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Abstract 

Nowadays, the exponential data growth becomes one of the major challenges all over 

the world. It may cause a series of negative impacts such as network overloading, high 

system complexity, and inadequate data security, etc. Cloud computing is developed to 

construct a novel paradigm to alleviate massive data processing challenges with its on-

demand services and distributed architecture. Data replication has been proposed to 

strategically distribute the data access load to multiple cloud data centres by creating 

multiple data copies at multiple cloud data centres. A replica-applied cloud 

environment not only achieves a decrease in response time, an increase in data 

availability, and more balanced resource load but also protects the cloud environment 

against the upcoming faults. The reactive fault tolerance strategy is also required to 

handle the faults when the faults already occurred. As a result, the data replication 

strategies should be aligned with the reactive fault tolerance strategies to achieve a 

complete management chain in the cloud environment.  

In this thesis, a data replication and fault management framework is proposed to 

establish a decentralised overarching management to the cloud environment. Three 

data replication strategies are firstly proposed based on this framework. A replica 

creation strategy is proposed to reduce the total cost by jointly considering the data 

dependency and the access frequency in the replica creation decision making process. 

Besides, a cloud map oriented and cost efficiency driven replica creation strategy is 

proposed to achieve the optimal cost reduction per replica in the cloud environment. 

The local data relationship and the remote data relationship are further analysed by 

creating two novel data dependency types, Within-DataCentre Data Dependency and 

Between-DataCentre Data Dependency, according to the data location. Furthermore, a 

network performance based replica selection strategy is proposed to avoid potential 
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network overloading problems and to increase the number of concurrent-running 

instances at the same time. 

Three reactive fault tolerance strategies are also proposed for independent tasks and 

dependent tasks, respectively. A utility-based fault tolerance strategy is firstly proposed 

for more efficient independent task rescue by considering resource load and task 

attributes. In addition, a timeline-oriented reactive fault tolerance strategy is also 

proposed for independent tasks to achieve better cloud resiliency and load balancing 

performance. It further adds the timeline allocation method to strategically allocate the 

tasks rescued from the faulty data centre on the timeline of their replica-ready data 

centres. Finally, a novel PageRank based fault tolerance strategy for workflow rescue is 

proposed to achieve better task resilience ratio, workflow resilience ratio, and workflow 

continuity ratio. A modified PageRank algorithm is developed to prioritise the tasks in 

the workflow instances. 

The simulations results show that all of the proposed six strategies achieve better cloud 

performance in different optimisation domains in comparison with the corresponding 

comparative strategies.  
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Chapter 1 Introduction 

1.1 Research Background 

In recent years, many organizations face challenges when managing large amount of data 

generated from various business activities as the business has had a rapid growth due to  

digitalization development. There are many reports predicting the exponential data growth 

beyond 2020. For example, as shown in Figure 1.1, according to IDC Global Datasphere in 

November 2018, the total amount of data around the world has dramatically increased over 

the past 10 years from 2010 to 2021 and will continue to grow total 171% to reach 175 

zettabytes in 2025, with most of the data residing in the cloud environment [93]. 

 

Figure 1.1 The exponential data growth according to IDC Global Datasphere [93] 

The exponential data growth in both volume and speed has caused a variety of challenges: 

• Network overloading 

The exponential data growth may cause dramatical increase of data access load which 

occupies vast amount of resources. Such load increase may further cause the resource 
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overloading problems. 

• Low data processing efficiency and effectiveness 

Processing of the exploding volume of data may take much extra time, especially for those 

data users who need to cooperate with other data users. It may lead to lower efficiency and 

effectiveness in the data-intensive applications. 

• High system management complexity  

The exploding volume of data may need a variety of systems to store, transfer and process 

them. Therefore, it may lead to the high system management complexity to data service 

providers and data owners. 

• Extra power, cooling and space limitations 

More and more data servers should be deployed to store and process the exploding volume of 

data. All those data servers need to be placed properly. The increased number of data servers 

need extra power, cooling systems and extra physical space to store and work properly. 

• Significant shortage of relevant skills 

With the exponential data growth, more and more data need to be processed by users, data 

owners and data service providers. However, some of users, data owners and data service 

providers may lack relevant skills. 

• Application performance deficiency 

With the exponential data growth, the application execution may take longer time as it may 

need to access more data. This may impact the responsiveness of those applications 

adversely. 

• Out-of-control cost growth  

The exploding volume of data will increase different costs, such as data management cost, 

data transfer cost, and data storage cost, etc. Therefore, the cost may be out-of-control to 

users, data owners, and data service providers. 
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• Inadequate data security 

The exponential data growth may cause inadequate data security protection because the 

current data security tools or methods may be outdated or overloaded. Therefore, more 

advanced security tools or methods may be required to be developed. 

• Sluggish agility responding to changing business 

The rapid changing business environments exist everywhere. The business agility can be 

sustained by maintaining and adapting the offered business services to meet the customer 

requirements. However, the exponential data growth may delay the maintenance and adaption 

processes and decrease the responsiveness to the changing business environment. Therefore, 

it may cause sluggish business agility to the cloud users. 

With this continuing data explosion, a high-performance computing environment is urgently 

required. The emergence of cloud computing technologies constructs a novel paradigm to 

address the problems caused by the data explosion [72]. It allows heterogeneous computing 

environments to satisfy the global user requirements. The cloud environment can also help 

users minimise data loss risks and downtime to achieve better quality of service. The 

heterogeneity of the cloud environments allows many competitive advantages in comparison 

with the traditional distributed computing environments [66]. For example, from the scale 

economics perspective, dynamic provisioning and lower capital cost are two of the most 

significant competitive advantages bringing from the heterogenous cloud environment [22]. 

To address the potential negative influences of the continuing data explosion in the cloud 

environment, data replication has been proposed as one of the most significant data 

management approach to strategically distribute the data access load into multiple cloud data 

centres. The data replication strategy has been a research area of interest for many years. By 

creating multiple data copies at multiple cloud data centres, data replication can achieve a 

variety of benefits such as response time decrease, data availability increase, and more 
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balanced resource load.  

However, the cloud environment is subject to many types of faults, which may lead to a 

series of negative influences on the cloud data centres in a chain reaction. The data centres in 

the cloud environment may temporarily be unavailable due to the negative fault impacts. 

Therefore, fault tolerance becomes one of the biggest challenges in the cloud environment to 

ensure the quality of service and user satisfaction. The fault tolerance techniques are the 

major tools being used to achieve a successful and continuous fault handling solution. Many 

types of fault tolerance techniques have been proposed before.  

Particularly, the data replication itself is also a fault tolerance technique to improve the cloud 

performance when encountering faults. A comprehensive data replication strategy can guide 

the establishment of a replica-applied cloud environment. The replica-applied cloud 

environment can protect the cloud environment from being affected by the upcoming faults 

as much as possible. Tasks at the faulty data centre can be strategically resubmitted or 

migrated to other proper-working cloud data centres with the required data replicas in the 

replica-applied cloud environment. 

Although the replica-applied cloud environment can protect the cloud environment against 

the upcoming faults, there are still many types of reactive fault tolerance techniques, such as 

retry [35], checkpointing/restarting [83] and user defined exception handling [89]. The 

reactive fault tolerance aims to reduce the negative influences after the faults already 

occurred. 

Task resubmission and task migration are also two significant reactive fault tolerance 

techniques. The task scheduling method is the core method of task resubmission and task 

migration. These two reactive fault tolerance techniques enable the automatic task rescue at 

the faulty data centre, aiming to successfully complete as many as affected tasks. 

1.2 Key Research Issues 
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In this thesis, the key research issues of data replication and its alignment with fault 

management in the cloud environment are investigated. Data replication strategies and fault 

tolerance strategies are two key research areas. Several general research questions are listed 

below: 

• Which data should be selected to create its replicas? 

• How many replicas of each data should be created in the cloud? 

• Where should these replicas be situated? 

• Which replica is suitable to select for data access? 

• How to develop a suitable reactive fault tolerance strategy for the replica-applied 

cloud environment? 

In more details, this thesis will address the following research problems. 

• Firstly, an appropriate replica creation strategy is necessary and indispensable in a 

large-scale cloud system [67]. Both external data attributes and internal data attributes 

have significant influences on the data. The external data attribute refers to the 

attribute which the data correlates to the external environmental factors such as users 

and cloud service providers, while the internal data attribute refers to the attribute 

which the data correlates to other data. However, most of the literature only considers 

the same type of data attributes to constrain the replica creation. Considering only one 

type of data attributes may lose the comprehensiveness of the data analysis when 

developing replica creation approaches. Therefore, both external data attributes and 

internal data attributes should be jointly considered when developing replica creation 

process.  

• Secondly, each data centre can be recognized as an individual host entity in the cloud 

environment. A data stored in a cloud data centre may have multiple data 

relationships to other data inside data centre and outside data centre. The data 
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relationship between this specific data and its correlated data inside the same data 

centre can be seen as local data relationship, while the data relationship between this 

specific data and its correlated data outside the same data centre can be known as 

remote data relationship. Therefore, the data relationship situations between inside 

data centre and outside data centre should be distinguished when making the replica 

creation decision. 

• Thirdly, most of the current replica selection strategies lack the consideration of the 

potential negative impacts among multiple concurrent-running cloud application 

instances under limited network capability. Hence, those replica selection strategies 

might not achieve the optimal network performance when there are heavy data access 

needs in the cloud environment. Therefore, a replica selection strategy for load 

balancing with the comprehensive analysis of the cloud network capability is urgently 

required. 

• Fourthly, data replication itself is also a fault tolerance technique. The replica-applied 

cloud environment can protect the cloud environment from being affected by faults 

beforehand. However, it is not sufficient to achieve the optimal cloud performance by 

adopting the replica-applied cloud environment only when encountering faults. 

Therefore, the reactive fault tolerance strategies may also be required to assist with 

the replica-applied cloud environment to further achieve better cloud performance.  

• Fifthly, the data replication strategy always contains three domains, replica creation, 

replica placement, and replica selection. Besides, there are a variety of fault tolerance 

techniques. However, there is not a general management framework for cloud 

environments, which aligns the data replication and the fault management together. 

Hence, a comprehensive data replication and fault management framework is required 

to enable a complete management chain to the cloud environment for better cloud 
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performance, which aligns the data replication strategies with the fault tolerance 

strategies. 

• Sixthly, independent tasks and dependent tasks have different task features. There are 

no task relationships among independent tasks while there is at least one task 

relationship among dependent tasks. Therefore, the fault tolerance techniques for 

independent tasks and dependent tasks should be differentially developed to ensure 

the applicability of the fault tolerance strategies. 

1.3 Research Contributions  

To overcome the problems mentioned above, this thesis proposes three data replication 

strategies and three fault tolerance strategies in the cloud environment by following the 

proposed data replication and fault management framework. The proposed two replica 

creation strategies and one replica selection strategy can be used to create a replica-applied 

cloud environment. Besides, the proposed three fault tolerance strategies are all reactive fault 

tolerance strategies by aligning with the proposed replica selection method. They aim to 

reactively protect the task completeness when encountering faults in the cloud environment. 

The contributions of this thesis are summarised as follows. 

• A data replication and fault management framework is proposed to enable a 

decentralised management chain to the cloud environment in Chapter 3. It adopts 

multiple user platforms and data centre platforms. The platforms have their inside 

modules to achieve different management functionalities. Those modules are inter-

connected and inter-cooperated to achieve a comprehensive management chain for the 

cloud environment. 

• Three data replication strategies are proposed in the form of two replica creation 

strategies and one replica selection strategy in Chapter 4. Various evaluation 
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parameters are considered in these data replication strategies, such as data 

dependency, data size, access frequency, network performance measurements, and 

resource load. Different evaluation methods have been applied in these data 

replication strategies to set the evaluation constraints for constraining different data 

replication decision-making processes. For example, the threshold-based evaluation 

method and the normalisation-based evaluation method are two evaluation methods 

applied in these data replication strategies.  

• Three reactive fault tolerance strategies are proposed on the basis of the replica-

applied cloud environment in Chapter 5 and Chapter 6. Various evaluation parameters 

are also considered in these reactive fault tolerance strategies such as network 

performance measurements, task attributes, task urgency, task utility, resource load, 

and task dependency, etc. Particularly, different reactive fault tolerance strategies are 

proposed for independent tasks and dependent tasks, respectively, in the form of two 

reactive fault tolerance strategies for independent tasks and one reactive fault 

tolerance strategy for dependent tasks. Different evaluation methods are also applied 

in these reactive fault tolerance strategies such as the normalisation-based evaluation 

method and the priority-based evaluation method. 

• The case study and the simulations show that the proposed strategies achieve better 

performance than other relevant comparative strategies in terms of different 

optimisation objectives. 

1.4 Thesis Roadmap 

The rest of this thesis is structured as follows. 

Chapter 2 presents a literature review of cloud computing technology, data-intensive 

applications and scientific workflows, data replication strategies, fault tolerance strategies, 
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and task scheduling strategies. The problem statement and the research insights are also 

demonstrated. 

Chapter 3 introduces the proposed data replication and fault management framework. This 

framework includes different platforms and modules to achieve a complete management 

chain for the cloud environment. A set of general notations and basic definitions are also 

presented in this chapter. 

Chapter 4 illustrates three data replication strategies in the form of two replica creation 

strategies and one replica selection strategy. The first replica creation strategy aims to reduce 

the total cost of the cloud application execution by considering the data dependency and the 

access frequency. The second replica creation strategy aims to achieve the optimal cost 

reduction per replica by identifying a recommended access frequency threshold value. 

Furthermore, the proposed replica selection approach aims to minimise the potential network 

overloading problems and increase the number of concurrent-running instances at the same 

time by considering the network performance at each data centre. 

Chapter 5 presents two reactive fault tolerance strategies for the independent tasks in the 

replica-applied cloud environment. The first fault tolerance strategy fully considers the 

network performance metrics and the task attributes for more efficient task rescue in the 

replica-applied cloud environment. The second fault tolerance strategy further adds the 

timeline allocation into consideration to achieve better cloud resiliency and load balancing 

performance. 

Chapter 6 demonstrates a reactive fault tolerance strategy for the workflows in the replica-

applied cloud environment. This strategy aims to achieve better task resilience ratio, 

workflow resilience ratio, and workflow continuity ratio. It takes the task attributes, the 

timeline scenario at each data centre, and the overall cloud performance into account. This 

strategy innovatively incorporates the modified PageRank algorithm into the workflow 
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scheduling research when handling faults. 

Chapter 7 comprehensively discusses the contributions of this thesis and the applicability of 

each proposed strategy. This chapter also examines the limitations of the proposed strategies, 

such as optimisation objective diversity, replica placement simplification, workflow type 

limitation, lack of experiments, and the applicability to the server level or the cloud service 

provider level. 

Chapter 8 concludes the research work in this thesis and discusses some future research 

directions. 
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Chapter 2 Literature Review 

2.1 Cloud Computing 

Cloud computing technology has been widely used to alleviate massive data processing 

challenges with its on-demand services and distributed architecture. It uses and 

combines different computing resources such as servers, databases, networks, software 

applications, and a series of relevant technologies to complete the tasks on demand 

instead of owning and operating those resources and technologies by organizations 

themselves [73][126]. 

In particular, during the tough time of COVID-19, traditional IT shows more and more 

drawbacks while cloud computing offers a lot of competitive advantages such as remote 

office work and continuous business operations. 

2.1.1 Comparisons between traditional IT and cloud computing  

Compared with traditional IT, cloud computing offers a variety of benefits, such as 

greater cost effectiveness, higher responsiveness to market, better scalability, more 

flexible elasticity, increased cooperation efficiency, improved reliability, and more 

durable business continuity. 

• Greater cost effectiveness and efficiency 

Traditional IT needs the users to construct their computing resources on-premises such 

as IT infrastructure and software applications by evaluating the data processing 

requirements inside the organization and outside the organization. It also needs the users 

to update their computing resources based on their data growth and traffic surge. 

Purchasing and maintaining computing resources are always costly. Differently, cloud 

computing enables the “pay-as-you-go” cost schema to pay for the required computing 

resources only for eliminating the relevant infrastructure costs, the application 
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development costs and the maintenance cost, etc [7]. This increases the cost 

effectiveness and efficiency [21][75]. 

• Higher responsiveness to market 

As mentioned above, traditional IT needs users to establish the computing resources on-

premises. This might waste time to offer a complete computing capability because 

purchasing and deploying the computing resources in an organization may take weeks 

or months. In contrast, cloud computing enables quick deployment of computing 

resources and thus increases the responsiveness to users [105]. 

• Better scalability, more flexible elasticity and better security 

As mentioned above, traditional IT needs the users to update their computing resources 

on-premises based on their business growth and traffic surge. Differently, cloud 

computing enables the users to scale their workload on the cloud servers and 

automatically adjusts the offering of computing resources for better scalability and more 

flexible elasticity [123][146]. 

Besides, as discussed above, traditional IT always needs the users to host their 

computing resources on-premises. Therefore, there might be many physical and logical 

security drawbacks and loopholes. Working with a cloud can significantly enhance 

security because the cloud service provider can keep high-level data security by 

adopting high-level physical security systems, virtual private clouds, encryptions, and 

API keys. 

• Improved reliability and more durable business continuity 

Traditional IT hosts the data on-premises and always has frequent data loss risks and 

downtime because of the infrastructure issues and the low security. Cloud computing 

enables a heterogeneous cloud environment with a complete redundancy plan including 

global networks, data backups, and disaster recovery plans to achieve high reliability. 
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The cloud service providers will keep the ongoing business success and make the 

business more affordable and less disruptive. 

2.1.2 Cloud service models 

There are three cloud service models, Infrastructure-as-a-Service (IaaS), Software-as-a-

Service (SaaS), and Platform-as-a-Service (PaaS) [37][53][88][109][110][112]. 

Primarily, the logical “data pool” often relies on multiple physical servers in the cloud 

data centres which are owned by IaaS service providers. Besides, a variety of cloud 

applications are offered by SaaS service providers. Apart from that, many cloud 

platforms are constructed to integrate multiple cloud applications with the cloud 

infrastructure by PaaS service providers. The IaaS service refers to the tangible physical 

devices which are located in a cloud data centre, including servers, data storage devices, 

virtual computers, and network devices [32][87]. The IaaS service providers also offer 

the hardware systems such as air conditioning systems, firefighting systems, backup 

services, and electrical power systems to ensure the quality of IaaS services. Authorised 

users can easily access the data stored on the cloud infrastructure via Internet [32]. 

The SaaS service is a model that the cloud users can order and receive a variety of cloud 

applications on demand via the Internet instead of installing and updating the 

applications on their physical computers or servers [52]. There are three major features 

of the SaaS service, such as multi-tenant efficiency, scalability, and configurability. 

However, not all cloud applications contain all of these three major features and a cloud 

application may have one or two features only [9][49].  

The PaaS service is the model between IaaS and SaaS as they can integrate the cloud 

applications on the platform via the Internet and connect the cloud applications to the 

cloud infrastructure [23]. The cloud users only need to manage the cloud application 

deployment and the application hosting environment by adopting the PaaS services.  
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Nowadays, many cloud service providers, such as Amazon, Microsoft, and Google, 

integrate IaaS, SaaS, and PaaS to offer a comprehensive cloud service. 

2.1.3 Cloud architectures 

There are a number of common cloud architectures including public cloud, private 

cloud, community cloud, and hybrid cloud [76].  

• Public cloud architecture 

The computing resources in a public cloud architecture are owned and operated by the 

cloud service providers [135]. They are always shared resources, which can be 

redistributed to multiple tenants via the Internet [104]. The public cloud architecture can 

achieve a variety of benefits such as operation cost reduction, easy scalability, and low 

maintenance cost. 

• Private cloud architecture 

The computing resources in a private cloud architecture are owned and operated by the 

organizations themselves in their on-premise infrastructures [50][85]. They can also be 

operated at the leased space in geographically scattered colocation facilities. The private 

cloud architecture achieves higher customisation and stronger cloud security than the 

public cloud architecture. 

• Community cloud architecture 

The community cloud achieves the communities of the consumers that experience the 

same data [45]. A single organization or multiple organizations can be organized in the 

cloud community. 

• Hybrid cloud architecture 

A hybrid cloud architecture integrates the private cloud architecture and the public 

cloud architecture [79]. It enables both the working efficiency of the public cloud 

architecture and the high data security of the private cloud architecture. The hybrid 
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cloud architecture allows organizations to manage their workloads based on their data 

security requirements. The organizations can freely convert between the private cloud 

architecture and the public cloud architecture if needed. 

2.1.4 Multi-cloud environment 

Some users may need to globally deploy their work. A multi-cloud environment uses 

two or more cloud computing services to share the workload across multiple cloud 

service providers all over the world. It is commonly used by several popular cloud 

platforms such as OpenStack and Microsoft Azure.  

 

Figure 2.1 An example of multi-cloud architecture 

Multi-cloud architecture is always used to support global or cross-regional collaborative 

work by using cloud infrastructure in multiple cross-regional locations [116]. In this 

case, it offers more agile and scalable cloud services than using a single cloud service 

[121]. It helps cloud users avoid the single-vendor lock-in problem. Although the multi-

cloud architecture provides an appropriate computing environment to execute the global 

or cross-regional collaborative work, there are also two critical problems. The first 

problem is how to appropriately choose the schema of data hosting and task execution, 

and another problem is how to meet different service requirements [140]. An example 
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of the multi-cloud architecture is shown in Figure 2.1. 

2.2 Data-Intensive Applications and Scientific Workflows 

As mentioned above, there are multiple types of cloud architectures such as private 

cloud, public cloud, and hybrid cloud, etc. These cloud architectures are commonly 

applied in different cloud service providers for executing data-intensive applications 

[140].  

Data-intensive applications are typically very complex and take a long execution time. 

They usually contain a large number of independent and dependent tasks. In particular, 

the scientific workflows as one of the data-intensive applications have been adopted in a 

wide range of research areas, such as astronomy, high-energy physics, bioinformatics 

[64], nuclear simulation, and earthquake engineering [120]. The scientific workflows 

can create an automated way to specify, execute, monitor, and track the data-intensive 

and highly-structured scientific research processes [24]. They consist of a large set of 

computational tasks which operate on the input data and generate a set of intermediate 

data [117].  

Because of these features, the cloud environment is one of the most suitable 

environments for executing scientific workflows [120][124]. Firstly, as the data size 

increased, scientists only need to request more computing resources from the cloud 

service provider. Secondly, not all resources are required when performing one task, 

scientists can request the required resource to perform the task on demand. Thirdly, the 

total workflow execution cost will depend on how many computing resources the 

scientific workflows exploited, and then the scientists can compare the total cost with 

their budget to adjust the resource exploitation. Lastly, as mentioned above, the 

scientific workflows are always complex, highly-structured, global-collaborative, cross-

regional, and data-intensive. Hence, the cloud environment can achieve global 
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collaborations among scientists all over the world to conduct their research together 

[138]. 

There are many famous types of scientific workflows in the real world. The Montage 

scientific workflow was established by the NASA/IPAC Infrared Science Archive [10]. 

It is an open-source toolkit, which aims to generate custom mosaics of the sky by using 

input images in the Flexible Image Transport System format. The CyberShake 

workflow is adopted in the Southern California Earthquake Centre to characterise the 

earthquake threats by using the Probabilistic Seismic Hazard Analysis technique [10]. 

The LIGO Inspiral Analysis workflow aims to detect gravitational waves which are 

produced by various events in the universe [10]. It is used for the data analysis of the 

data collected from the coalescing of compact binary systems. The SIPHT program uses 

an automated search workflow to search the sRNA encoding-genes for all of the 

bacterial replicons in the National Centre for Biotechnology Information database [10]. 

2.3 Data Replication 

As the data-intensive business increases, an enormous amount of data is generated as 

shared resources. The size of data is always measured in terabytes or petabytes. Cloud 

computing is commonly adopted to store and process an enormous amount of data. Data 

replication has been proposed as a data management approach, which creates multiple 

data copies into multiple cloud data centres [19]. Data replication has been an area of 

research interest in the past decade in World Wide Web, peer-to-peer networks, ad-hoc 

and sensor networking, grid environments, mesh networks, and most importantly cloud 

environments [1].  

In current cloud environments, different data replication strategies are commonly 

deployed in different cloud data centres. Thus, accessing data can be strategically 

distributed to multiple cloud data centres to optimise the data access load and the overall 
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cloud performance by adopting different data replication algorithms [78]. Data 

replication can offer the following benefits: 

• The data replication strategy guarantees fast data access for the tasks in the 

cloud environment, especially for the tasks in the data-intensive applications. 

Multiple concurrent-running instances may access the same data at one specific 

cloud data centre. The resource contention may cause a performance bottleneck 

to this data centre. This bottleneck can be eliminated by applying data 

replication strategies, which results in more balanced resource load in the entire 

cloud environment [12][13]. At the same time, multiple replicas can also 

improve data availability [31][65][136].  

• The data replication strategy can reduce the data access distance to the required 

data [46] [61]. Some required data may be able to be replicated to the local data 

centre so that those data can be accessed locally to reduce the data movement 

[82]. By doing this, the data management cost [38][59] and the response time 

[115] can also be reduced. 

• In the cloud environment, unexpected faults can happen at any time [103]. The 

data replication strategy can guarantee data reliability because the tasks at the 

faulty data centre might be rescued and completed in time by accessing other 

required data replicas after the fault occurred [54][56][57][71].  

In most of the literature, data replication is commonly classified into two main groups, 

static data replication strategies and dynamic data replication strategies [6]. Static data 

replication strategies rely on deterministic policies. The number of replicas and the host 

nodes for the replicas are commonly well-defined and pre-determined at the build-time 

stage. The static data strategies can be easily implemented but it is not often applied 

because of its limited adaptability to the dynamic environment [78]. Dynamic data 
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replication strategies dynamically make the intelligent data replication solutions 

depending upon the dynamic environment situations [78]. 

Replica creation, replica placement, and replica selection have been identified as three 

major sub-areas of data replication research. Replica creation is the strategy of creating 

a suitable number of data replicas for the necessary data [108]. Normally, replica 

creation strategies include some of the following phases: 

• Analysing and modelling the relationship between the number of replicas and 

the system availability 

• Identifying the data importance and triggering the replica creation process when 

the data satisfies the replica creation constraints 

• Determining a suitable number of replicas to satisfy the system requirement 

Replica placement is the strategy of placing data replicas to the appropriate cloud data 

centres [69]. Multiple placement constraints can be set to guide the appropriate cloud 

data centres to place the replica. 

Replica selection is the strategy of selecting the optimal replica-ready data access routes 

for the tasks in the cloud environment [142]. Various parameters have been considered 

in the different replica selection algorithms, such as data access cost, data maintenance 

cost, access latency, resource load, workload, storage load, task execution time, and 

response time, etc. 

2.3.1 Replica creation 

Many replica creation strategies have been proposed in the past decade. In [91], the 

authors propose a Fair-Share Replication (FSR) strategy that takes both access load and 

storage load into account to determine the replica creation. An average access frequency 

is used to compare with the access frequency of the targeted datasets for identifying the 

popular file and ranking the file.  
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In [18], the authors propose a Latest Access Largest Weight (LALW) strategy in order 

to select a popular file and calculate a suitable number of copies and grid sites for data 

replication in data grids by considering the access frequency to exhibit the importance 

for the access history in different time intervals.  

In [56], the authors propose a Cost-Effective Incremental Replication (CIR) strategy to 

manage the data reliability of each data centre in a cost-effective way. An incremental 

replication method is applied to determine when the replica should be created. The 

number of replicas is minimised by predicting the additional replica creation to ensure 

the reliability requirement for achieving the cost-effective replica management goal.  

In [118], the authors propose a threshold-based file replication strategy to dynamically 

make the file replica creation based on the file popularity and the file request processing 

in case of node failure without the user intervention. The threshold-based file replication 

strategy carries out the file replication when the total number of the access requests for a 

particular file reaches the threshold value.  

In [30], a Dynamic Cost-aware Re-replication and Re-balancing strategy (DCR2S) is 

proposed for the knapsack problems in three phases, by identifying the suitable data file 

and the number of data file replicas to replicate to appropriate locations and determining 

the additional required replication for satisfying the available requirement.  

In [125], the authors propose a CDRM strategy as a cost-effective dynamic replication 

management scheme. They propose a novel way to capture the relationship between 

availability and replica number. The minimum replica number is computed under a 

certain availability. The purpose of CDRM strategy aims to provide the cost-effective 

availability and improve the load balancing performance. By analysing the workload 

change and the storage resource, the CDRM strategy dynamically re-distributes the 

workloads among different data centres. At the same time, it maintains the number of 
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replicas at each data centre to satisfy the availability requirement of each data centre at 

low cost. Besides, the replicas are dynamically placed into data centres to distribute the 

workload based on the resource load and the utilisation intensity of each data centre. 

This is achieved by calculating the capacity and the blocking probability of each data 

centre.  

In [8], the authors propose a three-level replica management strategy called RTRM to 

improve the network utilisation and service response time. The RTRM strategy consists 

of replica creation level, replica placement level and replica selection level. It evaluates 

the average response time to automatically control the replica creation and the number 

of replicas by adopting a threshold-based method. The bandwidth situation is predicted 

among the replica servers based on the upcoming requests in the RTRM strategy. It will 

be combined with the number of replicas and the network transfer time to control the 

replica placement and selection processes. 

In [107], the authors propose a dynamic data replication strategy called D2RS with three 

phases. These three phases cover two data replication research area, replica creation and 

replica placement. They address two major research questions: which, when and where 

data file should be replicated; and how many replicas should be created. In the D2RS 

strategy, the data access information is used to identify a popular file. A threshold-based 

method is used to compare the file popularity, which aims to identify which data file 

should be replicated. Besides, the number of replicas is determined upon the reasonable 

growth of the file availability. Then a balanced replica placement method is applied by 

evaluating the data access information from the directly connected data centres.  

In [127], the authors propose a cost-effective data replication strategy to approximately 

minimise the data management cost. The access frequency and the average response 

time are considered to determine which data should be replicated in the cloud 
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environment by applying a threshold-based evaluation method. Besides, the number of 

replicas and the storage destinations can be decided according to the location problem 

graph and the minimum management cost.  

In [31], the authors propose a dynamic, cost-aware data replication strategy by 

identifying the minimum number of replicas to satisfy the desired availability, to get the 

maximum value and to keep the total weight less than or equal to the peak budget at the 

same time.  

In [143], the authors propose a dynamic file heat and node load based replica creation 

strategy to solve the excessive replica creation problem by jointly considering the 

characteristics of the hybrid cloud environment. They firstly propose an initialisation 

strategy to dynamically decide the number of replicas based on the user requirements. 

Then file heat history, access frequency, and file change rate are considered for file heat 

formulation. Besides, a dynamic file heat and node load based adjustment schema is 

created to dynamically adjust the number of replicas to further reduce the average 

response time and improve the overall cloud performance.  

In [58], a dynamic data replication strategy is proposed with the consideration of both 

the tenant budget and the provider profit to satisfy the data availability and the 

performance requirements. A cost model is developed to calculate the minimum number 

of replicas to maintain the optimal data availability. The replica creation will be initiated 

when the pre-calculated number of replicas or the response time is not satisfied and the 

profit can be positive to the cloud service provider. The replica placement uses query 

scheduling techniques to balance the parameters between the load balancing and the 

tenant budget.  

In [36], the authors propose a novel dynamic predicted replication strategy (DPRS) to 

predict the future file access and periodically calculate the number of replicas based on 
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the real access history and the future access. A calculation model is proposed to 

calculate the optimal number of replicas based on the number of accesses. A single 

exponential smoothing method is applied to predict future file access.  

In [80], a data replication strategy called RSPC is proposed to satisfy the cloud 

performance, the minimum availability, and the cloud service provider profit at the 

same time. A threshold-based replica creation method is applied to initialize the RSPC 

data replication strategy. Then a new replica will be created if a suitable replica 

placement solution can be heuristically identified based on the evaluation of response 

time and the cloud service provider profit. The penalties and the data replication cost are 

considered in the estimation process of the cloud service provider revenue and 

expenditure. 

2.3.2 Replica placement 

Many replica placement strategies have been presented in the past years. In [101], a 

dynamic popularity based replica placement (PBRP) strategy is proposed for 

hierarchical data grids to shorten the job execution time and reduce the bandwidth 

consumption. A threshold-based popularity-driven guide model is developed to guide 

the replica placement. The authors present the Adaptive-PBRP (APBRP) algorithm to 

dynamically set the popularity threshold value according to the data request arrival 

rates.  

In [59], the authors propose a data replication strategy to solve the QoS-aware data 

replication (QADR) problems to minimise the data replication cost and the number of 

QoS-violated data replicas. To solve the QADR problems, a greedy algorithm called 

high-QoS first-replication (HQFR) is proposed to assign the precedence for the cloud 

applications in the cloud environment. Besides, the authors find that the optimal 

solution of the QADR problem can be identified by formulating the QADR problem as 
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an integer linear programming formulation. Therefore, they transfer the QADR problem 

to the minimum-cost maximum-flow problem and propose a novel algorithm to solve 

the minimum-cost maximum-flow problem to identify the optimal replica placement 

solution based on the QoS requirements.  

In [64], the authors propose a group based genetic replica placement algorithm 

collaborated with the analysis of the scientific application characteristics to reduce the 

data transmission in the cloud environment by considering the data size and the 

bandwidth situations among data centres.  

In [65], a Multi-objective Optimized Replication Management strategy (MORM) is 

proposed to balance the trade-off among five optimisation objectives, including mean 

service time, mean file unavailability, load variance mean access latency, and energy 

consumption, to make a near-optimal data replication solution. Authors develop the 

mathematical models to formulate the five optimisation objectives with the 

consideration of multiple parameters such as data size, data access rate, failure 

probability, data transfer rate, and resource capacity at the same time. The feasible file 

is founded by identifying the replication factor based on the integrity constraint and the 

capacity constraint. The feasible individuals can be placed among data centres, which 

consider the five optimisation objectives. A suitable number of replicas is maintained to 

achieve the optimal performance with respect to five optimisation objectives for each 

feasible individual.  

In [128], the authors propose a QoS-aware data replication and placement strategy to 

approximately evaluate the big data analytics query in the cloud environment. The QoS-

aware data replication and placement strategy aims to strategically create and place the 

data samples to the data centres in the cloud environment by considering a trade-off 

between the query evaluation cost and the query evaluation error bound. Two efficient 
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algorithms are developed for single approximate query and multiple approximate 

queries, respectively. Then a heuristic algorithm is proposed to evaluate a set of 

approximate queries to minimise the evaluation cost and the delay requirements.  

In [70], the authors propose a hierarchical data replication strategy (HDRS) to reduce 

the response time and the bandwidth usage. A multi-tier structure for data replication is 

firstly proposed to offer flexible and scalable management for vast files. Then the 

HDRS strategy develops the replica creation strategy, the replica placement strategy, 

and the replica replacement strategy. The replica creation strategy identifies the popular 

file according to the exponential growth or the decay rate and then creates the replicas. 

The access load and the labelling technique are applied to decide the replica placement. 

The replica replacement is based on the evaluation of the number of future file access 

and the file size.  

