
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

9-1995

Full Envelope Control of Nonlinear Plants with Parameter Full Envelope Control of Nonlinear Plants with Parameter

Uncertainty by Fuzzy Controller Scheduling Uncertainty by Fuzzy Controller Scheduling

Thomas J. Kobylarz

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Controls and Control Theory Commons

Recommended Citation Recommended Citation
Kobylarz, Thomas J., "Full Envelope Control of Nonlinear Plants with Parameter Uncertainty by Fuzzy
Controller Scheduling" (1995). Theses and Dissertations. 6311.
https://scholar.afit.edu/etd/6311

This Dissertation is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact AFIT.ENWL.Repository@us.af.mil.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F6311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/269?utm_source=scholar.afit.edu%2Fetd%2F6311&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/6311?utm_source=scholar.afit.edu%2Fetd%2F6311&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil

AFIT/DSG/ENG/95S-05

FULL ENVELOPE CONTROL OF NONLINEAR

PLANTS WITH PARAMETER UNCERTAINTY BY

FUZZY CONTROLLER SCHEDULING

DISSERTATION
Thomas J. Kobylarz

Captain, USAF

AFIT/DSG/ENG/95S-05

19960327 041
Approved for public release; distribution unlimited

DISCLAIMER NOTICE

TfflS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

The views expressed in this dissertation are those of the author and do not reflect

the official policy or position of the Department of Defense or the U. S. Government.

AFIT/DSG/ENG/95S-05

FULL ENVELOPE CONTROL OF NONLINEAR PLANTS WITH

PARAMETER UNCERTAINTY BY FUZZY

CONTROLLER SCHEDULING

DISSERTATION

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology-

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Thomas J. Kobylarz, BSEE, MSEE

Captain, USAF

September, 1995

Approved for public release; distribution unlimited

AFIT/DSG/ENG/95S-05

FULL ENVELOPE CONTROL OF NONLINEAR PLANTS WITH

PARAMETER UNCERTAINTY BY FUZZY

CONTROLLER SCHEDULING

Thomas J. Kobylarz, BSEE, MSEE

Captain, USAF

Approved:

>£c. Iqc^fe/
Meir Pachter, Chairman

Constantine H. Houpis

Steven K. Rogers

A^v>w

Matthew Kabrisky, Dean's Representative

Z9 4i*f>/ffS

Accepted:

Robert A. Calico, Jr
Dean, Graduate School of Engineering

Acknowledgements

I would like to thank all my professors at AFIT for providing me with the

foundations for completing this dissertation, especially my research committee. The

endless reviews of Dr Meir Pachter and Dr Constaintine Houpis ensured meaningful

and objective results. My thanks also goes out to all the other faculty and staff who

in some way contributed to the completion of this document.

Never ending thanks goes out to my beautiful wife Korina for forcing me to

sit down and complete this work, as well as taking care of the family in my absence.

Of course, I can't leave out the kids; thanks Zac, Jake and Karlie for adding a little

spice to life. Now we can finally spend more time together. To all the guys on the

Hockey team, thanks for letting me take out my frustration.

Finally to my officemates, past and present, thanks for the help and ears.

Thomas J. Kobylarz

m

Table of Contents

Page

Acknowledgements iii

Notation viii

List of Figures x

List of Tables xv

List of Symbols xvi

List of Abbreviations xviii

Abstract xix

I. Introduction 1-1

1.1 Motivation 1-1

1.2 Research Direction 1-3

1.3 Control System Description 1-5

1.4 Research Scope and Assumptions 1-7

1.5 Current Literature 1-8

1.6 Organization 1-14

II. Multivariate Fuzzy Logic 2-1

2.1 Fuzzy Sets and Membership Functions 2-1

2.2 Fuzzy Rules 2-6

2.3 Fuzzy Set Operations 2-7

2.4 More Fuzzy Logic 2-14

2.4.1 Conflict Resolution 2-15

2.4.2 Defuzziflcation 2-19

iv

Page

III. The ra-Dimensional Scheduler 3-1

3.1 Location of Point Controllers 3-3

3.2 Nearest Neighbor in n-Dimensions 3-6

3.3 Development of the Constraint Functional 3-8

3.4 Selection of Membership Function Variance Parameters 3-12

3.4.1 2-Dimensional Variance Solution. 3-16

3.5 2-Dimensional Scheduler Example 3-21

3.5.1 Plant and Point Controllers 3-21

3.5.2 The Fuzzy Scheduler 3-23

3.5.3 Optimization 3-25

3.5.4 Solution. . 3-26

3.6 Summary 3-29

IV. 1-Dimensional Scheduling Examples 4-1

4.1 Simplifications Due to 1-Dimensional Scheduling . . . 4-2

4.2 Variation on the Constraint Functional 4-4

4.3 Optimization 4-4

4.3.1 Set Up 4-5

4.3.2 Solution 4-6

4.4 Simulation Results 4-7

4.5 LTI and LTV Results 4-11

4.5.1 Solution for the LTV System 4-12

4.5.2 Solution for the LTI System 4-13

4.6 C-135 Aircraft Example 4-18

4.6.1 The Aircraft Model 4-18

4.6.2 Problem Statement 4-21

4.6.3 Controller Design 4-22

4.7 Summary 4-27

V. Conclusions and Recommendations

5.1 Conclusions . . .

5.2 Contributions

5.3 Recommendations for Further Study

5.4 Summary

Appendix A. Fuzzy Identification . . .

A.l Fuzzy Logic ID Paradigm

A.2 Identification Concept . .

A.3 Polynomials

A.4 XOR Gate Plant Example

A.5 Summary

Appendix B. Experiments

B.l Nonlinear Plant Formulation

B.2 Two State Nonlinear Example

B.3 Fuzzy Logic Control of a Family of Two Plants

B.3.1 Linear Time-Invariant Plant

B.3.2 Linear Time-Varying Plant

B.3.3 Nonlinear Plant

B.4 Summary

Appendix C. Support Data for Chapter III

C.l Listing of MATLAB Function voronoi .m

C.2 Listing of MATLAB Function delaunay.m

C.3 Listing of MATLAB Function triangle .m

C.4 Listing of MATLAB Function incircle.m

C.5 Listing of MATLAB Function ccw.m . . .

C.6 Listing of MATLAB Function conJmll .m

Page

5-1

5-1

5-3

5-4

5-6

A-l

A-2

A-3

A-3

A-6

A-10

B-l

B-l

B-4

B-6

B-7

B-14

B-17

B-20

C-l

C-l

C-5

C-8

C-10

C-ll

C-12

VI

Page

C.7 Listing of MATLAB Function sortjid.m . . C-15

C.8 Listing of MATLAB Function fom_nl.m C-16

C.9 Listing of MATLAB Function fuz_cost.m C-20

CIO Listing of MATLAB Function find_2dv.m C-23

C.ll Listing of MATLAB Function crosjnem.m C-27

Appendix D. Support Data for Chapter IV D-l

D.l Increase in Cover by Scheduler: Nonlinear System . . . D-l

D.2 Constraint Surface Plots of Point Controllers: Nonlinear

System D-6

D.3 Constraint Surface Plots of Scheduler: Nonlinear System D-12

D.4 Increase in Cover by Scheduler: LTV System D-18

D.5 Constraint Surface Plots of Point Controllers: LTV Sys-

tem D-20

D.6 Constraint Surface Plots of Scheduler: LTV System . . D-23

Bibliography BIB-1

Vita VITA-1

vn

Notation

Sealars, Vectors, Matrices

Sealars. Denoted by upper or lower case letters in italic type.

Vectors. Denoted by lower case letters in italic type, vector or scalar is taken

from context. The n-dimensional vector x is made up of components Xi for i =

l,...,n.

Matrices. Denoted by upper case letters in boldface type, as the matrix A,

made up of elements A^ (?th row, jth column).

Superscripts

(.)T

(0

transpose (matrix)

inverse (matrix or transform)

optimal solution, complex conjugate, or complement (set)

differeniation with respect to time

Operators

Functions and mappings are set in an italic font.

Matrix and Vector Relationships

A>B

A>B

x > a

A - B is positive definite

A - B is positive semidefinite

component wise, x\ > a%, xi > a2,..., xn > an

vm

Sets

• A blackboard font denotes Algebraic Fields and Linear Spaces.

• A calligraphic font denotes Fuzzy Sets and Fuzzy Rules.

• A sans serif font denotes classical sets.

all of which will be upper case, some examples are:

N

C

M

Hi

A

All real numbers

{r e R \r < 0}

{r € R | r > 0}

All natural numbers

All complex numbers

A Fuzzy Set

The ith Fuzzy Rule

A = [a, b] C R where a < b; a, b G

IX

List of Figures
Figure Page

1.1. Functional Diagram of Adaptive Controller Using Fuzzy Scheduling 1-6

2.1. Gaussian Membership Function for Varying a 2-4

2.2. Surface Plots of Bivariate Fuzzy Logical Injunction Operators . . 2-9

2.3. Surface Plots of Fuzzy Logical NOT Injunction Operator 2-11

2.4. Fuzzy Variables "x is Negative", ux is Zero", and "a; is Positive" 2-16

2.5. Fuzzified Mapping of Continuous Nonlinear Elements 2-17

2.6. Fuzzified Mapping of Discontinuous Nonlinear Elements 2-18

3.1. Generalized Neighbors 3-8

3.2. Acceptable Thumb Print Specification and Example Responses . 3-9

3.3. Implications of Selection of e on Normalized Weights 3-15

3.4. Membership Function Selection of Points in R2 3-20

3.5. Block Diagram of Fuzzy Scheduler 3-23

3.6. Nonlinear Plant with Parameter Uncertainty 3-23

3.7. Bank of 10 Point Designs 3-24

3.8. Increase in Object Function 3-27

3.9. Tracking Response of Slewing Commands 3-27

3.10. Stability Analysis 3-28

4.1. SIMULINK® Block Diagram of 10 Point Scheduler with Normal-

ized Weights 4-2

4.2. Normalization of the Weights 4-2

4.3. Bank of 10 Point Controllers 4-3

4.4. Results of Optimization 4-6

4.5. Gauging the Strength of a Nonlinearity 4-8

Figure Page

4.6. Stability Analysis of the Scheduler 4-8

4.7. Increase in Cover 4-10

4.8. Performance Surface Before and After Scheduling 4-10

4.9. Constraint Surface for pio where UQ = 1.209 4-11

4.10. Visualization of Mean Normalized Output Error 4-11

4.11. Results of Optimization of the LTV System 4-12

4.12. Stability Analysis of the Scheduler for the LTV System 4-13

4.13. Performance of the LTV System 4-14

4.14. Results of Optimization of the LTI System 4-15

4.15. Evaluation of Routhian Constraints 4-17

4.16. Increase of Cover of the LTI System 4-18

4.17. Classical Flight Controller by Loop Closure 4-23

4.18. Equivalent Form of Point Controller 4-23

4.19. Fuzzy Scheduler for C-135 4-24

4.20. Blending of Control Inputs 4-25

4.21. Controllers' Performance at Flight Condition #1 4-25

4.22. Scheduling Surface 4-26

A.l. Triangular Fuzzy Variables for Input/Output A-4

A.2. Fuzzy Fit of Polynomials A-5

A.3. Fuzzy Blending as a Function of Overlap A-6

A.4. Gaussian Fuzzy Variables for all Channels A-7

A.5. Identification Results: Error vs. Rule Set A-8

A.6. Performance for Spanning Input/Output Data A-9

B.l. Adaptive Control Structure for two Point Controller Designs . . B-8

B.2. Root Locus and Closed-Loop Performance for either P\$ ■ • • • B-9

B.3. System Response using Single Fixed Controller Over Range of r B-ll

XI

Figure

B.4. Block Diagram of Fuzzy Scheduler

B.5. Membership Functions used for v

B.6. Fuzzy Scheduled Controller Response Over Applicable Range of r

B.7. Thumb Print Response of System for r £ {1,1.5,2}, a € {0.5,1.5}

B.8. Clustering of Response for r e {1,1.5,2}, a G {0.5,1.5}

B.9. LTV Plant with Externally Defined T

B.10. Simulation Diagram for LTV Plant

B.ll. LTV Plant Response of Fuzzy Scheduler

B.12. Nonlinear Plant Implementation

B.13. Simulation Diagram for Nonlinear Plant

B.14. Nonlinear Plant Response of Fuzzy Scheduler

D.I. Increase in

D.2. Increase in

D.3. Increase in

D.4. Increase in

D.5. Increase in

D.6. Increase in

D.7. Increase in

D.8. Increase in

D.9. Increase in

D.10. Increase in

D.H. Constraint

D.12. Constraint

D.13. Constraint

D.14. Constraint

D.15. Constraint

D.16. Constraint

Slewing Capability from Point Design 1

Slewing Capability from Point Design 2

Slewing Capabi

Slewing Capabi

Slewing Capabi

Slewing Capabi

ility from Point Design 3 .

ility from Point Design 4 .

ility from Point Design 5 .

ility from Point Design 6 .

Slewing Capability from Point Design 7 .

Slewing Capability from Point Design 8 .

Slewing Capability from Point Design 9 .

Slewing Capability from Point Design 10

Surface for Point Controller 1

Surface for Point Controller 2

Surface for Point Controller 3

Surface for Point Controller 4

Surface for Point Controller 5

Surface for Point Controller 6

Page

B-12

B-12

B-13

B-14

B-15

B-16

B-17

B-18

B-18

B-19

B-19

D-l

D-l

D-2

D-2

D-3

D-3

D-4

D-4

D-5

D-5

D-6

D-6

D-7

D-7

D-8

D-8

xn

Figure Page

D.17. Constraint Surface for Point Controller 7 D-9

D.18. Constraint Surface for Point Controller 8 D-9

D.19. Constraint Surface for Point Controller 9 D-10

D.20. Constraint Surface for Point Controller 10 D-10

D.21. Constraint Surface of Point Controllers, C(y{t)) D-ll

D.22. Constraint Surface of Point Controllers after Normalized Output

Error Check D-ll

D.23. Constraint Surface for Scheduler from Point 1 D-12

D.24. Constraint Surface for Scheduler from Point 2 D-12

D.25. Constraint Surface for Scheduler from Point 3 D-13

D.26. Constraint Surface for Scheduler from Point 4 D-13

D.27. Constraint Surface for Scheduler from Point 5 D-14

D.28. Constraint Surface for Scheduler from Point 6 D-14

D.29. Constraint Surface for Scheduler from Point 7 D-15

D.30. Constraint Surface for Scheduler from Point 8 D-15

D.31. Constraint Surface for Scheduler from Point 9 D-16

D.32. Constraint Surface for Scheduler from Point 10 D-16

D.33. Constraint Surface of Scheduler, C{y(t)) D-17

D.34. Constraint Surface of Scheduler after Normalized Output Error

Check. D-17

D.35. Increase in Slewing Capability from Point Design 1 D-18

D.36. Increase in Slewing Capability from Point Design 2 D-18

D.37. Increase in Slewing Capability from Point Design 3 D-19

D.38. Increase in Slewing Capability from Point Design 4 D-19

D.39. Constraint Surface for Point Controller 1 D-20

D.40. Constraint Surface for Point Controller 2 D-20

D.41. Constraint Surface for Point Controller 3 D-21

D.42. Constraint Surface for Point Controller 4 D-21

Xlll

Figure Page

D.43. Constraint Surface of Point Controllers, C(y(t)) D-22

D.44. Constraint Surface of Point Controllers after Normalized Output

Error Check . D-22

D.45. Constraint Surface for Scheduler from Point 1 D-23

D.46. Constraint Surface for Scheduler from Point 2 D-23

D.47. Constraint Surface for Scheduler from Point 3 D-24

D.48. Constraint Surface for Scheduler from Point 4 D-24

D.49. Constraint Surface of Scheduler, C(y(t)) D-25

D.50. Constraint Surface of Scheduler after Normalized Output Error

Check D-25

xiv

List of Tables
Table Page

3.1. Tracking Specifications and Weights Used 3-11

4.1. C-135 Flight Conditions and Stability Derivatives 4-21

A.l. All Possible Rule Sets for 2-input 1-output Binary Device A-7

B.l. Run Number vs. r and v (r = 3t>2) B-10

xv

List of Symbols
Symbol Page

R ix

R- ix

R+ ix

N ix

C ix

TZi ix

p 1-1

P 1-2

B(p,e) 1-2

N . 1-6

m 1-6

M 1-6

#oo 1-11

H 2-2

x 2-3

R . 2-3

a 2-3

G 3-2

Wi(p) 3-2

H 3-4

y(t) 3-4

C „ 3-4

^x 0~0

$(s\x) 3-5

Ni 3-7

xvi

Symbol Page

B; 3-7

V; 3-7

0 3-7

F 3-9

T] 3-10

v 3-10

T 3-10

7. 3-10

w 3-10

Vi 3-13

L 3-19

L' 3-19

r 3-21

Gi(s) 3-22

G* 3-26

Gsch{s) 4-16

<j> 4-18

ß ' 4-18

q 4-22

A B-2

B B-2

C B-8

Lon B-8

XVll

List of Abbreviations
Abbreviation Page

LQR. 1-2

QFT 1-2

FL 1-3

ID 1-4

FLC . 1-5

LTI 1-7

PID . 1-11

SISO 1-11

PD 1-12

MIMO 1-14

USAF 1-15

MF 2-1

FV 2-1

COA 2-20

MISO 3-1

SQP 3-2

LTV 3-5

TRN 3-8

xvin

AFIT/DSG/ENG/95S-05

Abstract

A full envelope controller synthesis technique is developed for multiple-input

single-output (MISO) nonlinear systems with structured parameter uncertainty. The

technique maximizes the controller's valid region of operation, while guaranteeing

pre-specified transient performance. The resulting controller does not require on-

line adaptation, estimation, prediction or model identification. Fuzzy Logic (FL)

is used to smoothly schedule independently designed point controllers over the op-

erational envelope and parameter space of the system's model. These point con-

trollers are synthesized using techniques chosen by the designer, thus allowing an

unprecedented amount of design freedom. By using established control theory for

the point controllers, the resulting nonlinear dynamic controller is able to handle the

dynamics of complex systems which can not otherwise be addressed by Fuzzy Logic

Control. An analytical solution for parameters describing the membership functions

allows the optimization to yield the location of point designs: both quantifying the

controller's coverage, and eliminating the need of extensive hand tuning of these

parameters. The net result is a decrease in the number of point designs required.

Geometric primitives used in the solution all have multi-dimensional interpretations

(convex hull, ellipsoid, Voronoi/Delaunay diagrams) which allow for scheduling on

n-dimensions, including uncertainty due to nonlinearities and parameter variation.

Since many multiple-input multiple-output (MIMO) controller design techniques are

accomplished by solving several MISO problems, this work bridges the gap to full

envelope control of MIMO nonlinear systems with parameter variation.

xix

FULL ENVELOPE CONTROL OF NONLINEAR PLANTS WITH

PARAMETER UNCERTAINTY BY FUZZY

CONTROLLER SCHEDULING

/. Introduction

1.1 Motivation

The vast majority of control design techniques are based upon a mathematical

model of the system, or "plant", that is to be controlled. These models allow the

use of analytical tools to guarantee that performance specifications will be met; but

these guarantees only hold as long as the underlying models are valid. Thus, many

systems require complex control strategies to perform their designed tasks, especially

those control systems that are required to operate in an unstructured environment.

Furthermore, dealing with the entire dynamic range of operation can bring a control

design technique to its knees. This is where the true controller design problem lies.

Varying parameters and uncertainty from sensor noise, disturbances and perhaps

even failures, ensure that the model is never perfect. An example of such a problem

arises in flight control, where one is dealing with the nonlinear dynamics of an air-

craft, whose parameters, in addition, vary continuously over its entire flight envelope.

Thus the problem is then two-fold. First, the nonlinearity/complexity of the model;

and secondly, the variation, or uncertainty in the model's parameters. In conclusion:

The former problem is encountered when large amplitude slewing maneuvers are at-

tempted. The latter poses problems when operating in an unstructured environment

is required.

Perhaps the most useful way of dealing with nonlinearity of the model is to

linearize it about some point, p, in its operating range; that is about a point in the

1-1

parameter space, P, of the model. The parameter space P encompasses both the set

of generic parameters that govern the dynamics of the plant, and variables which

define the operating condition in the operational envelope. If the model is "smooth",

a rather unrestrictive assumption for many physical systems, the linearized equation

will accurately represent the true system in some "sufficiently small" region, or ball

B(p, e), about the equilibrium point p in the parameter space. The scalar e represents

how far the actual operating point can deviate from p and still be "adequately" de-

scribed by the model and is determined by the strength of the pertinent nonlinearity.

One now has available all the tools for linear analysis, and the solution within this

neighborhood can be obtained by a myriad of linear control synthesis techniques,

i.e. LQR, QFT, etc. However, one must still deal with varying parameters over the

entire operating range. Varying the model's parameters may "remove" the system

from within this region of model validity. The controller achieved above may yield

nevertheless acceptable performance beyond the region for which it was designed,

but this must be construed as luck in a specific problem solution. In an attempt

to ensure adequate performance over the entire parameter space, the designer must

adequately cover the entire space with a valid region, or regions, upon which to

base the design. Robust controllers are those which attempt to increase the volume

of such a region in the parameter space. One robust control design technique that

actually quantifies its valid design region is Quantitative Feedback Theory [8, 16].

Frequently no single controller will do. A common practice is to perform sev-

eral point-wise control designs, each design performed for a fixed p £ P, that will

adequately cover the entire operational range. These point designs need not be de-

signed for only one point, but may be robust controllers covering a specified region of

P. For instance in QFT where the region of acceptable performance in P is specified.

Such robust controllers are considered to be designed around a point in P and there-

fore, will also be referred to as point designs. Classically, this requires overlap of the

balls indicating the valid regions of the individual models. The rationale is then that

1-2

for any fixed point in the parameter space, one chooses "the best" controller and

uses it. In this type of approach, one must devise a means of smoothly switching

between controllers without inducing an objectionable response during the transi-

tion. This can be interpreted in a broad sense as "robust scheduling"; in particular

"gain scheduling" is when the (not necessarily robust) controllers are of a common

parametric form and these parameters are scheduled.

The heart of using multiple point designs is three fold. One must devise means

to: 1) select the locations of the point models at which point designs are generated,

2) choose the best controller among those available and, 3) smoothly switch between

controllers. The resulting controller can work quite well in many cases, as has been

proven in flight control for years. However, the means by which the actual scheduling

between the point designs is accomplished is mainly art and very ad hoc [34]. All

three of these steps are "problem areas" which are over come in a systematic and

quantified manner in this research.

1.2 Research Direction

This research effort focuses on the judicious scheduling of individual point

designs (which may be robust with specified operating regions) over all of P. The

parameter space consists of the actual physical parameters and/or the system's state

about which the linearization is performed. The proposed approach is based upon

using Fuzzy Logic (FL) to blend the individual "point" designs such that for any

trajectory in the parameter space, the system performs (controls) adequately. The

ability to systematically design such a dynamic scheduler is a major contribution to

the field of controller design.

Fuzzy Logic is a partial membership set theory developed by Lotfi Zadeh in the

mid 1960s and is basically a means of representing uncertainty in a system process

without directly applying statistical methods [21]. Fuzzy Logic is now being used in

1-3

many academic fields and in commercial endeavors, and may be directly employed

to: [21, 48].

1. Design a controller for crisp nonlinear or uncertain plants.

2. Perform System Identification (ID) of a plant.

3. Model an uncertain plant mathematically.

The goal of this research is to derive and explore a technique to design full

envelope controllers, for nonlinear plants with structured parameter uncertainty,

using point-wise designs that adequately span the parameter space of the plant

to be controlled. The ability to base the controller on point-wise designs allows

the designer to use all the available tools of classical, modern and robust control

theory to aid in the solution. The term "envelope" is taken from the flight control

field and it represents that subset of P defined by the (structural and aerodynamic)

physical limitations of the airframe (plant). Where robust control's aim is to increase

the valid region in P for a fixed compensator design, adaptive or scheduled control

modifies the controller based upon an estimate of the current operating point in P.

Thus, the efforts of this research is to develop a type of adaptive controller, based

on scheduling on "fast" states. Successful development of such a technique is a

significant contribution to the field of applied adaptive control.

The application of the Fuzzy Logic methodology yields a nonlinear mathemati-

cal problem. Thus, the mathematics required to analyze the problem and arrive at a

solution reside in the field of nonlinear analysis and quickly become intractable. Clas-

sical analytical methods of guaranteeing the stability and performance of the control

system are no longer applicable. Hence, this research is somewhat exploratory and

it will rely to a point on heuristics and extensive simulations. This stage of affairs

is a major drawback of the investigated FLC approach.

This research focuses on the following.

1-4

• The development of a multivariate Fuzzy Logic control paradigm. This will

afford state feedback control in a fuzzy setting.

• Effects of switching between independent point designs as the plant traverses

P.

• How to correctly/optimally blend independent point designs as the plant tra-

verses P while maintaining acceptable performance.

• Does the ability to blend the individual designs impose any restrictions on

the point designs themselves? That is, can the point designs be accomplished

independent of each other (highly desirable), and may any conventional control

design technique be used to achieve each separate point design? To accomplish

this, the interaction of the control design method and the fuzzy blending of

the point designs is investigated.

• Does this blending ability of the proposed technique provide any characteristics

which relieves constraints on the underlying point designs? If so, this may allow

for simpler methods of point design controller synthesis (i.e. plant inversion

based techniques) that would be unacceptable without the addition of the

fuzzy scheduling. Also, does the blending extend the valid region for which a

controller may be used. That is, will the blending allow for a decrease in the

number of point designs that would otherwise be required to cover P.

• Examination of what is a sufficient cover of P.

• Conduct extensive testing via simulation to evaluate the performance of the

final Fuzzy Logic Controller (FLC).

1.3 Control System Description

This research entails blending individual point designs via Fuzzy Logic to

achieve acceptable responses over the entire envelope of operation. To visualize

1-5

r+ o

Controller 1
for point p\

in P

Controller N
for point p^

in

M

Fuzzy
Scheduling

Nonlinear
Plant

fuzzifier
m

measurements

Figure 1.1 Functional Diagram of Adaptive Controller Using Fuzzy Scheduling

the concept, Figure 1.1 depicts a functional block diagram of the proposed adaptive

control system.

A "sufficient" number of individual controllers are designed a priori, say N,

such that U^Li B(pi,6i) D P. The parameter et- denotes the range of applicability

of each point design p;. Classically this requires overlap of the point controllers'

valid regions such that for any p £ P there exists at least one point design yielding

adequate response. The vector m, m € P, consists of available measurements of

parameters and states on which the model relies. This measurement is then fuzzified

to account for the uncertainty of the unknown true parameter values. The fuzzified

m defines M., a fuzzy set defined on the "universe of discourse" P. This represents

the uncertain point of operation in the parameter space. Then the appropriate

controllers are blended, based on M., to drive the plant.

1-6

1.4 Research Scope and Assumptions

A technique is generated for the synthesis of the blending function of Figure 1.1

for acceptable control system performance over the entire operational envelope. Em-

bedded in this goal is a determination of what is a sufficient covering of the envelope

by point designs. This removes the requirement for conventional gain scheduling

in control problems in which a single fixed controller can not perform adequately.

In the development of this technique, the ability to synthesize all individual point

designs independently and by whatever means the control engineer prefers is main-

tained. This allows the greatest applicability, including techniques which require

linear time-invariant (LTI) plant models such as output feedback, LQR or eigenvec-

tor placement.

Due to the nonlinear aspects of the plant under control and the introduction of

fuzzy reasoning, the issues of stability, performance and steady-state errors are ad-

dressed through experimentation via simulation and compared to prespecified system

response requirements.

Although the techniques used to design the point controllers may very well

require the plant model to be smooth in some region about its trim (or equilibrium)

point p € P, the blending technique does not have this requirement. For the fuzzy

scheduling, only continuity of the plant model is assumed.

The proposed design approach is applicable to both uncertainty due to plant

nonlinearity, and uncertainty due to parameter variation or mis-modeling. As such,

the proposed research constitutes an effort in both nonlinearity and parameter un-

certainty. When insufficient point-wise designs exist to cover P, the uncertainty due

to nonlinearity is greatly increased and adequate performance can not be "designed

in" by the point-wise controllers alone. Therefore, the issue of sufficient cover must

be addressed. While heuristic arguments are employed, the proposed approach is

strongly anchored in the conventional control paradigm.

1-7

1.5 Current Literature

The majority of the FLC research and development in the existing literature,

especially the dynamic/adaptive designs, represents work by people with neural net-

work backgrounds. The adaptive properties of such work usually comes from using

adaptive networks that play a part in either the antecedent or consequent action

of the fuzzy rule set. The adaptive designs not based upon neural networks rely

on an optimization criterion to change the antecedent (membership function) or

consequence (control output) of the fuzzy rules.

The current adaptive work can be put into categories based upon a few dis-

cernible common roots. The techniques differ mainly based upon one's belief in

the availability of accurate analytical models describing the system to be controlled.

The confidence in such models ranges from none, yielding techniques that rely on

empirical input/output data using adaptive neural networks; to very strong, where

state cell [42] approaches and dynamic programming [30] ideas are used to arrive

at nonlinear controllers. In between these two extreme levels of confidence in the

model are: 1) techniques based on fuzzy identification of the system, 2) those which

believe the system is better modeled as a system with varying or unknown mem-

bership functions and, 3) those that optimize on the consequence of the fuzzy rule.

Clarification of the above groupings is given below.

The main difference between ordinary adaptive neural networks and those of

practical use in fuzzy logic controllers is the ability to incorporate linguistic rules

given by a human expert [32, 44]. These controllers can also monitor the system's re-

sponse to their past inputs to provide learning reinforcement as in Berenji's GARIC

based controller [4, 5]. In the spirit of dynamic programming [30], fuzzy logic con-

trollers have also been implemented in neural networks using temporal back propa-

gation to modify the rules [18].

Another class of controllers uses fuzzy identification to obtain a model of the

plant to be controlled. This model is then used within the controller in different

1-8

ways. One method is to use the model to predict the system's response to an

original fuzzy rule. This response is compared with the desired response and the

consequence of the rule is modified such that the new rule includes a correction to

remove the predicted error [2, 23]. Another technique is to design a desired open loop

controller and augment it with the "inverse model" dynamics obtained from fuzzy

identification. The inverse model then "cancels" the actual plant and the response is

dictated by the open loop controller [2, 22, 23]. Lai and Lin [22] combine this fuzzy

identification method with modifying the rules' consequences via an optimization

routine. They begin with a fixed set of membership functions to perform a fuzzy ID

of the plant. The consequence of a control rule is taken as a linear combination of

the fuzzy variables. The mean-squared error of the output is used as the minimizing

performance index to solve for the coefficients of a rule's consequence. If the resulting

"optimal" fit using a linear combination of the fuzzy variables is not "good enough",

they use a complex search algorithm to change the membership functions defining

the fuzzy variables. With these new membership functions they perform another

identification. This process is continued until the desired fit is obtained [22]. Most

techniques avoid this second degree of freedom in obtaining the final fuzzy inference

engine.

Stepping up the level of confidence placed on analytical models, or perhaps

just an expert's linguistic rules, are those techniques which assume a fixed rule set

and a well defined performance evaluation cost function. The "degree of freedom"

here is the membership function. The problems are posed using a parametric repre-

sentation of the underlying membership functions. Examples include: for Gaussian

functions use the of mean and variance [45], and for triangular membership functions

use of the 2 points of support, and each triangle's center point [19, 22]. Various opti-

mization algorithms can then be used to optimally select the parameters which yield

membership functions giving the best performance. Some possible search techniques

1-9

for optimization include recursive least mean squares [45], complex searches [22], or

Genetic Algorithms [19].

Very similar to the above techniques are those that begin with fixed member-

ship functions and rules, then optimize by means of the control applied. That is,

the form of the rule is fixed, but the exact consequence is not yet known. In these

cases the antecedents are determined by all possible intersections of the membership

functions. The rule is then a combination of basis functions. This is very similar to

some fuzzy ID [22] techniques; the difference in using it for control is that these basis

functions are now the available control inputs. The most common consequence is a

linear combination of available inputs [40, 42]. An optimization is then performed,

yielding the coefficients for each consequence, providing the entire rule set.

In the final category, the analytical model is used to design the controller. The

problem is set in the fuzzy paradigm to either help in dealing with nonlinearities,

model variation or noise. This is most often performed using a state cell approach

[42, 40] which yields different optimal solutions depending on the location in the

state space. Vachtsevanos shows how naturally fuzzy logic complements the cell

state approach in problems with constrained inputs [42].

Another use has been the fuzzification of the LQR paradigm [38]. Fuzzy dy-

namics yield an optimal control law, u = —Kx with fuzzy K, which satisfies the

Ricatti "inequality" equation. The control law dictates a membership function for

all K, which satisfy the inequality. The optimal K is the one which has maximum

membership value in these membership functions [38].

There are also ad hoc nonlinear techniques. An interesting nonlinear technique

guaranteeing stability and asymptotic tracking is based upon Lyapunov synthesis [43]

and a nonlinear supervisor. Such techniques provide nice guarantees in steady-state

yet provide little control over, or insight into, transient responses.

