
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
2017+ University of Wollongong Thesis Collections

2021

Data Replication and Its Alignment with Fault Management in the Cloud Data Replication and Its Alignment with Fault Management in the Cloud

Environment Environment

Fei Xie

Follow this and additional works at: https://ro.uow.edu.au/theses1

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/theses1
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses1?utm_source=ro.uow.edu.au%2Ftheses1%2F1272&utm_medium=PDF&utm_campaign=PDFCoverPages

Data Replication and Its Alignment with Fault

Management in the Cloud Environment

Fei Xie 4647750

Supervisors:

Associate Professor Jun Yan

Associate Professor Jun Shen

This thesis is presented as part of the requirement for the conferral of the degree:

Doctor of Philosophy (Integrated)

University of Wollongong

School of Computing and Information Technology

Faculty of Engineering and Information Science

August 2021

1

Abstract

Nowadays, the exponential data growth becomes one of the major challenges all over

the world. It may cause a series of negative impacts such as network overloading, high

system complexity, and inadequate data security, etc. Cloud computing is developed to

construct a novel paradigm to alleviate massive data processing challenges with its on-

demand services and distributed architecture. Data replication has been proposed to

strategically distribute the data access load to multiple cloud data centres by creating

multiple data copies at multiple cloud data centres. A replica-applied cloud

environment not only achieves a decrease in response time, an increase in data

availability, and more balanced resource load but also protects the cloud environment

against the upcoming faults. The reactive fault tolerance strategy is also required to

handle the faults when the faults already occurred. As a result, the data replication

strategies should be aligned with the reactive fault tolerance strategies to achieve a

complete management chain in the cloud environment.

In this thesis, a data replication and fault management framework is proposed to

establish a decentralised overarching management to the cloud environment. Three

data replication strategies are firstly proposed based on this framework. A replica

creation strategy is proposed to reduce the total cost by jointly considering the data

dependency and the access frequency in the replica creation decision making process.

Besides, a cloud map oriented and cost efficiency driven replica creation strategy is

proposed to achieve the optimal cost reduction per replica in the cloud environment.

The local data relationship and the remote data relationship are further analysed by

creating two novel data dependency types, Within-DataCentre Data Dependency and

Between-DataCentre Data Dependency, according to the data location. Furthermore, a

network performance based replica selection strategy is proposed to avoid potential

2

network overloading problems and to increase the number of concurrent-running

instances at the same time.

Three reactive fault tolerance strategies are also proposed for independent tasks and

dependent tasks, respectively. A utility-based fault tolerance strategy is firstly proposed

for more efficient independent task rescue by considering resource load and task

attributes. In addition, a timeline-oriented reactive fault tolerance strategy is also

proposed for independent tasks to achieve better cloud resiliency and load balancing

performance. It further adds the timeline allocation method to strategically allocate the

tasks rescued from the faulty data centre on the timeline of their replica-ready data

centres. Finally, a novel PageRank based fault tolerance strategy for workflow rescue is

proposed to achieve better task resilience ratio, workflow resilience ratio, and workflow

continuity ratio. A modified PageRank algorithm is developed to prioritise the tasks in

the workflow instances.

The simulations results show that all of the proposed six strategies achieve better cloud

performance in different optimisation domains in comparison with the corresponding

comparative strategies.

3

Acknowledgments

It was a long way from where I began, I always had mixed emotions when I looked

back on this amazing PhD research journey. I remembered my smile when my first

research paper was published although the first one maybe the worst one of mine. I

remembered every single morning when I pushed myself from night to daylight. I

remembered my disappointment when my research paper was rejected. All of the things

in this research journey are very memorable. Maybe someday in the future, I cannot

remember the context of my published papers but I will remember all people who help

me and accompany me during this PhD research journey in the rest of my life.

Therefore, first and foremost, I would like to show my deepest gratitude and

appreciation to these people.

Firstly, I would like to thank my parents, my grandpa Xiaoxian Xie, my dad Limin Xie

and my mom Xuanhong Fei. I am very grateful to their support during this long-time

PhD research journey. They are all over 60 years old but they understand my choice to

start this research journey although I will not be around them for a long time. They are

always steadfast to offer all things I need. These things cannot be expressible but all are

about love. I also want to thank my grandma Shujie Lv. My grandma has passed away

in 2013 but her death is the most important reason for me to start this study journey out

of China.

Then I would like to thank my principal supervisor Associate Professor Jun Yan and my

co-supervisor Associate Professor Jun Shen who offered me a chance to be their PhD

student in 2016. They provide the best guidance about how to become a qualified

researcher and show me how to be a great person as well. They assist me to develop the

content of my research papers and this thesis. In discussing with them, I could find

something I missed or the drawbacks of my research works. The suggestions and

4

comments from them are useful and indispensable to achieve my research works. I

cannot be here without their help in patience. Especially during this COVID-19 tough

time, they always support me and offer their help to my study. I will be grateful to them

forever in the rest of my life. I also want to thank Dr. Cong Cao, Mrs. Ding Yu and

Miss. Ruoxi Sun who helps me a lot in my research and thesis. I also want to thank the

University of Wollongong because they are really amazing and always offer so much

useful supports to me, especially during this COVID-19 tough time.

I would also like to thank those academic journals or conferences which rejected or

accepted my submission. The rejections offered so qualified review comments to me for

improving my research works. The acceptances pushed me to work harder and gave the

confidence to me. I also want to thank the organizers of ICSOC 2018 which I attended

before, I made a lot of friends during the conference time and those friends are always

connected to discuss the research works between them and me. It makes me extend my

research view. Also, thanks to the examiners who examine my thesis. You are the last

audience to my PhD research journey.

This PhD journey is not only about the academics but also about the daily life. I also

want to thank my close friends, Miss. Jingxuan Wang, Mrs. Sophie Hazelton, Miss. Na

Wu, Mrs. Xiaolei Luo, Mr. Zeyuan Wang, Dr. Kela Xiao, Mrs. Menglin Zheng, Miss.

Yunshu Zhu, Miss. Xin Liu, Mr. Yi Lu, Mr. Yuan Sun, and Miss. Jingxian Wu, etc. I

cannot list all names here due to the space limitation but they all accompanied and

helped me in the daily life when I was a PhD student in the University of Wollongong.

Lastly, thanks to all people I met in the past years. Everything I experienced is better

than what I thought.

5

Certification

I, Fei Xie, declare that this thesis submitted in fulfilment of the requirements for the

conferral of the degree Doctor of Philosophy (Integrated), from the University of

Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This

thesis document has not been submitted for qualifications at any other academic

institution.

Fei Xie

23rd August 2017

6

Publication List

Xie, F., Yan, J., & Shen, J. (2017). Towards Cost Reduction in Cloud-Based Workflow

Management through Data Replication. 2017 Fifth International Conference on

Advanced Cloud and Big Data (CBD), 94–99. https://doi.org/10.1109/CBD.2017.24

Xie, F., Yan, J., & Shen, J. (2019). A Data Dependency and Access Threshold Based

Replication Strategy for Multi-cloud Workflow Applications. Service-Oriented

Computing – ICSOC 2018 Workshops, 281–293. https://doi.org/10.1007/978-3-030-

17642-6_24

Xie, F., Yan, J., & Shen, J. (2020). A Bandwidth and Latency Based Replica Selection

Mechanism for Data-Intensive Workflow Applications in the Multi-Cloud

Environment. Proceedings of the Australasian Computer Science Week

Multiconference, 1–8. https://doi.org/10.1145/3373017.3373030

Xie, F., Yan, J., & Shen, J. (2020). A Utility-Based Fault Handling Approach for

Efficient Job Rescue in Clouds. In Cloud Computing – CLOUD 2020 (pp. 49–63).

Springer International Publishing. https://doi.org/10.1007/978-3-030-59635-4_4

Xie, F., Yan, J., & Shen, J. (2021). A Novel PageRank-Based Fault Handling Strategy

for Workflow Scheduling in Cloud Data Centers. International Journal of Web Services

Research, 18(4), In Press. https://doi.org/10.4018/IJWSR.2021100101

Xie, F., Yan, J., & Shen, J. (2022). A Novel Independent Job Rescheduling Strategy for

Cloud Resilience in the Cloud Environment. Applied Computing and Informatics,

Accepted with Minor Revision.

https://doi.org/10.1109/CBD.2017.24
https://doi.org/10.1007/978-3-030-17642-6_24
https://doi.org/10.1007/978-3-030-17642-6_24
https://doi.org/10.1145/3373017.3373030
https://doi.org/10.1007/978-3-030-59635-4_4
https://doi.org/10.4018/IJWSR.2021100101

7

Abbreviations

The abbreviations used in this thesis are listed as follows.

• FixD: Fixed data

• FlexD: Flexible data

• FFlexD: Free-Flexible Data

• CFlexD: Constrained-Flexible Data

• W-DCD: Within-DataCentre Data Dependency

• B-DCD: Between-DataCentre Data Dependency

• HDD: High-Dependent Data

• HAD: Hot-Access Data

• NPRS: Network Performance Oriented Replica Selection

• UBFT: Utility-Based Reactive Fault Tolerance

• HDFS: Hadoop Distributed File System

• RR: Round Robin

• JSQ: Join the Shortest Queue

• TRR: Task Resilience Ratio

• HEFT: Heterogeneous Earliest-Finish-Time

• TOFT: Timeline-Oriented Reactive Fault Tolerance

• HEFT-T: Heterogeneous Earliest-Finish-Time with TOPSIS

• PRFT: PageRank Based Fault Tolerance

• DAG: Directed Acyclic Graph

• WRR: Workflow Resilience Ratio

• WCR: Workflow Continuity Ratio

8

Table of Contents

Abstract ... 1

Acknowledgments ... 3

Certification... 5

Publication List ... 6

Abbreviations .. 7

Table of Contents ... 8

List of Figures ... 12

List of Tables... 15

Chapter 1 Introduction .. 16

1.1 Research Background .. 16

1.2 Key Research Issues .. 19

1.3 Research Contributions ... 22

1.4 Thesis Roadmap .. 23

Chapter 2 Literature Review ... 26

2.1 Cloud Computing .. 26

2.1.1 Comparisons between traditional IT and cloud computing 26

2.1.2 Cloud service models .. 28

2.1.3 Cloud architectures ... 29

2.1.4 Multi-cloud environment .. 30

2.2 Data-Intensive Applications and Scientific Workflows .. 31

9

2.3 Data Replication .. 32

2.3.1 Replica creation .. 34

2.3.2 Replica placement ... 38

2.3.3 Replica selection ... 40

2.4 Fault Tolerance and Task Scheduling ... 42

2.4.1 Fault tolerance techniques .. 43

2.4.2 Fault tolerance strategies .. 44

2.4.3 Task scheduling strategies .. 47

2.5 Problem Statement and Research Insight .. 50

Chapter 3 Data Replication and Fault Management Framework 56

3.1 Data Replication and Fault Management Framework ... 56

3.1.1 User platform .. 59

3.1.2 Data centre platform ... 60

3.2 Basic Definitions and General Notations .. 64

Chapter 4 The Development of Data Replication Strategies .. 66

4.1 Replica Creation for Total Cost Reduction in Clouds ... 66

4.1.1 Data classification ... 67

4.1.2 Data dependency and access frequency .. 68

4.1.3 Data size constraint ... 69

4.1.4 Cost ... 69

4.1.5 Assumed scenarios .. 70

4.1.6 Replica creation strategy ... 70

10

4.1.7 Case study and discussions ... 76

4.2 Cloud Map Oriented and Cost Efficiency Driven Replica Creation 80

4.2.1 Assumed scenarios .. 82

4.2.2 System model .. 82

4.2.3 Eligible data candidate pool for replica creation .. 84

4.2.4 Recommended value of ∅ ... 85

4.2.5 Replica creation algorithms .. 86

4.2.6 Simulations ... 89

4.3 Network Performance Based Replica Selection .. 95

4.3.1 System modelling ... 96

4.3.2 Network performance based replica selection (NPRS) strategy 98

4.3.3 Simulations ... 103

4.4 Summary ... 109

Chapter 5 Reactive Fault Tolerance for Independent Tasks ... 111

5.1 Utility-Based Fault Tolerance for Independent Tasks .. 111

5.1.1 System modelling ... 112

5.1.2 Utility-based fault tolerance (UBFT) strategy and algorithms 116

5.1.3 Simulation results ... 120

5.2 Timeline-Oriented Fault Tolerance for Independent Tasks 128

5.2.1 System modelling ... 129

5.2.2 Task parsing system .. 130

5.2.3 Timeline-oriented fault tolerance (TOFT) strategy 132

11

5.2.4 Simulation results ... 141

5.3 Summary ... 147

Chapter 6 Reactive Fault Tolerance for Workflows ... 149

6.1 System Modelling .. 151

6.2 PageRank-Based Fault Tolerance (PRFT) Strategy .. 153

6.3 PageRank-Constrained Task Scheduling Algorithm ... 157

6.4 Simulations .. 162

6.4.1 Simulation 1 – Single workflow type with image backup environment....... 162

6.4.2 Simulation 2 – Multiple workflow types with mixed environment 168

6.5 Summary ... 173

Chapter 7 Contribution Summary, Discussions and Limitations 174

7.1 Contribution Summary .. 174

7.1.1 Contribution summary .. 174

7.1.2 Inter-relationship among the proposed strategies ... 178

7.2 Discussions .. 179

7.3 Limitations ... 183

Chapter 8 Conclusions and Future Work .. 186

Bibliography .. 188

Appendices .. 208

Appendix 1 – Notations and Contribution Summary .. 208

12

List of Figures

Figure 1.1 The exponential data growth according to IDC Global Datasphere [93] 16