In [27], the authors propose an energy-aware data replication strategy to decide the 

number of required replicas and the locations for those replicas. A hybrid metaheuristic 

algorithm, named HPSOTS, is developed to generate high-quality data replication 

solutions by combing the Particle Swarm Optimization algorithm and the local search 

capability of the Tabu Search. 

2.3.3 Replica selection 

Many replica selection strategies have been proposed in the past decade. The K-RSDG 

replica selection strategy is proposed in [3] for data grids, which considered: (i) two 

higher-valued attributes: security and file availability and (ii) two lower-valued 

attributes: price and response time and (iii) two unimportant attributes for each file. The 

replica location service is used to gather the replica location information based on the 

user request. The k-means clustering algorithm is used to cluster the labels from which a 

decision table is created. The grey based rough set theory is applied as input data by 
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using the replicas information only and then the grey-based k-means clustering 

algorithm is applied to the input data to make the replica selection decisions.  

In [60], the authors propose a network coordinate based nearest replica selection service 

called Rigel. The best replica is selected from a site that has the smallest round-trip 

time. Rigel provides a lightweight and scalable solution to select the optimal replica for 

grid users.  

In [90], the authors propose a dynamic data replication strategy with a replica 

management system. The proposed strategy concentrates on data availability by 

developing the replica placement and selection algorithm. It has two phases, where the 

first phase creates replicas by using catalogue and index, and the second phase stores 

the replicas. The replica selection strategy selects the replica with the minimum cost and 

bandwidth utilisation.  

In [131], a 2PhaseEnhancing is proposed by the design of DNS to reduce the file request 

time in two phases. The first phase reduces the catalogue search time by using a local 

file that collects the historical file request of each user. The second phase considers a 

selection criterion to make the best replica selection choice.  

In [42], the authors implement various classical replica selection algorithms such as the 

random algorithm, the round-robin algorithm, and the least response time algorithm, etc. 

They also analyse the performance of those replica selection algorithms for the current 

classic key-value stores in the cloud environment.  

In [4], the authors propose a multithreaded and integrated maximum flow based optimal 

replica selection strategy for heterogeneous data storage architectures. They propose 

both sequential and parallel integrated maximum flow algorithms to find the optimal 

response time retrieval. The algorithms support both distributed storage architecture and 

centralized storage architecture.  
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In [55], the authors propose a comprehensive data replication strategy including all 

three replica management strategies. The replica creation strategy is based on the access 

tendency, named DRC-AT. The replica placement strategy is according to the user 

request response time and the storage capacity, named DRPRS. The replica selection is 

based on the response time, named DRS-RT. The DRC-AT strategy periodically 

calculates the file access tendency based on the file popularity and the period value of 

the file popularity to create and delete replicas. The DRP-RS strategy analyses the 

response time of the user requests and the storage capacity to select the best node set to 

place the created replica. The DRS-RT strategy offers the information about the replica-

ready node with the strongest service capability to the users and guides the users to 

select that node to access the data. 

2.4 Fault Tolerance and Task Scheduling  

The cloud environment is subject to many types of faults, which might lead to a data 

centre or the network links to a data centre being unavailable [62][95][106]. For 

example, electricity interruption, data house collapse, cable damage, and natural disaster 

are all huge faults to cloud data centres [92][113]. When such a fault occurs, the tasks 

that require access to the data at the faulty data centre might be seriously impacted, 

resulting in deteriorated performance or access disruption [98]. Hence, it is critical to 

own the ability to handle the faults for all cloud data centres [34][40]. An appropriate 

fault tolerance strategy can reduce and even eliminate the negative influence of the 

faults. 

The fault tolerance techniques are typically divided into two categories, proactive fault 

tolerance techniques and reactive fault tolerance techniques [84]. The proactive fault 

tolerance techniques try to proactively predict the faults and protect the system 

environment to avoid the faults from occurring while the reactive fault tolerance 
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techniques reduce the negative influence of the faults when the faults already occurred 

[83]. For example, MapReduce uses self-healing and pre-emptive migration for 

achieving proactive fault tolerance purposes [84]. Besides, the examples of the reactive 

fault tolerance techniques include checkpoint, retry, rescue workflow, user defined 

exception handling, task resubmission, and task migration, etc [89]. 

2.4.1 Fault tolerance techniques 

There are many fault tolerance techniques applied in the fault tolerance strategies. Some 

classical fault tolerance techniques are described as follows. 

• Self-healing  

The self-healing technique allows the system to automatically detect, diagnose, and 

repair software faults and hardware faults. It deploys the application instances onto 

multiple virtual machines for achieving automatic handling [2]. 

• Pre-emptive migration 

The pre-emptive migration technique enables the capability to migrate the cloud 

application executions away from the suspicious computing nodes to the stable 

computing nodes [39]. It is achieved by continuous system monitoring.  

• Software rejuvenation  

The software rejuvenation is developed for system periodic restarts. The periodic restart 

of the system can enable a clean state of the system [83].  

• Load balancing 

The upper resource utilisation limit is set in this technique. The resource load will be 

distributed to other computing nodes to avoid overloading problems if the resource load 

exceeds the upper resource utilisation limit in one of the computing nodes [51]. 

• Checkpointing/restarting 

The checkpointing/restarting technique aims to continuously save the system state in the 
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event of a fault. The task execution can be restarted from the most recent state 

[137][141]. 

• Task resubmission and task migration  

The task resubmission technique or the task migration technique allows the task to 

resubmit or migrate to the same or similar computing resources for achieving 

continuous task executions when encountering faults [77]. 

• Data replication  

The data replication technique enables the replica-applied system environment to 

protect the system environment against the upcoming faults [16][26]. Many famous 

distributed computing environments have been adopted the data replication technique to 

create a replica-applied distributed environment for system robustness, such as HDFS, 

Google Cloud, and Amazon S3 [44][68]. In case that the primary data becomes 

inaccessible, the task can also follow the replica selection strategy and the task 

resubmission strategy to remain away from the interruption by accessing one of the 

required data replicas.  

2.4.2 Fault tolerance strategies 

Many contemporary fault tolerance strategies focus on resolving the faulty problem. In 

[62], a proactive fault tolerance strategy is proposed by considering the multi-VM 

coordination to satisfy the completion requirement of the parallel application. A particle 

swarm optimisation algorithm is proposed to migrate the VMs on the deteriorating 

physical machine to an optimal physical machine. The CPU temperature evaluation is 

applied to detect the deteriorating physical machine.  

In [145], the authors combine three algorithms to achieve a redundant VM placement 

optimisation strategy for improving service reliability. The first algorithm selects a set 

of VM-hosting servers from a large host server candidate pool based on the network 
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topology. The second algorithm is to place the primary and backup VMs with the k-

fault-tolerance assurance from the selected VM-hosting servers. The last algorithm is a 

heuristic algorithm to solve the task reassignment problem by finding a maximum 

weight matching in bipartite graphs.  

In [25], an offloading system is proposed to make the robust offloading decisions for 

mobile services and optimise the execution time and the energy consumption with the 

consideration of the dependency relationships among services when the faults occurred.  

In [47], the authors present a novel FT-HCC fault-tolerant task clustering strategy to 

enhance the workflow execution performance and improve the current task clustering 

strategies under a faulty cloud environment if the transient failures meet the proposed 

failure model. The FT-HCC fault-tolerant task clustering strategy considers the 

workflow execution time and the workflow execution cost as two major constraints to 

specify the deadline requirements during the workflow scheduling stage.   

In [147], the authors propose a real-time workflow fault-tolerant model with the 

consideration of the cloud characteristics which extends from the traditional PB fault-

tolerant model. A task allocation and message transmission analysis model is also 

proposed to assist the fault-tolerant workflow execution. Authors apply the overlapping 

and VM migration mechanisms when doing task scheduling to enable fault tolerance 

and achieve high resource efficiency at the same time. The authors also propose a 

resource elastic provisioning mechanism for full idle resource utilisation, fast resource 

provisioning, and the avoidance of unnecessary frequent resource allocation changes.  

In [74], an energy-aware fault-tolerant dynamic scheduling scheme (EFDTS) is 

developed to assign and schedule the tasks with a fault-tolerant mechanism to optimise 

resource utilisation and energy consumption. A task classification method is proposed to 

partition the coming tasks and allocate the tasks to the suitable virtual machine 
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according to their task classes and energy consumption to reduce the mean response 

time. The replication method is also used to minimise the task rejection ratio caused by 

machine failure and delay. An elastic resource provisioning mechanism helps to 

improve resource utilisation and energy efficiency.  

In [99], a Checkpointing and Replication based on Clustering Heuristics (CRCH) is 

proposed to achieve the fault tolerance purpose by using replication, resubmission, and 

checkpointing methods. Authors develop an unsupervised way to learn the task 

replication counts and a checkpointing mechanism to support the dynamic task 

resubmissions on the most optimum resource.  

In [133], the authors present a novel fault-tolerant workflow scheduling (ICFWS) 

algorithm for the cloud environment to achieve the fault tolerance purpose by 

considering both resubmission and replication method and the workflow deadline. The 

algorithm firstly breaks the workflow deadline into multiple sub-deadlines for all tasks 

in the workflow. Then, a suitable fault-tolerant strategy is selected and the suitable 

resource will be reserved by analysing the sub-deadline competitions of the tasks and 

adopting the on-demand cloud resource provisioning. After that, the authors design an 

online scheduling and reservation adjustment scheme to select a suitable resource for 

the tasks. This online scheduling and reservation adjustment scheme can also adjust the 

sub-deadlines of the current-running tasks and the selected fault-tolerant strategy for the 

upcoming tasks to be executed.  

According to the above strategy in [133], a deadline-constrained Hybrid Fault-Tolerant 

Scheduling Algorithm (HFTSA) for independent tasks in the cloud environment by 

integrating both resubmission and replication method is further proposed in [134]. 

Similar to [133], HFTSA selects the fault-tolerant strategy by using resubmission and 

replication for each task according to the task attributes and the cloud resource 
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situations. Then it reserves the suitable resources for each task execution. An online 

adjustment scheme is also developed to adjust the selected fault-tolerant strategy and an 

elastic resource provisioning mechanism is designed to dynamically adjust the resources 

for executing the tasks.  

2.4.3 Task scheduling strategies 

As mentioned above, task resubmission and task migration are two of the most 

important fault tolerance techniques. The task scheduling method is the core method of 

task submission and task migration. The task scheduling strategies can enable a 

reasonable task allocation solution when rescuing the tasks at the faulty data centre. 

Many task scheduling strategies have been proposed in the past years. Various 

constraint parameters have been considered to optimise different objectives. In 

particular, the deadline-constrained task scheduling strategies are one of the common 

types of task scheduling strategies to satisfy the deadline requirements. 

The HEFT series strategies are one of the most significant series of deadline-constrained 

task scheduling strategies, which are published from 2002 to date [11]. In [114], the 

authors develop a Heterogeneous Earliest-Finish-Time (HEFT) algorithm to minimise 

its earliest finish time with an inserted-based policy. It firstly assigns the priority to each 

task in the scheduling list and then assigns each task to the first available server which 

can enable the task to finish the earliest. In [144], the authors propose a Budget and 

Deadline Constrained scheduling algorithm named BEFT to find the optimal workflow 

scheduling solution to satisfy both deadline and budget constraints for avoiding SLA 

violations. Specifically, the BEFT algorithm only works by reserving and billing a fixed 

number of resources in heterogeneous grid computing systems. In [5], a novel list-based 

task scheduling algorithm is proposed called Predict Earliest Finish Time (PHEFT) to 

improve the makespan and the efficiency to compare with the HEFT, LDCP, and 
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LHEFT strategies. At the same time, this algorithm keeps the same time complexity to 

the HEFT strategy. In [119], the authors extend the classic HEFT strategy in [114] and 

the BHEFT strategy in [144]. They develop a Budget and Deadline Constrained 

Heterogeneous Earliest Finish Time (BDHEFT) algorithm. The BDHEFT considers six 

major variables, such as spare workflow budget, spare workflow deadline, current task 

budget, current task deadline, budget adjustment factor, and deadline adjustment factor, 

to generate a budget and deadline constrained scheduling plan. In [100], an Enriched-

Look ahead HEFT (E-LHEFT) algorithm is proposed to optimise both QoS and load 

balancing without considering any constraints. It utilises Mobile Assistance Using 

Infrastructure architecture to execute the tasks. The E-LHEFT algorithm updates the 

processor selection phase of the LHEFT algorithm by applying the task grouping and 

the Pareto theory for more effective load balancing performance. In [63], the tasks with 

both unconstrained and time deadline constrained cases are considered by applying a 

HEFT technique for the order preference called the HEFT-T algorithm. A three-stage 

non-dominated sorting strategy is applied to identify the optimal solutions for the 

unconstrained case, and an adaptive weight adjustment strategy is proposed to adjust the 

weight value for time for addressing the deadline-constrained case. In [29], a workflow 

scheduling algorithm named Greedy Resource Provisioning and Modified HEFT (GRP-

HEFT) is proposed with a resource provisioning mechanism. The resource provisioning 

mechanism generates the instance type list based on the efficiency ratio of different 

instance types and selects the most efficient instances constrained by a pre-defined 

budget. The modified HEFT algorithm employs the optimal configuration of the 

instance types with their number of created VMs to obtain the task scheduling plan. In 

[96], the authors propose a Dynamic Variant Rank HEFT (DVR-HEFT) algorithm to 

reduce the scheduler's makespan without increasing the algorithm's time complexity to 
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compare with the classic HEFT strategy. 

There are still many other deadline-constrained task scheduling strategies. In [15], a 

deadline-constrained workflow scheduling algorithm called DCWS is proposed to 

reduce the monetary cost. The DCWS algorithm is a list-based algorithm that considers 

the probabilities of the task combinations to place together to improve resource 

utilisation and satisfy the deadline constraint.  

In [132], a deadline-constrained energy-aware task scheduling method is proposed by 

exploiting the computing parallelism of the divisible task. The urgency level is 

developed to prioritize the real-time task order to be processed. Two proposed energy-

aware task scheduling algorithms consider whether the task load is divisible. 

The deadline is not the only parameter considered in the task scheduling strategies. 

Many other constraint parameters have been used. For example, in [97], the authors 

develop an energy-efficient task scheduling strategy for cloud data centres. They 

formulate the task scheduling problem as an integer programming problem, which aims 

to minimise the data centre energy consumption and maximise the residue energy 

capacities of the data centres. A greedy task scheduler is deployed to minimise the 

number of active servers.  

In [146], a task rescheduling method has been proposed to minimise network resource 

consumption. Three algorithms are developed for identifying a set of good virtual 

machines from the virtual machine candidate pool by using the skyline operation. The 

task importance is analysed by taking the data size and the task emergency, and the 

optimal task insertion point into account. 

There are also some task scheduling strategies that jointly coordinate with the data 

management strategies to enhance the cloud performance and satisfy the user 

requirements. For example, in [122], a novel data placement and task scheduling 
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optimisation algorithm is proposed for the scientific workflows in the cloud 

environment to optimise the data placement and task scheduling performance. A k-

means algorithm based build-time data placement strategy is proposed to reduce the 

data movement at the workflow build-time stage by considering the data dependency 

and the data size. Then a multi-level task replication method based run-time task 

scheduling strategy is proposed to reduce the intermediate data transfer among cloud 

data centres at the run-time stage.  

In [48], the authors propose the SLA-aware task scheduling strategy cooperated with a 

data replication strategy to satisfy the requirements of the response time and the 

minimum availability and enhance the profit to the cloud service providers. A novel 

Bottleneck Value Scheduling (BVS) process is developed to couple with a proposed 

Correlation and Economic Model-based Replication (CEMR) strategy. 

2.5 Problem Statement and Research Insight 

Firstly, there are two common types of data attributes, external data attributes and 

internal data attributes. The external data attribute refers to the attribute which the data 

correlates to the external environmental factors such as users, cloud service providers,  

and cloud environment, while the internal data attribute refers to the attribute which the 

data correlates to other data. Both external data attributes and internal data attributes 

have significant influences on the data. For example, access frequency is one of the 

most important external data attributes in the past literature to constrain the replica 

creation processes for identifying which data is hot-accessed by users. Besides, data 

dependency is also one of the most important internal data attributes, which refers to the 

relationship between a pair of data. It can identify the potential influences between a 

pair of data when doing replica creation. Both external data attributes and internal data 

attributes have been considered to constrain the replica creation in the past literature. 
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However, they are used in some simple parameter combinations. Some of the parameter 

combinations only consider the same type of data attributes. For example, as shown in 

Table 2.1, most of the replica creation strategies lack the consideration of the internal 

data attributes.  

For another example, in [127], they only consider the access frequency and the average 

response time as two major constraint parameters, which both the access frequency and 

the average response time belong to the external data attribute. Considering only one 

type of data attributes may lose the comprehensiveness of the data attribute analysis 

when developing replica creation strategies. Therefore, the external data attributes and 

the internal data attributes should be jointly considered to constrain the replica creation 

decision making. A more general replica creation strategy, which considers both 

external data attributes and internal data attributes, needs to be investigated in order to 

comprehensively determine the replica creation and further improve the optimisation 

objectives. 

Secondly, the cloud map should be taken into consideration to make a more precise 

replica creation decision. Each data centre can be recognized as an individual host entity 

in the cloud environment. A data may have multiple data relationships to other data 

inside the same data location and outside the same data location. The data relationship 

between this specific data and the correlated data inside the same data centre can be 

seen as local data relationship, while the data relationship between this specific data and 

the correlated data outside the same data centre can be known as remote data 

relationship. The local data relationship and the remote data relationship are hardly 

considered in the most of current replica creation strategies, as shown in Table 2.1. 

Therefore, the data relationship situations inside data centre and outside data centre 

should be distinguished when making the replica creation decision.  



52 

 

Table 2.1 The comparison of replica creation strategies 

 

Thirdly, although the existing research has made significant progress to replica 

selection, there are still research gaps to be filled. Most of the current replica selection 
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strategies focus on how to select a data replica to access without considering the 

potential impacts among multiple concurrent-running instances under limited network 

capability. In particular, they might not be suitable to apply in a cloud environment with 

heavy data access needs and a large number of application instances when the data 

access needs and the number of application instances result in overloading in certain 

parts of the cloud network. Therefore, a replica selection strategy is urgently required by 

considering the potential impacts among multiple concurrent-running instances and the 

limited network capability. 

Fourthly, different network performance metrics should be jointly considered to achieve 

a comprehensive evaluation of the network situations at each cloud data centre. Most of 

the current data replication strategies model the network performance metrics in an 

isolated way. Therefore, a suitable evaluation method should be developed to jointly 

evaluate different types of network performance metrics. 

Fifthly, as shown in Table 2.2, most of the fault tolerance strategies pay insufficient 

attention to both the network performance and the attributes of the affected tasks. When 

the data access requests are resubmitted to other replica sites or when new data replicas 

are created, the impacts to the overall cloud environment performance have been largely 

overlooked. 

If a system executes many task resubmission operations or replica re-creation 

operations, it will significantly increase the resource load on certain data centres [102]. 

In addition, some tasks may miss the deadline even if they have been resubmitted to 

access the required replicas without considering the attributes of the affected tasks. As a 

result, this may cause a series of negative influences, such as user dissatisfaction, 

reputation damage, future profit reduction, and economic compensation. Therefore, the 

insufficient consideration of both the network performance and the task attributes may 
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largely degrade the overall cloud performance [129]. Thus, it is desirable to have a fault 

tolerance strategy that fully considers both the network performance and the attributes 

of the affected tasks. 

Table 2.2 The comparison of fault handling strategies 
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Sixthly, although the replica-applied cloud environment can protect the cloud 

environment against the upcoming faults, a suitable reactive fault tolerance strategy can 

further enhance the cloud resiliency as well as the overall cloud performance. At the 

same time, the deadline contention and the resource contention problems may also exist 

when handling independent tasks and dependent tasks. An independent task denotes the 

task has no dependencies to other tasks, while a dependent task denotes the task has at 

least one dependency to other tasks. The success of an independent task is only related 

to itself while the success of a dependent task always relies on the success of its 

preceding tasks. The dependent tasks should be assigned the task priority when 

allocating the tasks to the cloud data centres because a parent task may influence all its 

succeeding tasks. Therefore, the task dependencies among tasks should be considered 

when handling dependent tasks. The fault tolerance strategies for dependent task rescue 

should be developed in different ways in comparison with the independent task rescue. 

Seventhly, the HEFT series strategies tend to select the first available server to enable 

the earliest finish time when doing timeline allocation. Although the HEFT series 

strategies were developed over a long time period, selecting the first available server 

might not be the optimal configuration when handling faults [11][94][99]. It may cause 

the deadline contention and the resource contention problems in which the task rescue 

with the high priority may unnecessarily impact the task rescue with the low priority. 

Moreover, selecting the first available server may cause a temporary dramatic load 

increase at certain time points on the timeline, which might lead to the performance 

bottleneck to cloud data centres. Therefore, a time allocation method should be 

developed to balance the resource load and eliminate the deadline contention and the 

resource contention problems as much as possible. 
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Chapter 3 Data Replication and Fault Management 

Framework 

In this chapter, the data replication and fault management framework is proposed and 

some basic definitions and general notations used in this thesis are introduced. The data 

replication and fault management framework is described in Section 3.1. The basic 

definitions and the general notations are demonstrated in Section 3.2.  

3.1 Data Replication and Fault Management Framework  

The cloud environment always contains at least one cloud service provider. Each cloud 

service provider may also have at least one data centre. Each data centre has its specific 

environment configurations. Each data centre can be seen as an independent host entity 

in the cloud environment. Therefore, a decentralised management framework is more 

suitable to apply in the cloud environment. The decentralised management framework 

can enable self-management in each data centre side and will not be influenced by the 

management configuration of other data centres. The proposed data replication and fault 

management framework establishes a decentralised overarching management to offer 

the “anyone, anytime and anywhere” flexibility, the adaptability, and the geo-diversity 

for the global collaborators in the cloud environment. To execute multiple concurrent-

running cloud application instances, such a management framework is easier to handle 

the modular growth and takes advantage of the geo-elasticity and the geo-diversity. 

New data centres, cloud service providers, or cloud application instances can be 

integrated into the current cloud network without affecting the operations of other data 

centres, cloud service providers, and application instances. Normally, the general cloud 

environment can be shown in Figure 3.1. 
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Figure 3.1 The general cloud environment 

 

Figure 3.2 The data replication and fault management framework 

The proposed data replication and fault management framework is shown in Figure 3.2. 

It is a decentralised cloud management framework that contains two types of platforms 

at the user side and the data centre side, respectively. Each cloud service provider has its 

unique user platform and data centre platform because they may have different 

functionalities applied to the user platform and the data centre platform. Each cloud 
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service provider has only one user platform. Each user can access the specific user 

platform to send the task execution requests or the data access requests to the cloud 

service provider. Each cloud service provider may have multiple data centre platforms 

at each cloud data centres which belong to the cloud service provider. Each data centre 

has only one data centre platform for replica management, fault management, and data 

centre control. 

The data replication strategies and the fault management strategies may need the 

information about the performance characteristics of each cloud service provider [78]. 

In the cloud environment, different cloud service providers may have different scenarios 

inside [14][17]. Therefore, a decentralised analysis of each single cloud service provider 

is required. Each data centre platform acts on behalf of a cloud service provider and is 

responsible for interacting with the user platforms. The data centre platform can collect 

the characteristics information in the cloud data centre, such as the response time of the 

data centre, the available bandwidth of the data centre, the storage capacity of the data 

centre, and the location of the target replica, etc. It avoids the problems related to the 

privacy policy difference among different cloud service providers because each cloud 

service provider only hosts a uniform type of data centre platform obeying its own 

privacy policy. Different data centre platforms can collect the required information 

based on the different privacy policies in different cloud service providers. The 

collected information can be used as measurements when making the data replication 

decisions or the fault management decisions. 

The detailed interior structure of the user platform and the data centre platform is shown 

in Figure 3.3, which also indicates a complete data replication and fault management 

framework between the cloud users and a single data centre. It also shows the 

corresponding relationship between the required modules and the context locations 
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where the module applies in this thesis. 

 

Figure 3.3 The interior structure of the user platform and the data centre platform 

3.1.1 User platform 

Each user platform contains two modules, user interface and requirement analysis 

module. The user interface is responsible for interacting with the users to collect the 

data access requests or the task execution requests. Then the user interface will transfer 

the user requests to the requirement analysis module. The requirement analysis 

module further includes two operation units, data requirement analysis unit and task 

requirement analysis unit, as shown in Figure 3.4. The data requirement analysis 

unit aims to analyse the user data requirement and the task requirement analysis unit 

focuses on the user task requirement analysis. Collectively, the requirement analysis 

module analyses the user requirements to answer the following questions.  

• Which task is being executed?  

• Which data should be accessed? 

• Where is the required data replicas situated?  

• Where is the task situated? 
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After the analysis of the user requirements, a list of target data centres will be generated 

including the required replica names, the replica locations, the task names, and the task 

locations. Then the relevant data centre platforms will receive the corresponding data 

access information and the task execution information from the user platform. 

 

Figure 3.4 The interior structure of the requirement analysis module 

3.1.2 Data centre platform 

Each data centre platform contains three management agents and a pool of cloud 

servers. These agents and cloud servers are interconnected. The replica agent is 

responsible for creating the replica-applied cloud environment and analysing the 

required replica to be accessed and the task to be executed. It includes five modules, 

replica creation module, replica placement module, replica selection module, data 

analysis module, and task analysis module. The replica creation module and the 

replica placement module are used to create a replica-applied cloud environment. The 

replica creation module enables the replica creation processes to create multiple 

replicas into multiple cloud data centres based on the applied replica creation strategy. 

Then the newly created data replicas will be offered a destination to be situated by the 

replica placement module based on the applied replica placement strategy. The replica 

selection module aims to guide the access to the optimal required replicas. Particularly, 

it assists with the fault management agent to guide the task rescheduling when 
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handling faults. The replica creation module, the replica placement module, and the 

replica selection module can achieve a replica management chain in the replica-applied 

cloud environment.  

The data analysis module aims to collect the value of the required data attributes and 

analyse the data dependency of the required data. The data analysis module includes 

two operation units, data attribute analysis unit and data dependency analysis unit, 

as shown in Figure 3.5. The data attribute analysis unit is used to collect the value of 

different data attributes related to the required data. The data dependency analysis unit 

aims to analyse the data dependency of the required data. 

 

Figure 3.5 The interior structure of the data analysis module 

 

Figure 3.6 The interior structure of the task analysis module 

The task analysis module aims to analyse the task dependency of the tasks to be 

executed and the relevant task attributes. The task analysis module includes two 
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operation units, task attribute analysis unit and task dependency analysis unit, as 

shown in Figure 3.6. The task dependency analysis unit is developed to analyse the 

task dependency of the tasks to be executed. The task attribute analysis unit is used to 

analyse the attributes of the tasks to be executed. 

The data analysis module and the task analysis module will contribute to the 

development of different cloud management strategies, such as replica creation strategy, 

replica placement strategy, replica selection strategy, task scheduling strategy, and fault 

tolerance strategy, by offering the required data information or task information.  

As mentioned in Chapter 2, unexpected faults are unpredictable. The replica agent can 

create a replication-applied cloud environment to protect the cloud environment against 

the upcoming faults. However, it is not sufficient to reduce or even eliminate the 

negative fault impacts. The fault management agent is responsible for reactively and 

strategically handling the fault scenarios to further improve the cloud performance when 

encountering a fault. It helps the faulty data centre handle the tasks which cannot be 

continued in this data centre and need to migrate to other computing nodes. It includes 

two operation units, fault detection unit and fault handling guide unit, as shown in 

Figure 3.7. 

The fault detection unit is used to continuously detect the fault in the data centre and 

then report it to the fault handling guide unit to initiate the fault handling process. The 

fault handling guide unit offers the guidance of the whole fault handling process based 

on the applied fault tolerance strategy. It guides the detailed task rescue operations to 

the data centre control agent when encountering a fault. The fault handling guide 

unit also references the replica selection strategy from the replica selection module in 

the replica agent to guide the task resubmission and migration operations under fault 

scenarios. 
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Figure 3.7 The interior structure of the fault management agent 

The data centre control agent is the console of the data centre scheduling operations 

and the cloud environment provisioning. It contains two modules, data centre analysis 

module and data centre scheduling module. The data centre analysis module is used 

to monitor and analyse the environment information of the data centre. It collects the 

value of different types of cloud resources such as bandwidth, latency, error rates, and 

time slot utilisation situations. This can help the development of the data replication 

strategy applied in the replica creation module, the replica placement module, and 

the replica selection module. At the same time, this can also contribute to the 

development of the fault tolerance strategy applied in the fault management module as 

well as the resource provisioning in the data centre scheduling module. 

The data centre scheduling module is used to schedule the data and the tasks. It 

contains two operation units, task scheduling unit and replica scheduling unit, as 

shown in Figure 3.8. The task scheduling unit is used to schedule the tasks under 

normal circumstances and reschedule the tasks when encountering a fault, upon the 

applied task scheduling strategy in this unit. This unit can cooperate with the replica 

selection module to generate a task scheduling solution under normal circumstances. 

The operations of the task resubmission and migration can also be completed in this unit 

under fault scenarios, upon the cooperation with the fault management agent. The 
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replica scheduling unit is responsible for scheduling the newly created replicas to 

different locations by cooperating with the replica creation module and the replica 

placement module. This unit implements the practical operations of the replica creation 

solution and the replica placement solution. 

 

Figure 3.8 The interior structure of the data centre scheduling module 

3.2 Basic Definitions and General Notations 

Several basic definitions and general notations of the cloud environment are listed 

below to use in the following proposed strategies. 

Definition 1. Cloud environment. A cloud environment is a computing environment 

that enables on-demand access to the computing resources, such as applications, servers 

(physical servers and virtual servers), development tools, networking capabilities, and 

more relevant resources. These computing resources are hosted at each data centre in 

the cloud environment which is managed by a specific cloud service provider. 

Therefore, a cloud environment can be represented as a 2-tuple (𝐶𝑆𝑃,𝐷𝐶), where 

• 𝐶𝑆𝑃 is the set of cloud service providers in the cloud environment.  

• 𝐷𝐶 = {𝑑𝑐1, 𝑑𝑐2, …, 𝑑𝑐𝑧} is the set of data centres in the cloud environment. 𝑑𝑐𝑦 

denotes the 𝑦th data centre in 𝐷𝐶. 

• There may exist multiple data centres with multiple cloud service providers in 
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the cloud environment. Each 𝑑𝑐 ∈ 𝐷𝐶 has only one 𝑐𝑠𝑝 ∈ 𝐶𝑆𝑃, while one 𝑐𝑠𝑝 

may have at least one 𝑑𝑐.  

Definition 2. Task and data. A set of cloud applications can be deployed in the cloud 

environment by users or cloud service providers. They may contain a set of independent 

tasks and dependent tasks. Each task corresponds to a set of required data to be 

accessed. Therefore, a set of tasks 𝐽  and a set of data 𝐷  is defined for the cloud 

environment, where 

• 𝐽:{𝑗1 , 𝑗2 , …, 𝑗𝑚} is the set of tasks scheduled in the cloud environment. 𝑗𝑚 

denotes the 𝑚th task in 𝐽. 

• 𝐷:{𝑑1, 𝑑2, …, 𝑑𝑛} is the set of data stored in the cloud environment. 𝑑𝑛 denotes 

the 𝑛th data in 𝐷. 

Definition 3. Workflow applications. The cloud environment may contain a set of 

dependent tasks which may perform in different workflow applications. Therefore, in 

general, a workflow application 𝐺 = (𝑁, 𝐸) is modelled as a Directed Acyclic Graph 

(DAG), where 𝑁 is the set of nodes {𝑁𝑜𝑑0, 𝑁𝑜𝑑1, ..., 𝑁𝑜𝑑𝑞} as tasks and 𝐸 is a set of 

edges as the control dependencies among the workflow tasks. For each pair of nodes  

𝑁𝑜𝑑𝑝, 𝑁𝑜𝑑𝑞 ∈ 𝑁, 𝑒𝑑𝑔𝑒(𝑁𝑜𝑑𝑝, 𝑁𝑜𝑑𝑞) denotes the edge between 𝑁𝑜𝑑𝑝 and 𝑁𝑜𝑑𝑞. The 

cloud environment may contain a set of 𝑥  workflow applications {𝐺1 , 𝐺2 , …, 𝐺𝑥 } 

scheduled in the cloud environment. 

The notation tables are also made in Table A1.1, Table A1.2, Table A1.3, and Table 

A1.4 in Appendix 1 which these notations will be used in the descriptions, the 

equations, and the pseudocodes of the following six strategies. 
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Chapter 4 The Development of Data Replication Strategies 

Data replication strategies can help cloud service providers establish a replica-applied 

cloud environment. As mentioned in Chapter 2, the data replication strategies bring 

many benefits for improving the overall cloud performance, such as fast data access, 

low response time, balanced workload and resource load, and increased data availability 

and reliability. In addition, the tasks at the faulty data centre can be rescued to 

continuously execute by strategically accessing other required data replicas if the 

replica-applied cloud environment is deployed. In this chapter, three data replication 

strategies are proposed to manage replica creation, replica placement, and replica 

selection. The first two strategies focus on replica creation including the replica 

placement of newly created replicas. The last strategy contributes to replica selection. 

The proposed replica creation strategy and replica selection strategy can also be aligned 

together to create a replica-applied cloud environment and guide the data access for 

executing the tasks in the cloud environment. 

4.1 Replica Creation for Total Cost Reduction in Clouds 

The replica creation strategy is the basis of all data replication strategies because the 

replica creation strategy is responsible for creating multiple data copies into multiple 

cloud data centres. As demonstrated in Chapter 2, both external data attributes and 

internal data attributes have significant impacts on the replica creation process 

according to the past literature. The joint consideration of the external data attributes 

and the internal data attributes is important for the replica creation decision-making 

process. Data dependency is one of the most significant internal data attributes, as it 

reveals the data relationship between a specific data and other data. Access frequency is 

an external data attribute to check whether the data is being accessed in hot. Data size is 
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also an internal data attribute, which might largely influence the data storage, data 

transmission, and data allocation, etc.  

In this thesis, data dependency, access frequency, and data size are taken into account 

for jointly applying the internal data attribute and the external attribute to constrain the 

replica creation. Besides, the data types are classified into three sub-categories to denote 

the replica creation feasibility of a data to a specific data centre. A replica creation 

algorithm is also developed to create multiple data replicas into the target data centres.  

4.1.1 Data classification 

In data replication, the data are commonly classified into two categories, fixed data and 

flexible data. The fixed data (FixD) cannot be replicated because of the constraints of its 

own data attributes, such as data ownership or privacy concerns, while the flexible data 

(FlexD) can be freely replicated across geographical data centres as well as inside data 

centre. In this strategy, the flexible data is further classified into two new sub-

categories, free-flexible data (FFlexD) and constrained-flexible data (CFlexD). The data 

dependency constraint, the access frequency constraint, and the data size constraint are 

applied as three replica creation constraints during the replica creation decision making. 

A data 𝑑 ∈ 𝐷 can be finally classified to FFlexD to a specific data centre 𝑑𝑐 when the 

data 𝑑 can satisfy all three constraints to this data centre. In other words, it means that 

the data 𝑑 can be freely replicated to the data centre 𝑑𝑐 when the data 𝑑 is a FFlexD to 

this data centre. Otherwise, the data 𝑑 will be classified into CFlexD to a data centre 𝑑𝑐 

when the data 𝑑 cannot meet at least one of three replica creation constraints to this data 

centre.  