1-10

Fuzzy Logic has been used to perform classical gain scheduling of a proportional-

integral-derivative (PID) controller for a linear single-input single-output (SISO) sys-

tem [15, 50]. However, this scheme requires a common controller where only the gains

are varied, and the problem is only posed in the SISO case. A fuzzy inference engine

is used to obtain the three "adaptive" gains to out perform an optimal linear PID

controller. Possible performance improvement over the linear PID is not surprising,

since the FLC has the advantage of nonlinear control action. The proposition that

this is actually equivalent to a fixed nonlinear PID controller is addressed in the

sequel.

Fuzzy gain scheduling has also been used for LTI SISO systems using other

point-wise techniques. Both pole placement by state feedback [49] and H^ [47] have

been used to generate the underlying point-wise controllers. For the state feedback

case, fuzzy logic with triangular membership functions interpolates the feedback

gains between two point designs. The resulting controllers from the H^ point designs

were replaced by "similar" controllers, all of the same form. Fuzzy Logic was then

used to interpolate the poles and zeros of the two nearest point designs. Both

designs rely on trial and error for selection of the placement of the point designs and

linearity of the truth model, ignoring nonlinearities in the design. They also rely

on the variation of only a single scalar parameter. Although not addressed in the

paper, the H^ design is susceptible to adverse transients since a single controller is

being used [25]. This is due to various dynamic controllers being switched in and

out without proper handling of the current state of plant stored energy. That is, the

initial conditions required of the controller states is not addressed [34].

There have been attempts at using Fuzzy Logic to blend two separate dynamic

controllers [35, 36]. However, both controllers are for the same plant at one oper-

ating point and hence do not directly address uncertainty due to nonlinearities or

parameter variation. The two controllers are designed using conventional techniques

where neither design yields a satisfactory response by itself. One design yields a fast

1-11

but very lightly damped response, while the other has good transients but is too

slow. Using Fuzzy Logic along with trial and error tuning, an acceptable response

may be obtained, but again, only for the single operating point of the plant.

Fuzzy Logic is often hyped as being capable of providing control solutions for

"difficult" to control plants, where other methods fail. A Fuzzy Logic Controller

(FLC), it is claimed, does not require a mathematical model of the plant but instead

is able to capture the expertise of an experienced operator. Thus, the control engineer

encodes the operator's rules governing his actions into a fuzzy inference engine in the

FLC to control the plant. Indeed it's conceivable that in "simple systems", where

these rules are easily articulated, the method works well and converges to a suitable

controller after some tuning of the inference engine during simulations [17].

Note the use of "simple system" versus "simple plant"; this is used to bring

attention to the control objective. Take for example the classical inverted pendulum

problem; deriving the equations of motion without small angle approximations yields

a set of nonlinear differential equations which are not easily dealt with directly. Most

control techniques would linearize the equations about the unstable equilibrium set

point and proceed, while a fuzzy controller has no such requirements [17]. The

inverted pendulum is not a simple plant. However, the pendulum can easily be kept

at the inverted position by observing the state trajectory in the phase plane of the

system, where the states are naturally the physical variables angle and angle rate.

Fuzzy control rules can easily be written down from the physical phase plane analysis

and fine tuned through simulation [17, 34].

A moments reflection upon the method of generating the fuzzy rules shows

that the resultant controller is equivalent to a classical proportional-derivative (PD)

type with nonlinear gain elements. A review of the history leading to the popular

PID controller shows this means (of rule generation) was the prevailing method of

controller design in the 1920s [3]. By observing skilled operators, it was shown

the appropriate control to mimic the operator is the sum of three terms related to

1-12

the error, derivative of error (transients), and the integral of error (steady-state)

[3]. This is confirmed by the wide applicability/acceptance of the PID controller.

Conversely, it can be said that a conventional PID controller is a FLC [3]. In a

FLC, the rules are used to generate a smooth mapping from error state to controller

output. For example, a large error should receive a large corrective action. The

desired mapping can therefore be accomplished by a nonlinear continuous map. As

shown in Section 2.4.1 the fuzzy map may be viewed as an approximation to this

nonlinear map, or vice-versa. Actually, in the field of fuzzy identification it has been

shown that such fuzzy maps are dense in the space of real valued continuous functions

on the universe of discourse [44]. Thus, the mystical performance gain over linear

controllers attributed to FLCs is due to this nonlinear action. What is noteworthy

here is that the nonlinear elements of the controller arise naturally within the FLC

framework.

Hence, this type of system is referred to as "simple" since, albeit nonlinear,

the dynamics are of low order and monotonic, so the control rules are simple to

heuristically "figure out". Also, the plant can be adequately controlled using only

the output error and the error rate. That is, in a "simple system" the plant has a

sense of directionality and an increase in its system input directly translates into a

corresponding increase in its output and vice versa. Now "order" is only an attribute

of scalars. This is why there have been problems in designing a FLC for anything

other than simple low order systems. A truly valid design technique must be capable

of handling a system that is non-minimum phase or one that contains an inherent

time delay, none of which are properly addressed. Most of the current FLC literature

rely on such "simple systems" as examples, which unfortunately for FLC, are being

advertised as complex.

In the case of more complex systems, the fuzzy rules are hard to determine.

The very nature of the fuzzy rule, IF A, THEN B, implies that these rules are

known and the FLC is merely implementing the known control law in a smooth

1-13

way. The current FLC literature is seriously lacking in the areas of multiple-input

multiple-output (MIMO) and non-minimum phase or dynamic control problems.

In summary, the current literature is lacking in the very important areas ad-

dressed by this research. These include the ability to deal with high order systems,

and systems possessing complex dynamics. This must be accomplished while dealing

with the inevitability of a nonlinear system with varying system dynamics over its

entire range of operation as well as structured parametric uncertainty. The tech-

niques which have tried to address some of these issues have attempted controlling

with fixed optimized gains or adaptive gains to meet the challenge which will not

adequately control a large class of systems [8]. This research seeks a systematic

means of adaptively including dynamic compensation to obtain an acceptable control

solution for nonlinear dynamic plants in a multivariable context. A true and mean-

ingful contribution to the field. Fuzzy Logic will be used to an advantage by means

of its proven smoothing characteristics (see Chapter II) and heuristic appeal, not on

claimed mystical problem solving capabilities. This should all be accomplished using

optimization when meaningful and in a manner which yields insight to the control

engineer throughout the design process, rather than arbitrary trial and error to ob-

tain a solution. This will be accomplished via a fuzzy supervisory layer of control,

allowing the designer freedom in choice of point-wise design tools at his disposal to

aid in the overall design of a full envelope controller. Furthermore, a multivariate

FLC theory is developed providing the tools for MIMO control.

1.6 Organization

This research consists of five chapters and supporting appendices. Chapter II

develops the multivariate Fuzzy Logic paradigm. The classical scalar logic is gen-

eralized to a vector representation providing the basic tools to be used in the re-

search. This provides the ability to address the multivariable control problem and

advance a theory of fuzzy state feedback control. Chapter III develops the gen-

1-14

eral n-dimensional solution of fuzzy controller scheduling by properly posing the

optimization to be performed along with a multi-dimensional example. Chapter IV

contains detailed analysis of additional examples of a strongly nonlinear plant and

a USAF C-135 lateral controller. Theses examples illustrate the goodness of the

developed Fuzzy Logic controller scheduling paradigm, which is the object of this

research. Finally, Chapter V offers conclusions and suggestions for further research.

In this research plant models are generated from analytic first principles as

opposed to system identification, therefore their description is a set of differiental

equations. For completion, in Appendix A, the utility of Fuzzy Logic for system

identification is investigated along with examples of how Fuzzy Logic may be used to

blend models together. Next, in Appendix B, preliminary experiments are performed

to provide insight into many of the design decisions as well as point out areas that

must be addressed by the final technique. Appendices D and C contain supporting

material for Chapters IV and III respectively.

1-15

27. Multivariate Fuzzy Logic

In this Chapter the development of multivariate Fuzzy Logic is undertaken

which draws upon previous work [34]. Fuzzy sets and fuzzy logic constitute the basis

for fuzzy logic control.

2.1 Fuzzy Sets and Membership Functions

The description/specification of the underlying "fuzzy sets" is a crucial step in

setting up any Fuzzy Logic problem and the subsequent synthesis of the proposed

Fuzzy Logic based controller scheduling. Thus, the fuzzy sets construct allows for

the measurements recorded by the sensors to be transformed into linguistic labels

which feature in the preconditions of the "Expert System"-like rules. Using the

conventions of Fuzzy Logic, the following terminology is maintained.

Let X be a set of objects. The "classical" set A C X is defined as a collection of

elements x € X such that each x either belongs to or does not belong to A. By defining

a characteristic or membership function (MF) on each element of x, the classical

set can be represented by a set of ordered pairs (x,0) and (x,l) representing non-

membership and membership to the set A respectively. Unlike classical sets, fuzzy

sets allow partial membership and indicate the degree of which an element belongs

to the set. That is, their membership functions are not binary (or crisp) but multi-

valued. Now the fuzzy set A can be represented by the set of ordered pairs

A- {(x,fj,A(x)) I x G X}

where \ij, is the membership function defined on X and X is referred to as the universe

of discourse. For each membership function defined on the universe of discourse,

associate a fuzzy variable (FV) which takes on values (linguistic labels) for each. For

example, suppose there are two fuzzy variables "a; is small" and ux is BIG" with

2-1

respective membership functions //s and //&. Then each x in the universe of discourse

is "small" to degree fis(x) and "BIG" to degree (J,b(x).

A (multivariable) fuzzy set A is a pair specified by:

• Its "support", which is a classical set AC|" that encompasses the so called

"universe of discourse", and

• A non-negative membership (or weight) function // (whose support is the set

A), where,

H : A -»• R+

fi(x) =0 for x $ A

If in addition

max{^(a:)} = 1

then the weighing function fj, is referred to as "normalized".

In this research, a class of multivariable membership (or weighing) functions,

which are based on the Multivariate Gaussian distribution, is used. This is motivated

by the analytical properties of the Gaussian function.

Thus, consider the multivariable fuzzy set Ai- The normalized membership

function ßAi{x) is

fiA.(x) = e-U*-*i)'KH*-*i) ? v x € Rn (2.1)

The weighing function /U^,(a;) completely characterizes the fuzzy set Ai. In other

words, the underlying "support" set A; C W1 of the fuzzy set Ai is explicitly pa-

rameterized by its "center point" Xi G Rn and by its "size", which is determined by

the square roots of the eigenvalues of the real symmetric and positive definite n x n

matrix R;.

2-2

Indeed, in this approach, the fuzzy set's description is almost exclusively rel-

egated to the membership function, because, strictly speaking, its support is all of

Rn. Thus, the membership function is constructed around an underlying "support"

set A. The set Acl" under consideration is inscribed in an ellipsoid specified by

the pair of parameters (x,R), where x is a vector in n-dimensional Euclidean space

and R is a n x n real symmetric positive definite matrix. The following association

is made:

A = [x | (x-xYR-^x-x) <c2]

That is

e^~ < HA{X) < 1 V x € A

1 2
or in terms of "a-level set" terminology, a = e^c for some constant c; without loss

of generality, chose c — 1. Hence, the ellipsoidal set

A^ixKx-xy-R-^x-x)^!] (2.2)

is an approximation of the original set A that is of interest and, in fact, it directly

determines the parameters x and R. The latter parameterizes the Gaussian mem-

bership function /^,.(a;). For example, a scalar (ACE1) membership function

HA[x) = e 2^

is illustrated in Figure 2.1 for varying values of a. Close examination of the figure

indicates why the fuzzy set, say A, could assume the linguistic description or the

A label "x is zero". Indeed, the membership function HA{X) from above assigns a

membership value of 1 to x = 0 and, for | x |w 0, it assigns membership values close

to 1. Furthermore, by choosing the parameter IT< 1, the meaning of "zero", or
ux is small" is sharpened and, conversely, by choosing the a parameter large, the

2-3

Figure 2.1 Gaussian Membership Function for Varying a

meaning of "zero" or "x is small" is broadened and made quite inaccurate, so the

verbal statements ux is zero" or ux is small" are then fuzzy. Moreover, one can set

the "center of gravity" of the membership function [ij, at some prespecified value x

of the variable x, viz.,

HA{X) - e 2a';

thereby giving a meaning to the fuzzy verbal statement ux is x", or ux is near xn.

Obviously, x close to x, e.g., x 3 \ x — x |w 0, will be assigned by the membership

function a value close to 1. Furthermore, by choosing the parameter a small, only x

very close to x will be assigned a high degree of membership in this set (fJ>(x) ~ 1).

Conversely, a large a causes x relatively far away from x to be considered x, by

virtue of their membership function assigned value being pretty close to 1.

2-4

In general, the domain of definition of the membership function is the whole

of R™, rather than an underlying support set A; however, from a practical point of

view there is an underlying set A, implicitly specified by its "center" point (vector)

x € R™ and by the square roots of the n eigenvalues of the "covariance" matrix

R, which determine its dimensions. Furthermore, similar to the scalar case, if all

the eigenvalues of the R matrix are small, then the Gaussian membership function

rapidly decreases to zero and in the limiting case of |R| —> 0, one obtains the function

PA (x) = (2?r)t^/det (R) 6(x - x)

where S(-) is the multivariable "delta" function defined on R™ [34]. Hence, in this

limiting case the fuzzy variable A is rendered a crisp (deterministic) variable which

assumes the value x.

If some eigenvalues of the R covariance matrix —> 0, this then indicates a

crisp subspace in the x vector space, thus allowing for mixed fuzzy/crisp variables

modeling. However, technically speaking, in the FLC calculations it is convenient to

directly treat the fuzzy components, and at the same time momentarily consider the

crisp state components to be known parameters. This is indeed a course of action

that is adhered to in probability problems, where both random and deterministic

variables are involved.

Finally, the universe of discourse can be further restricted by confining one's

attention to a set Ar C I", which then constitutes the domain of the above defined

membership function.

For example, in the scalar case, the membership function is virtually 0 at "3cr",

as is illustrated in Figure 2.1; hence, one can then say that the underlying set A is

the segment A = [—3<r, 3er]. In addition, the domain of definition of the membership

2-5

function can be chosen to correspond to a restricted universe of discourse of, say,

Ar = [0, 2a}.

In conclusion: A multivariable membership function approach is advocated.

These weighing functions are modeled on the classical multivariate Gaussian proba-

bility density functions and their support is the whole of Rn. Given an underlying

set Acln, the parameters of the corresponding Gaussian probability density func-

tions are chosen, according to Eq. (2.2), to roughly model the state space region of

interest in W1, in particular a region of the parameter space P. Hence, the weigh-

ing/membership function is relatively high there and it is very small outside this

region - as required. The universe of discourse can be further delimited by specify-

ing the domain Ar of the membership function.

2.2 Fuzzy Rules

Two types of linguistic "Rules" will be explored, for n states and m inputs:

1. Crisp (deterministic) output TZf. IF x is Ai, THEN apply a mapping. The

mapping may be either

state transition: The mapping /,• : Rn —> Rn, i.e., it is the function fi(x).

or

input: The mapping gi : M.m —> M.n, i.e., it is the function gi(u).

2. Fuzzy (variable) output TZ{: IF x is Ai, THEN the output y is B;.

In case 2, similar to the set Ai in the ith rule's antecedent, the fuzzy set Bi is defined

by having recourse to a membership function Vß^y), where

vBi : Rn

2-6

for the fuzzy state transition mapping, or

vB. : Rm

for the fuzzy input mapping.

The above membership functions are parameterized by j/; G Rn and the n x n

real symmetric positive definite matrix S,- for the state transition map, or for the

input map y,- G !Lm, in which case the real symmetric positive definite matrix S; is

m x m. Hence, the membership function is

vBi(y) = e~2^-«)'Siü/-w) _

This is as far as fuzzification goes.

2.3 Fuzzy Set Operations

In this research, the above outlined vector space approach is employed, where

the fuzzy variables x or y represent points in Euclidean n dimensional or m dimen-

sional vector spaces. Each component of the x or y vectors represents a particular

fuzzy variable, but all the norm fuzzy variables aggregated in the x or y vectors are

jointly treated. Hence, the need to use composite clauses in the rules' antecedents,

such as, K: IF xr is "zero" AND x2 is "positive medium" , THEN ... is obviated.

Thus, the big advantage of the multivariable/vector space approach is that one need

not, in some way, combine the antecedents' premises in order to calculate the TZ rule

antecedent's strength, according to either the "Min rule"

(1TZ(XI,X2) = min(//i(a;i), ^2(^2))

2-7

or, alternatively, the sometimes preferred "product rule"

m{xi,x2) = fJ-i(xi) fi2{x2)

In the currently proposed approach, one instead needs to judiciously set up the

problem, according to the following modeling steps.

The procedure is first introduced for the special case of scalar fuzzy variables.

Here, the fuzzy variables are Xi, X2 and the scalar universes of discourse are Xi C

R\ X2 C E1 and xx € R1, x2 € R1.

1. Universe of Discourse: Form the cross product of the elementary, one

dimensional, universes of discourse Xi and X2 and generate the universe of discourse

X = Xi x X2 C]R . Thus, if x\ G Xi and x2 £ X2, then x = (a?i, x2) £ X.

2. Fuzzification example: Let x2 > 0 represent what is considered to be a

medium sized value of the variable x2. The x2 values of the variable X2, that are

within a distance 3a2 of the "benchmark" x2, are considered "positive medium".

Also, in the spirit of fuzzy logic, consider values of X\ that are in absolute value

less than 3cri, to virtually be "zero". Hence, the membership functions of the fuzzy

variables "Xi is zero" and "X2 is positive medium" are

_ifi.
PXiM = e 2CT

I

fJ-x2{x2) = e
1 (*2-S2)2

'2 „2

respectively.

3. Logical "AND" injunction operation: Create the membership function

pn (x) = H(Xl AND x2)(x) = e

xl 1 (f2-£2)
~T 1 2
°1 °2

2-8

Logical AND injunction operation Logical OR Injunction operation

a) AND G\ = o\ = 0.1 b) OR a\ = a\ = 0.1

Logical AND injunction operation Logical OR Injunction operation

c) AND a\ = 0.1, a\ = 0.5 d) OR a\ = 0.1, a\ = 0.5

Figure 2.2 Surface Plots of Bivariate Fuzzy Logical Injunction Operators

where x = (xj, £2). The above membership function possesses the desired attributes,

for it penalizes deviations away from both X\ = 0 and x2 = ^2- Furthermore, in

view of the well known properties of the exponential function, it is now evident

that the approach constitutes a generalization of the above mentioned "product

rule" for the "AND" injunction. The construction is illustrated in Figure 2.2a for

x2 = 1, o\ = a\ = 0.1 and in Figure 2.2c for a\ = 0.1, a\ = 0.5.

2-9

4. Logical "OR" injunction operation: If in the % rule example from above the

"AND" logical injunction is replaced by the "OR" logical injunction, the strength

of the rule's antecedent is obtained as follows.

Consider Figure 2.2b. The ^I0R^) membership function should be rela-

tively high in the cruciform - like region, which is the union of the two strips in the

Euclidean plane that represent the respective support sets x\ — 0\ < x\ < x\ -f &\

and x2 — o-2 < x2 < x2 + 0"2. The ensuing cross - like region is not convex. The fuzzy

union could be obtained using the "Max" operator, but this does not yield a smooth

transition. It is required that the membership function be relatively large inside the

above mentioned region, and for it to be small outside the region. Hence, to obtain

a smooth result let

ß(X1ORX2){x) = t*Xi(xl) + ßX2{
x2) ~ V(X1ANDX2){

X)

where the /J,(XI AND X2) membership function has been constructed according to 2

above and x = (xi,a;2). Therefore,

1*1 1 (*2~*2)2 _lU? t~--*~V

V(x1OKX2){xi,X2) = e * +e * -e
1 1 (*2-*2r

this is in fact the functions depicted in Figures 2.2b,d.

5. Logical "NOT" injunction operation: Is shown in Figure 2.3 for a;2 = 1, a\

<y\ = 0.1 when defined as

/«(NOT X)(x) = 1 - px(x)

It transpires from Step 3 in the above discussion how, from given scalar fuzzy

variables, multidimensional fuzzy variables are being built up.

2-10

■0.5 -t.S

a) NOT Xx b) NOT X2

Figure 2.3 Surface Plots of Fuzzy Logical NOT Injunction Operator

In the general case, the multidimensional fuzzy sets Xx and X2 are considered.

The "Universes of Discourse" are then Xi C R"1 and X2 C Rn2; m > 1, n2 > 1. The

general modeling procedure is given in the sequel.

1. Universe of Discourse:

X = Xx x X2 C E"1+n2

with x = (#1, x2), where ii £ Xi, x2 G X2.

2. Fuzzification: Let the "representative" vectors be x\ G Rni, x2 £ 1R"2, and

where R4 and R2 are real symmetric nx x ni and n2 x n2 positive definite

matrices, respectively. Thus, the membership functions are

^2(x2) = e-s^-^)'^"1^-^)

2-11

3. Logical "AND" injunction operation:

l*K (X) = l*{Xl AND *,)(*) = e-iK*i-*i)'Br1^-«i) + (*»-*a)'aa-1^-*»» (2.3)

where x = (x\, X2).

4. Logical "OR" injunction operation:

pn{x) - H(X1ORX2){X) = fiXl{xi) + fJ.x2{
x2) ~ V(Xi AND x2){x)

_e-|[(a;i-£i)'Rr1(:ri_si)+(:r2-S2)'B.^1(a;2-£2)] (2 4)

where a; = (x\, x2).

5. Logical "NOT" injunction operation: Given a fuzzy variable X, the fuzzy

variable "NOT A"' is specified by its membership function

M(NOT *)(*) = 1 - t*x(x) = 1 - e-K-*)'*-1^) (2.5)

where a; G X C Rni+n2.

Theorem 1 The above constructed function /J-(X1ORX2)(
X

) '• Rni+n2 —> R1 is indeed

a "membership function". That is,

1. It is non-negative, i.e.,

^(X1ORX2){XI,X2) > o V Xl e Rni ,x2 e

2. It is bounded above:

M(*iOR#2) (zi,x2) < 1 V Xi e Rni, x2 €

2-12

P"2

3. It is normalized, i.e.,

max ^l0R^) (xi,x2) = ß(x1ORX2) {xi,x2) = 1

4. It assumes relatively large values for x G A, where A is a nonconvex cruciform

set

A = [x | x = (£1,212), (zi - x^'R^Xi - xi) < 1, (x2 - x2)'R2"1(a;2 - x2) < 1]

and for x ^ A, the membership function "vanishes".

Proof

For 1: By the definition of the "OR" operator

I*(X1ORX2)(XI,X2) = fJ.x1(xi) + fix2(x2) - fix1(x1)fix2(x2) (2.6)

= ßXiix^l - fix3(x2)] + fixa(x2) (2.7)

> 0

Since

Px2 (x2) < 1

and the Gaussian multivariate distributions /^(xi) and nx2{x2) are non-negative.

For 2: Application of the triangle inequality to Eq. (2.6), using the fact that

Gaussian multivariate distributions are non-negative yields.

\P(X1ORX2)(XI,X2)\ < I/A^ZI)! + \nx2(x2)\ - lliXiMWftXiMl V xi € Rni, x2 G

< 1+1-1

< 1

2-13

t>"2

which, along with 1 above, implies 2.

For 3: Calculate the maximum of the function //(^ ORAT2) (xiix2) on ^ni "2-

To this end, set

d(i{x1ORX2) jxi,x2) _ 0

dxi

Eq. (2.7) thus yields

[1 - M*,(a3)]fyg:fJl) = "[I ~ ^M] [RT1^! ~ *i)] M*»(*i) = 0

The above equation implies that an extremum point may be attained if either x\ =

xi, or nx2(x2) = 1 which occurs at x2 — x2. A similar conclusion is reached if the

partial with respect to x2 of the above function is set to zero. Hence, X\ and x2

constitute an extremal point, where a candidate local maximum may be attained.

Inserting xi = x\ and x2 = x2 into Eq. (2.7) above gives the value of unity. Thus

(x\,x2) is a global maximum, by 2 above, and part 3 is proven.

For 4: This follows directly from the analytic properties of the multivariate

Gaussian distribution.

■

In conclusion, the modeling approach presented in steps 1-5 has the following

advantages.

• It is analytic, in contrast to the non-smooth membership functions that ensue

when the Max and Min operators are invoked for the "OR" and "AND" logical

injunctions, respectively.

• The proposed modeling approach is in the true spirit of Probability Theory.

2.4 More Fuzzy Logic

In the same vein, the following additional issues are addressed.

2-14

2.4-1 Conflict Resolution. Consider a set of TV crisp (type 1) rules. The

need for "Conflict Resolution" arises in the instance where more than one, say TV,

Fuzzy Logic Control rule fires at one time. It is treated as follows. The fuzzified

mapping from W1 to R+ then is

f{x) = Tti HA* {x) fi(x)

ET=i ^. (*)

REMARK: If the mappings fi(x) = g(x) V i = 1,2,..., TV, then the fuzzified mapping

f(x)=g(x).

Hence, the fuzzified mapping is explicitly given by

N
/(')=-» e-|„i,,R-.,I-,,)£e-^'-.''T1(.-».)A(l) »ier (2.8)

In the special case where the fuzzy variables are "similar", viz., R; = R for every

i = 1,2,..., TV, the above formula is

1 N

f(x) = - 'Ves'R~1(:c~2Si)f-(x)

Also, note that:

• All the TV rules come into play, V x £ Ar, i.e., the domain of the ensuing

fuzzified mapping f(x) is the whole universe of discourse.

• f(x) is analytic.

Example: a; is a scalar and the universe of discourse is the set Ar = [—2, 2]. The

membership functions, which characterize the fuzzy variables X\ ux is Negative",

X-i ux is Zero" and X3 "x is Positive" have the common universe of discourse Ar and

are parameterized by äj,-, <7j, i = 1,2,3, respectively, where x± = —2, x2 = 0, x3 = 2

and o"i = cr2 = cr3 = 1. These membership functions are illustrated in Figure 2.4.

2-15

Fuzzy Sets

1 1.5 2

Figure 2.4 Fuzzy Variables "a: is Negative", ux is Zero", and ux is Positive"

Next, consider the following three fuzzy rules which verbally describe a fuzzy

state transition mapping f(x) of a hard saturation element; these linguistic rules

are:

Kx: IF a: is "Negative" THEN fx(x) = -1.

K2: IF x is "Zero" THEN /2(a;) = x.

1l3: IF x is "Positive" THEN /3(x) = +1.

The ensuing fuzzified state transition mapping

m _e-f(*+2)2 + xe-\# + e-|(^-2)2

e-^+2)2 + e-^
a
+e-^-2)a

_e-2(l+») + x + e-2(l-af)

e-2(l+z) + 1 + e-^1-*)

x + 2e-2 sinh (2a;)

l + 2e-2cosh (2a;)'

is graphically depicted in Figure 2.5a.

Additional example: Consider the fuzzy state transition mapping:

2-16

I °
5

^-0.5

0.5 1 1.5 -1.5 -1 -0.5

a) b)

Figure 2.5 Fuzzified Mapping of Continuous Nonlinear Elements

fti: IF x is "Negative" THEN f^x) = 2x + 1.

ft2: IF x is "Zero" THEN /2(x) = x.

TZ3: IF x is "Positive" THEN f3(x) = 2x - 1.

The ensuing fuzzified state transition mapping is

(2x + l)e-§(*+2)2 + xe-l*2 + (2x - l)e-^-2)2

/(*)
e-I(a!+2)»+e-Ix»+e-I(x-2)»

x[l + 4e~2 cosh (2a;)] - 2e~2 sinh (2a;)

1 + 2e~2 cosh (2x)

and it is graphically depicted in Figure 2.5b.

In Figure 2.5, the ensuing nonlinear fuzzy maps are plotted alongside the un-

derlying original piece-wise linear maps that were featured in the fuzzy rules. The

fuzzy maps are smooth, viz., they are, by construction, analytic, and the fit is re-

markably good.

2-17

a) b)

Figure 2.6 Fuzzifled Mapping of Discontinuous Nonlinear Elements

In the above examples, the original map featured in the fuzzy rules is "continu-

ous". Two additional examples, where the map in the fuzzy rules is "discontinuous",

are presented in Figure 2.6. In Figure 2.6a, the fuzzy state transition mapping is:

fti: IF x is "Negative" THEN h(x) = 2x.

Tl2: IF x is "Zero" THEN f2(x) = x.

K3: IF x is "Positive" THEN /3(x) = 2x.

whose fuzzifled state transition mapping is expressed by

/(*)= 2
1

l + 2e-2cosh (2x)t

In Figure 2.6b, the fuzzy state transition mapping is:

fti: IF x is "Negative" THEN h(x) = \x.

H2: IF x is "Zero" THEN f2(x) = 2x.

n3: IF x is "Positive" THEN f3(x) = \x.

2-18

whose fuzzified state transition mapping is expressed by

lae-H^)a+2xe-H + lxe-^(«-»)a

/W _ e-*(*+2)2 + e-H+e-|(*-2)2

1 4 + 2e~2 cosh (2a)

2^ 1 + 2e~2 cosh (2a;)

2.^.2 Defuzzification. For fuzzy rules of type 2 above, the requirement of a

crisp (deterministic) output variable entails a "defuzzification" step. Thus, assume

that the fuzzy variables B{ i = 1,2,..., JV have a common universe of discourse and

are parameterized by the set of N pairs (?/,-, S,-), where y,- € H£m and the real symmetric

positive definite matrices S; are m x m. A "Maximum Likelihood" formulation is

proposed, where the output

y Ef=i^,(*)

Hence

In the special case where all input variables are "similar", viz., R, = R for every

i = 1,2,..., JV, the above formula simplifies to

N

E£ie*{a'"1(*-»*)Ü
y(x) - i re'ir'(l-^)i/

In the current formulation, the input/output mapping

y{x) : Rn -> Rm

which is given by the above closed - form Eq. (2.9), is defined for all x G Ar and it

is analytic.

2-19

In the special case where the (common) universe of discourse is Em, the above

formula reduces to the often used Center Of Area (COA) rule, for then ?/,• is the

center point of the fuzzy set B{, i = 1,2,..., N.

2-20

177. The n-Dimensional Scheduler

The net product of this research is the development of a control synthesis

method applicable to nonlinear systems with structured parametric uncertainty. This

controller acknowledges the sensitivity of the plant's model to the operating point

within the entire envelope of the system. The solution is obtained by scheduling sev-

eral parallel point controllers (which may be robust with specified operating regions),

each independently designed, on measurements of both fast internal states and vary-

ing parameters on which the plant's model is dependent. It is the scheduling on the

fast states as opposed to only 'slow' states or scheduling parameters (e.g., dynamic

pressure q in flight control), and uncertain parameters, which allows for the direct

handling of system nonlinearities. The developed synthesis technique of this research

not only gives the means of scheduling the point designs during operation, but also

the actual location of the point designs themselves, yielding the total solution of the

controller.

The resulting controller is for multiple-input single-output (MISO) systems.

The dimension of the input for the scheduler is that of the plant under control,

plus additional elements of a parameter vector. As such, the technique can be

used in conjunction with multiple-input multiple-output (MIMO) controller design

techniques whose solutions requires solving several MISO problems, thus bridging the

gap to full envelope control of MIMO nonlinear systems with parametric variation.

This is accomplished without the need for trial and error in the placement of point

controllers or their respective membership functions.

Let p denote a vector whose n elements are comprised of both the internal states

and the varying model parameters which are to be scheduled upon. Each element

of p has a range of admissible values dictated by the desired operational envelope

of the controlled system. The admissible domain of p then defines the parameter

space, P C E", or the domain of the system over which the point controllers must be

3-1

scheduled. For a fixed p £ P the plant of interest is represented by a deterministic

nonlinear set of equations. Conventional LTI theory can be used to design a point

controller for a linear model obtained by linearization about this operating point.

However, the controller's performance is only "as designed" in a yet to be determined

"region of attraction" about this operating point. Or in the case of robust controllers,

this region may be known but it is not large enough to encompass all of P. Since

the objective is to achieve a specified level of performance over the entire envelope,

the size of these individual valid control regions effects the total number, as well as

placement, of "point" controllers that will be required.

Denote a set of points in P as G = {pi}^. Given a set of iV point con-

trollers, each designed about pi £ G, a scheduling scheme is based upon multivariate

Fuzzy Logic as developed in Chapter II. The control authority of each controller is

the normalized membership value of the current operating point within each con-

troller's corresponding membership function. That is, the implementation of the

fuzzy scheduling block of Figure 1.1 on page 1-6, while operating at p £ P C M.n, is

performed by scaling each controller's output by Wi(p) where

Wi{p) = ^{P\ , (3-1)

The experiments contained in Appendix B provide a basis for the selection of

the above controller structure. They also highlight the need to quantify the two

coupled problems of point controller location and membership function parameter

selection, to be addressed in the sequel.