Figure 2.1 An example of multi-cloud architecture .. 30

Figure 3.1 The general cloud environment ... 57

Figure 3.2 The data replication and fault management framework 57

Figure 3.3 The interior structure of the user platform and the data centre platform 59

Figure 3.4 The interior structure of the requirement analysis module 60

Figure 3.5 The interior structure of the data analysis module .. 61

Figure 3.6 The interior structure of the task analysis module ... 61

Figure 3.7 The interior structure of the fault management agent 63

Figure 3.8 The interior structure of the data centre scheduling module 64

Figure 4.1 Replica creation decision-making process... 71

Figure 4.2 Sample workflow [139] ... 77

Figure 4.3 Data dependency matrix [139]... 77

Figure 4.4 Initial data placement in sample workflow [139] .. 79

Figure 4.5 Total cost comparison .. 80

Figure 4.6 Four different situations segmented by HDD and HAD 84

Figure 4.7 The result of simulation 1 .. 93

Figure 4.8 The result of the Montage workflow in Simulation 2 94

Figure 4.9 The result of the CyberShake workflow in Simulation 2 94

Figure 4.10 The result of the LIGO Inspiral workflow in Simulation 2 95

Figure 4.11 Simulation result 1 – Synchronous instance input 105

Figure 4.12 Simulation result 2 – Asynchronous instance input 107

Figure 4.13 Simulation result 3 – Iterative input with instance group 108

Figure 5.1 The TRR comparison of Simulation 1 ... 122

13

Figure 5.2 The task rescue utility comparison of Simulation 1 123

Figure 5.3 The task operation profit comparison of Simulation 1 123

Figure 5.4 The TRR comparison of Simulation 2 ... 124

Figure 5.5 The task rescue utility comparison of Simulation 2 125

Figure 5.6 The task operation profit comparison of Simulation 2 126

Figure 5.7 The TRR comparison of Simulation 3 ... 127

Figure 5.8 The task rescue utility comparison of Simulation 3 127

Figure 5.9 The task operation profit comparison of Simulation 3 128

Figure 5.10 The example of the eligible time slot identification 131

Figure 5.11 Task prioritising cuboid ... 133

Figure 5.12 The TRR result of Simulation 1 .. 142

Figure 5.13 The TRR result of Simulation 2 .. 143

Figure 5.14 Resource load in 𝑑𝑐2 ... 144

Figure 5.15 Resource load in 𝑑𝑐3 ... 145

Figure 5.16 Resource load in 𝑑𝑐4 ... 145

Figure 5.17 The cloud resiliency result of Simulation 3 ... 146

Figure 6.1 The example of the Montage workflow and the Meteorological workflow

[10][130] ... 150

Figure 6.2 The TRR of the HEFT-T strategy .. 163

Figure 6.3 The TRR of the proposed PRFT strategy .. 163

Figure 6.4 The WRR of Meteorological 1 (HEFT-T applied) 164

Figure 6.5 The WRR of Meteorological 1 (PRFT applied) .. 164

Figure 6.6 The WRR of Meteorological 2 (HEFT-T applied) 165

Figure 6.7 The WRR of Meteorological 2 (PRFT applied) .. 165

Figure 6.8 The WCR of Meteorological 1 (HEFT-T applied) 166

14

Figure 6.9 The WCR of Meteorological 1 (PRFT applied) .. 167

Figure 6.10 The WCR of Meteorological 2 (HEFT-T applied) 167

Figure 6.11 The WCR of Meteorological 2 (PRFT applied) .. 168

Figure 6.12 The TRR of the HEFT-T strategy .. 169

Figure 6.13 The TRR of the proposed PRFT strategy .. 169

Figure 6.14 The WRR of the Montage workflow (HEFT-T applied) 170

Figure 6.15 The WRR of the Montage workflow (PRFT applied) 170

Figure 6.16 The WRR of the Meteorological workflow (HEFT-T applied) 170

Figure 6.17 The WRR of the Meteorological workflow (PRFT applied) 171

Figure 6.18 The WCR of the Montage workflow (HEFT-T applied) 171

Figure 6.19 The WCR of the Montage workflow (PRFT applied) 172

Figure 6.20 The WCR of the Meteorological workflow (HEFT-T applied) 172

Figure 6.21 The WCR of the Meteorological workflow (PRFT applied) 173

15

List of Tables

Table 2.1 The comparison of replica creation strategies... 52

Table 2.2 The comparison of fault handling strategies ... 54

Table 4.1 The settings of the main parameters ... 78

Table 4.2 Four different data situations .. 85

Table 4.3 The data items of the Montage workflow ... 90

Table 4.4 The data items of the CyberShake workflow .. 91

Table 4.5 The data items of the LIGO Inspiral workflow ... 91

Table 4.6 The pricing model of the cloud service providers... 92

Table 4.7 The network latency of each data centre ... 104

Table 5.1 The major parameters of each data centre .. 121

Table A1.1 The notations in the descriptions and equations of Chapter 4 208

Table A1.2 The notations in the descriptions and equations of Chapter 5 210

Table A1.3 The notations in the descriptions and equations of Chapter 6 212

Table A1.4 The notations in the pseudocodes .. 213

Table A1.5 The contribution summary of the six proposed strategies 215

16

Chapter 1 Introduction

1.1 Research Background

In recent years, many organizations face challenges when managing large amount of data

generated from various business activities as the business has had a rapid growth due to

digitalization development. There are many reports predicting the exponential data growth

beyond 2020. For example, as shown in Figure 1.1, according to IDC Global Datasphere in

November 2018, the total amount of data around the world has dramatically increased over

the past 10 years from 2010 to 2021 and will continue to grow total 171% to reach 175

zettabytes in 2025, with most of the data residing in the cloud environment [93].

Figure 1.1 The exponential data growth according to IDC Global Datasphere [93]

The exponential data growth in both volume and speed has caused a variety of challenges:

• Network overloading

The exponential data growth may cause dramatical increase of data access load which

occupies vast amount of resources. Such load increase may further cause the resource

17

overloading problems.

• Low data processing efficiency and effectiveness

Processing of the exploding volume of data may take much extra time, especially for those

data users who need to cooperate with other data users. It may lead to lower efficiency and

effectiveness in the data-intensive applications.

• High system management complexity

The exploding volume of data may need a variety of systems to store, transfer and process

them. Therefore, it may lead to the high system management complexity to data service

providers and data owners.

• Extra power, cooling and space limitations

More and more data servers should be deployed to store and process the exploding volume of

data. All those data servers need to be placed properly. The increased number of data servers

need extra power, cooling systems and extra physical space to store and work properly.

• Significant shortage of relevant skills

With the exponential data growth, more and more data need to be processed by users, data

owners and data service providers. However, some of users, data owners and data service

providers may lack relevant skills.

• Application performance deficiency

With the exponential data growth, the application execution may take longer time as it may

need to access more data. This may impact the responsiveness of those applications

adversely.

• Out-of-control cost growth

The exploding volume of data will increase different costs, such as data management cost,

data transfer cost, and data storage cost, etc. Therefore, the cost may be out-of-control to

users, data owners, and data service providers.

18

• Inadequate data security

The exponential data growth may cause inadequate data security protection because the

current data security tools or methods may be outdated or overloaded. Therefore, more

advanced security tools or methods may be required to be developed.

• Sluggish agility responding to changing business

The rapid changing business environments exist everywhere. The business agility can be

sustained by maintaining and adapting the offered business services to meet the customer

requirements. However, the exponential data growth may delay the maintenance and adaption

processes and decrease the responsiveness to the changing business environment. Therefore,

it may cause sluggish business agility to the cloud users.

With this continuing data explosion, a high-performance computing environment is urgently

required. The emergence of cloud computing technologies constructs a novel paradigm to

address the problems caused by the data explosion [72]. It allows heterogeneous computing

environments to satisfy the global user requirements. The cloud environment can also help

users minimise data loss risks and downtime to achieve better quality of service. The

heterogeneity of the cloud environments allows many competitive advantages in comparison

with the traditional distributed computing environments [66]. For example, from the scale

economics perspective, dynamic provisioning and lower capital cost are two of the most

significant competitive advantages bringing from the heterogenous cloud environment [22].

To address the potential negative influences of the continuing data explosion in the cloud

environment, data replication has been proposed as one of the most significant data

management approach to strategically distribute the data access load into multiple cloud data

centres. The data replication strategy has been a research area of interest for many years. By

creating multiple data copies at multiple cloud data centres, data replication can achieve a

variety of benefits such as response time decrease, data availability increase, and more

19

balanced resource load.

However, the cloud environment is subject to many types of faults, which may lead to a

series of negative influences on the cloud data centres in a chain reaction. The data centres in

the cloud environment may temporarily be unavailable due to the negative fault impacts.

Therefore, fault tolerance becomes one of the biggest challenges in the cloud environment to

ensure the quality of service and user satisfaction. The fault tolerance techniques are the

major tools being used to achieve a successful and continuous fault handling solution. Many

types of fault tolerance techniques have been proposed before.

Particularly, the data replication itself is also a fault tolerance technique to improve the cloud

performance when encountering faults. A comprehensive data replication strategy can guide

the establishment of a replica-applied cloud environment. The replica-applied cloud

environment can protect the cloud environment from being affected by the upcoming faults

as much as possible. Tasks at the faulty data centre can be strategically resubmitted or

migrated to other proper-working cloud data centres with the required data replicas in the

replica-applied cloud environment.

Although the replica-applied cloud environment can protect the cloud environment against

the upcoming faults, there are still many types of reactive fault tolerance techniques, such as

retry [35], checkpointing/restarting [83] and user defined exception handling [89]. The

reactive fault tolerance aims to reduce the negative influences after the faults already

occurred.

Task resubmission and task migration are also two significant reactive fault tolerance

techniques. The task scheduling method is the core method of task resubmission and task

migration. These two reactive fault tolerance techniques enable the automatic task rescue at

the faulty data centre, aiming to successfully complete as many as affected tasks.

1.2 Key Research Issues

20

In this thesis, the key research issues of data replication and its alignment with fault

management in the cloud environment are investigated. Data replication strategies and fault

tolerance strategies are two key research areas. Several general research questions are listed

below:

• Which data should be selected to create its replicas?

• How many replicas of each data should be created in the cloud?

• Where should these replicas be situated?

• Which replica is suitable to select for data access?

• How to develop a suitable reactive fault tolerance strategy for the replica-applied

cloud environment?

In more details, this thesis will address the following research problems.

