first the simultaneous parameter identification is carried out

and then, when the best parameter of the respective structure are identified as described

below, only w and Wy,i are further optimized subject only to the first objective function

E1.

In any case, the sensitivity equations are integrated along with the model equations,

namely the system of equations comprised by eq. (3.1). In this study an Euler integra-

tion scheme is adapted. Initial values of sensitivity equations are zero, because the initial

state variables are independent of the parameters.

Additional challenges for parameter identification
Parameter identification of nonparametric structures, especially when gradient based,

exhibit a few additional challenges, namely restoring of the model generalization capa-

bilities and avoiding local minima. The first challenge is usually overcome by (i) splitting
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the data set into two partitions: the training set that contains about 2/3 of the data;

and the validation set, which comprises about 1/3; and (ii) terminating the parameter

optimization when a certain level of sophistication is reached (Bishop, 1995; Haykin,

1998; Oliveira, 2004)

The second challenge, namely local minima, arises from the shape of the solution space

spanned by the objective functions and the parameters (Bishop, 1995; Haykin, 1998).

The consistency of the minima obtained for various random initiations of the parameters

(in this study at least four) is on one hand a measure of the quality of the solution ob-

tained, and on the other hand a measure of the problem formulation quality. Notice that

the larger the number of random initializations, the larger is the statistical confidence of

the solution (Bishop, 1995; Haykin, 1998).

3.3.3 Model performance criteria

In order to identify the best hybrid model, both a measure of model performance

must be defined, i.e. a model performance criteria and a suitable set of model structure

variations must be considered. As outlined above, in section 3.3.2, the identification of

the best hybrid model structure goes along with the identification of the number of latent

variables. Besides this variation in the number of latent variables, the architecture of the

ANN structure usually involves the variation of the number of layers and the number of

nodes in these layers.

In this work, a number of decisions were taken, in order to downsize the degrees of

freedom, namely: (i) a selection of three layers (input, hidden and output layer) was

decided, which is usually sufficient if nonlinear continuous functions are sought to be

modeled (Haykin, 1998); (ii) the number of nodes for the hidden layers of the ANN

is fixed to be one; (iii) the number of nodes for the input and output layers for each

submodel is fixed as one, as it results from the (N)PLS structure. What remains is then

the evaluation of the variation of numbers of submodels, i.e. the variation of the number

of latent variables, for each hybrid model set-up.

One criterion for model performance is the residual, also addressed as the goodness of

fit of the model estimates regarding the data, which can be assessed through the Mean

Square Error, MSE, where MSE is defined as:

MSE =
1

P · n
·
∑
P

n∑
j=1

(cmes,j(t)− cj(t, wA))2 (3.16)

Evaluation and comparison of model concepts and structures cannot however be only
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built up on the estimation error obtained for the training, validation or test set, in form

of the residual (Bishop, 1995; Haykin, 1998). It is known that as model complexity

grows, i.e. the number of parameters grows, the quality of fit may apparently improve,

but often at the expense of robustness and generalization capabilities, (Bishop, 1995;

Haykin, 1998). With respect to these issues the Akaike Information Criteria, AIC, is

a suitable and widely applied criteria, but according to (Burnham and Anderson, 2004;

Leonard and Hsu, 1999; Peres & al., 2008), the Bayesian Information Criteria, BIC, is

more appropriate for the applications which this approach addresses. Therefore the BIC

is applied for the model comparison and selection in this study.

The Bayesian Information Criteria, (BIC), is defined as:

BIC =

−n ·P
2

· ln

∑
P

n∑
j=1

[cmes,j(t)− cj(t, wA)]2

− (nw
2

· ln

(
n ·P
2Π

))
(3.17)

where the term in the first bracket is the logarithmic maximum likelihood and nw is

the total number of parameters/weights. In terms of the BIC, the model to be selected is

the one that exhibits the larger BIC value for the validation set (Burnham and Anderson,

2004; Leonard and Hsu, 1999; Peres & al., 2008).

3.4 Application, Results & Discussion

In this section the application, results and discussion of the proposed hybrid model

and of reference dynamic (N)PLS models are reported for two complementary case

studies. The first study focuses on the process dynamics and the identification of the

number of latent variables. The second study concentrates on the model identification

from typical noisy, sparse and infrequent experimental data, a case which hinders the

direct application of the reference dynamic (N)PLS models. The results obtained for

the hybrid model are rigorously analyzed and benchmarked against reference dynamic

(N)PLS models.

3.4.1 Case Studies

A protein synthesis, the Park Ramirez Model

The protein synthesis process
The method proposed in section 3.3 is evaluated in this subsection with simulation data

of protein synthesis in a fed-batch reactor, also known as the Park-Ramirez model, as
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originally proposed by Park and Ramirez (Park and Ramirez, 1988). This model found

wide application, for similar model structures to the one proposed here, e.g. in (Kulkarni

& al., 2004) for the evaluation of their Principal Component Analysis – General Regres-

sion Neural Network model, or in (Oliveira, 2004) for the evaluation of the traditional

semi-parametric hybrid model. The reactor model comprises material balances of the

secreted and total protein/product, the biomass, the substrate and the volume. The

model dynamics, i.e. the offset between formation of secreted and total protein on the

one side and biomass growth and substrate uptake on the other, poses some challenge,

which is one reason for the application of this model in this study. Also, this model finds

application because the number of latent variables therein is expected to be larger than

one, but smaller than four as analytically at least two kinetic rates (substrate uptake

and biomass growth) are linearly dependent and such accounts for the model capability

of identifying the underlying latent variables.

In this paper the model equations, the feeding profile, the variation of the initial con-

centrations and the corruption of the generated simulation data with a Gaussian error

of 5%, were applied for simulation case data generation, as described in (Kulkarni & al.,

2004). Normal and abnormal (in the sense of initial data outside the usual range, as

defined by (Kulkarni & al., 2004)) fed-batch data were generated, through variations

in the initial values of concentrations, which significantly influence the concentrations

dynamics. Three sets were defined, comprising 12 normal plus 4 abnormal fed-batches

for the training data set, 2 plus 2 for the validation set and 2 plus 2 for the test set,

respectively. After generation, the sets were corrupted with 5% Gaussian noise, except

for the feeding and volume data which were corrupted with 1.5% Gaussian noise.

The reference models
As reference for comparison with the proposed dynamic hybrid models, (N)PLS models

which account for the dynamics by the augmentation of the inputs in the sense of Finite

Impulse Response (FIR) or AutoRegression (AR) are used (as in most cases: (Baffi &

al., 2000; Ljung, 1991; Qin, 1993; Ricker, 1988)). The model structure identification

of such dynamic (N)PLS models comprises the identification of inputs to the models,

namely the number, type and time-points, in the sense of FIR or AR, and the identifica-

tion of the number of latent variables, i.e. the structure is adapted in order to obtain the

smallest mean square prediction error in the validation set. In the following (see Table

3.1) they will be referred to as FIR-(N)PLS and AR-(N)PLS, respectively. The NPLS

models contain the same ANN inner model functions as the hybrid models, which are

described in more detail in section 3.3.
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The hybrid models
In this study four different hybrid models are investigated.

In the hybrid structures (A) and (B) no mechanistic knowledge of the process is consid-

ered. The model equations for concentrations of secreted protein, total protein, biomass

and substrate, read,

d

dt


Psec

Ptot

X

S

 =


rPsec (Lx)

rPtot (Lx)

µ(Lx)

rS(Lx)

−D ·


Psec

Ptot

X

(S − S(F ))

, (3.18)

respectively. This corresponds to the bioreactor dynamic model structure represented

by eqs. (3.1) and (3.2), where the matrices K and φ are identity matrices.

The hybrid structures C) and D) consider some basic knowledge about the process, and

the system of equations is generally represented by,

d

dt


Psec

Ptot

X

S

 =


(Ptot − Psec) 0 0 0

0 X 0 0

0 0 X 0

0 0 0 X

 ·


rPsec (Lx)

rPtot (Lx)

µ(Lx)

rS(Lx)

−D ·


Psec

Ptot

X

(S − S(F ))

. (3.19)
While structures A) and C) are one-step-ahead predictor models, structures B) and

D) are multi-step-ahead predictor models, i.e. while the input vector Lx (see eq. 3.2)

contains the measured values of substrate, biomass, total and secreted product concen-

trations for A) and C), it contains only estimated values of substrate, biomass, secreted

and total product concentration for B) and D).

The only remaining undetermined structural feature is thus the number of latent

variables. This was identified, in all cases, by an heuristic search of the number of

latent variables that produces the best performance in terms of BIC (eq. 3.17) for the

validation data.

These hybrid structures can directly be compared to their dynamic (N)PLS counterpart

in terms of one-step or multi-step ahead prediction. By doing so, it is possible to evaluate

the different structures regarding their statistical confidence, their calibration properties

and the model estimation errors.

In advance it should be pointed out that the one-step ahead predictor hybrid models,
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Figure 3.2 Diagrams of the four hybrid structures of the Park-Ramirez Case Study: A) one-
step ahead predictor hybrid model structure, with no mechanistic knowledge incor-
porated. B) multi-step ahead predictor hybrid model, with no mechanistic knowl-
edge incorporated; C) one-step ahead predictor hybrid model structure, with mech-
anistic knowledge incorporated; D) multi-step ahead predictor hybrid model with
mechanistic knowledge incorporated. (mathematical symbols as in the text).
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A) and C), are expected to perform worse than the multi-step ahead predictor hybrid

models B) and D), because: (i) the uncertainty, i.e. noise, in the input data is directly

passed to the estimates in the case of one-step ahead predictors; (ii) uncertainty in an

estimate is passed to all future estimates due to the numerical integration; and (iii) the

one-step ahead predictor hybrid models, A) and C), in contrast to the multi-step ahead

predictor hybrid models, B) and D), have no feedback of the actual state estimates to

the nonparametric model, wherefore the nonparametric model can neither identify nor

correct for errors in the actual state estimates.

An experimental case study: Bordetella pertussis

The Bordetella pertussis process
The experimental study published by (Soons & al., 2008a,b) is the basis for the second

case study of the present paper. The challenge here is to examine a dynamic pro-

cess where only typically infrequent, sparse experimental data is available. Soons & al.

(2008b) reported runs in batch mode and variations to the process conditions, such as

in pH, Temperature and dissolved oxygen. Their measurements of the concentrations of

lactate, glutamate and biomass over time for eight batches were reported as PAB0003,

PAB0004, PAB0005, PAB0006-1, PAB0006-2, PAB0007, PAB0009-1, and PAB0009-

2.

In order to identify and avoid bias from possible measurement errors, two sets of studies

were carried out in the present paper:

In Set 1 - batches PAB0003, PAB0005, PAB0006-1, PAB0006-2 and PAB0009-2 were

employed for training and batches PAB0007 and PAB0009-1 used for validation.

In Set 2 - batches PAB0003, PAB0005, PAB0006-1, PAB0006-2 and PAB0009-1 were

employed for training, and PAB0007 and PAB0009-2 for validation.

It should be pointed out that batch PAB0007 is an “abnormal” batch, where a dis-

solved oxygen limitation and a lowered pH from 0-9 hours occurred, whereas batches

PAB009-1 or PAB009-2 can be taken as “normal” (Soons & al., 2008b). By doing so,

it is guaranteed that in both sets a “normal” and an “abnormal” batch were used in the

validation step. The measured biomass concentration of batch PAB0004, was used as

final test data, in order to provide a final assessment of the generalization capabilities

of the models.

The reference models
The reference models in this case study are, as before described for the other case

study, (N)PLS models which account for the dynamics by augmentation of the inputs.
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Beside the augmentation of the inputs in the sense of FIR, the inputs here are also

augmented using the AutoRegressive eXogenous (ARX) approach. As before the model

structure identification of such dynamic (N)PLS models comprises the identification of

the number of latent variables and of inputs to the models, namely the number, type

and time-points, in the sense of FIR or ARX, i.e. the structure is adapted in order to

obtain the smallest mean square prediction error in the validation set. In both schema

a time lag of 1 hour and a maximum number of 4 equidistant lags for each input were

investigated. In the context of sparse and infrequent measurements the application of

these specifications requires that the measurements are pretreated, i.e. in this study

the (N)PLS model inputs at the specific time instances were obtained through a cubic

smoothing spline (MATLAB routine: csaps). However, this mandatory procedure must

be accounted for when analysing the results, since on one hand the smoothing of the

data can be expected to enhance the model performance while on the other hand the

data interpolation might diminish the same. The NPLS models contain the same ANN

inner model functions as the hybrid models, which are described in more detail in section

3.3.

The hybrid models
The hybrid model in this case contains mechanistic knowledge about the process, which

was reported in (Soons & al., 2008a). This results in improved convergence of the

parameter identification and into less random initiations for the parameters in order to

obtain consistent results. The system of model equations reads,

d

dt

LacGlu

X

 =

Lac ·X 0 0

0 Glu ·X 0

0 0 X

 ·

rLacrGlu

µ

−D ·

LacGlu

X

, (3.20)

where Lac , Glu and X are the concentrations of Lactate, glutamate and biomass,

respectively and rLac , rGlu and µ are the respective unknown kinetic functions which are

obtained by the nonparametric model.

The input vector Lx of the nonparametric model in this study contains the estimates of

all concentrations, pH, temperature and the percentage of dissolved oxygen, as reported

to be responsible for the process variations (Soons & al., 2008b). A gain, as reported

in the previous case study, the only remaining undetermined structural feature is the

number of latent variables. This was as well identified, in all cases, by an heuristic

search of the number of latent variables that produces the best performance in terms of

BIC (eq. 3.17).



88 | 3. A novel identification method for hybrid (N)PLS dynamical systems with
Application to bioprocesses

3.4.2 Issues of hybrid model development and implementation

The proposed semi-parametric hybrid model might be understood as a dynamic NPLS

model wherein the dynamics are modeled by material balances. In the following the

dynamics and the performance of the hybrid model are rigorously analyzed.

Performance Criteria

Statistical Confidence – the BIC
In comparison to reference dynamic (N)PLS approaches, such as AR(X)- or FIR- (N)PLS

models, it was observed that the hybrid methodologies possess way fewer model param-

eters, i.e. latent variables. This is a qualitative observation which is reflected in both

presented simulation cases by the significantly larger BIC values obtained for the hybrid

models when compared to the values obtained for the comparative dynamic (N)PLS

models (see Tables 3.1 or 3.2). It should be pointed out that the dynamic (N)PLS

approaches, namely the AR(X)- and FIR- (N)PLS models, are disadvantaged in terms

of BIC, due to: (i) the higher number of latent variables; and (ii) the dynamic structure

itself which increases the number of parameters on the input side.

Table 3.1 Values of model performance criteria over model types and structural parameters
- simulation case study on the protein synthesis, also called the Park Ramirez
Simulation Case.

BIC MSE

Model type Train Valid Test Train Valid Test

FIR-PLS ( lva = 4; ntb = 1 ) -1930 -477 -348 0.0334 0.0812 0.0295

AR-PLS ( lva = 4; ntb = 1 ) -2074 -519 -433 0.0408 0.0893 0.0456

FIR-NPLS ( lva = 4; ntb = 1 ) -1945 -458 -383 0.0343 0.0699 0.0388

AR-NPLS ( lva = 4; ntb = 1 ) -1994 -486 -433 0.0349 0.0691 0.0456

Hybrid structure A -1248 -219 -337 0.0134 0.0228 0.0610

Hybrid structure B -1189 -140 -222 0.0119 0.0118 0.0235

Hybrid structure C -1962 -379 -402 0.0595 0.0869 0.1055

Hybrid structure D -1083 -135 -93 0.0095 0.0114 0.0080

a lv: number of latent variables

b nt: number of time series elements

From the BIC definition, Eq. (3.17), the model to prefer is the one with the larger

BIC value, i.e. the one which for equal residual and number of data, has fewer parame-

ters, in this way penalizing complex models (Bishop, 1995).
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Table 3.2 Values of model performance criteria over model types and structural parameters
- experimental case study on Bordetella pertussis cultivation data.

Model Data BIC MSE

Type Structure Setc Train Valid Test Train Valid Test

FIR-PLS [ lva = 5, ntb = 3] 1 -486 -168 - 0.1486 0.0736 -

ARX-PLS [ lva = 6, ntb = 3] 1 -549 -209 -55 0.1567 0.0703 0.3996

FIR-NPLS [ lva = 5, ntb = 3] 1 -473 -173 - 0.1318 0.0831 -

ARX-NPLS [ lva = 6, ntb = 3] 1 -516 -224 -41 0.1142 0.1028 0.0488

Hyb – NPLS [ lva= 1] 1 -430 -103 9 0.2884 0.1397 0.0160

Hyb – NPLS [ lva = 2] 1 -330 -88 10 0.1020 0.0836 0.0106

Hyb – NPLS [ lva = 3] 1 -317 -96 9 0.0842 0.0910 0. 0094

FIR-PLS [ lva= 5, ntb = 3] 2 -478 -163 - 0.1483 0.0568 -

ARX-PLS [ lva = 6, ntb = 3] 2 -542 -204 -52 0.1573 0.0540 0.2361

FIR-NPLS [ lva = 2, ntb = 3] 2 -402 -115 - 0.1509 0.0737 -

ARX-NPLS [ lva = 2, ntb = 4] 2 -410 -134 -14 0.1328 0.0782 0.0511

Hyb – NPLS [ lva = 1] 2 -416 -79 -3 0.2694 0.0687 0.0878

Hyb – NPLS [ lva = 2] 2 -357 -79 13 0.1420 0.0609 0.0075

Hyb – NPLS [ lva = 3] 2 -393 -82 16 0.1882 0.0582 0.0037

a lv: number of latent variables

b nt: number of time series elements

c Set: Set 1 or 2 refer to the grouping of batches the respective model has been trained and validated on.

In general, models with higher numbers of parameters are thought to be less robust

and to exhibit worse generalization capabilities than models that offer similar residua,

but with smaller number of parameters. Thus the BIC is a measure of the statistical

confidence of the model performance and therefore the proposed hybrid models exhibit

a higher statistical confidence than the comparative dynamic (N)PLS approaches.

Performance under the MSE criterion
The statistical confidence observed for the hybrid models is in agreement with the per-

formance of such models observed and evaluated in terms of the MSE criteria, as shown

in Tables 3.1 and 3.2.

It was observed that the proposed hybrid method most times exhibits significantly bet-

ter and only rarely worse performance than the other evaluated dynamic (N)PLS models.

Cases in which the hybrid method exhibited a worse performance in terms of MSE

values than the comparative methods were graphically analyzed. As example, for the



90 | 3. A novel identification method for hybrid (N)PLS dynamical systems with
Application to bioprocesses

0 5 10 15

0

0.5

1

1.5

Time (h)

P
ro

te
in

s
e
c
 (

g
/l
)

0 5 10 15

0

0.5

1

1.5

33

Time (h)

P
ro

te
in

to
t (

g
/l
)

 

 

0 5 10 15
1

1.5

2

2.5

3

Time (h)

B
io

m
a

s
s
 (

g
/l
)

0 5 10 15
0

2

4

6

Time (h)

S
u

b
s
tr

a
te

 (
g

/l
)

 

 

Simulation Data

Hybrid structure A
Hybrid structure B

FIR−PLS

Figure 3.3 Park-Ramirez Case Study - plots of secreted protein, total protein, substrate and
biomass concentrations, over time: predictions of hybrid structures A (dashed
dotted blue line) and B (grey line), and of the best reference FIR-PLS model
(dashed green line, Table 1) vs. the process simulation data (red dots), for a
‘normal’ validation run.

Park-Ramirez case study, Figs. 3.3 and 3.4, it was observed that the highest deviations

are to be found in the substrate concentrations for hybrid structures A) and C).

When seeking for an explanation it must be kept in mind that: (i) both hybrid mod-

els, A) and C), are one-step ahead predictor models, in the sense of FIR; and (ii) the

estimations by these hybrid models are sensitive to noise in the feeding rate data, as

outlined in subsection 3.4.1.

In the case of the feeding rates, the hybrid model cannot account for the uncertainty

therein, because neither the feeding rate data are inputs to the nonparametric model nor

the state estimates are feedback to the nonparametric model. That those uncertainties

can partially be accounted for when the state estimates are inputs to the nonparametric

model, is demonstrated by the excellent performance of hybrid structures B) and D).

However for the best performance by hybrid model D), those uncertainties are still ob-

servable in form of the slightly bumpy estimations of biomass and substrate and in form
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Figure 3.4 Park-Ramirez Case Study - plots of secreted protein, total protein, substrate and
biomass concentrations, over time: predictions of hybrid structures C (dashed
dotted blue line) and D (grey line), and of the best reference NPLS-AR model
(dashed green line, Table 1) vs. the process simulation data (red dots), for an
‘abnormal’ test run.

of the bumpy estimations of secreted and total protein towards the end of the abnormal

fed-batch, shown in Fig. 3.4.

For the experimental case study it is observed in Table 3.2, that the performance, in

terms of MSE, for the hybrid models on data Sets 1 and 2, is non-coherent: using

as example the hybrid model with 3 latent variables, the MSE values obtained for the

training data of data Set 1, are half as big when compared to the MSE values on the

training data of data Set 2. In order to identify the reason for this contradiction an

additional analysis, reported below, was carried out on the influences which errors in the

initial concentration values have on the whole dynamics. However, observations for the

MSE values of the test data for both sets, wherein the performance of the hybrid models

are found to be significantly better than the ones of dynamic (N)PLS models, show the

excellent generalization capabilities of the hybrid models.
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Model Structures and Error Propagation Issues

In the case studies presented several sources of errors can be identified, namely (i)

noises in input measurements; (ii) errors inherent to model structures; (iii) errors in es-

timated inputs and/or in estimated parameters; and (iv) errors associated to 'defective'

initial values. These are representative of essentially all experimental applications.

Leaving aside the trivial, though in practice often difficult, issues of error propagation

due to the nature of numerical integration methods employed, it is relevant to analyze

the issues associated to the nature of model structures chosen.

Error Propagation due to State feedback to the Nonparametric model
One way of propagation of the error in the estimates occurs in all those model structures

in which the state estimate is a nonparametric model input, e.g. hybrid structures B)

and D) in the Park Ramirez case study, or the ARX-(N)PLS model in the experimental

case study. However, the form of the time evolution of the sensitivity equations, eqs.

(3.11), (3.14) and (3.15), in hybrid structures where state feedback is embedded, tend

to have a damping effect on such error propagation. This can be excellently seen by

the enhanced performances, in terms of MSE, through hybrid structures B) and D) in

contrast to the ones for A) and C) which are all-together shown in Table 3.1.

Error Propagation due to State feedback to the Parametric model
Another way in which the error is propagated arises when mechanistic knowledge, namely

knowledge about the kinetics, in form of the model estimates, is incorporated, such as

in hybrid structures C) and D).

The incorporation of the estimates is somewhat identical to the case when the inputs

to the nonparametric model comprise the estimates, with the significant difference that

an error in the estimation (e.g. from noisy feeding rates as in hybrid structure C)),

depending on the arithmetic operator, (e.g. a multiplication sign for hybrid structures

C)) might amplify the error (e.g. rather large deviations in the substrate concentrations,

Fig. 3.4, and a rather large MSE value, Table 3.1, are obtained for hybrid structure C)).