This research addresses the question of placement and number of point con-

trollers by means of an optimization scheme with constraints on the controlled sys-

tem's performance. The optimization is posed such that the solution of the Kuhn-

Tucker equations [27, 28] yield the desired result. This is achieved by use of a Se-

quential Quadratic Programming (SQP) routine in the examples to follow, though

3-2

the problem is posed to allow choice of an optimization algorithm. The multivariate

membership functions are chosen as Gaussian, each centered at pi G G with variance

parameter matrices R; obtained from an optimization (derived in Section 3.4) based

upon the location of all the other point designs. In the case of robust point designs,

Pi can be viewed as the center of mass of the controller's specified operating region

in P.

3.1 Location of Point Controllers

The objective is to design a full envelope controller for a given system. This

controller is to provide not only stable, but "acceptable" tracking performance, for

step commands over the entire operational envelope, P, of the system. Being able to

slew the nonlinear system is a nontrivial task and a primary objective. To guide the

design process, an optimality condition should be chosen which yields the desired

results.

One could choose to try for the "best" response, where in order to yield an

implementable solution the number of allowable point designs must be constrained.

This goal has two problems: 1) identifying the best, and 2) constraining the number

of point designs a priori. Defining a "best" response can be very subjective in many

tasks. In a much larger class of problems, a response can be judged as good enough

or no better/worse than another response in a more objective fashion. The number

of design points required is discussed in the sequel, for now assume a sufficient

number exist. Instead of the best response, a more useful preliminary performance

optimization criterion is chosen as:

Given the operational envelope, P, find the minimum number of point designs

which yield "acceptable" responses over P.

The constraint is now in the form of a functional operating on the output

response. The resulting point controllers are now guaranteed to provide sufficient

cover by means of meeting the performance constraint. There now exists a means

3-3

of quantifying sufficient cover, and it is a direct byproduct of the optimization.

However, since the topology of the optimal cover is part of the solution, it is not

known a priori.

To quantify the number of point designs required, in the optimization scheme

to follow, one assumes a priori that the number chosen can provide sufficient cover of

the operational envelope P. If the assumption proves false, one merely increases the

number and obtains a new solution. Hence, rather then directly solving the above

stated preliminary optimization, it is chosen to solve the dual problem of:

Maximize the coverage of the scheduler, given a fixed number of available point

controllers, such that "acceptable" responses are achieved.

This problem statement requires specifying the number of controllers, a priori,

but the optimization guarantees maximal cover over the resulting region. For this

fixed number of controllers, TV G N, if the scheduler's coverage exceeds P then TV may

be reduced. If the scheduler does not cover the full envelope, TV must be increased.

At this time a quantitative specification of cover is required, and it is taken as the

volume of the convex hull (c IRn) generated by G. Denote this map as H : G —> R+.

For the n-dimensional scheduling problem at hand, pi is the point at which the zth

controller is designed. Then, for a fixed TV, the optimization problem is:

max H{G) (3.2)
Pi€P

such that (3.3)

C(y(t)) = 0 (3.4)

where y{t) is the system response and C is the yet to be defined constraint functional.

An equality constraint is used since the constraint functional will be developed similar

to a cost function which will not penalize acceptable responses but yield positive cost

for unacceptable responses.

3-4

At this time it is necessary to quantify the meaning of full envelope control

with respect to the response constraint for LTI and non-LTI plants. There are two

requirements of the controller: stability and transient response for tracking com-

mands. In the case of an LTI plant, one is only scheduling on parameter uncertainty,

say for instance r, and this is how scheduling is classically used. This is an easier

task than scheduling for model uncertainty, such as using the LTI approximation of

a non-LTI plant, since it is more structured and is fully modeled by the parametric

representation of the LTI plant. For a given r, one has a deterministic LTI closed

loop system and stability is determined by its eigenvalues. All bounded step com-

mands are admissible, and in fact their responses are identical if normalized so only

unity steps need be used. The stability and transient performance are independent

of the initial trim point, and therefore are started from zero. This is not the case for

Linear Time-Varying (LTV) and nonlinear plants. The initial condition and com-

mand strength, as well as sign of the command all effect the stability and transient

performance. The following clarifies the interpretation of full envelope control for

non-LTI systems.

Given that the system starts at rest from some trim condition, ifP, define

the set of admissible step commands, Sx, as those which take the system from x to

another point z £ P such that the convex combination of the x and z remains in P.

That is,

Sx = {z-x\Xz-(\-l)x e P, VA€[0,1]} (3.5)

When P is convex,

Sx = {z-x | ze P} (3.6)

Define the action of the controlled system on the input s G Sx from trim

condition x 6 P as $(s|x) = y(t), where y(t) is the output response. For stability,

3-5

one requires V x £ P and every s in its corresponding Sx that

||$(s|a;)-*|| < e€ R+ as t -+ oo (3.7)

where e represents a bounded maximum steady-state tracking error.

Next, the transient response is considered, and it is quantified by the functional

C to be developed in the sequel. One could apply the transient constraints on all

admissible commanded inputs. However, the intent is to allow the designer to use

linear control tools at the design points, and to be able to design the point controllers

independent of each other. Allowing this amount of design freedom and constraining

the responses of all admissible commands may over constrain the optimization until

no solution exists. A more appropriate scheme is to apply the transient constraints

to some subset of S^. In this work, a slewing between point designs paradigm is

chosen. That is, the transient constraint is applied only to responses commanded

to points in the region of P bounded by the closest point designs in every direction.

So, the solution guarantees transient response as it slews between point designs and

stability is checked against all admissible commands, S^.

3.2 Nearest Neighbor in n-Dimensions

In the above definition of transient constraints, it is required to determine the

nearest neighbors of a point in n-dimensions. One might choose to interpret this by

means of orthogonal projections of p — pi G P. Although this may be appropriate

if one assumes a uniform spacing of the point controllers in P, this assumption is a

poor one. The placement of the point controllers is the outcome of a constrained

optimization based upon the dynamics of the plant. One innovation of the developed

technique is that the resulting point controller locations reflect the model's dynamics.

The points are more spread out in regions where the model is insensitive to changes

in operating point, and the points are closer together in regions where the model

3-6

is more sensitive to such changes. Thus, the spacing reflects the size and shape of

the regions about each point that a linearized model is valid. Uniform placement of

plants is indicative of a nearly linear system.

Instead, and following the computational geometry paradigm, a better defini-

tion is used. Define the set of nearest neighbors of point pj as Nj C G. For point

Pj € G, form the bisecting hyperplanes B; between pj and pi € G, i ^ j. Then form

the hypercell V, C Rn as

Vj = r|B,-, i+i (3-8)
1=1

Points in the interior of this cell are closer to pj than to any other element of

G. The resulting boundary faces of this cell are subsets of the bisecting hyperplanes

of nearest neighbors. That is,

Pi eNj <=► B,-nVi^0 (3.9)

The cell that is formed and the neighbors it defines is of great use in the general

n-dimensional scheduler that is developed.

The constructed cells have been used in many fields of Applied Mathematics,

dating back to 1908, and are known as Voronoi diagrams or Thiessan Polygons [9].

This research introduces the Voronoi diagram to control, and, in particular, the field

of n-dimensional scheduling of controllers, a natural extension of its application.

Since the impetus for its consideration is to find generalized neighbors of points,

its geometric dual, the Delaunay triangulation, is used instead [9]. The Delaunay

diagram can be viewed as the unique triangulation which connects each point of a

set with all of its neighbors as generated from the Voronoi diagram. Examples of

these diagrams are depicted in Figure 3.1 for an arbitrary set of points in R .

3-7

Voronoi Diagram Delaunay Diagram
- 1 1 ' 1 1 '-

^ 9

10
12 13 -

"

7 - -
2

"
1

8
_

■/

6
4 -

- 11
\ 5

-
■ 3

,\
-

0 0.1 0.2

a)
0.3 0.4 0.5 0.6 0.7 0.6 0.9

Voronoi Diagram
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1

b) Delaunay Diagram

Figure 3.1 Generalized Neighbors

Generation of these constructs on a finite precision computer is a problem of

current interest in Computational Geometry. The approach taken in this research is

a composite of many suggested techniques [9, 14, 37, 24] from the current literature.

The set of MATLAB® functions to generate these constructs are contained in Ap-

pendix C. The problem can also be posed for solution by neural networks where the

appropriate geometry can be extracted by Topology Representing Networks (TRNs)

[31, 41]. The TRN approach becomes increasingly attractive as the dimension of the

parameter space increases.

3.3 Development of the Constraint Functional

As mentioned earlier, the goal of the constraint functional is to quantify whether

or not the system's transient response is "acceptable". It is therefore used to validate

sufficient cover between point designs. Classically this is performed by inspection of

the transients or one of two quantification methods; output error from some refer-

ence or remaining within acceptable transient thumb prints. While these methods

have their merits, all have major shortfalls. Visual inspection does not lend itself

to automated and autonomous (with no human intervention) techniques and hence

3-8

i

/^7^\ ' 'x ^^^
1 ' '""""'■■C -^^—=r=

/ ^^-
/ / 1 yS

0.8
/ /
/ / / ' '

1 / -

a
in

8.0.6
w
CD

- /

/ ■'' .'/
-

0.4 -I
■' /

" /
<7

-

0.2
J
j I

/

,/

4 5 6
Time (sec)

10

Figure 3.2 Acceptable Thumb Print Specification and Example Responses

is limited in use for optimization. While output error is the most common measure

used in optimization, it is inappropriate in transient analysis since it has no inherent

means for dealing with acceptable variations in the response. Recall that optimiza-

tion entails the minimization of a scalar variable. That is, an otherwise very good

response may be rejected because it differs too much from the reference response.

Output error is particularly sensitive to time lags or a bias between two responses.

For example, given a response and a duplicate of itself shifted slightly in either the

x (time) or y (magnitude) directions. While these responses are nearly identical, the

output error can be rather large. An attempt to avoid the problems of output error

is the use of an acceptable thumb print specifications such as that in Figure 3.2,

where a response is judged acceptable if it lies within the envelope formed by the

two boundary responses (solid curves). However, this technique does not detect 'bad'

responses within the envelope, such as highly oscillatory ones.

To avoid such shortcomings, and provide a transient analysis constraint use-

ful in the optimization, a novel constraint functional is developed which attains the

merits of the above mentioned techniques. First, a vector valued mapping, F, from

the system response y(t) to its feature space is constructed. This is compared to a

3-9

specification vector, 77, and the results are weighted and summed. The specification

vector is comprised of classical figures of merit as well as other meaningful measures

and its dimension is decided upon by the designer. The weights give a degree of

freedom to highlight importance of individual specifications and provide direction-

ality to search algorithms. These weights may be constants or nonlinear functions

themselves. In the examples contained in the sequel, eight tracking specifications are

checked and hence the feature space is R8. Eight functionals are derived to extract

the tracking features of each response, each an element of the feature vector, v.

Fl{y{t)) = vi (3.10)

Then a threshold function, T, is applied to the feature vector v comparing it

to the specifications 77 i.e., T(y) = 7 £ 1R8. Thus,

7 = T{v) =
\v — 771 , v > 77

0 , v < 77
(3.11)

Finally, the weighing functions are evaluated to w € K8 and the inner product

with 7 gives the constraint as C(y(t)) = wT~f, or

C(y(t)) = wTT(F(y(t))) (3.12)

The values used for w and 77, to evaluate tracking performance, as well as the

definitions of 77, are given in Table 3.1.

A subtle point, which often goes unaddressed in gauging MISO system perfor-

mance, is now presented. Evaluating the output response in multiple input systems

is not as straight forward as in the SISO case. With a single output and single input,

one desires to either track a commanded input or have the system not react to some

external input (disturbance rejection). Up until this point, the emphasis has been

3-10

i w V Specification
1 1 0.98 -1 x Minimum % peak value
2 1 1.25 Maximum % peak value
3 5 4 Maximum number of extrema prior to settle time
4 1 0.4 Maximum ratio of consecutive extrema
5 1 1.0 Maximum % tracking error
6 1 10 Maximum time of peak value
7 1 5 Maximum 2% settle time
8 1 10 Maximum rise time

Table 3.1 Tracking Specifications and Weights Used

tracking. In multiple input systems, this is handled by applying decoupled inputs,

usually one command at a time, and comparing each response to different specifica-

tions depending on the input. This is somewhat unrealistic in real world operation

but allows for a level of performance evaluation. This technique can be used when

all inputs are to be tracked, but requires uncertain parameters to be fixed during

the simulation. It is also appropriate when all commands are zero and response

to only parameter variation is investigated in a disturbance rejection problem. In

the case of MISO scheduling which includes both a commanded tracking input and

varying parameters, this means of response evaluation is indeed inappropriate. In

such a case the specification should indicate a blending of tracking and disturbance

rejection specifications.

The objective of this research is to traverse the parameter space which includes

both physical variables to be tracked, and structured uncertain parameters. There-

fore, such a blending of specifications is required. If the parameters were restricted

to being fixed, one would actually be using a discrete parameter as the truth model

and may as well reduce the order of the parameter space. The approach taken in

this technique to handle the blending is to use piece-wise linear functions to yield

a continuous mapping from tracking to disturbance rejection specifications, based

upon the slope of the system's trajectory in the parameter space P. Care must be

taken in generating this mapping since many tracking specifications become unde-

3-11

fined in the disturbance rejection (zero commanded input) setting. Modifying the

weights would be an inappropriate solution, since a constrained optimization is used

and due to the form of the constraint functional, this would merely change the slope

information for the optimization routine.

The MATLAB® functions used to extract the features (fom_nl .m) and cal-

culate the constraints (fuz_cost .m) are contained in Appendix C. This two stage

evaluation of the constraints allows for modification of the specifications dependent

upon command strength and the amount of parameter variation during the simula-

tion.

The constraint functional now identifies responses which are clearly acceptable,

yet it does not catch all responses that should be judged satisfactory, by perhaps

visual inspection, due to the finite dimension of the feature space. Hence, the so-

lution is more conservative than it could be and somewhat suboptimal. The multi-

dimensional scheduler example to follow uses the developed constraint functional of

this research. However, the constraint functional does yield a multitude of responses

which could be used as references and an output error measure could be meaningfully

applied to these. This is examined in an example in Chapter IV.

3.4 Selection of Membership Function Variance Parameters

The final portion of the synthesis technique is the selection of membership

function parameters to describe which region of the parameter space is best suited

to represent each point controller. Having chosen the multivariate Gaussian MFs

of Chapter II centered at the point pi, at which a controller is designed, the real,

symmetric and positive definite variance parameter matrix R; must be chosen. This

is accomplished in a manner which approximates the Voronoi diagram of the set of

points G. The resulting scheduling surface can be viewed as a Fuzzy Voronoi diagram.

Throughout this development it is assumed that all points in G are unique.

3-12

The novel method of selecting these parameters, developed in this research,

addresses several shortcomings of current techniques. First, a closed form solution

can be obtained, avoiding trial and error. Second, the physical meaning of member-

ship function is maintained. Often in finding MFs by optimization, this is lost by the

numeric algorithm even though this physical meaning of fuzzy variables is a main

reason for using Fuzzy Logic in the first place. Finally, the effects of normalizing

the weights over the entire universe of discourse is addressed. These issues can be

best visualized by first digressing to a 1-dimensional problem where each member-

ship function has a scalar variance parameter af to be chosen. Define r 6 E as

the vector whose elements are the variance parameters for each of the membership

functions.

The selection of the elements of r could be addressed in one of two ways.

It may be treated as another parameter in the overall optimization, or generated

automatically by some rule. Unconstrained optimization on r can take away from

the physical meaning of membership function and therefore is not used. Generation

of a meaningful constraint yields an elegant solution. The selected procedure is

based upon the physical meaning of the parameter and the effects it has on the

normalized weights of the controllers. The membership function, fj,(, is used to

specify the degree of membership an operating point has with respect to the fuzzy

variable "Pj. Where Vi represents the ith point controller. This membership must

be unity at pi and near zero at the other elements of G, since there are controllers

for these operating points which are designed for that point, and should therefore be

used instead. Define the cross-membership of pj with respect to pi as ßi(pj) where

i ^ j. Thus, one should choose the elements of the vector r such that all cross-

memberships are below some threshold e > 0. Since normalized weights are used,

this scheme converges to hard switching between controllers as e —> 0. Since the

primary objective is smooth switching, a lower bound should also be placed on e and

3-13

hence r,\ This is accomplished by selecting r,- = cr,- such that

max /*,•(?,■) = e, j 7^ i (3.13)
pyeG

Now turn to the selection of a value of e. If the cross-membership (cross

coverage) is too large, the normalized weights are inappropriately low at the center

points as in Figure 3.3a. A value of e = 0.001 is chosen, from empirical analysis, and

representative results are shown in Figure 3.3b. Figure 3.3c shows what can happen

to the normalized weights when the effect of cross-membership is ignored.

This selection has the desired attributes by approximating the Voronoi diagram

of points in R1. Clearly in the 1-dimensional case, the only possible active constraints

are the point's nearest neighbors, those to the left and/or right of pi on the real line.

Since the Gaussian function is symmetric, the active constraint is its closest neighbor

pc E G and from there one needs to solve for af as

2 = _5(Pi-Pc? (3-14)

' lne

The extension to the generalized n-dimensional case is obtained by realizing

that the above procedure maximizes the length (volume) of the constant membership

interval (contour) of ß(x) = e where x G X C P. The set X is the convex region

containing pi such that no other point design is contained within its interior. Also,

the only active constraints were Delaunay neighbors of p{.

For the general case, the solution is to maximize the volume of the n-dimensional

ellipsoid formed by the membership function contour

fi(x) = e, IGX (3.15)

3-14

Membership Functions with var = [0.0028 0.0028 0.0028 0.003]

0.5 0.6 0.7 0.8 0.8 1 1.1 1.2

a) e chosen too large
Membership Functions with var - [0.00088 0.00088 0.00088 0.00094]

0.5 0.6 0.7 0.8 0.9 1.1 1.2

b) e = 0.001
Membership Functions with var = [0.0001 0.0005 0.0025 0.01]

0.9 -

0.8-

f
I o
Z0.6-
S

' ,' f \

' 1 1 \
-

' ''
« 1

1
\

■

1

I ' 1

l-\ i A
1

1 * \

-

I
1 ' 1

1 '/
1 1 /
VI ''/
W

lv
ill

'v /
I''

[\ \
/ v M v 1

l\
1 \

1 \
1

\ :

■ ,l ''i \ 's /\
liA

v , ,V
0.4 0.5 0.6 0.7 0.8 0.9 1.1 1.2

c) Cross Membership Ignored

Figure 3.3 Implications of Selection of e on Normalized Weights

3-15

where X C P is convex and

Pi E X (3.16),

Pi $ int x> Pj G G, i ^ i (3.17)

It is desired that the active constraints be the neighbors from the Delaunay

diagram, however this is not always feasible. In the development which follows, two

additional constraints are placed on the optimization.

1. The points possessing the minimum Euclidean distance from pi are constrained

to lie on the constant membership contour. Relaxation of this requirement can

yield undesirable solutions.

2. The variance parameter matrix R; is diagonal. This assumption makes for a

much cleaner solution while its implications on the shape of the contour are

reduced by the normalization of the membership functions over P.

Note that in dimensions greater than one, the above optimization may still be

ill conditioned due to the location of the elements of G. In such cases the optimum

solution may give infinite or degenerate (trivial) results, and additional constraints

must be added for meaningful results. This is in part due to the form of R chosen,

but is easily remedied. Possible choices are further restricting X to the convex hull

of G or to the region bounded by the extreme projections of all points onto R™.

3.4-1 2-Dimensional Variance Solution. To illustrate the selection of the

variance parameters, the solution for a set of points in R2, to be used in the following

example, is derived. The resultant constraint membership contours are now ellipses

aligned with the x and y axes, of which the constrained maximal area is desired,

resulting in the following non-convex optimization.

3-16

The solution is found by translating the point of interest to the origin and

removing it from consideration. Denote the remaining points as S where

N-l
s = {(*i,w)}?=-i

(0,0) i s

and define

(a;,y) = argmin ||(xj,%)|| (3.18)

Then to maximize the area of the ellipse with semi-axes a, b

max ab, (3.19)
a,feeR+

such that

2 2

% + % > IV; (3.20)
a1 bl

£4 =i (3-2i)
To assure finite non-degenerate solutions, restrict amjn < a < amax and 6min < b <

bmax with amin, 6min > 0. For a well conditioned set of points, these bounding values

are achieved by the Delaunay neighbors and other elements of S. If not, they must

be imposed, perhaps as suggested above. Now define

x = ^ (3.22)

V = y2 (3-23)

Clearly x, y G R+ and max ab ^=^ min xy and the limits on a, b impose limits on

x,y. The new constraints are

x}x + y]y > 1 Vj (3.24)

3-17

x2x + fy = 1 (3.25)

The isocost surfaces of min xy are hyperbolas, symmetric about the line x = y in

the positive cone of R2, which have local solutions at x^n and t/^in. These refined

minima, from those imposed to generate finite solutions, are developed below. From

the equality constraint,

y = l-^ (3-26)
y2

yielding the combined inequality constraint on x as

2 2/j -2
yi

y2

x>l-^ Vj (3.27)
r

x > — for <y.j > 0

X < —
Ctj

for ctj < 0

denote the above quantities such that

<*jx > ßj V j (3.28)

It is easily verified that a may change sign requiring

(3.29)

(3.30)

A parallel development results in constraints on y. In the sequel, it is shown that

ctj = 0 need not be' addressed. Combining the, at most N — 1, evaluations of of these

constraints for both x and y along with the original x^n (amax) and ymin (bmax) yield

Z^iin and 2/min giving Solutions

\X 5 y) = I ^min) ~jß I

or

3-18

the global minimum being that which yields the smallest value of x*y*. This gives

b* =

x*

y*

Since R, is diagonal, these values can be used twice in Eq. (3.14) where a*

and b* represent the quantity (p,- —pc), thus totally describing the membership func-

tion with desired cross-membership. The MATLAB® function find_2dv.m which

performs this optimization is contained in Appendix C

To visualize this process, examples of cross-membership contours and the re-

sulting membership functions, both regular and normalized, for the set of points in

R used in Figure 3.1 are contained in Figure 3.4. In particular, Figure 3.4d is a

fuzzified version of Figure 3.1a.

Claim: For ay = 0, the point (XJ, j/j) can be removed from the constraints.

Proof: From the definition of a,-

a,- 0 =»
y] y2

Xj X

Vi y

X X

y
01

y Vi

This implies that (XJ,J/J) lies on either the line L, the line through (0,0) and (x, j/),

or L', the reflection of L about an axis. From the definition of (x,y)

[x^yj)\\ > ll(ä,y)

Thus:

3-19

Choice of Cross Membership Contours Contour ol Membership Functions

5.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 ~°-2 ° °-2 0A °-6 °-6 1 1-2

a) Local Cross Membership Contours

2-Dlmensional Membership Functions

1.2r

b) Solution Contour Map

Contour of Weighted Membership Functions

0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

c) 2-D Membership Functions d) Normalized Membership Functions

Figure 3.4 Membership Function Selection of Points in R2

1. If equality holds, point (xj,yj) lies on the circle of radius ||x,y||. The constraint

is equivalent to the one on (x,y) and can therefore be ignored.

2. If ||(iCj, J/j)|| > ||(ic,?/)||, the point is clearly outside the circle of radius \\x,y\\

while being on L or V. This implies

\XJ\ > \x\ and \yj\ > \y\

=> x2j > x2 and y2 > y2

3-20

Since x,y > 0 by definition, this gives

x2x + y2y > x2x + y2y = 1, V x, y > 0

Therefore:

Point (xj,yj) lies outside the family of possible ellipses and can be removed

from the constraints.

3.5 2-Dimensional Scheduler Example

With the mathematical formulation in hand, a solution to scheduling 10 LTI

point controllers to control the nonlinear system, of Appendix B, with parameter

uncertainty is obtained.

3.5.1 Plant and Point Controllers. The nonlinear system with uncertain

parameter, a, of interest is described by the system of equations

xh = ~xh + axh (3-31)

xh = -x\+u) (3.32)

Vf = Xh (3-33)

To linearize these equations define the full state xj as

Xf = x + x

where x is the trim state and x is the perturbation state. Solving for the trim

condition, the model yields xx — ax2 = ü. Further, define r = Zx\ = Zu2. This gives

3-21

the perturbation equations from the equilibrium point x as

x\ = —x\ + ax2 (3.34)

X2 — —TXi + TU (3.35)

y = xi (3.36)

When the two parameters r and a are considered fixed, an LTI model results. For a

given set of these parameters, p — (r,a), the transfer function representation of the

plant, at the trim condition, as a function of r and a is

KM = l^kTr P-37>

The scheduling solution (location of point controllers) is found by a numeric

optimization, and the search algorithm requires several point evaluations for each

step along the cost surface to determine the direction and size of step. Each point

evaluation requires the design of N LTI point controllers, their corresponding mem-

bership functions, and simulations of the resulting system to evaluate the constraint.

These procedures are automated to allow for a hands off optimization, and all have

been addressed with the exception of point controller design method which is left to

the discretion of the designer.

The design of LTI point controllers can be by any technique not requiring

an interactive approach, such as LQR or pole placement. Using the linear control

theory analysis of Appendix B as guidance, the scheduled controllers G{(s) designed

at point pi = (T{, a,-), are of the form

-^(s2 + s + am)
Gi{s) = m± -, -^- (3.38)

3-22

MATLAB
Function

10 Point Designs

Sch on tau

MATLAB
Function

U|2TD
?$-

2

Uouo

Normalize

Sch on a

Nonlinear
Plant

□
NL Response

 ►"

astart+((astop-astart)/9.8*u) <«-J>

Mux

Outport

■H yout 1
To Workspace

© Clock

u>9.8 STOP

vary a when done

2-D Scheduler
10 Point Designs with the Nonlinear Plant

Figure 3.5 Block Diagram of Fuzzy Scheduler

Note: Check initail conditions on integrators function of Uo and astart

xf1 yf_out

nf in ~ ' Xf2 uf_in

LH-

Figure 3.6 Nonlinear Plant with Parameter Uncertainty

3.5.2 The Fuzzy Scheduler. The fuzzy scheduler to control the plant over

some region of the parameter space P is depicted in Figures 3.5 - 3.7. The number

of LTI point controllers is arbitrarily chosen as N — 10.

Some notes on the problem as modeled in Figure 3.5 are in order. Traversing

P requires varying both of the parameters, T and a, during the simulation. Recall

that r = ?>x\ is only used to generate approximate LTI models of the plant to aid in

3-23

E 24/(pt(1,1)-pt(2,1))-M 1 pt(1,1)'pt(2,1)]

s3+8s2+16s
ni

24/(pt(1,2)-pt(2 2))-f11pt(1,2)-pt(2,2)]

s3+8s2+16s

G2
24/(pt(1,3)-pt(2 3))-M 1 pt(1,3)-pt(2,3)]

s3+8s2+16s

Q3
24/(pt(1,4)-pt(2,4))>M 1 pl(1,4)'pt(2,4)]

s3+8s2+16s

G4
24/(pt(1,5)'pt(2,5))-ri 1 pt(1,5)'pt(2,5)]

s3+8s2+16s

G5
24/(pt(1,6)-pt(2 6))l11pt(1,6)-pt(2,6)]

G6
24/(pt(1,7)'pt(2 7))-ri1pt(1,7)'pt(2,7)]

s3+8s2+16s

G7
24/(pt(1,8)'pt(2,8))-M 1 pt(1,8)'pt(2,8)]

s3+8s2+16s

as
24/(pt(1,9)'pt(2,9))-M 1 pt(1,9)-pt(2,9)l

s3+8s2+16s

G9
»4/(pt(1,10)'pt(2,10)),[1 1 pt(1,10)'pt(2,10);

s3+8s2+16s

G10

Mux

out

Figure 3.7 Bank of 10 Point Designs

the design of the point controllers. It is therefore advantageous to consider a varying

T as T = x\ when dealing with non-LTI systems. Since x\ > 0, an equivalency is

established between the two representations of P as either [r x a] or [x-y x a}. The

implementation actually schedules on xi, the output of the nonlinear system. This is

consistent, since the membership functions are actually found in the mapped space

[xi x a}. So the Sch_on_tau block in the figure is actually scheduling on the output

y as desired. This notation is maintained throughout the research.

3-24

The value Uo = Xi is the required command input to achieve trim, thus avoiding

the calculation of controller state initial conditions. Appropriate initial conditions

are calculated for the nonlinear plant's integrators. Changes in r are clearly accom-

plished with steps commands of Xi, while the required changes in a are modeled as

ramping from the initial a to the final value of aj over the duration of the simula-

tion. Thus, a varies as is expected for a slowly changing external parameter over

which the system has no control authority. This problem is specifically designed to

generate such requirements and validate the synthesis technique's ability to handle

them. As such, the specifications are modified from the pure tracking of Table 3.1,

when a = a/, to pure disturbance rejection when the step function has zero strength.

To clarify, the two blocks Sch_on_tau and Sch_on_a do not indicate independent

scheduling of elements of P as is done in the current literature noted in Section 1.5.

This is merely a result of assuming R; of the membership functionals to be diagonal

and is implemented for speed of simulation. As presented earlier, although the cross-

membership contours are aligned with the basis axes, the solution of the membership

function fit is performed in the full n-dimensions.

3.5.3 Optimization. Now that the problem statement is fully posed, the op-

timization can be performed using any of a number of techniques. The optimization

is performed by the Optimization Toolbox's function constr.m for MATLAB® , an

SQP routine [28]. The simulations to evaluate performance constraints are obtained

from SIMULINK® . The algorithm to achieve the solution is:

1. Generate the argument of the optimization X € RNxn composed of the TV

elements of G, each describing a point controller's location.

2. Calculate the object function. That is the area of the convex hull of the G.

3. Generate the TV point controllers Gi(s).

4. Solve for the Delaunay neighbors of each of the TV point controllers.

3-25

5. Solve for the membership function variance parameter matrices. Schedule on

[xi x a],

6. Evaluate the constraints. For each point in G:

(a) Trim the model to (äjj,ä,-)

(b) Calculate the step strength, change in a, and slope of the trajectory in P

from point pi to each of its Delaunay neighbors.

(c) Simulate the scheduled system from point pi to each neighbor.

(d) And for each response: Extract the response features, then calculate ap-

propriate specifications, and evaluate the constraints of slewing to that

neighbor. If no violations are found, the slewing goal is achieved between

all neighbors and sufficient cover is demonstrated.

7. Return the values of object function and constraint evaluations.

8. Update the argument with a new set of point controller centers.

3.5.4 Solution. The results of the optimization for N = 10 are presented,

demonstrating the feasibility of the fuzzy scheduler. The objective of the optimiza-

tion is to maximize the cover of the controller, while meeting performance constraints

when slewing between controllers. Figure 3.8 shows an increase in area over 50 times

larger than the initial location of controllers as supported by the two shaded areas.

All performance specifications are met (see Table 3.1 page 3-11) as indicated

by the optimization's constraint functional evaluating to C(y(t)) = 0 at the solution.

The slewing responses of commanded input between all point designs are shown in

Figure 3.9

The issue of system stability is addressed by extensive simulation in the region

of P defined by the convex hull of the solution G*. The spanning set of points, S, in

Figure 3.10a is used for this purpose. A simulation is started from each s,- G S to all

3-26

Growth of Controller's Cover by the Optimization
1.08

1.3 1.4 1.5 1.6 1.7 1.8 1.
Uncertainty due to Nonlinearity

Figure 3.8 Increase in Object Function

Simulation Results Between all Design Points
0.84

0.82

0.8

0.78

0.76

0.74

0.72

0.7
4 5

time (sec)
8 9 10

Figure 3.9 Tracking Response of Slewing Commands

3-27

Spanning Subset of Envelope
1

1

- -

-
s ■

4 © 0 © 0 0 0 0 0

■ • \ 0 0 © 0 0 0 0 -

0 4

Simulation Results Between all Spanning Points

1.4 1.5 1.6 1.7 1.8 1.9
Uncertainty due to Nonlinearity

a) Spanning Set of Points S

0.68 L

2 0 12 3 4 6
time (sec)

b) Tracking Responses

Figure 3.10 Stability Analysis

other admissible points. Since the region of interest is convex, the admissible set in-

cludes all other points of S. The results of these simulations are in Figure 3.10b. The

tracking specifications are not applied to these responses since only bounded steady-

state error is required for stability. However, the results are more than satisfactory

and clearly indicate a smooth transition between the controllers as desired.

Although this example gives total freedom to the optimization for the location

of the point controllers, the synthesis technique has the ability to direct these loca-

tions. One merely needs to include additional fixed points to the bank of controllers

to achieve this. These points are not included in the argument of the optimization

routine, but included in the membership function generation, simulation and con-

straint evaluation portion of the algorithm. This allows the designer the freedom to

include specific points of concern in P as well as firmly establishing the boundaries

of the operational envelope. This can also allow the design to grow by fixing the

results of one optimization, then adding new free controllers as the new argument of

the optimization. An example of directing the solution is contained in Chapter IV.

3-28

To gain greater insight into the power of this technique, Chapter IV includes 1-

dimensional examples with extensive analysis of the results. These examples include

varying the fidelity of the truth model and its implications.

