2,605 research outputs found

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Data Replication and Its Alignment with Fault Management in the Cloud Environment

    Get PDF
    Nowadays, the exponential data growth becomes one of the major challenges all over the world. It may cause a series of negative impacts such as network overloading, high system complexity, and inadequate data security, etc. Cloud computing is developed to construct a novel paradigm to alleviate massive data processing challenges with its on-demand services and distributed architecture. Data replication has been proposed to strategically distribute the data access load to multiple cloud data centres by creating multiple data copies at multiple cloud data centres. A replica-applied cloud environment not only achieves a decrease in response time, an increase in data availability, and more balanced resource load but also protects the cloud environment against the upcoming faults. The reactive fault tolerance strategy is also required to handle the faults when the faults already occurred. As a result, the data replication strategies should be aligned with the reactive fault tolerance strategies to achieve a complete management chain in the cloud environment. In this thesis, a data replication and fault management framework is proposed to establish a decentralised overarching management to the cloud environment. Three data replication strategies are firstly proposed based on this framework. A replica creation strategy is proposed to reduce the total cost by jointly considering the data dependency and the access frequency in the replica creation decision making process. Besides, a cloud map oriented and cost efficiency driven replica creation strategy is proposed to achieve the optimal cost reduction per replica in the cloud environment. The local data relationship and the remote data relationship are further analysed by creating two novel data dependency types, Within-DataCentre Data Dependency and Between-DataCentre Data Dependency, according to the data location. Furthermore, a network performance based replica selection strategy is proposed to avoid potential network overloading problems and to increase the number of concurrent-running instances at the same time

    Resource provisioning in Science Clouds: Requirements and challenges

    Full text link
    Cloud computing has permeated into the information technology industry in the last few years, and it is emerging nowadays in scientific environments. Science user communities are demanding a broad range of computing power to satisfy the needs of high-performance applications, such as local clusters, high-performance computing systems, and computing grids. Different workloads are needed from different computational models, and the cloud is already considered as a promising paradigm. The scheduling and allocation of resources is always a challenging matter in any form of computation and clouds are not an exception. Science applications have unique features that differentiate their workloads, hence, their requirements have to be taken into consideration to be fulfilled when building a Science Cloud. This paper will discuss what are the main scheduling and resource allocation challenges for any Infrastructure as a Service provider supporting scientific applications

    Harnessing the Power of Many: Extensible Toolkit for Scalable Ensemble Applications

    Full text link
    Many scientific problems require multiple distinct computational tasks to be executed in order to achieve a desired solution. We introduce the Ensemble Toolkit (EnTK) to address the challenges of scale, diversity and reliability they pose. We describe the design and implementation of EnTK, characterize its performance and integrate it with two distinct exemplar use cases: seismic inversion and adaptive analog ensembles. We perform nine experiments, characterizing EnTK overheads, strong and weak scalability, and the performance of two use case implementations, at scale and on production infrastructures. We show how EnTK meets the following general requirements: (i) implementing dedicated abstractions to support the description and execution of ensemble applications; (ii) support for execution on heterogeneous computing infrastructures; (iii) efficient scalability up to O(10^4) tasks; and (iv) fault tolerance. We discuss novel computational capabilities that EnTK enables and the scientific advantages arising thereof. We propose EnTK as an important addition to the suite of tools in support of production scientific computing

    Proceedings of the 2011 New York Workshop on Computer, Earth and Space Science

    Full text link
    The purpose of the New York Workshop on Computer, Earth and Space Sciences is to bring together the New York area's finest Astronomers, Statisticians, Computer Scientists, Space and Earth Scientists to explore potential synergies between their respective fields. The 2011 edition (CESS2011) was a great success, and we would like to thank all of the presenters and participants for attending. This year was also special as it included authors from the upcoming book titled "Advances in Machine Learning and Data Mining for Astronomy". Over two days, the latest advanced techniques used to analyze the vast amounts of information now available for the understanding of our universe and our planet were presented. These proceedings attempt to provide a small window into what the current state of research is in this vast interdisciplinary field and we'd like to thank the speakers who spent the time to contribute to this volume.Comment: Author lists modified. 82 pages. Workshop Proceedings from CESS 2011 in New York City, Goddard Institute for Space Studie

    Dynamic Resource Allocation in Industrial Internet of Things (IIoT) using Machine Learning Approaches

    Get PDF
    In today's era of rapid smart equipment development and the Industrial Revolution, the application scenarios for Internet of Things (IoT) technology are expanding widely. The combination of IoT and industrial manufacturing systems gives rise to the Industrial IoT (IIoT). However, due to resource limitations such as computational units and battery capacity in IIoT devices (IIEs), it is crucial to execute computationally intensive tasks efficiently. The dynamic and continuous generation of tasks poses a significant challenge to managing the limited resources in the IIoT environment. This paper proposes a collaborative approach for optimal offloading and resource allocation of highly sensitive industrial IoT tasks. Firstly, the computation-intensive IIoT tasks are transformed into a directed acyclic graph. Then, task offloading is treated as an optimization problem, taking into account the models of processor resources and energy consumption for the offloading scheme. Lastly, a dynamic resource allocation approach is introduced to allocate computing resources to the edge-cloud server for the execution of computation-intensive tasks. The proposed joint offloading and scheduling (JOS) algorithm creates its DAG and prepare a offloading queue. This queue is designed using collaborative q-learning based reinforcement learning and allocate optimal resources to the JOS for execution of tasks present in offloading queue. For this machine learning approach is used to predict and allocate resources. The paper compares conventional and machine learning-based resource allocation methods. The machine learning approach performs better in terms of response time, delay, and energy consumption. The proposed algorithm shows that energy usage increases with task size, and response time increases with the number of users. Among the algorithms compared, JOS has the lowest waiting time, followed by DQN, while Q-learning performs the worst. Based on these findings, the paper recommends adopting the machine learning approach, specifically the JOS algorithm, for joint offloading and resource allocation

    Reducing the operational cost of cloud data centers through renewable energy

    Get PDF
    The success of cloud computing services has led to big computing infrastructures that are complex to manage and very costly to operate. In particular, power supply dominates the operational costs of big infrastructures, and several solutions have to be put in place to alleviate these operational costs and make the whole infrastructure more sustainable. In this paper, we investigate the case of a complex infrastructure composed of data centers (DCs) located in different geographical areas in which renewable energy generators are installed, co-located with the data centers, to reduce the amount of energy that must be purchased by the power grid. Since renewable energy generators are intermittent, the load management strategies of the infrastructure have to be adapted to the intermittent nature of the sources. In particular, we consider EcoMultiCloud, a load management strategy already proposed in the literature for multi-objective load management strategies, and we adapt it to the presence of renewable energy sources. Hence, cost reduction is achieved in the load allocation process, when virtual machines (VMs) are assigned to a data center of the considered infrastructure, by considering both energy cost variations and the presence of renewable energy production. Performance is analyzed for a specific infrastructure composed of four data centers. Results show that, despite being intermittent and highly variable, renewable energy can be effectively exploited in geographical data centers when a smart load allocation strategy is implemented. In addition, the results confirm that EcoMultiCloud is very flexible and is suited to the considered scenario

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF
    • …
    corecore