The excellent performance observed with hybrid structure D), whose mechanistic knowl-

edge is equivalent to C), is explained by the damping qualities of the nonparametric

model.

Errors in the Initial values, a special case
A relevant issue in all model analysis is that of the 'condition' of the model structures
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proposed.

As addressed above, the results of the experimental case study in Table 3.2, of applying

the hybrid models to data Sets 1 and 2, show some inconsistency (see section 3.4.1).

In order to find the reason for such, an additional analysis of the experimental data was

carried out, namely a PCA. It was observed that the correlations for the initial values

of concentrations in some of the batches vary significantly from the correlations ob-

tained for the whole data set, which is in line with the eye observations made. When

(i) correcting the initial values in the validation and test batches of data Set 1 by using

PCA and (ii) applying on these sets the hybrid model with two latent variables and the

ARX-PLS, which both were prior trained on Set 1, then (iii) the results shown in Table

3.3 are obtained. Therein it can be seen that the performance in terms of both BIC and

MSE values obtained for the hybrid model is significantly better than the performance

of the ARX-PLS model. The performance of the hybrid model in Table 3.3 compared

to the very same hybrid model in Table 3.2 led to more than 50% reduction in the MSE

values of the validation and test batches.

This outlines the sensitivity of the proposed hybrid model to a high noise to signal ratio,

which is in line to the observations made for the hybrid structures A) and C), i.e. the

noise in the measurements enters directly the nonparametric model, leading to devia-

tions of the estimations regarding the simulation data. In particular, defective initial

values due to noise effects constitutes a special case, as those values are the base for

the integration and as such are a significant source of misprediction.

3.4.3 Challenges of the Park Ramirez Case Study

The challenges offered by the Park Ramirez simulation case are on the model dy-

namics and on the identification of the number of latent variables.

The first challenge: The model dynamics
The dynamic delay between formation of secreted and total protein on one hand and

biomass growth and substrate uptake on the other hand, varies depending on the initial

values of concentrations. This dynamic feature was very well modeled by all applied

hybrid structures, apart from the slightly “bumpy” shape of the trajectories, which were

ascribed to the error propagation in the discussion above.

Small deviations between estimates and reference values of concentrations can be ob-

served, especially for the one-step ahead predictor hybrid structures A) and C), but the

general dynamic state behavior is well predicted, as can e.g. be seen in Fig. 3.4 for the
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substrate concentration.

Even the dynamics of the abnormal fed-batches are very well predicted by the hybrid

structures, in contrast to the observations made for the reference dynamic (N)PLS ap-

proaches, as illustrated in Fig. 3.4. For these special batches it can be concluded that

the proposed hybrid models, in comparison to the other dynamic (N)PLS models, even

when applied to “regions” where they have been poorly trained on, offer smaller devia-

tions from the simulation data, which confirms the higher statistical confidence of the

estimates from such models.

The preceding also means that even if the training set does not contain all possible

variations, which can occur during the process, still the performances of the proposed

hybrid model for different operating conditions, can be expected to be superior to the

one of the comparative dynamic (N)PLS models. These conclusions are according with

the findings reported by (Oliveira, 2004; Thompson and Kramer, 1994).

The second challenge: The number of latent variables
The second challenge of the Park Ramirez simulation case is the identification of the

number of latent variables for both, the hybrid and the reference (N)PLS models.

Analytically, it is clear that at least two kinetic rates, namely the substrate and biomass

rates, are linearly correlated. However, from observations made on the simulation data

it might be concluded that also the rates of secreted and total protein are linearly cor-

related, which in total then sums up to two independent latent variables. This number

is observed for the identified hybrid model structures, where it was found that the best

hybrid structures always comprised only two latent variables.

In contrast, identification of the best model structure for reference dynamic (N)PLS

models always revealed four latent variables. Partially this is due to the fact that linear

correlations of the kinetic rates do not necessarily mean that the respective concentra-

tions are linearly correlated in the same way, because the initial value of the concentra-

tions poses a bias.

In such context it has to be kept in mind that prior to the application of the chemomet-

ric tools the data are, as usual, zero-mean-centred and scaled by the standard variance,

which might also contribute to the bias. Hence, three latent variables would be justifiable

in the identification of the reference (N)PLS models.

The extra latent variable in these structures might be thought to account for the dy-

namics, which however is for the cost of a higher number of parameters involved, with

the subsequent cost of lower BIC value.

In general, it is worth noting that for the identification of the number of latent vari-
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ables for the hybrid model the kinetic dimensions with or without mechanistic knowledge

incorporation can be reduced to two independent rates, which might suggest that any

additional kinetic rate of the simulation model may be redundant.

3.4.4 Challenges of the experimental case study

The challenge in this case study on Bordetella pertussis, arises mainly from the typ-

ical infrequent, sparse and noisy experimental concentration data available. The main

objective was to show that the developed hybrid model is under these circumstances

competitive with the reference dynamic (N)PLS models. The number of latent variables

was unknown a priori and such was also subject of the study.

The “best” number of latent variables
The BIC values of the hybrid models were significantly better when compared to the

ones of the reference dynamic (N)PLS approaches, this being mainly due to the smaller

number of modeling parameters involved in the former.

For both data sets of this study (section 3.4.1) the BIC values obtained on the applica-

tion of the hybrid models to the validation batches suggest the selection of two latent

variables, which is partially in agreement with the reference (N)PLS structures identified

(see Table 3.2). It has been seen that due to defective initial values, the MSE values

obtained for the same validation batches were inconsistent among themselves, but the

BIC values obtained for the corrected files nevertheless reinforce the selection of two

latent variables.

For the case of the reference dynamic (N)PLS models, it was observed that in general

five to six latent variables are necessary to obtain model performances which are, in

terms of the MSE, in the same range than those of the hybrid models. Exceptions to

this observation exhibit the performances of the dynamic NPLS models of Set 2 (Table

3.2), which both only comprise two latent variables. It seems that nonlinear inner func-

tions are capable to account better for the general process dynamics than linear ones.

This assumption is further supported by the observation that the MSE values of the test

data obtained for the nonlinear models are significant smaller than the ones obtained for

the linear models.

General Performance
The following observations hold concerning general model performance:

(i) The MSE values obtained for the hybrid structures are seen to be significantly better
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than the ones obtained with the (N)PLS structures for the test set, as presented in

Table 3.2. The correction of those initial values of the substrate concentrations in the

test batch (initial data corrected as described in section 3.4.2), have lead to further

improved performance in terms of MSE for the hybrid model, as expressed in Table 3.3.

Considering that only the initial substrate concentrations were corrected, it can be fur-

ther concluded that the hybrid model captures well the known fact that the estimation

of the biomass concentration is sensitive to the initial substrate concentration.

Table 3.3 Values of model performance criteria over model types and structural parameters
- corrected initial value data of data Set 1 of the experimental case study on the
Bordetella pertussis cultivation.

Model type Structure BIC train BIC valid BIC test MSE train MSE valid MSE test

ARX-PLS [ lva = 6, ntb = 3] -550 -213 -53 0.1582 0.0784 0.3047

Hyb – NPLS [ lva = 2] -329 -54 22 0.1019 0.0371 0.0018

a lv: number of latent variables

b nt: number of time series elements

(ii) The MSE values obtained with the application of the hybrid structure to the

“corrected” validation batches (initial data corrected as described in section 3.4.2) were

significantly better than those of the reference ARX-PLS model.

In the context of this analysis, it should be pointed out that the ARX-PLS reference

model exhibit a rather low sensitivity to initial values. This can be observed in the dif-

ference between the MSE values of the corrected and uncorrected test batch, which is

of the order 0.0088, about eleven percent of the respective MSE value.

(iii) The good performance of the hybrid models for the estimation of the biomass

concentration is also observed in Fig. 3.5. The superior performance of the hybrid

models is strengthened by comparing, in the same figure, the shape of the trajectories,

which are rather bumpy for the (N)PLS model against rather smooth trajectories for

the hybrid models (especially for the one with three latent variables). In the case of the

dynamic (N)PLS models, the mandatory pretreatment of the data, i.e. the application

of a cubic smoothing spline (section 3.4.1), therefore does not seem to act smoothing

on the estimates, but instead the error introduced through the data interpolation seems

to board the predictions.
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Experimental data PAB00071

HybMod [lv=2] ( data Set 1)

HybMod [lv=3] ( data Set 2)

ARX−PLS [lv=6; nt=3] ( data Set 2)

Figure 3.5 Bordetella pertussis experimental case study - plots of concentrations of lac-
tate, glutamate and biomass concentrations over time for the validation batch
PAB00071 (red dots): predictions of the NPLS hybrid model with 2 latent vari-
ables (dashed dotted blue line) and 3 latent variables (grey line), vs. estimates of
a ARX-PLS, with 3 latent variables (dashed green line).

3.4.5 Complementary features of the hybrid model

In the Park Ramirez case study, it was observed that the identification of the non-

parametric model parameters exhibited a faster convergence, a higher consistency of the

results and an improved performance, e.g. in form of the MSE criteria in Table 3.1, when

comparing between hybrid models with and without mechanistic knowledge, in favor of

the former. Thus, the incorporation of mechanistic knowledge into the hybrid structure

leads to a better model performance, which is in line with observations in (Oliveira, 2004;

Psichogios and Ungar, 1992).

It is known that for (N)PLS models the analysis of the input and output scores rep-

resents a relevant source of information concerning characteristics and features of the

processes and of model performance. This important feature of (N)PLS structures is

present in the hybrid model developed in this study. For instance, and as illustration

with the experimental case study, the plot of scores u2 over t2 (Fig. 3.6) shows a sin-
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gularity of behavior for batch PAB0003 (see red crosses). This batch, employed in the

training stage, distinguishes from the others by: (1) having the smallest initial values for

all concentrations, namely lactate, glutamate and biomass; (2) exhibiting the highest

concentration of biomass in the end of the batch; and (3) comprising a defect in the

DO signal towards the end of the batch.
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PAB 0005

PAB 0006−1

PAB 0006−2

PAB 0009−1

PAB 0004

PAB 0007

PAB 0009−2

Figure 3.6 Bordetella pertussis experimental case study - phase plane plots of input scores, ti ,
vs. output scores, ui , ( i = 1, 2, 3 in a, b, c, respectively) for the three latent vari-
ables of the inner model ANN functions of the hybrid structure comprising 3 latent
variables - application to all batches (PAB0003 red crosses; PAB0005 light green
circles; PAB0006-1 green x-es; PAB0006-2 blue boxes; PAB0009-1 purple filled
squares; PAB0004 turquoise diamonds; PAB0007 gray upward-pointing triangles
and PAB0009-2 black downward-pointing triangle).

Finally, and still for the experimental case study, the fairly linear inner model functions,

which can be seen in Fig. 3.6, might explain for the fast convergence and the consistency

of the hybrid model performance, as in general the optimal parameters of linear models

are unique.
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3.5 Conclusion

A novel methodology consisting of a hybrid dynamic (N)PLS model together with an

algorithm for parameter identification is proposed for bioprocess modeling. The model

consists of a set of macroscopic material balance equations in which the kinetic rates

(the reaction terms) are mimicked by a NPLS (Nonlinear Partial Least Square) submodel

and wherefore the global approach belongs to the class of hybrid models.

This methodology was benchmarked against reference dynamic (N)PLS models, (in

which the dynamics are modeled by the augmentation of the inputs by lagged variables,

such as FIR or AR(X)) through the application to two complementary case studies; (i)

a simulation case study, also called the Park Ramirez simulation case after Park and

Ramirez (1988); and (ii) an experimental case study of a Bordetella pertussis cultiva-

tion, as published by Soons & al. (2008a,b).

The following has been observed and can be stated:

(i) The novel approach, due to its inherent dynamics, exhibits, in general, fewer model

parameters which results in a higher statistical confidence, observed in form of

higher BIC values, when compared to the reference dynamic (N)PLS models.

(ii) In the application to validation data, the model performance, observed in terms of

the MSE criterion, was generally significantly better.

(iii) Better calibration properties can be observed, expressed in terms of extrapolation

capabilities to broader process conditions (e.g. predictions concerning the abnormal

fed-batch data).

(iv) The application of the proposed model to typical infrequent, sparse and noisy ex-

perimental data leads to realistic, smooth trajectory estimations of the process

states and does not require data interpolation as necessary in the reference dy-

namic (N)PLS methods.

(v) The integration of mechanistic knowledge into the proposed framework was identi-

fied to have a significant impact on the good results obtained, which is in line with

the findings of (Oliveira, 2004; Psichogios and Ungar, 1992).

(vi) The novel proposed nonparametric structure and the related parameter identifica-

tion algorithm exhibit PLS features such as dimension reduction and the opportunity

to interpret the plot of scores:
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(a) The Park Ramirez case study involves four kinetic rates, where two of which are

linearly correlated. The hybrid model revealed that only two independent latent

variables are already sufficient to model the process, in contrast to mostly four

obtained by the reference (N)PLS models.

In general fewer latent variables were required regarding the same process than

by the reference dynamic models.

(b) For the Bordetella pertussis case study, from the analysis of the score plots, it

was shown that unusual variations in the process conditions could be identified.

(vii) Several sources of errors were identified: (a) noise in the input measurements to

the nonparametric model; (b) noise in the measurements of the feeding rates (in

the Park Ramirez case study); (c) errors inherent to the feedback nature of the

models (where applicable); or (d) defective initial values.

(viii) For all sources of errors, except for the case of defective initial values, it was

observed that state feedback to the nonparametric model had a damping effect on

error propagation.

(ix) For cases of defective initial values, it was shown that corrective action on such

errors has led to improved performance of the hybrid approach in comparison to the

reference dynamic (N)PLS models (e.g. a more than twofold improvement of the

MSE value in the experimental case study on a Bordetella pertussis cultivation).

In all, it can be stated that the application of a suitable hybrid (N)PLS model structure

leads to significantly enhanced process estimations when compared to the reference

dynamic (N)PLS models.

3.6 Appendices

3.6.1 The calculation of the Input & Output Scores

The input and output scores are an inherent component of the proposed nonpara-

metric structure, eq. (3.5). The scores, in analogy to (N)PLS models, give an insight

into the information captured by the respective submodel and are further suitable to

identify “abnormal” process behavior.

The input scores, also called input latent variable, are directly obtained from multiplica-

tion of the input vector Li ,1..k (see eq. 3.5 ) with the input loadings, Wx,i , i.e.:

ti = Wx,i ·Li ,1..k . (3.21)
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The output scores are obtained by processing the input scores, ti , with the ANN inner

model, such that

ui = (w2,i · g(w1,i · h(ti) + b1,i) + b2,i) , (3.22)

using the weights, biases and functions defined in section 3.3.2.

3.6.2 The Sensitivity equations

The derivative of eq. 3.10 can be split into the derivative of dW x,i ,l in/dwA and in

dW x,i/dwA, where wA, the vector of parameters, comprises Wx,i , Wy,i and w . The

latter derivative is straight forward as described above, section 3.3.2. Considering eq.

(3.9), the derivative dW x,i ,l in/dwA can be extended to

dW x,i ,l in

dwA
=

dW x,i ,l in

dW x,i ,l in,un
·
dW x,i ,l in,un

dwA
(3.23)

making use of the chain rule. The first term on the right hand side is equivalent to

Eq. (3.13). The second term on the right hand side is the derivative of Eq. (3.8) with

respect to wA. This term can be reformulated using the quotient rule to,

dW x,i ,l in,un

dwA
=

(tTi · ti) · d(Li ,1..k · ti )
dwA

− (Li ,1..k · ti) · d(tTi · ti )
dwA

(tTi · ti)2
. (3.24)

The first derivative in the numerator can be split up, applying the chain rule again,

to:

d(Li ,1..k · ti)
dwA

= ti ·
dLi ,1..k
dwA

+ Li ,1..k ·
dti
dwA

. (3.25)

The second derivative can equivalently be treated, giving:

d(tTi · ti)
dwA

= 2 · ti ·
dti
dwA

. (3.26)

The derivative dt i/dwA emerges in (3.25) and (3.26), which, considering eq. (3.21)

and applying the chain rule, can be formulated to:

dti
dwA

= Wx,i ·
dLi ,1..k
dwA

+ Li ,1..k ·
dW x,i

dwA
. (3.27)
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Noting that wTA = [Wx,i ,Wy,i , w ], then the derivative corresponding to the second

term on the right hand side is a matrix comprising the identity submatrix for the deriva-

tive of Wx,i with respect to Wx,i and zero elsewhere.

The derivative in the first term on the right side, namely dLi ,1..k/dwA, also appears

in eq. ( 3.25 ) and is reformulated using eq. (3.5) to:

dLi ,1..k
dwA

=
dLi−1,1..k

dwA
−
d(Wx,i−1 ·Li−1,1..k ·Wx,i−1)

dwA
, (3.28)

where the second term on the right side can be simplified by using the chain rule, a

straightforward solution and therefore not carried out here.

The only remaining derivative is dLi−1,1..k/dwA, which is calculated sequentially,

starting with dL1,1..k/dwA. It should be noted that only the partition of entries of

L1,1..k , corresponding to the feedback of model estimates into the nonparametric model

(Fig. 3.2) depend on wA. As such those derivatives reduce to dc/dwA which are nothing

else than the derivatives given by eqs. (3.11), (3.14) and (3.15).
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3.8 Nomenclature
Abbreviations

AIC Akaike Information Criterion
ANN Artificial Neural Network
BIC Bayesian Information Criterion
FIR Finite Impulse Response
MSE Mean Squared Error
NARX Nonlinear AutoRegressive eXogenous
NPLS Nonlinear-PLS / Neural Network-PLS
NIPALS Non-iterative Partial Least Square
ODE Ordinary Differential Equation
PCA Principal Component Analysis
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PLS Partial Least Squares / Projection to Latent Structures

Mathematical Symbols
b1,i Bias of the input layer in the latent variable submodel i
b2,i Bias of the hidden layer in the latent variable submodel i
c Vector of concentrations
cσ,j Standard deviations
cmes,j Off-line measured concentration values
f Function
g( · ) Transfer function of the hidden layer in the latent variable submodel i
h( · ) Transfer function of the input layer in the latent variable submodel i
i Counter
j Counter
k Number of inputs
m Number of kinetic functions
n Number of components
o Number of latent variables
r Vector of kinetic rate functions
rGlu Specific Glutamate uptake rate
rLac Specific Lactate uptake rate
rPsec Specific secreted product formation rate
rPtot Specific total product formation rate
rS Specific substrate uptake rate
t Time
ti Input latent variable
u Vector of control inputs
ui Output latent variable
w Weights of all i = 1..o ANNs
wA Vector of parameters
w1,i Weights of the input layer in the latent variable submodel i
w2,i Weights of the hidden layer in the latent variable submodel i
xmes,1..n Measurement data
D Dilution rate
E1 First Least Squared objective function
E2 Second Least Squared objective function
Glu Glutamate concentration
K Matrix of stoichiometric coefficients
Li ,1..k Inputs 1 to k for latent variable submodel i
Lres,1..k Residual of the inputs
Lx Vector of nonparametric model inputs
Lac Lactate concentration
P Number of samples
Psec Secreted Protein concentration
Ptot Total Protein concentration
S Substrate concentration
S(F ) Feeding substrate concentration
W up
x/y,i

Input/Output loadings obtained from the optimization procedure
Wx,i ,l in,un Unnormalized input loadings calculated by linear regression eq. (3.8)
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Wx,i ,l in Normalized Input loadings
Wx,i Input loadings of latent variable i
Wy,i Output loadings of latent variable i
X Biomass concentration
φ Known kinetic functions
ρ / ρ1..m,1..o Unknown kinetic functions
µ Specific biomass growth rate



Chapter 4

Modelling biochemical networks with
intrinsic time delays: a hybrid
semi-parametric approach

4.1 Abstract

This paper presents a method for modelling dynamical biochemical networks with in-

trinsic time delays. Since the fundamental mechanisms leading to such delays are many

times unknown, non conventional modelling approaches become necessary. Herein, a

hybrid semi-parametric identification methodology is proposed in which discrete time se-

ries are incorporated into fundamental material balance models. This integration results

in hybrid delay differential equations which can be applied to identify unknown cellular

dynamics.

The proposed hybrid modelling methodology was evaluated using two case studies. The

first of these deals with dynamic modelling of transcriptional factor A in mammalian

cells. The protein transport from the cytosol to the nucleus introduced a delay that was

accounted for by discrete time series formulation. The second case study focused on

a simple network with distributed time delays that demonstrated that the discrete time

delay formalism has broad applicability to both discrete and distributed delay problems.

Significantly better prediction qualities of the novel hybrid model were obtained when

compared to dynamical structures without time delays, being the more distinctive the

more significant the underlying system delay is. The identification of the system delays

by studies of different discrete modelling delays was enabled by the proposed structure.

Further, it was shown that the hybrid discrete delay methodology is not limited to dis-

105
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crete delay systems. The proposed method is a powerful tool to identify time delays in

ill-defined biochemical networks.

4.2 Background

Time delays play a very important role in genetic regulatory systems. Gene regula-

tion and signal transduction as a whole involves the synthesis and maturation of complex

proteins. Their synthesis and transport takes a considerable amount of time, which in-

troduces delays in the overall regulation chain. At a process level, metabolic time delays

can be observed macroscopically by recognizing a certain time delay between substrate

uptake and the corresponding biomass growth or product formation as in cultivations of

Saccharomyces cerevisiae (Daugulis & al., 1997) or Pichia pastoris (Ren & al., 2003).

The nature of time delays in regulatory networks is twofold (Nikolov & al., 2008). They

are either related to a process that takes an intrinsic time to be accomplished, i.e. some

reactions, such as translational or transcriptional reactions, take a significant amount of

time to be completed, or as a consequence of the modelling approach used, i.e. lumping

a sequence of events might lead to an apparent time delay.

The bottom-up systems biology approach for building dynamic network models can be

too cumbersome due to their complex nature and lack of fundamental knowledge (Teix-

eira & al., 2007b; Wang and Chen, 2010; Wang & al., 2010b; Yang & al., 2010). Typical

limitations are the involvement of large scale kinetic models with poorly defined kinetic

parameters, limited generalization capacity and their cost expansive development. In

this paper we propose the use of mathematical hybrid semi-parametric systems as a cost

effective alternative to model biochemical networks with intrinsic time delays, since it is

not likely to know in advance which fundamental mechanisms cause such delays. Hybrid

semi-parametric systems combine fundamental (parametric) biological constraints with

more empirical data-based (nonparametric) constraints. Mechanistic and nonparametric

models can therein be arranged in two possible ways: parallel or serial (Oliveira, 2004;

Peres & al., 2008; Preusting & al., 1996; Psichogios and Ungar, 1992; Schubert & al.,

1994b; Teixeira & al., 2007b). In the serial structure, which has been the one applied

in this study, the biological system dynamics are described by time differentials of classi-

fying variables, while the unknown metabolic functions with intrinsic delays are handled

by a nonparametric structure.