3.6 Summary

This Chapter develops the fuzzy scheduler of point controllers to provide full

envelope control of nonlinear systems with parameter uncertainty. Scheduling is

performed on the n-dimensional parameter space, P, over which the system is to

operate. The scheduling is performed to provide a smooth transition between point

controllers designed for specific regions of P. The solution is obtained from an op-

timization which yields the point controller locations, and membership functions

which maximize the coverage of the scheduled controller while providing a guar-

anteed level of performance. The sufficient cover required of the point designs is

quantified as a by product of the optimization process. The resulting controller is

for use with MISO systems. The solution can therefore be used in conjunction with

MIMO controller synthesis techniques which yield solutions by solving several MISO

problems, thus bridging the gap to full envelope control of MIMO nonlinear systems

with parametric variation.

The developed synthesis technique allows one to use existing linear control

techniques to design point controllers yielding satisfactory results for non-LTI plants.

The use of standard linear control theory for the point controllers removes the re-

striction of controlling only minimum phase and/or simple plants inherent in the

standard application of fuzzy logic based on control. This ability to handle such

plants is designed into the point controllers and is not violated by an application of

error and error rate in the fuzzy logic inference engine. The resultant controller is

able to perform high amplitude (not small signal) control, and the nonlinear plant

can be slewed.

3-29

To obtain the solution, several novel concepts are introduced to the field. The

use of the Voronoi diagram to quantify generalized nearest neighbors fits naturally

into n-dimensional scheduling. The concept of cross-membership ellipsoids maintains

the physical meaning of fuzzy variables while allowing an optimization to calculate

the membership function parameters. When the MFs are obtained in this manner,

normalizing the results provides a means of approximating the Voronoi diagram as

an analytic scheduling/switching surface over P. This also assures sufficient control

authority as the scheduling dimension increases.

The direct attack on both model uncertainty due to nonlinearities and uncer-

tainty of varying parameters points out the inadequacies of pure tracking/disturbance

rejection specifications. The ability to achieve the demonstrated results is based upon

formulating a constraint functional on the output response which embeds both clas-

sical figures of merit and other meaningful features. This functional has the ability

to smoothly blend the tracking and disturbance specifications required to traverse

the parameter space.

Finally, the applicability of the synthesis technique is demonstrated by the so-

lution of a nontrivial strongly nonlinear control problem. This entails the solution of

a 2-dimensional scheduling task of a strongly nonlinear plant with a varying param-

eter. The results provide an improvement in the coverage of the scheduled system

over that obtainable from the point designs used in a switching scheme. All this is

achieved while maintaining the pre-specified level of performance.

3-30

IV. 1-Dimensional Scheduling Examples

In Chapter III the solution to the general n-dimensional scheduling problem

is developed and a non-trivial two-dimensional example is presented. To provide

greater insight into the results of the fuzzy controller scheduler, simplifications are

made to the plant and new solutions are obtained. The one-dimensional problems

posed in Appendix B are now provided in full detail. Also included is a design

of a lateral coordinated turn controller for an Air Force C-135 transport aircraft

with restricted model information. This lack of information ties the hands of the

scheduler and dose not allow for full freedom in the placement of point controllers.

However, the ability to smoothly schedule conventional controllers used in flight

control demonstrates the wide applicability of the technique.

In Appendix B experiments are performed to evaluate fuzzy scheduling of in-

dependent point controllers to obtain a full envelope controller. Results are obtained

for Linear Time-Invariant, Linear Time-Varying, and nonlinear models of a strongly

nonlinear plant. In this chapter, an optimal solution for the controller, which en-

tails scheduling on a single variable, is derived. The resulting controller addresses

the shortcomings noted in Appendix B as well as quantifying the "sufficient cover"

required of the point designs, and yields smooth transitions between these point

designs. The n-dimensional solution is applied in particular to the one-dimensional

(no parameter variation) true nonlinear system, then the technique is applied to the

LTI and LTV approximations of the system for completeness.

The architecture of the controller is the same as in Chapter III except that the

dependence on the varying parameter a is removed, i.e a = 1. The resulting block

diagram for the nonlinear system is shown in Figures 4.1 - 4.3.

4-1

_T Step Fen

1^
10 Point Designs

MATLAB
Function

Vector Gauss

•^-

W

Üöluo

\ha^m

Normalize

1

one a(in)1
Nonlinear

Plant

□
Scope

—►

Mux

Outport

To Workspace

(3 Clock

u>9.8 STOP

weights
when done

To Workspace2 10 Point Designs Scheduled
with the Nonlinear Plant

Figure 4.1 SIMULINK® Block Diagram of 10 Point Scheduler with Normalized
Weights

Vector Normalization of Membership Values

 SE in 1

^ 1/u

Scale out 1

total Invert

Figure 4.2 Normalization of the Weights

4-1 Simplifications Due to 1-Dimensional Scheduling

Reducing the scheduling dimension from n to one simplifies many of the sched-

uler's constructs. The simplifications below not only reduce the complexity of the

optimization, but add a sense of directionality to the solution. Thus, one can visually

appreciate the novelty of this research's contribution.

4-2

■* *-

24/pt(1)*[1 1 pt(1)]

Mux

s3+8s2+16s
in

G1

—► 24/pt(2)*[1 1 pt(2)]

s3+8s2+16s

G2

-► 24/pt(3)*[1 1 pt(3)]

s3+8s2+16s

G3

->
24/pt(4)*[1 1 pt(4)]

s3+8s2+16s
G4

->
24/pt(5)*[1 1 pt(5)]

s3+8s2+16s

G5

-► 24/pt(6)*[1 1 pt(6)]

s3+8s2+16s
G6

—► 24/pt(7)*[1 1 pt(7)]

s3+8s2+16s

G7

—► 24/pt(8)*[1 1 pt(8)]

s3+8s2+16s
G8

—»
24/pt(9)*[1 1 pt(9)]

s3+8s2+16s

G9

h 24/pt(10)*[1 1 pt(10 .
s3+8s2+16s

G10

_1
out

Figure 4.3 Bank of 10 Point Controllers

1. The set of point design centers {pi}^ = G are now represented as an element

ofR".

2. Delaunay neighbors of pi are merely the points to the left and/or right on R1.

3. Membership function variance parameters are obtained directly from Eq. (3.14).

4. The object function, or cover to be maximized, is now the length of the interval

\Pma.x .Pmin|-

5. Line intervals are convex, therefore all steps in its range are admissible.

4-3

6. Constraints: all commands are strictly tracking or disturbance rejection so no

blending of specifications is needed. In this example all tasks are tracking.

7. The net result of the optimization is to maximize the inter-point spacing. By

adhering to the cross-membership constraint this maximization is accomplished

independently for the end points defining the universe of discourse. The net

effect is that the 1-dimensional scheduler can be solved sequentially.

4-2 Variation on the Constraint Functional

As alluded to earlier, the constraint functional developed in Chapter III iden-

tifies responses which are clearly acceptable. It does not catch all responses that can

be judged satisfactory, due to the finite dimension of the feature space. However,

the functional does yield a multitude of acceptable responses that are acceptable as

reference responses to which an output error measure can be applied. A modified

version of the functional, which takes advantage of this property, is used in obtaining

the 1-dimensional solution. As is shown in the sequel, C is not convex with regions

that violate the constraint surrounded by regions that do not violate. Since it is

assumed that the plant is continuous, the system's response varies continuously with

respect to varying step inputs. That is for $(s\x) = y(t) and e > 0 there exist a 8 > 0

such that \y(t)-y(t)\ < e for all \s-s\ < 8 where $(s\x) = y(t). So allowing for some

small output error from a known good response, allows some responses that violate

the mapping of C to be accepted, and thus reduce the unmodeled features in C.

This second stage of constraint evaluation is used to check unacceptable responses

as evaluated by C to the 'closest response' for which C(y(t)) = 0. The measure used

is the mean squared output error of the responses normalized to their final value.

4-3 Optimization

With the mathematical formulation in hand, the solution to scheduling LTI

point controllers to control the nonlinear system of Appendix B is obtained.

4-4

4-3.1 Set Up. The parametric linear controllers of the form G{(s) of Ap-

pendix B are used. Gaussian membership functions, centered at pi, are used and

their variance parameters are found by using a cross-membership of e = 0.001.

To evaluate the constraint, simulations are performed starting with initial con-

ditions at each point design, p,- G G. The responses are checked for maximum positive

and negative steps to the closest point designs (left/right neighbors) to maximize the

separation between them. The constraint, C, is not symmetric about the trim con-

dition in general, so the limiting direction is chosen. As is shown in the simulations,

this is always the positive step in the case of the nonlinear system. Once the spac-

ing between point designs is maximized, based solely on the evaluation of C acting

on the step responses from each pi to its neighboring point designs, G is consid-

ered a candidate design for further checking. Since the constraint C is not convex,

specifically on the region about pi bounded by its neighbors, an exhaustive search is

performed in this region to check for violations of C. If no violations are found, the

tracking performance is achieved on this region and sufficient cover is demonstrated.

If violations of C are found, a normalized output error measure is applied to these

responses. The reference used is the closest normalized response which satisfies the

constraint C. If the measure is less then e = 5 x 10-4, found empirically, the response

is judged acceptable and the region has been optimized as stated. In the case where

there still exists violations of the constraints after the output error check, the region

is rejected and the candidate G fails due to transient performance. A note is in order

here with regards to the exhaustive search on the region, since the search can not be

actually performed. A finite search is used with a fine partitioning of the region, this

approximation is justified by the continuity of change of the output response. This

is really a numeric optimization problem and does not distract from the contribution

of the overall solution.

Prior to obtaining the solution, one additional constraint is placed on the

problem based upon engineering judgement. That is, p\ — 1 is required since the

4-5

MF: Solid Lines, Normalized Weights: Dashed Lines

'i'i i i / ; ;iiN>'/ i \ i j \x'' i \
0.9 ill1' I'll

11 11
ii ' i ! ii

iiii
ill i i /

1 ' / \
0.8 i' ;i ii I 1 / \

S In 1' i1 " " 1 ' / 1
7*0.7 ■

n ! 'i '! 7 » J '■ 3 ' 1 1
10 \

g
o
2 0.6 ■o
§

■ j "
1 M

it
it I •

■2 0.5

1
|o.4 : 1 i

! !

i
i
II

" I

1
* J
'I /
'I

1 ;
§0.3

1 ■ 1 J M
'I / I1' / 1 1 | / \ -

0.2
■ 1 I 1 'V ,1 V '/ \

0.1 ■ I it im M ÄÄ
in
i/\i

y v \ ■

Transient Response

0.7 0.8 0.9 1 1.1 1.2
Controller Location in v. v=sqrt(tau/3)

a) Controller Weights

4 5
Time (sec)

b) Slewing Commands

Figure 4.4 Results of Optimization

nonlinearity is most severe as the origin is approached. This way, full control au-

thority is available at the edge of the operational envelope which causes the most

trouble. This is an example of directing the synthesis technique's solution.

4-3.2 Solution. The optimization is performed using N = 10 point designs

which is more than sufficient to cover the interval [1,2] attempted in Appendix B.

The solution yields

p* = [1 1.11 1.244 1.408 1.602 1.846 2.163 2.6 3.207 4.388] (4.1)

a2' = [6.9e-5 6.9e-5 9.2e-5 1.2e-4 1.5e-4 2.1e-4 3.0e-4 4.8e-4 7.6e-4 2.2e-3]

(4.2)

where Figure 4.4a shows the controller membership functions and normalized weights.

This suggests that the solution to the dual problem requires a maximum of 7 con-

trollers of this type to cover the interval r = [1,2]. Figure 4.4b demonstrates the

slewing between point controllers.

The increase in spacing of the point designs, and corresponding width of mem-

bership functions, as one moves away from the envelope bound at pi = 1 agrees

4-6

with the increase of the strength of the nonlinearity as one approaches the origin.

As the nonlinearity becomes more severe, the region about each LTI model where

it represents the nonlinear system is reduced. The strength of the nonlinearity can

be quantified as a normalized error of the linearized model. This is depicted in

Figure 4.5 for y = x3 and defined as S below.

c A y{x + Ax) - y(x) - y'(x)Ax

and Ax is fixed. Now,

Ax2

y(x + Ax) = y(x) + y'(x)Ax + y"(a:) — + ■ • •

2y'(x)Ax 2 y'(x)

^bCC2y>(x)

So the case of the cubic nonlinearity y = x3 results in

1 6x _ 1
bCC23x~>~x

which is indicative of a very strong nonlinearity near the origin.

4-4 Simulation Results

The inherent directionality of the 1-dimensional problem suggests that stability

be checked by commands to the extremes of the universe of discourse. The stability

of the controller over r G [1,4.388] = P is checked by commanding the maximum

positive/negative admissible steps from randomly generated trim conditions u0 G P.

The results in Figure 4.6 indicate a stable system over all of P.

In Appendix B an effective increase in cover is obtained by the scheduler

over the individual point designs. That is, each individual controller has a region

4-7

y = x3 and First Order Approximation

y 4

Figure 4.5 Gauging the Strength of a Nonlinearity

Full Envelope Random Simulation of Scheduled Controllers

7 8 0 10

Figure 4.6 Stability Analysis of the Scheduler

4-8

Bi(pi,ti) C P about it for which acceptable tracking performance is obtained. With

the classical view of scheduling, one would require

U Bi(Pi,ei)DP (4.4)

That is, place the point designs close enough together to provide overlap of these

regions. However, since this research schedules controllers and not parameters, the

controller is able to often bridge the gap between disconnected regions of adjacent

controllers. The set P is no longer required to be a subset of the union of the iV

regions. Thus allowing an increase in their separation and requiring fewer point con-

trollers to do the job. This is observed in the n-dimensional controller of Chapter III

but can be visualized much more clearly in the 1-dimensional examples. This is seen

in Figure 4.7 where the error bars indicate regions of acceptable transient response

for different trim conditions. Figure 4.7a shows the regions for the individual point

designs which do not all have overlap. Figure 4.7b compares this with the regions of

the scheduler which shows not only a drastic improvement in the regions, but also

demonstrates sufficient cover and the ability to smoothly transverse point controllers.

Responses corresponding to these increases in cover are contained in Appendix D.

Evaluations of the constraint surface over the entire operational envelope gives

an indication of the increase in performance. Figure 4.8 gives the surfaces before

and after the fuzzy scheduling.

To visualize the effects of the two step constraint evaluation, an example con-

straint surface for pio = 4.388 is shown in Figure 4.9. The x-axis is v = \/T/3 = xi,

the y-axis is C(y(t)), the • • • lines are the location of other point designs, and the

— ■ — lines indicate the region of acceptable transient response as determined by C.

The symbol * is used to show the value of the constraint evaluation after the nor-

malized output error comparison. Constraint surfaces for other trim conditions are

4-9

Individual Point Design Cover Individual Point Design Cover vs. Scheduler Performance

Point Design Number

a) Cover of Point Controllers

■T x°

Point Design Number

b) Cover of Scheduler

8 10 12

Figure 4.7 Increase in Cover

Constraint Surface After Output Error Comparison Constraint Surface After Output Error Comparison

1-2 Trim Point

1.3

Commanded Value, v Commanded Value, v

a) Point Controllers b) Scheduler

Figure 4.8 Performance Surface Before and After Scheduling

found in Appendix D. Figure 4.10 depicts an evaluation of the normalized output

error measure for a response where C(y(t)) > 0 in the interval [pg,Pio]-

4-10

Constraint Surface for Point Design 10 at tau = 4.388 or v = 1.209

0.2 0.4 0.6 0.8
Commanded Value

1 1.2

Figure 4.9 Constraint Surface for pw where u0 = 1.209

From Point Design 10atv= 1.209 to cmd = 1.115

Figure 4.10 Visualization of Mean Normalized Output Error

4-5 LTI and LTV Results

The optimizations for the two systems of Appendix B, used to approximate

the true nonlinear system, are performed using TV = 4 point designs. This number

allows for covering of the specified operational envelope as well as confirming the

ability to slew and transverse several controllers.

4-11

Design Simulation Intervals (or LTV System

Membership Functions with var - [0.0027 0.0027 0.0045 0.0089]

0.6 0.8 1 1.2 1.4
.<sqrt(tau/3) Point Designs Centered at tau = [1 1.761 3.106 5.615] for LTV

a) Controller Weights
tau-[1 1.761 3.106 5.615] for LTV

b) Slewing Commands

Figure 4.11 Results of Optimization of the LTV System

4-5.1 Solution for the LTV System. The solution for the LTV system yields

p* = [1 1.761 3.106 5.615] (4.5)

.2* [2.685e-3 2.685e - 3 4.545e - 3 8.897e - 3] (4.6)

where Figure 4.11a shows the controller membership functions and normalized weights.

This suggests that the solution to the dual problem requires a maximum of 3 con-

trollers of this type to cover the interval r = [1,2]. As shown in the sequel, far greater

than 3 point controllers of this type would be required if a conventional scheduling

scheme were used. Figure 4.11b demonstrates the slewing between point controllers.

The stability of the controller over r € [1,5.615] = P is checked in the same

manner as for the nonlinear system. The results in Figure 4.12 indicate a stable

system over all of P. Note that for the LTV system, it is the negative commanded

steps which are the limiting case.

For the LTV system, a much greater increase in effective cover is observed as

shown in Figure 4.13a. There is no overlap between any two regions where individ-

4-12

Full Envelope Random Simulation of Scheduled Controllers

3 4 5
Time (sec)

Figure 4.12 Stability Analysis of the Scheduler for the LTV System

ual point controllers provide acceptable tracking performance. Hence, convention

scheduling would require greater than the at most three point controllers needed

for the fuzzy scheduler. The slewing performance surface in Figure 4.13b depicts a

controller with nearly full envelope slewing capability in the LTI sense. This is due

to the LTV system being closer to the linear models used to design the point designs.

Notice that in starting from a trim condition near the 4th controller, the per-

formance is less robust for positive steps than from staring near the center of the

envelope. For the edge controller, any positive step is away from its valid model and

there are no other models that better represent the system. This situation exists for

the entire transient. However, from other trim points a combination of models is

available during a large portion of the transient. Therefore, when the system reaches

the edge of the designated envelope it is in a closer state to the commanded value.

4-5.2 Solution for the LTI System. Previously it was noted that the LTI

system actually poses a different, easier, problem. It is also the most often solved due

to the analytic tools available. In cases where the the plant is accurately modeled

as an LTI system, this is indeed appropriate and this assumption is made for the

example below. However, when the LTI model is obtained by linearizing a nonlinear

4-13

Individual Point Design Cover vs. Scheduler Performance for LTV Plant

Si 1

T '

)

(ill

)

2 2.5 3
Point Design Number

a) Increase in Cover of LTV

LTV Scheduler Constraint Surface After Output Error Comparison

A" 0.4

0.6

Commanded Value, \

b) LTV Performance Surface

Figure 4.13 Performance of the LTV System

system in order to use these analytic tools, the results can be very misleading. Classi-

cally, this is only quantified after the design is complete by simulation, a shortcoming

overcome by the synthesis technique of this research. In particular, the nonlinear

plant of these examples is such a case where using LTI theory is totally inappropriate

as shown by comparing the nonlinear and LTI solutions.

Assuming an LTI truth model for the plant, the solution for N — 4 yields

p* = [1 1.4 1.9 2.5] (4.7)

_2*J

[8.8e-4 8.8e-4 8.8e - 4 9.4e - 4] (4.8)

where Figure 4.14a shows the controller membership functions and normalized weights.

This suggests that the solution to the dual problem requires a maximum of 4 con-

trollers of this type to cover the interval r = [1,2]. The discussion of cover in the

sequel shows that more than four point controllers of this type would be required if

a conventional scheduling scheme were used.

4-14

Membership Functions with var - [0.00088 0.00088 0.00088 0.00094 Step Response of 20 LTI Systems with tau in [1,2.5]

0.5 0.8 0.7 0.8 0.9 1
v»sqrt(tau/3) Point Designs Centered at tau-[1 1.4 1.9 2.5

a) Controller Weights

2 3 4 5 6
Time (sees)

b) Full Envelope Simulations

Figure 4.14 Results of Optimization of the LTI System

Figure 4.14b demonstrates the full envelope coverage of the scheduler, in the

LTI sense defined below. That is, for the given plant of form

Pr(s)
s2 + s + r

(4.9)

and for any r E [1,2.5], the scheduler provides acceptable transient response to step

inputs. So the optimization yields a robust controller with guaranteed performance

characterizations on the output. These performance guarantees are not just a mini-

mization of an error, which can sometimes be of little true interest. They embed the

important specifications on the output and allow for deviations in the response that

do not violate them. The performance is also more constrained than in the use of

thumb print specifications, and therefore much more useful. Most techniques that

promise these results require human intervention to aid in the process, and are not

hands off.

The stability of the controller over r € [1,2.5] = P, may be checked by obtain-

ing the eigenvalues of the system as a function of r. For any fixed r, the closed loop

system is a deterministic LTI system whose stability is dictated by its eigenvalues,

4-15

which can be found by block diagram manipulation or circuit analysis. Define a(r)

as

«M = £ ^ (4.io)

where W{(T) is the normalized weight, Eq. (3.1), of the ith controller designed about

Pi. Designating the fuzzy scheduler, for fixed r, as Gsck(s) and combining the N

parallel point controllers yields an open-loop system of

n , x T, / x 24r (a2s2 + as + 1) ,
Gsch(s)PT(s) = l ; l > 4.11

5 [s2 + 8s + 16) (a-2 + s + T)

The characteristic equation of the resulting closed-loop system is then

s5 + 9s4 + (r + 24)s3 + (24ra + 8r + 16)s2 + (24ra + 16r)s + 24r (4.12)

Since there is no closed form solution for r in terms of a, a Routhian analysis

is performed instead of finding the eigenvalues directly. Clearly the first constraint

is 24r > 0. The detailed analysis for general iV provides additional constraints, one

of which is redundant, yielding the requirements on stability of

0 < r (4.13)

0 < (l-24a)r + 200 (4.14)

0 < (-72a2 - 21a+ l)r2 +(309a+ 67)r +400 (4.15)

0 < (-1728a3 -1656a2- 240a + 13)r2 +

(7416a2 + 8928a + 760)r + 9600a - 8000 (4.16)

Plots for 3 of the constants and a, as a function of r, for the design are given

in Figure 4.15 from which it is seen that the system is stable for all r G (0,11.21).

Note that a is analytic for all finite N.

4-16

Plot of Routhian Constriant 2 Plot of Routhian Constriant 3

a) Constraint 2 vs. r b) Constraint 3 vs. T

Plot of Routhian Constriant 4 Plot of Weight term alpha

c) Constraint 4 vs. r d) a vs. r

Figure 4.15 Evaluation of Routhian Constraints

For the LTI system, the increase in effective cover is demonstrated by noting

that none of the point designs in Figure 4.16 overlap one another. Yet the resulting

scheduler covers the interval r 6 [0.88,2.69] D P. Hence, conventional scheduling

would require greater than the at most four point controllers needed for the fuzzy

scheduler!

4-17

Individual Point Design Cover Over Envelope: LTI Plants

2 2.5 3
Point Design Number

Figure 4.16 Increase of Cover of the LTI System

4-6 C-135 Aircraft Example

An additional example is presented which entails the control of a USAF C-135

transport aircraft. This example is provided to compare the synthesis technique's

performance to that of previous designs from the literature [1, 6, 10]. The model

used in these designs [12, 13] does not contain sufficient aerodynamic stability deriva-

tives to allow for the full optimization of the point controllers locations. However,

the ability to smoothly schedule conventionally designed flight controllers and the

robustness achieved demonstrates the wide applicability of the technique.

The goal is to design a coordinated turn controller for the aircraft. This is

accomplished by designing the controller such that aileron inputs command bank

angle, <f>, while minimizing the side slip angle ß.

4-6.1 The Aircraft Model. The model presented is the nonlinear three

degree-of-freedom lateral directional equations of motion representing a fixed winged

aircraft. Only the variables of direct interest are defined here. The notation used is

standard for flight control applications and the reader is referred to an aerodynamics

text or source materials [7, 12, 13] for a complete description.

4-18

The equations are:

Sum of the forces in the lateral Y direction

v + U0r- g^ sin 90 - g<j>cos 0o = Yrr + Yvv + Yhv + Ypp + Y6a8a + YSr8r (4.17)

Sum of the rolling moments

p - y?-f = Lrr + Lvv + L{,v + Lpp + LSaSa + LSrSr (4.18)

Sum of the yawing moments

r - j^p = Nrr + Nvv + Nii + Npp + NsJa + NSrSr
■Lzz

(4.19)

Standard small perturbation assumptions are made to linearize the equations.

The net result of which are the assumptions

ß

= P

v

W0

(4.20)

(4.21)

(4.22)

Substituting the results of these assumptions into the differential equations and

taking the Laplace transform of the resulting equations gives:

-Yps-gcos$0

U0
s-Yv

Yrs g sin 80
0 U0 U0 V 0 YSr

u0

s2 - LpS -Lß
-Lu.s2 - lrS

i XX ß = Lsa Lsr

_I^S2 _ NpS -NßS - Nß s2 - Nrs y. . Ni« Nör

(4.23)

It is desired to obtain the state variable representation x — Ax + Bu. To accomplish

this, using the small perturbation definitions, augment the states p (roll rate) and r

4-19

(yaw rate) giving the state vector

x = \p r <f> ß V']J

which gives

0 0 1 0 0

0 0 0 0 1

0 0 0 1 0

1 *xz
J-xx

0 0 0

±xz
Izz

1 0 ~Nß 0

X

1 I

0

YE XL.
v0 v0

Np Nr

The system is of the form

0

0

+ 0

Lsa

Nsa

Mx + Nx = Du

0

0

Vo

UT

NSr

0

0

g cos VQ

0

0

0

0

Yv

Lß

Nß

0

0

Uo

0

0

(4.24)

(4.25)

(4.26)

defining a five state system with two inputs. Since M is invertible for IXXIZZ ^ I, 2
xz

x = -M_1Na; + M_1Du = Ax + B« (4.27)

From Eq. (4.25) the desired LTI plants are obtained as a function of the flight

condition (stability derivatives). The value of the parameters for each flight condition

are contained in Table 4.1, where the angular measure is degrees.

These flight conditions were chosen in the previous work since they reportedly

represent the aircraft well over the flight envelope for lateral dynamics [1, 6, 10].

4-20

Flight Condition Cruise 1 Cruise 2 Power Approach

Altitude (ft) 42,000 25,000 Sea Level

U0 (ft/sec) 726 660 275
Mach No. 0.75 0.65 —

Weight (lbs) 190,000 250,000 165,000
q slugs/(ft-sec2) 141.1562 232.1748 89.9181

Stability Derivative Fit Cond # 1 Fit Cond # 2 Fit Cond # 3

Yv -0.0574 -0.0946 -0.1279

Yi 0 0 0

YP -1.337 -1.583 -2.294

Yr 2.621 3.204 4.277

Ysa 0 0 0

YSr 16.68 18.73 10.55

h -2.384 -3.109 -1.631

h 0 0 0

Lp -0.4695 -0.6381 -0.9074

1JT 0.2341 0.3248 0.5943

LSa 0.7227 0.7114 1.433

Lgr 0.2235 0.3162 0.1223

Nß 0.5089 0.7745 0.2345

Nß 0.0110 0 0.0162

Np -0.0587 -0.0921 -0.1293
Nr -0.0927 -0.1506 -0.1503

N5a 0.0363 0.0600 0.0403

N6r -0.4965 -0.8278 -0.3305

*xx 3.602 x10s 4.013 xlO6 2.813xl06

±zz 8.648 xlO6 8.737xl06 7.687xl06

J-xz -7.235x10s -2.483xl05 -2.561 xlO5

Oo (deg) 0 0 -3.0

Table 4.1 C-135 Flight Conditions and Stability Derivatives

4-6.2 Problem Statement. With the aero data so severely limited, mean-

ingful nonlinear simulations of the aircraft is not possible. Instead, the LTI models

of the equations about the flight conditions are used as "truth models". Therefore,

the results of the scheduler are interpreted in the LTI sense of the previous section.

That is, the performance of the scheduler checks only the robustness, by operating

at a flight condition within the available flight envelope but not at a condition that

4-21

is a point controller location. To model the aircraft at this non-design point requires

using one of the available flight conditions and removing it from point controller

consideration. The scheduled point controllers are designed for the other two flight

conditions.

It is interesting to note that none of the attempts at this problem in the

literature [1, 6, 10] validate their designs in such a rigorous manner. While they

make claims of robust designs, their simulations are only performed at points for

which the controller was designed. No attempts are made to check performance at

off design flight conditions. Claims of a controller's robust performance based solely

upon testing against deterministic models for which they were specifically designed

are clearly suspect.

Given this situation of scheduling between two controllers, the logical choice of

scheduling on one parameter is taken. The question is which parameter of Table 4.1

to use. Although dynamic pressure, q, does not appear in any equation explicitly,

it is common practice in flight control to schedule on barq [7]. The flight conditions

used to design point controllers are clearly the ones with the minimum and maximum

q, #3 and #2 respectively. The remaining condition (#1), not specifically designed

for, is used to test the robustness of the scheduler.

4-6.3 Controller Design. The point controllers are designed in the spirit of

classical flight control by use of sequential loop closure [7]. Their design is depicted

in Figure 4.17. The first loop is closed using positive feedback of yaw rate,r, with a

washout filter in the feedback path to the rudder command. This loop dampens the

C-135's severe dutch roll mode. The second loop uses negative feedback of sideslip

angle, ß, to rudder command. This loop provides aircraft coordination. Finally, the

third loop uses negative feedback of the bank angle, <£, to aileron command, with

a cascade lead compensator in the forward path. An equivalent controller in an

appropriate configuration for scheduling is shown in Figure 4.18.

4-22

_n Aileron Input

Rudder Cmd
0

???

Gain

(s-???)
(s-???)

Lead Comp

C-135
Lateral Dynamics

Sideslip Sensor

Mux

y Scope

rudder

aileron^

©Time

u>=10.!

STOP

Coordinated Aircraft with Bank Angle (Phi) Controller

Figure 4.17 Classical Flight Controller by Loop Closure

Mux-

yout

Point Controller for Bank Angle/ Coordination

I 1 977 ???
wash-out Yaw Rate

Gyro

Beta_in sides|ip Sensor

UH
Phi_in

Aileron
cmd

Gain Lead Comp

Er-
Rudder

cmd

Mux H3
delta ar

Figure 4.18 Equivalent Form of Point Controller

4-23

J\ Aileron Input

Rudder Cmd

Controller
@fc#2

Controller
@fc#3

fo#1 qbar
141.1562

Blending

u/

C-135
Lateral Dynamics

rudder.

aileron.

Mux

Scope

©Time

^

Auto-Scale
Graph

weights

To Workspace2 u>=10.5

Gauss MF Normalize
STOP

yout

Fuzzy Scheduler of Coordinated Aircraft with Bank Angle (Phi) Controller

Figure 4.19 Fuzzy Scheduler for C-135

The fuzzy scheduler is shown in Figure 4.19. The blending is performed by

the components of Figure 4.20 where a cross-membership of 0.001 is used to find the

variance parameters.

To evaluate the scheduler's performance, simulations are performed at flight

condition #1, which are shown in Figure 4.21 The comparison is made against the

response of the two point designs controlling the LTI aircraft at condition #1. The

response shows an improvement over the controller for point #3 but noticeable degra-

dation from the controller for point #2, although they may very well be considered

acceptable.

This performance is due to the restrictions placed on the scheduling tech-

nique by fixing all model locations. The synthesis technique is designed to generate

4-24

Weight the Aileron/Rudder Commands from the Point Controllers

in_pt2

0"
in_pt3

rälHM^ Demux

in_weights

Weigh ^^ Weigh
fc#2 Demux delta_a

Weigh
fc#3

Figure 4.20 Blending of Control Inputs

Fuzzy Scheduler vs. Point Controllers at Flight Condition 1

■'*'/ V
' r- V
i i * V
■ u \ \ \

1
|

 Fuzzy Scheduler
 Point Controller 2
- - Point Controller 3

:

-

0 12 3 4 5
Time (sec)

7 8 9 10

Figure 4.21 Controllers' Performance at Flight Condition #1

membership functions based on point controller locations. The argument of the op-

timization is the location of these points, so by fixing them the optimization's design

freedom is is removed. Fixing these points fixes the MFs, hence contradicting the

established paradigm. Thus, the point designs can not be designed independently,

a main goal of the synthesis technique. Proceeding with the above restrictions, the

use of two fixed points yields symmetric weightings as shown in Figure 4.22.

4-25

Weights of Point Controllers

0.9
\

fc1 / / -
0.8 \

/ /
-

0.7 i \ 1
\ 1

2 \ ■

0.6 1 1 \
0.5

If

n \ -
0.4 i \ \ "
0.3 \ ' ' \-
0.2

/ X \ -
0.1

n
J, \\ •

100 150 200 250 300
qbar

Figure 4.22 Scheduling Surface

The responses of Figure 4.21 shows that the point controller at #2 is robust

enough to still perform well at this point. The controller at point #3 has begun

to degrade somewhat. However, the location of the test point #1 is closer to flight

condition #3 in terms of q, as shown in Figure 4.22. Hence, controller #3 is weighted

more heavily and the scheduler's response resembles it more than that of #2. A

more appropriate approach, when the model descriptions are fixed, is to modify the

Gaussian membership functions and the resulting normalized weights.