The data in CFlexD to a data centre 𝑑𝑐 ∈ 𝐷𝐶 is still a flexible data to other data centres 

in 𝐷𝐶, thus it may not be CFlexD to other data centres in 𝐷𝐶. For example, if the data 

𝑑𝑖 ∈ 𝐷  cannot satisfy at least one of the data dependency constraint and the access 
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frequency constraint, it will be CFlexD to all data centres in the cloud environment. 

However, if the data 𝑑𝑖 can satisfy both the data dependency constraint and the access 

frequency constraint, except that it cannot satisfy the data size constraint to a specific 

data centre 𝑑𝑐𝑧 ∈ 𝐷𝐶, then the data 𝑑𝑖 will be CFlexD to the data centre 𝑑𝑐𝑧 only. For 

the same data 𝑑𝑖 , if the data 𝑑𝑖  can satisfy all three replica creation constraints to 

another data centre 𝑑𝑐𝑦 ∈ 𝐷𝐶, then the data 𝑑𝑖 will be FFlexD to the data centre 𝑑𝑐𝑦. 

4.1.2 Data dependency and access frequency 

The data dependency and the access frequency are defined as two constraint parameters 

when initiating the replica creation. The data dependency is the relationship between 

each two data and the access frequency refers to the frequency of access in a specific 

time duration by users. The data dependency between two data 𝑑𝑖 and 𝑑𝑘 is defined as 

the number of tasks that use both 𝑑𝑖 and 𝑑𝑘 [139]. The data dependency between two 

data 𝑑𝑖  and 𝑑𝑘  has two expressions, 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘)  and 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) , which can be 

formulated in Eq. 4.1, where 𝐽(𝑑𝑖) denotes the set of tasks which access the data 𝑑𝑖. 

𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘)  refers to the data dependency of the data 𝑑𝑖  to the data 𝑑𝑘 , while 

𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) refers to the data dependency of the data 𝑑𝑘 to the data 𝑑𝑖. The numerical 

value of 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) and 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) is same, as also shown in Eq. 4.1. 

                                          {

𝐷𝑒𝑝(𝑑𝑖 , 𝑑𝑘) = 𝐶𝑜𝑢𝑛𝑡(𝐽(𝑑𝑖) ∩ 𝐽(𝑑𝑘))
𝐷𝑒𝑝(𝑑𝑘 , 𝑑𝑖) = 𝐶𝑜𝑢𝑛𝑡(𝐽(𝑑𝑘) ∩ 𝐽(𝑑𝑖))

𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) = 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖)
                            (4.1) 

The access frequency of the data 𝑑𝑖 can be formulated in Eq. 4.2, where 𝐴𝐹(𝑑𝑖) denotes 

the access frequency of the data 𝑑𝑖, 𝐴𝑇(𝑑𝑖) denotes the number of access times of the 

data 𝑑𝑖, and 𝐴𝐼(𝑑𝑖) denotes the access time interval to the data 𝑑𝑖. 

                                                    𝐴𝐹(𝑑𝑖) = 
𝐴𝑇(𝑑𝑖)

𝐴𝐼(𝑑𝑖)
                                                        (4.2) 

A threshold-based evaluation method is adopted to evaluate the data importance for 

further making the replica creation decision. A threshold parameter 𝜔 is set for the data 
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dependency constraint. The data dependency 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) should satisfy 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) ≥

 𝜔 , which is one of the mandatory constraints to replicate 𝑑𝑖 . Similarly, the data 

dependency 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖)  should satisfy 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) ≥  𝜔 , which is also one of the 

mandatory constraints to replicate 𝑑𝑘. The data dependency threshold parameter 𝜔 can 

be ranged from the minimum data dependency value to the maximum data dependency 

value of the data in 𝐷. 

An access frequency threshold parameter ∅  is also set for the access frequency 

constraint. The access frequency of 𝑑𝑖 and 𝑑𝑘 should satisfy either 𝐴𝐹(𝑑𝑖) or 𝐴𝐹(𝑑𝑘) ≥

𝛿  at least, which is another mandatory constraint to replicate 𝑑𝑖  or 𝑑𝑘 . The access 

frequency threshold parameter ∅ can be ranged from the minimum access frequency 

value to the maximum access frequency value of the data in 𝐷. 

4.1.3 Data size constraint 

In this strategy, the data size constraint is also applied to constrain the replica creation 

process. The replica creation should follow the data size constraint defined in Eq. 4.3, 

where 𝑆𝑖𝑧𝑒(𝑑𝑖) denotes the data size of 𝑑𝑖 and 𝐴𝑆𝑆(𝑑𝑐) denotes the available storage 

capacity in the data centre 𝑑𝑐. 

                                                     𝑆𝑖𝑧𝑒(𝑑𝑖) ≤ 𝐴𝑆𝑆(𝑑𝑐)                                               (4.3) 

4.1.4 Cost 

For 𝑑𝑖 ∈ 𝐷, the total cost 𝑇𝐶(𝑑𝑖) can be the sum of the data storage cost 𝐷𝑆𝐶(𝑑𝑖) and 

the data transfer cost 𝐷𝑇𝐶(𝑑𝑖) as shown in Eq. 4.4. 

                                               𝑇𝐶(𝑑𝑖) = 𝐷𝑆𝐶(𝑑𝑖) + 𝐷𝑇𝐶(𝑑𝑖)                                     (4.4) 

The data storage cost of 𝑑𝑖 at a data centre 𝑑𝑐 depends on many parameters such as the 

data storage price of this data centre 𝑆𝑃(𝑑𝑐) , the data size 𝑆𝑖𝑧𝑒(𝑑𝑖), and the data 

storage time interval at this data centre 𝑆𝑇(𝑑𝑖)
𝑑𝑐. For a data 𝑑𝑖 stored at the data centre 

𝑑𝑐 , the data storage cost of 𝑑𝑖  at this data centre 𝑑𝑐  can be 𝑆𝑃(𝑑𝑐)  * 𝑆𝑖𝑧𝑒(𝑑𝑖)  * 
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𝑆𝑇(𝑑𝑖)
𝑑𝑐. However, the data 𝑑𝑖 may store in multiple data centres. Therefore, the total 

data storage cost for a data 𝑑𝑖, 𝐷𝑆𝐶(𝑑𝑖), can be formulated as in Eq. 4.5, where 𝜇 is a 

determinant variable for calculating the data storage cost. If 𝑑𝑐𝑦 is the data location of 

the data 𝑑𝑖, then 𝜇 equals to 1. Otherwise, 𝜇 equals to 0. 

                            𝐷𝑆𝐶(𝑑𝑖) = ∑  𝜇 ∗ 𝑆𝑃(𝑑𝑐𝑦) ∗ 𝑆𝑖𝑧𝑒(𝑑𝑖) ∗ 𝑆𝑇(𝑑𝑖)
𝑑𝑐𝑦𝑧

𝑦=1                    (4.5) 

The data transfer cost of 𝑑𝑖, 𝐷𝑇𝐶(𝑑𝑖), depends on the transfer cost ratio 𝛼 per data unit, 

the data size 𝑆𝑖𝑧𝑒(𝑑𝑖) , the determinant variable 𝛽  and the number of access times 

𝐴𝑇(𝑑𝑖). The determinant variable 𝛽 will be 1 if the cloud users require to access the 

data from a remote data centre, while it will be 0 if the cloud users only need to access 

the data locally. Therefore, the data transfer cost of 𝑑𝑖, 𝐷𝑇𝐶(𝑑𝑖), can be formulated as 

in Eq. 4.6. 

                                      𝐷𝑇𝐶(𝑑𝑖) = 𝛼 * 𝑆𝑖𝑧𝑒(𝑑𝑖) * 𝐴𝑇(𝑑𝑖) * 𝛽                                  (4.6) 

Then the overall total cost 𝑇𝐶 of all data in 𝐷 can be formulated in Eq. 4.7. 

                                           𝑇𝐶 = ∑ (𝐷𝑆𝐶(𝑑𝑖) + 𝐷𝑇𝐶(𝑑𝑖))
𝑛
𝑖=0                                      (4.7) 

4.1.5 Assumed scenarios 

This research assumes that the initial data placement and the initial task placement have 

been completed by using the strategy proposed in [139]. The set of data 𝐷 are allocated 

into data centres based on the data placement rules from [139]. At the same time, the set 

of data 𝐷 can be initially categorised into fixed data and flexible data based on their 

own attributes. The set of tasks 𝐽 are also randomly allocated to different data centres in 

the cloud environment. 

4.1.6 Replica creation strategy 

In this research, a replica creation strategy is proposed to create multiple replicas into 

appropriate data centres by satisfying the data dependency constraint, the access 

frequency constraint, and the data size constraint. After all data placement and task 
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placement completed, the set of tasks 𝐽(𝑑) are located, which needs to access each data 

𝑑 ∈ 𝐷. Each data 𝑑 ∈ 𝐷 will be firstly classified into FixD and FlexD. Then the data in 

FixD will not be considered to be replicated because those data cannot be replicated.  

 

Figure 4.1 Replica creation decision-making process 
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The eligible data identification for a data 𝑑 to the data centres where its relevant tasks 

𝐽(𝑑)  located will follow the proposed replica creation decision-making process, as 

shown in Figure 4.1. Figure 4.1 shows the eligible data identification process for a 

single data to a single relevant task location. For a data centre 𝑑𝑐 ∈ 𝐷𝐶 in the cloud 

environment where its relevant tasks 𝐽(𝑑) located, the data dependency and the access 

frequency will be firstly calculated for the data 𝑑 ∈ 𝐷. Then the data 𝑑 will be checked 

with the data dependency constraint, the access frequency constraint and the data size 

constraint. The data 𝑑 will be marked as the eligible data to this data centre 𝑑𝑐 if it 

satisfies all three replica creation constraints and the data type of this data 𝑑 will be 

transferred to FFlexD to this data centre 𝑑𝑐. If a data 𝑑 is an eligible data to the data 

centre 𝑑𝑐, then the data 𝑑 will be replicated to this data centre 𝑑𝑐. Otherwise, the data 

type of this data 𝑑 to this data centre 𝑑𝑐 will be transferred to CFlexD.  

The proposed replica creation algorithm is shown in Algorithm 4.1. It aims to find the 

replica creation solution for each data in the cloud environment. The algorithm is firstly 

initialised by emptying all data types from Line 1 to Line 2. Then the set of data 𝐷 is 

classified in the cloud environment into FixD and FlexD at Line 3. After all steps 

above, the replica creation decision will be made from Line 4 to Line 94 for each pair 

of data in FlexD. The  time complexity of Algorithm 4.1 is O(𝑛2). 

Nine different scenarios are processed in Algorithm 4.1 for each pair of data 𝑑𝑖 and 𝑑𝑘, 

as follows. 

1. If 𝑗(𝑑𝑖) and 𝑗(𝑑𝑘) locate in the same location, the scenarios will be as follows. 

• Both 𝑑𝑖  and 𝑑𝑘  satisfy the data dependency constraint, the access frequency 

constraint and the data size constraint. (Line 16 to Line 19) 

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint and the access frequency 

constraint but at least one of them cannot satisfy the data size constraint. (Line 
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20 to Line 33; Line 41 to Line 43) 

• Both 𝑑𝑖 and 𝑑𝑘 satisfy all three constraints but the rest available resource cannot 

accommodate 𝑑𝑖 and 𝑑𝑘 at the same time (Line 34 to Line 40) 

2. If 𝑗(𝑑𝑖) and 𝑗(𝑑𝑘) locate in different locations, the scenarios will be as follows. 

• Both 𝑑𝑖 and 𝑑𝑘 satisfy all three constraints. (Line 45 to Line 48) 

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint and the access frequency 

constraint but at least one of them cannot satisfy the data size constraint. (Line 

49 to Line 61) 

3. There are also some other scenarios as follows. 

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint. However, only one of 𝑑𝑖 

and 𝑑𝑘  satisfies the access frequency constraint. The data which satisfies the 

data dependency constraint and the access frequency constraint can also satisfy 

the data size constraint. (Line 65 to Line 75 except Line 69 to Line 71 and Line 

77 to Line 88 except Line 81 to Line 83) 

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint. However, only one of 𝑑𝑖 

and 𝑑𝑘  satisfies the access frequency constraint. The data which satisfies the 

data dependency constraint and the access frequency constraint cannot satisfy 

the data size constraint. (Line 69 to Line 71; Line 81 to Line 83) 

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint but they cannot satisfy the 

access frequency constraint. (Line 89 to Line 91) 

• Both 𝑑𝑖 and 𝑑𝑘 cannot satisfy the data dependency constraint. (Line 92 to Line 

94) 

Algorithm 4.1: Replica Creation Algorithm  

Input: 𝐷𝐶, 𝐽, 𝐷 

Output: Replica creation solution 
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1.  Initialization { Create 𝑡𝑙[], 𝑑𝑙[] 

2.  Empty FixD, FlexD, FFlexD, CFlexD} 

3.  Classify(𝐷)                                        //Classify data into FixD and FlexD  

4.     for each data 𝑑𝑖 in FlexD, 𝑑𝑖 ∈ 𝐷 

5.         for each data 𝑑𝑘 in FlexD, 𝑑𝑘 ∈ 𝐷 

6.               Calculate 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘), 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖), 𝑖 ≠ 𝑘   

7.               Calculate 𝐴𝐹(𝑑𝑖) and 𝐴𝐹(𝑑𝑘) 

8.               Empty 𝑡𝑙[], 𝑑𝑙[]  

9.               if 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘), 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) ≥  𝜔 

10.                if 𝐴𝐹(𝑑𝑖) ≥ ∅ and 𝐴𝐹(𝑑𝑘) ≥ ∅             

11.                    Search 𝑑𝑐 in 𝐷𝐶 where 𝐽(𝑑𝑖) located and add into 𝑡𝑙[] 

12.                    Search 𝑑𝑐 in 𝐷𝐶 where 𝐽(𝑑𝑘) located and add into 𝑑𝑙[]                                 

13.                    for each element 𝑡𝑙[𝑢] in 𝑡𝑙[] do 

14.                        for each element 𝑑𝑙[𝑟] in 𝑑𝑙[] do 

15.                           if 𝑡𝑙[𝑢] = 𝑑𝑙[𝑟] 

16.                                if 𝑆𝑖𝑧𝑒(𝑑𝑖), 𝑆𝑖𝑧𝑒(𝑑𝑘), 𝑆𝑖𝑧𝑒(𝑑𝑖) + 𝑆𝑖𝑧𝑒(𝑑𝑘) ≤ 𝑡𝑙[𝑢]  

17.                                     Transform 𝑑𝑖 and 𝑑𝑘 from FlexD to FFlexD 

18.                                     Replicate 𝑑𝑖 and 𝑑𝑘 to 𝑡𝑙[𝑢] 

19.                                     Update 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

20.                                else if 𝑆𝑖𝑧𝑒(𝑑𝑖) ≤ 𝐴𝑆𝑆(𝑡𝑙[𝑢])  

21.                                     if 𝑆𝑖𝑧𝑒(𝑑𝑘), 𝑆𝑖𝑧𝑒(𝑑𝑖) + 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

22.                                          Transform 𝑑𝑘 from FlexD to CFlexD   

23.                                          Transform 𝑑𝑖 from FlexD to FFlexD   

24.                                          Replicate 𝑑𝑖 to 𝑡𝑙[𝑢] 

25.                                          Update 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

26.                                     end if                                        

27.                                else if 𝑆𝑖𝑧𝑒(𝑑𝑘) ≤ 𝐴𝑆𝑆(𝑡𝑙[𝑢])  

28.                                     if 𝑆𝑖𝑧𝑒(𝑑𝑖), 𝑆𝑖𝑧𝑒(𝑑𝑖) + 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

29.                                          Transform 𝑑𝑖 from FlexD to CFlexD   

30.                                          Transform 𝑑𝑘 from FlexD to FFlexD   

31.                                          Replicate 𝑑𝑘 to 𝑡𝑙[𝑢] 

32.                                          Update 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

33.                                     end if                                        
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34.                                else if 𝑆𝑖𝑧𝑒(𝑑𝑖), 𝑆𝑖𝑧𝑒(𝑑𝑘) ≤ 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

35.                                     if 𝑆𝑖𝑧𝑒(𝑑𝑖) + 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

36.                                          Random transform 𝑑𝑖 or 𝑑𝑘 from FlexD to CFlexD   

37.                                          Transform the rest one from FlexD to FFlexD   

38.                                          Replicate 𝑑𝑖 or 𝑑𝑘 in FFlexD to 𝑡𝑙[𝑢] 

39.                                          Update 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

40.                                     end if                                        

41.                                else if 𝑆𝑖𝑧𝑒(𝑑𝑖), 𝑆𝑖𝑧𝑒(𝑑𝑘), 𝑆𝑖𝑧𝑒(𝑑𝑖) + 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

42.                                          Transform 𝑑𝑖 and 𝑑𝑘 from FlexD to CFlexD   

43.                                end if 

44.                           else if 𝑡𝑙[𝑢] ≠ 𝑑𝑙[𝑟] 

45.                                if 𝑆𝑖𝑧𝑒(𝑑𝑖) ≤ 𝐴𝑆𝑆(𝑡𝑙[𝑢]), 𝑆𝑖𝑧𝑒(𝑑𝑘) ≤ 𝐴𝑆𝑆(𝑑𝑙[𝑟])  

46.                                          Transform 𝑑𝑖 and 𝑑𝑘 from FlexD to FFlexD 

47.                                          Replicate 𝑑𝑖 to 𝑡𝑙[𝑢] and 𝑑𝑘 to 𝑑𝑙[𝑟]  

48.                                          Update 𝐴𝑆𝑆(𝑡𝑙[𝑢]), 𝐴𝑆𝑆(𝑑𝑙[𝑟]) 

49.                                else if 𝑆𝑖𝑧𝑒(𝑑𝑖) ≤ 𝐴𝑆𝑆(𝑡𝑙[𝑢]), 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑑𝑙[𝑟])   

50.                                          Transform 𝑑𝑖 from FlexD to FFlexD   

51.                                          Transform 𝑑𝑘 from FlexD to CFlexD   

52.                                          Replicate 𝑑𝑖 to 𝑡𝑙[𝑢] 

53.                                          Update 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

54.                                else if 𝑆𝑖𝑧𝑒(𝑑𝑘) ≤ 𝐴𝑆𝑆(𝑑𝑙[𝑟]), 𝑆𝑖𝑧𝑒(𝑑𝑖) > 𝐴𝑆𝑆(𝑡𝑙[𝑢])  

55.                                          Transform 𝑑𝑘 from FlexD to FFlexD 

56.                                          Transform 𝑑𝑖 from FlexD to CFlexD   

57.                                          Replicate 𝑑𝑘 to 𝑑𝑙[𝑟] 

58.                                          Update 𝐴𝑆𝑆(𝑑𝑙[𝑟]) 

59.                                else if 𝑆𝑖𝑧𝑒(𝑑𝑖) > 𝐴𝑆𝑆(𝑡𝑙[𝑢]), 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑑𝑙[𝑟]) 

60.                                          Transform 𝑑𝑖 and 𝑑𝑘 from FlexD to CFlexD   

61.                                end if 

62.                           end if 

63.                        end for 

64.                    end for 

65.                else if 𝐴𝐹(𝑑𝑖) ≥ ∅ and 𝐴𝐹(𝑑𝑘) < ∅ 

66.                    Search 𝑑𝑐 in 𝐷𝐶 where 𝐽(𝑑𝑖) located and add into 𝑡𝑙[] 
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67.                    Transform 𝑑𝑘 from 𝐹𝑙𝑒𝑥𝐷 to 𝐶𝐹𝑙𝑒𝑥𝐷  

68.                     for each element 𝑡𝑙[𝑢] in 𝑡𝑙[] do 

69.                        if 𝑆𝑖𝑧𝑒(𝑑𝑖) > 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

70.                                Transform 𝑑𝑖 from FlexD to CFlexD 

71.                        else  

72.                                Transform 𝑑𝑖 from FlexD to FFlexD 

73.                                Replicate 𝑑𝑖 to 𝑡𝑙[𝑢] 

74.                                Update 𝐴𝑆𝑆(𝑡𝑙[𝑢]) 

75.                        end if 

76.                     end for                      

77.                else if 𝐴𝐹(𝑑𝑖) < ∅ and 𝐴𝐹(𝑑𝑘) ≥ ∅ 

78.                     Search 𝑑𝑐 in 𝐷𝐶 where 𝐽(𝑑𝑘) located and add into 𝑑𝑙[] 

79.                     Transform 𝑑𝑖 from FlexD to CFlexD 

80.                     for each element 𝑑𝑙[𝑟] in 𝑑𝑙[] do 

81.                        if 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑑𝑙[𝑟]) 

82.                                Transform 𝑑𝑘 from FlexD to CFlexD 

83.                        else  

84.                                Transform 𝑑𝑘 from FlexD to FFlexD 

85.                                Replicate 𝑑𝑘 to 𝑑𝑙[𝑟] 

86.                                Update 𝐴𝑆𝑆(𝑑𝑙[𝑟]) 

87.                        end if 

88.                     end for                      

89.                else if 𝐴𝐹(𝑑𝑖) < ∅ and 𝐴𝐹(𝑑𝑘) < ∅ 

90.                     Transform𝑑𝑖 and 𝑑𝑘 from FlexD to CFlexD 

91.                end if 

92.             else if 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘), 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) < 𝜔  

93.                Transform 𝑑𝑖 and 𝑑𝑘 from FlexD to CFlexD   

94.             end if 

95.        end for 

96.    end for 

4.1.7 Case study and discussions 

A sample workflow in [139] is studied as a case to evaluate the total cost with and 

without the proposed replica creation strategy. The sample workflow is shown in Figure 
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4.2. In this case, the storage capacity at each data centre is assumed large enough. 

 

Figure 4.2 Sample workflow [139] 

 

Figure 4.3 Data dependency matrix [139] 

Firstly, the data dependency of each pair of data is calculated for this sample workflow. 

The result of the data dependency calculation is stored in a data dependency matrix as 

shown in Figure 4.3. According to this data dependency matrix and the data dependency 
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threshold parameter 𝜔, the data which satisfies the data dependency constraint can be 

identified. For example, if the threshold parameter of the data dependency constraint 𝜔 

is set to 1, then 𝐷𝑒𝑝(𝑑1, 𝑑2)  satisfy the data dependency constraint. The access 

frequency of each data is also calculated for the sample workflow. According to the 

access frequency of each data and the access frequency threshold parameter ∅, the data 

which satisfies the access frequency constraint can also be identified. 

Table 4.1 The settings of the main parameters 

Parameters Value 

𝑆𝑃(𝑑𝑐) 0.175 per data unit 

𝛼 0.173 per data unit 

𝑆𝑖𝑧𝑒(𝑑1) 10 data unit 

𝑆𝑖𝑧𝑒(𝑑2) 20 data unit 

𝑆𝑖𝑧𝑒(𝑑3) 5 data unit 

𝑆𝑖𝑧𝑒(𝑑4) 10 data unit 

𝑆𝑖𝑧𝑒(𝑑5) 15 data unit 

𝐴𝐹(𝑑1) 2 times per time unit 

𝐴𝐹(𝑑2) 8 times per time unit 

𝐴𝐹(𝑑3) 4 times per time unit 

𝐴𝐹(𝑑4) 5 times per time unit 

𝐴𝐹(𝑑5) 10 times per time unit 

To evaluate the effectiveness of the proposed replica creation strategy, the main 

parameters are set, as shown in Table 4.1. The data storage time interval for each data 

will be set to 1 time unit in a consistent value for the calculation convenience. The data 

storage cost and the data transfer cost are referenced from the cloud storage service 

pricing model in the Microsoft Azure Australia East area. The data dependency 
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threshold parameter 𝜔  is randomly set to 1 and the access frequency threshold 

parameter ∅ is randomly set to 4 times per time unit. 

It assumes that the initial data placement and task placement for this sample workflow is 

already done by [139]. In Figure 4.4, 𝑑1 and 𝑑3 are located in 𝑑𝑐1, 𝑑2 and 𝑑4 are located 

in 𝑑𝑐2, and 𝑑5 is located in 𝑑𝑐3. 𝑗1 and 𝑗2 are located in 𝑑𝑐1, 𝑗3 and 𝑗4 are located in 𝑑𝑐2, 

and 𝑗5 is located in 𝑑𝑐3. 

 

Figure 4.4 Initial data placement in sample workflow [139] 

It is also clear in Figure 4.4 that, if the proposed replica creation strategy is not applied, 

𝑑2 is located at 𝑑𝑐2 and should be accessed remotely by 𝑗2 which is located in 𝑑𝑐1. 𝑑5 is 

located at 𝑑𝑐3 and should be accessed remotely by 𝑗4 which is located in 𝑑𝑐2.  

By applying the proposed replica creation strategy in this case, 𝑑2  and 𝑑5  are two 

eligible data for replica creation. Hence, 𝑑2 and 𝑑5 should be replicated to 𝑑𝑐1 and 𝑑𝑐2, 

respectively. After that, the new replicas of 𝑑2 and 𝑑5 can be accessed locally by 𝑗2 and 
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𝑗4, respectively.  

The total cost is firstly tested by applying the proposed replica creation strategy into the 

cloud environment. In this case, 𝑑2  and 𝑑5  will be replicated to 𝑑𝑐1  and 𝑑𝑐2 , 

respectively, as abovementioned. Besides, the total cost without the proposed replica 

creation strategy applied is calculated. In this case, 𝑑2 will be accessed 8 times remotely 

by 𝑗2 located in 𝑑𝑐1 and 𝑑5 will be accessed 10 times remotely by 𝑗4 in 𝑑𝑐2. The cost of 

other data is ignored because they will be accessed locally. The total cost comparison is 

shown in Figure 4.5. 

 

Figure 4.5 Total cost comparison 

It is evident that the total cost has a sharp decrease by applying the proposed replica 

creation strategy. There is a 69.36% decrease in terms of total cost from 59.76 to 18.31 

by applying the proposed replica creation strategy as shown in Figure 4.5. As a result, 

the proposed replica creation strategy can significantly reduce the total cost for cloud 

applications.  

4.2 Cloud Map Oriented and Cost Efficiency Driven Replica Creation 

Based on the findings from the replica creation strategy in Section 4.1, data dependency 
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and access frequency can significantly influence the replica creation process. Data 

dependency refers to the data relationship between a pair of data. Access frequency 

refers to the frequency of access in a specific time duration.  

In this research, data dependency and access frequency are still followed to use as two 

of the replica creation constraints. However, as discussed in Chapter 2, the cloud map 

should be considered to make a more precise replica creation decision. Each data centre 

can be recognized as an individual host entity in the cloud environment. A specific data 

in one specific data centre may have multiple data relationships to other data inside this 

data centre and outside this data centre. The data relationship can be further categorised 

into local data relationship and remote data relationship. Therefore, a detailed analysis 

of the data relationship inside data centre and outside data centre is required to identify 

the local data relationship and the remote data relationship, as this research is conducted 

at the data centre level. Therefore, different to Section 4.1, the data dependency is 

analysed and classified into two new categories, Within-DataCentre Data Dependency 

and Between-DataCentre Data Dependency, to identify the local data relationship and 

the remote data relationship for the data in the cloud environment, respectively. 

Besides, nine different replica creation scenarios are addressed in Section 4.1. However, 

those replica creation scenarios increase the complexity of the proposed replica creation 

algorithm in Section 4.1. Thus, this research develops two eligible data candidate pools 

to reduce the algorithm complexity. The two eligible data candidate pools enable fast 

eligible data identification for replica creation. By identifying the overlapping elements 

in these two eligible data candidate pools, the data which is highly-dependent and hot-

accessed can be directly collected as the eligible data for replica creation. The data 

which cannot satisfy the data dependency constraint or the access frequency constraint 

will not be processed in the replica creation algorithm. Thus, the complexity of the 
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replica creation algorithm can be reduced.  

Apart from that, the proposed replica creation strategy in Section 4.1 focuses on cost 

reduction as the optimisation objective only. It aims to place the newly created replicas 

to the locations of all its relevant tasks. The proposed replica creation strategy in 

Section 4.1 lacks control to the number of replicas. Therefore, the number of replicas 

might not be the optimal case sometimes. Thus, how to control the number of replicas 

while cutting costs is a major research question in this research. A recommended access 

frequency threshold value will be identified to achieve the optimal cost reduction per 

replica. 

4.2.1 Assumed scenarios 

Before the start of the proposed replica creation strategy in this research, the same 

assumptions are made by following Section 4.1, in which initial data placement and task 

placement have been completed by using the strategy from [139]. Data and tasks are 

allocated into geographical data centres in 𝐷𝐶. Besides, this strategy assumes that each 

data centre has enough resources to store the data replicas. Thus, the data size constraint 

can be ignored in this strategy. Apart from that, this research assumes that all data in 𝐷 

are flexible data. 

4.2.2 System model 

As mentioned in Section 4.1, the data dependency represents the data relationship 

between each pair of data. The data dependency between 𝑑𝑖 and 𝑑𝑘 is calculated same 

to the strategy in Section 4.1, as shown in Eq. 4.1.  

This replica creation strategy is a cloud map oriented strategy which aims to analyse the 

local data relationship and the remote data relationship according to the cloud map. Two 

novel data dependency categories are defined, Within-DataCentre Data Dependency 

(W-DCD) and Between-DataCentre Data Dependency (B-DCD) for further analysing 



83 

 

the data relationship inside data centre and outside data centre. For a data 𝑑𝑖 ∈ 𝐷, W-

DCD(𝑑𝑖) is the data dependency between the data 𝑑𝑖 and all other correlated data in 𝐷 

within the same location of 𝑑𝑖. B-DCD(𝑑𝑖) is the data dependency between the data 𝑑𝑖 

and all other correlated data in 𝐷 outside the same location of 𝑑𝑖.  

A 𝐷𝐶𝐷(𝑑𝑐, 𝑑𝑖) function is used to calculate W-DCD(𝑑𝑖) and B-DCD(𝑑𝑖) for the data 

𝑑𝑖 at the data centre 𝑑𝑐. W-DCD(𝑑𝑖) and B-DCD(𝑑𝑖) can be calculated using Eq. 4.8 

and Eq. 4.9. 

     W-DCD(𝑑𝑖) = ∑ 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘)
𝑛
𝑘=1 , 𝑖 ≠ 𝑘 (𝑑𝑖 and 𝑑𝑘 store at the same location)   (4.8) 

     B-DCD(𝑑𝑖) = ∑ 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘)
𝑛
𝑘=1 , 𝑖 ≠ 𝑘 (𝑑𝑖 and 𝑑𝑘 store at different locations)   (4.9) 

For a data 𝑑𝑖, if B-DCD(𝑑𝑖) > W-DCD(𝑑𝑖), this data will be added into a new data set 

called High-Dependent Data (HDD). A 𝐷𝑒𝑝𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑𝑖) function is used to compare 

between W-DCD(𝑑𝑖) and B-DCD(𝑑𝑖) for the data 𝑑𝑖 ∈ 𝐷. 

The access frequency of each data is calculated same as proposed in Section 4.1. The 

access frequency 𝐴𝐹(𝑑𝑖) is counted for each data 𝑑𝑖 ∈ 𝐷. Then the sum of the access 

frequency of all data 𝐴𝐹𝑡𝑜𝑡𝑎𝑙  is calculated as in Eq. 4.10. Then the average access 

frequency of all data, 𝐴𝐹𝑎𝑣𝑔, is calculated as in Eq. 4.11, where 𝑁𝑢𝑚(𝐷) denotes the 

total amount of data in 𝐷. A 𝐴𝐹𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛() function is used to calculate the value of 

𝐴𝐹𝑡𝑜𝑡𝑎𝑙  and 𝐴𝐹𝑎𝑣𝑔 . An access frequency threshold value ∅  is set for the access 

frequency constraint. The access frequency threshold value ∅  can be dynamically 

changed from 0 to 𝑁𝑢𝑚(𝐷) in order to identify an optimal ∅ value which enables the 

optimal cost reduction per replica with balancing the total cost and the number of 

replicas. 

                                           𝐴𝐹𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐴𝐹(𝑑𝑖)
𝑛
𝑖=1 , 𝑑𝑖 ∈ 𝐷                                       (4.10) 

                                                        𝐴𝐹𝑎𝑣𝑔= 
𝐴𝐹𝑡𝑜𝑡𝑎𝑙

𝑁𝑢𝑚(𝐷)
                                                   (4.11) 
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If 𝐴𝐹(𝑑𝑖) >  ∅ ∗ 𝐴𝐹𝑎𝑣𝑔, then the data 𝑑𝑖 will be added into a new data set called Hot-

Access Data (HAD). A 𝐴𝐹𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑𝑖) function is designed to compare the value 

between 𝐴𝐹(𝑑𝑖)  and ∅ ∗  𝐴𝐹𝑎𝑣𝑔  in order to determine whether a data 𝑑𝑖  should be 

categorised into HAD. In addition, the cost model in Section 4.1 is also followed to use 

in this research. 

4.2.3 Eligible data candidate pool for replica creation 

This research develops two new types of data sets, High-Dependent Data (HDD) and 

Hot-Access Data (HAD). These two data sets are compared to identify the eligible data 

candidates for making the replica creation decision. In particular, the HAD candidate 

pool can be enlarged or shrunk by dynamically changing the access frequency threshold 

value∅. 

 

Figure 4.6 Four different situations segmented by HDD and HAD 

The eligible data candidates can be identified by analysing the overlapping elements in 

HDD and HAD. These eligible data candidates are both highly-dependent and hot-

accessed.  

The replicas of these eligible data candidates should be created and placed into 
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appropriate data centres by using the same replica placement strategy proposed in 

Section 4.1. The eligible data candidate pool for replica creation is shown in Figure 4.6. 

HDD and HAD segment the whole data pool in four different situations as shown in 

Figure 4.6 and the four different situations can be described in Table 4.2. 

Table 4.2 Four different data situations 

Situations Data belongs to … 

High data dependency but low access 

frequency 

HDD but not in HAD 

High access frequency but low data 

dependency 

HAD but not in HDD 

High data dependency and high access 

frequency 

Both HDD and HAD 

Low data dependency and low access 

frequency 

Not in both HDD and HAD 

4.2.4 Recommended value of ∅ 

This replica creation strategy is also a cost efficiency driven strategy which aims to 

achieve the optimal cost efficiency performance in terms of the cost reduction per 

replica. A recommended value of the access frequency threshold value ∅  will be 

returned when the result of the following Eq. 4.12 is optimal, where 𝑇𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 denotes 

the total cost when there is no replica creation strategy applied, and 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and 

𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡  denote the current total cost value and the current number of replicas, 

respectively, when the access frequency threshold value ∅ stays at a specific value. A 

cost efficiency evaluation parameter 𝐶𝐸 is introduced to evaluate the cost efficiency in 

terms of the cost reduction per replica, which can be calculated as in Eq. 4.12. It means 

the cost reduction per replica is optimal when 𝐶𝐸 is maximum value at a specific value 
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of ∅. Then, this value of ∅ can be returned as the recommended value of ∅. 