A general mathematical representation of delayed dynamics is given by Retarded Func-

tional Differential Equations (RFDE) (Bocharov and Rihan, 2000). After applying cer-

tain simplifications, some special concepts arise such as models considering either dis-



4.2. Background | 107

crete time delays, (Smolen & al., 1999; Tian & al., 2007; Wolkowicz & al., 1997),

distributed time delays, (Daugulis & al., 1997; Rateitschak and Wolkenhauer, 2007;

Wolkowicz and Xia, 1997) or ordinary differential equations (ODE) of kinetic rates (Ren

& al., 2003). Although with varying performance, these models are shown to be ca-

pable of explaining the stability of biochemical networks (Bocharov and Rihan, 2000;

Chen and Chang, 2008; Chen and Chen, 2009; Daugulis & al., 1997; Rateitschak and

Wolkenhauer, 2007).

Similar simplifications of RFDE as reported for parametric models can also be applied

to hybrid semi-parametric models, i.e. either discrete delays or distributed delays of

state variables in the kinetics or differential equations of the kinetics. The latter is not

well suited for hybrid modelling, because neither kinetic function nor the kinetic values

are known a priori and thus a solution or estimation of the kinetics is not straightfor-

ward. Distributed delays are also rather unlikely to be used, because one would have to

introduce some function accounting for the delay, which is generally not known. Further-

more, some mathematical postulation of arbitrarily large delays for unknown weighting

functions of the delayed variable would have to be assumed and this mathematical con-

venience is in limit biologically unrealistic (see (Bocharov and Rihan, 2000)). Instead,

the use of discrete delays in the inputs to the nonparametric structure is proposed herein.

This is analogous to the application of discrete time series, namely AutoRegressive (eX-

ogenous), (AR(X)), models. This presents no limitation for application, as it is mathe-

matically clear that a weighted discrete time series is equivalent to the integration of a

time delay weighting function and thus analogous to the application of the distributed

delay framework.

Unfortunately, the theoretically endless number of time lagged values of one variable

would in practice lead to high computational times and identification problems of the

network structure and parameters (see (Bishop, 1995; Haykin, 1998)). In theory, an

optimal number of time lagged values exists given by the ratio between redundancy and

additional gain of information in the inputs. Several methods for identification of the op-

timal number of time lagged values such as autocorrelation, cross-correlation, or partial

mutual information, have been proposed (Bishop, 1995; Haykin, 1998). However, they

either assume that inputs are linearly correlated or are based on maximum information

transfer and thus require known outputs, which unfortunately are not directly available

in hybrid models. Hence these methods cannot be applied here and thus the number

of lagged values is rather chosen by trial and error, as done by several other authors

(Parlos & al., 1999; Qin and McAvoy, 1996). However, choice by trial and error is not

a disadvantage, when (i) the delay is an important property of the system and when
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(ii) series of delays are systematically studied, since it can be expected that models that

account for time delays perform the best when the studied and the “true” delays are

congruent.

In this paper hybrid delay differential equations with discrete time series was determined

to be a powerful method to identify delayed dynamics of ill-defined biochemical networks.

This technique is described in detail in the results section. The technique was applied

to a typical gene regulatory system where the transport of macromolecules between the

cytosol and nucleus introduce strong delay dynamic effects. In addition, heterologous

protein expression by recombinant Pichia pastoris was studied by assuming a hypothetical

network with distributed time delays.

4.3 Results & Discussion

4.3.1 Delay Differential Equation Hybrid Model (DDEHM)

Material balances over intracellular metabolites can be generically stated by the fol-

lowing dynamical equation

dc int
dt

= Kint · rint + bint − µ · cint (4.1)

where cint is a vector comprising the concentrations of intracellular metabolites, Kint
a m× q stoichiometric matrix of m metabolites and q metabolic reactions, rint a vector

of q kinetic rates, bint a vector of transport fluxes across the cellular membrane and µ

the specific growth rate.

If a macroscopic bioreactor model is formulated accounting only for the unbalanced

extracellular metabolites, a similar equation is obtained which accounts for the volume

dilution term ( D · cext) in substitution of the cell growth dilution term ( µ · cint),

dcext
dt

= Kext · rext −D · cext + uext . (4.2)

Here cext is a vector of concentrations of extracellular metabolites, Kext a matrix of

stoichiometric coefficients, D is the dilution rate, uext is a vector of volumetric feeding

rates, and rext is the kinetic rate vector.

All the results, presented from this point forward, are derived from eq. (4.2), which can

however be automatically extended to eq. (4.1).
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Delayed reaction kinetics

As suggested by (Oliveira, 2004), the vector of kinetic rates can be described either

mechanistically, statistically or as a mixture of both types of models depending on the

a priori knowledge about the metabolic network. A general definition is to state every

metabolic flux as the multiplication of a mechanistic term (ψ) with an unknown non-

parametric term (ρ) representing the unknown phenomena that must be identified from

data.:

r(X,w) = ψ(X) · ρ(X,w), (4.3)

with X a vector of input variables and w a vector of empirical parameters. When

no a priori mechanistic knowledge is available then the ψ term is dropped and eq. (4.3)

reduces to

r(X,w) = ρ(X,w). (4.4)

As stated previously, the intrinsic causes of delays are the occurrence of several serial

reaction steps with slow kinetics. To mimic this effect, and analogous to AR(X) models,

both the ψ and ρ kinetic terms are modelled as a function of X, which includes discrete

past values of metabolite concentrations, c ,(that can be intracellular or extracellular,

depending on the application of eqs. 4.1 or 4.2) and/or exogenous inputs:

X =

[
ci(t), ci(t − τi), ci(t − 2 · τi), . . . , ci(t − Ni · τi),
sj(t), sj(t − τj), sj(t − 2 · τj), . . . , sj(t −Mj · τj)

]
. (4.5)

Here ci means value i of vector c , τi is the associated time lag, Ni defines the number

of time lags assumed for each value ci of vector c , sj is the jth exogenous input, τj the

associated time lag and its lag number is defined by Mj . Note that the time lags and

the numbers of time lags, τi , τj , Ni , and Mj can be chosen independently. However,

it might be advantageous to model a time series around rough estimates of the “true”

delays.

After considering eq. (4.2) - (4.5), it becomes clear that the model equations are

Delay Differential Equations (DDE) in which the “retarded” or “ lagged” phenomena are

accounted by the reaction term, eq. (4.4).

Several linear or nonlinear regression methods can be used to formulate the unknown

nonparametric kinetic function ρ. Here we adopted a three layer back propagation neural
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network with hyperbolic tangential activation function for the sake of comparability with

other hybrid modelling studies since this method is the most reported in the literature

(Oliveira, 2004; Peres & al., 2008; Preusting & al., 1996; Psichogios and Ungar, 1992;

Schubert & al., 1994b; Teixeira & al., 2007b):

ρ(X,w) = w2 · g(w1 ·X + b1) + b2, (4.6)

where w , the parameter vector, comprises the weights and biases, w1, w2, and b1,

b2, respectively. The hyperbolic tangential activation function g( · ) is,

g(y) =
1− e−2 · y

1 + e−2 · y . (4.7)

Note that the incorporation of AR into the hybrid approach results in delay differential

equations, which is why the proposed hybrid model is referred to as the Delay Differential

Equation Hybrid Model.

Nonparametric structure identification

The identification of the best network architecture by means of a trade-off between

residual minimization, quantity of data and quantity of parameters is a central question

when nonparametric models find application. This trade-off is due to the fact that

more parameters on one hand will improve the fitting of the model to the data, but

on the other hand might result in parameter over-fitting, leading to a degradation of

model robustness or/and, even worse, in the addition of synthetic noise to the estimates

(Bishop, 1995; Haykin, 1998).

The architecture of the Artificial Neural Network (ANN) structure involves the variation

of the number of layers and the number of nodes. This variability is in this study, prior

to application, already reduced by the selection of three layers, namely input, hidden and

output layer. The application of three layers is usually sufficient if nonlinear continuous

functions are sought to be modelled (Bishop, 1995). Remaining in terms of structural

variability is such the evaluation of the variation of numbers of nodes for each hybrid

model set-up.

Parameter identification

For each nonparametric structure, the respective parameters w must be estimated

from data. In this paper a weighted least squares criteria of model residuals in concen-



4.3. Results & Discussion | 111

trations is adopted:

min

{
E =

1

P × n

P∑
l=1

n∑
i=1

(cmes,l,i(t)− cl ,i(t, w))2

cσ,i

}
, (4.8)

where P is the number of samples, n is the number of state variables, cmes,l,i are

measured state variables, cl ,i(t, w) are calculated state variables and cσ,i are the standard

deviations. The serial hybrid structure, consisting of an ANN and material balances, was

shown to be trained best by using the sensitivity approach along with analytical gradients

(Oliveira, 2004). Here we extended the sensitivity equations to the DDEHM case. The

sensitivities equations are derived by differentiating eq. (4.2) with respect to w while

taking into account the time lagged differential variables, which then reads as follows,

d

dt
·
dc

dw
=

Ni∑
k=0

{
∂(K · ρ ·ψ)

∂c(t − k · τ)
·
dc(t − k · τ)

dw

}
+
∂K ·ψ · ρ
∂w

−D · In ·
dc

dw
, (4.9)

where

Ni∑
k=0

{
∂(K · ρ ·ψ)

∂c(t − k · τ)
·
dc(t − k · τ)

dw

}
=

K · ρ ·
Ni∑
k=0

{
∂ψ

∂c(t − k · τ)
·
dc(t − k · τ)

dw

}

+K ·ψ ·
Ni∑
k=0

{
∂ρ

∂c(t − k · τ)
·
dc(t − k · τ)

dw

}
, (4.10)

with ρ and ψ depending on the time lagged concentrations and where

∂K ·ψ · ρ
∂w

= K · ρ ·
∂ψ

∂w
+K ·ψ ·

∂ρ

∂w
; (4.11)

For comparison of time-delay gradients for network training see (Haykin, 1998;

Nikolov & al., 2008)

This least square problem is solved by using the “lsqnonlin” Matlab function which uses

a subspace trust region method and is based on the interior-reflective Newton method

(Matlab Optimization toolbox) (Coleman and Li, 0 01). The sensitivity equations are

integrated along with the delay differential model equations. This can either be ac-

complished using the dde23 Matlab algorithm, which integrates the delay differential
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equations with the explicit Runge-Kutta (2,3) pair and interpolant, or by using linear

approximation of the differential equations for integration with storage of the respective

delay values, which results in a time inexpensive algorithm. For the latter case, unfortu-

nately, some error is introduced along with this simplification. However if average kinetic

rates are estimated for each time step, the error is significantly diminished. Initial state

values, c(t0), are problem dependent (for instance the initial concentration of biomass

or substrate in a bioreactor). The initial values of the sensitivity equations are however

zero ( (dc/dw)t0
= 0, (dc/dw)t<t0

= 0), because the initial state values, c(t0), are

independent of model parameters w . The residual gradients are then obtained using

the corresponding sensitivity values. Notice that the lagged values of both state vari-

ables and exogenous inputs are assumed to be equal to the initial values c(t0) for all

t − Ni · τ < t0.

Identification is initialized from a random selection of weight values as usually done for

ANNs. The solution space is spanned by these weights and the identification, i.e. the

objective to reduce the model residual, is a nonlinear optimization problem. Therefore,

one cannot expect to obtain the global minimum as the result of the model's residuals

minimum found from one random weight initialization. Instead, several iterations of the

same set-up with random initialization should be carried out. The greater the number

of random initializations, the greater the statistical confidence of the solution (Bishop,

1995; Haykin, 1998).

However, parameter identification is an iterative process which should be stopped when

the model exhibits the best generalization of the target functions (Bishop, 1995; Haykin,

1998). This is usually accomplished using two independent data sets: one for identifica-

tion (also called training) which contains about 2/3 of all data points and another data

set for validation with the remaining data. For these data sets some error criteria such as

the Mean Least Square Error or the Bayesian Information Criterion (described in detail

below) is calculated for the model residuals. Along the iterations, the best parameters

are the ones where the selected criterion of the validation data set has its “best” value.

A test data set can be used to additionally exploit the generalization capabilities.

Model performance criteria

The model residual, also addressed as the goodness of fit of the model estimates

and the data, can be assessed with the Mean Square Error, MSE. The MSE decreases
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the better the fit and is defined as:

MSE =
1

P · n
·
P∑
l=1

n∑
i=1

(cmes,l,i(t)− cl ,i(t, w))2. (4.12)

This criterion is directly linked to the least square error which is used for parameter

identification.

Due to the reason mentioned above, the MSE criterion is not addressed when it

comes to architecture, structure, model comparison or selection. Appropriate criteria

are (i) the Akaike Information Criteria, AIC, which is wildly used or (ii) the Bayesian

Information Criteria, BIC, which is more appropriate for datasets with more than 46

data points (Burnham and Anderson, 2004; Leonard and Hsu, 1999; Peres & al., 2008).

Therefore the BIC is applied for model comparison and selection in this study. The BIC

is defined as:

BIC =

(
−
n ·P

2
· ln

(
P∑
l=1

n∑
i=1

[cmes,l,i(t)− cl ,i(t, w)]2

))

−
(
nw
2

· ln

(
n ·P
2 ·π

)) (4.13)

where the term in the first bracket is the logarithmic maximum likelihood, π is the

number “Pi” and nw is the total number of parameters/weights. In terms of the BIC,

the model to be selected is the one that exhibits the larger BIC value for the validation

set, see (Burnham and Anderson, 2004; Leonard and Hsu, 1999; Peres & al., 2008).

4.3.2 Case Study I: Transcription Factor A (TF-A) dynamics with
discrete time delay

Genetic regulatory systems are built on signal transduction pathways through which

specific transcription factors (TF) are phosphorylated. The phosphorylated TFs are then

able to bind to responsive DNA sequences thereby regulating the transcription of nearby

genes. Herein we consider the example of the TF-A model reported by (Smolen & al.,

1999) and (Tian & al., 2007) (see Fig. 4.1A). In this case, the TF activates its own

transcription according to a typical positive feedback loop.

The translocation of macromolecules between cytosol and nucleus have a tremen-

dous impact on gene regulation dynamics. Herein we consider a discrete delay for the
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Figure 4.1 Network Structures:
Delay TF-A transcription model. (A) true network structure (B) DDEHM network
without prior knowledge, (C) DDEHM network with some prior knowledge. In
structures (B) and (C), the ANN comprises three layers. The nodes of the input
and output layer have linear transition functions, except for the input node of the
time which has a hyperbolic tangential transition function as do the nodes of the
hidden layer.
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translocation of TF-A as suggested by (Smolen & al., 1999) and (Tian & al., 2007),

giving rise to the following single delay differential equation describing the dynamics of

the TF-A monomeric concentration in the nucleus, x :

dx(t)

dt
=

(kf · x(t − τ)2)

(x(t − τ)2 +Kd)
− x(t) · kd + Rbas (4.14)

The first term on the right-hand side of eq. (4.14) is the rate of TF-A transcription

in the cytosol which in the perspective of nucleus is affected by the translocation delay,

τ = 120min. The second term refers to TF-A dissociation in the nucleus and the third

term to a basal transcription rate, Rbas , observed at very low TF-A concentrations.

Figure 4.2 shows the simulation of model eq. (4.14) with the parameters proposed by

(Smolen & al., 1999). The TF-A dynamics are of a typical bistable system induced by

the increase of the cytosol synthesis rate, kf , at time t = 200min, forcing the system

to jump to another state. The effect of the time delay can be assessed by comparing

the full-line (with delay) with the dashed-line (without delay). The main consequence

of the delay is that the TF-A concentration exhibits a “staircase“ transition between the

steady-states.

The main goal in this case study is to investigate if the TF-A delay dynamics, shown in

Fig. 4.2, can be properly identified by the DDEHM framework proposed in this paper.

With this goal in mind, 6 data sets of TF-A concentration in the nucleus over time with

varying initial concentrations were generated (3 data sets with “clean” data, which were

corrupted with white noise in order to obtain the training, validation and test set data).

Formulation and discrimination of a suitable DDEHM structure

The two DDEHM structures, shown in Fig. 4.1B and 4.1C, were identified from the

simulation data. In the former structure, no prior knowledge about the TF-A network is

incorporated while in the latter case some prior knowledge inspired in eq. (4.14) and in

autoregulated systems is considered.)

(In preliminary studies, we concluded that structure (4.1C) leads to both a faster

convergence and improved results than structure (4.1B) (results not shown). This ob-

servation is in line with the study reported by (Oliveira, 2004), where it was shown that

including a priori knowledge in the hybrid structure generally improves their identification

capacity.

A selection of results obtained with structure (4.1C) are presented in Table 4.1 showing

model performance criteria for the training, validating and testing data sets (namely
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Figure 4.2 Impact of delays on the TF-A profile
Demonstration of the impact of the delay on the trajectory of TF-A transcription
model over time. The TF-A model trajectory without delay is the blue dashed line
while the TF-A trajectory with delay is the green continuous line.

MSE and BIC) over structure parameters. Overall, it can be observed that structures

without time delays are in general outperformed by those containing time delays if one

of the effectual delays is close to the “true” delay, i.e. a model with a delay mismatch

as high as 10% still gives an improved performance in comparison to no delay at all

(Table 4.1). It can also be noticed that the MSE values for the case of one delay tend

to improve the closer the effectual delay gets to the “true” delay, peaking when the

effectual is the true delay. Also, it strikes that the best models (highest BIC values

for the validation set) are obtained mostly for 4-7 nodes in the hidden layer, an obser-

vation that reflects the complexity of the addressed system. Owed to this complexity,

are also the strayed deviations in the overall consistent performance in terms of BIC.

The consideration of series of delays also gives rise to consistent models, especially if

only two delays are considered. When three delays are considered, model performance

increases with decreasing number of nodes, which contrasts with the results obtained for

one or two delays. Even so, the best values therewith are obtained with 4 numbers of
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nodes. While the good model performances are due to the fact that the “true” delay is

present in the applied models, the slightly worse performance when compared to the sin-

gle delay models sources from the evitable, additional information. Evitable (correlated)

information hampers the model structure identification (Bishop, 1995; Haykin, 1998),

which explains why the model performance for three considered delays decreases with

the increasing number of nodes.

The most consistent structure with highest predictive power has 5 nodes in the hid-

den layer and a single delay coincident to the “true” delay of 120 min. The respective

BIC value was -5489 while the MSE value was 0.0071 for the test data set. The best

structure without time delays, which had also 5 nodes in the hidden layer, showed a

fourfold increase in the MSE value for the test data set (0.0210) and a considerably

lower BIC value (-5997). This result clearly demonstrates the advantage of the delay

hybrid modelling approach proposed in this paper.
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Comparison of best structures with and without time delays

Figure 4.3 compares the modelling results for the two best structures with delay

τ = 120min and without delay for the validation and test data sets. It can be seen

that the model without time delay provides a very smooth transition between the two

steady-states. However, the “true” dynamics, i.e. the staircase transition function, of the

measured data are not met. In contrast, the model with τ = 120min was able to capture

these “staircase” dynamics. The curves both increase slightly in the beginning until a

time value of about 320 min, where the first “stair” appears in the data. Thereafter, a

significant increase can be noticed until a time of about 390 min, where the estimate has

a first maximum peak. Then the concentration estimation decreases until a time point

of about 450 min. Subsequently, in both cases, the data points are almost completely

met by the estimates in the time interval from 450 until 650 min.

Figure 4.3 Qualitative results on the time curse of TF-A
TF-A modelling results for the two runs of test data. On the left side the whole
simulation region of the data set is shown while on the right side the most inter-
esting section of the respective data set is highlighted: red circles are “measured”
TF-A data over time, green line are the identification results by model structure
(4.1C) with 5 hidden nodes and τ = 120 minutes; blue dashed line are the identi-
fication results by model (4.1C) with 5 hidden nodes and no time delay.
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4.3.3 Case Study II: Heterologous protein expression by MUT+ Pichia
pastoris

In methanol utilizing MUT+ Pichia pastoris strains, fast phenotype, foreign protein

expression is controlled by the promoter of the alcohol oxidase gene 1 (AOX1). In

typical culture conditions, the yeast cells are first grown on glycerol to reach a certain

optimal cell density. Glycerol and most carbon sources other than methanol strongly

repress AOX1, thus product is not formed in this phase. Then methanol feeding induces

AOX1 over 1000-fold (Khatri and Hoffmann, 2006) thereby initiating foreign protein

expression. The transition between glycerol and methanol phases can take between 1

to 4 hours depending on the strategy for methanol feeding. This transition phase cor-

responds to the time needed by the cells to express the alcohol oxidase enzyme, which

is an essential enzyme for the cells to metabolize methanol. Apart from this delay in

the transition phase, time delays between methanol uptake, biomass growth and product

formation were also observed during the post-induction phase, (Ren & al., 2003). In

the paper by Bellgardt and co-workers (Ren & al., 2003), a so called extended reg-

ulator model was adopted which is somewhat analogous to a linear distributed time

delay kernel of the specific protein synthesis rate over the specific growth rate. The

inclusion of such a delay model was essential to fit their data, although the underlying

biological fundamentals are not clearly understood. The effects causing such time delays

seem to be a principal part of the Pichia pastoris systems. However, they are poorly

studied (Yamashita & al., 2009) and mechanistically not understood. Thus the nature

of the apparent delays can mechanistically not be precisely defined (i.e. as a discrete

delay model), wherefore a distributed delay model is the most appropriate representation.

The main goal in this section is to determine if the hybrid methodology proposed

herein is able to effectively identify such unknown distributed time delay dynamics in

P. pastoris. The P. pastoris network shown in Fig. 4.4A was used as a case study.

This network includes a quadratic distributed delay kernel (Eqs. A5 and A6 of Table

4.2), which is considered as a strong delay kernel, see Fig. 4.5. In this case, the

cell growth rate and the foreign protein expression rate are delayed in relation to the

methanol uptake. The corresponding model equations are listed in Table 4.2. Note that

the reactor balance equations are also listed since they are an important element to

generate consistent simulation data.
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Figure 4.4 Pichia pastoris network with delay dynamics
(A) network with a quadratic distributed time delay kernel of cell growth and
protein expression over methanol uptake. The respective equations are listed in
Table 4.2. This network was used to generate simulation data (B) Approximation
of network (A) by a hybrid network. Structure (B) was investigated to see if the
novel framework is able to identify unknown distributed delay dynamics.
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Figure 4.5 Impact of delays on the specific biomass growth rate
Green full line, is the specific growth rate when considering the network shown
in Fig. 4.4A; blue dashed line is the specific growth rate when no delay between
substrate uptake and biomass growth is considered.

Identification of distributed time delays by DDEHM

The hybrid model structure shown in Fig. 4.4B was adopted to identify the network,

Fig. 4.4A. The neural network assumes no prior knowledge about Fig. 4.4B and uses

as the external excitation signal present delayed methanol concentration values. The

specific methanol uptake rate, rS(t), specific growth rate, µ(t), and specific product

synthesis rate, rP (t), are the target kinetic variables that need to be identified. Note

that in the real system µ(t) and rP (t) are delayed in relation to rS(t) according to a

quadratic distributed delay kernel (see Eqs. A9-A12 in Table 4.2). These three kinetic

rates are passed to the macroscopic reactor material balances for the calculation of the

respective concentrations.
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Table 4.2 Mathematical model for data generation
Mathematical model of MUT + Pichia pastoris expression with a quadratic dis-
tributed delay kernel. This model was used to generate six data sets. Three of
which contain the clean, noise-free data and the other three the associated white
noise corrupted data. One data set of the noise corrupted sets was used to train the
hybrid model, one was used for validation and the third one for testing. Integration
was performed with the ode45 MATLAB function which integrates the differen-
tial equation with a Runge-Kutta (4,5) integration scheme. The obtained state
variables, namely concentrations of biomass, substrate and product, the reactor
volume and as well the feed concentration are recorded and assumed as measured
data for the evaluation. Variation in the data was obtained by application of varying
initial values, i.e. the initial values were 5% Gaussian distributed. Note that model
equations (A5 and A6) are derived from equation (A 12) using the linear chain trick
(Rateitschak and Wolkenhauer, 2007; Wolkowicz and Xia, 1997) and that (A 12)
is never used for model calculations.