• Firstly, an appropriate replica creation strategy is necessary and indispensable in a

large-scale cloud system [67]. Both external data attributes and internal data attributes

have significant influences on the data. The external data attribute refers to the

attribute which the data correlates to the external environmental factors such as users

and cloud service providers, while the internal data attribute refers to the attribute

which the data correlates to other data. However, most of the literature only considers

the same type of data attributes to constrain the replica creation. Considering only one

type of data attributes may lose the comprehensiveness of the data analysis when

developing replica creation approaches. Therefore, both external data attributes and

internal data attributes should be jointly considered when developing replica creation

process.

• Secondly, each data centre can be recognized as an individual host entity in the cloud

environment. A data stored in a cloud data centre may have multiple data

relationships to other data inside data centre and outside data centre. The data

21

relationship between this specific data and its correlated data inside the same data

centre can be seen as local data relationship, while the data relationship between this

specific data and its correlated data outside the same data centre can be known as

remote data relationship. Therefore, the data relationship situations between inside

data centre and outside data centre should be distinguished when making the replica

creation decision.

• Thirdly, most of the current replica selection strategies lack the consideration of the

potential negative impacts among multiple concurrent-running cloud application

instances under limited network capability. Hence, those replica selection strategies

might not achieve the optimal network performance when there are heavy data access

needs in the cloud environment. Therefore, a replica selection strategy for load

balancing with the comprehensive analysis of the cloud network capability is urgently

required.

• Fourthly, data replication itself is also a fault tolerance technique. The replica-applied

cloud environment can protect the cloud environment from being affected by faults

beforehand. However, it is not sufficient to achieve the optimal cloud performance by

adopting the replica-applied cloud environment only when encountering faults.

Therefore, the reactive fault tolerance strategies may also be required to assist with

the replica-applied cloud environment to further achieve better cloud performance.

• Fifthly, the data replication strategy always contains three domains, replica creation,

replica placement, and replica selection. Besides, there are a variety of fault tolerance

techniques. However, there is not a general management framework for cloud

environments, which aligns the data replication and the fault management together.

Hence, a comprehensive data replication and fault management framework is required

to enable a complete management chain to the cloud environment for better cloud

22

performance, which aligns the data replication strategies with the fault tolerance

strategies.

• Sixthly, independent tasks and dependent tasks have different task features. There are

no task relationships among independent tasks while there is at least one task

relationship among dependent tasks. Therefore, the fault tolerance techniques for

independent tasks and dependent tasks should be differentially developed to ensure

the applicability of the fault tolerance strategies.

1.3 Research Contributions

To overcome the problems mentioned above, this thesis proposes three data replication

strategies and three fault tolerance strategies in the cloud environment by following the

proposed data replication and fault management framework. The proposed two replica

creation strategies and one replica selection strategy can be used to create a replica-applied

cloud environment. Besides, the proposed three fault tolerance strategies are all reactive fault

tolerance strategies by aligning with the proposed replica selection method. They aim to

reactively protect the task completeness when encountering faults in the cloud environment.

The contributions of this thesis are summarised as follows.

• A data replication and fault management framework is proposed to enable a

decentralised management chain to the cloud environment in Chapter 3. It adopts

multiple user platforms and data centre platforms. The platforms have their inside

modules to achieve different management functionalities. Those modules are inter-

connected and inter-cooperated to achieve a comprehensive management chain for the

cloud environment.

• Three data replication strategies are proposed in the form of two replica creation

strategies and one replica selection strategy in Chapter 4. Various evaluation

23

parameters are considered in these data replication strategies, such as data

dependency, data size, access frequency, network performance measurements, and

resource load. Different evaluation methods have been applied in these data

replication strategies to set the evaluation constraints for constraining different data

replication decision-making processes. For example, the threshold-based evaluation

method and the normalisation-based evaluation method are two evaluation methods

applied in these data replication strategies.

• Three reactive fault tolerance strategies are proposed on the basis of the replica-

applied cloud environment in Chapter 5 and Chapter 6. Various evaluation parameters

are also considered in these reactive fault tolerance strategies such as network

performance measurements, task attributes, task urgency, task utility, resource load,

and task dependency, etc. Particularly, different reactive fault tolerance strategies are

proposed for independent tasks and dependent tasks, respectively, in the form of two

reactive fault tolerance strategies for independent tasks and one reactive fault

tolerance strategy for dependent tasks. Different evaluation methods are also applied

in these reactive fault tolerance strategies such as the normalisation-based evaluation

method and the priority-based evaluation method.

• The case study and the simulations show that the proposed strategies achieve better

performance than other relevant comparative strategies in terms of different

optimisation objectives.

1.4 Thesis Roadmap

The rest of this thesis is structured as follows.

Chapter 2 presents a literature review of cloud computing technology, data-intensive

applications and scientific workflows, data replication strategies, fault tolerance strategies,

24

and task scheduling strategies. The problem statement and the research insights are also

demonstrated.

Chapter 3 introduces the proposed data replication and fault management framework. This

framework includes different platforms and modules to achieve a complete management

chain for the cloud environment. A set of general notations and basic definitions are also

presented in this chapter.

Chapter 4 illustrates three data replication strategies in the form of two replica creation

strategies and one replica selection strategy. The first replica creation strategy aims to reduce

the total cost of the cloud application execution by considering the data dependency and the

access frequency. The second replica creation strategy aims to achieve the optimal cost

reduction per replica by identifying a recommended access frequency threshold value.

Furthermore, the proposed replica selection approach aims to minimise the potential network

overloading problems and increase the number of concurrent-running instances at the same

time by considering the network performance at each data centre.

Chapter 5 presents two reactive fault tolerance strategies for the independent tasks in the

replica-applied cloud environment. The first fault tolerance strategy fully considers the

network performance metrics and the task attributes for more efficient task rescue in the

replica-applied cloud environment. The second fault tolerance strategy further adds the

timeline allocation into consideration to achieve better cloud resiliency and load balancing

performance.

Chapter 6 demonstrates a reactive fault tolerance strategy for the workflows in the replica-

applied cloud environment. This strategy aims to achieve better task resilience ratio,

workflow resilience ratio, and workflow continuity ratio. It takes the task attributes, the

timeline scenario at each data centre, and the overall cloud performance into account. This

strategy innovatively incorporates the modified PageRank algorithm into the workflow

25

scheduling research when handling faults.

Chapter 7 comprehensively discusses the contributions of this thesis and the applicability of

each proposed strategy. This chapter also examines the limitations of the proposed strategies,

such as optimisation objective diversity, replica placement simplification, workflow type

limitation, lack of experiments, and the applicability to the server level or the cloud service

provider level.

Chapter 8 concludes the research work in this thesis and discusses some future research

directions.

26

Chapter 2 Literature Review

2.1 Cloud Computing

Cloud computing technology has been widely used to alleviate massive data processing

challenges with its on-demand services and distributed architecture. It uses and

combines different computing resources such as servers, databases, networks, software

applications, and a series of relevant technologies to complete the tasks on demand

instead of owning and operating those resources and technologies by organizations

themselves [73][126].

In particular, during the tough time of COVID-19, traditional IT shows more and more

drawbacks while cloud computing offers a lot of competitive advantages such as remote

office work and continuous business operations.

2.1.1 Comparisons between traditional IT and cloud computing

Compared with traditional IT, cloud computing offers a variety of benefits, such as

greater cost effectiveness, higher responsiveness to market, better scalability, more

flexible elasticity, increased cooperation efficiency, improved reliability, and more

durable business continuity.

• Greater cost effectiveness and efficiency

Traditional IT needs the users to construct their computing resources on-premises such

as IT infrastructure and software applications by evaluating the data processing

requirements inside the organization and outside the organization. It also needs the users

to update their computing resources based on their data growth and traffic surge.

Purchasing and maintaining computing resources are always costly. Differently, cloud

computing enables the “pay-as-you-go” cost schema to pay for the required computing

resources only for eliminating the relevant infrastructure costs, the application

27

development costs and the maintenance cost, etc [7]. This increases the cost

effectiveness and efficiency [21][75].

• Higher responsiveness to market

As mentioned above, traditional IT needs users to establish the computing resources on-

premises. This might waste time to offer a complete computing capability because

purchasing and deploying the computing resources in an organization may take weeks

or months. In contrast, cloud computing enables quick deployment of computing

resources and thus increases the responsiveness to users [105].

• Better scalability, more flexible elasticity and better security

As mentioned above, traditional IT needs the users to update their computing resources

on-premises based on their business growth and traffic surge. Differently, cloud

computing enables the users to scale their workload on the cloud servers and

automatically adjusts the offering of computing resources for better scalability and more

flexible elasticity [123][146].

Besides, as discussed above, traditional IT always needs the users to host their

computing resources on-premises. Therefore, there might be many physical and logical

security drawbacks and loopholes. Working with a cloud can significantly enhance

security because the cloud service provider can keep high-level data security by

adopting high-level physical security systems, virtual private clouds, encryptions, and

API keys.

• Improved reliability and more durable business continuity

Traditional IT hosts the data on-premises and always has frequent data loss risks and

downtime because of the infrastructure issues and the low security. Cloud computing

enables a heterogeneous cloud environment with a complete redundancy plan including

global networks, data backups, and disaster recovery plans to achieve high reliability.

28

The cloud service providers will keep the ongoing business success and make the

business more affordable and less disruptive.

2.1.2 Cloud service models

There are three cloud service models, Infrastructure-as-a-Service (IaaS), Software-as-a-

Service (SaaS), and Platform-as-a-Service (PaaS) [37][53][88][109][110][112].

Primarily, the logical “data pool” often relies on multiple physical servers in the cloud

data centres which are owned by IaaS service providers. Besides, a variety of cloud

applications are offered by SaaS service providers. Apart from that, many cloud

platforms are constructed to integrate multiple cloud applications with the cloud

infrastructure by PaaS service providers. The IaaS service refers to the tangible physical

devices which are located in a cloud data centre, including servers, data storage devices,

virtual computers, and network devices [32][87]. The IaaS service providers also offer

the hardware systems such as air conditioning systems, firefighting systems, backup

services, and electrical power systems to ensure the quality of IaaS services. Authorised

users can easily access the data stored on the cloud infrastructure via Internet [32].

The SaaS service is a model that the cloud users can order and receive a variety of cloud

applications on demand via the Internet instead of installing and updating the

applications on their physical computers or servers [52]. There are three major features

of the SaaS service, such as multi-tenant efficiency, scalability, and configurability.

However, not all cloud applications contain all of these three major features and a cloud

application may have one or two features only [9][49].

The PaaS service is the model between IaaS and SaaS as they can integrate the cloud

applications on the platform via the Internet and connect the cloud applications to the

cloud infrastructure [23]. The cloud users only need to manage the cloud application

deployment and the application hosting environment by adopting the PaaS services.

29

Nowadays, many cloud service providers, such as Amazon, Microsoft, and Google,

integrate IaaS, SaaS, and PaaS to offer a comprehensive cloud service.

2.1.3 Cloud architectures

There are a number of common cloud architectures including public cloud, private

cloud, community cloud, and hybrid cloud [76].

• Public cloud architecture

The computing resources in a public cloud architecture are owned and operated by the

cloud service providers [135]. They are always shared resources, which can be

redistributed to multiple tenants via the Internet [104]. The public cloud architecture can

achieve a variety of benefits such as operation cost reduction, easy scalability, and low

maintenance cost.

• Private cloud architecture

The computing resources in a private cloud architecture are owned and operated by the

organizations themselves in their on-premise infrastructures [50][85]. They can also be

operated at the leased space in geographically scattered colocation facilities. The private

cloud architecture achieves higher customisation and stronger cloud security than the

public cloud architecture.

• Community cloud architecture

The community cloud achieves the communities of the consumers that experience the

same data [45]. A single organization or multiple organizations can be organized in the

cloud community.

• Hybrid cloud architecture

A hybrid cloud architecture integrates the private cloud architecture and the public

cloud architecture [79]. It enables both the working efficiency of the public cloud

architecture and the high data security of the private cloud architecture. The hybrid

30

cloud architecture allows organizations to manage their workloads based on their data

security requirements. The organizations can freely convert between the private cloud

architecture and the public cloud architecture if needed.

2.1.4 Multi-cloud environment

Some users may need to globally deploy their work. A multi-cloud environment uses

two or more cloud computing services to share the workload across multiple cloud

service providers all over the world. It is commonly used by several popular cloud

platforms such as OpenStack and Microsoft Azure.