                                                    𝐶𝐸 = 
𝑇𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡
                                           (4.12) 

4.2.5 Replica creation algorithms 

Two algorithms are proposed in this cloud map oriented and cost efficiency driven 

replica creation strategy. Algorithm 4.2 aims to control the replica creation process for 

each eligible data candidate. It can also contribute to obtaining the recommended value 

of ∅. Firstly, the array 𝑟𝑒𝑐[] for storing the recommended value ∅ and the array 𝑒𝑣𝑎[] 

for storing the evaluation parameter 𝐶𝐸 will be created at Line 1. The size of these two 

arrays is set to 1 at Line 2. Then 𝑟𝑒𝑐[] will be emptied and 𝑒𝑣𝑎[0] will be initially set to 

0 at Line 3.  

Then ∅ is dynamically changed from 0 to 𝑁𝑢𝑚(𝐷) by stepping a self-defined increment 

at Line 4 to evaluate the cost reduction per replica under each ∅. For each ∅, Algorithm 

4.3 is initiated to identify all eligible data for replica creation at Line 5. After that, the 

new replicas for all eligible data are created at Line 6 and they are placed to their 

relevant task locations at Line 7 by adopting the same replica placement method 

proposed in Section 4.1. The number of replicas will be counted at Line 8. 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

and 𝑇𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 will also be calculated at Line 9. Finally, the evaluation parameter 𝐶𝐸 will 

be calculated at Line 10 for each ∅ . The comparison between 𝐶𝐸  and 𝑒𝑣𝑎[]  is 

conducted from Line 11 to Line 16. If 𝐶𝐸 > 𝑒𝑣𝑎[] then, 𝐶𝐸 will be replaced into 𝑒𝑣𝑎[] 

at Line 12 and its corresponding ∅ will be loaded into 𝑟𝑒𝑐[] at Line 13. At the same 

time, the corresponding current number of replicas 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡  will be recorded and 

updated at Line 14. Otherwise, if 𝐶𝐸 ≤ 𝑒𝑣𝑎[], ∅ will be changed to the next step at 

Line 16. ∅  will be increased by following its step at Line 16 until all cases of ∅ 

completed from 0 to 𝑁𝑢𝑚(𝐷). Then 𝑒𝑣𝑎[], 𝑟𝑒𝑐[] and 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 will be loaded at Line 

19. The ∅ value in 𝑟𝑒𝑐[] will be marked as the recommended value at Line 20. Finally, 
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the recommended value of ∅ from 𝑟𝑒𝑐[] and the number of replicas from 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 will 

be returned at Line 21 and Line 22. The time complexity of Algorithm 4.2 is O(𝑛). 

Algorithm 4.2: Replica Creation and Recommendation Value Analysis Algorithm  

Input: 𝐷𝐶, 𝐷, 𝐶𝑆𝑃,  

Output: The recommended value of ∅, the number of replicas 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

1.  Initialization { Create 𝑟𝑒𝑐[] and 𝑒𝑣𝑎[]  

2.                            Set 𝑆𝑖𝑧𝑒𝑜𝑓𝑟𝑒𝑐[] = 1 and 𝑆𝑖𝑧𝑒𝑜𝑓𝑒𝑣𝑎[] = 1  

3.                            Empty 𝑟𝑒𝑐[] and set 𝑒𝑣𝑎[0] = 0 } 

4.       for ∅ = 0, ∅ ≤ 𝑁𝑢𝑚(𝐷) , ∅ + +    

5.           Do Algorithm 4.3 

6.           Create new replicas for all eligible data 

7.           Place all replicas to corresponding relevant task locations 

8.           Count the number of replicas 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

9.           Calculate 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑇𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙 

10.         Calculate 𝐶𝐸  

11.         if 𝐶𝐸 > 𝑒𝑣𝑎[] 

12.             Replace 𝐶𝐸 into 𝑒𝑣𝑎[] 

13.             Load current ∅ into 𝑟𝑒𝑐[] 

14.             Record and update 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

15.         else  

16.             ∅ + + 

17.         end if 

18.     end for 

19. Load 𝑒𝑣𝑎[], 𝑟𝑒𝑐[] and 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

20. Mark 𝑟𝑒𝑐[] as the recommended value 

21. Return the recommended value of ∅ from 𝑟𝑒𝑐[] 

22. Return the number of replicas 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

Algorithm 4.3 aims to identify the eligible data for replica creation, which will be 

iteratively executed at Line 3 in Algorithm 1 until all eligible data are returned. In 

Algorithm 4.3, the locations of all data are located at Line 1. Then 𝐴𝐹𝑡𝑜𝑡𝑎𝑙  and 

𝐴𝐹𝑎𝑣𝑔will be calculated by collecting the access frequency of each data in 𝐷 at Line 2. 
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Then the eligible data will be identified for each data 𝑑 ∈ 𝐷 from Line 3 to Line 19. All 

data dependencies for the data 𝑑 are calculated at Line 4. The access frequency of the 

data 𝑑 will also be collected at Line 4. Then the location of 𝑑 will be loaded at Line 5. 

W-DCD(𝑑) and B-DCD(𝑑) will be calculated by the function 𝐷𝐶𝐷(𝑑𝑐, 𝑑) at Line 6 

based on the location of 𝑑. Then the function 𝐷𝑒𝑝𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑) will be used to compare 

between W-DCD(𝑑) and B-DCD(𝑑) at Line 7. The data 𝑑 will be added into HDD if 

B-DCD(𝑑) > W-DCD(𝑑) from Line 8 to Line 10. The data access frequency will also 

be compared by the function 𝐴𝐹𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑) at Line 11. The data 𝑑 will be added into 

HAD if 𝐴𝐹(𝑑) > ∅ * 𝐴𝑇𝑎𝑣𝑔 from Line 12 to Line 14. After that if the data 𝑑 belongs to 

both HDD and HAD, it will be marked as an eligible data for replica creation at Line 

16. All eligible data for replica creation will be returned to the output at Line 19. The 

time complexity of Algorithm 4.3 is O(𝑙𝑜𝑔2𝑛). 

Algorithm 4.3: Eligible Data Identification for Replica Creation 

Input: 𝐷𝐶, 𝐷, 𝐶𝑆𝑃, ∅ 

Output: All eligible data 

1.  Locate the location of all data 

2.  Calculate 𝐴𝐹𝑡𝑜𝑡𝑎𝑙 and 𝐴𝐹𝑎𝑣𝑔 

3.  for each 𝑑 in 𝐷 

4.     Calculate all data dependencies for 𝑑 and collect 𝐴𝐹(𝑑) 

5.           Load 𝑑𝑐 in 𝐷𝐶 where 𝑑 located 

6.           Calculate W-DCD(𝑑) and B-DCD(𝑑) by function 𝐷𝐶𝐷(𝑑𝑐, 𝑑) 

7.           𝐷𝑒𝑝𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑) 

8.                while B-DCD(𝑑) > W-DCD(𝑑) 

9.                        Add 𝑑 to HDD 
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10.              end while  

11.         𝐴𝐹𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑) 

12.              while 𝐴𝐹(𝑑) > ∅ * 𝐴𝑇𝑎𝑣𝑔 

13..                    Add 𝑑 to HAD 

14.               end while 

15.               if 𝑑 ∈ {HDD ∩ HAD} 

16.                    Label 𝑑 as an eligible data for replica creation 

17.               end if  

18. end for 

19. Return all eligible data 

4.2.6 Simulations 

4.2.6.1 Simulation settings 

Three scientific workflows are performed in different sizes, namely 25 nodes Montage 

workflow, 30 nodes CyberShake workflow, and 30 nodes LIGO Inspiral workflow, to 

simulate the effectiveness of the proposed cloud map oriented and cost efficiency driven 

replica creation strategy. These three types of scientific workflows are referenced and 

adjusted from [10]. 

To evaluate the performance of the proposed cloud map oriented and cost efficiency 

driven replica creation strategy, two simulations are conducted on CloudSim. The first 

simulation aims to test the total cost performance with and without the proposed cloud 

map oriented and cost efficiency driven replica creation strategy in all three types of 

scientific workflows. The second simulation aims to identify the recommended value of 

the access frequency threshold ∅ in order to achieve the optimal cost reduction per 

replica performance for the three types of scientific workflows, respectively. 

The data items of the Montage workflow are shown in Table 4.3. The applied Montage 
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workflow has 18 data and 25 tasks. The data items of the CyberShake workflow are 

shown in Table 4.4. The applied CyberShake workflow has 5 data and 30 tasks. The 

data items of the LIGO Inspiral workflow are shown in Table 4.5. The applied 

CyberShake workflow has 8 data and 30 tasks. 

Table 4.3 The data items of the Montage workflow 

Data number Access frequency Data size 

𝑑1 1 0.29 

𝑑2 45 4000 

𝑑3 45 4000 

𝑑4 45 4000 

𝑑5 45 4000 

𝑑6 45 4000 

𝑑7 107 0.26 

𝑑8 107 270 

𝑑9 1 7.2 

𝑑10 1 2.3 

𝑑11 1 2.8 

𝑑12 1 21 

𝑑13 1 12 

𝑑14 1 7.2 

𝑑15 1 165430 

𝑑16 1 165430 

𝑑17 1 6600 

𝑑18 1 320 
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Table 4.4 The data items of the CyberShake workflow 

Data number Access frequency Data size 

𝑑1 90 220 

𝑑2 572 5500 

𝑑3 574 0.3 

𝑑4 200 2000 

𝑑5 1 2100 

Table 4.5 The data items of the LIGO Inspiral workflow 

Data number Data access frequency Data size 

𝑑1 42 800 

𝑑2 84 150 

𝑑3 42 8600 

𝑑4 14 230 

𝑑5 79 300 

𝑑6 14 320 

𝑑7 35 940 

𝑑8 42 1200 

The pricing model of four real cloud service providers including Amazon, Microsoft, 

AT&T, and Google are applied, as shown in Table 4.6. The data storage cost rate and 

the data transfer cost rate are included in the pricing model of these four real cloud 

service providers. 

Besides, the cost model proposed in Section 4.1 is followed as abovementioned. Apart 

from that, the data storage time interval for each data is set to 1 for the cost calculation 

convenience in order to make the data storage time interval consistent in each cloud 
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service provider. 

Table 4.6 The pricing model of the cloud service providers 

Cloud service provider Storage service Storage price (per data 

unit) 

Amazon Amazon S3 0.025 

Microsoft Microsoft Azure 0.034 

AT&T AT&T Cloud Storage 0.040 

Google Google Cloud Storage 0.026 

Data transfer cost 0.070 per data unit 

4.2.6.2 Simulation results 

In Simulation 1, four comparative scenarios on all three scientific workflows are tested. 

As shown in Figure 4.7, it is evident that the proposed cloud map oriented and cost 

efficiency driven replica creation strategy can significantly decrease the total cost of all 

three scientific workflows in Scenario 1 in comparison with all other three comparative 

scenarios. The four comparative scenarios are listed as follows.  

• Scenario 1: The proposed replica creation strategy applied. 

• Scenario 2: No replication strategy applied. 

• Scenario 3: Only data dependency constraint applied. 

• Scenario 4: Only data access times constraint applied. 

The proposed cloud map oriented and cost efficiency driven replica creation strategy in 

Scenario 1 has 94.12%, 99.10%, and 69.91% total cost reduction on the Montage 

workflow, the CyberShake workflow, and the LIGO Inspiral workflow, respectively, in 

comparison with the Montage workflow, the CyberShake workflow, and the LIGO 

Inspiral workflow under Scenario 2. Besides, the proposed cloud map oriented and cost 

efficiency driven replica creation strategy in Scenario 1 has 40.11% and 92.49% total 
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cost reduction on the Montage workflow and the CyberShake workflow, respectively, in 

comparison with the Montage workflow and the CyberShake workflow under Scenario 

3. The proposed cloud map oriented and cost efficiency driven replica creation strategy 

in Scenario 1 achieves almost equal total cost in comparison with the LIGO Inspiral 

workflow under Scenario 3. Apart from that, the proposed cloud map oriented and cost 

efficiency driven replica creation strategy in Scenario 1 has 31.41%, 92.80%, and 

67.32% total cost reduction on the Montage workflow, the CyberShake workflow, and 

the LIGO Inspiral workflow, respectively, in comparison with the Montage workflow, 

the CyberShake workflow, and the LIGO Inspiral workflow under Scenario 4. 

 

Figure 4.7 The result of simulation 1 

In Simulation 2, the access frequency threshold Ø is dynamically changed by a self-

defined increment 0.001 in order to view the impact on the number of replicas and the 

total cost. The simulation 2 results are shown in Figure 4.8, Figure 4.9, and Figure 4.10. 

The values of Ø, which corresponds to the change points of the cost reduction per 

replica, are shown in these figures. As shown in Figure 4.8, there is a clear fluctuation 

on the total cost and the number of replicas when the value of Ø dynamically increases 

from 0 to 18 in the Montage workflow. It is recommended that the cost reduction per 

replica 𝐶𝐸 remains at a maximum level when Ø stays at 2.3 in the Montage workflow.  
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Figure 4.8 The result of the Montage workflow in Simulation 2 

 

Figure 4.9 The result of the CyberShake workflow in Simulation 2 

Similarly, the recommended value of Ø for the CyberShake workflow and the LIGO 

Inspiral workflow can be identified in Figure 4.9 and Figure 4.10, respectively. The 

value of Ø dynamically increases from 0 to 5 in the CyberShake workflow. The value of 
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Ø dynamically increases from 0 to 8 in the LIGO Inspiral workflow. It is recommended 

that the cost reduction per replica 𝐶𝐸 exists at a maximum level when Ø stays at 0.79 in 

the CyberShake workflow and when Ø stays at 0.95 in the LIGO Inspiral workflow. 

 

Figure 4.10 The result of the LIGO Inspiral workflow in Simulation 2 

4.3 Network Performance Based Replica Selection 

As described in the last two replica creation strategies in Section 4.1 and 4.2, replica 

creation is a significant process to create multiple data copies at multiple data centres. 

By applying the replica creation strategy, the cloud performance can be improved, as 

proved in Section 4.1 and Section 4.2. According to the literature in Chapter 2, the 

cloud performance can be further improved by applying the replica selection strategy. 

The replica selection strategy can guide the tasks to access the optimal data replica. 

Although the existing research has made significant progress in the replica selection 

strategies, there are still some research gaps to be filled. Most of the current replica 

selection strategies focus on how to select a data replica to access without consideration 
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of the impacts among multiple concurrent-running cloud application instances under 

limited network capability. In particular, some of the current research might not be 

suitable to address the scenario when the increased number of cloud application 

instances and data access needs result in overloading in certain parts of the network. 

Thus, those replica selection strategies might not be able to perform well in the cloud 

environment with heavy workloads. Besides, most of the current data replication 

strategies model the network performance metrics in an isolated way. It may lose the 

comprehensiveness of evaluating the overall network performance. 

To address the problems mentioned above, a network performance oriented replica 

selection strategy (NPRS) is proposed to avoid the potential network overloading 

problems. It also aims to increase the number of concurrent-running cloud application 

instances at the same time. Three common network performance metrics are applied to 

measure the network performance to generate the optimal replica selection solution. The 

replica selection decision for a single cloud application instance is made in the context 

of multiple concurrent-running cloud application instances with consideration of their 

access needs to different data replicas and their impacts on the network resource. The 

final replica selection decision may be one of the following: 

• Find the best replica for a data access request to access 

• Recreate a new replica for the required replica to access 

4.3.1 System modelling  

In this NPRS strategy, three network performance metrics are used to evaluate the 

overall network performance in the cloud environment and further support the replica 

selection decision making. Network latency, available network resource, and error rate 

are considered as three major network performance metrics. The network latency 

depends on a variety of factors including the data transmission speed of the network 
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path, the nature of the transmission medium, the physical distance between two 

locations, the size of the transferred data, the number of other data transmission requests 

being handled concurrently, etc. It is usually measured as either one-way delay or 

round-trip delay. The round-trip delay is commonly quoted by network managers for the 

reason that it can be measured from a single point. Ping value has been widely used to 

measure the round-trip delay. To simplify the problem in this research, the network 

latency of a data centre 𝑑𝑐 ∈ 𝐷𝐶, 𝑁𝐿(𝑑𝑐), is modelled as a constant value. 

The bandwidth is adopted to represent the network resource in this research because it is 

one of the most common network performance metrics to measure the network resource 

in the past literature. The bandwidth consumption of a specific data centre 𝑑𝑐 ∈ 𝐷𝐶, 

𝐵𝐶(𝑑𝑐), can be calculated using the equation in Eq. 4.13, where 𝐽𝑑𝑐 is the set of tasks 

accessing this data centre 𝑑𝑐, 𝑆𝑖𝑧𝑒(𝑗𝑑𝑐) is the size of the data that is requested by a task 

𝑗𝑑𝑐 ∈ 𝐽𝑑𝑐, and 𝐿𝑒𝑛(𝑗𝑑𝑐) denotes the task execution duration of the task 𝑗𝑑𝑐. 

                                           𝐵𝐶(𝑑𝑐) = ∑
𝑆𝑖𝑧𝑒(𝑗𝑑𝑐)

𝐿𝑒𝑛(𝑗𝑑𝑐)𝑗𝑑𝑐∈ 𝐽𝑑𝑐                                             (4.13) 

Similarly, the bandwidth consumption of a specific data 𝑑 ∈ 𝐷 being accessed, 𝐵𝐶(𝑑), 

can be calculated as in Eq. 4.14, where 𝐴𝐶𝐿𝑒𝑛(𝑑) denotes the maximum time length of 

the data 𝑑 being accessed by its relevant tasks. 

                                                   𝐵𝐶(𝑑) = 
𝑆𝑖𝑧𝑒(𝑑)

𝐴𝐶𝐿𝑒𝑛(𝑑)
                                                     (4.14) 

Then the available bandwidth of the data centre 𝑑𝑐, 𝐴𝐵(𝑑𝑐), refers to the difference 

between the maximum bandwidth of this data centre 𝑚𝑎𝑥𝐵(𝑑𝑐)  and the current 

bandwidth consumption in this data centre 𝐵𝐶(𝑑𝑐), which can be presented as in Eq. 

4.15. 

                                        𝐴𝐵(𝑑𝑐) = 𝑚𝑎𝑥𝐵(𝑑𝑐) - 𝐵𝐶(𝑑𝑐)                                        (4.15) 

The error rate is also a significant parameter to evaluate the network performance 
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because a network with a lower error rate is always greater to use than a network with a 

higher error rate. The error rate of the data centre 𝑑𝑐 ∈ 𝐷𝐶, 𝐸𝑅(𝑑𝑐), refers to the ratio 

of the total number of transmitted data units in error to the total number of transmitted 

data units, which can be represented as in Eq. 4.16. 

                          𝐸𝑅(𝑑𝑐) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑒𝑟𝑟𝑜𝑟

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑢𝑛𝑖𝑡𝑠
                    (4.16) 

4.3.2 Network performance based replica selection (NPRS) strategy 

4.3.2.1 NPRS replica selection strategy 

The proposed network performance based replica selection (NPRS) strategy is an 

evaluation method to the overall cloud network performance by applying three network 

performance metrics mentioned in Section 4.3.1 to select the best replica site to access. 

The Min-Max normalisation method is applied in the proposed NPRS strategy to 

develop a comprehensive evaluation among different network performance metrics. 

Three weighted parameters are developed to configure the network performance 

metrics. 𝑊𝐴𝐵
𝑑𝑐 denotes the weight of the available bandwidth metric of the data centre 

𝑑𝑐, 𝑊𝑁𝐿
𝑑𝑐 denotes the weight of the network latency metric of the data centre 𝑑𝑐, and 

𝑊𝐸𝑅
𝑑𝑐 denotes the weight of the error rate metric of the data centre 𝑑𝑐. The final weight 

of this data centre 𝑑𝑐, 𝐹𝑊(𝑑𝑐), can be formulated in Eq. 4.17, where 𝑁𝐶𝐴𝐵
𝑑𝑐 denotes the 

normalisation component of the available bandwidth metric of the data centre 𝑑𝑐, 𝑁𝐶𝑁𝐿
𝑑𝑐 

denotes the normalisation component of the network latency metric of the data centre 

𝑑𝑐, and 𝑁𝐶𝐸𝑅
𝑑𝑐 denotes the normalisation component of the error rate metric of the data 

centre 𝑑𝑐. For a request to access a data that has replicas at multiple data centres, the 

data centre with the maximum final weight value will be selected as the optimal data 

access route. Tie-breaking is done randomly. 

                         {
𝐹𝑊(𝑑𝑐) = 𝑊𝐴𝐵

𝑑𝑐 ∗ 𝑁𝐶𝐴𝐵
𝑑𝑐 +𝑊𝑁𝐿

𝑑𝑐 ∗ 𝑁𝐶𝑁𝐿
𝑑𝑐 +𝑊𝐸𝑅

𝑑𝑐 ∗ 𝑁𝐶𝐸𝑅
𝑑𝑐

𝑊𝐴𝐵
𝑑𝑐 +𝑊𝑁𝐿

𝑑𝑐 +𝑊𝐸𝑅
𝑑𝑐 = 1

               (4.17) 
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All of these three network performance metrics have big impact on network 

performance. However, different network performance metrics should be treated in 

different ways depending on their own nature. The available bandwidth metric with the 

highest value should be the best case while the network latency metric and the error rate 

metric with the highest value should be the worst case. Hence, the normalisation 

processes of three network performance metrics can be formulated for a specific data 

centre 𝑑𝑐𝑧 ∈ 𝐷𝐶 as in Eq. 4.18, Eq. 4.19, and Eq. 4.20, respectively.  

                                      𝑁𝐶𝐴𝐵
𝑑𝑐𝑧 = 

𝐴𝐵(𝑑𝑐𝑧) − 𝑚𝑖𝑛{𝐴𝐵(𝑑𝑐)}

𝑚𝑎𝑥{𝐴𝐵(𝑑𝑐)} − 𝑚𝑖𝑛{𝐴𝐵(𝑑𝑐)}
; 𝑑𝑐 ∈ 𝐷𝐶                        (4.18) 

                                      𝑁𝐶𝑁𝐿
𝑑𝑐𝑧 = 

𝑚𝑎𝑥{𝑁𝐿(𝑑𝑐)} − 𝑁𝐿(𝑑𝑐𝑧)

𝑚𝑎𝑥{𝑁𝐿(𝑑𝑐)} − 𝑚𝑖𝑛 {𝑁𝐿(𝑑𝑐)}
; 𝑑𝑐 ∈ 𝐷𝐶                        (4.19) 

                                      𝑁𝐶𝐸𝑅
𝑑𝑐𝑧 = 

𝑚𝑎𝑥{𝐸𝑅(𝑑𝑐)} − 𝐸𝑅(𝑑𝑐𝑧)

𝑚𝑎𝑥{𝐸𝑅(𝑑𝑐)} − 𝑚𝑖𝑛{𝐸𝑅(𝑑𝑐)}
; 𝑑𝑐 ∈ 𝐷𝐶                        (4.20) 

4.3.2.2 Replica re-creation mechanism 

In this research, the initial replica creation and placement is assumed that it is already 

completed by applying the same rule to the proposed replica creation strategies in 

Section 4.1 or Section 4.2. 

The proposed replica re-creation mechanism in the NPRS strategy will be initiated when 

the loss of replica availability occurs due to network overloading issues. A new replica 

of the required data will be re-created by considering the resource load at the data 

centres. Firstly, the required data to be replicated should be FlexD as mentioned in 

Section 4.1. Then a set of eligible data centres which meet the resource requirement of 

the required data are identified. The eligible data centres with sufficient resources will 

be sorted based on their current resource in descending order. The eligible data centre 

with the largest available resource will be chosen to create the new replica by copying a 

new required replica from the nearest replica-ready data centre. Tie-breaking is done 

randomly. 
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4.3.2.3 NPRS algorithm 

The NPRS algorithm is a nested algorithm that contains two algorithms, the NPRS 

replica selection algorithm and the NPRS replica re-creation algorithm. The NPRS 

replica selection algorithm and the NPRS replica re-creation algorithm collaboratively 

determine the optimal data access route for each data request. The NPRS replica 

selection algorithm is shown in Algorithm 4.4. Line 2 maps all required data in 𝐷 to the 

data requests from the task 𝑗 in 𝐽, and those required data will be added into an array for 

listing the required data 𝑟𝑑[]. Each element in 𝑟𝑑[] will be tried to identify its optimal 

data access route 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 for the task 𝑗 from Line 3 to Line 23. For each element 

𝑟𝑑[𝑣] in 𝑟𝑑[], all replica-ready data centres are mapped to 𝑟𝑑[𝑣] and add into a new 

array for the replica-ready data centre list 𝑟𝑟[] at Line 4. For each element 𝑟𝑟[𝑢] in 

𝑟𝑟[], if the available bandwidth of 𝑟𝑟[𝑢] satisfies the condition in Line 6, 𝐹𝑊(𝑟𝑟[𝑢]) 

will be calculated in Line 7 under Eq. 4.17. Then it will be added into a new array 𝑓𝑤[] 

for listing the final weight including different weights of the elements in 𝑟𝑟[] at Line 8. 

Otherwise, the algorithm will move to the next element in 𝑟𝑟[] at Line 10. The capacity 

of 𝑓𝑤[] will be checked at Line 13. If the capacity of 𝑓𝑤[] is empty, then the NPRS 

replica re-creation algorithm will be initiated at Line 14. Otherwise, the new array 𝑓𝑤[] 

will be sorted by the Reverse QuickSort algorithm at Line 16 and then 𝑓𝑤[0] will be 

mapped to its corresponding value 𝑓𝑤(𝑟𝑟[𝑤]) at Line 17. Then the optimal replica 

selection route 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒  will be generated from Line 18 to Line 19 to guide the 

optimal data access route for the task 𝑗. After that, 𝑓𝑤[] and 𝑟𝑟[] will be emptied at 

Line 20 and then the algorithm will be move to the next element in 𝑟𝑑[] at Line 21 until 

the replica selection solution of all elements in 𝑟𝑑[] is founded. The replica selection 

solution for all tasks in 𝐽 can be worked out by iteratively run Algorithm 4.4 from Line 

1 to Line 24. The time complexity of Algorithm 4.4 is O(𝑛2). 
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Algorithm 4.4: NPRS Replica Selection 

Input: 𝐷, 𝐷𝐶, 𝐽 

Output: Optimal data access route 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 

1.  for each 𝑗 in 𝐽 

2.       Map all required data to 𝑗 and add all required data into 𝑟𝑑[] 

3.       for 𝑟𝑑[𝑣] in 𝑅𝐷[], 𝑣 = 0, 𝑣 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑟𝑑[]) 

4.                Map the replica-ready locations to 𝑟𝑑[𝑣] and add into 𝑟𝑟[] 

5.                for 𝑟𝑟[𝑢] in 𝑟𝑟[], 𝑢 = 0, 𝑢 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑟𝑟[]) 

6.                        if 𝐴𝐵(𝑟𝑟[𝑢]) ≥ 𝐵𝐶(𝑟𝑑[𝑣]) 

7.                               𝐹𝑊(𝑟𝑟[𝑢]) under Eq. 4.17 

8.                               Add 𝐹𝑊(𝑟𝑟[𝑢]) → 𝑓𝑤[] 

9.                        else  

10.                             𝑢 + + 

11.                      end if           

12.              end for 

13.              if 𝑓𝑤[] = 𝑁𝑈𝐿𝐿 

14.                      Do Algorithm 4.5 

15.              else 

16.                      Reverse QuickSort 𝑓𝑤[] 

17.                      Map 𝑓𝑤[0] →  𝐹𝑊(𝑟𝑟[𝑤]) 

18.                      Load 𝑟𝑑[𝑣], 𝑟𝑟[𝑤] and 𝑗 

19.                      Return 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 = {𝑟𝑑[𝑣], 𝑟𝑟[𝑤], 𝑗} 

20.                      Empty 𝑓𝑤[] and 𝑟𝑟[] 

21.                      𝑣 + + 

22.              end if 

23.     end for 

24. end for 

The proposed Algorithm 4.5 is used to identify a suitable data centre to re-create a new 

data replica for the required data because of the availability loss of the required data. In 

Algorithm 4.5, Line 1 identifies the qualified data centres where do not have the 

required data replica and add them into a new array 𝑞𝑢𝑎𝑙[]. Then, from Line 2 to Line 
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9, the qualified data centres in 𝑞𝑢𝑎𝑙[]  will be checked their available bandwidth 

situations in comparison with the bandwidth consumption of the input data 𝑟𝑑[𝑣] from 

Algorithm 4.4. If the resource utilisation condition is satisfied at Line 3, then the 

qualified data centre will be added into a new array 𝑒𝑙𝑖𝑔[] for collecting the eligible 

data centres for replica re-creation. Otherwise, the next qualified data centre in 𝑞𝑢𝑎𝑙[] 

will be checked.  

After the checking of the resource consumption condition, the capacity of the array 

𝑒𝑙𝑖𝑔[] will be further checked from Line 10 to Line 25. If the capacity of 𝑒𝑙𝑖𝑔[] is 

empty, then the array 𝑞𝑢𝑎𝑙[] will be emptied and the algorithm will back to Line 3 in 

Algorithm 4.4 to process the next element in 𝑟𝑑[]. Otherwise, the available bandwidth 

value will be mapped to each element in 𝑒𝑙𝑖𝑔[] at Line 14. Then it will be added to a 

new array 𝑎𝑏[]  for storing the available bandwidth information of the eligible data 

centres in 𝑒𝑙𝑖𝑔[]  at Line 15. The new array 𝑎𝑏[]  will be sorted by the Reverse 

QuickSort algorithm at Line 17 and then 𝑎𝑏[0] will be mapped to its corresponding 

value 𝑒𝑙𝑖𝑔[𝑟] in 𝑒𝑙𝑖𝑔[] at Line 18. Then the optimal replica re-creation route 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 

will be generated from Line 19 to Line 21 to make the replica re-creation to enable the 

data access for the task 𝑗. After that, 𝑞𝑢𝑎𝑙[], 𝑒𝑙𝑖𝑔[], and 𝑎𝑏[] will be emptied at Line 22 

and 𝑓𝑤[] and 𝑟𝑟[] will also be emptied in Algorithm 4.4, at Line 23 in Algorithm 4.5. 

At the same time, the algorithm will be move to the next element in 𝑟𝑑[] at Line 3 in 

Algorithm 4.4 at Line 24. The time complexity of Algorithm 4.5 is O(𝑛). 

Algorithm 4.5: NPRS Replica Re-Creation 

Input: 𝑟𝑟[], 𝑟𝑑[𝑣] 

Output: Optimal data access route 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 

1.   Remove 𝑟𝑟[] from 𝐷𝐶 and add the rest 𝐷𝐶 into 𝑞𝑢𝑎𝑙[] 

2.   for 𝑞𝑢𝑎𝑙[𝑐], 𝑐 = 0, 𝑐 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑞𝑢𝑎𝑙[]) do 

3.          if 𝐵𝐶(𝑟𝑑[𝑣]) ≤ 𝐴𝐵(𝑞𝑢𝑎𝑙[𝑐]) 
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4.                    Add 𝑞𝑢𝑎𝑙[𝑐] → 𝑒𝑙𝑖𝑔[] 

5.                    𝑐 + + 

6.          else 

7.                    𝑐 + + 

8.          end if 

9.   end for 

10. if 𝑒𝑙𝑖𝑔[] = 𝑁𝑈𝐿𝐿 

11.       Empty 𝑞𝑢𝑎𝑙[] and 𝑣 + + at Line 3 in Algorithm 4.4 

12. else 

13.        for each element in 𝑒𝑙𝑖𝑔[] do 

14.               Map 𝐴𝐵(𝑒𝑙𝑖𝑔[]) → 𝑒𝑙𝑖𝑔[] 

15.               Add 𝐴𝐵(𝑒𝑙𝑖𝑔[]) → 𝑎𝑏[] 

16.        end for 

17.        Reverse QuickSort 𝑎𝑏[]     

18.        Map 𝑎𝑏[0] → 𝑒𝑙𝑖𝑔[𝑟] 

19.        Load 𝑟𝑑[𝑣] and 𝑒𝑙𝑖𝑔[𝑟] 

20.        Load 𝑗 from Algorithm 4.4 

21.        Return 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 = {𝑟𝑑[𝑣], 𝑒𝑙𝑖𝑔[𝑟], 𝑗} 

22.        Empty 𝑞𝑢𝑎𝑙[], 𝑒𝑙𝑖𝑔[], and 𝑎𝑏[] 

23.        Empty 𝑓𝑤[] and 𝑟𝑟[] in Algorithm 4.4 

24.        𝑣 + + at Line 3 in Algorithm 4.4 

25. end if 

4.3.3 Simulations 

To evaluate the effectiveness of the proposed NPRS strategy, three simulations under 

three different scenarios are performed on OMNeT++ 5.4.1. OMNeT++ is an 

extensible, modular, component-based C++ simulation library and framework, primarily 

for building network simulators [41][86]. 

The comparison between the proposed NPRS strategy and the least response time 

replica selection algorithm [42] is performed in all three simulations. The Montage 

scientific workflow and the LEAD Mesoscale Meteorology workflow are applied as the 

input cloud application instances.  
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In Simulation 1 and Simulation 2, a total of 25 workflow instances in a single workflow 

type are executed. While in Simulation 3, 25 instances of each workflow type are 

executed. All of the data settings of the Montage scientific workflow and the LEAD 

Mesoscale Meteorology workflow are referenced and adjusted from [10] and [43]. 

Table 4.7 The network latency of each data centre 

Data Centre Network Latency (ms) 

𝑑𝑐1 40 

𝑑𝑐2 100 

𝑑𝑐3 25 

𝑑𝑐4 150 

𝑑𝑐5 200 

𝑑𝑐6 250 

𝑑𝑐7 50 

A multi-cloud environment is constructed, including 3 different cloud service providers 

with a total of 7 data centres. The traditional three-replica placement strategy has been 

applied to this simulation environment. The network bandwidth in each data centre is 

set to 100 Gbps with a 100 Gigabit Ethernet network connection. The network latency 

of each data centre is shown in Table 4.7. 

Several assumptions are made for the following simulations. Firstly, all cloud 

application instances are requested by a single user to keep a consistent view of the 

network latency in all three simulations. Secondly, the network performance evaluation 

metrics are assumed to be collectable in the network. Thirdly, 𝑊𝐸𝑅 is set to 0 because 

the network is assumed to be performed well in this simulation environment, which 

aims to simplify the problem. The network with a certain error rate will also be tested in 

the following chapters.  
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4.3.5.1 Simulation 1 – Synchronous instance input 

In Simulation 1, the Montage workflow instances are synchronously input into the 

simulation environment. 𝑊𝑁𝐿 and 𝑊𝐴𝐵 are randomly set to 50% and 50%, respectively. 

Then the proposed NPRS algorithm is compared to the least response time replica 

selection algorithm to test the network bandwidth changes and the number of 

concurrent-running workflow instances. 

 

Figure 4.11 Simulation result 1 – Synchronous instance input 

The result of Simulation 1 is shown in Figure 4.11. Along with the synchronous 
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instance input, the least response time replica selection algorithm has a sharp bandwidth 

utilisation increase in some data centres in the simulation environment when the number 

of concurrent-running workflow instances is before 10. Then those data centres will 

encounter the network overloading problem when the number of concurrent-running 

workflow instances reaches 10. The number of concurrent-running workflow instances 

peaks at 10 by applying the least response time algorithm.  