Reactor model equations:

dX(t)
dt = X(t) ·µ(W (t)) +D ·X(t) ( A 1 ) dS(t)

dt = −rS(S(t)) ·X(t)–D · (S(t)–SF ) ( A 2 )

dP (t)
dt = rP (W (t)) ·X(t)–D ·P (t) ( A 3 ) dV (t)

dt = F (t) ( A 4 )

dW
dt = Z−W

β ( A 5 ) dZ
dt =

S(t)−Z
β ( A 6 )

F (t) =
(

V (t)
SF −S(t)

)
·
(
rS ·X(t) +

Sset−S(t)
τset

)
( A 7 ) D = F

V ( A 8 )

Cell model equations:

µ = KB1 · W (t)
KS+W (t)

−KB2 ·mATP ( A 9 ) rP = Kp1 ·µ+Kp2 ( A 10 )

rS = rS,max · S(t)
KS+S(t)

( A 11 ) W (t) =
∫ t
−∞

(S(t−τ)

β2 ) · τ · exp(−τβ ) · dτ ( A 12)

Parameters and initial Values:

D,-, (1/h); F ,-, (g/l); Sset ,10, (g/l); KB1,0.1184, (1/h); KB2,4.7376, (g/mol); Kp1,0.48, (−); Kp2,0.0008, (1/h); Ks ,10, (g/l);
mATP ,0.0015, (mol/(g · h)); P ,0, (mg/l); rS,max ,0.19, (1/h); S,40, (g/l); SF ,1260, (g/l); t,-, h; V ,15, l ; W , W0 = S0, (g/l); X,1,
(g/l); Z, Z0 = S0, (g/l); τset ,1, h; β,5, h; µ,-, (1/h);

Table 4.3 shows model performance parameters (BIC and MSE) for the hybrid model

structure (Fig. 4.4B) with varying number of hidden nodes (between 2 and 8) and

different series of lagged input variables (between 0 and 4 with intervals of 2 or 2.5

hours). In general, the BIC values for the two series of lagged variables are much better

than when no lagged variables are considered. This again confirms the advantages of

the DDEHM methodology proposed herein for identifying delayed dynamics.

The effect of discrete time delays

It can be further noticed that BIC values of the time series with a time delay of 2.5(h)

are slightly better when compared to the ones for time series with a 2(h) time delay. This

observation agrees with the results of the previous case study where the performance of
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the hybrid model peaked the closer the model delay was to the true delay. In this case

the maximal weighted delay is 5(h). Moreover, the BIC values tend to improve with

increasing number of lagged variables. The increasing number of input lagged variables,

which are weighted by the neural network, seem to result in more accurate discrete

time approximations of the continuous distributed time delays. In contrast, it can also

be observed in Table 4.3 that with increasing number of delays the best BIC value is

more likely to be found for a lower number of nodes in the hidden layer of the ANN.

However, this was expected as the BIC is constrained by the number of model parameters.

Nevertheless, the same observation is made for the MSE values. Furthermore, it was

observed that significantly more random changes of the parameter values were required

when the numbers of incorporated delays increased in order to achieve results which were

coherent with the ones obtained for smaller numbers of delays.
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Figure 4.6 Qualitative results for trajectories of concentrations
Pichia Pastoris distributed delay modelling result for a fed-batch of the test data
set: red circles are “measured” data over time; green line are the identification
results by model structure (4.4B) with 5 hidden nodes and a series of 4 time
lagged variables of 2.5 hours; blue dashed line are the identification results by
model (4.4B) with 7 hidden nodes and no time delay.

Comparing standard and DDE hybrid models

Figure 4.6 shows non-noisy simulation data and the the best modelling results of

hybrid models with and without delays for the concentrations of biomass, substrate

and product in a fed-batch of the test set. In the figures of biomass and product

concentrations, predictions of the hybrid models with delays are practically congruent to

the true process behaviour. The intrinsic dynamics of the organism are perfectly met.

In clear contrast are the predictions of the hybrid standard model without time delays.

Biomass and product concentrations are under-predicted for a time span between 50 to

85h, then followed by over-prediction from 85h till the end. Before 50h only insignificant

differences between predictions and data are visible. For the substrate concentration, the

DDEHM model shows a significant amount of error in a short time window from about

48 to 55h, which is coincident to a fast decrease in the substrate concentration. It should



4.4. Conclusions | 129

be noticed that such fast dynamics are rather challenging to integrate (see comments

below). As for the standard hybrid model without delays, it predicts accurately substrate

dynamics only at the beginning, i.e. from 0 to 30h. Thereafter, between 30 and 50h,

the model under-predicts substrate concentration, and after 50h, it over-predicts the

substrate concentration.

Note about numerical integration of DDEs

The integration of the hybrid model differential equations using the built-in MATLAB

solvers (dde23, ode23) showed to be computationally intensive. A typical training run

took 4 to 5 days. Moreover, convergence was sometimes not accomplished due to the

limitation of the integration step size and accuracy. On the other hand, the integration

of the hybrid model differential equations with the linear approximation only lead to

small discrepancies for substrate concentrations if the step size was chosen adequately

small, i.e. between 0.05-0.1h. Convergence was tested by decreasing even further the

integration step without significant changes in the integration results. This approach

lead to a reduction of computation of about 75% (i.e. 3 days) when compared to the

MATLAB solvers.

4.4 Conclusions

Time-delays have a profound impact on cellular regulatory mechanisms. Therefore,

their modelling is essential in metabolic engineering and process optimization studies.

The detailed mechanisms behind observed time delays are often unknown. The required

“omic” data for a fundamental mathematical modelling of such phenomena is generally

unavailable at the required time resolution and accuracy. As a result, biochemical de-

layed dynamics are many times only “measurable” through their external consequences in

terms of extracellular properties. We propose herein a hybrid semi-parametric modelling

method to identify such delayed dynamics. The principle is probing from outside to

understand the inner workings. The concept was applied to two illustrative case studies.

The overall results show that significantly better prediction qualities of the novel hybrid

model when compared to the traditional approach were obtained in all case studies, being

the more distinctive the more significant the underlying system delay is. When system

and model delay are identical the model quality peaked but even with a delay mismatch

as high as 10% in the TF-A gene-regulatory network, modelling results were significantly

enhanced in comparison to no delay at all. These results support a system delay iden-

tification strategy by studies of different discrete delays in the input variables. For the
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studies on Pichia pastoris with intrinsic distributed time delays significant enhancements

were introduced by the DDEHM model. This suggests that even though the proposed

structure bases on discrete time delays directly of external excitation variables, it poses

no limitation of applicability. In conclusion the method proposed herein is a powerful

tool to identify time delays in ill-defined biochemical networks.
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4.6 Nomenclature
Abbreviations

AIC Akaike Information Criterion
ANN Artificial Neural Network
AOX1 Alcohol OXidase gene 1
AR(X) AutoRegressive (eXogenous)
BIC Bayesian Information Criterion
DDE Delay Differential Equation
DDEHM Delay Differential Equation Hybrid Model
MSE Mean Squared Error
ODE Ordinary Differential Equation
RFDE Retarded Functional Differential Equation
TF Transcription factors

Mathematical Symbols
b1 Bias of the input layer
b2 Bias of the hidden layer
bint Vector of transport fluxes
c Vector of concentrations
cext Concentrations of extracellular metabolites
cint Vector of intracellular metabolites
cσ,j Standard deviations
cmes,l,i Off-line measured concentration values
g( · ) Transfer function of the hidden layer
h( · ) Transfer function of the input layer
i Counter
j Counter
kf Cytosol synthesis rate
l Counter
m Number of intracellular metabolites
n Number of components
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o Number of latent variables
q Number of metabolic reactions
r Vector of kinetic rate functions
rext Kinetic rate vector
rint Vector of q kinetic rates
rS Specific methanol uptake rate
rP Specific product synthesis rate
sj Exogenous input j
t Time
t0 Initial time
uext Vector of volumetric feeding rates
w Vector of empirical parameters
w1 Weights of the input layer
w2 Weights of the hidden layer
x TF-A monomeric concentration in the nucleus
y Variables
D Dilution rate
E Weighted least squared criteria
F Feeding rate
Kext Matrix of stoichiometric coefficients
Kint Stoichiometric matrix of m metabolites and q metabolic reactions
Mj Number of time delay associated with exogenous input sj
Ni Number of time delays associated with entry i of c
P Number of samples
Rbas Basal transcription rate
S Substrate concentration
SF Substrate feeding rate concentration
Sset Substrate set-point
V Reactor volume
W Delayed substrate concentration
X Inputs to the nonparametric model / Biomass concentration
Z Intermediated delayed substrate concentration
ψ Mechanistic term
ρ Unknown nonparametric terms
µ Specific biomass growth rate
τ Time delay
τi Time delay associated with entry i of c
τj Time delay associated with exogenous input sj





Chapter 5

A hybrid modeling framework for PAT:
Application to Bordetella pertussis
cultures

5.1 Abstract

In the Process Analytical Technology (PAT) initiative the application of sensors tech-

nology and modeling methods are promoted. The emphasis is on Quality by Design

(QbD), on-line monitoring and closed-loop control with the general aim of building in

product quality into manufacturing operations. As a result, on-line high-throughput pro-

cess analyzers find increasing application and therewith high amounts of highly correlated

data becomes available on-line. In this study, an hybrid chemometric/mathematical mod-

eling method is adopted for data analysis, which is shown to be advantageous over the

commonly employed chemometric techniques in PAT applications. This methodology

was applied to the analysis of process data of Bordetella pertussis cultivations, namely

on-line data of Near-InfraRed (NIR), pH, temperature and dissolved oxygen, and off-

line data of biomass, glutamate and lactate concentrations. The hybrid model structure

consisted of macroscopic material balance equations in which the specific reactions rates

are modeled by Nonlinear Partial Least Square. This methodology revealed a significant

higher statistical confidence in comparison to Partial Least Squares (PLS), translated in

a reduction of mean squared error of glutamate (˜50%), lactate (˜30%) and biomass

(˜5%) estimates. Moreover, the analysis of loadings and scores in the hybrid approach

revealed that process features can, as for PLS, be extracted by the hybrid method.

133
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5.2 Introduction

The Process Analytical Technology (PAT) initiative, published as a nonbinding guid-

ance for industry by the U.S. Food and Drug Administration in 2004 (PAT, 2004), was

recognized worldwide, because it offers the opportunity to cut down product trial time

and thus costs. In PAT guidelines the use of system integrated approaches, through-

out the different stages of product trial (from the development till the manufacture) is

encouraged. The integration of different levels and sources of information requires a

framework in which the integrated objects can be adequately linked in order to establish

the desired synergy.

The idea is Quality by Design (QbD), which starts at the design stage of the manufac-

turing process but also addresses the need for improved on-line monitoring and control

methods to maintain high product quality during manufacturing operations (Glassey &

al., 2011). On the level of process development the intermeshing of process analyzers

and adequate data evaluation tools is encouraged in PAT (PAT, 2004), in order to de-

termine the process state at-time and to ultimately manipulate it. Many times the direct

identification of the state is hindered by the fact that either the process key-variables

are not at-time measurable, or (as undesirable from the process engineering perspective

(Read & al., 2010b) ) these measurements are invasive or destructive.

At-time knowledge about the key-variables can in principle be derived from non-

invasive and nondestructive measurements of other quantities (Soons & al., 2008b).

Devices fulfilling these requirements and that are able to provide information about the

physiological state of cells, are for instance capacitance probes, InfraRed spectroscopy,

Fluorescence Spectroscopy and others (Harms & al., 2002; Read & al., 2010b).

While it is many times difficult to calibrate the measured physiochemical properties

to a meaningful process quantity, the huge amount of generated data poses an additional

challenge. Solely for one spectroscopic device the dimensions might easily reach a num-

ber that is unfeasible to be analyzed without the support of very efficient mathematic

tools. This is one of the reasons why Multivariate Data Analysis (MVDA) tools are fre-

quently applied in the process analysis (Read & al., 2010b) and why they are expected

to potentially play a central role in PAT (Glassey & al., 2011).

Multivariate regression, (nonlinear) partial least square, evolving factor analysis, sup-

port vector machines or principal component analysis are probably the ones which are

most commonly applied and most successful (Schenk & al., 2007; van Sprang & al.,
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2007). These methods are data driven and in most cases are applied on their own dis-

regarding other valuable process knowledge. As recently highlighted in a review paper

by (Glassey & al., 2011), the use of hybrid modeling tools that combine MVDA into a

common (hybrid) modeling framework still presents a major challenge to the integration

of different layers of information about cells and macroscopic processes.

Hybrid modeling that can link different types of process knowledge presents a suit-

able alternative to pure MVDA (Galvanauskas & al., 2004; Gnoth & al., 2008b; Oliveira,

2004; Psichogios and Ungar, 1992; Schubert & al., 1994a; Teixeira & al., 2007a; Thomp-

son and Kramer, 1994). The linking of process information helps to understand the

interplay between certain key quantities and it enhances the reliability of the process

predictions. It is such an integrated systems framework where the “Process Understand-

ing” and the “Principles and Tools”, both defined in the PAT initiative (PAT, 2004), are

brought together in order to manage the complexity while every time drawing a more

complete process picture.

In principle, either parallel or serial hybrid topologies can be adopted. The latter is par-

ticularly suitable for complex systems where some internal mechanisms are poorly known,

but for which large data sets are available without direct physical interpretation (Teixeira

& al., 2007b). Since Artificial Neural Networks (ANNs), that are traditionally applied in

serial hybrid structures (Galvanauskas & al., 2004; Gnoth & al., 2008b; Oliveira, 2004;

Psichogios and Ungar, 1992; Schubert & al., 1994a; Thompson and Kramer, 1994), are

unsuitable for knowledge extraction from large/highly-correlated data (Bishop, 1995)

an alternative approach is applied, namely a (Nonlinear) Partial Least Square ((N)PLS)

model.

In this study, the application of such a hybrid methodology is reported for the mon-

itoring of target metabolites concentrations in a Bordetella pertussis cultivation, from

online available Near InfraRed (NIR), pH, temperature and dissolved oxygen measure-

ments, Fig. 5.1. This monitoring system provides critical online process knowledge that

can be used for closed-loop control in order to maintain process quality or maximize its

quantity. For comparison, the hybrid methodology is benchmarked against the standard

chemometric tool, a static PLS method.
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Figure 5.1 Schematic sketch of the present study
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5.3 Materials and Method

5.3.1 The Process and Data

B. pertussis is cultivated for the production of a vaccine against whooping cough.

Different cultivations strategies are reported (Licari & al., 1991; Rodriguez & al., 1994;

Westdijk & al., 1997) which all seek to identify the optimal cultivations conditions ensur-

ing vaccine quality and quantity. The key to ensure quality and quantity is the real-time

control of biomass concentration and specific growth (Soons & al., 2008b, 2006). For

the at-time identification of the biomass concentration and the specific growth during

the process (Soons & al., 2008b) compared a methodology using a dissolved oxygen

(DO) sensor to an approach which based on in situ NIR spectroscopy. The conclusion

anent the NIR based model was however rather disillusioning, in the sense that the DO

sensor based methodology in the situation of fixed path length and limited number of

batches is to prefer (Soons & al., 2008b).

The number of samples along with robustness is a major concern for model calibra-

tion from NIR data, (ASTM, 2005; Brereton, 2000; Rhiel & al., 2002; Schenk & al.,

2007). Process conditions and the component under study should be varied in such a

way that a robust calibration model can be developed from the response in the spectra.

While this is mostly a task for the experimental design prior to the experiment, it will

be shown in the following that it is feasible to obtain enhanced prediction quality from

the same data when incorporating additional information using hybrid modeling methods.

The experimental data of B. pertussis which find application in this study is the one

reported by Soons & al. (2008b). The process was run in batch mode with the two main

carbon sources for cell growth being glutamate and lactate. Variations to the process

conditions were made as reported in Soons & al. (2008b), namely pH, temperature and

DO varied considerably from 6.9-7.25 log(H+), 33.8-34.1 ºC and 0-100%, respectively.

The model input data are, as usually, auto-scaled, i.e. the inputs are shifted to zero

mean and are scaled by the variance. Fluctuations of the wavelength intensities, i.e.

noise, is one of the reported problems of NIR data. These fluctuations are especially

problematic when for modeling purposes the event number of the spectral data is re-

duced to the time dimensions of the counterparts, which are usually infrequent off-line

measured concentration data. Thus the NIR data were pretreated as in Soons & al.

(2008b) by the application of a Savtisky-Golay smoothing with a 45-point window and
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a second-order polynomial along the dimension of time.

In order to account for the natural deviations experienced during production runs in

the calibration data, two sets of data (A and B) were designed. Each of these sets

comprises 5 batches for the calibration and 2 batches for validation, wherein one of the

batches, the one which exhibits a limitation in DO and a lower pH, was assigned in

both sets for validation. A remaining batch, for which no substrate measurements were

available, was applied in both sets for testing. Note that the training data span the space

of process operating conditions in which the model will reliably work while the validation

data are a measure of the performance of the spanned space, i.e. natural deviations of

the process should be reflected in both.

5.3.2 Partial Least Square / Projection to Latent Structures (PLS)

PLS is commonly applied to correlate spectroscopic data to chemical compound con-

centration data (Wold & al., 2001). The correlation is established through maximization

of the data covariances. The fundamentals for this maximization are provided by the

model structure of PLS. Therein, in the so called “outer model”, the matrix of input

values and the matrix of output values are decomposed into loading matrices, score

matrices and matrices of residua. Through the “inner” model, which is also referred to

as “latent structure”, the score matrices are then linked, see (Brereton, 2000; Wold &

al., 2001). In the perspective of statistical process monitoring, quality prediction and

fault diagnosis, these latent structure is of special interest since it can reveal important

process information (MacGregor and Kourti, 1995; Read & al., 2010b; Undey & al.,

2003).

Two settings of PLS model inputs are investigated in this study. Setting (a) comprises

the on-line measured data of pH, temperature, percentage of dissolved oxygen and the

complete wavelength spectra (833-2400 nm). Setting (b) contains the on-line measured

data of pH, temperature, percentage of dissolved oxygen and a selection of wavelength of

the spectra (1111-1397 and 1587-1852 nm). This wavelength selection originates from

van Sprang & al. (2007), was applied in Soons & al. (2008b) and is chosen in this study

because the excluded wavelengths correspond to saturated intensities due to water. Both

settings, (a) and (b), are augmented by the initial components concentration values of

every batch, in order to compare the PLS model to the hybrid model providing the exact

same data. The PLS model outputs comprise the concentrations of lactate, glutamate
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and biomass. This PLS structure implies that the identification of the correlations

between the inputs and the outputs can only be established when measurements of the

input as well as of the output are available for the same time instant, implying that the

high number of sampled input data is significantly reduced namely to the sampling rate

of the concentration data.

5.3.3 The Hybrid (Nonlinear)PLS model

The adopted serial semi-parametric hybrid model structure is schematized in Fig.

5.2. This structure consists of two major modules, namely a module assigned to the

macroscopic material balances and another assigned to the biological fluxes. The formu-

lation of material balances is straightforward, yet the balances take a central role, since

(i) they build the frame of the system and (ii) they link the macroscopic reactor system

to the microscopic cell factory. The material balances written for a batch reactor in the

state space form are

dc

dt
= r (5.1)

Therein c is a vector of concentrations (in the present case comprising the concen-

trations of Lactate, Glutamate and Biomass, c = [Lac, Glu, X]T ) and r is the vector of

kinetic rate functions.

The vector of kinetic rates is the link to the biological system, see Fig. 5.2, and

it describes the rate of consumption or production of the particular compound. In the

displayed hybrid model the biological system is mimicked by a semi-parametric model

proposed by Oliveira (2004). For the present case, a set of kinetic constraints are

assumed a priori, namely that (i) the substrate uptake is zero if substrate depletes and

(ii) the uptake rates are proportional to the concentration of biomass, and thus the

semi-parametric model reads as:

r =

Lac ·X 0 0

0 Glu ·X 0

0 0 X


︸ ︷︷ ︸

φ

·

rLacrGlu

µ


︸ ︷︷ ︸

ρ

. (5.2)

where φ comprises the a priori knowledge about the kinetics and ρ is a vector that

comprises the unknown kinetic rates, i.e. the specific reaction rates. These rates are
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Figure 5.2 A schematic overview of the general, serial, semi-parametric hybrid model struc-
ture. Variables and abbreviations are according to the text.
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functions of the inputs, Lx , and some parameters, wA, i.e.: ρ = ρ(Lx , wA). The vector

of inputs, Lx , may in general comprise (i) the concentrations, c , and/or (ii) at-time mea-

surements Xexperimental ,1..k−n, see Fig. 5.2. Thus the rates ρ = [rLac , rGlu, µ]T might not

only depend on the presently modeled concentrations, but also (i) on the physiochemical

properties, such as pH or temperature and (ii) on the concentrations of metabolites

which are not comprised by the model but whose traces are for instance contained in

measured spectra. In the present case only at-time measurements are comprised in the

inputs, i.e. settings (a) and (b) are used as defined above in the section on PLS. Due

to the high numbers and the nature of the information comprised by Lx , the adoption

of Artificial Neural Networks is infeasible, as (i) this would lead into a highly underdeter-

mined system of equations and (ii) these ANNs are unsuitable for knowledge extraction

from large/highly-correlated data (Bishop, 1995). Instead, a NPLS alike nonparametric

model is adopted, (von Stosch & al., 2011b). The nonparametric model, as illustrated

in Fig. 5.2, consists of o independent submodels, i.e.:

ρ1..m(Lx , wA) =

o∑
i=1

ρi ,1..m(Li ,1..k , wA). (5.3)

Each submodel ρi ,1..m(Li ,1..k , wA) can further be decomposed into an outer and an

inner model. The outer model reduces the high dimension of the inputs

Li ,1..k = Wx,i · ti , (5.4)

by the application of input loadings, Wx,i , to the input latent variable ti and decom-

presses the output latent variable ui through the application of output loadings, Wy,i ,

to:

ρi ,1..m = Wy,i · ui . (5.5)

The inner model links (non)linearly the input latent variable ti with the output latent

variable ui , i.e. in this study a ANN representation is chosen:

ui = w2,1 · g(w1,i · h(ti) + b1,i) + b2,i , (5.6)

where w1,i and w2,i are weights, b1,i and b2,i are biases and h( · ) and g( · ) are

transfer functions, which are in this study linear and hyperbolic tangential, respectively
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( h(ti) = ti ; g(x) = tanh(x)). The number of nodes in the hidden layer of the ANN are

fixed in this study to be one, as they are shown to have only little influence on the quality

of the estimates (Baffi & al., 1999, 2000; Qin and McAvoy, 1996). In this context it

should be mentioned that the term “inner model” is also referred to as “latent variable

model”, where many times (as in the following) the term model is dropped and thus the

expression relaxed to “latent variable”.