Another suspect area is the scheduling on q which is not explicitly in the

equations. The obvious conclusion is that the problem at hand is ill posed for the

synthesis technique developed in this research. More model information is required

to use its full potential. However, the gains of the smooth scheduling provided is

evidenced by the blending of the two point controller's characteristics. To match

the performance claims of the previous designs [1, 6, 10], one could merely design a

third point controller at the last flight condition as they have done. Then rely on the

demonstrated smooth scheduling to address off design point performance. However,

as pointed out earlier, any conclusion based on such an evaluation is of little value.

4-26

4-7 Summary

The fuzzy scheduler developed in Chapter III is used to obtain the full solutions

to the problems of Appendix B. The technique is applied to the full nonlinear

plant, as well as two simplified models of the plant. In thoroughly exploring the

1-dimensional scheduler and its inherent directionality, this chapter allows one to

visualize the gains obtained by the technique. Most notably the increase in controller

coverage and the smooth transition between point controllers. It is also pointed out

that this sense of directionality allows for a sequential form of optimization to obtain

the solution.

A variation on the constraint functional of Chapter III is explored which de-

creases the amount of over design in the scheduler. The modified constraint embeds

both classical figures of merit and a limit on reference output error. The key to using

an output error measure as a valid consideration in specifications is establishing a

set of acceptable reference outputs, not a single best transient response.

Stability is demonstrated by simulation for nonlinear and LTV plants, and

proven in the case of an underlying LTI plant. However, the claim of stability based

upon the LTI system when the true system possess such a strong nonlinearity as

presented here is obviously of little value.

The design of lateral controller for a C-135 transport aircraft using scheduling is

also presented. Lack of necessary model information makes the problem improperly

posed to use the synthesis technique to it's fullest. Using LTI models to approximate

the aircraft, an evaluation of the scheduler's robustness is performed. The results

suggest that in cases where controller locations are fixed a different optimization on

the membership function variance parameters is more appropriate. This could act

as the degree of freedom that is removed by fixing the controller locations. However,

the blending performed by the controller still presents a viable means of switching

between point designs.

4-27

V. Conclusions and Recommendations

In this research, a novel full envelope controller synthesis technique is developed

which directly addresses the control of nonlinear systems with uncertain parameters.

This is performed by using Fuzzy Logic to schedule independently designed point

controllers over the operational envelope and parameter space of the system's model.

These point controllers are synthesized by techniques chosen by the designer, thus

allowing an unprecedented amount of design freedom to the controls engineer. By

using established control theory for the point controllers, and a Fuzzy Logic sched-

uler, the resulting nonlinear dynamic controller is able to handle the dynamics of

complex systems which can not otherwise be addressed by the direct use of Fuzzy

Logic Control alone.

5.1 Conclusions

The previous chapters show that the developed synthesis technique provides a

viable solution to nonlinear control problems and uncertain systems with structured

parametric uncertainty. The proposed new approach directly addresses those critical

areas of FLC and of conventional scheduling design at which the above mentioned

paradigms are the weakest.

The use of point controllers based upon established LTI control theory allows

for the handling of plants whose complex dynamics require dynamic compensation.

This task can not be accomplished with standard FLCs. Thus, the second-order

plant example of Chapter III demonstrates non-minimum phase responses which are

now controlled appropriately. Nonlinear action is brought in by the FL scheduler.

Analytically solving for the membership functions' parameters in the FL scheduler

to approximate the Voronoi diagram associated with the point controllers' locations,

removes the need to hand tune the MFs or blindly perform an optimization on them,

as is usually done in a FLC. Moreover, the normalizing of the membership functions,

5-1

along with the concept of cross-membership, ensure adequate and proper cover of

the universe of discourse (viz., the plant's operational envelope and the parameter

space) even in n-dimensions.

The problem areas for such a task, when attempted by conventional control

techniques, are where to place the point controllers in the operational envelope and

parameter space, and how/when to either: switch between controllers or schedule

parameters in an otherwise fixed controller. In the proposed approach, the draw-

backs of mismatched controller/plant energy inherent in switching techniques are

now avoided by the smooth transition across a bank of parallel controllers, all un-

der continuous full operation as determined by the fedback plant's state trajectory.

This same smooth (analytic over all P) controller weighting surface establishes the

scheduling scheme, and hence avoids the ad-hoc nature of conventional scheduling. It

is this scheduling on fast internal variables, as opposed to slowly drifting parameters

in conventional scheduling, which provides the ability to directly handle nonlinear

plants. The generation of this normalized weighting surface is performed directly

in the n-dimensional state and parameter space in a truly multivariable way, and

not by assuming independence of the scheduling parameters. This provides assured

control authority over all of P and requires no hand tuning. The placement of the

point controllers is a direct outcome of the optimization scheme and is based upon

a very meaningful criterion, viz., the system performance while slewing the nonlin-

ear plant. Found in this manner, the spacing between point controllers reflects the

relative strengths of the plants nonlinearities and thus requires a fewer number of

point controllers than achieved by existing techniques, where uniform spacing over

P is employed. It is also noted that an effective increase in cover over the individual

point designs is achieved. Therefore, this solution quantifies the required sufficient

cover of the point controllers which is unknown a priori.

The result of this research is a systematic methodology resulting in a controller

which smoothly transitions the n-dimensional parameter and state space while meet-

5-2

ing pre-specified performance requirements. The technique directly handles nonlin-

ear plants with uncertain parameters and does not require "after the design" hand

tuning or modifications. It is also demonstrated that the proposed FLC paradigm

is directly applicable to uncertain LTI and LTV systems.

5.2 Contributions

In the development of this synthesis technique, several unique contributions to

the field of control are introduced:

1. Full envelope control of dynamic multivariable nonlinear plants.

2. Directly design for plant nonlinearities and parameter variation using conven-

tional LTI control design tools embedded in a Fuzzy Logic paradigm. The

solution is obtained in a systematic manner which does not require modifica-

tions or hand tuning when evaluated against the uncertain nonlinear plant.

3. Physically meaningful method of analytically generating true multivariable n-

dimensional membership functions.

4. Introduced novel computational geometry concepts of Voronoi/Delaunay di-

agrams into control theory, to allow for systematic multi-dimensional (mul-

tivariable) scheduling. These concepts are also applicable, and in fact are

appropriate, to other multivariable scheduling or switching techniques.

5. Analytic means of quantifying point design cover and switching surface gen-

eration by approximating multi-dimensional Voronoi diagrams with same di-

mension multivariable Gaussian membership functions.

6. Formal definition of cross-membership provides a means of dealing with a set

of non uniformly distributed multi-dimensional membership functions without

compact support.

5-3

7. Solutions obtained by the developed technique extend the coverage of individ-

ual point designs, therefore requiring less point controllers than required by

existing switching/scheduling schemes.

8. Removed FL requirement of using composite clauses in the antecedent by

means of multivariate fuzzy AND operator.

9. Accomplished scheduling of a bank of dynamic controllers that avoids mis-

matched energy between controller and plant, that provides smooth transitions

between point controllers.

10. A current shortfall in FLC addressed: Use of LTI control tools instead of

direct fuzzy inference allows for the handling of systems possessing complex

dynamics. Thus, dynamic compensation is ported into FLC.

11. Optimization maximizes cover of convex hull (operational envelope) while meet-

ing output response specifications. Thus, the solution to the minimum number

of point controllers required to cover a specified envelope is readily obtained.

12. Posed a performance functional combining figures of merit and output error

with regards to various reference signals. This gives the output error metric a

much larger class of applications than that of model following.

5.3 Recommendations for Further Study

Given the fuzzy controller scheduler architecture developed in this research,

several areas are suggested as topics of further research. They fall into two categories:

those which improve the ability to obtain a solution, and those which extend the

work presented here.

Improving the convergence to a solution would perhaps most benefit from

changes in the optimization routine used to obtain the solution. The technique in

Chapter III is posed such that any routine which can solve a constrained optimization

5-4

(minimization) could be used. In particular, the multi-dimensional example of this

research uses the Sequential Quadratic Programming routine from MATLAB® 's Op-

timization Toolbox [28]. Modifications such as two-sided finite differences, to estimate

gradients, should aid in progress towards a solution. Also, additional optimization

algorithms should be investigated.

The ability to include the second step of evaluating the constraint C(y(t)) in

dimensions greater than one would aid the solution in that its effect is to ease the

constraints. This area could also be improved by refining of the feature extracting

functionals and the specification vector. In particular, the relationships regarding

ratios of oscillations in the output response are conservative. In its current form, the

ratios specification properly identifies a class of responses as acceptable and properly

penalizes another class that is hard to identify as unacceptable by conventional time

specifications. However, this spec does effectively reject certain responses which

would probably be judged acceptable by observation; thus, over constraining the

system and increasing the difficulty in obtaining a numerical solution.

Finally, there is a need for employing more efficient computational geome-

try algorithms in calculating the Voronoi and Delaunay diagrams, especially as the

scheduling dimension increases.

To extend the technique past its current development, the two main areas of

analysis and application are considered. For analysis, the question of system stability

could be addressed. In this research, stability is addressed by extensive simulation

over the operational envelope. One could instead attempt a general stability analysis

of either the general fuzzy controller structure, or a stability proof of a specific

controller after the design has been completed.

In the area of application, the demonstration of full MIMO control by means

of solving several equivalent MISO subproblems can now be addressed. The design

of such a controller would demonstrate the full power of the synthesis technique

developed in this research.

5-5

5.4 Summary

This research has made major contributions to full envelope nonlinear control

and dynamic Fuzzy Logic control. Presented is a systematic means of developing

a nonlinear controller which accommodates the system model's nonlinearities and

parameter variation. The technique seeks to maximize the coverage of the opera-

tional envelope while guaranteeing a pre-specified transient performance and smooth

transitions across the envelope. The resulting controller does not require on-line

adaptation, estimation, prediction or model identification to achieve this objective.

Complex dynamics are handled by relying on conventional control theory for the

point designs and avoiding the use the system's error state for the fuzzy inference

engine. A meaningful analytic solution of the membership function variance al-

lows the optimization to yield the location of point designs: both quantifying the

controller's coverage, and eliminating the need of extensive hand tuning of these

parameters.

The above is a significant contribution to the field even in the case of scheduling

one parameter for a nonlinear SISO plant. Beyond this, the geometric primitives used

in the solution all have higher dimensional interpretations (convex hull, ellipsoid,

Voronoi/Delaunay diagrams) which allow for a direct generalization to scheduling

on n-dimensions including uncertainty due to nonlinearities and parameter variation.

This is all achieved in a direct systematic manner which requires no hand tuning

of multi-dimensional membership functions. Since many MIMO controller design

techniques are accomplished by solving several MISO problems, this work bridges

the gap to full envelope control of MIMO nonlinear systems with parameter variation.

5-6

Appendix A. Fuzzy Identification

There are two methods to obtain models of physical systems:

1. From first principles, using the physical sciences and their mathematical

descriptions.

2. Take a statistical/ black box approach, where one fits a model to empiri-

cally obtained input/output data. Fuzzy Logic can play a role in this approach to

modeling.

In the main research, the emphasis is for the application of Fuzzy Logic con-

cepts in the case when approach 1 is taken. In contrast, the discussion of this

appendix examines approach 2 and is included for completeness. That is, in this

appendix, the assumption is made that due to a lack of confidence in a mathe-

matical model of the plant but the availability of empirical data, one may attempt

identification based solely upon the input/output pairs.

To gain insight from the underlying fuzzy inference engine, system identifica-

tion using Fuzzy Logic modeling is investigated in two areas. The first entails the

representation of an unknown input/output mapping by a fuzzy inference engine,

using input/output data. The second addresses the class of problems where the

fuzzy system's structure is known and one is concerned with the identification of the

underlying fuzzy rules from input/output data. Examples, using polynomial mod-

els and a logical XOR device, respectively illustrate the two proposed fuzzy logic

modeling/identification paradigms.

The direct application of Fuzzy Logic as a controller requires imbedding rules

in a fuzzy inference engine. However, in the case of complex systems, the fuzzy rules

are not so easy to come by. Thus, there is a need for system (rule) identification as

an inherent part of the FLC based design process. In particular, when the resultant

A-l

Controller description is in the form of rules in a fuzzy inference engine, the need for

fuzzy identification becomes obvious.

A.l Fuzzy Logic ID Paradigm

Much of the work in this area assumes total ignorance of the plant and attempts

identification based purely on plant input/output data, a data driven approach. Such

cases can be handled by using Neural Networks which are being trained to respond

similarly to the actual plant, and therefore may be used as the implicit repository of

the underlying rule base [4, 18]. An alternative approach assumes a generic form of

parametrically represented membership functions and performs an optimization on

these parameters to obtain a good fit to the input/output data. The result provides

a fuzzy rule set which best fits the provided data, given the form of the membership

functions [19, 22].

In this appendix [20] a class of systems is considered in which expertise on the

plant's operation is available. That is, much is known about the plant in question,

but mathematical equations are not reliable due to either unmodeled dynamics or

parameter uncertainties. This class of problems includes those in which experienced

operators can control the system but can not verbalize the rule set. In particular,

problems are discussed for which sufficient prior information exists to stipulate the

following:

1. The universe of discourse

2. The number of fuzzy input/output variables required

3. Fuzzy variable values (i.e. small, medium or large)

4. Appropriate membership functions

To complete the hypotheses, fuzzification (min/max, product, etc.) and de-

fuzzification (centroid, etc.) algorithms must be specified. Finally, the "plant" being

A-2

modeled can represent an actual physical plant or a human operator controlling the

physical plant. In the case of modeling the plant's controller, one is tying to emulate

the experienced operator's rules in the FLC.

A.2 Identification Concept

The set R is defined as the finite set of all feasible rule sets (which adhere to

the hypotheses). This set is well defined and one can perform an exhaustive search

to find the optimal elemental rule set r* G R which best represents the system of

interest. In line with the classical system ID paradigm, the mean-squared output

error metric of the rule's action on the input data set, r(xi), versus actual output

data, ?/;, is used. In the scalar case with input/output data (x,j/), the optimal rule

set r* € R satisfies:

1 n

r* = arg min -]T (r(xi) - yf)
2 (A.l)

Obviously, analysis cannot be brought to bear on the solution of the above

discrete optimization problem. As the number of fuzzy variables increase, minimiza-

tion by exhaustive search over R suffers from a combinatorial explosion. However, it

allows for a well posed problem in which an optimum exists. Suboptimal solutions

are provided by genetic algorithms [11, 19] or other numeric optimization methods.

The proposed system ID paradigm is demonstrated in two examples: 1) By iden-

tifying noise corrupted polynomial input/output mappings and 2) By identifying a

logic XOR gate.

A.3 Polynomials

A system with the following fuzzy hypotheses, obtained from experience, is

used for this example.

A-3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a) 5 Fuzzy Inputs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

b) 3 Fuzzy Outputs

Figure A.l Triangular Fuzzy Variables for Input/Output

The universe of discourse is scaled to the interval [0,1]. Five input fuzzy vari-

ables (FV) and three output FVs are used. Their linguistic labels are 1-5 and 1-3

respectively where triangular membership functions represent these variables. These

are illustrated in Figures A.la and A.lb. The fuzzification and defuzzification algo-

rithms are the min/max and centroid methods, respectively.

A single rule maps an input to an output, e.g.,

Example Rule H: IF input is 2, THEN output is 1.

A rule set is a set of rules mapping each input FV to a unique output FV.

So for n input FVs and m output FVs, the set R contains mn possible rule sets

(combinations of rules). Results for data generated from noise free 1st and 2nd order

polynomials are shown in Figures A.2a and A.2b respectively. The identification

is performed in MATLAB® [29]. In the first example, R contains 243 possible rule

sets with five rules each; hence, the second order fit requires 55 = 3125 different

possibilities to be investigated. In Figure A.2a the truth model y = x is compared

to the output of the best rule set as applied to the universe of discourse [0,1]. In

Figure A.2b, the true values are the discrete points, while the curve is the output of

A-4

2 Order Polynomial fit to Fuzzy Rule Set

RuleSet8 rulesare11233

Mean squared error ■ 0.007086

best so tar Is rule 8 with mse - 0.007086

0.1 0,2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

aj y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

b) y = 4x2 - Ax + 1

Figure A.2 Fuzzy Fit of Polynomials

the best fuzzy rule set. In both figures the fuzzification is performed by the min/max

operators. The exhaustive search may be greatly reduced by first eliminating any of

the possible rules that are never activated by a point in the data set.

Of course, there are many ways to fit polynomials, but this validates the use-

fulness of the above outlined search.

A great advantage of a fuzzy modeled system becomes evident when the finite,

and hence incomplete, data set appears to be discontinuous, while one has every

reason to believe that the underlying true system is continuous. An example of such

data can be seen in Figure A.3a along with two attempts at fitting the data. To

avoid the dangers of over-fitting data with higher order polynomials, the solid lines

represent 1st order fits in a least-squares sense. The one using the entire domain [0,2]

is continuous, but yields a poor fit to the data. When the interval is broken into

[0,1] and [1,2] excellent fits are obtained, but this results in a discontinuous system.

However, if one defines overlapping membership functions, in order to combine the

discontinuous fits, a continuous transition is obtained along the entire [0,2] interval.

Figure A.3b depicts this for several values of overlap from 5% to 40%. Again the

A-5

Single and Separat« Linear Fits Fuzzy Combined Fit vs Seperate Fits

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

a) Single and Separate Fits

' 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

b) Fuzzy vs. Discontinuous Fit

Figure A.3 Fuzzy Blending as a Function of Overlap

fuzzification uses min/max. A smooth blending of the two separate fits is obtained

when a "product rule" for combination and analytic membership functions are used.

A.4 XOR Gate Plant Example

A classical system (in Neural Networks) is considered with two inputs and one

output which is believed to be a noise corrupted binary device. Because of this it

is decided to model each input and the output with two FVs, "small" and "big".

This establishes a truth table which shows that there are only 16 possible rule sets,

of 4 rules each, to search. Nearly all measurements are in the interval [-1,2], so

this is used as the universe of discourse. This time, Gaussian membership functions

centered at 0 and 1 are chosen to represent the fuzzy variables "small" and "big"

respectively. The fuzzy AND operator is implemented with the product rule.

(*-ir
H(x) = fis(x)fj,b(x) = e2°* e 2ab

Defuzzification is again accomplished by the center of area method.

A-6

Inputs 16 Possible outputs
1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s S S S S S S S S S B B B B B B B B
s B S S s S B B B B S s S S B B B B
B S S s B B S S B B S s B B S S B B
B B S B s B S B S B s B S B S B S B

Table A.l All Possible Rule Sets for 2-input 1-output Binary Device

Membership Functions wilh var - 0.1

Figure A.4 Gaussian Fuzzy Variables for all Channels

The input/output truth data set for identification is generated using a fuzzy

XOR gate as the truth model (rule 7 in Table A.l) from the above membership

functions /J,s(x) and /J.b(x) with variance parameter a\ 2 _ ^2 _ at = a = 0.1. These

membership functions are shown in Figure A.4. The inputs are fed to every possible

rule set and the output is compared to that obtained from the truth model (the

original XOR). During an actual search one would not know the variance either,

so that the problem entails both structural identification (rule set) and parameter

identification (cr).

An exhaustive search with fixed a is made to find the minimum error, and

hence best fit. However, a is unknown and hence R is infinite. The problem is not

A-7

10 12 14 16

a) Correct Rule, a2 = 0.1 b) Mis-Identification, <r = 0.5

Figure A.5 Identification Results: Error vs. Rule Set

convex with respect to the rule sets in general, so finding the global minimum is no

longer assured by a non-exhaustive (finite) search.

If there were a guarantee that for any fixed a2 one could identify the correct

rule set the process would indeed be straight forward. One would fix a2 and identify

the true rule set (truth table), then one would merely minimize with respect to a2.

However, this may not be the case, as shown in Figures A.5a and A.5b, which show

different identified rule sets for different a and where rule set 7 represents a logical

XORgate, see Table A. 1.

Figure A.5a shows the correct rule set (7) identified for a2 = 0.1. Now, let

a2 — 0.5 in all 16 rule sets for which the fit of the data is to be performed (Note:

the I/O data is generated for the nominal a2). Figure A.5b shows that rule 15 (with

a2 = 0.5) now has the smallest output error, and hence the incorrect rule set has

been identified.

The reason behind the above mis-identification plagues all identification tech-

niques that rely solely on output error minimization. Thus, these system identifi-

cation techniques require "good" excitation in order to work. These techniques are

A-8

0.8
Error Surface

' ' .1 ' '
0.7 / i

1

0.6 .* > A /l

0.5 i \
1

«0.4

\ ■ i \
■'',\ '/

u / \ \ .'
'A'/ \V

■' \ ■'

i \\

l.i i
0.3

'•' /■''

/ '\ '/ v> a

0.2
\\,7 'i j' - x ■

\^'"'-..-
0,1 -

0 2 4 6 8 10 12 14 16
rule

a) Error Surface vs. a2 € [0.001,100]

10 12 14 16

b) Correct ID, a2 = 100

Figure A.6 Performance for Spanning Input/Output Data

dependent upon how well the data represents or spans the input and output spaces

of the system. The input data for Figures A.5a and A.5b are randomly generated

from the universe of discourse and then run through the fuzzy XOR. This is equiv-

alent to taking passive noisy input/output measurements to use in identification.

Unfortunately, the data points are not spread about (do not cover) the entire input

space. Thus they do not excite the entire dynamic range of the system and actually

misrepresent the plant. Notice from Table A.l that spanning, or covering the input

space requires sufficient points from the four input antecedents (s,s), (s,b), (b,s),

(b,b). When input pairs are purposely chosen in an attempt to span the input space

over [-1,2] error surfaces similar to Figures A.6a and A.6b are obtained. That is, for

any <r, rule set seven is identified, and then minimizing the output error with respect

to the variance parameter gives a2 — 0.1.

Hence, as is well known in classical system identification, good excitation is a

prerequisite for successful identification. If the data points available do not appear to

span the spaces very well, heuristically one should start with a very small a. Then,

for the fixed a find the best rule set and its goodness of fit. Increase a and repeat

A-9

until the optimal rule set changes or until a increases beyond a reasonable value for

the system. For each rule set identified as optimal for some a, minimize with respect

to a varying a. Choose the best global fit as the "model". It is believed that the

identified rule set corresponding to the smallest a is the global optimum with respect

to the hypothesized membership functions, but no proof is provided. This has been

observed in all simulations performed. The results are found to be invariant with

respect to varying the variance parameter as well as the rule set used in generating

the truth data.

A.5 Summary

Rule identification clearly plays a central role in the application of fuzzy logic

control, where a human expert's plant and/or control knowledge needs to be cap-

tured. Although there are techniques which provide these rules merely from in-

put/output data, they often overlook prior and/or side information which can im-

prove their performance. One should strive to encode all available knowledge of the

system into the fuzzy model at the onset. This information adds structure to the

problem, allowing a more efficient and correct solution. If properly posed, the prob-

lem may lend itself to an exhaustive search, guaranteeing an optimal solution. The

use of such a search in some illustrative examples is presented. Identification exper-

iments are performed, where the quality of the ID algorithm is validated, since the

underlying truth model (which encoded the data) is available in the experiment. If

an exhaustive search for optimization is too expensive, the use of genetic algorithms

is suggested, as they very naturally fit the proposed paradigm [11, 19].

The requirement for good excitation in system identification is also shown

in this appendix. Without it, the results can be misleading and have dramatic

effects when the fuzzy model is used away from its nominal operating point where

the ID experiment is performed. Indeed, a word of caution that applies to all ID

work is in order: Obtaining a small output error is no prerequisite to correct ID,

A-10

except in the case where the ID experiment is performed under conditions of "good"

excitation. This reconfirms what is known from classical system identification, where

the following dictum should be adhered to: If the excitation is poor, don't ID. A

challenging problem in its own right is the independent and (input/output) data

driven determination of the excitation level.

The above work demonstrates the blending capabilities of a fuzzy supervisor

in Figure A.3b, where the "point designs" are the two separate linear fits to the

data. The result is continuous when the normal fuzzy operations (min/max) are

used. However, in the blending of dynamic controllers, one desires a smooth tran-

sition between point designs. Hence, the choice of analytic membership functions is

suggested.

A-ll

Appendix B. Experiments

Experimentation is valuable to the engineer and mathematician, often pro-

viding new insights and confirmation or denial of mathematical formulations and

previously held opinions. Experimentation is most valuable and empowering when

used to disprove previously held truths, as is often the case in exploratory research.

Since the goal in this research is to develop new theory, these experiments can be

used to guide the way and eliminate paths that would not be as successful. It is de-

sired to develop a technique which uses Fuzzy Logic to provide full envelope control

for nonlinear MIMO systems with complex dynamics.

B.l Nonlinear Plant Formulation

Consider the general control problem as it applies to the nonlinear "bare" plant

for which the controller is to be designed. Assume that a model of the plant, albeit

complex, may be represented in the form

xf = f(xf,uf,p)

where the mapping / is sufficiently smooth in all of its arguments to use a first order

Taylor's series expansion where Xf G Kn and uj £ Rm are the state and control

vectors, respectively. The subscript / indicates full states as opposed to perturbation

states, and for most physical systems n> m. To indicate the dependency on current

operating conditions, an additional parameters' vector p € P is also included.

Complete state observation is stipulated by assuming the system's state mea-

surement Xf is available for feedback. As noted previously, components of the state

vector Xf can be both fuzzy or crisp. If the entire state vector is considered fuzzy,

Xf's crisp components mandate a "singular" covariance matrix R.

B-l

Consider the operating point/equilibrium condition, or in aeronautical termi-

nology, trim condition (x,u). Since by definition this is a static equilibrium point,

if — 0 giving

/(x,«;p) = 0 (B.l)

Linearizing about the specified trim condition (x,ü), yields the linear time-invariant

(LTI) plant

x = Ax + Bw

where x and u are the perturbation variables

X = Xf — X , U = Uf — ü

and the matrices A and B are the Jacobians of the nonlinear mapping f(xf,Uf)

evaluated at the relevant trim condition (x,ü), e.g.

A= df(xf,uf)

dxf

B= df{xf,uf)

(x,u) duf (x,u)

Clearly,

A = A(x,u;p), B = B(x,u;p)

In most cases of interest Eq. (B.l) has a non-unique solution (x, ü) generating,

a possibly infinite, set of equilibria points, each yielding a different A and B. The

above LTI perturbation model represents the underlying nonlinear plant as long as

the higher order terms of the Taylor expansion are sufficiently small. That is, the

LTI model is "good enough" in some region about the trim point (x,u). Since the

objective is to design for the entire range of operation, this will require a number

of trim conditions of interest, say N, that "cover" the operational envelope in Rn.

B-2

Denote the N trim conditions of interest by (xi,ui),..., (XN,UN). Hence, N LTI

plants (Ai, Bi),..., (Ajv, BAT) are obtained, where

Ai = A(xi,üi;p), Bi = B(xi,üi;p)

Thus, the perturbed state and control vectors satisfy

x = AiX + BiU Vi = l,2,...,JV (B.2)

Returning momentarily to the trim condition Eq. (B.l), observe that, for a

given parameter vector p, it entails n equations in the n + m unknowns iGE" and

ü G Rm. Hence, under relatively mild conditions, elaborated on shortly, the control

üj required for trim is determined by m components of the equilibrium state xf, this

m-dimensional subspace of the trim state vector X{ thus defines an m-dimensional

projection of the operational envelope. In other words, there exists a function ft :

Rm -»■ Rm, such that

«t = ft{x\m);p)

where the xy"' G Rm vector consists of the above mentioned m components of the

state. Moreover, there also exists a function gt : W1 —> Rn_m, such that

where the n — m dimensional vector xf~m' consists of the remaining n — m compo-

nents of the state vector xj, i.e.,

xf = [xf\ xf-my]>

B-3

Thus, the (nonlinear) trim equation yields the trim control ü{ and n — m components

x\n m' of the trim state, as a function of the remaining m components x\ of the

trim state. Indeed, the m-dimensional vector of independent trim variables x\

renders the operational envelope m-dimensional. This will result in exploring an m-

dimensional projection of the operational envelope, that is specified by the m state

components of xf1 . Hence, the N m-dimensional trim "states" x\m\ i = 1,2,..., N

must properly "cover" the m-dimensional operational envelope.

Furthermore, the above functions ft and gt are continuous, provided the below

Jacobians are non-singular [34].

rank [B(xt-, üt-; p)] = m V i — 1,..., N

B.2 Two State Nonlinear Example

In order to probe the applicability of the desired technique, experiments are

performed with a strongly nonlinear two-state SISO plant with parametric uncer-

tainty taken from an investigation into intelligent control [25, 26]. The model is

i/j = — Xfo + axf2 a £ [0.5,1.5] (B-3)

"f: 2 -4+uJ (B.4)

Vf = xfl (B.5)

When addressing only uncertainty due to linearization, a is set to 1. This is a

particularly difficult nonlinear plant. The nonlinearity does not constitute a small

perturbation of an otherwise linear plant. The cubic nonlinearity is particularly

severe. Furthermore, the inherently nonlinear dynamics are faster than the dynamics

of the linearized plant, to be shown shortly. That is, the trim states move faster than

the linearized dynamics. This means that scheduling would be particularly difficult

B-4

as one would have to schedule on fast variables. In control design practice, fast

variables are used as primary feedback and scheduling is performed on slow variables

[34]. This is particularly true as Xf —> 0 where the plant becomes uncontrollable.

Also, recall that in the case of a cubic nonlinearity, it is impossible to predict the

stability of the nonlinear plant from the linearized dynamics [26].

The Mathworks, Inc. products [29] MATLAB® (numeric computation and vi-

sualization) and SIMULINK® (dynamic simulation environment) are used through-

out these examples.

At a static equilibrium point one has if = [if1,if2]' = 0. Thus, using the

previously defined notation and solving for the trim condition, the model yields

xi — ax2 = ü. This gives the perturbation equations as

-1 a
X +

0 1

[-34 0
Xf, =X-[[-3«? J

u

uf=U

y X\

Defining r = ?>x\ = 3u2 and evaluating the above matrices at the equilibrium point

gives the LTI system as

#i = —xi + axi

i2 = — rx\ + TU

y = xi

(B.6)

(B.7)

(B.8)

This plant is used in this appendix to perform a preliminary exploration into

the effects of nonlinearities and parameter variation on the scheduling of LTI con-

trollers. This demonstrates the non-trivial nature of the problem at hand, and points

to many concerns which must be addressed by the final synthesis technique. The

B-5

plant's use in Chapter IV of the main document allows for validation of the final

technique.

Note that if the nonlinear system is represented as a time varying linear system

by allowing r to vary as 3xi the eigenvalues of the linearized model are

= -l±VT^f = -
1 ± V1 - 12"^ (Bg)

Thus, the matrix A varies rapidly with time, especially for large commanded inputs.

Much of the linear analysis assumes that the plant is considered piece-wise LTI, but

it has been shown that this is precisely the type of plant which frequently violates

these assumptions [33].

The research in [25] showed that this SISO system can pose quite a prob-

lem when dealing with nonlinearities, let alone uncertain parameters. Additional

complications and dynamics are induced from combining separate controllers which

certainly makes the design task non-trivial. The drastic effects of mis-matched en-

ergy between controller and plant, including the proper handling of non-zero initial

conditions on either, must be addressed in any attempt to hand-off control during

continuous operation [25]. The research in [25] was exploratory in nature and raised

such issues. Using the above system some of the concerns for the SISO case are ad-

dressed in the sequel. The results of Chapter III answer these concerns and provide

a solution that properly addresses the MIMO generalization by means of multiple

MISO solutions. Chapter IV then provides the solution for the plant without pa-

rameter variation (a = 1) with detailed analysis for nonlinear, LTV, and LTI truth

models.

B.3 Fuzzy Logic Control of a Family of Two Plants

In this section the application of the Fuzzy Logic concept of blending con-

trollers, or fuzzy controller scheduling, is investigated.

B-6

The plants under consideration are

Pi

Xl = -xi + x2

X2 = -TiXl + TiU i = 1,2

y = xx

where the parameter r» is arbitrarily chosen as T\ = 1 and T2 = 2. Furthermore,

suppose that the parameter is dependent on an exogenous "measurable" variable,

say v where,

r = 3v2

Thus, if v = Vi = 4g then r = T\ = 1 and if v = v2 = ^4= then r = T2 = 2. Note that

for v = y the output, this is a particular case of the nonlinear problem developed

in the last section where the operational envelope (in E2) has been partitioned into

two regions about Pi and P2 with fixed a = 1. That is, the nonlinear plant without

parameter variation is to be addressed. The merits of the FLC approach to schedul-

ing depicted in Figure B.l is explored, where Gi(s) and G2(s) are two separate LTI

controllers independently designed to control P1|2(s) respectively.