Figure 2.1 An example of multi-cloud architecture

Multi-cloud architecture is always used to support global or cross-regional collaborative

work by using cloud infrastructure in multiple cross-regional locations [116]. In this

case, it offers more agile and scalable cloud services than using a single cloud service

[121]. It helps cloud users avoid the single-vendor lock-in problem. Although the multi-

cloud architecture provides an appropriate computing environment to execute the global

or cross-regional collaborative work, there are also two critical problems. The first

problem is how to appropriately choose the schema of data hosting and task execution,

and another problem is how to meet different service requirements [140]. An example

31

of the multi-cloud architecture is shown in Figure 2.1.

2.2 Data-Intensive Applications and Scientific Workflows

As mentioned above, there are multiple types of cloud architectures such as private

cloud, public cloud, and hybrid cloud, etc. These cloud architectures are commonly

applied in different cloud service providers for executing data-intensive applications

[140].

Data-intensive applications are typically very complex and take a long execution time.

They usually contain a large number of independent and dependent tasks. In particular,

the scientific workflows as one of the data-intensive applications have been adopted in a

wide range of research areas, such as astronomy, high-energy physics, bioinformatics

[64], nuclear simulation, and earthquake engineering [120]. The scientific workflows

can create an automated way to specify, execute, monitor, and track the data-intensive

and highly-structured scientific research processes [24]. They consist of a large set of

computational tasks which operate on the input data and generate a set of intermediate

data [117].

Because of these features, the cloud environment is one of the most suitable

environments for executing scientific workflows [120][124]. Firstly, as the data size

increased, scientists only need to request more computing resources from the cloud

service provider. Secondly, not all resources are required when performing one task,

scientists can request the required resource to perform the task on demand. Thirdly, the

total workflow execution cost will depend on how many computing resources the

scientific workflows exploited, and then the scientists can compare the total cost with

their budget to adjust the resource exploitation. Lastly, as mentioned above, the

scientific workflows are always complex, highly-structured, global-collaborative, cross-

regional, and data-intensive. Hence, the cloud environment can achieve global

32

collaborations among scientists all over the world to conduct their research together

[138].

There are many famous types of scientific workflows in the real world. The Montage

scientific workflow was established by the NASA/IPAC Infrared Science Archive [10].

It is an open-source toolkit, which aims to generate custom mosaics of the sky by using

input images in the Flexible Image Transport System format. The CyberShake

workflow is adopted in the Southern California Earthquake Centre to characterise the

earthquake threats by using the Probabilistic Seismic Hazard Analysis technique [10].

The LIGO Inspiral Analysis workflow aims to detect gravitational waves which are

produced by various events in the universe [10]. It is used for the data analysis of the

data collected from the coalescing of compact binary systems. The SIPHT program uses

an automated search workflow to search the sRNA encoding-genes for all of the

bacterial replicons in the National Centre for Biotechnology Information database [10].

2.3 Data Replication

As the data-intensive business increases, an enormous amount of data is generated as

shared resources. The size of data is always measured in terabytes or petabytes. Cloud

computing is commonly adopted to store and process an enormous amount of data. Data

replication has been proposed as a data management approach, which creates multiple

data copies into multiple cloud data centres [19]. Data replication has been an area of

research interest in the past decade in World Wide Web, peer-to-peer networks, ad-hoc

and sensor networking, grid environments, mesh networks, and most importantly cloud

environments [1].

In current cloud environments, different data replication strategies are commonly

deployed in different cloud data centres. Thus, accessing data can be strategically

distributed to multiple cloud data centres to optimise the data access load and the overall

33

cloud performance by adopting different data replication algorithms [78]. Data

replication can offer the following benefits:

• The data replication strategy guarantees fast data access for the tasks in the

cloud environment, especially for the tasks in the data-intensive applications.

Multiple concurrent-running instances may access the same data at one specific

cloud data centre. The resource contention may cause a performance bottleneck

to this data centre. This bottleneck can be eliminated by applying data

replication strategies, which results in more balanced resource load in the entire

cloud environment [12][13]. At the same time, multiple replicas can also

improve data availability [31][65][136].

• The data replication strategy can reduce the data access distance to the required

data [46] [61]. Some required data may be able to be replicated to the local data

centre so that those data can be accessed locally to reduce the data movement

[82]. By doing this, the data management cost [38][59] and the response time

[115] can also be reduced.

• In the cloud environment, unexpected faults can happen at any time [103]. The

data replication strategy can guarantee data reliability because the tasks at the

faulty data centre might be rescued and completed in time by accessing other

required data replicas after the fault occurred [54][56][57][71].

In most of the literature, data replication is commonly classified into two main groups,

static data replication strategies and dynamic data replication strategies [6]. Static data

replication strategies rely on deterministic policies. The number of replicas and the host

nodes for the replicas are commonly well-defined and pre-determined at the build-time

stage. The static data strategies can be easily implemented but it is not often applied

because of its limited adaptability to the dynamic environment [78]. Dynamic data

34

replication strategies dynamically make the intelligent data replication solutions

depending upon the dynamic environment situations [78].

Replica creation, replica placement, and replica selection have been identified as three

major sub-areas of data replication research. Replica creation is the strategy of creating

a suitable number of data replicas for the necessary data [108]. Normally, replica

creation strategies include some of the following phases:

• Analysing and modelling the relationship between the number of replicas and

the system availability

• Identifying the data importance and triggering the replica creation process when

the data satisfies the replica creation constraints

• Determining a suitable number of replicas to satisfy the system requirement

Replica placement is the strategy of placing data replicas to the appropriate cloud data

centres [69]. Multiple placement constraints can be set to guide the appropriate cloud

data centres to place the replica.

Replica selection is the strategy of selecting the optimal replica-ready data access routes

for the tasks in the cloud environment [142]. Various parameters have been considered

in the different replica selection algorithms, such as data access cost, data maintenance

cost, access latency, resource load, workload, storage load, task execution time, and

response time, etc.

2.3.1 Replica creation

Many replica creation strategies have been proposed in the past decade. In [91], the

authors propose a Fair-Share Replication (FSR) strategy that takes both access load and

storage load into account to determine the replica creation. An average access frequency

is used to compare with the access frequency of the targeted datasets for identifying the

popular file and ranking the file.

35

In [18], the authors propose a Latest Access Largest Weight (LALW) strategy in order

to select a popular file and calculate a suitable number of copies and grid sites for data

replication in data grids by considering the access frequency to exhibit the importance

for the access history in different time intervals.

In [56], the authors propose a Cost-Effective Incremental Replication (CIR) strategy to

manage the data reliability of each data centre in a cost-effective way. An incremental

replication method is applied to determine when the replica should be created. The

number of replicas is minimised by predicting the additional replica creation to ensure

the reliability requirement for achieving the cost-effective replica management goal.

In [118], the authors propose a threshold-based file replication strategy to dynamically

make the file replica creation based on the file popularity and the file request processing

in case of node failure without the user intervention. The threshold-based file replication

strategy carries out the file replication when the total number of the access requests for a

particular file reaches the threshold value.

In [30], a Dynamic Cost-aware Re-replication and Re-balancing strategy (DCR2S) is

proposed for the knapsack problems in three phases, by identifying the suitable data file

and the number of data file replicas to replicate to appropriate locations and determining

the additional required replication for satisfying the available requirement.

In [125], the authors propose a CDRM strategy as a cost-effective dynamic replication

management scheme. They propose a novel way to capture the relationship between

availability and replica number. The minimum replica number is computed under a

certain availability. The purpose of CDRM strategy aims to provide the cost-effective

availability and improve the load balancing performance. By analysing the workload

change and the storage resource, the CDRM strategy dynamically re-distributes the

workloads among different data centres. At the same time, it maintains the number of

36

replicas at each data centre to satisfy the availability requirement of each data centre at

low cost. Besides, the replicas are dynamically placed into data centres to distribute the

workload based on the resource load and the utilisation intensity of each data centre.

This is achieved by calculating the capacity and the blocking probability of each data

centre.

In [8], the authors propose a three-level replica management strategy called RTRM to

improve the network utilisation and service response time. The RTRM strategy consists

of replica creation level, replica placement level and replica selection level. It evaluates

the average response time to automatically control the replica creation and the number

of replicas by adopting a threshold-based method. The bandwidth situation is predicted

among the replica servers based on the upcoming requests in the RTRM strategy. It will

be combined with the number of replicas and the network transfer time to control the

replica placement and selection processes.

In [107], the authors propose a dynamic data replication strategy called D2RS with three

phases. These three phases cover two data replication research area, replica creation and

replica placement. They address two major research questions: which, when and where

data file should be replicated; and how many replicas should be created. In the D2RS

strategy, the data access information is used to identify a popular file. A threshold-based

method is used to compare the file popularity, which aims to identify which data file

should be replicated. Besides, the number of replicas is determined upon the reasonable

growth of the file availability. Then a balanced replica placement method is applied by

evaluating the data access information from the directly connected data centres.

In [127], the authors propose a cost-effective data replication strategy to approximately

minimise the data management cost. The access frequency and the average response

time are considered to determine which data should be replicated in the cloud

37

environment by applying a threshold-based evaluation method. Besides, the number of

replicas and the storage destinations can be decided according to the location problem

graph and the minimum management cost.

In [31], the authors propose a dynamic, cost-aware data replication strategy by

identifying the minimum number of replicas to satisfy the desired availability, to get the

maximum value and to keep the total weight less than or equal to the peak budget at the

same time.

In [143], the authors propose a dynamic file heat and node load based replica creation

strategy to solve the excessive replica creation problem by jointly considering the

characteristics of the hybrid cloud environment. They firstly propose an initialisation

strategy to dynamically decide the number of replicas based on the user requirements.

Then file heat history, access frequency, and file change rate are considered for file heat

formulation. Besides, a dynamic file heat and node load based adjustment schema is

created to dynamically adjust the number of replicas to further reduce the average

response time and improve the overall cloud performance.

In [58], a dynamic data replication strategy is proposed with the consideration of both

the tenant budget and the provider profit to satisfy the data availability and the

performance requirements. A cost model is developed to calculate the minimum number

of replicas to maintain the optimal data availability. The replica creation will be initiated

when the pre-calculated number of replicas or the response time is not satisfied and the

profit can be positive to the cloud service provider. The replica placement uses query

scheduling techniques to balance the parameters between the load balancing and the

tenant budget.

In [36], the authors propose a novel dynamic predicted replication strategy (DPRS) to

predict the future file access and periodically calculate the number of replicas based on

38

the real access history and the future access. A calculation model is proposed to

calculate the optimal number of replicas based on the number of accesses. A single

exponential smoothing method is applied to predict future file access.

In [80], a data replication strategy called RSPC is proposed to satisfy the cloud

performance, the minimum availability, and the cloud service provider profit at the

same time. A threshold-based replica creation method is applied to initialize the RSPC

data replication strategy. Then a new replica will be created if a suitable replica

placement solution can be heuristically identified based on the evaluation of response

time and the cloud service provider profit. The penalties and the data replication cost are

considered in the estimation process of the cloud service provider revenue and

expenditure.

2.3.2 Replica placement

Many replica placement strategies have been presented in the past years. In [101], a

dynamic popularity based replica placement (PBRP) strategy is proposed for

hierarchical data grids to shorten the job execution time and reduce the bandwidth

consumption. A threshold-based popularity-driven guide model is developed to guide

the replica placement. The authors present the Adaptive-PBRP (APBRP) algorithm to

dynamically set the popularity threshold value according to the data request arrival

rates.

In [59], the authors propose a data replication strategy to solve the QoS-aware data

replication (QADR) problems to minimise the data replication cost and the number of

QoS-violated data replicas. To solve the QADR problems, a greedy algorithm called

high-QoS first-replication (HQFR) is proposed to assign the precedence for the cloud

applications in the cloud environment. Besides, the authors find that the optimal

solution of the QADR problem can be identified by formulating the QADR problem as

39

an integer linear programming formulation. Therefore, they transfer the QADR problem

to the minimum-cost maximum-flow problem and propose a novel algorithm to solve

the minimum-cost maximum-flow problem to identify the optimal replica placement

solution based on the QoS requirements.