Differently, the proposed NPRS strategy has a milder bandwidth utilisation increase 

before 20 concurrent-running workflow instances and then peaks the number of 

concurrent-running workflow instances at 20. Therefore, it is evident that the proposed 

NPRS strategy can significantly increase the number of concurrent-running workflow 

instances and balance the network utilisation when the workflow instances are 

synchronously input. 

4.3.5.2 Simulation 2 – Asynchronous instance input 

In Simulation 2, the Montage scientific workflow instances are asynchronously input 

into the simulation environment for testing the proposed NPRS replica selection 

strategy and the least response time replica selection algorithm. The instances will be 

input into the simulation environment one by one. In Simulation 2, 𝑊𝑁𝐿 and 𝑊𝐴𝐵 are 

randomly set to 10% and 90%, respectively. 

Along with the asynchronous instance input, the least response time replica selection 

algorithm still has a sharp bandwidth utilisation increase in some data centres when the 

number of concurrent-running workflow instances is before 10. Then those data centres 

will encounter the network overloading problem when the number of concurrent-

running workflow instances reaches 10. The number of concurrent-running workflow 

instances still peaks at 10 by applying the least response time algorithm. Differently, the 

proposed NPRS strategy has a milder bandwidth utilisation increase before 14 
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concurrent-running workflow instances and then still peaks the number of concurrent-

running workflow instances at 14. Therefore, it is clear that the proposed NPRS strategy 

can still increase the number of concurrent-running workflow instances and balance the 

network utilisation when the workflow instances are asynchronously input. 

 

Figure 4.12 Simulation result 2 – Asynchronous instance input 
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Figure 4.13 Simulation result 3 – Iterative input with instance group 

4.3.5.3 Simulation 3 – Iterative input with instance group 

In Simulation 3, the workflow instance group including both the Montage workflow 

instances and the LEAD Mesoscale Meteorology workflow instances are iteratively 

input for testing the proposed NPRS strategy and the least response time replica 

selection algorithm. The workflow instance group is input into the simulation 

environment one group by one group. Each workflow instance group contains one 
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Montage workflow instance and one LEAD workflow instance. The parameter setting in 

Simulation 3 is same to Simulation 1. The result of Simulation 3 is shown in Figure 

4.13.  

Along with the iterative instance input of the workflow instance group, the least 

response time algorithm peaks the number of concurrent-running workflow instance 

groups at 9. The proposed NPRS strategy peaks the number of concurrent-running 

workflow instances when the number of concurrent-running workflow instance groups 

reaches 13. Therefore, the proposed NPRS strategy can also significantly increase the 

number of concurrent-running workflow instance groups. At the same time, the 

proposed NPRS strategy still has better and more balanced bandwidth usage in 

comparison with the least response time replica selection algorithm, as shown in Figure 

4.13. 

4.4 Summary 

In Chapter 4, two replica creation strategies and one replica selection strategy are 

proposed for creating, placing, and selecting the data replicas. The replica placement 

rule is included in the first two replica creation strategies. In Section 4.1, the first replica 

creation strategy is developed to reduce the total cost by considering both the data 

dependency and the access frequency when making the replica creation decision. A data 

classification method is introduced to classify the flexible data into two new data types, 

free-flexible data and constrained-flexible data. The free-flexible data can identify the 

flexible data which can be freely replicated to a specific data centre, while the 

constrained-flexible data can identify the flexible data which cannot be replicated to a 

specific data centre. A replica creation algorithm is proposed to address nine different 

scenarios for each pair of data. The total cost reduction is achieved by applying the 

proposed replica creation strategy in Section 4.1.  
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In Section 4.2, the second replica creation strategy is proposed to achieve the optimal 

cost reduction per replica by identifying a recommended access frequency threshold 

value. The data dependency and the access frequency are followed to use as two 

constraint parameters to constrain the replica creation. The data dependency is 

categorised into Within-DataCentre Data Dependency and Between-DataCentre Data 

Dependency to analyse the local data relationship and the remote data relationship, 

respectively. An eligible data candidate pool is introduced to identify the highly-

dependent and hot-access data. The proposed replica creation strategy can obtain a 

recommended value of the access frequency threshold parameter to achieve the optimal 

cost reduction per replica. 

In Section 4.3, a NPRS strategy is proposed for increasing the number of concurrent-

running workflow instances and balancing the resource load. The network performance 

based replica selection method is developed by jointly considering different network 

performance metrics. Different network performance metrics are treated in different 

ways in the proposed replica selection method. A nested replica selection algorithm is 

introduced to handle both the normal case and the limited case of the cloud network. 

The proposed NPRS strategy in Section 4.3 achieves a greater number of concurrent-

running workflow instances and more balanced network resource load in comparison 

with the least response time replica selection algorithm. 
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Chapter 5 Reactive Fault Tolerance for Independent Tasks 

As stated in Chapter 2, the data replication strategies can enable a replica-applied cloud 

environment to protect the cloud environment against the upcoming faults. Normally, 

the task is operated on the primary data in the cloud environment. By adopting the 

proposed data replication strategies in Chapter 4, multiple data replicas can be created 

into multiple data centres by the replica creation strategies. Besides, a replica selection 

strategy can be developed for guiding the data access. In case that the primary data 

becomes inaccessible, the task execution can remain continuous by accessing one of the 

required replicas if the replica-applied cloud environment is deployed beforehand. The 

replica-applied cloud environment is widely adopted to achieve cloud robustness in 

many famous cloud environments such as Google Cloud and Amazon S3. However, it is 

not sufficient for improving the overall cloud performance when encountering faults. 

The reactive fault tolerance strategies are still needed to achieve better overall cloud 

performance if the fault already occurred. 

Therefore, two reactive fault tolerance strategies are proposed for the independent tasks 

in the replication-applied cloud environment. The task resubmission technique and the 

task migration technique are introduced into these reactive fault tolerance strategies by 

integrating the proposed replica selection method proposed in Section 4.3. 

5.1 Utility-Based Fault Tolerance for Independent Tasks 

As explained in earlier chapters, most of the contemporary fault tolerance strategies 

paid insufficient attention to both the network performance and the attributes of affected 

tasks. When the tasks at the faulty data centre are resubmitted to other data centres, the 

impacts to the overall cloud performance have been largely overlooked. The task 

resubmission operations and the task migration operations may deplete the resources of 
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other data centres [102]. In addition, some tasks may not be able to catch the deadline 

even if they have been rescued to access one of the required data replicas in the replica-

applied cloud environment under fault scenarios. This may result in cloud resiliency 

decrease, user dissatisfaction, reputation damage, future profit reduction, and economic 

compensation. Therefore, both the resource load of the cloud data centres and the task 

attributes are all significant factors to cloud resiliency. It is desirable to develop a 

reactive fault tolerance strategy to the replica-applied cloud environment, which fully 

considers both the resource load of the cloud data centres and the attributes of the 

affected tasks.  

A utility-based reactive fault tolerance (UBFT) strategy is proposed for more efficient 

independent task rescue at the faulty data centre. The common network performance 

metrics and the task attributes are jointly considered as the major constraint parameters 

in this strategy. A utility function is developed to prioritise the tasks to be rescued, in 

other words, to be resubmitted. For each independent task rescue operation, the network 

performance at each replica-ready data centre is evaluated to find the optimal task 

resubmission route so that the task can be migrated out of the faulty data centre to 

access the required data replica. By doing so, this strategy aims to achieve better cloud 

resiliency in terms of task resilience ratio, task rescue utility, and task operation profit. 

The simulation results show that the proposed UBFT strategy has better task resilience 

ratio, task rescue utility, and task operation profit than the other three comparative 

HDFS, RR, and JSQ strategies. 

5.1.1 System modelling 

5.1.1.1 Definitions 

The following definitions are defined in this reactive fault tolerance strategy. Cloud 

resiliency refers to the ability to rescue the tasks when a fault occurs at a data centre. 
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Cloud resiliency is commonly measured in terms of task resilience ratio (TRR). TRR 

refers to the ratio of the tasks successfully rescued from the faulty data centre to the 

total number of tasks to be rescued at the faulty data centre. The TRR for a faulty data 

centre can be demonstrated as follows in Eq. 5.1. 

                          Task Resilience Ratio = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑐𝑢𝑒𝑑 𝑗𝑜𝑏𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑡𝑜 𝑏𝑒 𝑟𝑒𝑠𝑐𝑢𝑒𝑑
                  (5.1)   

The task utility refers to the modelled value of the tasks. The task rescue utility is the 

sum of the task utilities of those tasks which have been rescued from the faulty data 

centre. The task rescue utility is also used to measure cloud resiliency. 

The task operation profit is directly proportional to revenue, and it is also inversely 

proportional to cost. The task operation profit refers to the subtracting result between 

the revenue and the cost. The cloud service providers always prefer to alleviate the task 

operation profit decrease as much as possible, at least at an acceptable level, after the 

fault occurred. The task operation profit is also used to measure cloud resiliency from 

an economic perspective. 

5.1.1.2 Task urgency and task operation profit model 

Each task 𝑗 ∈ 𝐽 is associated with a hard deadline 𝐷𝐸𝐴𝐷(𝑗). In this research, the task 

deadline is defined as a specific point on the timeline. If such a requirement is not 

specified, the task has an infinite deadline. This research only considers the task with a 

definite deadline because the task with an infinite deadline does not suffer from the 

negative influences of the fault and can be resumed when the faulty data centre is fully 

recovered from the fault. 

There are two common task resubmission or migration scenarios for the independent 

tasks in the cloud environment when handling faults. The task at the faulty data centre 

might be re-executed if the task is resubmitted or migrated to another cloud data centre, 

or maybe the task rescued from the faulty data centre will be resumed to complete from 
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the most recent state after resubmitting or migrating to another cloud data centre if the 

checkpointing/restarting technique applied. In this research, all tasks are assumed to be 

re-executed if the task is resubmitted or migrated out of its initial location. To ensure the 

quality of service in this research, all resubmitted or migrated tasks should satisfy their 

own deadline requirement. Otherwise, the resubmission or the migration will be 

deterred. 

Each task 𝑗 also has a task execution duration 𝐿𝑒𝑛(𝑗) which is determined by the nature 

of the task 𝑗. Besides, the past processing time in its original execution location 𝑃𝐴(𝑗) 

should be considered if the task 𝑗 has been selected to migrate or redirect out of its 

initial location. 𝑃𝐴(𝑗) equals to 0 if the task has not been executed in its initial location. 

In addition, the internodal communication delay 𝐼𝐶(𝑗) is another factor to be considered 

because the extra time will be generated when the task 𝑗 is migrated across multiple 

network nodes. Furthermore, the input scheduling delay 𝐼𝑆(𝑗)  is the extra time 

generated by scheduling the execution of the task 𝑗.  

Most importantly, the task urgency (𝑈𝑅) is defined as the time buffer of the task. The 

higher the task urgency value is, the more time buffer the task has. The task urgency is 

formulated as in Eq. 5.2, where 𝑈𝑅(𝑗) is the task urgency value of the task 𝑗. 

                          𝑈𝑅(𝑗) = 𝐷𝐸𝐴𝐷(𝑗) – (𝐿𝑒𝑛(𝑗) + 𝑃𝐴(𝑗) + 𝐼𝐶(𝑗) + 𝐼𝑆(𝑗))                    (5.2) 

Each task 𝑗 ∈ 𝐽 is also associated with the value of its task operation profit, 𝑃𝑅𝑂(𝑗), 

which is the subtracting result between the revenue and the cost of the task 𝑗. 

5.1.1.3 Task utility and task rescue utility 

The utility function is often used to compare the objects with multiple requirements and 

attributes. Generally, a data centre prefers to rescue as many tasks as possible to fit their 

deadline requirements. In this case, task urgency is a significant parameter to be 

considered for the task priority assignment when handling the tasks at the faulty data 
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centre. At the same time, cloud service providers always try to maximise their profit. In 

this case, the tasks that bring more profits to the data centre should have higher 

importance. The task utility value is proposed to prioritise the tasks by jointly 

considering the task urgency and the task operation profit. 

For the task 𝑗 ∈ 𝐽, the general expression of the task utility 𝑈(𝑗) is shown in Eq. 5.3 and 

should satisfy the condition in Eq. 5.4, where 𝑈𝑈𝑅(𝑗) and 𝑈𝑃𝑅𝑂(𝑗) denote the utility 

value of the task urgency and the task operation profit of the task 𝑗, respectively. 𝑊𝑈𝑅 

and 𝑊𝑃𝑅𝑂 denote the corresponding weight of the task urgency and the task operation 

profit, respectively. 

                                        𝑈(𝑗) = 𝑊𝑈𝑅 * 𝑈𝑈𝑅(𝑗) + 𝑊𝑃𝑅𝑂 * 𝑈𝑃𝑅𝑂(𝑗)                            (5.3) 

                                                             𝑊𝑈𝑅 + 𝑊𝑃𝑅𝑂 = 1                                              (5.4) 

For a specific task 𝑗𝑚
𝑑𝑐 ∈ 𝐽𝑑𝑐  at the faulty location 𝑑𝑐 , the utility value of the task 

urgency of this task, 𝑈𝑈𝑅(𝑗𝑚
𝑑𝑐), is calculated as follows in Eq. 5.5. 

                                   𝑈𝑈𝑅(𝑗𝑚
𝑑𝑐) = 

𝑚𝑎𝑥(𝑈𝑅(𝑗𝑑𝑐)) − 𝑈𝑅(𝑗𝑚
𝑑𝑐)

𝑚𝑎𝑥(𝑈𝑅(𝑗𝑑𝑐)) − 𝑚𝑖𝑛(𝑈𝑅(𝑗𝑑𝑐))
; 𝑗𝑑𝑐 ∈ 𝐽𝑑𝑐                    (5.5) 

For a specific task 𝑗𝑚
𝑑𝑐 ∈ 𝐽𝑑𝑐  at the faulty location 𝑑𝑐 , the utility value of the task 

operation profit of this task, 𝑈𝑃𝑅𝑂(𝑗𝑚
𝑑𝑐), is calculated as follows in Eq. 5.6. 

                                𝑈𝑃𝑅𝑂(𝑗𝑚
𝑑𝑐) = 

𝑃𝑅𝑂(𝑗𝑚
𝑑𝑐)− 𝑚𝑖𝑛(𝑃𝑅𝑂(𝑗𝑑𝑐))

𝑚𝑎𝑥(𝑃𝑅𝑂(𝑗𝑑𝑐)) − 𝑚𝑖𝑛(𝑃𝑅𝑂(𝑗𝑑𝑐))
; 𝑗𝑑𝑐 ∈ 𝐽𝑑𝑐                  (5.6) 

In this strategy, one of the optimisation objectives is the task rescue utility. The task 

rescue utility of a faulty data centre 𝑑𝑐, 𝑇𝑅𝑈(𝑑𝑐), can be calculated in Eq. 5.7, where 𝜗 

is a variable parameter to judge the task rescue situation. If the task is rescued from the 

faulty data centre, 𝜗 will be 1, otherwise 0. 

                                          𝑇𝑅𝑈(𝑑𝑐) = ∑ 𝜗𝑗𝑚
𝑑𝑐 ∈ 𝐽𝑑𝑐 ∗ 𝑈(𝑗𝑚

𝑑𝑐)                                       (5.7) 

5.1.1.3 Replica selection method  

The replica selection schema aims to guide the optimal replica-ready data centre 
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selection to access the required data replicas by evaluating the resource load at each 

replica-ready data centre. This strategy adopts the replica selection method proposed in 

Section 4.3 to find the optimal data access route for the task resubmission and migration 

operations. 

5.1.2 Utility-based fault tolerance (UBFT) strategy and algorithms 

Put simply, the proposed utility-based fault tolerance (UBFT) strategy tries to rescue the 

tasks from the faulty data centre and resubmit them to the backup replica-ready data 

centre. The task rescue process not only considers the resource load of accessing backup 

replicas but also strives to satisfy the deadline constraints. To achieve this goal, the 

UBFT algorithm uses two functions, task resubmission function Resubmission() and 

task migration function Migration(), to generate fault handling solutions under different 

scenarios for each task at the faulty data centre. 

The UBFT algorithm applies the utility-based ranking method to calculate the task 

priority for the task resubmission or migration operations. The task utility should be 

treated in different ways depending on the fault circumstances in different data centres. 

The task with lower task utility has higher migration priority at the backup data centre 

while the task with higher task utility has higher migration priority at the faulty data 

centre. The proposed UBFT algorithm is shown in Algorithm 5.1. 

Firstly, the tasks at the faulty data centre will be ranked in a descending order based on 

their task utility and then add into rank list 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[] at Line 1. Then the fault handling 

solution 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 will be worked out for each element in the 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[] by calling the 

task resubmission function Resubmission() in Function 5.1 at Line 3. The input 

parameter of the task resubmission function Resubmission() is the task in the 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[] 

to be rescued. The 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 contains a set of data centre information including the task 

resubmission destination 𝑑𝑐𝑟𝑒𝑠 and the task migration destination 𝑑𝑐𝑚𝑖𝑔. The 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 
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will guide the fault handling processes for each task at the faulty data centre from Line 

8 to Line 12 until all tasks in the 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[] are addressed. The time complexity of 

Algorithm 5.1 is O(𝑛3). 

Algorithm 5.1: UBFT Algorithm 

Input: Resource situations at each data centre, 𝐽, task utility, fault location 

Output: Fault handling solution 

1.   Quicksort 𝑗𝑑𝑐 in 𝐽𝑑𝑐 based on the task utility and add into 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[] 

2.       for 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣] in 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[], 𝑣 = 0, 𝑣 ≤ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[]) do 

3.          Do Function 5.1 

4.          Load 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 = {𝑑𝑐𝑟𝑒𝑠, 𝑑𝑐𝑚𝑖𝑔} 

5.          Do 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 { 

6.                 Resubmit 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣] to 𝑑𝑐𝑟𝑒𝑠 

7.                 Migrate 𝑚𝑜𝑣[𝑟] to 𝑑𝑐𝑚𝑖𝑔 } 

8.          𝑣 + + 

9.       end for 

10.  End Algorithm 5.1 

The task resubmission function is called at Line 3 in Algorithm 5.1. The task 

resubmission function is shown in Function 5.1. When the task submission function is 

called, the backup replica-ready data centres will be mapped to the input task at Line 4. 

A comparison between the bandwidth consumption of the input task and the available 

bandwidth of the backup replica-ready data centres is created to find out the optimal 

task resubmission route from Line 2 to Line 22.  

In case that all backup data centres do not have sufficient resource capacity to 

accommodate a task rescued from the faulty data centre, the task migration function 

Migration() in Function 5.2 will be initiated at Line 17 in Function 5.1. The task 

migration function Migration() in Function 5.2 aims to migrate a current-running task 

out of a replica-ready backup data centre to release some resources for accommodating 

a task rescued from the faulty data centre. It is a one-stop nested function for addressing 
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the limited resource case, in order to avoid the task rescue failures as much as possible.  

Function 5.1: Resubmission Function - Resubmission() 

Input: Resource situations at each data centre, 𝐽, 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣] 

Output: 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 

1.  Initialization { 

2.       Empty 𝑟𝑒𝑠𝑑𝑒𝑠[]  

3.       Set 𝑆𝑖𝑧𝑒𝑜𝑓(𝑟𝑒𝑠𝑑𝑒𝑠[]) = 1 } 

4.  Map the replica-ready data centres to 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣] and add into 𝑟𝑟[] 

5.  for each element 𝑟𝑟[𝑢] in 𝑟𝑟[] do    

6.     Compare 𝐵𝐶(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣]) with 𝐴𝐵(𝑟𝑟[𝑢]) 

7.      if 𝐵𝐶(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣]) ≤ 𝐴𝐵(𝑟𝑟[𝑢])  

8.               𝐹𝑊(𝑟𝑟[𝑢])  

9.               if 𝐹𝑊(𝑟𝑟[𝑢]) > 𝐹𝑊(𝑟𝑒𝑠𝑑𝑒𝑠[])     

10.                    Update 𝑟𝑟[𝑢] into 𝑟𝑒𝑠𝑑𝑒𝑠[] 

11.                    Go to Line 19 

12.             else 

13.                    Remain 𝑟𝑒𝑠𝑑𝑒𝑠[] 

14.                    Go to Line 19 

15.             end if   

16.    else 

17.             Do Function 5.2 

18.    end if 

19.             Map 𝑟𝑒𝑠𝑑𝑒𝑠[] → 𝑑𝑐𝑟𝑒𝑠 

20.             Return {𝑑𝑐𝑟𝑒𝑠, 𝑛𝑢𝑙𝑙} → 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 

21.             Empty 𝑟𝑟[] 

22. end for  

The task migration function Migration() in Function 5.2 contains a series of operations 

to release an existing task out of a replica-ready backup data centre to accommodate the 

task rescued from the faulty data centre. Firstly, Line 1 collects a set of current-running 

tasks in 𝐽𝑟𝑟[𝑢]  on 𝑟𝑟[𝑢]. A bandwidth utilisation comparison between the bandwidth 

consumption of the input task and the sum of the bandwidth consumption of 𝑗𝑟𝑟[𝑢] and 
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the available bandwidth in its backup replica-ready data centres will be conducted at 

Line 3. A new group of migratable tasks will be further created in the array 𝑚𝑜𝑣[] at 

Line 5. A Quicksort algorithm will be applied on 𝑚𝑜𝑣[] to re-order the task in 𝑚𝑜𝑣[] in 

an ascending order based on the task utility at Line 7. A comparison between the 

bandwidth consumption of the migratable task in 𝑚𝑜𝑣[] and the available bandwidth of 

its backup replica-ready data centres is conducted at Line 10 to identify the eligible 

replica-ready data centres for releasing the migratable task in 𝑚𝑜𝑣[]. Then based on the 

proposed replica selection method in Section 4.3, the optimal task resubmission route 

for rescuing the task from the faulty data centre and the optimal task migration route for 

the migratable task in 𝑟𝑟[𝑢] will be finalized from Line 11 to Line 26. 

Function 5.2: Migration Function – Migration() 

Input: Resource situations at each data centre, 𝑟𝑟[𝑢], 𝐽, 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣], task utility 

Output: 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 

1.  Collect the set of current-running tasks 𝐽𝑟𝑟[𝑢] in 𝑟𝑟[𝑢] 

2.  for each 𝑗𝑟𝑟[𝑢] in 𝐽𝑟𝑟[𝑢] do 

3.       Compare 𝐵𝐶(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣]) with 𝐴𝐵(𝑟𝑟[𝑢]) + 𝐵𝐶(𝑗𝑟𝑟[𝑢]) 

4.         if 𝐵𝐶(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣]) ≤ 𝐴𝐵(𝑟𝑟[𝑢]) + 𝐵𝐶(𝑗𝑟𝑟[𝑢]) and 𝑈(𝑗𝑟𝑟[𝑢]) < 𝑈(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣]) 

5.              Add 𝑗𝑟𝑟[𝑢] into 𝑚𝑜𝑣[] 

6.         end if 

7.         Quicksort 𝑚𝑜𝑣[] based on the task utility 

8.         for 𝑚𝑜𝑣[𝑟] in 𝑚𝑜𝑣[], 𝑟 = 0, 𝑟 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑚𝑜𝑣[]) do 

9.              Map each replica-ready data centre to 𝑚𝑜𝑣[𝑟] and add into 𝑚𝑖𝑔𝑟𝑟[] 

10.            Add 𝑚𝑖𝑔𝑟𝑟[] where 𝐵𝐶(𝑚𝑜𝑣[𝑟]) ≤ 𝐴𝐵(𝑚𝑖𝑔𝑟𝑟[]) into 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[] 

11.            if 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[] = 𝑛𝑢𝑙𝑙 

12.                      Return {𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙}→ 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 

13.                      𝑟 + + 

14.                else 

15.                      for 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[𝑐] in 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[], 𝑐 = 0, 𝑐 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑒𝑙𝑖𝑔𝑚𝑖𝑔[]) do 

16.                           𝐹𝑊(𝑒𝑙𝑖𝑔𝑚𝑖𝑔[𝑐]) 



120 

 

17.                     end for  

18.                     Load the maximum 𝐹𝑊 value of 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[𝑤] in 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[] 

19.                     Map 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[𝑤] → 𝑑𝑐𝑚𝑖𝑔   

20.                     Load 𝑟𝑟[𝑢] → 𝑑𝑐𝑟𝑒𝑠 and 𝑚𝑜𝑣[𝑟] 

21.                     Go to Line 25 

22.                end if 

23.          end for       

24. end for 

25. Return {𝑑𝑐𝑟𝑒𝑠, 𝑑𝑐𝑚𝑖𝑔}→ 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 

26. End Function 5.2 

5.1.3 Simulation results 

To evaluate the effectiveness and efficiency of the proposed UBFT strategy, three 

simulations are performed on OMNeT++ 5.4.1. A cloud environment was implemented 

including 5 data centres with 250 circuits of 100 Gbps optical-fibre network integrated 

at each data centre site. The major parameters of each data centre are shown in Table 

5.1. The following settings are applied in all simulations. 

• To avoid the fluctuation of uncertain internodal communication delay and input 

scheduling delay, both internodal communication delay and input scheduling 

delay are set to 5ms.  

• To avoid the fluctuation of the uncertain network latency between different users 

and different data centres, a single user is applied to assign multiple tasks to 

different data centres. Therefore, the network latency can be regarded as stable 

between the user and different data centres, as shown in Table 5.1.  

• A fault is set to occur at 10ms system running time in 𝑑𝑐2, which leads to the 

closing down of 𝑑𝑐2.  

• The task deadline and the task execution duration are randomly set in the range 

of 0ms to 1000ms.  

• The required data size of each task is randomly selected in the range of 0GB to 
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5GB. 

• Each data has 3 replicas that are randomly placed in 5 data centres, one for 

primary accessed replica and two for backup replicas.  

Table 5.1 The major parameters of each data centre 

Data Centre  Maximum 

Bandwidth (Gbps) 

Network 

Latency(ms) 

Error Rates 

𝑑𝑐1 25000 20 0.1% 

𝑑𝑐2 25000 60 0.2% 

𝑑𝑐3 25000 40 0.5% 

𝑑𝑐4 25000 60 0.1% 

𝑑𝑐5 25000 100 0.4% 

The proposed UBFT strategy is compared with the typical HDFS robustness strategy 

applied in the HDFS system, the RR strategy [42] applied in SQL server 2016, and the 

JSQ strategy applied in Cisco Local Director, IBM Network Dispatcher, and Microsoft 

SharePoint [28][33][111].  

The cloud resiliency of these three strategies is evaluated in terms of task resilience 

ratio, task rescue utility, and task operation profit. The utility weights are changed in 

different simulations under the equivalent scenario, the urgency highly-weighted 

scenario, and the profit highly-weighted scenario to test the effectiveness of the 

proposed UBFT strategy. To simplify the problem, the proposed UBFT strategy, the 

typical HDFS robustness strategy, the RR strategy and the JSQ strategy are assumed to 

implement under a single-fault scenario in all simulations. 

5.1.4.1 Simulation 1 – Equivalent utility weights 

In Simulation 1, both the utility weights of the task urgency 𝑊𝑈𝑅 and the task operation 

profit 𝑊𝑃𝑅𝑂 are set to 0.5 for evaluating an equivalent utility weight scenario between 
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the task urgency and the task operation profit. The simulation 1 results of the task 

resilience ratio, the task rescue utility, and the task operation profit are shown in Figure 

5.1, Figure 5.2, and Figure 5.3, respectively. 

 

Figure 5.1 The TRR comparison of Simulation 1 

In Figure 5.1, the proposed UBFT strategy has better task resilience ratio than the other 

three comparative strategies when the resource is sufficient to support the task 

execution. In contrast, when the resource becomes more and more limited, the proposed 

UBFT strategy aims to migrate the lower-utility tasks at the backup data centre to 

release resources for the higher-utility tasks to be rescued from the faulty data centre. 

By adopting this operation under limited resource cases, some lower-utility tasks might 

be sacrificed. This leads to a decrease in cloud resiliency when the resource becomes 

insufficient. For example, as shown in Figure 5.1, the proposed UBFT strategy has 

better TRR when the number of tasks is equal to or less than 340. However, the 

proposed UBFT strategy encounters a TRR decrease when the number of tasks is more 
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than 340. 

 

Figure 5.2 The task rescue utility comparison of Simulation 1 

 

Figure 5.3 The task operation profit comparison of Simulation 1 

In Figure 5.2 and Figure 5.3, it is evident that the proposed UBFT strategy is better than 

the other three comparative strategies in terms of task rescue utility and task operation 
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profit. When the number of tasks is equal to or less than 340 tasks, the proposed UBFT 

strategy achieves higher task rescue utility by a maximum of 11.89% increase and 

higher task operation profit by a maximum of 9.46% increase than the other three 

comparative strategies. When the number of tasks is more than 340, the proposed UBFT 

strategy still achieves higher task rescue utility by a maximum of 11.04% increase and 

higher task operation profit by a maximum of 5.09% increase than the other three 

comparative strategies. 

5.1.4.2 Simulation 2 – Utility weights with urgency highly-weighted 

In Simulation 2, the utility weight of the task urgency 𝑊𝑈𝑅  is increased to 0.67 and 

decrease the utility weight of the task operation profit 𝑊𝑃𝑅𝑂 to 0.33 for evaluating the 

urgency highly-weighted scenario between the task urgency and the task operation 

profit. The simulation 2 results of the task resilience ratio, the task rescue utility, and the 

task operation profit are shown in Figure 5.4, Figure 5.5, and Figure 5.6, respectively. 

 

Figure 5.4 The TRR comparison of Simulation 2 
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In Figure 5.4, the proposed UBFT strategy remains higher TRR in comparison with the 

other three comparative strategies when the number of tasks is equal to or less than 340. 

However, the proposed UBFT strategy still encounters a mild degree of TRR decrease 

due to the same reason in Simulation 1 when the number of tasks is more than 340. 

 

Figure 5.5 The task rescue utility comparison of Simulation 2 

In Figure 5.5 and Figure 5.6, the proposed UBFT strategy remains the same trend as in 

Simulation 1. When the number of tasks is equal to or less than 340 tasks, the proposed 

UBFT strategy achieves higher task rescue utility by a maximum of 11.49% task rescue 

utility increase and a maximum of 9.46% task operation profit increase than the other 

three comparative strategies. When the number of tasks is more than 340, the proposed 

UBFT strategy still achieves higher task rescue utility by a maximum of 8.29% increase 

and higher task operation profit by a maximum of 4.29% increase than the other three 

comparative strategies. 
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Figure 5.6 The task operation profit comparison of Simulation 2 

5.1.4.3 Simulation 3 – Utility weights with profit highly-weighted 

In Simulation 3, the weight of the task urgency 𝑊𝑈𝑅 is decreased to 0.33 and increase 

the weight of the task operation profit 𝑊𝑃𝑅𝑂 to 0.67 for evaluating the profit highly-

weighted scenario between the task urgency and the task operation profit. The 

Simulation 3 results are shown in Figure 5.7, Figure 5.8, and Figure 5.9.   

In Figure 5.7, the proposed UBFT strategy still keeps higher TRR in comparison with 

the other three comparative strategies when the number of tasks is equal to or less than 

340. However, the proposed UBFT strategy again experiences a TRR decrease due to 

the same reason in Simulation 1 when the number of tasks is more than 340. 

In Figure 5.8 and Figure 5.9, the proposed UBFT strategy still maintains higher task 

rescue utility and higher task operation profit in comparison with the other three 

comparative strategies. The proposed UBFT strategy still achieves a maximum of 

9.36% task rescue utility increase and a maximum of 8.84% task operation profit 
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increase than the other three comparative strategies. 

 

Figure 5.7 The TRR comparison of Simulation 3 

 

Figure 5.8 The task rescue utility comparison of Simulation 3 
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Figure 5.9 The task operation profit comparison of Simulation 3 

5.2 Timeline-Oriented Fault Tolerance for Independent Tasks  

The fault tolerance strategy is a significant way to enable the capability of a cloud data 

centre to keep performing its current-running and intended tasks in the presence of 

faults as the last strategy did in Section 5.1. The task resubmission and the task 

migration are two of the reactive fault tolerance techniques which are applied in Section 

5.1. The core method of these two reactive fault tolerance techniques is the task 

scheduling method. Particularly, the HEFT series strategies are one of the most 

significant series of task scheduling strategies published from 2002 to date. Although 

the HEFT series strategies were proposed over the past decade, selecting the first 

available server might not be the optimal solution when handling faults [11][94][96]. It 

may cause unnecessary deadline contention and resource contention between the task 

with high priority and the task with low priority. As a result, the cloud resiliency might 

not be optimal with many low-priority tasks unsaved. Apart from that, selecting the first 
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available server may cause a temporary and dramatic resource load increase at some 

specific time points on the timeline, which leads to the performance bottleneck in the 

cloud data centres. 

Therefore, a timeline-oriented reactive fault tolerance (TOFT) strategy for independent 

task rescue is proposed to achieve better cloud resiliency and load balancing 

performance. The proposed TOFT strategy further considers the timeline scenarios at 

each cloud data centre upon the proposed strategy in Section 5.1. The following 

questions are addressed in this TOFT fault tolerance strategy. 

• How to handle the task rescue priority to ensure a better cloud resiliency? 

• How to select the optimal eligible time slot for the rescued tasks to avoid the 

resource wastefulness and improve the load balancing performance? 

• How to further improve the cloud resiliency when some tasks cannot be rescued 

directly? 

A two-dimensional task parsing system is deployed to identify the eligible time slots for 

the independent tasks in the cloud environment. Then a three-dimensional priority 

assignment system is developed to prioritise the independent tasks in the cloud 

environment. To handle different cases, two sub-algorithms are applied in the proposed 

dynamic TOFT task rescheduling algorithm. The simulation results show that the 

proposed TOFT strategy has better cloud resiliency and load balancing performance 

than the HEFT series strategies. Besides, the proposed strategy can also fit both the 

single-fault scenario and the multi-fault scenario when handling faults. 

5.2.1 System modelling 

In general, each task 𝑗 ∈ 𝐽 is associated with 𝑅(𝑗), 𝐷𝐸𝐴𝐷(𝑗) and 𝑃𝑅𝑂(𝑗), which present 

the resource requirement, the task deadline and the task operation profit of the task 𝑗, 

respectively. Each task 𝑗 has a fixed task execution duration 𝐿𝑒𝑛(𝑗). The task urgency 
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value of the task 𝑗, 𝑈𝑅(𝑗), refers to the time buffer between current time point and its 

deadline 𝐷𝐸𝐴𝐷(𝑗). Same to Section 5.1, the task deadline is defined as a specific point 

in time without the consideration of the task with an infinite deadline. Only the task 

with a definite deadline need to be rescued, as tasks with infinite deadline can be 

rescheduled when the faulty data centre is fully recovered from the fault. In this 

research, a task that is completed beyond its deadline is meaningless. All tasks in this 

research are independent, which means there are no task dependencies among the tasks. 

Additionally, like in other common strategies [20], this strategy assumes that all tasks 

are required to be restarted.  