Simulation experiments are performed to "validate" the approach and point

out shortcomings which must be addressed by the final synthesis technique.

Three cases are explored in the sequel depending on the fidelity of the plant's

truth model. These being an LTI plant, an LTV plant, and the full nonlinear plant.

B.3.1 Linear Time-Invariant Plant. In the spirit of gain scheduling, first

treat the problem as two separate plants; i.e. control Pi and P2 and design an

independent controller for each. From the model given for a fixed r, the transfer

B-7

'+

 ». Gi(«)

h~ p. G2(a)

Figure B.l Adaptive Control Structure for two Point Controller Designs

function of the plant as a function of r is

Pr(s)
S2 + S + T

(B.10)

A very common and benign appearing system to handle with linear control.

Controllers Gi(s) and 6*2(5) are now designed to provide some specified perfor-

mance. The chosen desired performance is to track a step input, r, with zero error

and have an approximate 2nd order linear response with damping ratio (= 0.5, and

natural frequency w„ = 2. That is, the performance specifications for a step input

are a 4 second settling time and a 16% overshoot [8]. To design these controllers

a technique is used which in general, yields a very poor solution due to inevitable

parameter/modeling uncertainty. However, it is shown how fuzzy controller schedul-

ing can remove such draw backs. The controller is formed by canceling the plants

B-8

Root Locus lor either Single Plant Single Plant Closed Loop Response

 1 H 1 { * -

a) b)

Figure B.2 Root Locus and Closed-Loop Performance for either P1)2

dynamics and replacing them with a desired open-loop transfer function.

Gi(s)
^S' + S + T,)

s(s + A)(s + 4:)
(B.11)

Root Locus analysis gives k = 24 to yield the desired closed-loop performance. The

selection of k and the closed-loop response of Gi(s)Pi(s) = G2(s)P2(s) are shown in

Figure B.2. Note that this form of controller is impractical as r —» 0+.

In the remainder of the discussion, reference to the run numbers listed in

Table B.l is made. These points are obtained by first linearly varying v over it's

range between the two plants, and then linearly varying r over it's range. So the

nominal cases, those that yield the response of Figure B.2b, are run #7 for Pi and

run #8 for P2.

As noted earlier, these designs in a point-wise or classical gain scheduling

context are really mathematical trickery and can not normally be considered as

feasible since they rely on perfect cancellation of the plants' dynamics. It is well

known that this is not really possible since small deviations in r from the designed

B-9

Run # V r
1 0.6371 1.218

2 0.6969 1.457

3 0.7567 1.718

4 0.6455 1.25

5 0.7071 1.5
6 0.7637 1.75

7 0.5774 1
8 0.8165 2

Table B.l Run Number vs. r and v (r = 3v2)

cases leave dominant poles near the original poles. That is, for any of the runs listed,

except for the nominal cases, one can expect performance degradation. This is shown

in Figure B.3 where a single compensator is used to control P(s) and r varies (for

both G\ and G2) as in Table B.l.

It is seen that either design by itself is unacceptable. However, when posed in

the setting of the problem statement, the results are entirely different. The fuzzy

scheduler is implemented in SIMULINK® as in Figure B.4. The state space block

of the figure is constant during the entire simulation using either T\ or r2 depending

on one's objective. The fuzzy logic inference used is merely the fuzzification of the

crisp measurement of v, since only weighing the amount of control effort from each

controller to apply is used. That is, the blending of the controllers is performed in

Figure B.4 by giving each point design an amount of control authority based upon

the current operating point's degree of membership in the fuzzy variable V%. Placing

this in the standard rule statement one has:

IF Plant is Vi, THEN W{ = 1 for i = 1,2.

Rule conflicts are settled using a non-normalized summation of the two weighted

controller outputs.

The scheduling is performed using both the triangular and Gaussian member-

ship functions (//i(u),//2(u)) shown in Figure B.5. The functions are fit such that

B-10

Output of P1 using G2(s) Output ot P2 using G1 (s)

0 3456789 10
Tlme(secs)

a) Output of Pi using (?2

0 1 2 4 5 6 7

b) Output of P2 using Gi

Variable Plant with fixed compensator G1{s) Variable Plant with fixed compensator G2(s)

0 2 3 4 5
Tlme(secs)

3 7 8 9 1 0

c) Varying Plant using G\
7 8 9 10

d) Varying Plant using Cr2

Figure B.3 System Response using Single Fixed Controller Over Range of r

both controllers are equally weighted at the midpoint of u's universe of discourse,

vv = -, 2/3 — J1/3) Ps 0.6969. This is dictated by use of triangular membership

functions (MFs) if total overlap of the MFs is desired, and allows the same vari-

ance for both MFs to be used in the Gaussian case. However, the controllers are

designed in r-space and it "seems more correct" to have H\{vT) = fi2(vT) = 0.5,

where vT = J-^- f« 0.7071. For the examples to follow, only the centering at vv is

used. Optimal selection of this trade off point must be addressed in the final design

technique.

B-ll

:ir[iH>>
3*uA2| ^

Qj-^i^Hft yyy

c B
Mux-l-^ weights

► u>9.8—► STOP

GX3

Figure B.4 Block Diagram of Fuzzy Scheduler

Triangle Membership Functions Membership Functions with var - 0.01

a) Triangular
0.6 0.65 0.7 0.75

b) Gaussian

Figure B.5 Membership Functions used for v

B-12

Response Envelope Triangular MFs Response Envelope Gaussian MFs

a)

5
Time(secs)

b)

Figure B.6 Fuzzy Scheduled Controller Response Over Applicable Range of r

The results using both MFs as r varies according to Table B.l are excellent

and are shown in Figure B.6. The resulting fuzzy scheduler displays nearly invariant

response over the entire range of r despite the nonlinear relationship between v and

r. A comparison using MFs based upon vT is not performed. It is noted that the

triangular MF based controller out performs the Gaussian one in the sense that less

variation in output is observed. It is felt that this is due to the inherent normalization

of the weights across the universe of discourse. That is, since Wi = /Jj(u), for the

triangular MFs, W\ + W2 = 1. Although the weights for the Gaussian MFs can be

normalized, no attempt is currently made since it's response is so good. The effects

of normalization increase as the dimension of spaces increase due to the use of a

"product rule" in multivariate FL, as developed in Chapter II, and the fact that any

individual membership is bounded above by unity.

In the analysis so far, only the uncertainty due to the variation in T which is

generated by the underlying nonlinearities is addressed. A controller must also deal

with model parameter uncertainty. Experimentation is made to explore the effects

of the parameter a from Eq. (B.6) on page B-5. Since no attempt is made to design

B-13

1.5
tau. 1.0,1.5, 2.0: a-0.5, 1.0,1.5

// 0.5

Figure B.7 Thumb Print Response of System for T G {1,1.5,2}, a G {0.5,1.5}

for a, it is no surprise that its variation drastically effects the system's response as

shown in the "thumb print" in Figure B.7.

However, one can gain insight from these simulations through Figure B.8. As

previously demonstrated, the design is very robust for variations in r G [1,2]. Now

for the three fixed T,£ {1,1.5,2} vary the parameter a G {0.5,1,1.5}. The results are

shown in Figures B.8a-c, and are not impressive. If instead one views the responses

by collecting on similar values for a the results in Figures B.8d-f are obtained. These

figures show the common dynamics as a function of a. They suggest that if the

uncertainty in a were treated as that of r, one should be able to schedule on a to

obtain the desired response over the uncertain region in this 2-dimensional parameter

space. Thus, this uncertain SISO plant becomes a MISO fuzzy scheduling problem.

B.S.2 Linear Time-Varying Plant. The next level of increased model

fidelity is to implement Eqs. (B.6)-(B.8) on page B-5 with a dynamic T, representing

incremental changes in the trim point. This yields an LTV plant. Now, define

r(t) = 3xl(t) where the perturbation state x\ = y varies as the output during the

simulations. In the sequel, the notation indicating T'S dependence on time is dropped

B-14

tau-1: a-0.5,1.0,1.5 tau-1.5: a-0.5,1,0,1.5

0 1 2 3 4 S

b)

tau-2: a-0.5,1.0,1.5 a-0.5: tau-1,0,1.5 2.0

c)

0 12 3 4 5 6 7

d)

B-1: tau-1.0,1.5 2.0 a-1.5: tau-1.0,1.52.0

7 8 9 10

e)

0 12 3 4 5

f)

Figure B.8 Clustering of Response for r G {1,1.5,2}, a G {0.5,1.5}

B-15

Lfl^^gj .Q

lau-ln fcfr-, xaiot i—i

y_out

u_ln

0-

Figure B.9 LTV Plant with Externally Denned r

for brevity. Where as Eq. (B.7) is linear in r, the LTV plant is nonlinear in x and

u. The SIMULINK® block diagram for the LTV plant with externally defined r is

shown in Figure B.9.

The current two point controller only applies "sufficient cover" of the parameter

space on the interval [TI,T2], therefore simulations should be restricted to this range

to have any merit. Clearly this is of no concern for the LTI truth model. Therefore,

the simulations are performed starting from the trim point represented by ri, with

step inputs up to the trim point representing r2. Since r already varies as the output,

the indication of acceptable performance is the response for an admissible command

input. The simulation diagram is depicted in Figure B.10. To avoid solving for the

initial conditions on all of the compensator states, a nominal input of ü = J1/3

is applied to the LTV plant (Uo in the simulation diagram). The plant's initial

conditions are set at, referring to the linearization, x\ = ax2 = ü, with a = 1.

The response to 4 admissible commanded step inputs is shown in Figure B.ll.

The system shows good, approximately linear, responses for the smaller three com-

mands. Slight degradation is noted on the largest command which, although it may

still be judged acceptable, has a final value of v/2/3 representing r2. A reason for

B-16

m

rJSD

24*roots([l 1 l])(s)
s(s+4)(s+4) ?SIh

12*roots([l 1 2])(s;
s(s+4)(s+4)

tau

3*uA2

rtryyv

\J}—> 0.5774 PI <i77A ™ ™
-1

0-D>

-►
■B

Mux -!-► weights

X
a
■B

'^M"x—►n^uT

©

► u>9.8—► STOP

UM

Figure B.10 Simulation Diagram for LTV Plant

the change in performance may be that this command forces r > r?, and hence out

of the designed for region in P. Clearly the LTI model is inadequate to describe this

system, but its inclusion in analysis stages provides a larger set of mathematical

tools to gain insight.

B.3.3 Nonlinear Plant. Finally the fuzzy scheduler's ability to control

the "true" nonlinear plant is investigated. The plant is given by Eqs. (B.3)-(B.5)

on page B-4 and is implemented in SIMULINK® as in Figure B.12. For reasons

given earlier, the simulations are restricted to the same interval as for the LTV case,

[TI,T2], and the same commanded inputs are used. The simulation is implemented

as in Figure B.13 and the system response is shown in Figure B.14.

B-17

Linear Time Varying plant response lor Fuzzy Scheduler

7 8 9 10

Figure B.ll LTV Plant Response of Fuzzy Scheduler

Note: Check initail conditions on integrators function of Uo and astart

innr

I xf_1_

uf in
*=r hn xfPrirfr 1/j

axf2

xf2 rsz
yf_out

a in

Figure B.12 Nonlinear Plant Implementation

Clearly the response is unacceptable, and the strong nonlinearity of the plant

is evident. Design techniques that make performance claims based upon only the

LTI models do not hold in the real world for this plant. Although the LTI models are

"good enough" in sufficiently small regions about the nominal design points, these

regions must be quantified, and the proper means is by way of nonlinear simulation.

B-18

r-td

roots([l 1 l])(s)|
s(s+4)(s+4) "pZP *

Uo

12*roots([l 1 2])(s;
s(s+4)(s+4)

tau

3*uA2

£7YY

PH—► 0.7582 ft 750T X" T

to-1 m-Q>

—►
—►
—►

Mux -1—► weights

s
*B

Mux | -H yout

©

u>9.8 _> STOP

UK

Figure B.13 Simulation Diagram for Nonlinear Plant

Nonlinear plant response for Fuzzy Scheduler

0123456789 10

Figure B.14 Nonlinear Plant Response of Fuzzy Scheduler

B-19

B-4 Summary

The approach for this system shows promise of interesting and fruitful results

for the LTI and LTV truth models. The Linear (in r) Time-Varying case does

warrant closer investigation given the above performance. The nonlinear system's

performance visualizes the difficulty facing the proposed technique and demonstrates

the requirement of validation by simulation. Rigorous mathematical analysis may

provide promises of stability or even asymptotic tracking, both of which the cur-

rent design exhibits. However, transient response dictates the acceptability of the

design and the simulations quantify the current designs deficiencies. There are also

additional, more subtle, points of interest.

There are additional complexities that will be inherent in real world problems

that are not addressed in this example. For instance plant dynamics being a function

of more than one variable that "requires" scheduling. How does one combine or

weight the individual controllers then? In most techniques complexity increases as

the model order increases to a MIMO controller. This is not the case here, assuming

that the fixed MIMO controllers have been built, the complexity increases with the

number of scheduling measurements (dimension of parameter space P) and how does

one combine these to assign weights to the individual controllers. These concerns

are properly addressed by the solution given in Chapter III.

Also the small universe of discourse did not excite the nonlinearity in r very

much. Of course in theory one should be able to keep this under control by sufficiently

partitioning of the operating envelope. This may lead to a lot of point designs and

thus more complexity. However, this is not really any different then any problem

that "requires" scheduling. As long as the concerns of the previous paragraph can

be addressed, the only added complexity is the fuzzification of measurements and

there are commercial chips which handle this in a parallel fashion [39, 46].

B-20

Of course there are the standard difficulties of any nonlinear design technique

such as stability. Short of a totally analytic solution, these concerns are best ad-

dressed by extensive, realistic simulation.

B-21

Appendix C. Support Data for Chapter III

C.l Listing of MATLAB Function voronoi.m
function [vertices,numvert]=voronoi(D,A,domain,p)

'/. voronoi Find the voronoi diagram of D=(x,y;), a set of at least 3 points

'/, in R~2. Each row of D must be a unique 2-D vector. A is the square

'/, Adjacency matrix representing the delaunay diagram where A(i,j)=j if node

'/, i, D(i,:) = (x(i) ,y(i)) , is connected to node j and A(i,j)=0 otherwise. If

'/. A is empty it is generated using A=delaunay(D). domain is the region of

'/, interest in R"2 specified as domain=[min_x max_x min_y max_y] . If omitted

'/, one based on D is used (see below for details). If no output arguments

'/, are specified or p=l, a plot generated.

'/, CALLS con.hull.m and optionally delaunay.m

'/.
'/, Notes on format of output. Currently the 2 outputs are: 1) numvert, an

'/, n element column vector (n= # of distinct points) of index information.

'/, Where numvert(i) is the number of vertices of the Voronoi cell for point

'/, i specified by D(i,:). 2) vertices, a sum(numvert) by 2 matrix containing

'/, Voronoi cell vertices appended in order of the elements of D. So the

'/, vertices of the cell for point 1 are vertices([l :numvert (1)] ,:), and for

'/. the i"th cell, i = 2,...,n the vertices are

'/. vert ices ([sum(numvert([l: i-1]))+l :sum(numvert([l :i]))] ,:)
"/, For cells that lie on the convex hull, the first and last vertex are used

'/, to identify the unbounded polygon forming the cell. Their output depends

'/, upon the input domain specified. When domain is specified, the cells

'/, are vaild only in the region of R"2 specified by domain. If domain is

'/, unspecified (empty), infinit bisecting rays are indicated in yellow in the

'/, plot and the following holds. If the ray forming a side of the cell is

'/, horizontal or vertical, the vertex is correct for any element of R"2;

'/, otherwise it is merely directionally correct (+/-inf). This is useful to

'/, provide a flag to such cells and simplify closing of the cells in the plot.

'/, Either way can give suspect results when a vertex of an interior cell

'/, exceeds the domain (specified or default which is the axis limits of plot).

'/, Increasing the axis beyond the domain after running voronoi can also be

'/, confusing. The work around is to specify a large enough domain, rerun,

'/, than expand the plot by changing the axis.

'/.
'/, This isn't really the best way to deplict the information, since it has 2

'/, main problems. 1) We have to calulate a single finite vertex at least 3

'/, seperate times (infinite twice). 2) Because of this, finite precision
'/, may result in different answers for the same index. Both of these could

'/. be solved by a different data structure. In particular, construct an
'/, adjacency matrix and make a queue of vertex labels. Then as each vertex

'/, is solved remove its label from the queue. Now each vertex is solved for

'/. once and obiviously unique. However, since I use the Delaunay Diagram

'/, for all my calculations I haven't bothered solving the adjacency problem.

'/.
'/, see refs for developement and proof of completness
'/, 1) Du, Ding-Zu and Hwanf, F., Computing in Euclidean Geometry,
'/. World Scientific, 1992, QA447.C573 p. 210

'/. 2) Guibas ft Stolfi, ACH Tans, on Graphics 4(2):74-123, 1985

'/.
'/, [vert ices, numvert] =voronoi (D, A, domain, p)

•/.
'/, NAME: voronoi

'/. LAST REVISION: 21 Nov 94 HatLab 4.2

'/. Author: TOM KQBYLARZ Air Force Institute of Tech WPAFB, OH

'/, tkobylar@afit.af.mil

'/. figure out input format and output requested by parameters provided

if nargout==0,pl=l;else,pl=0;end

C-l

if (nargin >4),eval(['help voronoi']) , error('wrong number of input arguments.'); end

if nargin==0,eval(['help voronoi']),return; end

npts=length(D);

if nargin==l ,A=[] ;domain=[] ;end

if nargin==2,domain=[];end

if nargin==4,pl=p;end

if size(D,2)~=2

eval(['help voronoi']);

error(' D must contain 2 columns, each row a 2-D vector');

end

if npts < 3

eval(['help voronoi']);

errorC D must contain at least 3 sets of points (x,y)');

end

if isempty(A) '/, If delaunay diagram of D not given create it

A=delaunay(D);

else

if (npts ~= size(A,D) I (npts ~= size(A,2))

eval(['help voronoi']);

errorC A must be square and of the form returned by A=delaunay(D)');

end

end

if isempty(domain)

domainflag=0;

else

domainflag=l;
if (domain(l)>=domain(2)) I (domain(3)>=domain(4)) I (length(domain)~=4)

eval(['help voronoi']) ;

error(' domain must be of form domain=[min_x max.x min.y max_y]');

end

end

hull=con_hull(D,'i') ; '/, get hull to catch unbounded regions of hull points

vertices=[] ;

numvert=zeros(npts,1);

'/, dom, ax and infrays are used to display infinite rays from hull point

"/, cells. See help for technique to use these to obtain finite but large

*/, vertices, dom is the domain of interest, infrays are line segments of

'/, the infinite rays, and ax is the axis used in the plot

ax=[min(D(: ,1)) max(D(:,D) min(D(:,2)) max(D(: ,2))] ;

ax=[ax(l)-abs(.l*(ax(2)-ax(l))) ax(2)+abs(.l*(ax(2)-ax(l))) ax(3)-abs(.l*(ax(4)-ax(3))) ax(4)+abs(.l*(ax(4)-ax(3)))];

infrays=[] ;

if domainflag==l

dom=domain;

else

dom=ax;

end

'/, Generate the seperating hyperplanes for each unique point. By shifting

'/, to the origin we can find bisecting midpoints and perp slope easily

for i=l:npts

neigh=f ind(A(i,:)); '/, only interested in nearest neighbors from A

Dn=D(neigh,:);

z=.5*[Dn(: ,1)-D(i,l) Dn(: ,2)-D(i,2)] ; '/, the bisector mid point

'/, place perp slope in third column, for no duplicates (0,0) not in z

z(:,3)=-l*z(:,l)./z(:,2);

'/, obtain a cyclic ordering to find intersections

rays=atan2(z(: ,2) ,z(: ,1)); '/. atan2 returns +/- pi

wrap=f ind(rays<0); '/, wrap correction to keep 0-2pi

rays(wrap)=rays(wrap) + 2*pi * ones(size(wrap),1);

[junk,I]=sort(rays);

neigh=neigh(I); '/, redorder all working variables

C-2

z=z(I,:);

ishull=(find(i==hull));

if "isempty(ishull)

'/, do stuff here to avoid solving for intersection of 2 hull bisectors

if ishull==length(hull)

startat=hull(l);

else

startat=hull(ishull+l);

end

first=find(neigh==startat);

if first~=l "/, if it is no need to reorder

1=[first:length(neigh) 1:first-i];

neigh=neigh(I); '/, redorder all working variables

z=z(I,:);

end

*/, HOB for a representation of the vertices at infinity
infvert=zeros(2,2);

hn=[l length(neigh)];

ray=atan2(z(hn,2) ,z(hn,D);

if ray(2)>0 '/, swap orientation since reference from current pt

ray(2)=ray(2)-pi;
else

ray(2)=ray(2)+pi;
end

for k=l:2

if abs(ray(k))<eps

infvert(k,:)=[z(hn(k),1)+D(i,l) -inf];
elseif abs(abs(ray(k))-pi)<eps

infvert(k,:)=[z(hn(k),1)+D(i,l) inf];

elseif abs(ray(k)-pi/2)<eps

infvert(k,:) = [inf z(hn(k) ,2)+D(i,2)];

elseif abs(ray(k)+pi/2)<eps

infvert(k,:)=[-inf z(hn(k),2)+D(i,2)];

elseif ray(k)>0 ft ray(k)<pi/2

infvert(k,:)=[inf -inf];

elseif ray(k)>pi/2 ft ray(k)<pi

infvert(k,:)=[inf inf];
elseif ray(k)>-pi ft ray(k)<-pi/2

infvert(k,;)=[-inf inf];

elseif ray(k)>-pi/2 ft ray(k)<0

infvert(k,;)=[-inf -inf];

end

end

else '/, we will be wrapping around interior points
neigh=[neigh neigh(l)] ;

z=[z;z(l,:)];

end

'/, solve for intersections of perp bisectors

vertex=zeros(length(neigh)-l,2);

for k=l:length(neigh)-i

bil=z(k,[l,2])+D(i,:);

bi2=z(k+l,[l,2])+D(i,:);

if finite(z(k,3)) ft finite(z(k+l,3))

x=(z(k,3)*bil(l)-bil(2)-z(k+l,3)*bi2(l)+bi2(2))/(z(k,3)-z(k+l,3));

y=z(k,3)*(x-bil(D) + bil(2);

else '/, catch vericle bisectors assuming no duplicates

if finite(z(k,3)) '/, k+1 must be verticle
x=bi2(l);

y=z(k,3)*(x-bil(D) + bil(2);

else

x=bil(l);

y=z(k+l,3)*(x-bi2(D) + bi2(2) ;

end

end

vertex(k,:)=[x y];

C-3

end '/, next k

if "isempty(ishull) '/, add representation of infinite vertices for hull pts
bi=z(hn)[l,2]) + [D(i,:);D(i,:)];

x=dom([infvert(: ,1)>0] + [1 ;1])'; '/, select the correct directions
y=z(hn,3).*(x-bi(:,D) + bi(:,2);

if isinf(y(D) '/, catch verticle ecu rays

y(l)=dom(sign(sign(infvert(l,2))+l)+3);

x(l)=vertex(l,l);

end

if isinf(y(2)) '/, catch verticle CH rays

y(2)=dom(sign(sign(infvert(2,2))+l)+3);
x(2)=vertex(length(neigh)-l,1);

end

infrays=[infrays; vertexd,:) x(l) y(D] ;
if domainflag==l

infvert=[x y] ;
end

vertex=[infvert(l,:);vertex;infvert(2,:)];
end

numvert(i)=length(vertex);

vertices=[vertices;vertex] ;
end "/, next i

if pl==l

elf

start=l;

for i=l:npts

stop=start+numvert(i)-1;
vertex=vertices([start:stop] ,:);
plot([vertex(: ,1); vertexd,D] , [vertex(: ,2); vertexd ,2)] , 'r')
hold on
start=stop+l;

end

for H=l:hpts,text(D(N,l),D(H,2),int2str(H)),end
axis(ax)

if domainflag"=l '/. don't plot redundant data

for i=l :length(hull) '/. plot the inf rays from hull edges

plot([infrays(i,l),infrays(i,3)],[infrays(i,2),infrays(i,4)])
end

end

hold off

title('Voronoi Diagram')

end

C-4

C.2 Listing of MATLAB Function delaunay.m
function A=delaunay(D,p)

'/.delaunay Find the delaunay diagram of D=(x,y), a set of at least 3 points
'/, in R~2. Each row of D must be a unique 2-D vector. If no output arguments

'/, specified or p=l, a plot generated. The returned A is the Adjacency matrix

'/, representing the diagram where A(i,j)=j if node i, D(i,:) = (x(i) ,y(i)) , is

'/, connected to node j and A(i,j)=0 otherwise. Use gplot(A.D) to obtain plot.

'/, CALLS triangle.m, con.hull.m, ccw.m, incircle.m

*/.
'/, see refs for developement and proof of completness

'/, 1) Du, Ding-Zu and Hwanf, F., Computing in Euclidean Geometry,

'/. World Scientific, 1992, Q.A447. C573 p. 210

'/. 2) Guibas ft Stolfi, ACM Tans, on Graphics 4(2):74-123, 1985

'/.
'/, A = delaunay(D.p)

V.
'/. NAHE: delaunay

'/. LAST REVISION: 13 Dec 94 HatLab 4.2

'/. Author: TDM KOBYLARZ Air Force Institute of Tech HPAFB, OH

'/, tkobylarSafit.af.mil

'/, figure out input format and output requested by parameters provided

if nargout==0,pl=l;else,pl=0;end
if (nargin >2),eval(['help delaunay']), error('wrong number of input arguments.'); end

if nargin==0,eval(['help delaunay']),return; end

if nargin==2,pl=p;end
if length(D)<3

eval(['help delaunay']);

error(' D must contain at least 3 sets of points (x,y)');

end

if size(D,2)~=2 '/, try to get D in required format

D=D' ;

end

if size(D,2)"=2 '/, check to see if ok now

eval(['help delaunay']);
error(' D must contain 2 columns, each row a 2-D vector');

end

[tri ,hull]=triangle(D).; '/.Get Indices of cw traingles and ccw hull pts.

if isempty(tri) '/, all points were colinear manually build A

dispC !! All points are colinear !!')

npts=length(hull);

A=zeros(npts);

A(hull(l) ,hull(2))=hull(2) ; */. ends pts only have 1 neighbor

A(hulKnpts) ,hull(npts-l))=hull(npts-l);

for i=2:npts-l '/, all others have 2

A(hull(i),hull(i-l))=hull(i-l);

A(hull(i),hull(i+l))=hull(i+l);
end

return

end

Dtri=[tri(: ,1) tri(:,3) tri(:,2)]; '/. convert to ccw triangles

nt=size(Dtri,1);

'/, Now form a queue of all non-directional interior edges of Dtri

edges=[Dtri(:,[l 2]); Dtri(: , [2 3]); Dtri(: , [3 1])] ;

temp=sort(edges') ' ; '/, make non-directional i.e. (1 2) = (2 1)

'/. sort by x when a tie occurs sort on y. So sort on y first

[junk,yi]=sort(temp(:,2));

[junk,I]=sort(temp(yi,1));

xi=yi(I);

edges=temp(xi,:); '/, The ordered redundant edges

'/, remove duplicates

C-5

dups=find(diff(edges(:,1))==0 ft diff(edges(:,2))==0);
edges(dups+1,:)=[];

'/.Test to ensure we have all edges

n=length(D); '/, number of points (assuming no duplicates)
k=length(hull); '/, # points on final hull

t=3*(n-l)-k; '/, # of expected triangles
if t"=size(edges,l)

disp([' ']);disp(' Number of edges is incorrect, suspect duplicate points');
end

'/, now form the hull edges and remove from queue

hulle=[hull [hull([2:length(hull)]);hull(l)]];
hulle=sort(hulle>)'; '/, make non-directional i.e. (1 2) = (2 1)
hei=[];

for i=l:size(hulle,1)

hei=[hei;find(edges(:,i)==hulle(i,l) ft edges(: ,2)==hulle(i,2))];

end

edges(hei,:) = [] ; '/, the interior non-directional edges

degen=[] ; '/, initialize as no degenerative (co-circular) pts

'/. use flip routine while edges is not empty

while "isempty(edges)

edge=edges(l,:);

del_edge=find(edges(: , 1) ==edge (1) ft edges(: ,2)==edge(2)); '/. find all

edges(del_edge,:)=[] ; "/. remove occurances although it may be added later

'/, get the triangles that share edge

opp=find((edge(l)==Dtri(:,l)|edge(l)==Dtri(:,2)|edge(l)==Dtri(:,3)) ft...

(edge(2)==Dtri(:,l)|edge(2)==Dtri(:,2)|edge(2)==Dtri(:,3)));
if length(opp)"=2,error(' Exactly 2 triangles share an interior edge');end

tril=Dtri(opp(l),:);

tri2=Dtri(opp(2),:);

cl=find(tril~=edge(l) ft tril"=edge(2));

c2=find(tri2~=edge(l) ft tri2~=edge(2));

'/. Bow check if ABCD locally Delaunay as is

test=incircle(D(tril(l),:),D(tril(2),:),D(tril(3),:),D(tri2(c2),:));
if test==l

newl=[edge(l) tril(cl) tri2(c2)] ; '/. new tri vertices (make ccw)

if ccw(D(newl(l),:)>D(newl(2),:),D(newl(3),:))~=1,newl=newl([2,1,3]);end

new2=[tril(cl) tri2(c2) edge(2)];

if ccw(D(new2(l),:),D(new2(2),:),D(new2(3),:))"=1,new2=new2([2,l,3]);end

Dtri(oppd) , :)=newl; '/. update the triangulirization

Dtri(opp(2),:)=new2;

'/, Now add supect edges of quad involved in flip to queue excluding those on the hull

qhull=[tril tri2(c2)] ;

temp=con_hull(D([tril tri2(c2)] ,:),'i') ;

qhull=qhull(temp);

temp=[qhull; [qhull([2:4]) qhull(l)]];

qhull=sort(temp)'; '/, make non-directional i.e. (1 2) = (2 1)
hei=[];

for i=l:4

if ~isempty(find(hulle(:,l)==qhull(i,l) ft hulle(:,2)==qhull(i,2))),hei=[hei;i];end
end

qhulKhei,:)=[] ; '/, the interior non-directional edges

edges= [edges;qhull] ; '/, add suspect to queue

'/, disp([' Swapped diagonal and added ' ,int2str(size(qhull,D),' suspect edges to the queue'])
elseif test== -i

'/, dispC locally Delaunay')

else

junk=[tril(l),tril(2),tril(3),tri2(c2)];

disp([' points ['.sprintf (''/.3.2g', junk), '] are cocircular'])
degen=[degen;edge];

end

end '/, all edges deleted and we are done

C-6

*/, currently we have a Delaunay Triangularization which is not the

'/. Delaunay Diagram when degenerative cases exist. First we'll

"/, generate the Adjacency Matrix A to Represent the Triangularization

'/, where A(i,j)~=0 iff node i is connected to node j. I set A(i,j)=j.

nn=length(D) ; '/, assumes no duplicate nodes in D

A=zeros(nn,nn);

for i=l:nn

junk=find(i==Dtri(:,1)Ii==Dtri(:,2)|i==Dtri(:,3));

temp=Dtri(junk,:);
junk=temp(:);

temp=sort(junk);

delnode=find(diff([0;temp])==0 I temp==i);

temp(delnode)=[];

A(i,temp)=temp';

end

% Now remove any extra edges (stored in degen) from degenerate cases

'/, to form the Diagram by zeroing them out in A

for i=l:size(degen,l)

A(degen(i,l),degen(i,2))=0;

A(degen(i,2),degen(i,l))=0;

end

if pl==l

gplot(A.D)

hold on

for 11=1: size (D,l),text(D(H,l),D(N,2),int2str(N)),end

hold off

title('Delaunay Diagram')

end

C-7

C.3 Listing of MATLAB Function triangle.m
function [Dtri,hull]=triangle(D,p)
'/.triangle Find a triangularization of D=(x,y), a set of at least 3
'/. non-colinear points in R"2. Each row of D must be a 2-D vector. If no
'/, output arguments are specified or p=l, a plot generated. The optional
'/, returned vector hull contains the ecu indices returned from
'/. con_hull(D,'i'). Dtri is a tx3 matrix where
'/, t = 2*((# of nonredundant pts in D)-l)-(# of hull points).
'/, Each row of Dtri contains indices of D which form a cw triangle. A ccw
'/, set of triangles can be obtained by switching 2 adjacent columns of Dtri.
'/.
'/. [Dtri,hull]=triangle(D,p)
'/.
*/. NAME: triangle
•/. LAST REVISION: 12 Jan 94 MatLab 4.2
'/. Author: TOM KOBYLARZ Air Force Institute of Tech WPAFB, OH
'/, tkobylarQafit.af.mil

'/, figure out input format and output requested by parameters provided
if nargout==0,pl=l;else,pl=0;end
if (nargin >2),eval(['help triangle']), error('wrong number of input arguments.'); end
if nargin==0,eval(['help triangle']),return; end
if nargin==2,pl=p;end
if length(D)<3
eval(['help triangle']);
error(' D must contain at least 3 sets of points (x,y)');

end
if size(D,2)~=2 '/, try to get D in required format
D=D';

end
if size(D,2)"=2 '/, check to see if ok now
eval(['help triangle']);
error(' D must contain 2 columns, each row a 2-D vector');

end

'/. sort by x when a tie occurs sort on y. So sort on y first
[oD,xi]=sort_nd(D, [] ,100);
dups=find(abs(diff (oD(: ,l))X=100*eps ft abs(diff (oD(: ,2)))<=100*eps);
if "isempty(dups)
disp([' Duplicate Points Removed']);
oD(dups+l, :) = [];
xi(dups+l)=[];

end

'/. build up triangularization by adding sites. The vertices are s_{i},
'/. s_{i-l}, and another on the bounadry facing s_{i}. I will generate cw
'/, triangles below so start with same orientation as rest will be made

'/, requires special handling if the first 3 or more sorted points are colinear
flag=0; '/, colinear flag
tri=[];
j=2;
while flag==0
ftri=ccw(oD(l,:),oD(j,:),oD(j+l,:));
if ftri== 1 '/, 1st 3 are ccw
tri=[tri;j+l j j-1] ;
flag=l;

elseif ftri== -1 "/, 1st 3 are cw
tri=[tri;j-l j j+1] ;
flag=l;

else
tri=[tri;j-l j 0]; '/, these 3 are colinear and no triangle formed yet

end
j=j+l; '/, shift another point

C-8

if j+1 > length(oD) ft flag==0

hull=con_hull(D,'i');

Dtri=[];

dispC !! All points are colinear: no triangulization, only hull returned !!');

return

end

end

oldhull=[l: j] '; '/, intialize first non-colinear hull

'/, now replace zeros in tri with first non-colinear point

junk=find(tri==0);

if "isempty(junk) '/, have to make sure the first couple are cw

tri(junk)=j+zeros(l,length(junk));

for i=l:size(tri,l)-l

if ccw(oD(tri(i,l),:),oD(tri(i,2),:),oD(tri(i,3),:))==1

tri(i,:)=tri(i,[l 3 2]);

end

end

end

for i=j+l:length(xi)

temp=con_hull(oD(oldhull,:) ,'i'); '/. form hull ignoring interior points
hull=oldhull(temp); '/, return to original indices

last=f ind(hull==(i-l)); '/. the sort makes each new pt on the hull

'/, straigten out hull index, ccw starting at s_{i-l} and wrapping around

hull=[hull([last:length(hull)]);hull([l:last])];

'/, When we traverse the newest hull ccw from s_{i-l}=oD(last, :)=oD(hull(l) ,:)

'/, and s_{i}=oD(i,:) is to the right then form a triangle

for k=l:length(hull)-l

if ccw(oD(hull(k),:)>oD(hull(k+l),:) ,oD(i,:))== -1 '/. to the right

tri=[tri; i hull(k) hull(k+l)]; '/. form cw traingle
end

end

oldhull=hull;

oldhull(length(oldhull))=i; '/, add current point for next check

end

'/, Dtri is tri in terms of original D indices

Dtri=reshape(xi(tri),size(tri,1).size(tri,2));

'/.Test to ensure we have all triangles where

n=size(oD,l) ; '/, number of points (minus duplicates)

temp=con_hull(oD(oldhull,:),'i');

hull=xi(oldhull(temp)); '/, return to original indices

k=length(hull) ; '/, # points on final hull

t=2*(n-i)-k; '/, # of expected triangles

if t~=size(tri,l)

'/, next should be error

disp([' ']);disp(' Number of triangles is incorrect');
end

if pl==l '/, To see whats going on

plot(D(:,1),D(:,2),'.')

hold on

for B=l:size(D,l)

text(D(H,l),D(H,2),int2str(N))
end

for i=i;size(tri,1)

plot(oD(tri(i,[l:3,l]),l),oD(tri(i,[1:3,1]),2),'r')

end

hold off

end

C-9

C-4 Listing of MATLAB Function incircle.m
function inside=incircle(A,B,C,D)

'/, incircle - Used to determine if D is interior to the region of the plane
'/, that is bounded by the oriented circle ABC and lies to the left of it.