In [64], the authors propose a group based genetic replica placement algorithm

collaborated with the analysis of the scientific application characteristics to reduce the

data transmission in the cloud environment by considering the data size and the

bandwidth situations among data centres.

In [65], a Multi-objective Optimized Replication Management strategy (MORM) is

proposed to balance the trade-off among five optimisation objectives, including mean

service time, mean file unavailability, load variance mean access latency, and energy

consumption, to make a near-optimal data replication solution. Authors develop the

mathematical models to formulate the five optimisation objectives with the

consideration of multiple parameters such as data size, data access rate, failure

probability, data transfer rate, and resource capacity at the same time. The feasible file

is founded by identifying the replication factor based on the integrity constraint and the

capacity constraint. The feasible individuals can be placed among data centres, which

consider the five optimisation objectives. A suitable number of replicas is maintained to

achieve the optimal performance with respect to five optimisation objectives for each

feasible individual.

In [128], the authors propose a QoS-aware data replication and placement strategy to

approximately evaluate the big data analytics query in the cloud environment. The QoS-

aware data replication and placement strategy aims to strategically create and place the

data samples to the data centres in the cloud environment by considering a trade-off

between the query evaluation cost and the query evaluation error bound. Two efficient

40

algorithms are developed for single approximate query and multiple approximate

queries, respectively. Then a heuristic algorithm is proposed to evaluate a set of

approximate queries to minimise the evaluation cost and the delay requirements.

In [70], the authors propose a hierarchical data replication strategy (HDRS) to reduce

the response time and the bandwidth usage. A multi-tier structure for data replication is

firstly proposed to offer flexible and scalable management for vast files. Then the

HDRS strategy develops the replica creation strategy, the replica placement strategy,

and the replica replacement strategy. The replica creation strategy identifies the popular

file according to the exponential growth or the decay rate and then creates the replicas.

The access load and the labelling technique are applied to decide the replica placement.

The replica replacement is based on the evaluation of the number of future file access

and the file size.

In [27], the authors propose an energy-aware data replication strategy to decide the

number of required replicas and the locations for those replicas. A hybrid metaheuristic

algorithm, named HPSOTS, is developed to generate high-quality data replication

solutions by combing the Particle Swarm Optimization algorithm and the local search

capability of the Tabu Search.

2.3.3 Replica selection

Many replica selection strategies have been proposed in the past decade. The K-RSDG

replica selection strategy is proposed in [3] for data grids, which considered: (i) two

higher-valued attributes: security and file availability and (ii) two lower-valued

attributes: price and response time and (iii) two unimportant attributes for each file. The

replica location service is used to gather the replica location information based on the

user request. The k-means clustering algorithm is used to cluster the labels from which a

decision table is created. The grey based rough set theory is applied as input data by

41

using the replicas information only and then the grey-based k-means clustering

algorithm is applied to the input data to make the replica selection decisions.

In [60], the authors propose a network coordinate based nearest replica selection service

called Rigel. The best replica is selected from a site that has the smallest round-trip

time. Rigel provides a lightweight and scalable solution to select the optimal replica for

grid users.

In [90], the authors propose a dynamic data replication strategy with a replica

management system. The proposed strategy concentrates on data availability by

developing the replica placement and selection algorithm. It has two phases, where the

first phase creates replicas by using catalogue and index, and the second phase stores

the replicas. The replica selection strategy selects the replica with the minimum cost and

bandwidth utilisation.

In [131], a 2PhaseEnhancing is proposed by the design of DNS to reduce the file request

time in two phases. The first phase reduces the catalogue search time by using a local

file that collects the historical file request of each user. The second phase considers a

selection criterion to make the best replica selection choice.

In [42], the authors implement various classical replica selection algorithms such as the

random algorithm, the round-robin algorithm, and the least response time algorithm, etc.

They also analyse the performance of those replica selection algorithms for the current

classic key-value stores in the cloud environment.

In [4], the authors propose a multithreaded and integrated maximum flow based optimal

replica selection strategy for heterogeneous data storage architectures. They propose

both sequential and parallel integrated maximum flow algorithms to find the optimal

response time retrieval. The algorithms support both distributed storage architecture and

centralized storage architecture.

42

In [55], the authors propose a comprehensive data replication strategy including all

three replica management strategies. The replica creation strategy is based on the access

tendency, named DRC-AT. The replica placement strategy is according to the user

request response time and the storage capacity, named DRPRS. The replica selection is

based on the response time, named DRS-RT. The DRC-AT strategy periodically

calculates the file access tendency based on the file popularity and the period value of

the file popularity to create and delete replicas. The DRP-RS strategy analyses the

response time of the user requests and the storage capacity to select the best node set to

place the created replica. The DRS-RT strategy offers the information about the replica-

ready node with the strongest service capability to the users and guides the users to

select that node to access the data.

2.4 Fault Tolerance and Task Scheduling

The cloud environment is subject to many types of faults, which might lead to a data

centre or the network links to a data centre being unavailable [62][95][106]. For

example, electricity interruption, data house collapse, cable damage, and natural disaster

are all huge faults to cloud data centres [92][113]. When such a fault occurs, the tasks

that require access to the data at the faulty data centre might be seriously impacted,

resulting in deteriorated performance or access disruption [98]. Hence, it is critical to

own the ability to handle the faults for all cloud data centres [34][40]. An appropriate

fault tolerance strategy can reduce and even eliminate the negative influence of the

faults.

The fault tolerance techniques are typically divided into two categories, proactive fault

tolerance techniques and reactive fault tolerance techniques [84]. The proactive fault

tolerance techniques try to proactively predict the faults and protect the system

environment to avoid the faults from occurring while the reactive fault tolerance

43

techniques reduce the negative influence of the faults when the faults already occurred

[83]. For example, MapReduce uses self-healing and pre-emptive migration for

achieving proactive fault tolerance purposes [84]. Besides, the examples of the reactive

fault tolerance techniques include checkpoint, retry, rescue workflow, user defined

exception handling, task resubmission, and task migration, etc [89].

2.4.1 Fault tolerance techniques

There are many fault tolerance techniques applied in the fault tolerance strategies. Some

classical fault tolerance techniques are described as follows.

• Self-healing

The self-healing technique allows the system to automatically detect, diagnose, and

repair software faults and hardware faults. It deploys the application instances onto

multiple virtual machines for achieving automatic handling [2].

• Pre-emptive migration

The pre-emptive migration technique enables the capability to migrate the cloud

application executions away from the suspicious computing nodes to the stable

computing nodes [39]. It is achieved by continuous system monitoring.

• Software rejuvenation

The software rejuvenation is developed for system periodic restarts. The periodic restart

of the system can enable a clean state of the system [83].

• Load balancing

The upper resource utilisation limit is set in this technique. The resource load will be

distributed to other computing nodes to avoid overloading problems if the resource load

exceeds the upper resource utilisation limit in one of the computing nodes [51].

• Checkpointing/restarting

The checkpointing/restarting technique aims to continuously save the system state in the

44

event of a fault. The task execution can be restarted from the most recent state

[137][141].

• Task resubmission and task migration

The task resubmission technique or the task migration technique allows the task to

resubmit or migrate to the same or similar computing resources for achieving

continuous task executions when encountering faults [77].

• Data replication

The data replication technique enables the replica-applied system environment to

protect the system environment against the upcoming faults [16][26]. Many famous

distributed computing environments have been adopted the data replication technique to

create a replica-applied distributed environment for system robustness, such as HDFS,

Google Cloud, and Amazon S3 [44][68]. In case that the primary data becomes

inaccessible, the task can also follow the replica selection strategy and the task

resubmission strategy to remain away from the interruption by accessing one of the

required data replicas.

2.4.2 Fault tolerance strategies

Many contemporary fault tolerance strategies focus on resolving the faulty problem. In

[62], a proactive fault tolerance strategy is proposed by considering the multi-VM

coordination to satisfy the completion requirement of the parallel application. A particle

swarm optimisation algorithm is proposed to migrate the VMs on the deteriorating

physical machine to an optimal physical machine. The CPU temperature evaluation is

applied to detect the deteriorating physical machine.

In [145], the authors combine three algorithms to achieve a redundant VM placement

optimisation strategy for improving service reliability. The first algorithm selects a set

of VM-hosting servers from a large host server candidate pool based on the network

45

topology. The second algorithm is to place the primary and backup VMs with the k-

fault-tolerance assurance from the selected VM-hosting servers. The last algorithm is a

heuristic algorithm to solve the task reassignment problem by finding a maximum

weight matching in bipartite graphs.

In [25], an offloading system is proposed to make the robust offloading decisions for

mobile services and optimise the execution time and the energy consumption with the

consideration of the dependency relationships among services when the faults occurred.

In [47], the authors present a novel FT-HCC fault-tolerant task clustering strategy to

enhance the workflow execution performance and improve the current task clustering

strategies under a faulty cloud environment if the transient failures meet the proposed

failure model. The FT-HCC fault-tolerant task clustering strategy considers the

workflow execution time and the workflow execution cost as two major constraints to

specify the deadline requirements during the workflow scheduling stage.

In [147], the authors propose a real-time workflow fault-tolerant model with the

consideration of the cloud characteristics which extends from the traditional PB fault-

tolerant model. A task allocation and message transmission analysis model is also

proposed to assist the fault-tolerant workflow execution. Authors apply the overlapping

and VM migration mechanisms when doing task scheduling to enable fault tolerance

and achieve high resource efficiency at the same time. The authors also propose a

resource elastic provisioning mechanism for full idle resource utilisation, fast resource

provisioning, and the avoidance of unnecessary frequent resource allocation changes.

In [74], an energy-aware fault-tolerant dynamic scheduling scheme (EFDTS) is

developed to assign and schedule the tasks with a fault-tolerant mechanism to optimise

resource utilisation and energy consumption. A task classification method is proposed to

partition the coming tasks and allocate the tasks to the suitable virtual machine

46

according to their task classes and energy consumption to reduce the mean response

time. The replication method is also used to minimise the task rejection ratio caused by

machine failure and delay. An elastic resource provisioning mechanism helps to

improve resource utilisation and energy efficiency.

In [99], a Checkpointing and Replication based on Clustering Heuristics (CRCH) is

proposed to achieve the fault tolerance purpose by using replication, resubmission, and

checkpointing methods. Authors develop an unsupervised way to learn the task

replication counts and a checkpointing mechanism to support the dynamic task

resubmissions on the most optimum resource.

In [133], the authors present a novel fault-tolerant workflow scheduling (ICFWS)

algorithm for the cloud environment to achieve the fault tolerance purpose by

considering both resubmission and replication method and the workflow deadline. The

algorithm firstly breaks the workflow deadline into multiple sub-deadlines for all tasks

in the workflow. Then, a suitable fault-tolerant strategy is selected and the suitable

resource will be reserved by analysing the sub-deadline competitions of the tasks and

adopting the on-demand cloud resource provisioning. After that, the authors design an

online scheduling and reservation adjustment scheme to select a suitable resource for

the tasks. This online scheduling and reservation adjustment scheme can also adjust the

sub-deadlines of the current-running tasks and the selected fault-tolerant strategy for the

upcoming tasks to be executed.

According to the above strategy in [133], a deadline-constrained Hybrid Fault-Tolerant

Scheduling Algorithm (HFTSA) for independent tasks in the cloud environment by

integrating both resubmission and replication method is further proposed in [134].

Similar to [133], HFTSA selects the fault-tolerant strategy by using resubmission and

replication for each task according to the task attributes and the cloud resource

47

situations. Then it reserves the suitable resources for each task execution. An online

adjustment scheme is also developed to adjust the selected fault-tolerant strategy and an

elastic resource provisioning mechanism is designed to dynamically adjust the resources

for executing the tasks.

2.4.3 Task scheduling strategies

As mentioned above, task resubmission and task migration are two of the most

important fault tolerance techniques. The task scheduling method is the core method of

task submission and task migration. The task scheduling strategies can enable a

reasonable task allocation solution when rescuing the tasks at the faulty data centre.

Many task scheduling strategies have been proposed in the past years. Various

constraint parameters have been considered to optimise different objectives. In

particular, the deadline-constrained task scheduling strategies are one of the common

types of task scheduling strategies to satisfy the deadline requirements.