In this research, cloud resiliency is one of the optimisation objectives. The cloud 

resiliency for a faulty data centre can be calculated as same as the method used in 

Section 5.1 in terms of TRR. 

5.2.2 Task parsing system 

A two-dimensional task parsing system is developed to identify the eligible time slots 

for the tasks in the cloud environment. Firstly, a timeline exists at each data centre. The 

timeline range cannot be infinite because the tasks with the infinite deadline are not 

considered in this strategy. Therefore, the timeline range refers to [𝑇0, 𝑇𝐿𝑎𝑡𝑒], where 𝑇0 

denotes the current time point and 𝑇𝐿𝑎𝑡𝑒 denotes the latest deadline time point of the 

tasks in 𝐽.  

The time slot is defined as a series of continuous time points. The available resource at 

each time point is the most significant factor for the further reception of the rescheduled 

tasks from the faulty data centre. Therefore, the timeline is parsed at each data centre 

site in a two-dimensional vector space. The 𝑥 axis is the discrete time points ranged 

from [𝑇0, 𝑇𝐿𝑎𝑡𝑒] and the 𝑦 axis is the available resource. Thus, the line in this space 

represents the available resource over time. In this strategy, it is called a resource line. 
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Each task can be parsed into this two-dimensional vector space as a rectangle. The 

height of the rectangle represents the resource requirement of the task and the length of 

the rectangle corresponds to the task execution duration. The rectangle will horizontally 

move from 𝑇0 to 𝑇𝐿𝑎𝑡𝑒. An eligible time slot for a task starts from a time point when the 

rectangle starts to stand completely below the resource line and ends at a time point 

when the rectangle starts to stand above the resource line. A function 𝐶𝑜𝑢𝑛𝑡(𝐸𝑇(𝑗𝑑𝑐)) 

is deployed to count the number of eligible time slots of the task 𝑗 at the data centre 𝑑𝑐. 

 

Figure 5.10 The example of the eligible time slot identification 

An example of the proposed task parsing system is shown in Figure 5.10, if 𝑇𝐿𝑎𝑡𝑒 is 𝑇7 

and the rest available resource values at each time point from 𝑇0 to 𝑇7 are {100, 150, 

200, 350, 350, 350, 150, 150} resource units and if the task needs 250 resource units, 

then the eligible time slot identification processes will be done as shown in Figure 5.10. 

The available resource from 𝑇0 to 𝑇2 cannot meet the resource requirement of this task 

rectangle. When the task rectangle reaches 𝑇3  and 𝑇4 , the task rectangle completely 

stands under the resource line (red line in Figure 5.10). Therefore, the range from 𝑇3 to 

𝑇5 and 𝑇4 to 𝑇6 will be recognized first as eligible time slot because the task rectangle 
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width is 2 time unit. As 𝑇3 to 𝑇6 are continuous time points, thus a final range of this 

eligible time slot can be identified between 𝑇3 and 𝑇6, as dash area shown. 

5.2.3 Timeline-oriented fault tolerance (TOFT) strategy 

The proposed timeline-oriented fault tolerance (TOFT) strategy has three phases, task 

prioritising phase, replica selection phase, and eligible time slot selection phase. It is an 

independent task rescheduling strategy for a bounded number of data centres when 

faults occur. In the case of a single-fault scenario, the proposed TOFT strategy can be 

applied by the faulty data centre in one time to rescue the tasks at the faulty data centre. 

While in the case of multi-fault scenarios, the proposed TOFT strategy should be 

separately applied in each faulty data centre. 

• Task prioritising phase 

This phase distributes the task rescue priority to the task at the faulty data centre. The 

task rescue priority list will preserve an ascending processing order based on the task 

rescue priority until no more tasks can be allocated. Tie-breaking is done randomly. In 

Section 5.1, a utility-based task prioritising method was proposed to prioritise the tasks 

by only considering the utility difference among tasks. Differently, in this TOFT 

strategy, a three-dimensional evaluation method is proposed to evaluate two significant 

task attributes used in Section 5.1 and the number of eligible time slots together for a 

comprehensive evaluation of the task priority from different domains. 

A three-dimensional priority assignment system is developed to assign the task rescue 

priority by jointly taking the task urgency, the task operation profit, and the number of 

eligible time slots of the task into account. The task 𝑗 can be parsed into a cuboid in a 

three-dimensional vector space as shown in Figure 5.11, where the cuboid length 𝑎 

denotes the task urgency value 𝑈𝑅(𝑗) on the 𝑦 axis, the cuboid height 𝑐 represents the 

reciprocal of the task operation profit, 
1

𝑃𝑅𝑂(𝑗)
, on the 𝑧  axis and the cuboid width 𝑏 
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denotes the number of eligible time slots of the task 𝑗 on the 𝑥 axis. 

 

Figure 5.11 Task prioritising cuboid 

According to the parsing method above, the volumes among cuboids will be compared. 

The smaller volume the cuboid has, the more urgent, the more profitable, and the more 

processing difficulty the task has. Hence, the cuboid with the smaller volume has a 

higher priority. The task allocation priority list is created based on the volume value of 

each task cuboid. 

• Replica selection phase 

The proposed TOFT strategy has a performance-oriented replica selection policy that 

adopts the replica selection method proposed in Section 4.3 to select the optimal replica 

to access. Tie-breaking is done randomly.  

• Eligible time slot selection phase 

The proposed eligible time slot selection method aims to select the optimal eligible time 

slot for the received tasks on the timeline at each working-proper data centre. The 

scenario-based allocation is applied for the normal cases (Algorithm 5.3) and the 
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limited resource or the insufficient time slot length cases (Algorithm 5.4), respectively. 

Tie-breaking is done randomly. 

Both the time slot length similarity and the corresponding time slot resource situations 

are considered in this research to accommodate the task at its optimal eligible time slot. 

The eligible time slot with the more similar time slot length similarity to the task 

execution duration is more suitable to accommodate the task with less wastefulness in 

the time slot space. The higher the minimum available resource in the eligible time slot 

achieves the less possibility of the load spike problem.  

Let 𝐸𝑇(𝑗𝑑𝑐) denotes a set of eligible time slots for the task 𝑗 at the data centre 𝑑𝑐. Then  

𝑒𝑡(𝑗𝑑𝑐)𝑝 ∈ 𝐸𝑇(𝑗𝑑𝑐) is the 𝑝th eligible time slot in 𝐸𝑇(𝑗𝑑𝑐). Let 𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝) denotes 

the time slot length similarity of 𝑒𝑡(𝑗𝑑𝑐)𝑝, where 𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝) equals to 𝐿𝑒𝑛(𝑒𝑡(𝑗𝑑𝑐)𝑝) 

- 𝐿𝑒𝑛(𝑗𝑑𝑐) . Let 𝑀𝑅(𝑒𝑡(𝑗𝑑𝑐)𝑝)  denotes the minimum available resource value of 

𝑒𝑡(𝑗𝑑𝑐)𝑝. Then the Min-Max normalisation method is applied in the timeline allocation 

method to identify the optimal eligible time slot by obtaining the maximum ranking 

value from Eq. 5.8, where 𝑊𝐿𝑆  and 𝑊𝑀𝑅  denote the weight of the time slot length 

similarity and the minimum available resource, respectively. The sum of 𝑊𝐿𝑆 and 𝑊𝑀𝑅 

is 1. The optimal eligible time slot of a task 𝑗 will be marked as 𝑂𝐸(𝑗). 

{
 
 

 
 𝑟𝑎𝑛𝑘 (𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝)) =  

𝑚𝑎𝑥(𝐿𝑆(𝐸𝑇(𝑗𝑑𝑐)))−𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝)

𝑚𝑎𝑥(𝐿𝑆(𝐸𝑇(𝑗𝑑𝑐)))−𝑚𝑖𝑛(𝐿𝑆(𝐸𝑇(𝑗𝑑𝑐)))

𝑟𝑎𝑛𝑘 (𝑀𝑅(𝑒𝑡(𝑗𝑑𝑐)𝑝)) =  
𝑀𝑅(𝑒𝑡(𝑗𝑑𝑐)𝑝)− 𝑚𝑖𝑛(𝑀𝑅(𝐸𝑇(𝑗

𝑑𝑐)))

𝑚𝑎𝑥(𝑀𝑅(𝐸𝑇(𝑗𝑑𝑐)))−𝑚𝑖𝑛(𝑀𝑅(𝐸𝑇(𝑗𝑑𝑐)))

𝑟𝑎𝑛𝑘(𝑒𝑡(𝑗𝑑𝑐)𝑝) = 𝑊𝐿𝑆 ∗ 𝑟𝑎𝑛𝑘 (𝐿𝑆(𝑒𝑡(𝑗
𝑑𝑐)𝑝)) +𝑊𝑀𝑅 ∗ 𝑟𝑎𝑛𝑘 (𝑀𝑅(𝑒𝑡(𝑗

𝑑𝑐)𝑝))

(5.8) 

To implement the three phases discussed above, a dynamic task rescheduling algorithm 

is proposed in Algorithm 5.2. Algorithm 5.2 firstly sets the timeline at each data centre 

in the cloud environment at Line 2 and initialises the task parsing vector space and the 

priority assignment system from Line 3 to Line 4. Then the tasks at the faulty data 
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centre are collected into the faulty task list 𝑓𝑗[] at Line 5. The tasks in𝑓𝑗[] will be 

prioritised at Line 6. The faulty task list 𝑓𝑗[] will be sorted by the QuickSort algorithm 

based on the task priority of each task in 𝑓𝑗[] at Line 7. Then the task rescheduling 

solution will be worked out for each task in the faulty task list 𝑓𝑗[] from Line 8 to Line 

23. The optimal replica-ready data centre is selected by following the proposed replica 

selection strategy in Section 4.3 at Line 9. Then the task will be scheduled to the 

optimal replica-ready data centre at Line 10. The task will be parsed to identify the 

eligible time slots on the timeline of the optimal replica-ready data centre at Line 11. 

The number of the eligible time slots will be counted at Line 12.  

Two different scenarios are treated in Algorithm 5.2. Algorithm 5.3 is initiated at Line 

14 to handle the case under normal circumstances if the number of eligible time slots is 

not equal to 0 at Line 13. Then the fault handling solution will be implemented at Line 

15 for the normal circumstances. Algorithm 5.4 initiated at Line 17 to handle the 

limited resource or the insufficient time slot length cases if the number of eligible time 

slots is equal to 0 at Line 16. Then the fault handling solution will be implemented from 

Line 18 to Line 21 for the limited resource or the insufficient time slot length cases. 

The time complexity of Algorithm 5.2 is O(𝑛). 

Algorithm 5.2: Dynamic Task Rescheduling Algorithm 

Input: 𝐷𝐶, 𝐽, fault location 

Output: Task rescheduling solution 

1.   Initialization { 

2.   Set timeline 

3.   Create the two dimensional task parsing vector space 

4.   Create the three dimensional priority assignment system } 

5.   Load the tasks at the fault location and add into 𝑓𝑗[] 

6.   Prioritise the tasks in 𝑓𝑗[] 

7.   QuickSort 𝑓𝑗[] based on the task priority 
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8.   for 𝑓𝑗[𝑣] in 𝑓𝑗[], 𝑣 = 0, 𝑣 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑓𝑗[]) - 1 do 

9.       Select the optimal replica-ready data centre in 𝐷𝐶 and add into 𝑟𝑟[] 

10.     Schedule 𝑓𝑗[𝑣] to 𝑟𝑟[] 

11.     Parse 𝑓𝑗[𝑣] and the timeline at 𝑟𝑟[] 

12.     𝐶𝑜𝑢𝑛𝑡(𝐸𝑇(𝑓𝑗[𝑣])𝑟𝑟[]) 

13.          if 𝐶𝑜𝑢𝑛𝑡(𝐸𝑇(𝑓𝑗[𝑣])𝑟𝑟[]) > 0  

14.              Do Algorithm 5.3 

15.              Move 𝑓𝑗[𝑣] → 𝑂𝐸(𝑓𝑗[𝑣]) 

16.          else 

17.              Do Algorithm 5.4 

18.              Load “Optimal Migratable Task” and “Migration Destination” 

19.              Migrate “Optimal Migratable Task” → 𝑇𝐵𝑒𝑔𝑖𝑛 of “Migration Destination” 

20.              Record the original location of “Optimal Migratable Task” as 𝑂𝐸(𝑓𝑗[𝑣]) 

21.              Move 𝑓𝑗[𝑣] → 𝑂𝐸(𝑓𝑗[𝑣]) 

22.          end if 

23.  end for  

Algorithm 5.3: Optimal Eligible Time Slot Selection 

Input: 𝑓𝑗[𝑣], 𝑟𝑟[] 

Output: Optimal eligible time slot 𝑂𝐸(𝑓𝑗[𝑣]]) 

1. Insert the task 𝑓𝑗[𝑣] from Line 14 in Algorithm 5.2 

2. Calculate 𝑟𝑎𝑛𝑘(𝐸𝑇(𝑓𝑗[𝑣])𝑟𝑟[]) under Eq. 5.8 

3. Generate 𝑂𝐸(𝑓𝑗[𝑣) 

4.    Load the beginning time point 𝑇𝐵𝑒𝑔𝑖𝑛 of 𝑂𝐸(𝑓𝑗[𝑣]) 

5.    Allocate 𝑓𝑗[𝑣] at 𝑇𝐵𝑒𝑔𝑖𝑛 

6.    Update resource line for 𝑂𝐸(𝑓𝑗[𝑣]) 

7.    𝑣 + + at Line 8 in Algorithm 5.2 

Algorithm 5.3 is used to generate the optimal eligible time slot for the input task from 

Algorithm 5.2. In Algorithm 5.3, the task 𝑓𝑗[𝑣] is inserted from Line 14 in Algorithm 

5.2 at Line 1. Then the optimal eligible time slot is identified for the inserted task 𝑓𝑗[𝑣] 

from Line 2 to Line 7. The ranking value for the eligible time slots will be calculated 

for the inserted task under Eq. 5.8 at Line 2. After that, the optimal eligible time slot for 
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the inserted task will be generated at Line 3. The optimal eligible time slot will be 

loaded to find its beginning time point 𝑇𝐵𝑒𝑔𝑖𝑛 at Line 4. The inserted task should be 

allocated to the beginning time point of the optimal eligible time slot at Line 5. The 

resource consumption of the inserted task should be updated to the resource line in the 

task parsing vector space at Line 6. Finally, the next task in 𝑓𝑗[] will be addressed  by 

increasing one order number at Line 7. In this strategy, the rescheduled task is 

commonly allocated at the first time point (the beginning time point) in the optimal 

eligible time slot because the “as early as possible” principle is insisted for all task 

completeness. For tie-breaking eligible time slots, the task is placed at the earliest 

available time slot as well. The time complexity of Algorithm 5.3 is O(1). 

By applying Algorithm 5.3, the proposed TOFT strategy can rescue the tasks that 

already have eligible time slots. The tasks which are left unsaved are known as residual 

tasks because of the rescue failures due to the insufficient resource or the insufficient 

number of eligible time slots case. A residual task allocation is developed in Algorithm 

5.4 by using the one-stop task migration technique to make a concession mechanism for 

better cloud resiliency. 

In Algorithm 5.4, the current rest time slots are identified in the optimal data centre in 

𝑟𝑟[] at Line 1, which meets the resource requirement of the input task 𝑓𝑗[𝑣]. Those 

identified time slots will be added to the probable eligible time slot list 𝑝𝑡𝑠[]. The 

capacity of 𝑝𝑡𝑠[] will be checked at Line 2. If 𝑝𝑡𝑠[] is empty, the optimal data centre 

will be re-selected from Line 3 to Line 5. Otherwise, the current-running tasks in 𝑟𝑟[] 

will be collected and added into the current-running task list 𝑐𝑟𝑗[] at Line 7. Each task 

in 𝑐𝑟𝑗[] will be processed to find the probable-release tasks by comparing between the 

resource requirement of the input task 𝑓𝑗[𝑣] and the task in 𝑐𝑟𝑗[] at Line 9. Then the 

probable-release tasks will be identified and collected into the probable-release task list 
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𝑝𝑟𝑗[] at Line 11. After that, the capacity of 𝑝𝑟𝑗[] will be checked at Line 16. If 𝑝𝑟𝑗[] is 

empty, the input task rescue will be failed at Line 17 and the order number at Line 8 in 

Algorithm 5.2 will be increased one. Otherwise, the element in 𝑝𝑟𝑗[] which are discrete 

to 𝑝𝑡𝑠[] will be removed at Line 19.  

After the removal operations at Line 19, the input task rescue will be failed at Line 21 if 

𝑝𝑟𝑗[] is empty and the order number at Line 8 in Algorithm 5.2 will be increased one. 

Otherwise, the probable release tasks in 𝑝𝑟𝑗[]  will be processed at Line 26. The 

algorithm will try to release the probable-release task in 𝑝𝑟𝑗[] at Line 27.  

Then the after-release task completeness to this probable-release task in 𝑝𝑟𝑗[] will be 

confirmed at Line 28. If the probable-release task in 𝑝𝑟𝑗[] can be completed in time 

after the release, the after-release time slot length will be evaluated at Line 29 for 

further testing its feasibility to accommodate the input task 𝑓𝑗[𝑣] at Line 30. If the 

after-release time slot length is feasible to accommodate the input task 𝑓𝑗[𝑣] , the 

probable-release task in 𝑝𝑟𝑗[] will be added into the migratable task list 𝑚𝑖𝑔[] at Line 

32. Otherwise, the order number of 𝑝𝑟𝑗[]  will be increased one at Line 34. If the 

probable-release task in 𝑝𝑟𝑗[] cannot be completed in time after the release, the order 

number in 𝑝𝑟𝑗[] will be increased one at Line 37.  

The migratable task list 𝑚𝑖𝑔[] will be sorted by the QuickSort algorithm based on the 

task execution duration at Line 40. Then the migratable task list 𝑚𝑜𝑣[] will start to be 

processed from Line 41 to Line 54. An alternative eligible time slot will be identified 

for the current processing task in 𝑚𝑜𝑣[] at Line 42. If an alternative eligible time slot 

can be founded, then the current-processing task in𝑚𝑜𝑣[] will be labelled as “Optimal 

Migratable Task” and this alternative eligible time slot will be labelled as “Migration 

Destination” at Line 44 and Line 45, respectively. Then the “Optimal Migratable Task” 

and the “Migration Destination” will be returned to the output at Line 46 and the order 
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number at Line 8 in Algorithm 5.2 will increase one. An alternative eligible time slot 

cannot be identified for the current-processing task in 𝑚𝑜𝑣[] , the order number in 

𝑚𝑜𝑣[] will increase one to test the next element in 𝑚𝑜𝑣[] at Line 49. If the bottom of 

𝑚𝑜𝑣[] is reached, the input task rescue will be failed at Line 51 and the order number at 

Line 8 in Algorithm 5.2 will increase one. The time complexity of Algorithm 5.4 is 

O(𝑛). 

Algorithm 5.4: Residual Task Allocation 

Input: 𝑓𝑗[𝑣], 𝑟𝑟[] 

Output: “Optimal Migratable Task” and “Migration Destination” 

1.  Identify the current rest time slots in 𝑟𝑟[] which meets 𝑅(𝑓𝑗[𝑣]) and add into 𝑝𝑡𝑠[]   

2.        if 𝑝𝑡𝑠[] = 𝑁𝑈𝐿𝐿 

3.             Remove 𝑟𝑟[] from 𝐷𝐶 

4.             Empty 𝑟𝑟[] 

5.             Back to Line 9 in Algorithm 5.2  

6.        else 

7.             Collect the current-running tasks in 𝑟𝑟[] and add into 𝑐𝑟𝑗[] 

8.             for each 𝑐𝑟𝑗[𝑤] in 𝑐𝑟𝑗[], 𝑤 = 0, 𝑤 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑐𝑟𝑗[]) − 1] do  

9.                   Compare 𝑅(𝑓𝑗[𝑣]) with 𝑅(𝑐𝑟𝑗[𝑤]) 

10.                 if 𝑅(𝑐𝑟𝑗[𝑤]) > 𝑅(𝑓𝑗[𝑣]) 

11.                       Add 𝑐𝑟𝑗[𝑤] into 𝑝𝑟𝑗[]  

12.                 else 

13.                       𝑤 ++     

14.                 end if  

15.           end for 

16.           if 𝑝𝑟𝑗[] = 𝑁𝑈𝐿𝐿          

17.                 𝑣 + + at Line 8 in Algorithm 5.2                  

18.           else 

19.                 Remove the element in 𝑝𝑟𝑗[] which are discrete to 𝑝𝑡𝑠[] 

20.                 if 𝑝𝑟𝑗[] = 𝑁𝑈𝐿𝐿 

21.                       𝑣 + + at Line 8 in Algorithm 5.2 

22.                 else 
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23.                       Go to Line 26 

24.                 end if 

25.           end if 

26.           for 𝑝𝑟𝑗[𝑐] in 𝑝𝑟𝑗[], 𝑐 = 0, 𝑐 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑝𝑟𝑗[]) − 1] do 

27.                 Try to release 𝑝𝑟𝑗[𝑐] 

28.                 Evaluate after-release task completeness to 𝑝𝑟𝑗[𝑐] 

29.                 if Line 28 = 𝑇𝑟𝑢𝑒  

29.                      Evaluate the after-release time slot length 

30.                      Test the after-release time slot length to accommodate 𝑓𝑗[𝑣] 

31.                      if Line 30 = 𝑇𝑅𝑈𝐸 

32.                           Add 𝑝𝑟𝑗[𝑐] into 𝑚𝑜𝑣[] 

33.                      else 

34.                           𝑐 + +  

35.                      end if  

36.                 else 

37.                      𝑐 + +  

38.                 end if 

39.           end for     

40.           QuickSort 𝑚𝑜𝑣[] based on the task execution duration 

41.           for 𝑚𝑜𝑣[𝑠] in 𝑚𝑜𝑣[], 𝑠 = 0, 𝑠 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑚𝑜𝑣[]) − 1] do 

42.                  Find an alternative eligible time slot to 𝑚𝑜𝑣[𝑠] 

43.                  if Line 42 = 𝑇𝑅𝑈𝐸 

44.                       Label 𝑚𝑜𝑣[𝑠] as “Optimal Migratable Task”  

45.                       Label the alternative eligible time slot as “Migration Destination” 

46.                       Return “Optimal Migratable Task” and “Migration Destination” 

47.                       𝑣 + + at Line 8 in Algorithm 5.2 

48.                  else 

49.                       𝑠 + + 

50.                       if the bottom of 𝑚𝑜𝑣[] is reached 

51.                            𝑣 + + at Line 8 in Algorithm 5.2 

52.                       end if                    

53.                  end if 

54.           end for  
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55.       end if             

56.       End Algorithm 5.4  

5.2.4 Simulation results 

To evaluate the performance of the proposed strategy, three simulations are performed 

on OMNeT++ 5.4.1. The following assumptions are made in the simulations: 

• Traditional three-replicas strategy is deployed. The replica placement policy is 

to put one replica on the local data centre, another two replicas are placed into 

two different remote data centres. 

• The latency among data centres is insignificant. 

• All data centres are interconnected. The data can be freely exchanged among 

data centres.  

• Bandwidth is set as the consumed resource.  

• 𝑊𝐿𝑆 and 𝑊𝑀𝑅 are set to 0.5 to simplify the problem. 

Three types of real-world workflows are implemented in the simulations, such as 

Montage scientific workflow, LIGO Inspiral Analysis workflow, and SIPHT program. 

Each scientific workflow instance is compressed into a task package as an independent 

task. The details of these workflows are adjusted and referenced from [10].  

The cloud resiliency is measured in all three simulations and the resource load situation 

is tested specifically in Simulation 2. The performance of the proposed TOFT strategy is 

compared to the average performance of the HEFT series strategies. 

5.2.4.1 Simulation 1 – Multiple types of tasks with different deadlines 

A cloud environment of 4 data centres with 6 circuits of 100 Gbps optical-fibre network 

integrated at each data centre site is set up in Simulation 1. The maximum bandwidth at 

each data centre is 600 Gbps. The disaster occurs at 𝑇0 in the data centre 𝑑𝑐1. 

In Simulation 1, the task input rule is set as follows. 200 tasks are input per input round. 

• A random number of two types of tasks out of a total of 200 tasks is input per 
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input round when the resource is sufficient. 

• Only feasible input combinations can be input per input round to the cloud 

environment when the resource is insufficient. 

The result of the cloud resiliency in Simulation 1 is shown in Figure 5.12. It is evident 

that the proposed TOFT strategy has better cloud resiliency than the HEFT series 

strategies. As the number of tasks increases from 400 to 1400, the proposed TOFT 

strategy continues to rescue 100% of the faulty tasks. The HEFT series strategies fail to 

rescue 100% faulty tasks when the number of tasks exceeds 600. The cloud resiliency of 

the proposed TOFT strategy drops to 74.67% at 1600 tasks due to resource limitations 

and insufficient eligible time slots. However, the proposed TOFT strategy still remains 

greater cloud resiliency than the HEFT series strategies at 1600 tasks. 

 

Figure 5.12 The TRR result of Simulation 1 

5.2.4.2 Simulation 2 – Expanded cloud scale and load testing 

In Simulation 2, not only the cloud resiliency but also the load balancing performance 

are evaluated under an expanded cloud scale. Normally, the great load balancing 

performance helps the cloud service providers avoid traffic spikes and degraded 
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performance. A cloud environment of 4 data centres with 60 circuits of 100 Gbps 

optical-fibre network integrated at each data centre is developed in Simulation 2. The 

maximum bandwidth at each data centre is 6000 Gbps. The disaster occurs at 𝑇0 in the 

data centre 𝑑𝑐1. 

In Simulation 2, the task input rule is set as follows. 1000 tasks are input per input 

round. 

• A random number of random types of tasks out of a total of 1000 tasks is input 

per input round when the resource is sufficient. 

• Only feasible input combinations can be input per input round to the cloud 

environment when the resource is insufficient. 

 

Figure 5.13 The TRR result of Simulation 2 

The result of the cloud resiliency in Simulation 2 is shown in Figure 5.13. It is also 

evident that the proposed TOFT strategy has better cloud resiliency than the HEFT 

series strategies when the cloud scale expands. As the number of tasks increases from 

9000 to 14000, the proposed TOFT strategy continues to keep 100% cloud resiliency. 
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The HEFT series strategies fail to rescue all tasks when the number of tasks exceeds 

9000. The cloud resiliency of the proposed TOFT strategy drops to 51.03% at 15000 

tasks because of the same reason in Simulation 1. However, the proposed TOFT 

strategy still keeps higher cloud resiliency than that of the HEFT series strategies at 

15000 tasks.  

In Simulation 2, the load situations are also tested at each time point for all proper-

working data centres in the simulation environment. The resource load situations are 

shown in Figure 5.14, Figure 5.15, and Figure 5.16.  

 

Figure 5.14 Resource load in 𝑑𝑐2 

The HEFT series strategies remain a peak load between 𝑇0 and 𝑇2500 in 𝑑𝑐2 and 𝑑𝑐4, 

and then have a sharp load decrease. They leave a long-time idle load after 𝑇2500 in 𝑑𝑐2 

and 𝑑𝑐4 and make a crowd load before that time point.  

However, the proposed TOFT strategy significantly reduces the load before 𝑇2500 in 𝑑𝑐2 

and 𝑑𝑐4, and balances the load to the suitable time points at all three proper-working 
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data centres. Although the short-time peak load still exists, the proposed TOFT strategy 

is clearly better than the HEFT series strategies in terms of load balancing.  

 

Figure 5.15 Resource load in 𝑑𝑐3 

 

Figure 5.16 Resource load in 𝑑𝑐4 
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5.2.4.3 Simulation 3 – Multi-fault scenario 

In Simulation 3, the multi-fault scenario is tested to evaluate the adaptability of the 

proposed TOFT strategy because the faults cannot be predicted and have high 

randomness. The multi-fault scenario testing is necessary and indispensable when 

evaluating the effectiveness and adaptability of the fault tolerance strategies [103]. In 

Simulation 3, multiple faults are set to generate at random time points to test the 

adaptability of the proposed TOFT strategy. As a result of the random fault occurrence, 

the first disaster occurs at 𝑇0  in 𝑑𝑐1  and another fault occurs at 𝑇1000  in 𝑑𝑐4 . The 

number of tasks is fixed at 1000 and the cloud resiliency is evaluated with the same 

cloud environment in Simulation 1. 

 

Figure 5.17 The cloud resiliency result of Simulation 3 

The result of the cloud resiliency in Simulation 3 is shown in Figure 5.17. It is evident 

that the proposed TOFT strategy still has better cloud resiliency than the HEFT series 

strategies when multiple faults occur. The proposed TOFT strategy remains 100% cloud 

resiliency between 𝑇0  and 𝑇1000  after the first fault occurs, while the HEFT series 
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strategies only achieve 56% cloud resiliency at that time period. As time goes on, the 

proposed TOFT strategy keeps continuous higher cloud resiliency than the HEFT series 

strategies after the second fault occurs at 𝑇1000, although the proposed TOFT strategy 

experiences a cloud resiliency drop from 100% to 77.67%. 

5.3 Summary  

In Chapter 5, two reactive fault tolerance strategies are proposed for the independent 

tasks in the cloud environment. The task resubmission and the task migration are two 

reactive fault tolerance techniques applied in these two strategies. The proposed reactive 

fault tolerance strategy in Section 5.1 not only considers the resource load of accessing 

backup replicas but also strives to satisfy the deadline constraints. A utility-based task 

priority assignment system is developed to assign the task priority to each task by 

jointly considering the task operation profit and the task urgency. A utility-based fault 

tolerance algorithm is proposed to select appropriate data centres to accommodate the 

tasks rescued from the faulty data centre. The proposed utility-based fault tolerance 

strategy in Section 5.1 increases the cloud resiliency performance in terms of task 

resilience ratio, task rescue utility, and task operation profit in comparison with the 

typical HDFS robustness strategy, the RR strategy, and the JSQ strategy. 

The proposed timeline-oriented fault tolerance strategy in Section 5.2 aims to avoid the 

degradation of both cloud resiliency and load balancing performance caused by 

selecting the first available server when doing the timeline allocation for the 

independent tasks rescued from the faulty data centre. A two-dimensional task parsing 

system is developed to identify the eligible time slots on the timeline by parsing the task 

into a rectangle based on its task execution duration and resource requirement. A novel 

three-dimensional priority assignment system is introduced to assign the task rescue 

priority to the tasks at the faulty data centre by evaluating the task urgency, the task 
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operation profit, and the number of eligible time slots of the task. A timeline allocation 

method is proposed to identify the optimal eligible time slot for the task rescued from 

the faulty data centre by considering the time slot length similarity and the 

corresponding time slot resource situations. A dynamic task rescheduling algorithm is 

developed to avoid timeline wastefulness and to improve cloud resiliency. The proposed 

timeline-oriented fault tolerance strategy in Section 5.2 achieves better cloud resiliency 

and load balancing performance in comparison with the HEFT series strategies. 
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Chapter 6 Reactive Fault Tolerance for Workflows 

As mentioned in Chapter 2, independent tasks and dependent tasks should be treated in 

different ways because the fault tolerance for dependent tasks is more complex than the 

fault tolerance for independent tasks. In this chapter, the proposed strategy focuses on 

the reactive fault tolerance for the workflow applications in the replication-applied 

cloud environment because the workflows always have vast dependent tasks. The 

dependent tasks must be prioritised by inclusively considering the task dependencies 

among the tasks within the same workflow instance if a task cannot be initiated until all 

its preceding tasks are completed. The cloud performance will be largely degraded if a 

fault tolerance plan lacks the consideration of the task dependencies among workflow 

tasks. Hence, the proposed reactive fault tolerance strategies in Chapter 5 for the 

independent tasks in the replica-applied cloud environment are not suitable to apply to 

the dependent tasks because of a lack of task dependency analysis. It is important to 

develop a method to analyse the task dependencies when rescuing the workflow 

applications at the faulty data centre.  

Besides, as mentioned in both Chapter 2 and also proved in Chapter 5, the idea behind 

the HEFT series, i.e., selecting the first available server, may not be the optimal solution 

when rescuing the tasks because of the resource contention problems. Particularly, the 

HEFT-T strategy focuses on the internal dependencies among the workflow tasks by 

applying an upward rank method. The external contention among different workflow 

instances and the entire workflow topology are hardly considered. For example, in the 

Montage workflow in Figure 6.1, all mProjectPP tasks in the workflow have the same 

priority when the HEFT-T strategy is applied. However, as the last mProjectPP task has 

more outbound tasks, compared with other mProjectPP tasks, it may be unreasonable to 

assign them the same priority value because this task will influence more tasks in the 
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context of the workflow topology. Therefore, the workflow topology should be further 

analysed to assign more accurate task priority when prioritising the workflow tasks. 

 

Figure 6.1 The example of the Montage workflow and the Meteorological workflow 

[10][130] 

In rescuing workflow tasks, a common strategy is to migrate the workflow tasks to a 

proper-working data centre where a required replica is stored. In its implementation, it 

is important to take two significant parameters into consideration, the task deadline and 

the task execution duration [124]. As mentioned in Chapter 5, completing a task beyond 

its deadline is meaningless. However, in some real cases, the fault tolerance strategies 

often aim to complete the task with respect to its deadline requirement as much as 

possible. The fault tolerance strategies may not be able to rescue all tasks in each 

workflow instance, which means some workflow instances may still fail. For those 

failed workflow instances, they may still be required to be completed after the cloud 

data centre is fully recovered from the outage. Thus, it is assumed that the more tasks 

saved within an incomplete workflow instance, the better business continuity the fault 

tolerance strategy has. Nevertheless, the influence on business continuity is hardly 
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considered in most of the contemporary fault tolerance strategies. Hence, it is significant 

to evaluate the influence on business continuity when developing a fault tolerance 

strategy.  

To address the above issues, a PageRank based fault tolerance (PRFT) strategy is 

proposed for the workflow rescue in the replica-applied cloud environment in this 

chapter. This strategy focuses on the workflow task rescue when handling faults based 

on the attributes of the task, the timeline scenario at each proper-working data centre, 

and the overall cloud performance. Firstly, a priority assignment system is developed 

based on the modified PageRank algorithm to prioritise the workflow tasks. Then a 

Min-Max normalisation method is applied for the replica selection method and the 

timeline allocation method. The replica selection method is based on the evaluation of 

the network performance at the replica-ready data centres by considering the common 

network performance metrics. The timeline allocation method is based on the evaluation 

of the time slot length similarity and the minimum available resource value in the time 

slot. A dynamic PageRank-constrained task scheduling algorithm is proposed to 

generate the task rescheduling solution for the tasks at the faulty data centre. The 

simulation results show that the proposed PRFT strategy can achieve better task 

resilience ratio, workflow resilience ratio, and workflow continuity ratio in comparison 

with the HEFT-T strategy, in both the traditional three-replica data replication 

environment and the image backup data replication environment. 

6.1 System Modelling 

This strategy focuses on the cloud-based workflow execution in which a number of 

workflow instances are deployed to cloud data centres. As mentioned in Chapter 3, the 

cloud environment may have 𝑥 workflow instances running concurrently. A workflow 

instance 𝐺 consists of multiple dependent tasks, which can be presented by a Directed 
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Acyclic Graph (DAG), 𝐺 = (𝑁, 𝐸), where 𝑁 denotes a set of nodes and 𝐸 denotes a set 

of edges among nodes. 𝑒𝑑𝑔𝑒(𝑁𝑜𝑑𝑝, 𝑁𝑜𝑑𝑞) denotes the edge between 𝑁𝑜𝑑𝑝 and 𝑁𝑜𝑑𝑞. 