The latent variables, ti and ui , comprise condensed information about the process

state, wherefore they pose, as in the case of PLS, a valuable source of information

about the process state and can e.g. be used for statistical process monitoring, quality

prediction and fault diagnosis (Undey & al., 2003).

The parameters wA which for latent variables i = 1, .., o comprise the ANN parame-

ters (i.e. the weights w1,i , w2,i and biases b1,i , b2,i) and the input and output loadings,

Wx,i and Wy,i , respectively. Their identification can in principle be accomplished in two

manners: (i) by estimation of the kinetic rates through the differentiation of c with re-

spect to the time and the subsequent application of e.g. the NIPALS algorithm (Henneke

& al., 2005) or (ii) by the sensitivity equation technique (von Stosch & al., 2011b). The

sensitivity equation technique in the context of fluctuating or sparse or noisy concentra-

tion data definitely is to prefer (Oliveira, 2004; Psichogios and Ungar, 1992; Schubert

& al., 1994a) and was therefore adopted.

The sensitivities equations have to be integrated along with the reactor material

balances, wherefore a time inexpensive Euler integration scheme was applied. It is con-

venient to fit the time-steps of this scheme to the sampling rate of the on-line measure-

ments, e.g. spectral measurements, in order to circumvent the interpolation between

those.

5.3.4 Model Assessment Criteria

Model assessment criteria are required in order to assess the model performances ob-

jectively and in order to select an appropriate number of latent variables. For the latter

cross-validation is applied, i.e. (i) in the case of PLS the number of latent variables is

increased till the desired level of sophistication is reached, i.e. the best number of latent

variables, is selected according to the lowest Mean Square Error (MSE) calculated for

the validation data; and (ii) in the case of the hybrid approach the number of latent

variables needs to be determined a priori, wherefore an heuristic search of numbers of

latent variables that produce the best performing hybrid model in terms of the Bayesian
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Information Criteria (BIC) value (defined below) obtained for the validation data, is per-

formed.

The Mean Square Error is a qualitative measure of the model performance. Its

calculation bases on the number of samples and the distance between the prediction and

the measured data value:

MSE =
1

P · n
·
P∑ n∑

j=1

(cj,mes(t)− cj(t, wA))2

σ2
j

, (5.7)

where P signifies the number of samples, c1...n,mes are the n off-line measured con-

centration values and σ1...n are the standard deviations of the measured concentrations.

However a criterion for model selection should not only base on the quality of the model

estimates. It should also account for both the complexity of the structure in form of the

number of parameters and the number of measured events.

Two criteria regarding these requirements find wide application, namely the Akaike

Information Criteria (AIC) and the Bayesian Information Criteria, (BIC). In the context

of the processes addressed the BIC is reported to be more appropriate (Burnham and

Anderson, 2004; Peres & al., 2008), and therefore is adopted in this work for model

comparison. The Bayesian Information Criteria, (BIC), is defined as:

BIC =

−n ·P
2

· ln

 P∑ n∑
j=1

[cj,mes(t)− cj(t, wA)]2

σ2
j

− (nw
2

· ln(
n ·P
2π

)

)
(5.8)

where the term in the first bracket is the logarithmic maximum-likelihood and nw is the

total number of parameters/weights. In the sense of the BIC the model to prefer is the

one that exhibits the larger BIC value for the validation set.

5.4 Results and Discussion

5.4.1 Comparing PLS and hybrid modeling

An overview of the best model performances in terms of MSE and BIC is compiled

in Table 5.1.

The BIC values obtained by the PLS models for the validation and test data are therein

found to be disproportionally high in comparison to the ones obtained for the hybrid
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models. This significant difference is due to the much higher number of parameters in

the PLS models, which is indicated by the respective higher number of latent variables.

For the calculation of the BIC a model with a higher number of parameters is penalized,

as this indicates a model structure which is more complex and less robust. Especially

for control purposes, model robustness is important, since uncertainty and model-plant

mismatch compromise the controller performance. Model robustness can be addressed

through the statistical confidence of the estimates and thus the BIC is the measure of

such. Therefore it is concluded that all PLS models presented in Table 5.1 have a lower

statistical confidence than the hybrid models presented.

Table 5.1 Model performance criteria, the Bayesian Information Criteria (BIC) & the Mean
Square Error (MSE) for training, validation & test data over model types, model
inputs (see section 5.3.2), data sets (see section 5.3.1) and the number of latent
variables.

Model Data BIC MSE
Type Input setting Set lv1 training validation test training validation test
HYB2 (a) A 1 -369 -89 10 0.1596 0.0982 0.0136
HYB2 (a) A 2 -330 -83 -1 0.1025 0.0754 0.0487
HYB2 (a) A 3 -463 -92 -3 0.3461 0.0810 0.0560
HYB2 (b) A 2 -321 -77 2 0.0941 0.0648 0.0341
HYB2 (b) A 3 -312 -69 -3 0.0801 0.0466 0.0557
PLS (a) A 3 -11612 -8374 -3092 0.3223 0.4852 0.0070
PLS (a) A 7 -26363 -19287 -7253 0.1307 0.2147 0.0379
PLS (b) A 3 -4341 -3018 -1064 0.3596 0.6556 0.0134
PLS (b) A 7 -11828 -8776 -4304 0.1979 0.2416 0.0458
HYB2 (a) B 1 -366 -99 10 0.1658 0.1103 0.0127
HYB2 (a) B 2 -488 -99 4 0.5122 0.0971 0.0245
HYB2 (a) B 3 -498 -92 -4 0.5281 0.0733 0.0616
HYB2 (b) B 2 -336 -71 1 0.1150 0.0509 0.0389
HYB2 (b) B 3 -311 -83 -4 0.0842 0.0598 0.0660
PLS (a) B 3 -11575 -8476 -3095 0.3642 0.3804 0.0104
PLS (a) B 7 -26261 -19521 -7257 0.1354 0.1403 0.0590
PLS (b) B 5 -6879 -4952 -1785 0.3595 0.3412 0.0204
PLS (b) B 7 -9384 -6810 -2511 0.2159 0.0870 0.0534
lv1: number of latent variables
HYB2: Hybrid Model

The analysis of performance in terms of MSE point in the direction just stated, i.e.

the results in Table 5.1 show that the PLS model performance with the best number of

latent variables is worse than that observed for hybrid models.

From another point of view, but also supporting the statistical confidence results, the

PLS models exhibit performance inconsistencies between themselves, in that the best

model structure on the basis of validation data is significantly different from the best

structure that would be obtained on the basis of the test data (discussed below).

Finally, comparing results with different model input settings ((a) and (b)), it is seen

that, as expected, excluding the NIR wavelength with saturated intensities due to water,
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(cases (b)) lead to an increase in performance of all hybrid models.

5.4.2 Analysis of model structural differences

The observed discrepancy in the MSE performance raises the question about the

possible structural reasons for the better hybrid model performance in comparison to the

PLS models.

One main structural difference arises from the nature of the models - the input

spectral information is linearly correlated to the concentrations in the PLS model whereas

it is correlated to the kinetic rates in the hybrid model. This issue was subject of

analysis, where it was concluded that, in the case of PLS, the estimation quality of the

kinetic rates is poor for two main reasons: (1) the calculation of the kinetic rates is

prone to error (Oliveira, 2004; Psichogios and Ungar, 1992; Schubert & al., 1994a) and

consequently the identification of the correlation becomes more difficult; and (2) the

correlation between the spectral intensities and the rates is most probably nonlinear.

A further issue analyzed was the effect that the noise in the input NIR intensities

had on estimates of both hybrid and PLS model state variables and parameters.

Fluctuations in the hybrid model estimates are less distinct due to two main reasons:

(1) In the serial hybrid modeling framework the estimated kinetic rates are integrated,

this leading to a smoothening effect to the noise in the kinetic rate estimates; (2)

the application of the sensitivities approach for parameter identification enables the

utilization of input data at each integration time step, as such diminishing the impact of

punctual fluctuations on the kinetic rate estimations. This is in contrast to the standard

PLS, because for PLS, the identification of the correlations can only be established

when both input and output data exist for the same instance of time, see section 5.3.2.

This huge difference in the number of input data, that are used for the parameter

identification, is exemplary shown in Fig. 5.3. Therein it can be seen that in the case

of PLS the number of available 89 inputs samples decreases to 15, namely to the time

instances for which both, input and output samples exist. Note that the number of

output samples for both models, the hybrid and the PLS, is exactly the same.

5.4.3 Effect of latent variables

The observation, in this study, of a relatively high number of latent variables (mostly

seven) in the case of PLS models, is in agreement with Soons & al. (2008b) and van

Sprang & al. (2007). An additional Principal Component Analysis (PCA) on the in-
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Figure 5.3 Input latent variables scores obtained for a validation batch of set A with inputs
(b) from: the best Partial Least Square model (PLS t1 - red diamond, PLS t2
- green square and PLS t3 - blue cross); Principal Component Analysis (PCA t1
- red diamond, PCA t2 - green square and PCA t3 - blue cross); and the two
latent variable hybrid model (HYB t1 - red diamond, HYB t2 - green square);
and additionally auto-scaled dissolved oxygen measurements ( ∆DO/σ - turquoise
circles).

puts Lx revealed however that the variance in the inputs can be captured by only three

latent variables (˜97.9% of the variance explained). Furthermore, it is observed that

the input variance captured by PLS with three latent variables was ˜97%, whereas the

corresponding captured output variance was ˜82%. This low number of latent variables

was also observed for the PLS model performance with the test data, in terms of MSE

(see Table 5.1).

The ˜97% of input variance captured in Lx with three latent variables, gives rise

to another question, namely what these latent variables are due to and whether the

correlations between inputs and outputs is biunique. It can be seen in Fig. 5.3 that

the trajectory of the first input latent variable score t1 of the PCA, PLS and the hybrid

models are almost identical, and that, further, their shape is similar to the trajectories
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of lactate, glutamate and especially biomass, which are shown in Fig. 5.4. The shapes

of the trajectory of the second input latent variable, t2, are observed to be influenced

by the DO measurements, as: (1) the respective input loading value is usually high; and

(2) the characteristics of the trajectories partially coincide, see Fig. 5.3. The third input

latent variables scores, t3, only shown in Fig. 5.3 for PCA and PLS, can however not

be directly related to any specific input quantity. The observation that the shapes of

Figure 5.4 Concentrations of Lactate, Glutamate and Biomass over time for a validation batch
of set A:, Experimental data - are red circles; Estimates from hybrid model, two
latent variables, inputs (a) - continuous yellow line; Estimates from PLS model,
seven latent variables, inputs (a) - dashed-dotted green line; Estimates from hybrid
model, two latent variables, inputs (b) - continuous blue line; and Estimates from
PLS, seven latent variables, inputs (b) - dashed turquoise line.

the trajectories of t1 are similar to the ones of the concentrations is very interesting in

connection to the observation that the spectral intensities increase towards the end of

each batch. This points at a unique correlation of biomass and the spectral intensities.

Therefore the correlations for glutamate and lactate concentrations would represent a

stoichiometric relation to the biomass concentration. The observation further scruti-

nizes the wavelength selections for lactate, glutamate and biomass made by van Sprang

& al. (2007), and questions the reason or need of any number of latent variables that
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is greater than one.

In the case of the hybrid models, a number of two latent variables is justifiable on

the basis of the observation that the second latent variable scores can be linked to the

DO measurements. In contrast to the PLS models, the hybrid model therefore seems to

profit from the known relation between dissolved oxygen and biomass production (Soons

& al., 2006). Variations in the intensities of the NIR spectra which are due to other

properties than concentrations, i.e. pH, temperature, DO and so on, do not seem to

strongly effect the best hybrid model identification.

5.4.4 Qualitative Analysis of the Performance

A final qualitative analysis is presented based on the comparison of the individual

prediction errors for lactate, glutamate and biomass, presented in Table 5.2, and the

results presented in Fig. 5.4. Globally, it can be observed that the differences in results

between PLS and hybrid models are the most significant for the lactate and glutamate

concentrations, as (i) the respective prediction errors (Table 5.2) of both substrates, lac-

tate and glutamate, obtained for the hybrid model cases are in general improved when

compared to the ones obtained for PLS; and (ii) these improvements are also visually

observable, Fig. 5.4. In the case of the biomass concentrations no such general trend

is observable, however the partially worse performances for biomass in the hybrid model

cases (Table 5.2) might be explained through the compromise between overall perfor-

mance and individual performance.

The expected increase in performance, when excluding the wavelengths from the

inputs whose intensities are saturated, due to water, can be observed for the estimates

of lactate, glutamate and biomass in cases of both hybrid and PLS models (Table 5.2).

As can be exemplary seen in Fig. 5.4, the different hybrid models structures tested in

general lead to smoother estimates than those obtained by corresponding PLS models;

The relatively worse quality of the biomass estimates at the beginning of the batches,

obtained from PLS models, may be explained with the relatively low NIR spectral inten-

sities due to low biomass concentrations at the beginning of the batch (low signal to

noise ratio).
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Table 5.2 Individual prediction errors in form of MSEs (eq. (5.7) in which the standard devi-
ation term is dropped) for lactate, glutamate and biomass concentrations obtained
for training, validation & test data over model types, data sets (see section 5.3.1),
model inputs (see section 5.3.2) and latent variables.

Model Data MSE
Type Input Set lv1 Lactate Glutamate Biomass

setting Train Valid Test Train Valid Test Train Valid Test
(mmol²/l²) (mmol²/l²) (OD²)

HYB2 (a) A 2 0.7597 0.3044 - 0.2715 0.1929 - 0.0016 0.0247 0.0195
HYB2 (b) A 2 0.5734 0.1304 - 0.3007 0.1201 - 0.0018 0.0420 0.0136
PLS (a) A 7 1.1267 1.6728 - 0.3193 0.6104 - 0.0049 0.0065 0.0172
PLS (b) A 7 1.5852 4.0445 - 0.4286 1.0447 - 0.0065 0.0269 0.0308
HYB2 (a) B 2 4.8814 0.4231 - 0.7866 0.1443 - 0.0491 0.0537 0.0099
HYB2 (b) B 2 0.7568 0.5169 - 0.3669 0.0851 - 0.0027 0.0008 0.0159
PLS (a) B 7 1.0978 1.5008 - 0.3888 0.2511 - 0.0056 0.0041 0.0273
PLS (b) B 5 3.2456 3.2692 - 0.8481 0.7145 - 0.0222 0.0217 0.0094
PLS (b) B 7 1.8357 1.0174 - 0.5818 0.1228 - 0.0090 0.0017 0.0247
lv1: number of latent variables
HYB2: Hybrid Model

The hybrid model does not suffer from this type of effect since more data are incor-

porated during the parameter identification and therefore fluctuations are damped. This

is an important feature, since for instance for the control of specific biomass growth

rate, a reliable estimation of it is required. In case that this estimate would be derived

from fluctuating state estimates it is prone to error. In the hybrid model case the specific

growth rate estimate is (i) directly accessible, as a result of the chosen structure; and

(ii) in comparison to PLS less noisy, wherefore enhanced control performance would be

enabled.

The slight overestimation for biomass by the hybrid model with input setting (a)

at about 15 hours, which remains till the end of the batch, can be explained by error

propagation.

5.4.5 Extracting process knowledge from latent variables scores

The structure of the NPLS submodel, described by eqs. (5.3) - (5.6), is similar to

the structure of PLS models. For such PLS models the analysis of the input scores

represents a relevant source of information concerning characteristics and features of

the processes (MacGregor and Kourti, 1995; Read & al., 2010b; Undey & al., 2003).

This important PLS feature is present in the applied hybrid NPLS models. Figure 5.5

shows the scores plot of the final hybrid model. By analyzing the relative position of

the scores to each other as a measure of their similarity, one can extract important

process information, on-line. For instance it is possible to detect outlying data samples,
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Figure 5.5 Input latent variables scores obtained for set A with inputs (b) by the hybrid model
that comprises 2 latent variables.

which enables automatic fault detection. In the present case it was possible to pinpoint

in a single plot NIR, temperature and DO data outliers. The latent variables time

trajectories carry information about distinct process phases and also batch-to-batch

variability. Certain process regions can be classified, i.e. a region of inoculation and a

region of high biomass and low substrate concentrations. Thus from the time-course

of the latent scores of complex spectral data for a certain batch, conclusions anent its

performance can be effectively extracted using the hybrid modeling approach.

5.5 Conclusions

In what is called the PAT initiative (PAT, 2004), the Food and Drug Administration

proposes an integrated systems approach. On the process level, the intermeshing use of

process analyzers and adequate tools for the incoming data evaluation is recommended,

in order to accurately determine the process state at-time and to ultimately manipulate
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it.

Hybrid modeling provides an integrated systems approach whereby different sources

of knowledge can be linked. When applied to chemical or biochemical processes, such

a framework can be build on material balances wherein the specific reaction rates are

modeled through the combination of both fundamentals and models, typically adopted

in PAT, such as (N)PLS.

This methodology was applied to process data of a B. pertussis cultivation, in order

to correlate on-line NIR, pH, temperature and dissolved oxygen measurements to off-

line biomass, glutamate and lactate concentration measurements. Thus, during the

process, the state identification would be feasible by using only the at-time available

measurements. Benchmarking is provided by the classical PLS methodology.

The following was observed and can be stated:

(i) Results revealed that the statistical confidence in terms of the BIC of the hybrid

method in comparison to the PLS method improved by several orders of magnitude

(from ˜ (-1000) to ˜ (-10)), an evidence that was supported by the analysis of

concentration trajectories, as shown in Fig. 5.4.

(ii) The higher statistical confidence traces back not only to a significantly lower num-

ber of latent variables (from 7 to 2), but also to enhanced quality of estimates,

which is observed in the form of lower overall and individual mean square errors.

(iii) The lower number of latent variables results from the fact that the scheme proposed

could incorporate the existing correlations between main state variables (in this case

dissolved oxygen and specific growth), thus lowering dimensionality.

(iv) The improved quality of the state estimates was essentially the result of two factors:

(1) the smoothing effect that the integration procedure had on noise contained in

the kinetic rates estimates and (2) the incorporation of a wider range of input data,

viz at each integration step, which was feasible only due to the applied parameter

identification procedure.

(v) The extraction of valuable process information from the analysis of the latent scores

is enabled, equivalently to the case of PLS.

All in all, the better performance of the hybrid model is worth the higher computa-

tional load, in comparison to the PLS method. Further, it provides a more consistent
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interpretation of the process data in terms of fundamental mechanisms, thus enhancing

the level of sophistication of knowledge generated. Finally, as a result of applying this

hybrid structure, the trajectories of the estimated fluxes are directly accessible on-line,

which allows for their control.
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5.7 Nomenclature
Abbreviations

AIC Akaike Information Criterion
ANN Artificial Neural Network
BIC Bayesian Information Criterion
DO Dissolved Oxygen
FIR Finite Impulse Response
HYB Hybrid Model
MSE Mean Squared Error
MVDA Multivariate Data Analysis
NIR Near-InfraRed
NPLS Nonlinear-PLS / Neural Network-PLS
PAT Process Analytical Technology
PCA Principal Component Analysis
PLS Partial Least Squares / Projection to Latent Structures
QbD Quality by Design

Mathematical Symbols
b1,i Bias of the input layer in the latent variable submodel i
b2,i Bias of the hidden layer in the latent variable submodel i
c Vector of concentrations
cσ,j Standard deviations
cj,mes Off-line measured concentration values
g( · ) Transfer function of the hidden layer in the latent variable submodel i
h( · ) Transfer function of the input layer in the latent variable submodel i
i Counter
j Counter
k Number of inputs
n Number of components
o Number of latent variables
r Vector of kinetic rate functions
rGlu Specific Glutamate uptake rate
rLac Specific Lactate uptake rate
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t Time
ti Input latent variable
ui Output latent variable
w Weights of all i = 1..o ANNs
wA Vector of parameters
w1,i Weights of the input layer in the latent variable submodel i
w2,i Weights of the hidden layer in the latent variable submodel i
Glu Glutamate concentration
Li ,1..k Inputs 1 to k for latent variable submodel i
Lx Vector of nonparametric model inputs
Lac Lactate concentration
P Number of samples
Wx,i Input loadings of latent variable i
Wy,i Output loadings of latent variable i
X Biomass concentration
Xexperimental ,1..k−n At-time measurements
φ Known kinetic functions
ρ / ρ1..o,1..m Vector of unknown kinetic functions
µ Specific biomass growth rate





Chapter 6

A general hybrid semi-parametric
controller

6.1 Abstract

A general hybrid semi-parametric process control framework is proposed in this study.

It is a general framework, because the presented control methodology can be customized

for each application and hybrid semi-parametric because nonparametric and parametric

models, founded on different knowledge sources, are merged into the control framework.

Tuning of the controller parameters is achieved through the application of a hy-

brid process model. Two identification schemata are presented, (i) an off-line process

data-based scheme for simultaneous identification of the hybrid process model and the

controller parameters; and (ii) an off-line identification scheme that can improve the

controller characteristics beyond the characteristics learned from process data.

Several combinations of hybrid control schemata are applied to a bioprocess control

problem, i.e. closing the loop for the control of the biomass concentration through

manipulation of the substrate feeding rate and improving the control of the dissolved

oxygen concentration through the stirring velocity. The results demonstrate that (i) due

to the hybrid approach the control loop can be closed without any additional experiments;

(ii) incorporation of different types of knowledge can enhance the controller performance,

when compared to schema without integrated knowledge; (iii) knowledge incorporation

facilitates the tuning of the controller; and (iv) the control action can be analyzed in

relation to structural information incorporated into the hybrid controller.

155
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6.2 Introduction

Proportional-Integral-Differential (PID) control is a widespread control strategy which

is mainly due to its simplicity and/or its many times sufficient performance. There are,

however, certain problems in which standard PID control has a limited performance (As-

trom and Hagglund, 2001), two of which, namely process non-linearities and varying

process conditions, are frequent in bioprocess applications. In order to enhance the

performance in those two problems, the concept of PID control has been extended by

using either gain-scheduling (Akesson & al., 2001; Kuprijanov & al., 2009; Levisauskas

& al., 1996), on-line parameter adaptation (Chang & al., 2002; Chen and Huang, 2004;

Kansha & al., 2008), or nonlinear PID approaches (Chang & al., 2003; Shu and Pi,

2000; Yeo and Kwon, 1999). The source of limitation might however be the rather sim-

ple structure of the controller, especially with respect to the first two named approaches.

Neural Networks can be seen as an universal extension in structural terms, constitut-

ing General Linear Controllers as a special case. There are numerous applications and

manifold ways to apply Neural Networks to control (Azlan Hussain, 1999; Hagan and

Demuth, 1999). Evidentially those methodologies are most times more advanced than

PID control, which brings along different problems, namely that the controller many

times suffers from over-parametrization and the controller parameters can usually not

be intuitively tuned.