'/, In particular this implies that D is inside the circle ABC if the points

'/, A,B, and C define a counterclockwise oriented triangle and outside if

'/, they define a clockwise oriented one.

'/■ All inputs must be distinct elements of R"2
'/, Interpetation of results

'/, inside = 1, D is inside the oriented circle ABC
'/, inside = 0, D is on the oriented circle ABC

'/. inside = -1, D is outside the oriented circle ABC

'/.
% see ref for developement

'/. Guibas ft Stolfi, ACH Tans, on Graphics 4(2) :74-123, 1985 page 106

•/.
*/, inside = incircle(A,B,C,D)

'/.
'/, NAME: incircle

'/. LAST REVISION: 14 Sep 94 HatLab 4.2

'/. Author: TOM KOBYLARZ Air Force Institute of Tech HPAFB, OH

'/. kobylar8afit.af.mil

if (nargin~=4),eval(['help incircle']), error('wrong number of input arguments.'); end

if size(A,2)~=2 '/, try to get elements in required format

A=A';

end

if size(A,2)~=2 '/, check to see if ok now

eval(['help incircle']);

error(' A must be an element of R"2');

end

if size(B,2)~=2 '/, try to get elements in required format

B=B';

end

if size(B,2)"=2 '/, check to see if ok now

eval(['help incircle']);

error(' B must be an element of R*2');

end

if size(C,2)"=2 '/, try to get elements in required format
C=C' ;

end

if size(C,2)"=2 */, check to see if ok now

eval(['help incircle']);

error(' C must be an element of R"2');

end

if size(D,2)~=2 '/, try to get elements in required format
D=D';

end

if size(D,2)"=2 '/, check to see if ok now

eval(['help incircle']);

error(' D must be an element of R~2');

end

ordet=det([A sum(A."2) 1;B sum(B."2) 1;C sum(C."2) 1;D sum(D.*2) 1]);

'/.if abs(ordet) <= 2*eps

if abs(ordet) <= 100*eps

inside=0; '/, try try minimize numerical error

else

inside=sign(ordet) ;

end

C-10

C.5 Listing of MATLAB Function ccw.m
function orientation=ccw(A,B,C)

'/, ccw - counterclockwise. Used to determine orientation of 3 points in R"2,
'/, positive when pt C lies to the left of the directed line segment AB

'/.
'/. Interpetation of results

'/, orientation = 1, Ordered points have a counterclockwise orientation

'/, orientation = 0, Ordered points are colinear

'/, orientation = -1, Ordered points have a clockwise orientation

'/.
'/, see refs for explaination and extensions to higher dimensions

'/, 1) Du, Ding-Zu and Hwanf, F., Computing in Euclidean Geometry,

'/, World Scientific, 1992, QA447.C573 p. 210

'/. 2) Guibas ft Stolfi, ACM Tans, on Graphics 4(2):74-123, 1985

'/.
'/. orientation = ccw(A,B,C)

'/.
'/. HAME: ccw

'/. LAST REVISION: 14 Sep 94 HatLab 4.2

'/, Author: TOH KOBYLARZ Air Force Institute of Tech WPAFB, OH

'/, tkobylar@afit.af.mil

if (nargin~=3),eval(['help ccw']), error('wrong number of input arguments.'); end

if size(A,2)"=2 '/, try to get elements in required format

A=A' ;

end

if size(A,2)~=2 */. check to see if ok now
eval(['help ccw']);

errorC A must be an element of R"2');
end

if size(B,2)~=2 '/, try to get elements in required format

B=B';

end

if size(B,2)"=2 '/, check to see if ok now
eval(['help ccw']);

error(' B must be an element of R"2');
end

if size(C,2)"=2 '/, try to get elements in required format

C=C>;
end

if size(C,2)"=2 '/, check to see if ok now
eval(['help ccw']);

error(' C must be an element of R"2');
end

ordet=det([A i;B 1;C 1]);
'/.if abs(ordet) <= 2*eps

if abs(ordet) <= 100*eps

orientation=0; '/, try try minimize numerical error

else

orientation=sign(ordet);

end

C-ll

C.6 Listing of MATLAB Function conJiull.m
function edge=con_hull(z,s,p)

'/.con.hull Find the Convex hull of z=(x,y), a set of at least 2 points in

'/, R"2. Each row of z must be a 2-D vector, s is a switch to determine

'/, the ouput format, if s='i' indecies are returned instead of point values
'/, If no output arguments are specified or p=l, a plot generated.

'/, The returned vector edge, contains an ordered subset of z, by row

'/, (index or value (default) depending on s) , which generates a counter

'/, clockwise oriented convex hull of z. This must be noted when the results

'/, are used for instance in a line integral. An example use which generates

'/, correct results for computing the area of the ccw hull of z when values

'/, are returned is: cover = area(edge(: ,1) ,edge(: ,2))

'/.
'/. edge = con.hull(z ,s,p)

'/.
'/, NAHE: con_hull
'/. LAST REVISIOlf: 10 Feb 95 HatLab 4.2

'/. Author: TOM KOBYLARZ Air Force Institute of Tech WPAFB, OH

'/, tkobylarSafit,af.mil

'/, figure out input format and output requested by parameters provided

if nargout==0,pl=l;else,pl=0;end

if (nargin >3),eval(['help con_hull']), error('wrong number of input arguments.'); end
if nargin==0,eval(['help con.hull']),return; end
if nargin==l,s='p';end

if nargin==3,pl=p;end

if min(size(z))<2

eval(['help con.hull']);

error(' z must contain at least 2 sets of points (x,y)');
end

if size(z,2)"=2 "/, try to get z in required format
z=z' ;

end

if size(z,2)"=2 '/. check to see if ok now

eval(['help con.hull']);

errorO z must contain 2 columns, each row a 2-D vector');

end

done=0; '/, Hull is complete Flag

*/. Jump right to a point z(i) KHOUH to be on the boundary such as min(y) which

'/, assures 0 <= rays(:) <= pi. When ties in min y value occur we have a horizontal

'/. bottom edge. To properly terminate need to ID min(x) of tied y.mins

[z,yi]=sort_nd(z,[2,l],100);

dups=find(abs(diff(z(: ,l))X=100*eps ft abs(diff(z(: ,2)))<=100*eps);
if "isempty(dups)

disp([' Duplicate Points Removed']);
z(dups+l, :) = [] ;
yi(dups+l)=[];

end
x=z(:,l);y=z(:,2);

i=l; '/, By means of the sorting

zt=[x-x(i) y-y(i)] ; '/, translate to origin

rays=atan2(zt(: ,2) ,zt(: ,1)); '/, atan2 returns +/- pi

rays(i)=5; '/, avoid skewing min by translation

[minr,nl]=min(rays);

nlv=f ind(abs(rays-minr)<=1000*eps); "/, index of possible colinear segment

nl=nlv(l);

rays(i)=0; '/, restore ray
[maxr,n2]=max(rays);

C-12

'/, Once the edge is found should be able to stay on it

'/, By starting at min(y) ===> 0 <= rays(:) <= pi

'/, ===> z(n2,:) lies to the left of z(i,:) and z(nl,:) is to the right

edge=[i; nl];'/, safest to get only two points since this is always a corner

i=nl; '/. set index to last point in edge

if pl==i,

plot(z(:,i),z(:,2),'.')
hold on

plot(x(edge(i)) ,y(edge(D), 'g*') '/, The origin

plot(x(i) ,y(i),'c+') '/. first ordered point index

for N=l :size(z,l) ,text (z(N,l) ,z(N,2) ,int2str(yi(N))) ,end '/, number points

end

'/, Fix for when all points are colinear

if abs(maxr-minr) <= 1000*eps

dispC ');disp(' Points form a straight line')

edge=l :length(yi)'; '/, works for vert £ non-vert due to sort

done=l;

end

'/, How that we're on the boundary use Jarvis' March (Gift Wrap Approach)

while done"=l "/, find all points on the boundary

zt=[x-x(i) y-y(i)] ; '/, translate to origin

rays=atan2(zt(: ,2) ,zt (: ,1)) ; '/, atan2 returns +/- pi

rays(i)=5; '/, avoid skewing min by translation

[minr,ni]=min(rays);

rays(i)= -5; */, avoid skewing max by translation

[maxr,n2]=max(rays);

rays(i)=0; '/, restore ray

if maxr-minr > pi '/, performing wrap correction to keep < 180 deg

wrap=find(rays<0);

rays(wrap)=rays(wrap) + 2*pi * ones(size(wrap),1);

rays(i)=5; '/, avoid skewing min by translation

[minr,ni]=min(rays);

rays(i)=0; '/, restore ray

[maxr,n2]=max(rays);
end '/, end of wrap correction

nlv=find(abs(rays-minr)<=1000*eps) ; "/, index of possible colinear segment

if length(nlv)>l

nlv(f ind(nlv==i))=[] ; '/, remove the current point if here

sidel=find(min(abs(nlv-i))==abs(nlv-i));

if sidel"=l ,nlv=flipud(nlv) ;end '/. sort away from point
nl=nlv(l); '/. adjacent point in this direction

end

n2v=f ind(abs(rays-maxr)<=1000*eps); '/, index of possible colinear segment

if length(n2v)>l

n2v(f ind(n2v==i))=[] ; '/, remove the current point if here

side2=find(min(abs(n2v-i))==abs(n2v-i));

if side2~=l,n2v=flipud(n2v);end '/, sort away from point

n2=n2v(l); '/, adjacent point in this direction

end

if edge(size(edge,l)-l) == nl '/, maintain same direction

i=n2;

i=n2v(size(n2v,D);

nv=n2v;

else

i=nlv(size(nlv,D) ;

nv=nlv;

end

if pl==l.plot(x(nv),y(nv),'c+'),end

C-13

edge=[edge; nv] ; */, add pts to the edge

if i==edge(l) '/, We wrapped around and are done

done=l;

edge(size(edge ,1)) = [] ; '/, remove origin

end

if length(edge) > length(x)+i

done=l;

dispC Got an error here. Too many vertices');

end

end

if pl==l

plot([x(edge);x(edge(l))],[y(edge);y(edge(l))],'r')

hold off

end

'/, How do the line Integral to find the enclosed area.

'/, Area returns positive for counter-clockwise orientation of edge

*/,cover=area(x(edge) ,y(edge))

if strcmp(s,'i')

edge=yi(edge) ; '/, convert back to original index
else

edge=[x(edge),y(edge)] ;

end

C-14

C.7 Listing of MATLAB Function sort_nd.m
function [sorted,index]=sort_nd(z,order,tol)

'/, sort_nd Sort the list of vectors z in ascending order where
'/, the significance of elements is described in the vector order.

'/, Each rovr of z is a vector and if order=[] the significance is

'/. l:size(z,2). NOTE: ELEMENTS WITHIN tol*EPS OF EACH OTHER ARE

•/. CONSIDERED AND RETURNED AS IDENTICAL, the default is tol=100.

'/, Example if elements in z are 2D z=[x,y;] then
'/. sort_nd(z)=sort_nd(z , [1,2]) and the elements are sorted on x

'/. with ties being sorted on y final ties are sorted by original

'/, index in z. sort(z, [2,1]) sorts on y

%
'/, [sorted, index] =sort_nd(z, order, tol)

'/.
'/. NAME: sort.nd

'/. LAST REVISION: 14 Dec 94 HatLab 4.2
•/. Author: TOM KOBYLARZ Air Force Institute of Tech WPAFB, OH

'/, tkobylarfiafit,af.mil

if nargin==0,eval(['help sort.nd']).return; end
[m,n]=size(z);
if nargin-=l ,order=[l:n];end
if narginO, tol=100;end
if isempty(order),order=[l:n];end
if length(order)~=n I any(order>n),

eval(['help sort.nd']), errorC Invalid significance order specified');
end

sorted=z;
index=[l :m] ' ;

for i=n:-l:l
[junk,in]=sort(sorted(:,order(i)));
near=f ind(abs(diff (junk))<=tol*eps) ; '/, catch numerics
if "isempty(near)

for j=l:length(near),
sorted(in(near(j)+l).order(i))=sorted(in(near(j)),order(i));

end

[junk,in]=sort(sorted(: ,order(i))); '/. sort on y again

end
sorted=sorted(in,:);

index=index(in) ;

end

C-15

C.8 Listing of MATLAB Function fonuil.m
function merit=fom_nl(t.output,cmd,pl)

'/, LAST REVISION: 3 Feb 95 improved cmd=0 usage
'/. Author: TOM KOBYLARZ Air Force Institute of Tech WPAFB, OH

'/.
'/, fom.nl Calculate the Classical Figures of Merit of an output

'/, response (output) given the commanded input (and) , both

'/, of which must have the same time scale (t) unless cmd is

'/, a scalar, in which case a step of value cmd with initial

'/, condition output(l) is assumed. If cmd is omitted, zero

'/, tracking error is assumed. Used to find a soft error norm

'/, for evaluating nonlinear responses.

'/.
'/, merit=f om_nl(t .output,cmd,pi)

*/.
'/, If no left hand side argument is specified or pl=l,

'/, the response is plotted indicating the figures of merit.

'/, If a left hand argument is given, the result is a three

"/, row matrix indicated below. The columns are zero padded

'/, in case there are more extrema than FOMs (currently 7).

'/.
'/, | Mp tp Te ts tr ref FV . . . 0 . . . I

'/, merit = I [overshoots] ... 0 ... I
*/, | tstop [ratio] ... 0 ... I

*/.
'/, ref Commanded Step Value FV Final Value

'/, tstop Duration of simulation tp Peak Time

'/. ts Actual 2'/. settling time to FV tr 10'/. to 90% Rise Time
'/. Mp Peak Value at tp Te Tracking error of FV

'/. [overshoots] vector of percent overshoot at each local extrema prior to ts

'/. [ratio] vector of overshoot ratios from one extrema to next

'/. figure out input format by number or parameters provided

if (nargin < 2) I (nargin > 4),

eval('help fom_nl'),

error('wrong number of input arguments.');

end
if nargin"=4,pl=0;end '/, default is no plot

'/, ensure we always start with row vectors
if (min(size(t))>l), error('time argument must be a vector'); end

if (size(t,2)>l), t=t' ; end

if (min(size(output))>l) , error('response argument must be a vector'); end

if (size(output,2)>1), output=output'; end

if (length(t)"=length(output)), errorCtime arguments (t,output) must match.'); end

npts=length(t);

if (nargin ==2),
cmd=0*output + output (npts); '/.assumes zero tracking error

cmd(l)=output(l); '/. assumes started from trim

end

if (length(cmd)==l),

cmd=0*output + cmd;

cmd(l)=output(l); '/, assumes started from trim

end

if (length(t)~=length(cmd)),
error('time arguments (t,cmd) must match or cmd must be a scalar.');

end
if nargout==0 I pl==l,DISP=1;else,DISP=0;end

IC=output(l) ; '/, store initial condition
y=output-IC; clear output; '/, Translate output to zero
cmd=cmd-IC; '/, Translate command to zero
if cmd(npts)<0 '/, Check for negative step and set flag
negstep=l;

cmd = -cmd; '/, make positive to obtain FOMs

C-16

y = -y;
end

tstop=t(npts);

FV=y(npts); '/, Final Value - should be >0 except very small commands

ref=cmd(npts); '/, Commanded step strength

'/, Check for dead time on first i points when y(i)=y(l)

dti=2;

while y(l) == y(dti),

if dti==npts,

if DISP==1

disp(' !!!!!!!!!!!!! No deviation from trim value !!!!!!!!!')
end

merit=zeros(3,7);

return

end

dti=dti+i;

end

'/, check initial deviation from trim for non minimum phase responses for STEP INPUT

if (y(dti)-y(dti-l))*(cmd(2)-cmd(D) <0 '/. assumes monotonic cmd

if DISP==1

dispC Non-Hinimum Phase Response')

end

nonmin=l; '/, flag for non-minimum phase response

'/, MM needs to be expanded when NHP response has cost

else

nonmin=0;

end

[Mp,tpi]=max(y); '/, gives index of 1st occurrence of max

tp=t(tpi); '/, assumes max value is unique may cause problems

Te=100*abs(FV-ref)/ref; '/, Steady state tracking error percent

Os=100*(Mp-FV)/FV; '/. Percent overshoot of FV at Hp

f irstdif=diff (y([dti-l :npts])); '/, look for extrema or inflextion after initial dead time

'/, when curve is FLAT between 2 points 1st diff=0

secdif=diff(sign(firstdif)); % since sign=(-l|0|1) then secdif=(-2|-l|0|1|2)
'/, look for mins(secdef=2) and maxs(secdef=-2)

'/, but secdif=(-l |0| 1) may be min/max/inflex

local=f ind(abs(secdif)==2)+dti-l; '/, since sign=0 when firstdif=0

flat=find(abs(secdif)==l)+dti-l; '/, adjust indices to y

if length(flat)==l '/, fix for step looking things

local=[local;flat] ;

flat=[];

end

if ("isempty(flat)) '/, Flat spots need extra work

if rem(length(flat) ,2)==1 '/, since true flats come in pairs

flat(length(flat) ,:) = [] ; '/, remove last row if odd
end

squeeze3[flat.secdif(flat-dti+1)]

for i=l :2:length(flat)-l '/, average the index to find middle

squeeze(i,l)=fix((squeeze(i,l)+squeeze(i+l,l))/2);

squeezed,2)=squeeze(i ,2)+squeeze(i+l,2); '/, add the 2 about the flat spot
squeeze(i+1,:)=squeeze(i,:);

end

i=[l:2:length(flat)-l] ;

squeeze=squeeze(i,:); '/.remove redundant rows

squeeze=squeeze(find(abs(squeeze(: ,2))"=0),:); '/.remove inflextion points
flat=squeeze(:,1);

end

extremi=sort([local;flat]); '/. order local extremum indecies

extrem=[t(extremi) ,y(extremi)] ; '/, extract local extremum & time

C-17

above=min(find Cabs Cy - FV) < abs(.02*FV))); '/, first time enters 2*/. band
below=max(f ind(abs(y - FV). > abs(.02*FV))); '/, last time outside 2'/, band

tsi=maxCabove,below); '/, for monotonic ?

tsettle=t(tsi);

if isempty(tsettle) '/. catch, probably unstable response

tsettle=inf;

end

if size(extrem,l) > 1

extrem=extrem(f ind(extrem(: ,l)<tsettle), :); '/, ignore extremum in tail
end

if isempty(extrem) '/, to cover monotonic responses

extrem = [tp Hp] ;

end

if nonmin==l '/, assumes one non-min phase excursion belo» zero extremCl,:)
if extremCl,2)>0

dispC' ');disp(' !! error in tracking non-min phase extrema');disp(' ')
else

if size(extrem,l)>l

extremCl ,:) = [] ; '/• currently no fom specified, remove from list

end

end

end

if extremCl,:) "= [tp Hp]

if DISP==1

dispCC Peak overshoot is not first Maximum'])
end

badpeak=l; '/, flag for maybe bad response, compare with nonmim

end

overshoots=100*CextremC: ,2)-FV)/FV; '/, percent error at each local extremum
overshoots=overshoots';

for i=l :lengthCovershoots)-l */, find ratios of consecutive extrema

ratioCi)=overshootsCi+l)/overshootsCi);
end

trli=l ;tr2i=tpi; '/, initialize just incase problems with rise time

for i = l:tpi '/, find rise time

if yCi) < C.l * FV), trli = i; end

if yCi) < C.9 * FV), tr2i = i; end
end

trl=tCtrli);ytrl=yCtrli);

tr2=tCtr2i);ytr2=yCtr2i);

tr=tr2-trl;

merit=zeros(3,maxC7,lengthCovershoots)));

meritCl,[l:7])=[Hp tp Te tsettle tr ref FV];

meritC2,[1:lengthCovershoots)])=overshoots;

meritC3,[1:length(overshoots)])=[t(npts) ratio];

'/. Pretty output if merit not specified

if DISP==1,

Mps=num2str(Mp);

0ss=[num2strC0s),' '/,'];

if ref==0

Tes='Undefined, merit returns Inf;

else

C-18

Tes=[num2str(Te),' '/.'];

end

FVs=num2str(FV);

refs=num2str(ref);

if isempty(ratio)

Maxratios='undefined';

else

Maxratios=num2str(ratio(find(abs(ratio)==max(abs(ratio)))));
end

if tr < tp ft tr~=0

trs=num2str(tr);

elseif (tr==tp I tr==0)

trs=['poorly defined'];

else

trs=['very large'];

end

if tp < tstop

tps=num2str(tp);

else

tps=['very large'];

end

if tsettle < tstop

tsettles=num2str(tsettle);
else

tsettles=['very large'] ;

end

if nargout==0

disp(['Figures of merit'])

disp([> '])

disp(['rise time

disp(['peak time

disp(['settling time

disp(['peak value

disp(['final value

disp(['commanded value

disp(['initial condition

disp(['Percent Overshoot

disp(['Hax ratio overshoot

disp(['Percent Track error

end

,trs])

,tps])

.tsettles])

,Hps])

,FVs])

,refs])

,num2str(IC)])

,0ss])

,Haxratios])

,Tes])

plot(t,[y cmd]) '/, System Response and command
hold on

plot([trl,trl] ,[0,ytrl] ,'c: ' , [tr2,tr2] , [0,ytr2] , 'c: >,[trl,tr2] ,[ytrl,ytrl] , 'c: ') % tr Lines
plot([tp,tp] ,[0,Mp] ,'m: \[0,tp] .[Mp.Mp] ,'m:>) '/, Peak Time Lines
plot ([tsettle, tsettle] ,[0,FV] ,'H: ',[O.t(npts)],[FV.FV] ,'r: ')'/, FV and ts Lines
for i=l:size(extrem,l) '/, Indicate local extremum

plot([extrem(i,l),extrem(i,1)],[FV,extrem(i,2)],'g')
end
title(['Figures of Merit: Response Translated to Trim Condition of ',num2str(IC)])
ylabel('Response'), xlabeK'time')

text(.03*t(length(t)),0.95*Hp,['Hp = >,Mps])

text(l/4*(tr2+3*trl),1.3*(0.1*FV),['tr = ',trs])

text(0.9*tp,0.5*Hp,['tp = ',tps])

text(0.9*tsettle,0.25*FV,['ts = >,tsettles])

text(0.9*tsettle,0.8*FV,['local extrema'])

text(0.9*tsettle,0.7*FV,[sprintf(' y.5.if '.overshoots)])

if 'isempty(ratio),text(0.9*tsettle,0.5*FV,['ratio of extrema']),end

if "isempty(ratio) ,text(0.9*tsettle,0.4*FV, [sprintf (' '/.5.2f ' .ratio)]) ,end
hold off

end

return

C-19

FV .. 0 ... I
.. 0 ... I
.. 0 ... I

FV: Final Value

tp: Peak Time

tr: 10'/. to 90'/, Rise Time

Te: Tracking error of FV

C.9 Listing of MATLAB Function fuz_cost .m
function cost=fuz_cost(merit.display.weights,specifications)

'/.fuz.cost Calculate the cost of the response with figures of merit

'/■ contained in the 3 ro» (zero padded) matrix merit

'/. obtained from the m file 'fom_nl.m' with form

'/.
'/. I Hp tp Te ts tr ref FV

'/. merit = | [overshoots]

'/. I tstop [ratio]

'/.
'/, ref: Commanded Step Value

'/, tstop: Duration of simulation

'/, ts: Actual 2'/. settling time to FV

'/, Hp: Peak Value at tp

'/, [overshoots] : vector of percent overshoot at each local extrema prior to ts

'/, [ratio] : vector of overshoot ratios from one extrema to next

'/.
'/. Call after using merit=fom.nl(t ,y,cmd) as

'/.
'/. cost=fuz_cost(merit,display,weights,specif ications)

'/.
'/, display: A switch to display violations when display=l (default is 0)

'/, weights: A vector of weights to place relative importance upon
'/, certain elements of the specification vector, defaults to

'/. weights=[l 15 11111];
'/.specifications: The vector containing max allowable specs for each figure of

'/, merit. If specs is not defined the default is used. If only

'/■ certain elements of specs are desired to be changed this is done

'/■ by using a string to reset the elements separated by semicolons.

'/, i.e. use 'specs(2)=l ;specs(5)=3;' to change the first and fifth

'/. elements to 1 and 3 respectively.

"/. See .m file code for use of specs in the cost function.

'/.
V. 12-3 45678

'/, specs = [minHp maxHp max#overshoots maxratio maxerror maxtp maxts maxtr]

'/, where the elements conform to:

'/, 1,2: fraction of normalized step strength ie .98 and 1.3 for -2'/,/+30'/, overshoot

'/, 3: integer 4: positive real decimal

'/, 5: percent error ie 2 for 2'/, default, 6-8: seconds

'/.
'/, LAST REVISION: 26 Jan 95 Handle trim conditions v 4.2c and slope for unstable

'/, 9 Hov 94 define interactive mode to echo violations
'/. 1 Aug 94 HatLab 4.0

'/. Author: TOM KOBYLARZ Air Force Institute of Tech UPAFB, OH

'/. figure out input format by number or parameters provided
if (nargin==0 I nargin >4),

eval('help fuz_cost') ,

error('wrong number of input arguments.');
end

if (size(merit,1)~=3), errorCmerit must have form returned from fom.nl.m'); end
tstop=merit(3,1);

if nargin == 1, display=0; end
if nargin < 3,

weights=[] ;

end

specs=[.98 1.25 4 0.4 1.0 tstop 5.0 tstop];

if nargin == 4,

eval(specifications);

end

merit(3,l)=0; '/, to simplfy code below

if isempty(weights),

C-20

»eights=[l 15 11111];
end
penalty=0*weights;

'/, ensure we always start with correct vectors

if (min(size(specs))>l), error('specifications must be a vector'); end

if (min(size(weights))>l), error('weights must be a vector'); end

if (length(weights)~=8), error('weights must be an 8 element vector'); end

'/, add a large cost and return if peak value is Inf or HaH

'/. slope is provided by 10000*(l-tp/tstop) ie time to instabilty

if (isnan(merit(l,D) | isinf(merit(1,1)))

cost=10000 + (l-(merit(l,2)/tstop))*10000;
return

end

*/, Return zero cost and return if merit returned a valid trim case
if any(any(merit))==0

cost=0;return

end

V. Calculate penalties for deviating from spec

violations=penalty; '/, initialize flags to display violations

if merit(l,l) < specs(l)*merit(1,6)

penalty(1)= (specs(1)«merit(1,6)-merit(1,1));
violations(l)=l;

end

if merit(l,l) > specs(2)*merit(1,6)

penalty(2)= (merit(1,l)-specs(2)*merit(l,6));
violations(2)=l;

end

if length(find(merit(2,:))) > specs(3)

penalty(3)= (length(find(merit(2,:))) - specs(3));
violations(3)=l;

end

if max(abs(merit(3,:))) > specs(4)

penalty(4)= (max(abs(merit(3,:))) - specs(4));

violations(4)=l;
end

if abs(merit(l,3)) > abs(specs(5))

penalty(5)= (abs(merit(1,3)) - abs(specs(5)));

violations(5)=l;
end

if merit(l,2) > specs(6)

penalty(6)= (merit(l,2) - specs(6));

violations(6)=l;
end

if merit(l,4) > specs(7)

penalty(7)= (merit(l,4) - specs(7));

violations(7)=l;

end

if merit(l,5) > specs(8)

penalty(8)= (merit(l,5) - specs(8));
violations(8)=l;

end

if min(penalty) < 0
error(['negative cost element, there is a problem in the code'])

C-21

end

penalty;

cost=sum(weights.»penalty);

'/, Build up display of violations if requested

if display==l,

if max(violations)==l;

dispMAT=str2mat([' '],[> !!! VIOLATED the following specifications !!!']);

else

dispMAT=str2mat([> '],[' All specifications satisfied']);

end

if violations(l)==l;

dispMAT=str2mat(dispHAT,[>

end;

if violations(2)==l;

dispMAT=str2mat(dispMAT,['

end;

if violations(3)==l;

dispHAT=st r2mat(dispHAT,['

end;

if violations(4)==l;

dispMAT=str2mat(dispMAT,[>

end;

if violations(5)==l;

dispMAT=str2mat(dispMAT,['

end;

if violations(6)==l;

dispMAT=str2mat(dispMAT,['

end;

if violations(7)==l;

dispHAT=st r2mat(dispMAT,['

end;

if violations(8)==l;

dispHAT=str2mat(dispHAT,[>

end

disp(dispHAT)

end

return

min Hp spec: ' ,num2str(specs(D),' of final value with ' ,num2str (merit (1 ,l)/meri

max Hp spec: ',num2str(specs(2)),' of final value with ',num2str(merit(l,l)/meri

max Humber of oscillations: ',num2str(specs(3)) ,' with >,num2str(length(find(mer

max Ratio of oscillations: ',num2str(specs(4)),' with ',num2str(max(abs(merit(3,

max Percent Tracking Error spec of > ,num2str(specs(5)),>'/. with ' ,num2str(merit(1

max Peak Time spec of ',num2str(specs(6)),' sees with ',num2str(merit(l,2))]);

max Settling Time spec of ',num2str(specs(7)),' sees with ',num2str(merit(l,4))]

max Rise Time spec of ',num2str(specs(8)),' sees with ',num2str(merit(l,5))]);

C-22

CIO Listing of MATLAB Function find_2dv.m
function var=find_2dv(D,A,cm)

'/,f ind_2dv Find the variance parameters var for the membership functions

'/. centered at D=[x;y] to provide cover of the 2D Universe of Discourse

'/. such that no point has a cross membership greater than cm (0< cm <1).