The HEFT series strategies are one of the most significant series of deadline-constrained

task scheduling strategies, which are published from 2002 to date [11]. In [114], the

authors develop a Heterogeneous Earliest-Finish-Time (HEFT) algorithm to minimise

its earliest finish time with an inserted-based policy. It firstly assigns the priority to each

task in the scheduling list and then assigns each task to the first available server which

can enable the task to finish the earliest. In [144], the authors propose a Budget and

Deadline Constrained scheduling algorithm named BEFT to find the optimal workflow

scheduling solution to satisfy both deadline and budget constraints for avoiding SLA

violations. Specifically, the BEFT algorithm only works by reserving and billing a fixed

number of resources in heterogeneous grid computing systems. In [5], a novel list-based

task scheduling algorithm is proposed called Predict Earliest Finish Time (PHEFT) to

improve the makespan and the efficiency to compare with the HEFT, LDCP, and

48

LHEFT strategies. At the same time, this algorithm keeps the same time complexity to

the HEFT strategy. In [119], the authors extend the classic HEFT strategy in [114] and

the BHEFT strategy in [144]. They develop a Budget and Deadline Constrained

Heterogeneous Earliest Finish Time (BDHEFT) algorithm. The BDHEFT considers six

major variables, such as spare workflow budget, spare workflow deadline, current task

budget, current task deadline, budget adjustment factor, and deadline adjustment factor,

to generate a budget and deadline constrained scheduling plan. In [100], an Enriched-

Look ahead HEFT (E-LHEFT) algorithm is proposed to optimise both QoS and load

balancing without considering any constraints. It utilises Mobile Assistance Using

Infrastructure architecture to execute the tasks. The E-LHEFT algorithm updates the

processor selection phase of the LHEFT algorithm by applying the task grouping and

the Pareto theory for more effective load balancing performance. In [63], the tasks with

both unconstrained and time deadline constrained cases are considered by applying a

HEFT technique for the order preference called the HEFT-T algorithm. A three-stage

non-dominated sorting strategy is applied to identify the optimal solutions for the

unconstrained case, and an adaptive weight adjustment strategy is proposed to adjust the

weight value for time for addressing the deadline-constrained case. In [29], a workflow

scheduling algorithm named Greedy Resource Provisioning and Modified HEFT (GRP-

HEFT) is proposed with a resource provisioning mechanism. The resource provisioning

mechanism generates the instance type list based on the efficiency ratio of different

instance types and selects the most efficient instances constrained by a pre-defined

budget. The modified HEFT algorithm employs the optimal configuration of the

instance types with their number of created VMs to obtain the task scheduling plan. In

[96], the authors propose a Dynamic Variant Rank HEFT (DVR-HEFT) algorithm to

reduce the scheduler's makespan without increasing the algorithm's time complexity to

49

compare with the classic HEFT strategy.

There are still many other deadline-constrained task scheduling strategies. In [15], a

deadline-constrained workflow scheduling algorithm called DCWS is proposed to

reduce the monetary cost. The DCWS algorithm is a list-based algorithm that considers

the probabilities of the task combinations to place together to improve resource

utilisation and satisfy the deadline constraint.

In [132], a deadline-constrained energy-aware task scheduling method is proposed by

exploiting the computing parallelism of the divisible task. The urgency level is

developed to prioritize the real-time task order to be processed. Two proposed energy-

aware task scheduling algorithms consider whether the task load is divisible.

The deadline is not the only parameter considered in the task scheduling strategies.

Many other constraint parameters have been used. For example, in [97], the authors

develop an energy-efficient task scheduling strategy for cloud data centres. They

formulate the task scheduling problem as an integer programming problem, which aims

to minimise the data centre energy consumption and maximise the residue energy

capacities of the data centres. A greedy task scheduler is deployed to minimise the

number of active servers.

In [146], a task rescheduling method has been proposed to minimise network resource

consumption. Three algorithms are developed for identifying a set of good virtual

machines from the virtual machine candidate pool by using the skyline operation. The

task importance is analysed by taking the data size and the task emergency, and the

optimal task insertion point into account.

There are also some task scheduling strategies that jointly coordinate with the data

management strategies to enhance the cloud performance and satisfy the user

requirements. For example, in [122], a novel data placement and task scheduling

50

optimisation algorithm is proposed for the scientific workflows in the cloud

environment to optimise the data placement and task scheduling performance. A k-

means algorithm based build-time data placement strategy is proposed to reduce the

data movement at the workflow build-time stage by considering the data dependency

and the data size. Then a multi-level task replication method based run-time task

scheduling strategy is proposed to reduce the intermediate data transfer among cloud

data centres at the run-time stage.

In [48], the authors propose the SLA-aware task scheduling strategy cooperated with a

data replication strategy to satisfy the requirements of the response time and the

minimum availability and enhance the profit to the cloud service providers. A novel

Bottleneck Value Scheduling (BVS) process is developed to couple with a proposed

Correlation and Economic Model-based Replication (CEMR) strategy.

2.5 Problem Statement and Research Insight

Firstly, there are two common types of data attributes, external data attributes and

internal data attributes. The external data attribute refers to the attribute which the data

correlates to the external environmental factors such as users, cloud service providers,

and cloud environment, while the internal data attribute refers to the attribute which the

data correlates to other data. Both external data attributes and internal data attributes

have significant influences on the data. For example, access frequency is one of the

most important external data attributes in the past literature to constrain the replica

creation processes for identifying which data is hot-accessed by users. Besides, data

dependency is also one of the most important internal data attributes, which refers to the

relationship between a pair of data. It can identify the potential influences between a

pair of data when doing replica creation. Both external data attributes and internal data

attributes have been considered to constrain the replica creation in the past literature.

51

However, they are used in some simple parameter combinations. Some of the parameter

combinations only consider the same type of data attributes. For example, as shown in

Table 2.1, most of the replica creation strategies lack the consideration of the internal

data attributes.

For another example, in [127], they only consider the access frequency and the average

response time as two major constraint parameters, which both the access frequency and

the average response time belong to the external data attribute. Considering only one

type of data attributes may lose the comprehensiveness of the data attribute analysis

when developing replica creation strategies. Therefore, the external data attributes and

the internal data attributes should be jointly considered to constrain the replica creation

decision making. A more general replica creation strategy, which considers both

external data attributes and internal data attributes, needs to be investigated in order to

comprehensively determine the replica creation and further improve the optimisation

objectives.

Secondly, the cloud map should be taken into consideration to make a more precise

replica creation decision. Each data centre can be recognized as an individual host entity

in the cloud environment. A data may have multiple data relationships to other data

inside the same data location and outside the same data location. The data relationship

between this specific data and the correlated data inside the same data centre can be

seen as local data relationship, while the data relationship between this specific data and

the correlated data outside the same data centre can be known as remote data

relationship. The local data relationship and the remote data relationship are hardly

considered in the most of current replica creation strategies, as shown in Table 2.1.

Therefore, the data relationship situations inside data centre and outside data centre

should be distinguished when making the replica creation decision.

52

Table 2.1 The comparison of replica creation strategies

Thirdly, although the existing research has made significant progress to replica

selection, there are still research gaps to be filled. Most of the current replica selection

53

strategies focus on how to select a data replica to access without considering the

potential impacts among multiple concurrent-running instances under limited network

capability. In particular, they might not be suitable to apply in a cloud environment with

heavy data access needs and a large number of application instances when the data

access needs and the number of application instances result in overloading in certain

parts of the cloud network. Therefore, a replica selection strategy is urgently required by

considering the potential impacts among multiple concurrent-running instances and the

limited network capability.

Fourthly, different network performance metrics should be jointly considered to achieve

a comprehensive evaluation of the network situations at each cloud data centre. Most of

the current data replication strategies model the network performance metrics in an

isolated way. Therefore, a suitable evaluation method should be developed to jointly

evaluate different types of network performance metrics.

Fifthly, as shown in Table 2.2, most of the fault tolerance strategies pay insufficient

attention to both the network performance and the attributes of the affected tasks. When

the data access requests are resubmitted to other replica sites or when new data replicas

are created, the impacts to the overall cloud environment performance have been largely

overlooked.

If a system executes many task resubmission operations or replica re-creation

operations, it will significantly increase the resource load on certain data centres [102].

In addition, some tasks may miss the deadline even if they have been resubmitted to

access the required replicas without considering the attributes of the affected tasks. As a

result, this may cause a series of negative influences, such as user dissatisfaction,

reputation damage, future profit reduction, and economic compensation. Therefore, the

insufficient consideration of both the network performance and the task attributes may

54

largely degrade the overall cloud performance [129]. Thus, it is desirable to have a fault

tolerance strategy that fully considers both the network performance and the attributes

of the affected tasks.

Table 2.2 The comparison of fault handling strategies

55

Sixthly, although the replica-applied cloud environment can protect the cloud

environment against the upcoming faults, a suitable reactive fault tolerance strategy can

further enhance the cloud resiliency as well as the overall cloud performance. At the

same time, the deadline contention and the resource contention problems may also exist

when handling independent tasks and dependent tasks. An independent task denotes the

task has no dependencies to other tasks, while a dependent task denotes the task has at

least one dependency to other tasks. The success of an independent task is only related

to itself while the success of a dependent task always relies on the success of its

preceding tasks. The dependent tasks should be assigned the task priority when

allocating the tasks to the cloud data centres because a parent task may influence all its

succeeding tasks. Therefore, the task dependencies among tasks should be considered

when handling dependent tasks. The fault tolerance strategies for dependent task rescue

should be developed in different ways in comparison with the independent task rescue.

Seventhly, the HEFT series strategies tend to select the first available server to enable

the earliest finish time when doing timeline allocation. Although the HEFT series

strategies were developed over a long time period, selecting the first available server

might not be the optimal configuration when handling faults [11][94][99]. It may cause

the deadline contention and the resource contention problems in which the task rescue

with the high priority may unnecessarily impact the task rescue with the low priority.

Moreover, selecting the first available server may cause a temporary dramatic load

increase at certain time points on the timeline, which might lead to the performance

bottleneck to cloud data centres. Therefore, a time allocation method should be

developed to balance the resource load and eliminate the deadline contention and the

resource contention problems as much as possible.

56

Chapter 3 Data Replication and Fault Management

Framework

In this chapter, the data replication and fault management framework is proposed and

some basic definitions and general notations used in this thesis are introduced. The data

replication and fault management framework is described in Section 3.1. The basic

definitions and the general notations are demonstrated in Section 3.2.

3.1 Data Replication and Fault Management Framework

The cloud environment always contains at least one cloud service provider. Each cloud

service provider may also have at least one data centre. Each data centre has its specific

environment configurations. Each data centre can be seen as an independent host entity

in the cloud environment. Therefore, a decentralised management framework is more

suitable to apply in the cloud environment. The decentralised management framework

can enable self-management in each data centre side and will not be influenced by the

management configuration of other data centres. The proposed data replication and fault

management framework establishes a decentralised overarching management to offer

the “anyone, anytime and anywhere” flexibility, the adaptability, and the geo-diversity

for the global collaborators in the cloud environment. To execute multiple concurrent-

running cloud application instances, such a management framework is easier to handle

the modular growth and takes advantage of the geo-elasticity and the geo-diversity.

New data centres, cloud service providers, or cloud application instances can be

integrated into the current cloud network without affecting the operations of other data

centres, cloud service providers, and application instances. Normally, the general cloud

environment can be shown in Figure 3.1.

57

Figure 3.1 The general cloud environment

Figure 3.2 The data replication and fault management framework

The proposed data replication and fault management framework is shown in Figure 3.2.

It is a decentralised cloud management framework that contains two types of platforms

at the user side and the data centre side, respectively. Each cloud service provider has its

unique user platform and data centre platform because they may have different

functionalities applied to the user platform and the data centre platform. Each cloud

58

service provider has only one user platform. Each user can access the specific user

platform to send the task execution requests or the data access requests to the cloud

service provider. Each cloud service provider may have multiple data centre platforms

at each cloud data centres which belong to the cloud service provider. Each data centre

has only one data centre platform for replica management, fault management, and data

centre control.

The data replication strategies and the fault management strategies may need the

information about the performance characteristics of each cloud service provider [78].