Over-parametrization reduces the controller robustness and can introduce uncer-

tainties into the process. While it can be directly tackled with penalization approaches

(Shao, 2009) or by restrictions on the network structure (Krishnapura and Jutan, 2000),

it stems many times from the lack of a physical structure. In this respect it was observed

for hybrid process models that combine first principles knowledge and data-driven tech-

niques (such as ANN) can structure the process operation space (Fiedler and Schuppert,

2008; Mogk & al., 2002), resulting in better calibration properties, better extrapolation

capabilities and enhanced statistical confidence of the model estimates when compared

to pure data-driven techniques (von Stosch & al., 2011a). Thus it can be expected

that the combination of phenomena founded knowledge and data-driven techniques for

control purposes might enhance controller robustness and performance. There are two

ways to exploit this idea:

i) Identifying a hybrid-process model in canonical form and reformulating it in such

a way that the control variable is expressed as an explicit function. This can be
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achieved as proposed e.g. in (Bazaei and Majd, 2003; Hussain and Ho, 2004;

Hussain & al., 2001; Madar & al., 2005; Oliveira, 1998; van Can & al., 1996; Xiong

and Jutan, 2002)

ii) Using the structure of a standard controller and complement or replace parameters

of the controller by functions that are modeled through data-driven techniques. The

Generalized PID would be one example in which the PID parameters are given by

ANNs (this is similar to a serial hybrid structure). Another example would be the

parallel combination of PID and ANN by (Andrasik & al., 2004; Hisbullah & al.,

2002; Li & al., 2006)(which is similar to a parallel hybrid structure).

While for the first case many times an heuristic intuitive search provides quickly good

controller parameters, in the latter case the ANN controller parameters can usually not

be tuned in the same way. Instead, controller tuning through optimization techniques

becomes necessary. Off-line tuning is usually based on process data. A disadvantage is

that the controller can, in limit, perform only as good as the controller used for acquiring

the process data, so nothing is won. The off-line tuning can, of course, be enhanced

whenever a process model is available but (i) when ANNs find application for control it

is usually not straightforward to derive a process model from first principles only; and (ii)

the application of process models solely obtained through data-driven techniques, such

as ANNs, is delicate since such models are not parsimonious (Krishnapura and Jutan,

2000) and have limited extrapolation capabilities to new process regions.

Hybrid modeling also in this aspect is an interesting alternative since it can exceed

the limits of pure data-driven techniques and since it does not require “precise” first

principle knowledge, wherefore it additionally is cost-effective (Psichogios and Ungar,

1992; Schubert & al., 1994a; Thompson and Kramer, 1994). Nevertheless only rela-

tively few closed-loop control applications applying hybrid models are reported. Most

of which directly capitalize the model structure, as mentioned above (Bazaei and Majd,

2003; Hussain and Ho, 2004; Hussain & al., 2001; Madar & al., 2005; Xiong and Jutan,

2002), while others use the capability of the hybrid process model to accurately capture

the process dynamics, i.e. for Model Predictive Control (Cubillos and Acuna, 2007; Cu-

billos and Lima, 1998; Ibrehem & al., 2011; van Can & al., 1996) or on-line tuning of

the controller (Andrasik & al., 2004).

In this study, a general hybrid control framework is presented, in that (i) any structural

limitations (e.g. for the standard PID, posed through the small numbers of controller
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parameters and through the three controller inputs, namely the three Error types) are

sought to be overcome using a control structure that incorporates ANNs; and in that

(ii) additional available knowledge about the control structure can be incorporated into

the controller which limits over-parameterization and facilitates parameter identification

by structuring the parameter space.

The associated controller parameters are tuned by (i) using parameter identifica-

tion from process data; or/and (ii) the application of a process model, namely a semi-

parametric hybrid model is used, such avoiding the costly development of a detailed

mechanistic model and extending the limits of pure data-driven techniques.

In order to investigate how knowledge about the controller impacts on the controller

performance and to what extend the identification schema can be applied, a bioprocess

control problem is adopted as a simulation case study. In this simulation case it is desired

to close the loop for the control of the biomass concentration through the manipulation

of the substrate feeding rate and to improve the performance of the dissolved oxygen

concentration control by manipulating the stirring velocity. This is challenging since

the control of these two quantities is coupled, the underlying kinetic system is highly

non-linear and the inherent dynamics have different time scales.

6.3 Methodology

6.3.1 State space process model

The process model equations are based on the macroscopic material balance, which

are derived for a stirred-tank reactor, assuming that the reactor content is ideally mixed,

i.e.:

dc

dt
= r(c, u, w)−D · c (6.1)

where c is a vector of concentrations, V is the reaction volume, D is the dilution

rate, w is a set of model parameters, u are the control inputs and r( · ) is a vector of

kinetic rates. The formulation of the kinetic functions r( · ) is based on a semi-parametric

approach, (Oliveira, 2004), i.e.:

r(c, u, w) = K · 〈φ(c)× ρ(c, u, w)〉 (6.2)
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where K is a matrix of stoichiometric coefficients, φ is a function that can comprise

available knowledge about the kinetics and ρ is a function that accounts for the unknown

parts.

6.3.2 Structure of the General Hybrid Controller

The structure of the controller, sketched in Fig. 6.1, is determine by (i) the outputs

of the controller which are the control inputs u; (ii) the inputs to the controller LX ; (iii)

the controller parameters θ; and (iv) the vector of functions that connect the inputs and

outputs, g( · ). Each control input j of the number of total control inputs, J, can be

formulated either as an algebraic equations, i.e.:

uj = gj(Lx , θ), (6.3)

or as an Ordinary Differential Equation:

du

dt j
= gj(Lx , θ), (6.4)

where in eq. (6.4) the control inputs are obtained through integration.

Controller Inputs

The inputs LX of the controller can optionally contain cX , u, EP (the proportional

errors given by EP = cs − cX), EI (the integral errors given by EI =
∫
t(cs − cX) · dτ),

and ED (the differential errors given by ED = dcs/dt−dcX/dt) with cs being a vector of
concentration set-points. The variable cX can be chosen to be either the model predicted

concentrations, c , or to be the experimentally measured concentrations cmes . This choice

determines (i) whether the model structure is the one of a one-step ahead predictor or

the one of a multi-step ahead predictor, and (ii) whether the controller must be used in

conjunction with the state space model or can standalone. This input choice is however

not strictly binding, meaning that the structure can e.g. be identified with the predicted

concentrations, but then applied for control using the measured concentrations, as done

in the following case study.
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Figure 6.1 Schematic sketch of the hybrid controller structure and the hybrid process model
structure in the context of the process data based identification procedure. Sym-
bols as in the text.

Controller Functions

The vector of functions g( · ) of the controller is here composed as:

g(c, u, θ, Ep, Ei , Ed) = Γ · 〈ϕ× %〉 , (6.5)

where Γ is a matrix that can contain ratio coefficients, ϕ( · ) are functions that can

contain available knowledge about the control structure, e.g. derived from the process

model, and %( · ) are functions that account for unknown relations. It is evident that this

structure is inspired by eq.(6.2).

6.3.3 Modeling of the unknown functions ρ and %

The functions ρ( · ) and %( · ) are modeled by three layer ANNs (which is sufficient for

the modeling of nonlinear, continuous functions), that are represented by the following

expressions:

ρ(c, u, w) = w2 · h(w1 · [c, u] + b1) + b2 (6.6)
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%(c, u, θ, Ep, Ei , Ed) = θ2 · h(θ1 · [c, u, Ep, Ei , Ed ] +$1) +$2 (6.7)

where the model parameters w comprise the weights matrices w1 and w2 and the

bias vectors b1 and b2 ; and the control parameters θ comprise the weights matrices θ1

and θ2 and the bias vectors $1 and $2. The function h( · ) can e.g. be chosen linear,

sigmoidal, or hyperbolic tangential. In this study all nodes in the input and output layer

were chosen to have a linear transfer function, while the nodes in the hidden layer were

chosen to be hyperbolic tangential.

The identification of the neural network is a critical factor in order to achieve accurate

and robust predictions (Bishop, 1995)[36]. In this study, the optimal ANN structure

was chosen from a set of the possible candidates, as the one that produced the best

performance in terms of the Bayesian Information Criteria (BIC), (Peres & al., 2008;

von Stosch & al., 2011a).

6.3.4 Off-line Parameter Identification based on Process data

While the identification of the model parameters, w , from process data is generally

feasible, regardless whether the process was run in open-loop or closed-loop, the off-line

identification of the controller parameters, θ, from data is feasible only when the process

was run in closed-loop. The following described identification procedure procures to the

closed-loop case since for the application to open-loop process data simply the terms

referring to the identification of the respective controller parameters can be dropped.

The sensitivities approach is applied in this study, due to its advantages (Oliveira,

2004; Psichogios and Ungar, 1992; Schubert & al., 1994a). The following weighted

least-square error function is adopted to simultaneously identify the state space model

and the controller parameters (as shown in Fig. 6.1), i.e.

min
w,θ

{
ELS =

1

Pc

Pc∑
l=1

(cmes,l(t)− cl(t))2

c2
σ

+
1

Pu

Pu∑
l=1

(umes,l(t)− ul(t))2

u2
σ

}
, (6.8)

wherein Pc , Pu signify the respective number of events, cmes , umes are the experimen-

tally measured concentrations, feeding rates at time t, respectively, and cσ, uσ contain

the respective measured data standard deviations. In order to minimize this objective a

gradient based optimization scheme is used, namely the “lsqnonlin” MATLAB routine is
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applied. The gradients are obtained through differentiation of eq. (6.8) with respect to

w and θ, for details see appendix.

There exist two well known problems for the optimal parameter identification of

ANNs: (i) over-fitting and; (ii) local minima in the shape of the error surface entan-

gle the identification. The first problem is, as usually (Bishop, 1995; Schubert & al.,

1994a), tackled with early-stopping wherefore two sets of data are required, a training

and a validation set. The second problem is, in this study and as usual (Oliveira, 2004;

von Stosch & al., 2011a), overcome with several random weight initializations for the

same structure (at least 20 in all following cases). From the obtained candidates the

best performing one, in terms of lowest prediction error obtained for the validation set,

is selected. Additionally, a test data set can be used to explore the generalization ca-

pabilities of the identified model. Note that the simultaneous identification of w and θ

was found to, in general, result into faster convergence and lower variances of the final

parameter values for several random initializations than in the case that w and θ were

identified sequentially.

6.3.5 Off-line Controller tuning based on the process model

Once the model parameters w are identified from experimental data, the controller

parameters θ can be either identified in case that solely open-loop process data were

available or further tuned off-line, as to meet certain specifications. The specifications

for the tuning of the controller are expressed in requirements on (a) Set-point response;

(b) Measurement noise response; (c) Load disturbance response; and (d) Robustness to

model uncertainties (Astroem and Haegglund, 1995).

a) Set-point response: In order to obtain desired set-point tracking characteristics one

can (i) build a time varying function that represents the desired set point tracking

properties, cdesired(t); and (ii) apply different available objective criteria in order to

obtain varying desired characteristics of the set-point following (Astroem and Haeg-

glund, 1995). In this study, exemplary, a normalized mean sum of squared error

based objective is chosen, and smooth ramps are considered in lieu of abrupt set-

point changes for cdesired(t), such that.:

min
θ

{
ENMSSE =

1

Ps
·
Ps∑
l=1

(cdesired ,l(t)− cl(t))2

cσ

}
. (6.9)
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This objective function is minimized applying the “lsqnonlin” MATLAB routine. The

required gradients can be obtained as described in the appendix.

b) Measurement noise response: Measurement noise is usually simulated as an impulse

function (Astroem and Haegglund, 1995). In this study the measurement noise

is simulated by adding Gaussian noise to the inputs of the controller during the

minimization, see Fig. 6.2. This has four desirable effects, namely that (I) the

controller gain will not exceed a certain limit; (II) thus a penalty term in the objective

that would aim at the reduction of differences in the control actions can be avoided;

(III) the controller is more robust; and (IV) the controller tuning is not interrupted

based on early stopping as in the case of the data-based identification, but when no

further improvement of the ENMSSE value is observed.

c) Load disturbance response: In order to account for load disturbances, the very also

need to be integrated into the tuning. Therefore step functions are added to the

control input, u, during the off-line tuning (see Fig. 6.2) as proposed in (Astroem

and Haegglund, 1995).

d) Robustness to model uncertainties: It is obvious that the desired set-point tracking,

i.e. the tuning of θ, depends strongly on the model quality, i.e. the prior identified

parameters, w . Since these parameters have been derived from the training data, high

model accuracy is limited to the vicinity of those regions of process variations that

the model has been trained on. Off-line controller parameter tuning might however

extrapolate from these regions. While one, of course, can simply limit the changes

in the controller parameters, it might be superior to constraint the optimization such

that extrapolations are restricted by some measure. Such a measure can, for instance,

be provided by clustering (Teixeira & al., 2006) or convex-hull techniques (Kahrs and

Marquardt, 2007). In this study, the off-line controller tuning is carried out in the

vicinity to that process regions which the model has been identified on and therefore

no constraints are incorporated.

In any case cX (see the definitions of the PID errors) must be represented by c

during the off-line tuning of the controller parameters, and thus cmes in the controller

inputs eventually replaced through c . This is due to the fact that when cmes is used in

the definitions of the PID errors, then the complete structure, consisting of the process

model and the controller, is the one of a one-step ahead predictor, which is unsuitable

for the off-line tuning of the controller parameters.
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Needless to point out that in any case the model parameters remain unchanged.

Figure 6.2 Schematic sketch of the hybrid controller structure and the hybrid process model
structure in the context of the process model based identification procedure. Sym-
bols as in the text.

6.3.6 Controller Performance Criteria

For the evaluation of the controller performance, a differentiation between different

scenarios, must be accounted for by the controller performance evaluation criteria.

In case that load disturbances are applied, (Astroem and Haegglund, 1995) suggest

to use the Integrated Error (IE) and the Integrated Absolute Error (IAE). These criteria

therefore find application, but for their calculation, the tracking error is divided by the

respective standard deviation in order of provide equal measures for different scales of

state values.

In case that set-point changes are performed, (Astroem and Haegglund, 1995) sug-

gest to use the Integral of Time and Error (ITE) and the Integral of Time and Absolute

Error (ITAE). These criteria find application, but as before, the tracking error is divided

by the standard deviation.
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The closer the values of IE and ITE are to zero the better the controller performance.

For IAE or ITAE the controller performance is the better the smaller the values.

6.4 Results & Discussion

6.4.1 The process

The performance of the different controller structures and the associated controller

parameter identification is assessed in relation to a non-linear dynamic control problem.

This problem is frequently addressed for bioprocess fed-batch reactor control, i.e.: the

tight control for product quality and quantity. In the presented simulation case this is

translated into (i) the control of biomass concentration through the substrate feeding

rate manipulation (this goes to quantity, since either the specific biomass growth rate or

the total amount of biomass is usually correlated to the total amount of product); and

into (ii) the control of the dissolved oxygen concentration through the stirring velocity

manipulation (this goes to quality, since variations in the dissolved oxygen concentration

can limit growth or/and lead to the formation of toxic byproducts thus resulting into

process variations). The simulation case, represented through equations (A.6.17) to

(A.6.27), is an adaptation of the models by (Jahic & al., 2002) and (Cunha & al.,

2004). Its control problem is challenging because of several reasons:

i) the kinetics of biomass growth and oxygen uptake are highly non-linear;

ii) the reaction kinetic term (as the transport term) is in general much larger than the

accumulation term. The direct consequence is that, poor control leads to control

saturation and min-max behavior;

iii) maximum productivity is often achieved at very low DO concentrations, close to the

critical level where process is irreversibly lost;

iv) the methanol uptake rate is substrate inhibited (as reported for various Pichia pas-

toris fermentations);

v) the simultaneous control of biomass and dissolved oxygen concentrations is highly

coupled;

The control problem anent the manipulation of the stirring velocity, is typically solved

employing PI(D) control, while the control of the biomass concentration is usually ei-

ther accomplished in open-loop following a pre-optimized substrate feeding profile or

in closed-loop through the control of the specific biomass growth rate (Dabros & al.,
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2010; Jenzsch & al., 2006a; Soons & al., 2006). However in this study, consciously,

the biomass concentration is controlled because (i) the specific biomass growth rate

cannot be directly measured while the biomass concentration, in principle, can (this en-

abling the application of standalone controllers); and (ii) the biomass concentration is an

integrating quantity (which slightly complicates the tuning of a standard PID controller).

Further it is assumed that up to this point only the dissolved oxygen concentration

was controlled in closed-loop, while the biomass concentration was controlled in open-

loop subject to pre-optimized substrate feeding rate profiles. Process data of in total 8

runs were generated applying equations (A.6.17) to (A.6.27). The data of the process

runs were then divided into three data sets, i.e. for training (4 fed-batches), validation

(2 fed-batches) and test (2 fed-batches).

The tasks are: (i) to close the loop for the control of biomass concentration; and (ii)

to investigate alternative approaches for the control of dissolved oxygen concentration

(replacing eq. (A.6.27) by the controller equations presented in section 6.4.3).

6.4.2 The Hybrid process model

The hybrid process model comprises the material balance of the biomass and the

dissolved oxygen concentrations, since it is assumed that these are the only accessible

on-line measurements, i.e.:

dX

dt
= µ ·X −D ·X

dCO
dt

= rT ·RPM − rO ·X −D ·CO

, (6.10)

additionally the volume is integrated along, namely eq. (A.6.24). The specific rates

of biomass growth, µ = µ(X,CO, uMet), oxygen uptake, rO = rO(X,CO, uMet), and a

function of the oxygen transfer, rT = rT (CO) are each modeled by separate ANNs. The

best performing hybrid process model comprises two nodes for each of the kinetic rates,

i.e. µ, rO, and rT . In Fig. 6.3 the process data and the predictions for the hybrid process

model and the hybrid controller, u1,A, (which were trained together using the process

data) are shown for a fed-batch of the test data. Therein it can be seen that very good

predictions were obtained for both biomass and dissolved oxygen concentrations and that

also the characteristics of the PI controller are very well mimicked by the u1,A controller.

In case of the stirring velocity two facts are striking, i.e. (i) the step changes; and (ii)
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the fluctuation in the control actions for the process data (the stirring velocity data were

not corrupted with noise). The step changes are due to changes in the feeding rate at

a constant dissolved oxygen set-point. The fluctuations are caused by the PI-controller

that translates the simulated measurement error into control action. These fluctuations

cannot be observed for the u1,A controller, since its inputs are based on the predicted

dissolved oxygen concentration during the identification.

Figure 6.3 Plots of the biomass concentration, X, the dissolved oxygen concentration, DO,
and the stirring velocity, RPM, over time, for one fed-batch of the test data set
in case of: measured data, red circles; the hybrid-process model estimates, blue
dashed line; and the control action of controller u1,A, green dashed line. The
set-point is also displayed, fine black continuous lines.

6.4.3 Hybrid controller structures

In the following a number of different control structures are proposed, which present

a selection from various investigated controller designs.



168 | 6. A general hybrid semi-parametric controller

Dissolved oxygen concentration control through manipulation of the stirring
velocity

The stirring velocity, in this case, could be regulated by a simple PI approach, eq.

(A.6.27). The tuning of the PI controller can e.g. be carried out with designs (e.g.

Ziegler-Nichols or Tyreus-Luyben) that uses the knowledge of the ultimate gain and of

the ultimate period. It might however be difficult to precisely determine the ultimate

gain and period, e.g. when the sampling frequency is relatively low or/and when the sen-

sor signal is relatively noisy. The step response method could then be used. However,

the ultimate gain and ultimate period of the system might change during the process,

leading to significant decreases in controller performance, for instance see(Zhang & al.,

2002). Therefore in the following three alternative structures are investigated.

Controller 1A: A simple controller based on an ANN is proposed at first, i.e.:

u1,A = rpm = ANN((COS − CO),

∫
t

(COS − CO) · dτ). (6.11)

The data based identification scheme, in this case, can find application for the tun-

ing of the controller, since the dissolved oxygen concentration “during the experiment”

was controlled in closed-loop fashion. This means that the characteristics of the PI-

controller, eq. (A.6.27) are mimicked at first, which can for instance be seen in Fig.

6.3. Thereafter the process model based identification schema is applied to tune the

parameters regarding the specifications. Different network inputs were investigated, i.e.

the network structure was prune. The best performing ANN has 2 hyperbolic tangential

nodes in the hidden layer and only the proportional and integral error of the dissolved

oxygen concentration as inputs. The biases in the input and hidden layers could be

eliminated, since they had no significant effect on the controller performance.

Controller 1B: A second controller is based on a first order Model Reference Control

(MRC) schema, i.e.: COS = CO + τc · dCOdt , and using the hybrid process model, namely

the balance for the dissolved oxygen concentration, the controller reads as:

u1,B = rpm =
1

rT
· [(COS − CO)/τc + rO ·X +D ·CO], (6.12)
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where the rate expression stem from the hybrid process model (identified before)

and thus the only control parameter that needs to be tuned is τc . This can either be

accomplished by an heuristic search (which usually quickly results in good performance)

or applying the proposed schema for parameter identification based on the hybrid pro-

cess model. The gradients in the latter case are obtained by differentiating eq. (6.12)

with respect to τc . It is interesting to note that this controller structure is similar to a

proportional controller with steady state bias ( rpm = Kp · (COS − CO) + KB) (Seborg

& al., 2010), just that in the given structure both the controller gain and the bias are

not fixed values but variable in correspondents to eq. (6.12), i.e.: Kp = 1
rT · τc and

KB = rO ·X+D ·CO
rT

.

Controller 1C: In a third control structure the concept of Generic Model Control

(GMC) is applied, i.e.: dCOdt = Kp · (COS − CO) + Ki ·
∫
t (COS − CO) · dτ , which along

with the mass balance equation of the dissolved oxygen concentration combines to:

u1,C = rpm =
1

rT
·
[
Kp · (COS − CO) +Ki ·

∫
t

(COS − CO) · dτ + rO ·X +D ·CO

]
,

(6.13)

In this case the kinetic rates are the ones of the process model and therefore the

only parameters left to tune are Kp and Ki . Tuning of both parameters can, as before,

be carried out manually or with the process model based identification schema. In case

that the latter is applied it was found that if the ratios Kp = 2 · ζ/ϑ and Ki = 1/ϑ2,

proposed by (Lee and Sullivan, 1988), were respected, i.e. ζ and ϑ are identified instead,

then the tuning converged faster and resulted into consistent performance for various

random initiations of the parameters.

Biomass concentration control through substrate feed rate manipulation:

The control of the biomass concentration is many times accomplished in open-loop,

which is due to the fact that (i) reliable biomass measurements are many times not

available at-time (but due to the PAT initiative become increasingly available); (ii) sim-

ple control methods with reasonable performance are many times preferred over more

complex control schema with greater performance (Alford, 2006). In the following three

controllers are proposed to close the loop. All of which only use generic first-principle

knowledge or/and process knowledge that was captured from readily available process
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data (that were recorded when biomass was controlled in an open-loop fashion). Since

the biomass concentration was controlled in open-loop, the process data identification

schema could not be applied for the tuning of the controllers presented in the following

but instead only the process model based controller tuning schema finds application.