'/, The default cross membership is cm=.001 if not specified. D is a

'/. vector of 2 rows and at least 3 columns (points). Each column of D

'/, must be a unique 2-D vector. If D is colinear artifical bounds are

'/, used to obtain finite solutions. A, the adjacency matrix as returned

'/, from A=delaunay(D) . If A is not specified or empty it is calculated.
'/, If no output arguments are specified a plot is made.

'/.
'/. var=f ind_2dv(D,A,cm)

•/.
'/. SÄHE: f ind_2dv

'/. LAST REVISION: 15 Feb 95 Ignore Inf results as long as one valid max found

'/, 8 Feb 95 Allowed for colinear and modified/invalid A

•/. 1 Nov 94 MatLab 4.2

'/. Author: TOM KOBYLARZ Air Force Institute of Tech WPAFB, OH
'/. tkobylar@afit.af.mil

'/, figure out input format and output requested by parameters provided

if nargout==0,pl=l;else,pl=0;end

if (nargin >3),eval(['help find_2dv']), error('wrong number of input arguments.'); end

if nargin==0,eval(['help find_2dv']),return; end

npts=size(D,2);

if size(D,l)"=2 '/, check to see if D in required format

eval(['help find_2dv']) ;

error(' D must contain 2 rows, each column a 2-D vector');

end

if npts < 3

eval(['help find_2dv»]);

error(' D must contain at least 3 sets of points [x;y]');

end

if nargin==l,

A=delaunay(D); '/. Find Adjacency matrix for Delaunay Diagram

end

if isempty(A),

A=delaunay(D); '/, Find Adjacency matrix for Delaunay Diagram
end

if size(A,2)"=npts I size(A,l)~=npts

eval(['help find_2dv']) ;

error(' A must be the adjacency matrix as returned from A=delaunay(D)');

end

if nargin<3,cm=.00i;end

if cm<=0 | cm>=l '/, check for valid cross membership
eval(['help find_2dv']);

error(' Cross Membership must be in the range 0 < cm < 1');

end

'/. SOLVE THE CONSTANT MEMBERSHIP ELLIPSE, ie maximize the area of a concentric

'/, ellispe. centered at the point, closest other point on the ellipse and all

'/, other points lie on or outside the ellipe. after the semi-major/minor axis

'/, are determined, then solve for the required variance paramters such that

'/, this ellipse reprsents a contour of the desired cross memebership.

'/, use x"2*xstar+y"2*ystar=l for ellipse ==> xstar=l/a"2 ystar=l/b"2
'/. The following assumes D is 2 by n

var=0*D;

for N=l:npts

cpt=D(:,N);

neigh=find(A(N,:));

opts=D(:,neigh);

C-23

'/, include all points in constraints but use max aftb

'/, found from neighbors when they yield a finite solution

normpts=D-cpt (: ,ones(l,npts)); '/. center points at cpt
normptsC: ,N) = [] ; '/. remove cpt from consideration

[junk,i]=min(sqrt(sum(normpts . "2))); '/, find closest point

closept=normpts(: ,i); '/, closest pt is on ellipse

slope=closept(2)/closept(l); '/, for use in unconstrained pts

normpts(: ,i) = [] ; '/, remove closest from consideration

'/. form the constraints on a ft b for finite solutions

amin=min(abs(cpt(l)-opts(l,

amax=max(abs(cpt(l)-opts(l,

bmin=min(abs(cpt(2)-opts(2,

bmax=max(abs(cpt(2)-opts(2,

)))
)))
)))
)))

'/, find min/max projections to neighbors

'/, »hen induced constriants are from closest point we may still be unconstrained

'/, catch for perp to axis and points with a single neighbor

if amax < eps '/, all neighbours aligned in y.

if max(abs(cpt(l)-D(l,:))) > eps

amax=max(abs(cpt(l)-D(l,:)));
disp([' !! Suspect Adjacency Matrix, check neighboors of point ',int2str(N)])

else '/. all points colinear in y.

amax=abs(max(D(2, :))-min(D(2,:)));'/, artifical bound of span of y

end

end

if bmax < eps '/, same as for amax but aligned in x

if max(abs(cpt(2)-D(2,:))) > eps

bmax=max(abs(cpt(2)-D(2,:)));
disp([' !! Suspect Adjacency Matrix, check neighboors of point ',int2str(N)])

else '/, all points colinear in x.

bmax=abs(max(D(l,:))-min(D(l,:)));

end

end
'/. catch for colinear pts not perp to axis

if amin==amax ft amin==abs(closept(l ,1)) '/, need to relax x constriant

np=sort(abs(normpts(l,:))); '/, sorted queque of x projections

i=l;flag=0;

while flag==0

if np(i) > amax

amax=np(i);

flag=l;

else

i=i+l;
if i > length(np)

flag=l;

amax=abs(max(D(l,:))-min(D(l,:)));

end

end

end

end
if bmin==bmax ft bmin==abs(closept(2,l)) '/, need to relax y constriant

np=sort(abs(normpts(2,:))); '/, sorted queque of y projections

i=l;flag=0;

while flag==0

if np(i) > bmax

bmax=np(i);

flag=l;
else

i=i+l;

if i > length(np)

flag=l;
bmax=abs(max(D(2,:))-min(D(2,:)));

end
end

C-24

end

end

ab_bds=[amin amax;bmin bmax] ; '/, artifical bds must not violate inequalites found later
xy_bds=l ./fliplr(ab_bds."2) ; '/, = [xmin xmax;ymin ymax]

xy_const=[0 inf;0 inf];

xy_lim=xy_const;

'/, Find constraints such that no other point interrior to ellipses

if abs(closept(2))>eps

alphax=[normpts(l,:)."2 - (closept(1)/closept(2))"2*normpts(2,:)."2]';

betax=[l - (normpts(2,:)/closept(2))."2]';

neg=find(alphax<-eps);pos=find(alphax>eps);

if "isempty(pos),xy.const(1,l)=max(betax(pos)./alphax(pos));end

if "isempty(neg),xy.const(1,2)=min(betax(neg)./alphax(neg));end

else

xy.const(1,:)=abs([closept(1) closept(1)]);

end

if abs(closept(l))>eps

alphay=[normpts(2,:)."2 - (closept(2)/closept(l))"2*normpts(i,:)."2] ';

betay=[l - (normptsd , :)/closept(D) ."2] ';
neg=find(alphay<-eps);pos=find(alphay>eps);

if "isempty(pos),xy_const(2,l)=max(betay(pos)./alphay(pos));end

if "isempty(neg),xy_const(2,2)=min(betay(neg)./alphay(neg));end
else

xy.const(2,:)=abs([closept(2) closept(2)]);

end

'/, combine these constraints to generate resonable ellipses based upon

'/. xy.bds. NOTE: must ensure the analytical constraints of xy.const

"/• are not violated in the process.

xy_lim(:,1)=[min(max(xy.const(:,1),xy_bds(:,1)),xy.const(:,2))] ;

xy_lim(:,2)=[max(min(xy.const(:,2),xy_bds(:,2)),xy.const(:,1))];

'/, Solve for the ellipse based on amax

xstar=xy_lim(l,l);

astar=l/sqrt(xstar);

ystar=(l-xstar*closept(l)~2)/closept(2)"2;

bstar=l/sqrt(ystar);

circum_area=[astar bstar astar*bstar];

if pl==l

'/, generate points on amax ellipse to plot

x= -astar+eps:astar/50:0;

ye=sqrt((1-x.~2*xstar)/ystar);

x=[x fliplr(-x) -x fliplr(x)];

ye=[ye fliplr(ye) -ye fliplr(-ye)];

end

'/, Solve for the ellipse based on bmax

ystar=xy_lim(2,l);

bstar=l/sqrt(ystar);
xstar=(l-ystar*closept(2)"2)/closept(l)"2;
astar=l/sqrt(xstar);
circum_area=[circum_area; astar bstar astar*bstar];

if pl==l

'/. generate points on bmax ellipse to plot

y= -bstar+eps:bstar/50:0;

xe=sqrt((l-y.~2*ystar)/xstar);

y=[y fliplr(-y) -y fliplr(y)] ;

xe=[xe fliplr(xe) -xe fliplr(-xe)];

plot (normptsd,:) ,normpts(2,:) , 'o')

hold on

C-25

plot(opts(1,:)-cpt(l),opts(2,:)-cpt(2),»x>)

plot(x,ye,'r',xe,y,'c')
plot(0,0,>g+',closept(l),closept(2),'wx')

title(['Point ',int2str(B)])

hold off

'/, dispC Hit any key to continue'); pause

axis('equal')

pause(.1)

end

'/, choose the largest and find corresponding var parameters
'/, just incase still poorly constrained zero that result

still_bad=find(isinf(circum_area(:,3))|isnan(circum_area(:,3)));

if ~isempty(still_bad)

circum_area(still_bad,3)=0; */, as longs as one is finite we're ok

end
best=find(max(circum_area(:,3))-circum_area(:,3)<100*eps);

if length(best)==2 '/. select better orientation in a tie

ratio=circum_area(:,1)./circum_area(:,2);

if abs(slope)>=l

best=find(max(ratio)==ratio);

else

best=find(min(ratio)==ratio);

end

end

if length(best)==2,best=l;end "/, incase their identical

var(l1B)=cros_mem(0)circum_area(best,1),cm);

var(2,N)=cros_mem(0,circum_area(best,2),cm);

end '/, next N

if min(min(var))<=0,

disp([' var has an element <=0 something is wrong']).break

end

if pl==l
HF=[D',var>] ;
gauss_2d('plot.it',HF,'s',[l 0 0]);

*/. gauss_2d('plot.it' ,HF, 's', [1 0 0 [100*cm 10*cm cm]]);
•/. u=[min(D(l,:)) max(D(l,:)) min(D(2,:)) max(D(2,:))] ;
'/. w=[u(2)-u(l) u(4)-u(3)];
'/. axis(u + .2*[-w(l) w(l) -w(2) w(2)]);
end

C-26

C.ll Listing of MATLAB Function crosjtiem.m
function var=cros_mem(center,other.pts,weight)

"/. var = cros_mem(center,other_pts,weight)

V.
'/. Used to find the variance paramters for Gaussian membership functions

'/, centered at other_pts such that their membership value is equal to

*/, weight »hen evaluated at the point center. That is solve

'/. weight=exp(-l/2*(center-other_pts) *2/var)

'/. for var. Requires that : 0 < weight < 1

if (nargin~=3),eval(['help cros.mem']), error('wrong number of input arguments.'); end

if (weight<=0 I weight>=l),

eval(['help cros.mem']), error('Invalid weight specified');

end

var = -.5 * (center-other_pts)."2/log(weight);

C-27

Appendix D. Support Data for Chapter IV

D.l Increase in Cover by Scheduler: Nonlinear System

Max Acceptable Commands: Point Design 1 vs. Scheduler at tau = 1

Figure D.l Increase in Slewing Capability from Point Design 1

0.66

0.64-

0.62

c 0.6

0.58

0.56

0.54

Max Acceptable Commands: Point Design 2 vs. Scheduler at tau = 1.11

9 10

Figure D.2 Increase in Slewing Capability from Point Design 2

D-l

Max Acceptable Commands: Point Design 3 vs. Scheduler at tau = 1.244

8 9 10

Figure D.3 Increase in Slewing Capability from Point Design 3

Max Acceptable Commands: Point Design 4 vs. Scheduler at tau = 1.408

Figure D.4 Increase in Slewing Capability from Point Design 4

D-2

Max Acceptable Commands: Point Design 5 vs. Scheduler at tau = 1.602

0.75

Sf 0.7

>0.65

0.55
7 8 9 10

Figure D.5 Increase in Slewing Capability from Point Design 5

Max Acceptable Commands: Point Design 6 vs. Scheduler at tau = 1.846

0.85

cO.75

0.65

9 10

Figure D.6 Increase in Slewing Capability from Point Design 6

D-3

0.95
Max Acceptable Commands: Point Design 7 vs. Scheduler at tau = 2.163

9 10

Figure D.7 Increase in Slewing Capability from Point Design 7

Max Acceptable Commands: Point Design 8 vs. Scheduler at tau = 2.6

J [

0 1 23456789 10
Time (sec)

Figure D.8 Increase in Slewing Capability from Point Design 8

D-4

Max Acceptable Commands: Point Design 9 vs. Scheduler at tau = 3.207

Figure D.9 Increase in Slewing Capability from Point Design 9

Max Acceptable Commands: Point Design 10 vs. Scheduler at tau = 4.388

Figure D.10 Increase in Slewing Capability from Point Design 10

D-5

D.2 Constraint Surface Plots of Point Controllers: Nonlinear System

Constraint Surface for Point Design 1 at tau = 1 or v = 0.5774
10

9

8

7

« 5 c o
Ü

4

3

2

0.4 0.6 0.8 1
v = sqrt(tau/3)

1.2 1.4

Figure D.ll Constraint Surface for Point Controller 1

10
Constraint Surface for Point Design 2 at tau - 1.11 or v - 0.6083

0.4 0.6 0.8 1 1.2
v - sqrt(tau/3)

1.4 1.6

Figure D.12 Constraint Surface for Point Controller 2

D-6

10r
Constraint Surface for Point Design 3 at tau = 1.244 or v = 0.6439

Figure D.13 Constraint Surface for Point Controller 3

Constraint Surface for Point Design 4 at tau = 1.408 or v = 0.6851

Figure D.14 Constraint Surface for Point Controller 4

D-7

Constrai nt Surface for Point Design 5 at tau = 1.602 or v = 0.7308

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
v = sqrt(tau/3)

Figure D.15 Constraint Surface for Point Controller 5

10
Constraint Surface for Point Design 6 at tau - 1.846 or v - 0.7844

0.4 0.6 0.8 1 1.2
v - sqrt(tau/3)

1.4 1.6

Figure D.16 Constraint Surface for Point Controller 6

D-8

10

9

8

7

6
c

'ra
V) 5 c o
Ü

4

3

2

1

Constraint Surface for Point Design 7 at tau = 2.163 or v = 0.8491

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
v = sqrt(tau/3)

Figure D.17 Constraint Surface for Point Controller 7

10r
Constraint Surface for Point Design 8 at tau = 2.6 or v = 0.9309

« 5

Figure D.18 Constraint Surface for Point Controller 8

D-9

10

9

8

7

6
c
2
V) 5
C
O
Ü

4

3

2

1

Constraint Surface (or Point Design 9 at tau = 3.207 or v = 1.034

Ö.3 0.4 0.5 0.6 0.7 0.8 0.9
v = sqrt(tau/3)

1 1.1 1.2 1.3

Figure D.19 Constraint Surface for Point Controller 9

10

9

8

7

6
c
2
'S 5 c o
Ü

4

3

2

1

Constraint Surface for Point Design 10 at tau = 4.388 or v = 1.209

8: 0.4 0.6 0.8 1
v = sqrt(tau/3)

1.2 1.4 1.6

Figure D.20 Constraint Surface for Point Controller 10

D-10

Constraint Surface From C(y(t))

Trim Point

Commanded Value, v

Figure D.21 Constraint Surface of Point Controllers, C(y(t))

Constraint Surface After Output Error Comparison

Trim Point

Commanded Value, v

Figure D.22 Constraint Surface of Point Controllers after Normalized Output Error
Check

D-ll

D.3 Constraint Surface Plots of Scheduler: Nonlinear System

Constraint Surface for Scheduler from Point 1 at tau = 1 or v = 0.5774

Figure D.23 Constraint Surface for Scheduler from Point 1

Constraint Surface for Scheduler from Point 2 at tau = 1.11 or v = 0.6083

Figure D.24 Constraint Surface for Scheduler from Point 2

D-12

Constraint Surface for Scheduler from Point 3 at tau = 1.244 or v = 0.6439
10n

Figure D.25 Constraint Surface for Scheduler from Point 3

Constraint Surface for Scheduler from Point 4 at tau = 1.408 or v = 0.6851

Figure D.26 Constraint Surface for Scheduler from Point 4

D-13

Constraint Surface for Scheduler from Point 5 at tau = 1.602 or v = 0.7308

Figure D.27 Constraint Surface for Scheduler from Point 5

Constraint Surface for Scheduler from Point 6 at tau = 1.846 or v = 0.7844

r

).4 0.5 0.6 0.7 0.8 0.9 1
v = sqrt(tau/3)

1.1 1.2 1.3 1.4

Figure D.28 Constraint Surface for Scheduler from Point 6

D-14

Constraint Surface for Scheduler from Point 7 at tau = 2.163 or v = 0.8491

Figure D.29 Constraint Surface for Scheduler from Point 7

Constraint Surface for Scheduler from Point 8 at tau = 2.6 or v = 0.9309

0.8 0.9 1
v = sqrt(tau/3)

1.2 1.3 1.4

Figure D.30 Constraint Surface for Scheduler from Point 8

D-15

Constraint Surface for Scheduler from Point 9 at tau = 3.207 or v = 1.034

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
v = sqrt(tau/3)

Figure D.31 Constraint Surface for Scheduler from Point 9

Constraint Surface for Scheduler from Point 10 at tau = 4.388 or v = 1.209

Figure D.32 Constraint Surface for Scheduler from Point 10

D-16

Constraint Surface From C(y(t))

10-1

Commanded Value, v

Figure D.33 Constraint Surface of Scheduler, C(y(t))

Constraint Surface After Output Error Comparison

10-,

Commanded Value, v

Figure D.34 Constraint Surface of Scheduler after Normalized Output Error Check

D-17

D.4 Increase in Cover by Scheduler: LTV System

LTV Max Acceptable Commands: Point Design 1 vs. Scheduler at tau = 1

Figure D.35 Increase in Slewing Capability from Point Design 1

LTV Max Acceptable Commands: Point Design 2 vs. Scheduler at tau = 1.761
1.8r

Figure D.36 Increase in Slewing Capability from Point Design 2

D-18

1.8r
LTV Max Acceptable Commands: Point Design 3 vs. Scheduler at tau = 3.106

Figure D.37 Increase in Slewing Capability from Point Design 3

LTV Max Acceptable Commands: Point Design 4 vs. Scheduler at tau = 5.615

■c 1 -

Figure D.38 Increase in Slewing Capability from Point Design 4

D-19

D.5 Constraint Surface Plots of Point Controllers: LTV System

Constraint Surface for Point Design 1 at tau = 1 or v = 0.5774
10>

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
v = sqrt(tau/3)

Figure D.39 Constraint Surface for Point Controller 1

Constraint Surface for Point Design 2 at tau = 1.761 or v = 0.7662

Figure D.40 Constraint Surface for Point Controller 2

D-20

Constraint Surface for Point Design 3 at tau = 3.106 or v = 1.018

Figure D.41 Constraint Surface for Point Controller 3

10

9

8

7

6
c
<5
öS 5
c
o
O

4

3

2

1

0

Constraint Surface for Point Design 4 at tau = 5.615 or v = 1.368

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
v = sqrt(tau/3)

Figure D.42 Constraint Surface for Point Controller 4

D-21

LTV Point Constraint Surface From C(y(t))

Trim Point

Commanded Value, v

Figure D.43 Constraint Surface of Point Controllers, C(y(t))

LTV Point Constraint Surface After Output Error Comparison

Trim Point

Commanded Value, v

Figure D.44 Constraint Surface of Point Controllers after Normalized Output Error
Check

D-22

D.6 Constraint Surface Plots of Scheduler: LTV System

Constraint Surface for LTV Scheduler from Point 1 at tau = 1 or v = 0.5774
10

9

8

7

6
c
2
« 5 c
o
Ü

4

3

2

1

wm-
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

v = sqrt(tau/3)

Figure D.45 Constraint Surface for Scheduler from Point 1

Constraint Surface for LTV Scheduler from Point 2 at tau = 1.761 or v = 0.7662
10

9

8

7

6
c

'55
Vt 5
c
o
Ü

4

3

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
v = sqrt(tau/3)

Figure D.46 Constraint Surface for Scheduler from Point 2

D-23

Constraint Surface for LTV Scheduler from Point 3 at tau = 3.106 or v = 1.018
10>

7

6

2
w 5 c o
Ü

4

3

2

1

' mm " W
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

v = sqrt(tau/3)

Figure D.47 Constraint Surface for Scheduler from Point 3

Constraint Surface for LTV Scheduler from Point 4 at tau = 5.615 or v = 1.368
10

9

8

7

6
c
s
to 5 c o
Ü

4

3

2

1

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

v = sqrt(tau/3)

Figure D.48 Constraint Surface for Scheduler from Point 4

D-24

LTV Scheduler Constraint Surface From C(y(t))

Trim Point
1.4

Commanded Value, v

Figure D.49 Constraint Surface of Scheduler, C(y(t))

LTV Scheduler Constraint Surface After Output Error Comparison

0.4

1.2
,/-^=^,4

0.8

Trim Point

Commanded Value, v

Figure D.50 Constraint Surface of Scheduler after Normalized Output Error Check

D-25

Bibliography

1. Azvine, B. and R.J. Wynne "Improved MIMO Quantitative Feedback Design
Using a Matlab Toolbox," 1995 QFT Symposium, (August 1995)

2. Batur, C, and A. Srinivasan "Inverse Fuzzy Model Controllers," Proceedings of
the American Control Conference, 772-76 (June 1993).

3. Bennett, Stuart "Development of the PID Controller," IEEE Control Systems
Magazine, 13:6 58-65 (December 1993).

4. Berenji, H. R. and P. Khedkar "Learning and Tuning Fuzzy Logic Controllers
Through Reinforcements," IEEE Transactions on Neural Networks, 3:5 724-40
(September 1992).

5. Berenji, H. R. and P. Khedkar "Adaptive Fuzzy Control with Reinforcement
Learning," Proceedings of the American Control Conference, 1840-45 (June
1993).

6. Betzold, Capt Robert W. Multi-pie Input - Multiple Output Flight Control De-
sign with Highly Uncertain Parameters; Application to the C-135 Aircraft. MS-
Thesis, AFIT/GE/EE/83D-11. School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB OH, December 1983.

7. Blakelock, J.H. Automatic Control of Aircraft and Missiles. (Second Edition),
New York: John Wiley & Sons, 1991.

8. D'Azzo, J.J. and C.H. Houpis Linear Control System Analysis & Design.
(Fourth Edition), New York: McGraw-Hill, 1995.

9. Fortune, Steven "Voronoi Diagrams and Delaunay Triangulations", Computing
in Euclidean Geometry. 193-233, Singapore: World Scientific Publishing Co.,
1992

10. Gamble, Capt Lynn L. and Capt William L. Smith Improved Dutch Roll
Stability Augmentation System for a Modified C-135B Aircraft. MS-Thesis,
AFIT/GGC/EE/70-8. School of Engineering, Air Force Institute of Technol-
ogy, Wright-Patterson AFB OH, May 1970.

11. Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading MA: Addison-Wesley Pub. Co., 1989

12. Griffin, J.M. Analog Simulation of a Modified C-135 Aircraft Having a Series
Yaw Damper. Aeronautical Systems Division Technical Report ASD-TR-69-97.
Wright-Patterson AFB OH: Air Force Systems Command, January 1970 (AD
867411L)

BIB-1

13. Griffin, J.M. Digital Computer Solution of Aircraft Longitudinal and Lateral-
Directional Dynamic Characteristics. Aeronautical Systems Division, Deputy
for Engineering Technical Report SEG-TR-66-52. Wright-Patterson AFB OH:
Air Force Systems Command, December 1967 (ADA 078672)

14. Guibas, L. and J. Stolf "Primitives for the Manipulation of General Subdivisions
and the Computation of Voronoi Diagrams", ACM Transactions on Graphics,
Vol. 4 No. 2, 74-123 (April 1985)

15. He, S., S. Tan, F. Xu and P. Wang. " PID Self-Tuning Control using a Fuzzy
Adaptive Mechanism," IEEE Conference on Fuzzy Systems, Vol2 708-13 (1993).

16. Horowitz, Isaac M. Quantitative Feedback Design Theory. Boulder CO: QFT
Publications, 1992

17. Hung, C-C and B. Fernandez. "Comparative Analysis of Control Design Tech-
niques for a Cart-Inverted-Pendulum in Real-Time Implementation," Proceed-
ings of the American Control Conference, 1870-73 (June 1993).

18. Jang, J. R. "Self-Learning Fuzzy Controllers Based on Temporal Back Propa-
gation," IEEE Transactions on Neural Networks, 3:5 714-23 (September 1992).

19. Karr, C. L. and E. J. Gentry. "Fuzzy Control of pH Using Genetic Algorithms,"
IEEE Transactions on Fuzzy Systems, 1:1 46-53 (February 1993).

20. Kobylarz, T.J., M. Pachter and C.H. Houpis, "Fuzzy Identification in Control
Systems," World Scientific Series In Applicable Analysis vol 5: Recent Trends
in Optimization Theory and Applications. Singapore, To appear in July 1995

21. Kosko, Bart Neural Networks and Fuzzy Systems: A Dynamical Systems Ap-
proach to Machine Intelligence. Englewood NJ: Prentice Hall, 1992

22. Lai, J and Y. Lin. "Fuzzy Model-Based Control of a Pneumatic Chamber,"
Proceedings of the American Control Conference, 1162-66 (June 1993).

23. Layne, J. R., K. Passino and S. Yurkorich. "Fuzzy Learning Control for Antiskid
Braking Systems," IEEE Transactions on Control Systems Technology, 1:2122-
29 (June 1993).

24. Lee, D.T. and F.P. Preparata "Computational Geometry - A Survey", IEEE
Transactions on Computers, Vol. c-33 No. 12, 1072-11011 (December 1984)

25. Logan, Capt Michael W. Investigation into Model-Based Fuzzy Logic Control.
MS-Thesis, AFIT/GE/ENG/93D-25. School of Engineering, Air Force Institute
of Technology, Wright-Patterson AFB OH, December 1993.

26. Logan, Michael W. and Meir Pachter "Full-Envelope Fuzzy Logic Control"
NAECON, 598-605 (May 94)

BIB-2

27. Luenberger, D.G. Optimization By Vector Space Methods. New York: John
Wiley k Sons, 1969.

28. MATLAB Optimization TOOLBOX. Natick MA: The MathWorks Inc., 1992

29. MATLAB Reference Guide. Natick MA: The MathWorks Inc., 1992

30. Maybeck, Peter S. Stochastic Models, Estimation and Control, Vol 3, New York
NY: Academic Press, 1982.

31. Martinez, T. and K. Schulten "Topology Representing Networks", Neural Net-
works, Vol 7 No. 3, 507-522 (1994)

32. Nie, J. and D.R. Linkens "Automatic Knowledge Acquisition for Multivariable
Fuzzy Control Using Neural Network Approach," Proceedings of the American
Control Conference, 767-71 (June 1993).

33. Pachter, Meir and D.H. Jacobson, "The Stability of Planar Dynamical Systems
Linear in Cones," IEEE Transactions on Automatic Control, 26:2587-590 (April
1981).

34. Pachter, Meir, S. Sheldon, and M. Mears. Intelligent Flight Control Technical
Report, USAF Flight Dynamics Laboratory, 1995 (distribution pending)

35. Rueda, A. and W. Pedrycz. "Fuzzy Coordinator in Control Problems," North
American Fuzzy Information Processing Society '92 322-29, NASA, Houston TX
(December 1992).

36. Rueda, A. and W. Pedrycz. "A Design Method for a Class of Fuzzy Hierarchical
Controllers," IEEE Conference on Fuzzy Systems, Voll 196-99 (1993).

37. Shamos, I. and D. Hoey "Closest-Point Problems", 16th Annual Symposium on
Foundations of Computer Science, 151-162 (October 1975)

38. Shoureshi, R., P. Torcellini, and K. Rahmani. "Derivation and Implementation
of Fuzzy Optimal Control," Proceedings of the American Control Conference,
1860-64 (June 1993).

39. Special Issue of Neural Network Hardware, IEEE Transactions on Neural Net-
works, 4:3 (May 1993).

40. Smith, S. M., and D. J. Comer. "Automated Calibration of a Fuzzy Logic Con-
troller Using a Cell State Space Algorithm," IEEE Control Systems Magazine,
18-28 (August 1991).

41. Toussaint, G.T. "Pattern Recognition and Geometric Complexity", IEEE
Transaction on Pattern Recognition, Vol. 2, 1324-1347 (1980)

BIB-3

42. Vachtsevanos, G., S. S. Farinwata, and D. K. Pirovolou. "Fuzzy Logic Control of
an Automotive Engine," IEEE Control Systems Magazine, 62-68 (June 1993).

43. Wang, L. "Stable Adaptive Fuzzy Control of Nonlinear Systems," IEEE Trans-
actions on Fuzzy Systems, 1:2 146-55 (May 1993).

44. Wang, L. and M. Mendel. "Generating Fuzzy Rules by Learning from Exam-
ples," Proceedings of the IEEE Conference on Intelligent Control, 263-68 (Au-
gust 1991).

45. Wang, L. and M. Mendel. "Fuzzy Adaptive Filters, with Application to Non-
linear Channel Equalization," IEEE Transactions on Fuzzy Systems, 1:5 161-70
(August 1993).

46. Yamakawa, Takeshi. "A Fuzzy Inference Engine in Nonlinear Analog Mode and
its Application to a Fuzzy Logic Controller," IEEE Transactions on Neural
Networks, ^:5 496- 522 (May 1993).

47. Yen, J., F. Wang and Y. Chen. "A Fuzzy Scheduling Controller for the Computer
Disk File Track- Following Servo," IEEE Conference on Fuzzy Systems, Vol2
1016-21 (1993).

48. Zimmermann, Hans J. Fuzzy Set Theory and its Applications. Boston MA:
Kluwer Academic Press, 1991

49. Zhao, Tienan and T. Virvalo. "Fuzzy Control of a Hydraulic Position Servo with
Unknown Load," IEEE Conference on Fuzzy Systems, Vol2 785-88 (1993).

50. Zhao, Zhen-Yu, M. Tomizuka and S. Isaka "Fuzzy Gain Scheduling of PID
Controllers," IEEE Transactions on Systems, Man, and Cybernetics 23:5 1392-
98 (October 1993).

BIB-4

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

PUDMC reporting ouraen tor tnts coiieaion of miormat.on >•, estimated to average i hour per response, inducting the time for reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 121S Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1995

3. REPORT TYPE AND DATES COVERED
Doctoral Dissertation

4. TITLE AND SUBTITLE

FULL ENVELOPE CONTROL OF NONLINEAR PLANTS WITH
PARAMETER UNCERTAINTY BY FUZZY CONTROLLER
SCHEDULING

6. AUTHOR(S)

Thomas J. Kobylarz, Captain, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2750 P Street
Wright-Patterson AFB, OH 45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/DSG/ENG/95S-05

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

WL/FIGS-2
Wright-Patterson AFB, OH 45433-7521

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

123. DISTRIBUTION /AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A full envelope controller synthesis technique is developed for multiple-input single-output (MISO) nonlinear
systems with structured parameter uncertainty. The technique maximizes the controller's valid region of oper-
ation, while guaranteeing pre-specified transient performance. The resulting controller does not require on-line
adaptation, estimation, prediction or model identification. Fuzzy Logic (FL) is used to smoothly schedule inde-
pendently designed point controllers over the operational envelope and parameter space of the system's model.
These point controllers are synthesized using techniques chosen by the designer, thus allowing an unprecedented
amount of design freedom. By using established control theory for the point controllers, the resulting nonlinear
dynamic controller is able to handle the dynamics of complex systems which can not otherwise be addressed
by Fuzzy Logic Control. An analytical solution for parameters describing the membership functions allows the
optimization to yield the location of point designs: both quantifying the controller's coverage, and eliminating
the need of extensive hand tuning of these parameters. The net result is a decrease in the number of point
designs required. Geometric primitives used in the solution all have multi-dimensional interpretations (convex
hull, ellipsoid, Voronoi/Delaunay diagrams) which allow for scheduling on n-dimensions, including uncertainty
due to nonlinearities and parameter variation. Since many multiple-input multiple-output (MIMO) controller
design techniques are accomplished by solving several MISO problems, this work bridges the gap to full envelope
control of MIMO nonlinear systems with parameter variation.

U. SUBJECT TERMS

Fuzzy Logic, Nonlinear Control, Structured Uncertainty, Scheduling, Gain Schedul-
ing, Control, Voronoi, Delaunay

15. NUMBER OF PAGES
209

16. PRICE CODE j
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT j

UL

Standard Form 29& (Rev. 2~89) NSN 7540-01-280-5500
Pres^nb«! by AIMS! Std. Z3S-U

	Full Envelope Control of Nonlinear Plants with Parameter Uncertainty by Fuzzy Controller Scheduling
	Recommended Citation

	/tardir/mig/a305852.tiff