Each node 𝑁𝑜𝑑𝑝 ∈ 𝑁 represents a task in the workflow and each 𝑒𝑑𝑔𝑒(𝑁𝑜𝑑𝑝, 𝑁𝑜𝑑𝑞) 

represents the control dependency between 𝑁𝑜𝑑𝑝 and 𝑁𝑜𝑑𝑞. For example, the DAGs of 

the Montage scientific workflow and the Meteorological workflow are shown in Figure 

6.1. In a DAG, the node is known as an entry task 𝑁𝑜𝑑𝑒𝑛𝑡𝑟𝑦 if it has no predecessors, 

while the node is known as an exit task 𝑁𝑜𝑑𝑒𝑥𝑖𝑡 if it has no successors. This strategy 

assumes that a node cannot be initiated until all of its predecessors have been completed 

[81]. 

Each workflow instance 𝐺  has an attribute associated with its deadline, 𝐷𝐸𝐴𝐷(𝐺) , 

which is a specific time point in the timeline. This deadline is known as a hard deadline 

as it cannot be negotiated. If the deadline is not specified for the workflow instance 𝐺, 

its hard deadline 𝐷𝐸𝐴𝐷(𝐺) is regarded as infinite. When the faults occur at a data 

centre, only the workflow instance with a definite deadline need to be rescued, as the 

workflow instance with an infinite deadline can be rescheduled when the faulty data 

centre is fully recovered from the fault. Each node 𝑁𝑜𝑑𝑝 ∈ 𝑁 is also associated with a 

fixed task execution duration 𝐿𝑒𝑛(𝑁𝑜𝑑𝑝) . To simplify the problem, this strategy 

assumes that a task will be re-executed if it is migrated out of its original location.  

Each task 𝑁𝑜𝑑𝑝 ∈ 𝑁 in the workflow application 𝐺 has its own soft deadline. The soft 

task deadline of each task in the workflow can be calculated by reversely engineering 

from the exit task 𝑁𝑜𝑑𝑒𝑥𝑖𝑡 . For example, if {𝑁𝑜𝑑0 , 𝑁𝑜𝑑1 , ..., 𝑁𝑜𝑑𝑞−1} are tandem 

nodes in a workflow instance 𝐺, the soft deadline of 𝑁𝑜𝑑𝑞−1 can be the time range from 

the time point of 𝑇0 + ∑ 𝐿𝑒𝑛(𝑁𝑜𝑑𝑝)
𝑞−2
𝑝=0  to the time point of 𝐷𝐸𝐴𝐷(𝐺) −

𝐿𝑒𝑛(𝑁𝑜𝑑𝑞−1). Then the soft deadline of 𝑁𝑜𝑑𝑞−2 can be the time range from the time 
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point of 𝑇0 + ∑ 𝐿𝑒𝑛(𝑁𝑜𝑑𝑝)
𝑞−3
𝑝=0  to the time point of 𝐷𝐸𝐴𝐷(𝐺) − 𝐿𝑒𝑛(𝑁𝑜𝑑𝑞−1) −

𝐿𝑒𝑛(𝑁𝑜𝑑𝑞−2). By parity of reasoning, each soft task deadline can be calculated. In this 

strategy, the task parsing system is also applied, which is the same as the task parsing 

system proposed in Section 5.2.2. 

The proposed PRFT strategy in this chapter focuses on the fault tolerance performance 

in terms of task resilience ratio (TRR), workflow resilience ratio (WRR), and workflow 

continuity ratio (WCR). The TRR refers to the ratio of the successfully rescued tasks 

from the faulty data centre to the total number of tasks to be rescued at the faulty data 

centre. The WRR refers to the ratio of the total number of rescued workflow instances 

out of the total number of workflow instances at the faulty data centre. The WCR refers 

to the number of tasks in a single workflow successfully rescued from the faulty data 

centre out of the total number of tasks in this workflow. The overall WCR will be 

evaluated by calculating the average value of the WCR in different workflow instances. 

The higher TRR is, the stronger task resilience performance is. The higher WRR is, the 

stronger workflow resilience performance is. The higher WCR is, the better potential 

business continuity can be achieved. 

The TRR can be calculated using the same formula in Eq. 5.1 in Section 5.1. The WRR 

can be formulated as in Eq. 6.1. The WCR can be formulated as in Eq. 6.2. 

                    Workflow Resilience Ratio = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑢𝑐𝑒𝑑 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠
              (6.1) 

                  Workflow Continuity Ratio = 
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑐𝑢𝑒𝑑 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤
          (6.2) 

6.2 PageRank-Based Fault Tolerance (PRFT) Strategy 

Originally, the PageRank algorithm is a link analysis algorithm to rank the web pages in 

the Google search engine results. It outputs a distribution probability to represent the 

likelihood that a user clicks on the links to other web pages. The PageRank value is 
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calculated using a mathematical algorithm based on the digraph of the web topology. 

The World Wide Web pages and the hyperlinks among those pages are represented as 

nodes and edges, respectively. Each element of a hyperlinked set of documents will be 

assigned a numerical weighting with the purpose of assigning its relative significance. 

Based on the characteristics of the PageRank algorithm, it may be applicable to any 

entity set with reciprocal quotations and references or any entities which can be parsed 

into a digraph. The web topology is similar to the workflow topology to some extent 

because most of the workflows, especially scientific workflows, can be parsed into a 

digraph. Therefore, the PageRank algorithm may be applicable to the workflow 

topology which can assign the numerical weighting to the nodes in the workflow 

digraph. 

On the other hand, the PageRank algorithm lacks the relationship analysis among 

websites when ranking different websites. Therefore, the PageRank algorithm itself 

cannot be directly applied to the workflow topology.  It should be modified to fit the 

workflow topology analysis. Additionally, as the PageRank algorithm only considers 

the topology structure to rank the websites, there is a lack of consideration of the 

workflow complexity and the workflow deadline when applying the PageRank 

algorithm to the workflow research. Therefore, the PageRank algorithm should be 

modified to generate more precise task rescue priority for further constraining the 

workflow rescue from the faulty data centre.  

In this chapter, a PageRank based fault tolerance (PRFT) strategy is developed 

including the PageRank-based priority assignment system, the replica selection method, 

the timeline allocation method, and the PageRank-constrained task scheduling 

algorithm. Firstly, the PageRank-based priority assignment system is used to prioritise 

the tasks in the replica-applied cloud environment based on the modified PageRank 
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algorithm. Then the replica selection method aims to find the optimal replica-ready data 

centres for the tasks to be resubmitted or migrated. The timeline allocation method 

focuses on the allocation of the tasks to be rescued or migrated on the timeline of the 

target data centre. Lastly, the PageRank-constrained task scheduling algorithm 

generates the task scheduling solution for rescuing the tasks at the faulty data centre. 

A PageRank-based priority assignment system is developed for workflow applications 

to assign the task rescue priority to each task in the workflow. Each node 𝑁𝑜𝑑𝑝 ∈ 𝑁 has 

its own PageRank value 𝑃𝑅(𝑁𝑜𝑑𝑝) . The PageRank value for the node 𝑁𝑜𝑑𝑝 , 

𝑃𝑅(𝑁𝑜𝑑𝑝), can be formulated as follows in Eq. 6.3, where 𝑠𝑢𝑐𝑐(𝑁𝑜𝑑𝑝) denotes the set 

of successors of 𝑁𝑜𝑑𝑝, 𝐿(𝑁𝑜𝑑𝑞) represents the number of the outbound nodes of 𝑁𝑜𝑑𝑞, 

and 𝜌 is the total number of nodes in the workflow. A damping factor 𝛿  is applied, 

which normally has a value of 0.85 in the PageRank algorithm, to handle the probability 

of the task termination. The purpose of applying this damping factor 𝛿 is to find out the 

probability that a task can be successfully executed at any given time with a successful 

inheritance to its outbound nodes. Correspondingly, 1 − 𝛿 is the probability that a task 

is terminated.  

                            𝑃𝑅(𝑁𝑜𝑑𝑝) = 
1−𝛿

𝜌
 + 𝛿 ∗  ∑

𝑃𝑅(𝑁𝑜𝑑𝑞)

𝐿(𝑁𝑜𝑑𝑞)
𝑁𝑜𝑑𝑞∈ 𝑠𝑢𝑐𝑐(𝑁𝑜𝑑𝑝)                          (6.3) 

Although the workflows have a similar topology to the web topology, the relationship 

among workflow tasks is more complex than the relationship among websites. Each 

website is held independently in the web topology, while an intermediate task in the 

workflow should wait to start until all its preceding tasks are completed in the workflow 

as abovementioned. Therefore, the workflow tasks are given priority values and are 

sorted according to their upward rank values. The upward rank value of a task 𝑁𝑜𝑑𝑝, 

𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝), can be calculated as in Eq. 6.4. If a task is an exit task, its upward rank 
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value is computed as 𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝) = 𝑃𝑅(𝑁𝑜𝑑𝑝). 

𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝) = 𝑃𝑅(𝑁𝑜𝑑𝑝) + 𝑚𝑎𝑥𝑁𝑜𝑑𝑞∈𝑠𝑢𝑐𝑐(𝑁𝑜𝑑𝑝)(𝑃𝑅(𝑁𝑜𝑑𝑞) + 𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑞))(6.4) 

In the proposed priority assignment system, the upward rank value is calculated 

according to the 𝑃𝑅 value. This means the rank value of a task’s predecessor is always 

higher than that of the task itself. However, one workflow instance may be impacted by 

other workflow instances in the cloud environment when doing task resubmission or 

migration. Thus, two balancing coefficients are introduced to jointly balance the upward 

ranking values among different workflow instances in accordance with the hard 

deadline of the workflow and the workflow complexity. As mentioned in Chapter 3, 𝑥 

workflow instances {𝐺1, 𝐺2… ,𝐺𝑥} are studied in this thesis. The balancing coefficient 𝛾 

for a workflow instance 𝐺 ∈ {𝐺1, 𝐺2… ,𝐺𝑥}  can be formulated in Eq. 6.5, where 

{𝑈𝑅(𝐺1), 𝑈𝑅(𝐺2),… , 𝑈𝑅(𝐺𝑥)} is a set of the urgency values of 𝑥 workflow instances. 

The urgency of a workflow 𝐺 is the time buffer between the fault occurrence time point 

and its hard deadline.  

                  𝛾(𝐺) = 
𝑚𝑎𝑥({𝑈𝑅(𝐺1),𝑈𝑅(𝐺2),…,𝑈𝑅(𝐺𝑥)}) − 𝑈𝑅(𝐺)

𝑚𝑎𝑥({𝑈𝑅(𝐺1),𝑈𝑅(𝐺2),…,𝑈𝑅(𝐺𝑥)}) − 𝑚𝑖𝑛({𝑈𝑅(𝐺1),𝑈𝑅(𝐺2),…,𝑈𝑅(𝐺𝑥)})
              (6.5) 

The balancing coefficient 𝜎  for a workflow instance 𝐺 ∈ {𝐺1, 𝐺2… ,𝐺𝑥}  can be 

formulated in Eq. 6.6, where 𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑑(𝐺)  is a count function which counts the 

number of nodes in the workflow instance 𝐺, 𝐶𝑜𝑢𝑛𝑡𝐸𝑑𝑔𝑒(𝐺) is a count function which 

counts the number of edges in the workflow instance 𝐺, 𝑁𝑢𝑚(𝑁𝑜𝑑) denotes the total 

number of nodes in the cloud environment and 𝑁𝑢𝑚(𝐸𝑑𝑔𝑒) denotes the total number 

of edges in the cloud environment. 

                                         𝜎(𝐺) = 
𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑑(𝐺)

𝑁𝑢𝑚(𝑁𝑜𝑑)
 * 

𝐶𝑜𝑢𝑛𝑡𝐸𝑑𝑔𝑒(𝐺)

𝑁𝑢𝑚(𝐸𝑑𝑔𝑒)
                                      (6.6) 

As the total number of the workflow instances, the total number of nodes, and the total 

number of edges are constantly changing in the cloud environment, the two balancing 
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coefficients will be dynamically changed to influence the final upward rank value of a 

specific task in a workflow instance. The final upward rank value of 𝑁𝑜𝑑𝑝 in 𝐺 can be 

formulated in Eq. 6.7. 

                𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝) = (𝛾(𝐺) + 𝜎(𝐺)) * 𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝), 𝑁𝑜𝑑𝑝 ∈ 𝐺            (6.7) 

A task priority list is created according to the final upward rank value in descending 

order. The first element of this list has the highest priority and will be rescued first when 

handling faults. 

The replica selection schema aims to guide the best replica site to access by evaluating 

the replica site performance when handling tasks according to the task priority list. In 

this strategy, the replica selection method which is proposed in Section 4.3 is applied to 

evaluate the optimal data access route for resubmitting or migrating the tasks. 

The optimal eligible time slot selection method proposed in Section 5.2 is also applied 

in this research, which fully considers the time slot length similarity and the 

corresponding time slot resource situation at the target proper-working data centre for 

the tasks to be rescued. The consideration of the time slot length similarity and the 

corresponding time slot resource situation aims to minimise the waste of resources in 

the time slots and avoid the resource contention problem.  

6.3 PageRank-Constrained Task Scheduling Algorithm 

A PageRank-constrained task scheduling algorithm is proposed in Algorithm 6.1 to 

rescue the dependent tasks at the faulty data centre when the faults already occurred. 

Algorithm 6.1 firstly initializes the timeline and the task parsing vector space at each 

data centre and loads the tasks at the faulty data centre into the faulty task list 𝑓𝑡[] from 

Line 1 to Line 4. It also initializes the task prioritising process for the tasks in the 

replica-applied cloud environment based on Eq. 6.7 at Line 5. Then 𝑓𝑡[] will be sorted 
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based on the task priority in descending order by applying Reverse QuickSort algorithm 

at Line 6. The tasks in 𝑓𝑡[] start to be processed from Line 7 by following the sorting 

order. The optimal replica-ready data centre will be identified by applying the proposed 

replica selection strategy in Section 4.3 and add into 𝑟𝑟[] at Line 8. After that, the 

number of eligible time slots for the selected task from 𝑓𝑡[] is calculated at Line 9. If at 

least one eligible time slot exists, Mechanism 6.1 will identify an optimal eligible time 

slot at Line 11 and complete the task resubmission process for the selected task from 

𝑓𝑡[] at Line 12. Otherwise, Mechanism 6.2 will produce a task migration solution for 

the selected task from 𝑓𝑡[] at Line 14. The time complexity of Algorithm 6.1 is O(𝑛). 

Algorithm 6.1: PageRank-Constrained Task Scheduling Algorithm 

Input: 𝐽, fault location 

Output: Task resubmission solution 

1.   Initialization { 

2.   Set timeline 

3.   Set up the task parsing vector space 

4.   Load the tasks at the faulty data centre and add them into 𝑓𝑡[]  

5.   Prioritise the tasks using Eq. 6.7 } 

6.   Reverse QuickSort 𝑓𝑡[] based on the task priority 

7.   for 𝑓𝑡[𝑣] in𝑓𝑡[], 𝑣 = 0, 𝑣 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑓𝑡[]) − 1 do 

8.     Select the optimal replica-ready data centre and add into 𝑟𝑟[] 

9.     𝐶𝑜𝑢𝑛𝑡(𝐸𝑇((𝑓𝑡[𝑣])𝑟𝑟[])) 

10.      if 𝐶𝑜𝑢𝑛𝑡(𝐸𝑇((𝑓𝑡[𝑣])𝑟𝑟[])) > 0 

11.          Do Mechanism 6.1 

12.          Move 𝑓𝑡[𝑣] to 𝑂𝐸(𝑓𝑡[𝑣]) 

13.       else 

14.           Do Mechanism 6.2 

15.       end if 

16.  end for 

Mechanism 6.1 is used to identify the optimal eligible time slot when the number of 
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eligible time slots is greater than 1 at the replica-ready data centres. In Mechanism 6.1, 

the ranking values of the eligible time slots in 𝑟𝑟[] will be calculated using Eq. 5.8 in 

Section 5.2 for the input task 𝑓𝑡[𝑣] at Line 1. After that, the optimal eligible time slot of 

the task will be identified at Line 2 by selecting the maximum ranking values of the 

eligible time slots in 𝑟𝑟[]. The beginning time point 𝑇𝐵𝑒𝑔𝑖𝑛 of the optimal eligible time 

slot will be loaded at Line 3. Then the input task 𝑓𝑡[𝑣] should be allocated to the 

beginning time point of the optimal eligible time slot 𝑂𝐸(𝑓𝑡[𝑣]) at Line 4. The resource 

line in the task parsing vector space will be updated to reflect the resource consumption 

of the input task 𝑓𝑡[𝑣] at Line 5. Then the order number at Line 7 in Algorithm 6.1 will 

increase one at Line 6.By applying Mechanism 6.1, the task at the faulty data centre 

which has the eligible time slots at the replica-ready data centres can be rescued.  

Mechanism 6.1: Optimal Eligible Time Slot Selection 

Input: 𝑓𝑡[𝑣], 𝑟𝑟[] 

Output: Optimal eligible time slot 𝑂𝐸(𝑓𝑡[𝑣]) 

1. Calculate 𝑟𝑎𝑛𝑘(𝐸𝑇((𝑓𝑡[𝑣])𝑟𝑟[])) using Eq. 5.8 in Section 5.2 

2. Generate 𝑂𝐸(𝑓𝑡[𝑣]) by selecting the maximum 𝑟𝑎𝑛𝑘(𝐸𝑇((𝑓𝑡[𝑣])𝑟𝑟[])) 

3. Load the beginning time point 𝑇𝐵𝑒𝑔𝑖𝑛 of 𝑂𝐸(𝑓𝑡[𝑣]) 

4. Allocate 𝑓𝑡[𝑣] at 𝑇𝐵𝑒𝑔𝑖𝑛 

5. Update the resource line for 𝑂𝐸(𝑓𝑡[𝑣]) 

6. 𝑣 + + at Line 7 in Algorithm 6.1 

Mechanism 6.2 is used to generate the task migration solution for the input task 𝑓𝑡[𝑣] 

with no eligible time slots at the optimal replica-ready data centre. The current running 

tasks at the optimal replica-ready data centre are added into 𝑐𝑟𝑗[] at Line 1. The current-

running tasks in 𝑐𝑟𝑗[] starts to be processed at Line 2. 
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Then the final upward rank value is calculated and the soft task deadline is counted for 

the selected task in 𝑐𝑟𝑗[] at Line 3. The final upward rank values between the input task 

𝑓𝑡[𝑣] and the selected task in 𝑐𝑟𝑗[] are compared at Line 4 and then the selected task in 

𝑐𝑟𝑗[] are removed if they cannot satisfy the requirements of the upward rank value, the 

resource, the time slot length, and the soft task deadline, respectively, from Line 5 to 

Line 8. The 𝐶ℎ𝑒𝑐𝑘(𝑆𝑜𝑓𝑡𝐷()) function is used to evaluate the after-release end time 

point of the selected task in 𝑐𝑟𝑗[] in comparison with its soft deadline. If this function is 

satisfied, it means the task can be migrated and will not influence the workflow hard 

deadline. Otherwise, the task cannot be migrated. 

After the processing of the initial current-running task list 𝑐𝑟𝑗[], 𝑐𝑟𝑗[] is sorted based on 

the final upward rank value by applying the QuickSort algorithm at Line 10. If 𝑐𝑟𝑗[] is 

empty, the input task 𝑓𝑡[𝑣] will be failed at Line 12 and the order number of 𝑓𝑡[] will 

increase one Line 7 in Algorithm 6.1. Otherwise, 𝑐𝑟𝑗[] will be re-processed from the 

first element in𝑐𝑟𝑗[] from Line 14 to Line 30. The eligible time slots of the selected 

task in 𝑐𝑟𝑗[] will be identified at Line 15. If the number of eligible time slots is not 

equal to 0, the optimal eligible time slot will be identified for the selected task in 𝑐𝑟𝑗[] 

at Line 17. Then the selected task in 𝑐𝑟𝑗[] can be released to its optimal eligible time 

slot at Line 18. The after-release time slot at the original location of the selected task in 

𝑐𝑟𝑗[] will be re-organised at Line 19. Then the after-release end time point of the input 

task 𝑓𝑡[𝑣] will be checked at Line 20 by applying the 𝐶ℎ𝑒𝑐𝑘(𝑆𝑜𝑓𝑡𝐷()) function. If the 

soft deadline of the input task 𝑓𝑡[𝑣] is satisfied, the input task 𝑓𝑡[𝑣] will be moved to 

the beginning time point of the reorganized after-release time slot at Line 22. Then the 

order number of 𝑓𝑡[] will increase one at Line 7 in Algorithm 6.1. If the soft deadline of 

the input task 𝑓𝑡[𝑣] cannot be satisfied, then the order number of 𝑐𝑟𝑗[] will increase one 

at Line 14. If the number of eligible time slots of the selected task in 𝑐𝑟𝑗[] is equal to 0 
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when identifying the eligible time slots at Line 15, then the order number of 𝑐𝑟𝑗[] will 

increase one at Line 14. 

Mechanism 6.2: PageRank-Constrained Residual Task Processing 

Input: 𝑓𝑡[𝑣], 𝑟𝑟[] 

Output: Task migration solution 

1.   Load the current-running tasks in 𝑟𝑟[] and add into 𝑐𝑟𝑗[] 

2.   for 𝑐𝑟𝑗[𝑤] in 𝑐𝑟𝑗[], 𝑤 = 0, 𝑤 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑐𝑟𝑗[]) − 1] do 

3.        Calculate 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑐𝑟𝑗[𝑤]) and 𝑆𝑜𝑓𝑡𝐷(𝑐𝑟𝑗[𝑤]) 

4.        Compare 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑓𝑡[𝑣]) with 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑐𝑟𝑗[𝑤]) 

5.        Remove 𝑐𝑟𝑗[𝑤] from 𝑐𝑟𝑗[] if 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑐𝑟𝑗[𝑤]) > 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑓𝑡[𝑣]) 

6.        Remove 𝑐𝑟𝑗[𝑤] from 𝑐𝑟𝑗[] with insufficient resource release 

7.        Remove 𝑐𝑟𝑗[𝑤] from 𝑐𝑟𝑗[] with insufficient time slot length release 

8.        Remove 𝑐𝑟𝑗[𝑤] from 𝑐𝑟𝑗[] if 𝐶ℎ𝑒𝑐𝑘(𝑆𝑜𝑓𝑡𝐷(𝑐𝑟𝑗[𝑤])) cannot be satisfied 

9.   end for 

10. QuickSort 𝑐𝑟𝑗[] based on the final upward rank value 

11.      if 𝑐𝑟𝑗[] = null 

12.           𝑣 + + at Line 7 in Algorithm 6.1   

13.      else 

14.           for 𝑐𝑟𝑗[𝑢] in 𝑐𝑟𝑗[], 𝑢 = 0, 𝑢 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑐𝑟𝑗[]) − 1] do 

15.               Identify 𝐸𝑇(𝑐𝑟𝑗[𝑢]) 

16.               if 𝐸𝑇(𝑐𝑟𝑗[𝑢]) != 𝑛𝑢𝑙𝑙 

17.                    Identify 𝑂𝐸(𝑐𝑟𝑗[𝑢]) 

18.                    Release 𝑐𝑟𝑗[𝑤] to 𝑂𝐸(𝑐𝑟𝑗[𝑢]) 

19.                    Re-organise the after-release time slot at the original location of 𝑐𝑟𝑗[𝑢] 

20.                    𝐶ℎ𝑒𝑐𝑘(𝑆𝑜𝑓𝑡𝐷(𝑓𝑡[𝑣])) 

21.                    If 𝐶ℎ𝑒𝑐𝑘(𝑆𝑜𝑓𝑡𝐷(𝑓𝑡[𝑣])) is satisfied 

22.                          Move 𝑓𝑡[𝑣] to the 𝑇𝑏𝑒𝑔𝑖𝑛 of the reorganized after-release time slot 

23.                          𝑣 + + at Line 7 in Algorithm 6.1   

24.                    else 

25.                          𝑢 + + 

26.                    end if 
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27.               else 

28.                    𝑢 + + 

29.               end if 

30.           end for     

31.      end if 

6.4 Simulations 

To evaluate the performance of the proposed PRFT strategy, two simulations are 

performed on OMNeT++ 5.4.1. Two types of workflows are implemented in the 

simulations, the Montage scientific workflow referenced from [10] and the 

meteorological workflow referenced from [130]. The hard deadlines of the Montage 

workflow and the meteorological workflow are dynamically changed to evaluate the 

fault tolerance performance of the HEFT-T strategy and the proposed PRFT strategy, 

respectively. The fault tolerance performance is measured in terms of TRR, WRR, and 

WCR in all two simulations. The available bandwidth, the error rate, and the network 

latency are assumed to be three major network performance metrics in the replica 

selection stage. The values of these three network performance metrics are set 

randomly. 

6.4.1 Simulation 1 – Single workflow type with image backup environment 

A cloud environment of 4 data centres with 80 circuits of 100 Mbps fibre-optic network 

integrated at each data centre is set up in Simulation 1. The image backup data 

replication environment is applied in this simulation. The fault occurs at 𝑇0 in 𝑑𝑐3. Only 

the meteorological workflow instances are applied in this simulation and they are 

randomly placed at 4 data centres. In this simulation, one group of 10 meteorological 

workflow instances, labelled Meteorological 1, is scheduled at 𝑇0 and another group of 

10 meteorological workflow instances, labelled Meteorological 2, is scheduled at 𝑇13.60. 

The deadline of two groups of meteorological workflow instances is dynamically 
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changed to evaluate the TRR, the WRR, and the WCR. The simulation results of the 

TRR are shown in Figure 6.2 and Figure 6.3. 

 

Figure 6.2 The TRR of the HEFT-T strategy 

 

Figure 6.3 The TRR of the proposed PRFT strategy 

The HEFT-T strategy keeps the TRR at 55.77% when the deadline of the 

Meteorological 1 group is in [𝑇130.47, 𝑇157.67) and that of the Meteorological 2 group is 

in [𝑇157.67, +∞). When the deadline of the Meteorological 1 group is in [𝑇157.67, 𝑇171.27) 

and that of the Meteorological 2 group is in [𝑇157.67, +∞), the TRR becomes 67.31%. 

The major difference between the proposed PRFT strategy and the HEFT-T strategy is 
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that the proposed PRFT strategy increases the TRR to 67.31% when the deadline of the 

Meteorological 1 group is in [𝑇144.07, 𝑇157.67) and that of the Meteorological 2 group is 

in [ 𝑇157.67, 𝑇171.27 ), and increases the TRR to 100% when the deadline of the 

Meteorological 1 group is in [𝑇144.07, 𝑇171.27) and that of the Meteorological 2 group is 

in [𝑇171.27, +∞).  

 

Figure 6.4 The WRR of Meteorological 1 (HEFT-T applied) 

 

Figure 6.5 The WRR of Meteorological 1 (PRFT applied) 

The simulation results of the WRR are shown in Figure 6.4 to Figure 6.7. It is evident 

that the proposed PRFT strategy can significantly improve the WRR in comparison with 

the HEFT-T strategy. Both the proposed PRFT strategy and the HEFT-T strategy keep 
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the same WRR trend in the Meteorological 2 group in Figure 6.6 and Figure 6.7.  

The proposed PRFT strategy and the HEFT-T strategy achieve different WRR in the 

Meteorological 1 group. As shown in Figure 6.4 and Figure 6.5, the proposed PRFT 

strategy achieves better WRR performance when the deadline of the Meteorological 1 

group is in [𝑇144.07, 𝑇171.27) and that of the Meteorological 2 group is in [𝑇171.27, +∞). 

The WRR increases from 50% to 100%. 

 

Figure 6.6 The WRR of Meteorological 2 (HEFT-T applied) 

 

Figure 6.7 The WRR of Meteorological 2 (PRFT applied) 

The simulation results of the WCR are shown in Figure 6.8 to Figure 6.11. It is clear 

that the proposed PRFT strategy can significantly improve the WCR in comparison with 
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the HEFT-T strategy. Firstly, the proposed PRFT strategy and the HEFT-T strategy 

achieve different WCR in the Meteorological 1 group. As shown in Figure 6.8, the 

WCR value stays at 9.70% when the deadline of Meteorological 1 group is in 

[𝑇130.47, 𝑇157.67) and that of Meteorological 2 group is in [𝑇144.07, +∞) with the HEFT-T 

strategy applied. The WCR value increases to 14.18% when the deadline of the 

Meteorological 1 group is in [𝑇157.67, 𝑇171.27) and that of the Meteorological 2 is in 

[𝑇157.67, +∞) with the HEFT-T strategy applied. The WCR value increases to 100% 

when the deadline of the Meteorological 1 group is in [𝑇157.67, +∞) and that of the 

Meteorological 2 group is in [ 𝑇144.07, 𝑇157.67 ) or when the deadline of the 

Meteorological 1 group is in [𝑇171.27, +∞) and that of the Meteorological 2 group is in 

[𝑇157.67, +∞) with the HEFT-T strategy applied.  

 

Figure 6.8 The WCR of Meteorological 1 (HEFT-T applied) 

Different from the HEFT-T strategy, as shown in Figure 6.9, the proposed PRFT 

strategy increases the WCR when the deadline of the Meteorological 1 group is in 

[𝑇144.07, 𝑇157.67) and that of the Meteorological 2 group is in [𝑇157.67, 𝑇171.27). The WCR 

is also increased to 100% when the deadline of the Meteorological 1 group is in 

[𝑇144.07, 𝑇171.27) and that of the Meteorological 2 group is in [𝑇171.27, +∞). 
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Besides, both the proposed PRFT strategy and the HEFT-T strategy keep the same trend 

in the Meteorological 2 group in Figure 6.10 and Figure 6.11. The WCR value stays at 

9.70% when the deadline of the Meteorological 1 group is in [𝑇130.47, +∞) and that of 

the Meteorological 2 group is in [𝑇144.07, 𝑇157.67). The WCR value will increase to 

100% when the deadline of the Meteorological 1 group is in [𝑇130.47, +∞) and that of 

the Meteorological 2 group is in [𝑇157.67, +∞). 

 

 

Figure 6.9 The WCR of Meteorological 1 (PRFT applied) 

 

Figure 6.10 The WCR of Meteorological 2 (HEFT-T applied) 
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Figure 6.11 The WCR of Meteorological 2 (PRFT applied) 

6.4.2 Simulation 2 – Multiple workflow types with mixed environment 

A cloud environment of 4 data centres with 60 circuits of 100 Mbps fibre-optic network 

integrated at each data centre is set up in Simulation 2. The image backup data 

replication strategy and three-replicas data replication strategy are both applied to the 

simulation environment. The fault is set to occur at 𝑇13.59 in 𝑑𝑐2 . 10 meteorological 

workflow instances and 10 Montage workflow instances are applied in this simulation 

and they are randomly placed at 4 data centres. In this simulation, the Montage 

workflow instances are scheduled at 𝑇0 and the meteorological workflow instances are 

scheduled at 𝑇24.18. The deadline of two types of workflow instances is dynamically 

changed to evaluate the TRR, the WRR, and the WCR. 

The simulation results of the TRR are shown in Figure 6.12 and Figure 6.13. The 

proposed PRFT strategy is still better than the HEFT-T strategy. The TRR increases 

from 53.19% to 100% with the proposed PRFT strategy when the deadline of Montage 

workflow instances is in [𝑇123.65, 𝑇137.25) and that of meteorological workflow instances 

is in [𝑇168.25, +∞) while the TRR remains unchanged at 53.19% with the HEFT-T 

strategy in this deadline range. 
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Figure 6.12 The TRR of the HEFT-T strategy 

 

Figure 6.13 The TRR of the proposed PRFT strategy 

The simulation results of the WRR are shown from Figure 6.14 to Figure 6.17. It is 

evident that the proposed PRFT strategy can achieve better WRR performance in 

comparison with the HEFT-T strategy. Firstly, different WRR performance is achieved 

in the Montage workflow instances as shown in Figure 6.14 and Figure 6.15. The 

proposed PRFT strategy achieves 100% WRR when the deadline of the Montage 

workflow instances is in [𝑇123.65, 𝑇137.25 ) and that of the meteorological workflow 

instances is in [𝑇168.25, +∞), while the HEFT-T strategy only achieves 50% WRR in 
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this deadline range. 

 

Figure 6.14 The WRR of the Montage workflow (HEFT-T applied) 

 

Figure 6.15 The WRR of the Montage workflow (PRFT applied) 

 

Figure 6.16 The WRR of the Meteorological workflow (HEFT-T applied) 
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Figure 6.17 The WRR of the Meteorological workflow (PRFT applied) 

The proposed PRFT strategy keeps the same WRR trend to the HEFT-T strategy on the 

meteorological workflow instances when the deadline of the Montage workflow 

instances is in [𝑇123.65, +∞) and that of the Meteorological workflow instances is in 

[𝑇154.65, +∞), as shown in Figure 6.16 and Figure 6.17.  

 

 

Figure 6.18 The WCR of the Montage workflow (HEFT-T applied) 
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Figure 6.19 The WCR of the Montage workflow (PRFT applied) 

The simulation results of the WCR are shown from Figure 6.18 to Figure 6.21. It is 

evident that the proposed PRFT strategy can achieve better WCR in comparison with 

the HEFT-T strategy. Firstly, as shown in Figure 6.18 and Figure 6.19 for the Montage 

workflow instances, the proposed PRFT strategy achieves 100% WCR when the 

deadline of the Montage workflow instances is in [𝑇123.65, 𝑇137.25 ) and that of the 

Meteorological workflow instances is in [𝑇168.25, +∞), while the HEFT-T strategy only 

achieves 69.46% WCR in this deadline range. 

 

Figure 6.20 The WCR of the Meteorological workflow (HEFT-T applied) 
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Figure 6.21 The WCR of the Meteorological workflow (PRFT applied) 

Besides, the proposed PRFT strategy keeps the same WCR trend to the HEFT-T 

strategy on the Meteorological workflow instances when the deadline of the Montage 

workflow instances is in [ 𝑇123.65, +∞ ) and that of the Meteorological workflow 

instances is in [𝑇154.65, +∞), as shown in Figure 6.20 and Figure 6.21.  

6.5 Summary 

In Chapter 6, a PageRank based fault tolerance (PRFT) strategy is proposed for rescuing 

dependent tasks. This strategy focuses on the workflow task rescue by considering the 

attributes of the task, the timeline scenario, and the cloud performance. A priority 

assignment system is developed based on the modified PageRank algorithm to prioritise 

the workflow tasks. A dynamic PageRank-constrained task scheduling algorithm is 

proposed to generate the task scheduling solution when rescuing the tasks from the 

faulty data centre. The simulation results show that the proposed PRFT strategy can 

achieve better task resilience ratio, workflow resilience ratio, and workflow continuity 

ratio in comparison with the HEFT-T strategy, in both the traditional three-replica data 

replication environment and the image backup data replication environment. 
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Chapter 7 Contribution Summary, Discussions and 

Limitations 

7.1 Contribution Summary 

The proposed six strategies work in the field of replica creation, replica selection, fault 

tolerance for independent tasks, and fault tolerance for dependent tasks, respectively. 