Controller 2A: The first control structure is defined by an Ordinary Differential Equa-

tion, where the right hand side is modeled by a simple ANN, i.e.:

u2,A =
duMet
dt

= ANN

(
uMet , (XS −X),

∫
t

(XS −X) · dτ,
(
dXS
dt
−
dX

dt

))
. (6.14)

As before, the network structure was prune concerning the inputs. The best per-

forming ANN has 2 hyperbolic tangential nodes in the hidden layer and, as inputs, the

methanol feeding rate and the proportional, integral and differential errors. The biases

in the input layer could be eliminated.

Controller 2B: The second controller proposed is based on a second order MRC

schema, i.e.: XS = X + β1 · dXdt + β2 · d
2X
dt2 , which yields when using the hybrid pro-

cess model, namely the balance for biomass, into:

u2,B =
duMet
dt

=
1

β2 ·A
·
[

(XS −X)−
dX

dt
· (β1 + β2 ·B)− β2 ·X ·C

]
, (6.15)

where A =
(
X · dµ

duMet
− X

V

)
; B =

(
X · dµdX −D + µ

)
and C =

(
dµ
dCO

· dCOdt +
u2
Met

V 2

)
and

β1 and β2 are the MRC controller parameters. These controller parameters can either

be tuned heuristically as e.g. in (Oliveira & al., 2004) or, as before, with the proposed

method for process model based parameter identification. The required gradients are

obtained by differentiating eq. (6.15) with respect to β1 and β2.

As a matter of fact, this schema is similar to the one proposed by (Soons & al., 2006),

which in turn is similar to a GMC design. In case that the prior mentioned ratios proposed

by (Lee and Sullivan, 1988) for GMC were applied, i.e. β1 = 1/γ2
1 ; β2 = 2 · γ1/γ2 and

identification of γ1 and γ2 instead, also in this case the tuning converged faster (than in

the case the ratios were not used) and resulted into consistent performance for various

random initializations. It must be pointed out that due to the derivatives, dµ/duMet ,

dµ/dX and dµ/dCO, the Hessian is required for the gradient based identification, which

can, however, be relatively easy obtained through symbolic manipulations.
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Controller 2C: A third control structure is investigated in which it is assumed that the

dynamics can be captured by a so called general PID. The controller equations read as:

u2,C =
duMet
dt

= Kp,fun · (XS −X)+Ki ,fun ·
∫
t

(XS −X) · dτ+Kd,fun ·
(
dXS
dt
−
dX

dt

)
,

(6.16)

where Kp,fun, Ki ,fun and Kd,fun are not parameters but functions that are modeled by

an ANN. The associated network weights, the controller parameters, are tuned through

the process model based schema. The ANN was prune concerning the inputs. The best

performing ANN has 3 hyperbolic tangential nodes in the hidden layer and, as inputs,

the methanol feeding rate, the biomass concentration, the dissolve oxygen concentration

and the volume.

General remarks regarding the controller structures and their tuning:

During investigations on other than the here presented controller structures it was

observed that for those biomass controllers which consisted of an algebraic equation, it

was either infeasible to tune the parameters or the controller candidates in comparison

to the proposed structure performed poorly.

Note further that for the parameter identification predicted concentration values

were used for the calculation of the tracking errors, but that for the simulation of the

process under control, the measured concentration values are used.

6.4.4 Process under Control

The controllers of the dissolved oxygen concentration and the biomass concentration

can be pairwise arranged in nine possible combinations. Additionally, the biomass con-

troller were paired with the dissolved oxygen PI-controller (eq. A.6.27), such providing

a baseline for comparison. In order to evaluate these combinations under control, they

are applied to the process simulation described in the appendix. For the evaluation four

cases are considered, namely two cases in which changes were applied to the set-points

and two other in which the process was disturbed.

Step changes in the dissolved oxygen set-point:

Step changes (a positive step and a negative step, both with a difference of 0.4 · 10−3

(mg/l)) were applied to the set-point of the dissolved oxygen concentration, the most



172 | 6. A general hybrid semi-parametric controller

insightful results are compiled in Table 6.1. Therein it can be seen that the performance

of the dissolved oxygen concentration controllers, irrespective of the biomass controller

(according to the ITAE criteria), seem to be ranked as follows, PI < u1,A < u1,B < u1,C ,

where the latter shows the best performance. The better performance of the controllers

u1,B and u1,C when compared to the u1,A could be expected since (i) in this control

schema the coupling between the biomass and dissolved oxygen control is taken into

consideration; and (ii) the most process knowledge regarding the dissolved oxygen con-

centration is integrated into the structure. The same reasoning can be used to explain

the good performance of the u2,B controller. However in comparison with the u2,C con-

troller significantly more knowledge is incorporated into the structure of the u2,B, but

the performance is not significantly better. As a matter of fact, the second decimal digit

(values of ITAE) in this case is rather due to the random measurement noise. In case of

the ITE, relatively low absolute values are obtained for all controller combinations, which

is due to the error canceling. Thus for none of the controller combinations, an error

bias can be observed, which is interesting to note since the formulation of the controller

u1,B, as mentioned above, is similar to the one of a proportional controller with constant

bias.

Table 6.1 Controller performance criteria values, namely ITAE and ITE, obtained for the
dissolved oxygen concentration with all possible combinations of the controller,
in case that a step change was applied to the set-point of the dissolved oxygen
concentration.

u1,A u1,B u1,C PI

u2,A 4.0160 0.0574 1.9207 -0.0109 1.8830 -0.0018 4.8169 0.0321
u2,B 1.0984 -0.0492 0.7427 -0.0226 0.7255 -0.0227 2.0687 -0.0310
u2,C 1.1423 -0.0095 0.7398 -0.0156 0.7414 -0.0189 1.5749 -0.0183

ITAE ITE ITAE ITE ITAE ITE ITAE ITE

In Fig. 6.4 it can be seen that all displayed controller combinations manage equally

well to follow the biomass set-point closely. In case of the dissolved oxygen it is observable

that the controllers can follow the positive and the negative set-point step changes,

but that those combinations that contain the u2,A controller exhibit significantly larger

variations. This becomes even more evident, when comparing the results obtained for

the combinations ( u1,A, u2,A), ( u1,A, u2,C) and ( u1,C , u2,A), where it can be concluded

that fluctuations in the control action of the methanol feeding lead to fluctuations

in the dissolved oxygen concentration which then cause changes in the stirring speed.

Further, it is interesting to note that in the case of the combination ( u1,C , u2,B), the

methanol feeding rate is increased at the time instance on which the negative step in the



6.4. Results & Discussion | 173

dissolved oxygen set-point occurs, while the stirring velocity is kept relatively constant

and while no significant deviations can be observed for the biomass concentration. The

explanation for this behavior can be found in the simulation case equations, eq. (A6.21),

i.e. when the dissolved oxygen concentration is lower then the methanol concentration

must be greater in order to maintain the substrate uptake rate at the same level, and

thus the specific biomass growth (A6.20). Therefore it can be stated that the hybrid

process model can perfectly capture the “true”underlying transient behavior, and that

this knowledge can be translated into adequate control action.

Figure 6.4 Simulated biomass concentration, X, methanol feeding rate, uMet , simulated dis-
solved oxygen concentration, DO, and stirring velocity, RPM, over time in case of
dissolved oxygen set-point changes, under control of: ( u1,A, u2,A) red line; ( u1,A,
u2,C) blue line; ( u1,C , u2,A) green line; and ( u1,C , u2,B) yellow line. The set-point
is also displayed, fine black continuous lines.

Slope changes in the biomass set-point:

Changes to the slope (an increase in the slope at 3.33 (h) followed by setting the

slope to zero at 6.66 (h), the latter constituting a situation that was not covered during

the identification phases) of the biomass set-point were applied, the results obtained in
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from of the ITAE and ITE values, are presented in Table 6.2. Therein it can be seen

that the best performance (in terms of ITAE) is obtained for those controller combina-

tions that contain the u2,B, and the same ranking of the dissolved oxygen controllers as

before can be observed, i.e. PI < u1,A < u1,B < u1,C , where the latter performs the best.

Table 6.2 Controller performance criteria, namely ITAE and ITE, obtained for the dissolved
oxygen concentration with all possible combinations of the controller, in case that
changes in the set-point slopes of the biomass set-points were applied.

u1,A u1,B u1,C PI

u2,A 5.8858 -0.2707 2.5503 -0.0360 2.4851 -0.0370 9.5185 -0.1781
u2,B 1.8747 0.0446 0.7005 -0.0200 0.6810 -0.0196 1.6927 -0.1172
u2,C 17.4738 -0.3931 1.9825 -0.0326 1.8528 -0.0357 18.1136 -0.3067

ITAE ITE ITAE ITE ITAE ITE ITAE ITE

The worst performance in terms of the ITAE (apart from those combinations with

the PI controller), is this time observed for the combination ( u1,A, u2,C) followed by (

u1,A, u2,A), which already performed poor before. This observation is supported by the

respective, rather large, ITE values, which indicate that the tracking error is lopsided.

These findings are also supported, when looking at Fig. 6.5. Therein, bang-bang

behavior in the dissolved oxygen concentration trajectory can be observed in case of

the ( u1,A, u2,C) when the slope of the biomass set-point is zero. The same would be

observed with the PI-controller, as indicated by the performance criteria see Table 6.2.

Similar behavior, but less distinct can also be noted for the ( u1,C , u2,C). In case of both

combinations (( u1,A, u2,C) and ( u1,C , u2,C)), it can be seen that during the bang-bang

phase the feeding rate is almost zero, wherefore the accumulation term in the dissolved

oxygen balance becomes dominant since oxygen is only up-taken for biomass mainte-

nance. All dissolved oxygen controller were however tuned for the opposite case, and

thus the performance of the u1,C is rather good, which demonstrates its extrapolation

capabilities. Also the dissolved oxygen set-point tracking performance of the u1,C in

combination with the u2,B is outstanding.

The same can be stated for the u2,C controller (when paired with the u1,C or u1,b,

the latter not shown) for which a prompt decrease in the feeding rate can be observed,

which directly translates into the limitation of the specific biomass growth. Also for the

profile of the methanol feeding rate of this controller, it is visible that the controller

promptly acts when the slope of the biomass set-point is increased. In contrast, the

feeding rate trajectories obtained by the other two controller, namely u2,A and u2,B,
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Figure 6.5 Simulated biomass concentration, X, methanol feeding rate, uMet , simulated dis-
solved oxygen concentration, DO, and stirring velocity, RPM, over time in case of
biomass set-point changes, under control of: ( u1,A, u2,C) blue line; ( u1,C , u2,C)
red line; ( u1,B, u2,A) green line; and ( u1,C , u2,B) yellow line. The set-point is also
displayed, fine black lines.

do not clearly exhibit these set-point changes. In case of the u2,A this is due to the

fact that the control action is, as before when changing the dissolved oxygen set-point,

constantly varying which is not desirable and which translates into fluctuations in the

dissolved oxygen concentration profile. The feeding rate profile in the case of the u2,B

is due to the rather poor biomass set-point tracking. This behavior is owed to the

identified constants β1 = 1/(12.52) and β2 = 2 · 15/12.5 which lead to good noise

rejection properties, but result in rather slow adaption of the control action.

Disturbances due to variations in the oxygen transfer and the cell characteristics:

Variations in the oxygen transfer and the cell characteristics are typically encoun-

tered during bioprocesses. Variations in the oxygen transfer were simulated by setting

the value of 0.82 (1/h/rpm) in eq. (A.6.23) to 0.7 (1/h/rpm) at 3.33 hours and to

0.75 (1/h/rpm) at 6.66 hours. In order to enhance the effect on the dissolved oxygen



176 | 6. A general hybrid semi-parametric controller

concentration, at the same time instance firstly an increase in both anaerobic and ener-

getic metabolism yields were considered (the value of YOS,en was increased to 1.7; and

the value of YOS,an to 0.7), which leads to a rise in the demand of dissolved oxygen,

and then, at the second time instance, the yields were slightly decreased (the value of

YOS,en was decreased to 1.6; and the value of YOS,an to 0.6). Additionally, the yield of

biomass on substrate was lowered, such that more substrate needs to be taken up to

meet the biomass set-point specifications and following slightly back increased (the value

for YX was lowered from 0.36 to 0.30 at 3.33 hours and increased to 0.32 at 6.66 hours).

Table 6.3 Controller performance criteria, namely IAE and IE, obtained for the dissolved
oxygen concentration with all possible controller combinations for variations in the
oxygen transfer and the cell characteristics.

u1,A u1,B u1,C PI

u2,A 1.6347 1.1449 1.3813 1.2128 1.7573 1.5755 1.6263 1.1128
u2,B 0.6926 0.5424 1.1515 1.0347 1.8192 1.7210 1.6051 1.4169
u2,C 1.1577 0.9724 1.1686 1.0427 1.1508 1.0309 1.2660 1.0935

IAE IE IAE IE IAE IE IAE IE

The obtained performance in terms of IAE and IE criteria calculated for the dissolved

oxygen concentration are for this case compiled in Table 6.3. Therein it can be seen

that all IE values are positive, which stems for lopsided tracking errors that are due to

the disturbances. Further, the performances in terms of IE and IAE are consistent. It

strikes that the best and the worst performances (in terms of IAE) seem to be obtained

with controller combinations that comprise the u2,B, i.e. ( u1,A, u2,B) and ( u1,C , u2,B),

respectively. This is unexpected since the combinations with the u1,A usually demon-

strate significantly worse performances than those with the u1,C . However it can be

seen that the u1,A also in combination with other controllers performs better or at least

equally, when compared to the respective performance obtained for combinations with

the u1,C . Further, the good performance of the u2,B in this case would be unexpected

because the u2,B is based on the hybrid process model that was identified from process

data that did not contain changes in the model parameters. When analyzed visually, see

Fig. 6.6, it can be seen that those combinations with the u2,B perform well only for

about 0-9h and thereafter produce poor results, due to increases in the methanol feed-

ing. These increases result from the fact that the controller underlying model was, as

already mentioned, not trained for parameter changes. It can however be expected that

the application of an on-line parameter adaptation schema would lead to an increase in

performance in that case.
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Figure 6.6 Simulated biomass concentration, X, methanol feeding rate, uMet , simulated dis-
solved oxygen concentration, DO, and stirring velocity, RPM, over time in case
of variations in the oxygen transfer and the cell characteristics under control of:
( u1,C , u2,A) blue line; ( u1,A, u2,B) red line; ( u1,C , u2,B) green line; and ( u1,C ,
u2,C) yellow line. The set-point is also displayed, fine black continuous lines.

Further, it can be observed in Fig. 6.6, that the methanol feeding rate increases

when the first disturbance occurs. This is due to the fact that one part of the simulated

disturbance was to lower the biomass yield on methanol and thus the biomass controller

need to increase the feeding rate in order to meet the biomass set-point specifications.

It can also be seen that after the occurrence of the first disturbance, all controllers are

limited by the maximum possible stirring velocity of 1000 (rpm) (The integrator windup

is accounted for by fixing the integral error value, when the maximal or minimal feasible

actuator value is reached). This fact together with the increased feeding rate are the

reasons why the dissolved oxygen set-point specifications are not met, which in turn

results in the lopsided IE values.

Else, it can be seen that the difference in the stirring velocity of the u1,A is greater

than those differences observed for the other controllers. Therefore it can be concluded

that the controller has a greater gain than the others, explaining for its sensitivity to
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measurement noise, which in turn is in agreement with the observations made before.

During the controller tuning this effect was less distinct and since the interpretation of

ANNs is relatively difficult, it was not clear, prior to application, how the controller would

behave.

Disturbances due to methanol accumulations in the reactor:

Accumulations of substrates is not desirable but frequent in fed-batch bioprocess,

partly due to non-ideal mixing. Methanol accumulations were simulated by setting the

methanol concentration at 4.5 hours to 5 (g/l) (under control the usual ranges is 0-0.15

g/l), the performances in terms of the IAE and IE calculated for the dissolved oxygen

concentration are comprised in Table 6.4. Therein, the values of IE can be observed,

again, to be all positive which points at lopsided tracking errors. Further the perfor-

mances in terms of IAE and IE seem consistent apart from the performances of the

combination ( u1,A, u2,A) and ( PI , u2,A), where the obtained IE value is disproportion-

ately low, which indicates oscillatory behavior. This indeed can be observed for the (

u1,A , u2,A ) in Fig. 6.7, i.e. almost a bang-bang situation in case of the dissolved oxygen

concentration, which origins from the relative low methanol feeding rate, as described

before.

Table 6.4 Controller performance criteria, namely IAE and IE, obtained for the dissolved
oxygen concentration with all possible combinations of the controller in case of
methanol accumulations in the reactor.

u1,A u1,B u1,C PI

u2,A 3.2353 0.9616 1.6433 0.8913 1.7327 0.9614 3.7404 1.0483
u2,B 3.6400 3.2521 1.2885 0.8926 1.2669 0.9456 2.3317 1.0968
u2,C 1.3656 1.0830 1.3218 1.0690 1.3142 1.0646 2.0356 1.1580

IAE IE IAE IE IAE IE IAE IE

In general, the dissolved oxygen controller performance (in terms of IAE) seems to

rank as before, i.e. PI < u1,A < u1,B < u1,C , where the latter performs the best. These

observations are reinforced by the visual inspections made for Fig. 6.7.

Again, the best and the worst performance in terms of IAE, Table 6.4, seem to be

encounter for the u2,B. This time the ( u1,C , u2,B) seems to perform better than the (

u1,A, u2,B), which is in agreement with the results displayed in Fig. 6.7.

In fact, the combination ( u1,A, u2,B) at the moment in which the disturbance occurs

performs adequately, i.e. the feeding rate is promptly lowered and the stirring velocity
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Figure 6.7 Simulated biomass concentration, X, methanol feeding rate, uMet , simulated dis-
solved oxygen concentration, DO, and stirring velocity, RPM, over time in case
of unaccounted methanol accumulations in the reactor, under control of: ( u1,A,
u2,A) blue line; ( u1,C , u2,B) red line; ( u1,A, u2,B), green line; and ( u1,C , u2,C)
yellow line. The set-point is also displayed, fine black continuous lines.

increased to the limit. Also in the following 3/4 hour the performance is superior when

compared to other combinations. Then, at about 5 (h), a number of circumstances

accrue, namely (i) the till this point greatest difference between the measured biomass

concentration and the set-point; plus (ii) high values of the gradient, dCO/dt as a result

of the fluctuations in the dissolved oxygen concentration; plus (iii) high sensitivity of the

biomass growth with respect to the dissolved oxygen concentration, dµ/dCO; and as a

result the value of the feeding rate increases instantaneously to about 0.2 (l/h) (which

is outside of the plot, since else the characteristics of the other feeding rate trajectories

would not be visible, however the qualitative behavior can be seen in Fig. 6.8). From

thereon the situation gets worse, since biomass is growing further, limited only by the

dissolved oxygen concentration. The u2,B controller, which was not trained for such

a situation, outruns the specific growth rate by increasing the feeding rate (and thus

the dilution term), which seems to normalize the situation (decreasing of the biomass
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concentration and rise in the dissolved oxygen concentration). However, this leads to

the accumulation of an enormous amount of methanol in the reactor, see Fig. 6.8, and

thus into substrate inhibited biomass growth, eq. (A6.21). In reality, the process would

be aborted.

Figure 6.8 Plots of the methanol concentration, Met, (without the simulated noise) over time
in case of methanol accumulations in the reactor under control of: ( u1,A , u2,A

) blue line; ( u1,C , u2,B ) red line; ( u1,A , u2,B ), green line; and ( u1,C , u2,C )
yellow line. The set-point is also displayed, fine black continuous lines.

As a matter of fact, the good performances observed in this case for the other u2,B

combinations, are on the edge of losing the control in the way just described. The

unstable behavior of the controller ( u2,B) in this case is due to the fact that the pro-

cess model does not adequately account for the disturbance. Thus the gradients of

the specific biomass rate with respect to the feeding rate, the biomass concentration

or the dissolved oxygen concentration, which are part of the controller equation do not

represent the real situation. The uncertainty in these gradients is then further amplified

through multiplications by high time derivative values and by β2 = 2 · 15/12.5, see eq.

(6.15). An on-line parameter identification schema could put things right. The model

based controllers u1,B and u1,C are due to their structure less prone to these kind of

uncertainty amplifications (better conditioned), since the governing factors in case of

disturbances are the tracking error based terms.

In case of the u2,C controller it can be seen in Fig. 6.7, that when the disturbance

occurs the controller does not react adequately, i.e. the feeding rate is slightly increased.

This results into a slightly longer period of high methanol concentrations (Fig. 6.8)

and thus into a longer phase of dissolved oxygen limited biomass growth (Fig. 6.7).

However, this controller maintained the control over the biomass concentration in any

case. Worthwhile to mention is the fact that the methanol concentration along time,
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for almost all combinations that include the u2,C and for all of the presented cases,

remained almost constant, as can e.g. be seen in Fig. 6.8. This is very desirable, since

the maximum product formation is usually assumed to occur at a distinct small band of

methanol concentrations.

6.5 Conclusions

A general hybrid control structure was proposed, that seeks to overcome nescience

by using Artificial Neural Networks (ANNs), while limiting the typical shortcomings of

ANNs through the integration of other available process knowledge, therefore being hy-

brid. This control structure is general since it can be customized to each application,

e.g. General Linear Controllers or the traditional PID controller constitute special cases.

Along with the hybrid controller, the application of hybrid process models, namely

semi-parametric hybrid models, is proposed since

i) Full advantage can be taken of the hybrid model qualities, i.e. its excellent prediction

capabilities and its good extrapolation properties, for the tuning of the controller

parameters with respect to desired specifications.

ii) The application of control designs that allow to use the nonlinear dynamic hybrid pro-

cess model to its full capacity, such as Model Reference Control (MRC) or Generic

Model Control (GMC), is enabled.

Two parameter identification schema are proposed: One with which the parameters of

the process model and the controller are, on the bases of process data, simultaneously

identified (resulting in synergy effects regarding their identification); and another for the

tuning of the controller parameters beyond the characteristics that can be learned from

the process data.

A control problem is taken from the area of bioprocesses, namely the control of

biomass through the manipulation of the substrate feeding rate and the control of dis-

solved oxygen concentration through the manipulation of the stirring velocity is con-

sidered. In this particular case, the loop for the control of one quantity, namely the

biomass concentration, is closed (for the gathering of the process data this control loop

was open), wherefore coupling effects come into play. This case study further awards

with highly non-linear kinetics and different time scales of the inherent dynamics, which
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can result in bang-bang situations. Several possible combinations of hybrid control struc-

tures were investigated for this case study, the following could be observed:

i) The complex dynamics of the process could, as expected be captured by the hybrid

process model.

ii) Even so no closed-loop process data were available for one of the quantities, identi-

fication and tuning of controllers could be accomplished utilizing the hybrid process

model, which allows to close the loop. When closing the loop, i.e. considering that

the case study is under control, good performance for the derived controllers was

demonstrated.

iii) The coupling effects that came into play when closing the loop could be well ac-

counted for by the tuning procedure.

iv) For those control structures which hold “true” structural knowledge, the parame-

ter identification converged faster and the consistency of the minima obtained for

various random initiations of the parameters was greater than in cases that the con-

troller was purely based on ANNs, which is in agreement to findings made for hybrid

models (Fiedler and Schuppert, 2008; Mogk & al., 2002; von Stosch & al., 2011a).

v) When set-point changes were applied, those control designs which incorporate the

hybrid process model performed significantly better than other controllers. Con-

trollers that incorporate structural knowledge still performed better than purely ANN

based control.

vi) In cases that the set-point specifications reached into process regions that had not

been explored during the tuning, bang-bang situations could be observed for some

controllers, most distinctively for a pure ANN based controller.

vii) When severe disturbances were applied to the simulated study, it could be observed

that of the hybrid process model based controllers, which had performed well be-

fore, exhibited a rather poor performance. The reason was identified to be due to

controller structure. However it can be expected that the application of an on-line

adaption schema (such as the one proposed in (Hussain & al., 2001)) would signif-

icantly improve the performance of this controller.