In the cloud environment, different cloud service providers may have different scenarios

inside [14][17]. Therefore, a decentralised analysis of each single cloud service provider

is required. Each data centre platform acts on behalf of a cloud service provider and is

responsible for interacting with the user platforms. The data centre platform can collect

the characteristics information in the cloud data centre, such as the response time of the

data centre, the available bandwidth of the data centre, the storage capacity of the data

centre, and the location of the target replica, etc. It avoids the problems related to the

privacy policy difference among different cloud service providers because each cloud

service provider only hosts a uniform type of data centre platform obeying its own

privacy policy. Different data centre platforms can collect the required information

based on the different privacy policies in different cloud service providers. The

collected information can be used as measurements when making the data replication

decisions or the fault management decisions.

The detailed interior structure of the user platform and the data centre platform is shown

in Figure 3.3, which also indicates a complete data replication and fault management

framework between the cloud users and a single data centre. It also shows the

corresponding relationship between the required modules and the context locations

59

where the module applies in this thesis.

Figure 3.3 The interior structure of the user platform and the data centre platform

3.1.1 User platform

Each user platform contains two modules, user interface and requirement analysis

module. The user interface is responsible for interacting with the users to collect the

data access requests or the task execution requests. Then the user interface will transfer

the user requests to the requirement analysis module. The requirement analysis

module further includes two operation units, data requirement analysis unit and task

requirement analysis unit, as shown in Figure 3.4. The data requirement analysis

unit aims to analyse the user data requirement and the task requirement analysis unit

focuses on the user task requirement analysis. Collectively, the requirement analysis

module analyses the user requirements to answer the following questions.

• Which task is being executed?

• Which data should be accessed?

• Where is the required data replicas situated?

• Where is the task situated?

60

After the analysis of the user requirements, a list of target data centres will be generated

including the required replica names, the replica locations, the task names, and the task

locations. Then the relevant data centre platforms will receive the corresponding data

access information and the task execution information from the user platform.

Figure 3.4 The interior structure of the requirement analysis module

3.1.2 Data centre platform

Each data centre platform contains three management agents and a pool of cloud

servers. These agents and cloud servers are interconnected. The replica agent is

responsible for creating the replica-applied cloud environment and analysing the

required replica to be accessed and the task to be executed. It includes five modules,

replica creation module, replica placement module, replica selection module, data

analysis module, and task analysis module. The replica creation module and the

replica placement module are used to create a replica-applied cloud environment. The

replica creation module enables the replica creation processes to create multiple

replicas into multiple cloud data centres based on the applied replica creation strategy.

Then the newly created data replicas will be offered a destination to be situated by the

replica placement module based on the applied replica placement strategy. The replica

selection module aims to guide the access to the optimal required replicas. Particularly,

it assists with the fault management agent to guide the task rescheduling when

61

handling faults. The replica creation module, the replica placement module, and the

replica selection module can achieve a replica management chain in the replica-applied

cloud environment.

The data analysis module aims to collect the value of the required data attributes and

analyse the data dependency of the required data. The data analysis module includes

two operation units, data attribute analysis unit and data dependency analysis unit,

as shown in Figure 3.5. The data attribute analysis unit is used to collect the value of

different data attributes related to the required data. The data dependency analysis unit

aims to analyse the data dependency of the required data.

Figure 3.5 The interior structure of the data analysis module

Figure 3.6 The interior structure of the task analysis module

The task analysis module aims to analyse the task dependency of the tasks to be

executed and the relevant task attributes. The task analysis module includes two

62

operation units, task attribute analysis unit and task dependency analysis unit, as

shown in Figure 3.6. The task dependency analysis unit is developed to analyse the

task dependency of the tasks to be executed. The task attribute analysis unit is used to

analyse the attributes of the tasks to be executed.

The data analysis module and the task analysis module will contribute to the

development of different cloud management strategies, such as replica creation strategy,

replica placement strategy, replica selection strategy, task scheduling strategy, and fault

tolerance strategy, by offering the required data information or task information.

As mentioned in Chapter 2, unexpected faults are unpredictable. The replica agent can

create a replication-applied cloud environment to protect the cloud environment against

the upcoming faults. However, it is not sufficient to reduce or even eliminate the

negative fault impacts. The fault management agent is responsible for reactively and

strategically handling the fault scenarios to further improve the cloud performance when

encountering a fault. It helps the faulty data centre handle the tasks which cannot be

continued in this data centre and need to migrate to other computing nodes. It includes

two operation units, fault detection unit and fault handling guide unit, as shown in

Figure 3.7.

The fault detection unit is used to continuously detect the fault in the data centre and

then report it to the fault handling guide unit to initiate the fault handling process. The

fault handling guide unit offers the guidance of the whole fault handling process based

on the applied fault tolerance strategy. It guides the detailed task rescue operations to

the data centre control agent when encountering a fault. The fault handling guide

unit also references the replica selection strategy from the replica selection module in

the replica agent to guide the task resubmission and migration operations under fault

scenarios.

63

Figure 3.7 The interior structure of the fault management agent

The data centre control agent is the console of the data centre scheduling operations

and the cloud environment provisioning. It contains two modules, data centre analysis

module and data centre scheduling module. The data centre analysis module is used

to monitor and analyse the environment information of the data centre. It collects the

value of different types of cloud resources such as bandwidth, latency, error rates, and

time slot utilisation situations. This can help the development of the data replication

strategy applied in the replica creation module, the replica placement module, and

the replica selection module. At the same time, this can also contribute to the

development of the fault tolerance strategy applied in the fault management module as

well as the resource provisioning in the data centre scheduling module.

The data centre scheduling module is used to schedule the data and the tasks. It

contains two operation units, task scheduling unit and replica scheduling unit, as

shown in Figure 3.8. The task scheduling unit is used to schedule the tasks under

normal circumstances and reschedule the tasks when encountering a fault, upon the

applied task scheduling strategy in this unit. This unit can cooperate with the replica

selection module to generate a task scheduling solution under normal circumstances.

The operations of the task resubmission and migration can also be completed in this unit

under fault scenarios, upon the cooperation with the fault management agent. The

64

replica scheduling unit is responsible for scheduling the newly created replicas to

different locations by cooperating with the replica creation module and the replica

placement module. This unit implements the practical operations of the replica creation

solution and the replica placement solution.

Figure 3.8 The interior structure of the data centre scheduling module

3.2 Basic Definitions and General Notations

Several basic definitions and general notations of the cloud environment are listed

below to use in the following proposed strategies.

Definition 1. Cloud environment. A cloud environment is a computing environment

that enables on-demand access to the computing resources, such as applications, servers

(physical servers and virtual servers), development tools, networking capabilities, and

more relevant resources. These computing resources are hosted at each data centre in

the cloud environment which is managed by a specific cloud service provider.

Therefore, a cloud environment can be represented as a 2-tuple (𝐶𝑆𝑃,𝐷𝐶), where

• 𝐶𝑆𝑃 is the set of cloud service providers in the cloud environment.

• 𝐷𝐶 = {𝑑𝑐1, 𝑑𝑐2, …, 𝑑𝑐𝑧} is the set of data centres in the cloud environment. 𝑑𝑐𝑦

denotes the 𝑦th data centre in 𝐷𝐶.

• There may exist multiple data centres with multiple cloud service providers in

65

the cloud environment. Each 𝑑𝑐 ∈ 𝐷𝐶 has only one 𝑐𝑠𝑝 ∈ 𝐶𝑆𝑃, while one 𝑐𝑠𝑝

may have at least one 𝑑𝑐.

Definition 2. Task and data. A set of cloud applications can be deployed in the cloud

environment by users or cloud service providers. They may contain a set of independent

tasks and dependent tasks. Each task corresponds to a set of required data to be

accessed. Therefore, a set of tasks 𝐽 and a set of data 𝐷 is defined for the cloud

environment, where

• 𝐽:{𝑗1 , 𝑗2 , …, 𝑗𝑚} is the set of tasks scheduled in the cloud environment. 𝑗𝑚

denotes the 𝑚th task in 𝐽.

• 𝐷:{𝑑1, 𝑑2, …, 𝑑𝑛} is the set of data stored in the cloud environment. 𝑑𝑛 denotes

the 𝑛th data in 𝐷.

Definition 3. Workflow applications. The cloud environment may contain a set of

dependent tasks which may perform in different workflow applications. Therefore, in

general, a workflow application 𝐺 = (𝑁, 𝐸) is modelled as a Directed Acyclic Graph

(DAG), where 𝑁 is the set of nodes {𝑁𝑜𝑑0, 𝑁𝑜𝑑1, ..., 𝑁𝑜𝑑𝑞} as tasks and 𝐸 is a set of

edges as the control dependencies among the workflow tasks. For each pair of nodes

𝑁𝑜𝑑𝑝, 𝑁𝑜𝑑𝑞 ∈ 𝑁, 𝑒𝑑𝑔𝑒(𝑁𝑜𝑑𝑝, 𝑁𝑜𝑑𝑞) denotes the edge between 𝑁𝑜𝑑𝑝 and 𝑁𝑜𝑑𝑞. The

cloud environment may contain a set of 𝑥 workflow applications {𝐺1 , 𝐺2 , …, 𝐺𝑥 }

scheduled in the cloud environment.

The notation tables are also made in Table A1.1, Table A1.2, Table A1.3, and Table

A1.4 in Appendix 1 which these notations will be used in the descriptions, the

equations, and the pseudocodes of the following six strategies.

66

Chapter 4 The Development of Data Replication Strategies

Data replication strategies can help cloud service providers establish a replica-applied

cloud environment. As mentioned in Chapter 2, the data replication strategies bring

many benefits for improving the overall cloud performance, such as fast data access,

low response time, balanced workload and resource load, and increased data availability

and reliability. In addition, the tasks at the faulty data centre can be rescued to

continuously execute by strategically accessing other required data replicas if the

replica-applied cloud environment is deployed. In this chapter, three data replication

strategies are proposed to manage replica creation, replica placement, and replica

selection. The first two strategies focus on replica creation including the replica

placement of newly created replicas. The last strategy contributes to replica selection.

The proposed replica creation strategy and replica selection strategy can also be aligned

together to create a replica-applied cloud environment and guide the data access for

executing the tasks in the cloud environment.

4.1 Replica Creation for Total Cost Reduction in Clouds

The replica creation strategy is the basis of all data replication strategies because the

replica creation strategy is responsible for creating multiple data copies into multiple

cloud data centres. As demonstrated in Chapter 2, both external data attributes and

internal data attributes have significant impacts on the replica creation process

according to the past literature. The joint consideration of the external data attributes

and the internal data attributes is important for the replica creation decision-making

process. Data dependency is one of the most significant internal data attributes, as it

reveals the data relationship between a specific data and other data. Access frequency is

an external data attribute to check whether the data is being accessed in hot. Data size is

67

also an internal data attribute, which might largely influence the data storage, data

transmission, and data allocation, etc.

In this thesis, data dependency, access frequency, and data size are taken into account

for jointly applying the internal data attribute and the external attribute to constrain the

replica creation. Besides, the data types are classified into three sub-categories to denote

the replica creation feasibility of a data to a specific data centre. A replica creation

algorithm is also developed to create multiple data replicas into the target data centres.

4.1.1 Data classification

In data replication, the data are commonly classified into two categories, fixed data and

flexible data. The fixed data (FixD) cannot be replicated because of the constraints of its

own data attributes, such as data ownership or privacy concerns, while the flexible data

(FlexD) can be freely replicated across geographical data centres as well as inside data

centre. In this strategy, the flexible data is further classified into two new sub-

categories, free-flexible data (FFlexD) and constrained-flexible data (CFlexD). The data

dependency constraint, the access frequency constraint, and the data size constraint are

applied as three replica creation constraints during the replica creation decision making.

A data 𝑑 ∈ 𝐷 can be finally classified to FFlexD to a specific data centre 𝑑𝑐 when the

data 𝑑 can satisfy all three constraints to this data centre. In other words, it means that

the data 𝑑 can be freely replicated to the data centre 𝑑𝑐 when the data 𝑑 is a FFlexD to

this data centre. Otherwise, the data 𝑑 will be classified into CFlexD to a data centre 𝑑𝑐

when the data 𝑑 cannot meet at least one of three replica creation constraints to this data

centre.