Although the proposed six strategies aim to solve different problems and achieve 

different optimisation objectives, they are inter-related strategies, which can be aligned 

together to achieve a management chain by following the proposed data replication and 

fault management framework. This section will discuss the contribution of each 

proposed strategy and the inter-relationship among these six proposed strategies. The 

contribution summary of the six proposed strategies is shown in Table A1.5 in 

Appendix 1. 

7.1.1 Contribution summary 

• In Section 4.1, a replica creation strategy is discussed to consider both external 

data attributes and internal data attributes when making the replica creation 

decision. A data classification method categorises the flexible data type into two 

new data types to identify whether the flexible data can be replicated to a 

specific data centre. The external data attribute (access frequency) and the 

internal data attribute (data dependency) are jointly considered to constrain the 

replica creation, as they have been independently proved many times as two of 

the most significant data attributes in the past literature. The total cost is reduced 

by applying the proposed replica creation strategy in Section 4.1, in comparison 

with the total cost scenario without applying the proposed strategy. 

• In Section 4.2, in addition to considering the data dependency and the access 
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frequency, the cloud map is also considered when making replica creation 

decisions. The cloud map has essential impacts when doing data relationship 

analysis because each data centre is seen as an individual host entity in the cloud 

environment. The local data relationship and the remote data relationship should 

be analysed towards the data location. Two new data dependency types, Within-

DataCentre Data Dependency and Between-DataCentre Data Dependency are 

defined to analyse the local data relationship and the remote data relationship, 

respectively. An eligible data candidate pool is developed by identifying the 

highly-dependent and hot-access data. A recommended access frequency 

threshold value will be worked out to enable the optimal cost reduction per 

replica.  

• In Section 4.3, a replica selection strategy is developed to avoid the potential 

network overloading problems related to the increased number of concurrent-

running cloud application instances and the accompanying heavy data access 

needs. Different network performance metrics are jointly evaluated in the replica 

selection process and they are treated in different ways because of their own 

nature. A nested replica selection algorithm is developed to guide the optimal 

data replica access under the resource-sufficient scenario or the resource-

insufficient scenario. The proposed replica selection strategy achieves a greater 

number of concurrent-running cloud application instances and more balanced 

resource load in comparison with the least response time replica selection 

algorithm. 

The proposed three data replication strategies in the three sections above can be aligned 

together to guide the replica creation, the replica placement, and the replica selection for 

creating a replica-applied cloud environment. This replica-applied cloud environment 
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not only achieves the benefits mentioned above but also protects the cloud environment 

against the upcoming faults. However, the reactive fault tolerance strategies can also 

further improve the cloud performance after the faults occurred. The reactive fault 

tolerance thus enters the research view. 

• In Section 5.1, a reactive fault tolerance strategy is developed to rescue 

independent tasks for better cloud resiliency. The task resubmission and the task 

migration are two core reactive fault tolerance techniques used in Section 5.1. 

However, frequent task resubmission and task migration operations may cause 

the resource contention problem at the proper-working data centres. Besides, 

some of the tasks at the faulty data centre may still fail to catch their deadlines 

after the task resubmission or the task migration. Therefore, the proposed fault 

tolerance strategy in Section 5.1 not only considers the resource load of 

accessing backup replicas but also strives to satisfy the deadline constraints. The 

utility-based task priority assignment system is developed by jointly considering 

the task urgency and the task operation profit. Then a one-stop concession 

mechanism is applied to the proposed fault tolerance algorithm for selecting 

appropriate data centres to accommodate the task rescued from the faulty data 

centre. The proposed reactive fault tolerance strategy achieves better cloud 

resiliency in terms of task resilience ratio, task rescue utility, and task operation 

profit in comparison with the typical HDFS robustness strategy, the RR strategy, 

and the JSQ strategy. 

• Section 5.2 further adds the timeline allocation to the reactive fault tolerance 

strategy proposed in Section 5.1. To identify the eligible time slots on the 

timeline for the tasks rescued from the faulty data centre, a two-dimensional task 

parsing system is developed by parsing the task into a rectangle based on its task 
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execution duration and resource requirement. A novel three-dimensional priority 

assignment system is introduced to assign the task rescue priority to the tasks at 

the faulty data centre by comprehensively evaluating the task urgency, the task 

operation profit, and the number of eligible time slots. A timeline allocation 

method is proposed to identify the optimal eligible time slot for the tasks rescued 

from the faulty data centre by considering the time slot length similarity and the 

corresponding time slot resource situations. A one-stop concession mechanism is 

also applied to the proposed dynamic task rescheduling algorithm for avoiding 

timeline wastefulness and achieving better cloud resiliency. The proposed 

reactive fault tolerance strategy in Section 5.2 achieves better cloud resiliency in 

terms of task resilience ratio and enables more balanced resource load. 

The two reactive fault tolerance strategies in Section 5.1 and Section 5.2 are both for 

independent tasks. As discussed in Chapter 2, the independent tasks have different 

nature in comparison with the dependent tasks. Therefore, the two proposed reactive 

fault tolerance strategies in Section 5.1 and Section 5.2 might not be applicable to the 

dependent tasks. The specific reactive fault tolerance strategy for rescuing dependent 

tasks should be analysed. 

• In Chapter 6, a reactive fault tolerance strategy is developed for rescuing the 

workflow applications because the workflows always contain a large number of 

dependent tasks. Firstly, the timeline allocation is still an important issue to the 

dependent tasks when doing the task resubmission or the task migration 

operations. As demonstrated in Section 5.2, selecting the first available server 

may not achieve the optimal cloud resiliency. Besides, the insufficient 

consideration of the resource contention and the deadline contention among the 

tasks in different concurrent-running workflow instances may disrupt cloud 
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resiliency. Apart from that, the workflow topology should be fully analysed 

because the workflow tasks must be prioritised by considering the task 

dependencies, as a workflow task cannot be initiated until all its preceding 

workflow tasks are completed. A PageRank-based priority assignment system is 

developed to fully analyse the workflow topology and address the resource 

contention and the deadline contention among the tasks in different concurrent-

running workflow instances. By following the task priority assigned by the 

proposed PageRank-based priority assignment system, a dynamic PageRank-

constrained task scheduling algorithm is developed to generate the fault handling 

solution for the tasks at the faulty data centre. The proposed reactive fault 

tolerance strategy in Chapter 6 can significantly increase the task resilience ratio, 

the workflow resilience ratio, and the workflow continuity ratio in comparison 

with the HEFT-T strategy, in both the traditional three-replica data replication 

environment and the image backup data replication environment. 

7.1.2 Inter-relationship among the proposed strategies 

The proposed six strategies are guided and developed by following the proposed data 

replication and fault management framework in Chapter 3. Each proposed strategy can 

be applied in a specific module in the proposed data replication and fault management 

framework. They can be aligned together to achieve a management chain for the cloud 

environment. 

• The proposed replica creation strategies in Section 4.1 and 4.2 are two 

alternative replica creation strategies including the replica placement rules, to be 

applied into the replica creation module and the replica placement module in the 

replica agent. These two replica creation strategies can guide the creation and 

the placement of the data replicas to multiple cloud data centres. The replica 
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scheduling unit in the data centre scheduling module will create and place 

multiple data replicas to multiple cloud data centres by referencing the replica 

creation strategy applied in the replica creation module and the replica 

placement strategy applied in the replica placement module. 

• The proposed replica selection strategy in Section 4.3 can be applied in the 

replica selection module in the replica agent. This replica selection strategy can 

guide the tasks to access the optimal required replicas. The task scheduling unit 

in the data centre scheduling module will control the replica selection processes 

by referencing the replica selection strategy applied in the replica selection 

module. The replica scheduling unit in the data centre scheduling module will 

control the replica re-creation process and re-create the required replica by 

referencing the replica creation strategy applied in the replica creation module. 

• The proposed reactive fault tolerance strategy in Section 5.1, Section 5.2, and 

Section 6.1 can be applied in the fault handling guide unit in the fault 

management agent. The proposed reactive fault tolerance strategy in Section 5.1 

and Section 5.2 are two alternative fault tolerance strategies for rescuing the 

independent tasks. The proposed reactive fault tolerance strategy in Section 6.1 

is to rescue the dependent tasks. The task scheduling unit in the data centre 

scheduling module will reference the corresponding reactive fault tolerance 

strategies for different task types from the fault handling guide unit in the fault 

management agent. 

7.2 Discussions 

In this thesis, six strategies are proposed including two alternative replica creation 

strategies, one replica selection strategy, two alternative reactive fault tolerance 

strategies for independent tasks and one reactive fault tolerance strategy for dependent 
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tasks. The applicability of each proposed strategy will be discussed in this section.  

• The applicability of the alternative replica creation strategies 

The proposed two replica creation strategies are alternative. They cannot be 

simultaneously applied in a single data centre. The first replica creation strategy 

proposed in Section 4.1 considers the data dependency and the access frequency only to 

constrain the replica creation. It focuses on the data attribute analysis without 

consideration of any environmental information in the cloud environment. Differently, 

the second replica creation strategy proposed in Section 4.2 considers the cloud map in 

the data dependency analysis. Each data centre is recognized as an individual host entity 

in the cloud environment. The data dependency analysis is conducted towards the data 

location. The data dependency will be categorised into two new data dependency types 

to reveal the local data relationship and the remote data relationship.  

The difference between these two alternative replica creation strategies highly 

distinguishes the applicability of these two alternative replica creation strategies in 

different cloud architectures. The first replica creation strategy proposed in Section 4.1 

is more suitable to apply in the public cloud architecture because the computing 

resources of a data centre are always shared resources among the public cloud data 

centres. There is no boundary among those public cloud data centres.  

Differently, the second replica creation strategy proposed in Section 4.2 is more 

applicable to the private cloud architecture. The private cloud architecture always 

requires higher customisation and stronger cloud security than the public cloud 

architecture. Therefore, a data in a private cloud data centre will encounter stronger 

policy constraints to share with other cloud data centres than a data in a public cloud 

data centre. Therefore, each private cloud data centre should be recognized as a strong 

individual host entity. Hence, the cloud map oriented replica creation is more suitable to 
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be applied by strongly considering the analysis of the local data relationship and the 

remote data relationship. This can enable more precise localization of the data 

dependency situations to the data in the private cloud data centres. 

• The applicability of the replica selection strategy 

The proposed replica selection strategy in Section 4.3 can be applied in the replica 

selection module to guide the optimal data to access. It can also be applied in three 

proposed fault tolerance strategies to guide the replica selection when rescuing the tasks 

from the faulty data centre. This replica selection strategy is applicable for any type of 

cloud architecture because it is a network performance oriented strategy by analysing 

the network performance metrics without any constraints to the cloud architectures. 

Besides, the proposed replica selection algorithm is fit to adapt and extend more 

network performance evaluation metrics. It should be noted that different evaluation 

metrics should still be treated in different ways when extending the replica selection 

algorithm. 

• The applicability of the alternative fault tolerance strategies for independent 

tasks 

The proposed two fault tolerance strategies for independent tasks are alternative. They 

also cannot be simultaneously applied in a single data centre. The proposed reactive 

fault tolerance strategy in Section 5.1 places emphasis on the utility-based priority 

assignment to prioritise the independent tasks. The task urgency and the task operation 

profit are two major task attributes to be considered in the utility calculation. The goal 

of the proposed strategy in Section 5.1 aims to achieve better task resilience ratio, task 

rescue utility, and task operation profit. Although the overall network performance at 

each replica-ready data centre is taken into account, it is used to identify the optimal 

replica-ready data centre only. The detailed task allocation on the timeline of the 
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optimal replica-ready data centre is not considered. Therefore, the proposed reactive 

fault tolerance strategy in Section 5.1 is more applicable to a cloud environment with 

low workloads because each data centre in such a cloud environment will be influenced 

by the task resubmission operations or the task migration operations to a small extent 

when handling faults. The proposed strategy in Section 5.1 can significantly achieve 

better task resilience ratio, task rescue utility, and task operation profit to the cloud 

environment with low workloads. 

Differently, the proposed reactive fault tolerance strategy in Section 5.2 puts emphasis 

on the detailed task allocation on the timeline of the data centre. The timeline scenario is 

considered in both the task prioritising phase and the eligible time slot selection phase 

when handling faults. The consideration of the number of eligible time slots in the task 

prioritising phase can reveal the task processing difficulty to allocate in a specific data 

centre. The consideration of the time slot length similarity and the time slot resource 

situations can avoid the time slot wasteness and the resource contention problem. 

Therefore, the proposed reactive fault tolerance strategy in Section 5.2 is more 

applicable to a cloud environment with high workloads because each data centre in such 

a cloud environment will be largely impacted by the task resubmission operations or the 

task migration operations when handling faults. The proposed strategy in Section 5.2 

can significantly improve the task resilience ratio while balancing the resource load to 

the cloud environment with high workloads. 

• The applicability of the reactive fault tolerance strategy for dependent tasks 

The proposed reactive fault tolerance strategy for dependent tasks in Chapter 6 develops 

a PageRank-based priority assignment method to assign the priority to the workflow 

tasks. This is the first time that the PageRank algorithm is applied in the fault tolerance 

research area. The PageRank algorithm is modified to achieve an applicable priority 
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assignment system for the dependent tasks in the workflow applications by integrating 

the task dependency analysis and the impact analysis among different workflow 

instances into the priority calculation process. It can be applied to all workflow types 

which a workflow task cannot be initiated until all its preceding tasks are completed. 

7.3 Limitations 

Although the research in this thesis achieves a lot of benefits to cloud performance, it 

still has some limitations. Five major limitations are listed as follows. 

• Optimisation objective diversity 

Multiple optimisation objectives have been achieved in this thesis. There are still many 

other optimisation objectives to be considered, such as energy consumption, response 

time, and makespan, etc.  

• Replica placement simplification 

In this thesis, the replica placement is simplified by adopting the traditional replica 

placement strategy, in which each replica will be placed to the locations of its relevant 

tasks. Many replica placement strategies have been proposed in the past literature. In 

some cases, the traditional replica placement strategy may increase the number of 

replicas and incur more extra storage costs. It may also have other negative influences 

in terms of energy consumption, data synchronization, and data deduplication, etc.  

• Workflow type limitation 

In this thesis, it is assumed that a workflow task can only be initiated after all its 

preceding tasks are completed. However, this might not always be the case in reality. 

Therefore, the proposed fault tolerance strategy for workflows in Chapter 6 may not be 

applicable to all workflow types in the real world.  

• Lack of experiments  
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In this thesis, the simulations are conducted to evaluate the proposed six strategies. In 

the simulation results, it is evident that the proposed strategies can achieve better 

performance than the comparative strategies. Nevertheless, the simulations are different 

to the experiments because the simulations are always conducted in the virtual 

simulation environment. More experiments are still needed to prove the applicability of 

the proposed six strategies in the real world. 

• The experiment threats 

As mentioned above, the proposed six strategies in this thesis are evaluated based on 

simulations. Although the simulations are commonly used to evaluate the cloud-related 

research, the experiments are still required. However, there are also some technical and 

social obstacles to the implementation of the proposed six strategies in the real world. 

From the social perspective, the implementation of new management strategy in each 

cloud service provider should be progressive to keep the stable running of cloud 

services. Therefore, it may take a long time period to update the management rules. 

Besides, from the technical perspective, the current cloud control system in each cloud 

service provider may not be adaptable to implement the proposed algorithms. For 

example, it may not be able to create a three-dimensional vector space to prioritise the 

tasks. Apart from that, the proposed strategies may be not adaptable to the cloud 

environment with multiple cloud service providers in some special cases if the cloud 

service provider boundary is necessary. 

• The applicability to the server level or the cloud service provider level 

In this thesis, all of the six strategies are proposed for the cloud environment. As 

mentioned many times, each cloud data centre is recognized as an individual host entity 

in the cloud environment. The proposed six strategies can greatly work at the data 

centre level. However, the servers in the cloud data centres or the cloud service 
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providers in the cloud environment can also be defined as individual host entities. 

Therefore, the proposed six strategies in this thesis should be tested to prove their 

applicability at the server level or the cloud service provider level. 
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Chapter 8 Conclusions and Future Work 

To conclude, data explosion becomes one of the major challenges to organizations all 

over the world. The cloud computing service offers a novel paradigm to alleviate 

massive data processing challenges based on its on-demand service model and 

distributed cloud architecture. As the number of users increases, the computing 

capability in a single data centre might restrict the overall cloud performance. At the 

same time, unexpected faults may occur in the cloud environment. Therefore, data 

replication is proposed to enable a strategical data access distribution to multiple cloud 

data centres to improve cloud performance. It can also achieve cloud robustness to 

avoid the negative influences of the upcoming faults. Furthermore, the replica-applied 

cloud environment still needs the reactive fault tolerance strategy to further improve the 

cloud performance after the faults occurred. 

A data replication and fault management framework is firstly introduced to achieve a 

decentralised management to offer the flexibility, the adaptability, and the geo-diversity 

for the global collaborators in the cloud environment. This framework contains two 

types of platforms at the user side and the data centre side, respectively. Each type of 

platform contains multiple modules which are responsible for different management 

functionalities. 

Six strategies have been proposed in this thesis, which include three data replication 

strategies and three fault tolerance strategies. Firstly, a replica creation strategy is 

proposed to reduce the total cost by jointly considering the data dependency and the 

access frequency. Secondly, a cloud map oriented replica creation strategy is proposed 

to achieve the optimal cost reduction per replica with the balancing between the total 

cost and the number of replicas. Thirdly, a network performance based replica selection 

strategy is proposed to avoid the potential network overloading problem and increase 
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the number of concurrent-running instances at the same time. 

The data replication strategy as a data management approach is also widely adopted to 

create a replica-applied cloud environment to protect the cloud environment against the 

upcoming faults. The reactive fault tolerance strategies are also required to further 

improve the cloud performance by rescuing the tasks from the faulty data centres after 

the faults already occurred. A utility-based fault tolerance strategy is firstly proposed to 

rescue the independent tasks at the faulty data centre for achieving better cloud 

resiliency with respect to the resource load of accessing replicas and the task deadline. 

Secondly, a timeline-oriented fault tolerance strategy for rescuing the independent tasks 

is proposed to achieve better cloud resiliency and load balancing performance by taking 

the timeline allocation into consideration. Thirdly, a PageRank based fault tolerance 

strategy is proposed to rescue the workflow applications for improving the task 

resilience ratio, the workflow resilience ratio, and the workflow continuity ratio by 

applying the modified PageRank algorithm based priority assignment method. 

However, this thesis still has the following limitations. 

• Optimisation objective diversity 

• Replica placement simplification 

• Workflow type limitation 

• Lack of experiments  

• The applicability to the server level or the cloud service provider level 

In future works, the proposed strategies are planned to extend into different types of 

cloud architectures such as edge computing and mobile computing. The PageRank 

algorithm is also planned to extend into the replica placement research area for 

developing a PageRank-based replica placement strategy. 
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Appendices 

Appendix 1 – Notations and Contribution Summary 

The notations in the descriptions and equations of Chapter 4 are listed in Table A1.1. 

Table A1.1 The notations in the descriptions and equations of Chapter 4 

Symbols Explanation 

𝐽(𝑑𝑖) The set of tasks which access the data 𝑑𝑖 

𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) The data dependency of the data 𝑑𝑖 to the data 𝑑𝑘 

𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) The data dependency of the data 𝑑𝑘 to the data 𝑑𝑖 

𝐴𝐹(𝑑𝑖) The access frequency of the data 𝑑𝑖 

𝐴𝑇(𝑑𝑖) The number of access times of the data 𝑑𝑖 

𝐴𝐼(𝑑𝑖) The access time interval to the data 𝑑𝑖 

𝜔 The data dependency threshold parameter 

∅ The access frequency threshold parameter 

𝑆𝑖𝑧𝑒(𝑑𝑖) The data size of the data 𝑑𝑖 

𝐴𝑆𝑆(𝑑𝑐) The available storage capacity in the data centre 𝑑𝑐 

𝑇𝐶(𝑑𝑖) The total cost of the data 𝑑𝑖 

𝜇 The determinant variable for the data storage cost calculation 

𝐷𝑆𝐶(𝑑𝑖) The data storage cost of the data 𝑑𝑖 

𝐷𝑇𝐶(𝑑𝑖) The data transfer cost of the data 𝑑𝑖 

𝑆𝑇(𝑑𝑖)
𝑑𝑐 The data storage time interval of the data 𝑑𝑖 stored in the data 

centre 𝑑𝑐 

𝑆𝑃(𝑑𝑐) The data storage price of the data centre 𝑑𝑐 

𝛼 The transfer cost ratio 
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𝛽 The determinant variable for the data transfer cost calculation 

𝑇𝐶 The overall total cost 

𝑊-𝐷𝐶𝐷(𝑑𝑖) The Within-DataCentre Data Dependency of the data 𝑑𝑖 

𝐵-𝐷𝐶𝐷(𝑑𝑖) The Between-DataCentre Data Dependency of the data 𝑑𝑖 

𝐷𝐶𝐷(𝑑𝑐, 𝑑𝑖) A function to calculate 𝑊-𝐷𝐶𝐷(𝑑𝑖) and 𝐵-𝐷𝐶𝐷(𝑑𝑖) for the 

data 𝑑𝑖 in the data centre 𝑑𝑐 

𝐷𝑒𝑝𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑𝑖) A function to compare between 𝑊-𝐷𝐶𝐷(𝑑𝑖) and 𝐵-𝐷𝐶𝐷(𝑑𝑖) 

for the data 𝑑𝑖 

𝑁𝑢𝑚(𝐷) The total amount of data in 𝐷 

𝐴𝐹𝑡𝑜𝑡𝑎𝑙  The sum of the access frequency of all data 

𝐴𝐹𝑎𝑣𝑔 The average access frequency of all data 

𝐴𝐹𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛() A function to calculate the value of 𝐴𝐹𝑡𝑜𝑡𝑎𝑙 and 𝐴𝐹𝑎𝑣𝑔 

𝐴𝐹𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑𝑖) A function to compare the value between 𝐴𝐹(𝑑𝑖) and ∅ ∗

 𝐴𝐹𝑎𝑣𝑔 

𝑇𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 The total cost when there is no replica creation happened 

𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 The current total cost value 

𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 The current number of replicas 

𝐶𝐸 An evaluation parameter to evaluate the cost efficiency in 

terms of cost reduction per replica 

𝑁𝐿(𝑑𝑐) The network latency of the data centre 𝑑𝑐 

𝐵𝐶(𝑑𝑐) The bandwidth consumption of the data centre 𝑑𝑐 

𝐽𝑑𝑐  The set of tasks accessing the data centre 𝑑𝑐 

𝑆𝑖𝑧𝑒(𝑗𝑑𝑐) The size of the data requested by the task 𝑗𝑑𝑐 ∈ 𝐽𝑑𝑐 at the data 

centre 𝑑𝑐 
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𝐿𝑒𝑛(𝑗𝑑𝑐) The task execution duration of the task 𝑗𝑑𝑐 ∈ 𝐽𝑑𝑐 at the data 

centre 𝑑𝑐 

𝐴𝐶𝐿𝑒𝑛(𝑑) The maximum time length of the data 𝑑 being accessed by its 

relevant tasks 

𝐴𝐵(𝑑𝑐) The available bandwidth of the data centre 𝑑𝑐 

𝑚𝑎𝑥𝐵(𝑑𝑐) The maximum bandwidth of the data centre 𝑑𝑐 

𝐸𝑅(𝑑𝑐) The error rate of the data centre 𝑑𝑐 

𝑊𝐴𝐵
𝑑𝑐  The weight of the available bandwidth metric of the data 

centre 𝑑𝑐 

𝑊𝑁𝐿
𝑑𝑐  The weight of the network latency metric of the data centre 𝑑𝑐 

𝑊𝐸𝑅
𝑑𝑐  The weight of the error rate metric of the data centre 𝑑𝑐 

𝐹𝑊(𝑑𝑐) The final weight of the data centre 𝑑𝑐 

𝑁𝐶𝐴𝐵
𝑑𝑐  The normalisation component of the available bandwidth 

metric of the data centre 𝑑𝑐 

𝑁𝐶𝑁𝐿
𝑑𝑐  The normalisation component of the network latency metric 

of the data centre 𝑑𝑐 

𝑁𝐶𝐸𝑅
𝑑𝑐  The normalisation component of the error rate metric of the 

data centre 𝑑𝑐 

The notations in the descriptions and equations of Chapter 5 are listed in Table A1.2. 

Table A1.2 The notations in the descriptions and equations of Chapter 5 

Symbols Explanation 

𝐷𝐸𝐴𝐷(𝑗) The task hard deadline of the task 𝑗 

𝐿𝑒𝑛(𝑗) The task execution duration of the task 𝑗 

𝑃𝐴(𝑗) The past processing time of the task 𝑗 
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𝐼𝐶(𝑗) The internodal communication delay of the task 𝑗 

𝐼𝑆(𝑗) The input scheduling delay of the task 𝑗 

𝑈𝑅(𝑗) The task urgency value of the task 𝑗 

𝑃𝑅𝑂(𝑗) The task operation profit of the task 𝑗 

𝑈(𝑗) The task utility of the task 𝑗 

𝑈𝑈𝑅(𝑗) The utility value of the task urgency of the task 𝑗 

𝑈𝑃𝑅𝑂(𝑗) The utility value of the task operation profit of the task 𝑗 

𝑊𝑈𝑅 The weight of the task urgency 

𝑊𝑃𝑅𝑂 The weight of the task operation profit 

𝑇𝑅𝑈(𝑑𝑐) The task rescue utility of a faulty data centre 𝑑𝑐 

Resubmission() The task resubmission function  

Migration() The task migration function 

𝜗 A variable parameter to judge the task rescue situation 

𝑅(𝑗) The resource requirement of the task 𝑗 

𝑇0 The current time point 

𝑇𝐿𝑎𝑡𝑒 The latest deadline time point of the tasks in 𝐽 

𝐶𝑜𝑢𝑛𝑡(𝐸𝑇(𝑗𝑑𝑐)) A function to count the number of eligible time slots of the 

task 𝑗 at the data centre 𝑑𝑐 

𝐸𝑇(𝑗𝑑𝑐) A set of eligible time slots for the task 𝑗 at the data centre 

𝑑𝑐 

𝑒𝑡(𝑗𝑑𝑐)𝑝 The 𝑝th eligible time slot in 𝐸𝑇(𝑗𝑑𝑐) 

𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝) The time slot length similarity of 𝑒𝑡(𝑗𝑑𝑐)𝑝 

𝐿𝑒𝑛(𝑒𝑡(𝑗𝑑𝑐)𝑝) The time slot length of 𝑒𝑡(𝑗𝑑𝑐)𝑝 

𝑀𝑅(𝑒𝑡(𝑗𝑑𝑐)𝑝) The minimum available resource of 𝑒𝑡(𝑗𝑑𝑐)𝑝 
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𝑊𝐿𝑆 The weight of the time slot length similarity 

𝑊𝑀𝑅 The weight of the minimum available resource 

𝑂𝐸(𝑗) The optimal eligible time slot of the task 𝑗 

𝑟𝑎𝑛𝑘 (𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝)) 
The ranking value of the time slot length similarity of  

𝑒𝑡(𝑗𝑑𝑐)𝑝  

𝑟𝑎𝑛𝑘 (𝑀𝑅(𝑒𝑡(𝑗𝑑𝑐)𝑝)) 
The ranking value of the minimum available resource of  

𝑒𝑡(𝑗𝑑𝑐)𝑝  

𝑟𝑎𝑛𝑘(𝑒𝑡(𝑗𝑑𝑐)𝑝) The ranking value of the 𝑝th eligible time slot in 𝐸𝑇(𝑗𝑑𝑐) 

The notations in the descriptions and equations of Chapter 6 are listed in Table A1.3. 

Table A1.3 The notations in the descriptions and equations of Chapter 6 

Symbols Explanation 

𝑁𝑜𝑑𝑒𝑛𝑡𝑟𝑦 The entry task in the workflow 

𝑁𝑜𝑑𝑒𝑥𝑖𝑡 The exit task in the workflow 

𝑃𝑅(𝑁𝑜𝑑𝑝) The PageRank value for the node 𝑁𝑜𝑑𝑝 

𝑠𝑢𝑐𝑐(𝑁𝑜𝑑𝑝) The set of successors of 𝑁𝑜𝑑𝑝 

𝐿(𝑁𝑜𝑑𝑞) The number of the outbound nodes of 𝑁𝑜𝑑𝑞 

𝜌 The total number of nodes in the workflow 

𝛿 A damping factor to handle the probability of the task 

termination 

𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝) The upward rank value of a task 𝑁𝑜𝑑𝑝 

𝛾(𝐺) The urgency balancing coefficient for a workflow instance 𝐺 

𝑈𝑅(𝐺) The urgency value of the workflow application 𝐺 

𝜎(𝐺) The complexity balancing coefficient for a workflow instance 

𝐺 
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𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑑(𝐺) A count function to count  the number of nodes in the 

workflow instance 𝐺 

𝐶𝑜𝑢𝑛𝑡𝐸𝑑𝑔𝑒(𝐺) A count function to count the number of edges in the 

workflow instance 𝐺 

𝑁𝑢𝑚(𝑁𝑜𝑑) The total number of nodes in the cloud environment 

𝑁𝑢𝑚(𝑒𝑑𝑔𝑒) The total number of edges in the cloud environment 

𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝) The final upward rank value of the node 𝑁𝑜𝑑𝑝 

The notations in the pseudocodes are listed in Table A1.4. 

Table A1.4 The notations in the pseudocodes 

Symbols Explanation 

𝑡𝑙[] The array for storing the location information 

𝑑𝑙[] The array for storing the location information 

𝑟𝑒𝑐[] The array for storing the recommended value ∅ 

𝑒𝑣𝑎[] The array for storing the cost efficiency evaluation parameter 

𝐶𝐸 

𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 The optimal data access route including the required data 

information, the target data centre information and the 

relevant task information 

𝑟𝑑[] The array for listing the required data 

𝑟𝑟[] The array for storing the replica-ready data centre information 

𝑓𝑤[] The array for listing the final weight of the data centres in  

𝑟𝑟[] 

𝑞𝑢𝑎𝑙[] The array for storing the information of the qualified data 

centres 
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𝑒𝑙𝑖𝑔[] The array for collecting the eligible data centres 

𝑎𝑏[] The array for storing the available bandwidth information of 

the data centres in 𝑒𝑙𝑖𝑔[] 

𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[] The array for storing the ranking value of the tasks 

𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 The fault handling solution including the task resubmission 

destination and task migration destination information 

𝑑𝑐𝑟𝑒𝑠 The task resubmission destination 

𝑑𝑐𝑚𝑖𝑔 The task migration destination 

𝑟𝑒𝑠𝑑𝑒𝑠[] The array for storing the destination information for task 

resubmission 

𝑚𝑜𝑣[] The array for storing a group of migratable tasks 

𝑚𝑖𝑔𝑟𝑟[] The array for storing the replica-ready data centres for the 

migratable task 

𝑒𝑙𝑖𝑔𝑚𝑖𝑔[] The array for storing the eligible replica-ready data centres 

for migrating the migratable task 

𝑓𝑗[] The array for storing the tasks at the fault location 

𝑝𝑡𝑠[] The array for storing the probable time slots 

𝑐𝑟𝑗[] The array for storing the current-running tasks in 𝑟𝑟[] 

𝑝𝑟𝑗[] The array for storing the probable-release tasks 

The contribution summary of the six proposed strategies is shown in Table A1.5, 

including the context locations of the six proposed strategies, the research problems of 

the six proposed strategies, the novelty of the six proposed strategies and the 

optimisation objectives of the six proposed strategies. 
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Table A1.5 The contribution summary of the six proposed strategies 

Context 

Location 

Research Problems Novelty Optimisation 

Objectives 

Section 

4.1 

• Lack of the joint 

consideration of 

external data 

attributes and 

internal data 

attributes when 

making the replica 

creation decision 

• The data 

classification for 

constraining the 

replica creation 

• The joint 

consideration of 

the external data 

attribute (access 

frequency) and the 

internal data 

attribute (data 

dependency) 

Total cost 

reduction 

Section 

4.2 

• The insufficient 

consideration of 

the cloud map 

when analysing the 

data relationship 

 

• The analysis of the 

data dependency 

inside data centre 

and outside data 

centre 

• Threshold-based 

eligible data 

candidate pool for 

replica creation 

• Recommended 

The optimal 

cost 

reduction per 

replica 
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value to achieve 

the optimal cost 

reduction per 

replica with 

balancing between 

the total cost and 

the number of 

replicas  

 

Section 

4.3 

• Network 

overloading 

problems because 

of increased 

number of 

concurrent-running 

instances and 

heavy data access 

needs 

• Lack of the 

consideration of 

the impacts among 

multiple 

concurrent-running 

instances under 

limited network 

• Min-Max 

normalisation-

based replica 

selection method 

with the joint 

consideration of 

different network 

performance 

measurements 

• Nested replica 

selection strategy 

with a replica re-

creation 

mechanism to 

collaboratively 

guide the data 

The number 

of 

concurrent-

running 

instances 

increase; 

More 

balanced 

network load 
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capability access route 

Section 

5.1 

• Resource 

contention 

problems because 

of the task 

resubmission and 

task migration 

operations 

• Failure to meet the 

task deadline when 

rescuing tasks 

• Joint consideration 

of the resource 

load capacity and 

the task attributes 

• Utility-based task 

priority 

assignment system 

• A concession 

mechanism for 

task allocation to 

appropriate data 

centres  

Task 

resilience 

ratio 

increase; 

Task rescue 

utility 

increase; 

Task 

operation 

profit 

increase 

Section 

5.2 

• Selecting the first 

available server to 

enable early task 

completion might 

not be the optimal 

solution in term of 

cloud resiliency 

when rescuing 

tasks 

• Selecting the first 

available server 

may cause a 

• Two-dimensional 

task parsing 

system 

• Three-dimensional 

priority 

assignment system 

• A timeline 

allocation method 

with the joint 

consideration of 

the time slot 

length similarity 

Task 

resilience 

ratio 

increase; 

More 

balanced 

resource load 
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temporary and 

dramatic load 

increase when 

allocating tasks 

and the minimum 

available resource 

at each time slot 

• A concession 

mechanism for 

task allocation on 

the timeline at 

each target data 

centre 

Chapter 

6 

• Selecting the first 

available server to 

enable early task 

completion might 

not be the optimal 

solution in term of 

cloud resiliency 

when rescuing 

tasks 

• Insufficient 

consideration of 

the resource 

contention and the 

deadline contention 

among the tasks in 

different 

• PageRank-based 

priority 

assignment system 

• Dynamic 

PageRank-

constrained task 

scheduling 

algorithm 

 

Task 

resilience 

ratio 

increase; 

Workflow 

resilience 

ratio 

increase; 

Workflow 

continuity 

ratio increase 
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concurrent-running 

workflow instances 

when rescuing 

tasks 

• Lack of the 

consideration of 

the entire 

workflow topology 

when prioritising 

tasks 

• Lack of the 

consideration of 

the influence on 

business continuity 

when developing 

fault tolerance 

strategy 
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