Those controllers that incorporated structural knowledge still showed a better overall

performance than those that are based on ANNs only.
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viii) In situations that were not covered during the controller tuning, the structured

hybrid controller performed better when compared to pure ANN based controller.

This is due to the better extrapolation properties of structured approaches (Fiedler

and Schuppert, 2008; Mogk & al., 2002), and thus in direct analogy to the findings

for hybrid models.

ix) As a result of the incorporation of structure into the controller, it is possible to

assess, understand and interpret the controller functioning, wherefore prior to appli-

cation the controller characteristics can be assessed.

6.6 Appendix

6.6.1 The simulation case – A Fed-batch Pichia pastoris cultivation

A fed-batch cultivation of Pichia pastoris is considered, that comprises the macro-

scopic material balance equations of biomass, Xm, substrate, Sm, and dissolved oxygen,

CmO , derived for an ideally mixed fed-batch reactor. The set of balance equation reads:

dXm

dt
= µm(Sm, CmO ) ·Xm −D ·Xm, (6.17)

where µm is the specific biomass growth and D is the dilution rate;

dSm

dt
= −qs(Sm, CmO ) ·Xm −D · (Sm − SF ), (6.18)

with qS being the specific substrate uptake rate, and SF being the methanol con-

centration in the feeding, 791.8 (g/l);

dCmO
dt

= kLa · (C∗O − CmO )− qO ·Xm −D ·CmO , (6.19)

where C∗O is the saturated dissolved oxygen concentration,0.008 (mg/l), kLa is the

oxygen transfer coefficient defined below (1/h) and qO is the specific oxygen uptake rate.

The specific biomass growth is in this study modeled as:

µm = (qS − qM) · YX , (6.20)
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with qM being a term assigned to the biomass maintenance, 0.013 (1/h), YX is the

biomass yield on substrate, 0.36 (-), and qS is the substrate uptake rate which is defined

as:

qS = qS,Max ·
Sm

KS + Sm + Sm2/KI
·

CmO
KO + CmO

. (6.21)

Therein qS,Max is the maximum possible uptake rate, 0.8 (1/h), Ks is 0.4 (g/l),

KI is 5 (g/l) and the last term ensures that substrate uptake can only be accomplished

if sufficient dissolved oxygen is present in the broth where the constant related to the

limiting concentration, KO, is 0.0004 (mg/l). The oxygen uptake rate is according to

(Jahic & al., 2002) governed by two factors, i.e. the biomass growth rate (anabolic

metabolism) and the energy metabolism given by the expression;

qO = (YOS,an − YOS,en) ·µm · 0.96/0.375 + YOS,en · qS, (6.22)

where YOS,an is the methanol consumption per methanol in the anabolism 0.5 (gO2/gmethanol)

and YOS,en is the conversion coefficient for the methanol flux to the energy metabolism,

1.5 (gO2/gmethanol). The kla in the oxygen transfer rate is modeled through a linear

relation with the stirring speed RPM, according to (Cunha & al., 2004) and such:

kla = 0.82 ·RPM − 74.2. (6.23)

The dilution rate is D = u/V , where u is the manipulated methanol feeding rate and

V is the volume of the broth in the reactor. The volume is obtained through:

dV

dt
= u; (6.24)

and the feeding rate is, in the case of data generation, obtained from open-loop

control, while obtained from the hybrid control methodologies proposed in this study for

the investigation of the simulated process under control.

For the control it is assumed that the only on-line measurable state variables are

the dissolved oxygen concentration and the biomass concentration. Additionally, a 20
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seconds time-lag of the sensor signal was incorporated in order to account for the sensor

dynamics, see e.g. (Soons & al., 2006). The sensor dynamics are given by:

dCSensorO

dt
=
CmO − CSensorO

τSensorCO

, (6.25)

where CSensorO is the dissolved oxygen concentration sensor value, and τSensorCO
is the

time constant of the sensor lag, 20 seconds. The stirring velocity is then obtained

through a PI controller:

RPM = KP · (COS − CSensorO ) +KI ·
∫
t

(COS − CSensorO ) · dτ, (6.26)

which has been tuned using the more conservative Tyreus-Luyben ratios for ultimate

gain and frequency, instead of the the Ziegler-Nichols ratios (Seborg & al., 2010), re-

sulting in slight overshoots only when confronted with step changes of the set-point.

The sensor dynamics for the biomass concentration sensor are modeled similarly to

the dissolved oxygen concentration sensor, i.e.:

dX Sensor

dt
=
Xm −XSensor

τSensorX

, (6.27)

where XSensor is the biomass concentration sensor value, and τSensorX is the time

constant of the sensor lag, 20 seconds. The initial values, marked with the index “0”,

are X0 = 70 (g/l), S0 = 0.5 (g/l), CO,0 = 0016. (mg/l), V0 = 18 (l), u0 = 0.1 (l/h),

CSensorO,0 = CO,0 and XSensor0 = X0. In order to have batch-to-batch variations in the

case of data generation the initial values were randomly varied by 10%. The data were

corrupted with 7% Gaussian noise..

6.6.2 Sensitivities Equations

The gradients are obtained when differentiating eq. (6.8), with respect to w ,

dELS
dw

=
1

Pc

∑
Pc

2 · (cmes(t)− c(t))

c2
σ

·
dc

dw
+

1

Pu

∑
Pu

2 · (umes(t)− u(t))

u2
σ

·
du

dw
, (6.28)
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and accordingly differentiating eq. (6.8), with respect to θ,

dELS
dθ

=
1

Pc

∑
Pc

2 · (cmes(t)− c(t))

c2
σ

·
dc

dθ
+

1

Pu

∑
Pu

2 · (umes(t)− u(t))

u2
σ

·
du

dθ
. (6.29)

The gradients, dc/dw , dc/dθ, du/dw and du/dθ, in eqs. (A6.28) and (A6.29) are

the sensitivities equations which are obtained in two steps:

(i) At first, eqs (6.1) and (6.4) are differentiated with respect to w and θ, making

use of the total derivatives, i.e.:

d

dt

dc

dw
=
∂r

∂c
·
dc

dw
+
∂r

∂u
·
du

dw
+
∂r

∂w
−D ·

dc

dw
− c ·

∂D

∂u
·
du

dw
; (6.30)

d

dt

dc

dθ
=
∂r

∂c
·
dc

dθ
+
∂r

∂u
·
du

dθ
−D ·

dc

dθ
− c ·

∂D

∂u
·
du

dθ
(6.31)

d

dt
·
duj
dw

=
∂gj
∂c

·
dc

dw
+
∂gj
∂u

·
du

dw
+
∂gj
∂EP

·
dEP
dw

+
∂gj
∂EI

·
dE I
dw

+
∂gj
∂ED

·
dED
dw

; (6.32)

d

dt
·
duj
dθ

=
∂gj
∂c

·
dc

dθ
+
∂gj
∂u

·
du

dθ
+
∂gj
∂EP

·
dEP
dθ

+
∂gj
∂EI

·
dE I
dθ

+
∂gj
∂ED

·
dED
dθ

+
∂gj
∂θ

; (6.33)

where

dED
dw

= −
d

dt

dc

dw
; (6.34)

dEP
dw

= −
dc

dw
; (6.35)

dE I
dw

=

∫
t

−
dc

dw
· dτ ; (6.36)

when (a) assuming that the set-point is independent of the model and the controller

parameters; and (b) choosing cX to be c . In the case that cX is chosen to be cmes ,
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the gradients in eqs. (A6.34), (A6.35) and (A6.36) become zero. In case that for the

controller eq. (6.3) is used instead of eq. (6.4), the derivative with respect to time in

eqs. (A6.32) and (A6.33) is neglected.

(ii) Secondly, the derived eqs. (A6.30), (A6.31), (A6.32) and (A6.33) are numerically

integrated along with the model and controller eqs. (6.1) and (6.4). The initial values

of eqs. (A6.30), (A6.31), (A6.32) and (A6.33) are assumed to be zero, since the initial

values of the concentrations and the initial values of the feeding rates are independent

of the model and controller parameters. The integration of eqs. (6.1), (6.4), (A6.30),

(A6.31), (A6.32) and (A6.33) is in this study carried out with a time-inexpensive Euler

integration scheme that can be easily fitted to the sampling frequency, while the associate

numerical integration error is sufficiently small not to affect the predictions.
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6.8 Nomenclature
Abbreviations

AIC Akaike Information Criterion
ANN Artificial Neural Network
BIC Bayesian Information Criterion
DO Dissolved Oxygen concentration
GMC Generic Model Control
IE Integrated Error
IAE Integrated Absolute Error
ITE Integral Time and Error
ITAE Integral Time and Absolute Error
MRC Model Reference Control
MSE Mean Squared Error
ODE Ordinary Differential Equation
PID Proportional-Integral-Differential

Mathematical Symbols
b1 Bias of the input layer
b2 Bias of the hidden layer
c Vector of concentrations
cdesired (t) Desired controller response for controller tuning
cs Vectoe of set-points
cσ,j Standard deviations
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cmes Off-line measured concentration values
cX Concentration inputs to the controller
g( · ) Vector of controller functions
h( · ) Transfer function of the hidden layer
i Counter
j Counter
kLa Oxygen Transfer Coefficient - Simulation model
qS Specific methanol uptake rate - Simulation model
qS,Max Maximum possible methanol uptake rate
qO Specific oxygen uptake rate - Simulation model
qM Biomass maintenance- Simulation model
r Vector of kinetic rates
rO Oxygen uptake rate
rT Oxygen transfer rate
t Time
u Control inputs
umes,1..Pu Measured control input
uMet Methanol feeding rate
uσ Standard deviation of the control input
u1,A ANN-based controller
u2,A Dynamic ANN-based controller
u1,B First order Model Reference Controller
u2,B Second order Model Reference Controller
u1,C Generic Model Controller
u2,C Generalized PID Controller
w Vector of ANN parameters
w1 Weights of the input layer
w2 Weights of the hidden layer
CO Dissolved Oxygen concentration
CmO Dissolved Oxygen concentration - Simulation model
C∗O Saturated dissolved oxygen concentration - Simulation model
COS Dissolved Oxygen concentration set-point
CSensorO

Dissolved oxygen concentration sensor value - Simulation model
D Dilution rate
ELS Weighted least squared criteria
ENMSSE Normalized Mean Sum of Squared Error
ED Derrivative error
EI Integral error
EP Proportional error
J Total number of control inputs
K Matrix of stoichiometric coefficients
Ki GMC integral parameter
Kp GMC proportional parameter
Ks Simulation model parameter
KO Simulation model parameter
KI Simulation model parameter
LX Inputs to the controller
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Pc Number of concentration samples
Ps Number of data points considered for controller tuning
Pu Number of input control samples
PI Proportional Integral Controller
RPM Stir velocity
Sm Substrate concentration - Simulation model
SF Substrate feeding rate concentration - Simulation model
V Reactor volume
X Biomass concentration
XS Biomass concentration set-point
Xm Biomass concentration - Simulation model
XSensor Biomass concentration sensor value- Simulation model

YOS,an
Methanol consumption per methanol in the anabolism - Simulation
model

YOS,en
Conversion coefficient for the methanol flux to the energy
metabolism- Simulation model

YX Biomass yield on substrate
β1 MRC parameter
β2 MRC parameter
γ1 MRC parameter
γ2 MRC parameter
$1 Bias of the linear layer
$2 Bias of the hidden layer
θ Controller Parameters
θ1 Weights of the linear layer
θ2 Weights of the hidden layer
ϑ GMC tuning parameter
Γ Ratio coefficients
φ Mechanistic term
ϕ Structural knowledge terms
% Unknown controller terms
ρ Unknown nonparametric terms
µ Specific biomass growth rate
µm Specific biomass growth rate - Simulation model
τc MRC parameter
τSensorCO

Time constant of the sensor lag- Simulation model

τSensorX
Time constant of the sensor lag- Simulation model

ζ GMC tuning parameter





Chapter 7

Conclusion and Prospects

7.1 Conclusion

In this thesis, it was attempted to develop the topic of hybrid modeling of biological

systems and to develop new strategies for process monitoring and control based on hy-

brid models. The strategy pursued in this thesis consisted first the development of novel

hybrid structures that go deeper in the description of complex intracellular dynamics,

aligned with the new developments in systems biology. Also novel hybrid model struc-

tures particularly suitable for modeling highly dimensional multivariate data sets were

developed as an effort to answer to the challenges posed by emergent measurement

technologies based on optical probes for on-line spectral data acquisition. Then the

application of such hybrid structures for process monitoring and closed-loop control was

pursued under a practical viewpoint, wherein the focus has been on improving widespread

monitoring and control strategies, such as PID, by the incorporation of hybrid models,

resulting for instance in improved hybrid PID algorithms.

As first note, throughout this thesis it was observed that the careful combination of

different sources of knowledge can lead to outstanding hybrid modeling results, but it

was also observed that the utilization of a hybrid approach is not an automatic guaranty

for good model performance. Regarding this matter, the following considerations about

model structure are worthwhile to notice :

i) When the true system can be decomposed into a static nonlinear and a dynamic

part, then the formulation of a parallel hybrid model, whose structure is equivalent

to the one of the system, is, in principle, to prefer over a serial structure.

191
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ii) The parallel approach seems also preferable when the structural uncertainty of the

phenomenological/mechanistic model is high, since the nonlinear parallel model can,

at least partially, account for the structural mismatch.

iii) In case of the serial approach, it was observed that when changing the structure

of the model formulation, the performance peaks when the model structure is the

closest to the one of the true system (Corazza & al., 2005). This also concerns

the consideration of inherent dynamic effects by the structure, which results into a

better coherence with the process underlying cell system (von Stosch & al., 2010).

Also the partition of the reaction rate function by a mixture of experts approach

relies on this principle (Peres & al., 2008).

iv) The model structure can, however, also be a source for error propagation. Two

scenarios were distinguished, namely (1) errors inherent to the feedback nature of

the models (where applicable); (von Stosch & al., 2011b) or (2) defective initial

values (Vande Wouwer & al., 2004; von Stosch & al., 2011b).

v) Other sources for estimation errors were identified to be due to (1) noise in the

input measurements to the nonparametric model; (2) noise in the measurements of

the feeding rates (Chabbi & al., 2008; Schubert & al., 1994a; von Stosch & al.,

2011b);

vi) The integration of phenomenological/ mechanistic knowledge can structure the

space of operation and it can reduce the curse of dimension (Fiedler and Schuppert,

2008; Mogk & al., 2002).

vii) A result of the structured operation space is that the hybrid models have better

calibration properties than pure nonparametric models, i.e. when training a serial

hybrid model and a pure nonparametric with the same data, then the hybrid model

will, in principle, perform better, meaning that the estimations are more accurate

and the intra- and extrapolation properties are better.

The better calibration properties of hybrid models translate directly into lower re-

quirements on the experimental data.

viii) The utilization of the “true” structure and integration of further knowledge can more-

over result into better extrapolation properties (Fiedler and Schuppert, 2008) than

when no knowledge at all is integrated. The extrapolation properties are especially

enhanced in those cases where the model extrapolation relies on the mechanistic

parts (van Can & al., 1996, 1998).
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ix) In certain cases of knowledge integration even Bounded Input Bounded Output

stability can be guaranteed (Karama & al., 2010; Oliveira, 2004). One prerequisite

therefore is e.g. the consideration that a reaction can only occur when all educts

are present.

x) Another positive consequence of structural knowledge incorporation is that the

model is more transparent and therefore can be analyzed, which is especially in-

teresting in cases such as the optimization of the control policy.

These points served to properly address the general properties of hybrid models,

especially the ones of serial hybrid models.

When developing a bioprocess hybrid model it is important to realize that the source

of complexity of observed dynamics lies mostly in the cellular system. It is common to

observe very complex dynamic patterns, such as delay dynamics, without any apparent

rational to explain such observations. Thus this thesis has put particular emphasis on

the development of hybrid structures that display better coherence with the nature of

cell systems. Regarding the hybrid methodologies which were developed to display better

coherence with the underlying cell-system, the following main conclusions can be stated:

i) Intrinsic cell dynamics can mathematically be accounted for by the incorporation of

time delays into the modeling framework. Therefore the integration of a discrete

delay approach into the hybrid modeling framework was proposed. It was observed

that the delay constitutes an important property of the cell systems and that the

dynamics could only be captured when it was accounted for the delay. The coher-

ence between the experimental data and the model estimations are found to be the

better the closer the model delay is to the “true” system's delay. The model perfor-

mance peaked when both delays coincided, which theoretically renders possible the

identification of the system's underlying delay. Further, it could be seen that the

hybrid approach, even so basing on a discrete delay formulation, is not limited to

discrete delay dynamics, but also can deal with e.g. distributed delay dynamics.

ii) The cellular activity is highly sensitive to its environment. The environmental con-

ditions are tried to be captured by several sensors, e.g. pH, temperature, dissolved

oxygen concentration sensors or spectroscopic devices such as Near InfraRed. In

this regard, the high number of correlated data that become available at each time

instant have to be processed by adequate tools. For this purpose a Nonlinear Partial

Least Square (NPLS) alike model was incorporated into a serial hybrid model. When

evaluating the proposed methodology against a static Partial Least Square (PLS)
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model using experimental data of a Bordetella pertussis batch cultivation it was

observed that, in general, better estimations were obtained with lower numbers of

involved parameters, in favor of the former. When comparing the hybrid methodol-

ogy, which is inherently dynamic, to standard dynamic (N)PLS formulations similar

observations were made. An additional feature of PLS, which is restored by the

hybrid NPLS model, is the opportunity to analyze the score values, e.g. for fault

diagnosis.

Of course the quest for models and hybrid model structures that display better con-

sistency with the cell-system is not over, if it ever will be, but with these hybrid method-

ologies two dynamic modeling solutions are provided, which address eminent problems,

namely intrinsic cell dynamics and the cell environment interaction.

The better consistency of the model with the system is, in general, of advantage also

for model-based process control. It was already mentioned that there exist two ways

to profit from a process model, namely to use a control schema that is based on the

model directly or to exploit the model for the tuning of the controller parameters. Both

scenarios have been studied. Additionally, it was investigated whether the incorporation

of structure into the controller equation gives similar advantages as those observed for

hybrid models. From this study, it was observed that:

i) For those control structures which hold structural knowledge, the parameter iden-

tification converged faster and the consistency of the minima obtained for various

random initiations of the parameters was greater than in cases that the controller

was purely based on ANNs.

ii) The controllers with incorporated structural knowledge performed better than purely

ANN based control, when e.g. confronted with set-point changes.

iii) In situations that were not covered during the controller tuning, the structured hybrid

controller performed better when compared to a pure ANN based controller.

iv) As a result of the incorporation of structure into the controller, it is possible to

understand the controller functioning, wherefore prior to application the controller

characteristics can be assessed.

Other general observations that could be made when exploiting hybrid models for

process control are:

i) Through the application of the hybrid process model it was possible to close the loop

for the control of biomass. The closing of the loop resulted into coupling effects
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with the closed-loop control of the dissolved oxygen concentration. Those coupling

effects could a priori be accounted for by the controller tuning.

ii) In case of model based control structures, in general good control performance

could be achieved, but one of the controllers was observed to be less suitable. In

this particular case, it was concluded that the model mismatch due to the controller

structure was amplified, leading to poor performances when model uncertainty is

high.

All in all, it can be said that both the controller and the model performance depend

highly on the availability of quantitative measurement values, at best with a, relative

to the process, high sampling frequency. The fusion of the data and other process

knowledge, in a hybrid sense, can then be used to maximally exploit these data and in

turn provide an optimal base for process control and process optimization. However,

and as mentioned above, the application of an hybrid approach is not a guarantee for

better performance than when each knowledge source is exploited on there own, but

the advantages that can be achieved through careful knowledge fusion are, in general,

manifold.

7.2 Prospects

The advantages that hybrid modeling can offer for process monitoring and control are

striking, however in comparison to other modeling approaches, it still lives in the shadows.

One reason might be that, at a first sight, the development of a hybrid model is rather

unappealing, since several details have to be considered before a more or less readily first

modeling approach is obtained. A commercial software that actively supports the user

during the whole modeling procedure, while enabling a maximum of flexibility to inter-

act with other software and different kind of sources, would for sure push things forward.

The amount of process data that is available both, at-time and a posteriori has

significantly risen in the last decades (Schuegerl, 2001). Further, mechanistic/ phe-

nomenological knowledge about the underlying physical system becomes increasingly

available since various areas of science focus on the investigation of specific details, e.g.

Systems Biology or Molecular Thermodynamics. Those evolutions can be expected to

continue and thus the amount of knowledge that is available will increase dramatically

in the upcoming years. Therefore it is important to develop and evaluate interfaces and

fusion techniques to obtain a hybrid framework in which all the knowledge sources can
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optimally be linked. This also addresses the combination of knowledge form different

scales/ levels (Parrott, 2011). It was for instance shown by Teixeira & al. (2007b)

that through the use of hybrid modeling, process engineering and systems biology can

be linked. When these links are established then information might become redundant

and reconciliation techniques can find application to evaluate the information. Modeling

approaches that critically question themselves (a form of intelligence that is usually as-

sociated with scientists) might be developed. This can help the user to understand the

limitations of the overall system's representation and to overcome those where desired.

Ultimately, scenarios where the hybrid model is self-evolving in order to be optimal at

all time could be imagined, as e.g. envisaged by Patnaik (2009). By doing so it might

become more and more possible to manage the complexity of all kind of systems.

The application of hybrid models is promoted in several areas. Just recently the

value added by hybrid modeling to the PAT framework was outlined by Gernaey and

Gani (2010); Glassey & al. (2011); Teixeira & al. (2009). As a matter of fact, the re-

quirements on the “PAT tools” read as the list of hybrid model advantages. Further, the

pharmaceutical industry could immensely profit from the integration of hybrid modeling

at all development stages of the pharmaceutical process, and also of utilization of hybrid

modeling plant-wide (up-stream and down-stream).

Another emerging area for the application of hybrid models is systems biology, see

for instances Carinhas & al. (2011). Hybrid modeling is attractive in this area since it

can help to link the different scales of cell modeling and can account for unknown or

uncertain parts.

The integration of hybrid models into complex flowsheets for (bio)chemical processes

and the resulting overall representation of the plant, is envisaged as a consequence of the

publication by Fiedler and Schuppert (2008). The advantages, such as the possibility to

(further) optimize the plant set-points or the opportunity to achieve better closed-loop

control performance, are obvious.

In general the application of hybrid models is advisable, whenever different sources

of knowledge exist for a given process. In order to achieve the best possible results,

a software tool should be developed that actively supports the user, while offering a

maximum on flexibility for source and structure integration.

.
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