The data in CFlexD to a data centre 𝑑𝑐 ∈ 𝐷𝐶 is still a flexible data to other data centres

in 𝐷𝐶, thus it may not be CFlexD to other data centres in 𝐷𝐶. For example, if the data

𝑑𝑖 ∈ 𝐷 cannot satisfy at least one of the data dependency constraint and the access

68

frequency constraint, it will be CFlexD to all data centres in the cloud environment.

However, if the data 𝑑𝑖 can satisfy both the data dependency constraint and the access

frequency constraint, except that it cannot satisfy the data size constraint to a specific

data centre 𝑑𝑐𝑧 ∈ 𝐷𝐶, then the data 𝑑𝑖 will be CFlexD to the data centre 𝑑𝑐𝑧 only. For

the same data 𝑑𝑖 , if the data 𝑑𝑖 can satisfy all three replica creation constraints to

another data centre 𝑑𝑐𝑦 ∈ 𝐷𝐶, then the data 𝑑𝑖 will be FFlexD to the data centre 𝑑𝑐𝑦.

4.1.2 Data dependency and access frequency

The data dependency and the access frequency are defined as two constraint parameters

when initiating the replica creation. The data dependency is the relationship between

each two data and the access frequency refers to the frequency of access in a specific

time duration by users. The data dependency between two data 𝑑𝑖 and 𝑑𝑘 is defined as

the number of tasks that use both 𝑑𝑖 and 𝑑𝑘 [139]. The data dependency between two

data 𝑑𝑖 and 𝑑𝑘 has two expressions, 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) and 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) , which can be

formulated in Eq. 4.1, where 𝐽(𝑑𝑖) denotes the set of tasks which access the data 𝑑𝑖.

𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) refers to the data dependency of the data 𝑑𝑖 to the data 𝑑𝑘 , while

𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) refers to the data dependency of the data 𝑑𝑘 to the data 𝑑𝑖. The numerical

value of 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) and 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) is same, as also shown in Eq. 4.1.

 {

𝐷𝑒𝑝(𝑑𝑖 , 𝑑𝑘) = 𝐶𝑜𝑢𝑛𝑡(𝐽(𝑑𝑖) ∩ 𝐽(𝑑𝑘))
𝐷𝑒𝑝(𝑑𝑘 , 𝑑𝑖) = 𝐶𝑜𝑢𝑛𝑡(𝐽(𝑑𝑘) ∩ 𝐽(𝑑𝑖))

𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) = 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖)
 (4.1)

The access frequency of the data 𝑑𝑖 can be formulated in Eq. 4.2, where 𝐴𝐹(𝑑𝑖) denotes

the access frequency of the data 𝑑𝑖, 𝐴𝑇(𝑑𝑖) denotes the number of access times of the

data 𝑑𝑖, and 𝐴𝐼(𝑑𝑖) denotes the access time interval to the data 𝑑𝑖.

 𝐴𝐹(𝑑𝑖) =
𝐴𝑇(𝑑𝑖)

𝐴𝐼(𝑑𝑖)
 (4.2)

A threshold-based evaluation method is adopted to evaluate the data importance for

further making the replica creation decision. A threshold parameter 𝜔 is set for the data

69

dependency constraint. The data dependency 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) should satisfy 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) ≥

 𝜔 , which is one of the mandatory constraints to replicate 𝑑𝑖 . Similarly, the data

dependency 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) should satisfy 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) ≥ 𝜔 , which is also one of the

mandatory constraints to replicate 𝑑𝑘. The data dependency threshold parameter 𝜔 can

be ranged from the minimum data dependency value to the maximum data dependency

value of the data in 𝐷.

An access frequency threshold parameter ∅ is also set for the access frequency

constraint. The access frequency of 𝑑𝑖 and 𝑑𝑘 should satisfy either 𝐴𝐹(𝑑𝑖) or 𝐴𝐹(𝑑𝑘) ≥

𝛿 at least, which is another mandatory constraint to replicate 𝑑𝑖 or 𝑑𝑘 . The access

frequency threshold parameter ∅ can be ranged from the minimum access frequency

value to the maximum access frequency value of the data in 𝐷.

4.1.3 Data size constraint

In this strategy, the data size constraint is also applied to constrain the replica creation

process. The replica creation should follow the data size constraint defined in Eq. 4.3,

where 𝑆𝑖𝑧𝑒(𝑑𝑖) denotes the data size of 𝑑𝑖 and 𝐴𝑆𝑆(𝑑𝑐) denotes the available storage

capacity in the data centre 𝑑𝑐.

 𝑆𝑖𝑧𝑒(𝑑𝑖) ≤ 𝐴𝑆𝑆(𝑑𝑐) (4.3)

4.1.4 Cost

For 𝑑𝑖 ∈ 𝐷, the total cost 𝑇𝐶(𝑑𝑖) can be the sum of the data storage cost 𝐷𝑆𝐶(𝑑𝑖) and

the data transfer cost 𝐷𝑇𝐶(𝑑𝑖) as shown in Eq. 4.4.

 𝑇𝐶(𝑑𝑖) = 𝐷𝑆𝐶(𝑑𝑖) + 𝐷𝑇𝐶(𝑑𝑖) (4.4)

The data storage cost of 𝑑𝑖 at a data centre 𝑑𝑐 depends on many parameters such as the

data storage price of this data centre 𝑆𝑃(𝑑𝑐) , the data size 𝑆𝑖𝑧𝑒(𝑑𝑖), and the data

storage time interval at this data centre 𝑆𝑇(𝑑𝑖)
𝑑𝑐. For a data 𝑑𝑖 stored at the data centre

𝑑𝑐 , the data storage cost of 𝑑𝑖 at this data centre 𝑑𝑐 can be 𝑆𝑃(𝑑𝑐) * 𝑆𝑖𝑧𝑒(𝑑𝑖) *

70

𝑆𝑇(𝑑𝑖)
𝑑𝑐. However, the data 𝑑𝑖 may store in multiple data centres. Therefore, the total

data storage cost for a data 𝑑𝑖, 𝐷𝑆𝐶(𝑑𝑖), can be formulated as in Eq. 4.5, where 𝜇 is a

determinant variable for calculating the data storage cost. If 𝑑𝑐𝑦 is the data location of

the data 𝑑𝑖, then 𝜇 equals to 1. Otherwise, 𝜇 equals to 0.

 𝐷𝑆𝐶(𝑑𝑖) = ∑ 𝜇 ∗ 𝑆𝑃(𝑑𝑐𝑦) ∗ 𝑆𝑖𝑧𝑒(𝑑𝑖) ∗ 𝑆𝑇(𝑑𝑖)
𝑑𝑐𝑦𝑧

𝑦=1 (4.5)

The data transfer cost of 𝑑𝑖, 𝐷𝑇𝐶(𝑑𝑖), depends on the transfer cost ratio 𝛼 per data unit,

the data size 𝑆𝑖𝑧𝑒(𝑑𝑖) , the determinant variable 𝛽 and the number of access times

𝐴𝑇(𝑑𝑖). The determinant variable 𝛽 will be 1 if the cloud users require to access the

data from a remote data centre, while it will be 0 if the cloud users only need to access

the data locally. Therefore, the data transfer cost of 𝑑𝑖, 𝐷𝑇𝐶(𝑑𝑖), can be formulated as

in Eq. 4.6.

 𝐷𝑇𝐶(𝑑𝑖) = 𝛼 * 𝑆𝑖𝑧𝑒(𝑑𝑖) * 𝐴𝑇(𝑑𝑖) * 𝛽 (4.6)

Then the overall total cost 𝑇𝐶 of all data in 𝐷 can be formulated in Eq. 4.7.

 𝑇𝐶 = ∑ (𝐷𝑆𝐶(𝑑𝑖) + 𝐷𝑇𝐶(𝑑𝑖))
𝑛
𝑖=0 (4.7)

4.1.5 Assumed scenarios

This research assumes that the initial data placement and the initial task placement have

been completed by using the strategy proposed in [139]. The set of data 𝐷 are allocated

into data centres based on the data placement rules from [139]. At the same time, the set

of data 𝐷 can be initially categorised into fixed data and flexible data based on their

own attributes. The set of tasks 𝐽 are also randomly allocated to different data centres in

the cloud environment.

4.1.6 Replica creation strategy

In this research, a replica creation strategy is proposed to create multiple replicas into

appropriate data centres by satisfying the data dependency constraint, the access

frequency constraint, and the data size constraint. After all data placement and task

71

placement completed, the set of tasks 𝐽(𝑑) are located, which needs to access each data

𝑑 ∈ 𝐷. Each data 𝑑 ∈ 𝐷 will be firstly classified into FixD and FlexD. Then the data in

FixD will not be considered to be replicated because those data cannot be replicated.

Figure 4.1 Replica creation decision-making process

72

The eligible data identification for a data 𝑑 to the data centres where its relevant tasks

𝐽(𝑑) located will follow the proposed replica creation decision-making process, as

shown in Figure 4.1. Figure 4.1 shows the eligible data identification process for a

single data to a single relevant task location. For a data centre 𝑑𝑐 ∈ 𝐷𝐶 in the cloud

environment where its relevant tasks 𝐽(𝑑) located, the data dependency and the access

frequency will be firstly calculated for the data 𝑑 ∈ 𝐷. Then the data 𝑑 will be checked

with the data dependency constraint, the access frequency constraint and the data size

constraint. The data 𝑑 will be marked as the eligible data to this data centre 𝑑𝑐 if it

satisfies all three replica creation constraints and the data type of this data 𝑑 will be

transferred to FFlexD to this data centre 𝑑𝑐. If a data 𝑑 is an eligible data to the data

centre 𝑑𝑐, then the data 𝑑 will be replicated to this data centre 𝑑𝑐. Otherwise, the data

type of this data 𝑑 to this data centre 𝑑𝑐 will be transferred to CFlexD.

The proposed replica creation algorithm is shown in Algorithm 4.1. It aims to find the

replica creation solution for each data in the cloud environment. The algorithm is firstly

initialised by emptying all data types from Line 1 to Line 2. Then the set of data 𝐷 is

classified in the cloud environment into FixD and FlexD at Line 3. After all steps

above, the replica creation decision will be made from Line 4 to Line 94 for each pair

of data in FlexD. The time complexity of Algorithm 4.1 is O(𝑛2).

Nine different scenarios are processed in Algorithm 4.1 for each pair of data 𝑑𝑖 and 𝑑𝑘,

as follows.

1. If 𝑗(𝑑𝑖) and 𝑗(𝑑𝑘) locate in the same location, the scenarios will be as follows.

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint, the access frequency

constraint and the data size constraint. (Line 16 to Line 19)

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint and the access frequency

constraint but at least one of them cannot satisfy the data size constraint. (Line

73

20 to Line 33; Line 41 to Line 43)

• Both 𝑑𝑖 and 𝑑𝑘 satisfy all three constraints but the rest available resource cannot

accommodate 𝑑𝑖 and 𝑑𝑘 at the same time (Line 34 to Line 40)

2. If 𝑗(𝑑𝑖) and 𝑗(𝑑𝑘) locate in different locations, the scenarios will be as follows.

• Both 𝑑𝑖 and 𝑑𝑘 satisfy all three constraints. (Line 45 to Line 48)

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint and the access frequency

constraint but at least one of them cannot satisfy the data size constraint. (Line

49 to Line 61)

3. There are also some other scenarios as follows.

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint. However, only one of 𝑑𝑖

and 𝑑𝑘 satisfies the access frequency constraint. The data which satisfies the

data dependency constraint and the access frequency constraint can also satisfy

the data size constraint. (Line 65 to Line 75 except Line 69 to Line 71 and Line

77 to Line 88 except Line 81 to Line 83)

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint. However, only one of 𝑑𝑖

and 𝑑𝑘 satisfies the access frequency constraint. The data which satisfies the

data dependency constraint and the access frequency constraint cannot satisfy

the data size constraint. (Line 69 to Line 71; Line 81 to Line 83)

• Both 𝑑𝑖 and 𝑑𝑘 satisfy the data dependency constraint but they cannot satisfy the

access frequency constraint. (Line 89 to Line 91)

• Both 𝑑𝑖 and 𝑑𝑘 cannot satisfy the data dependency constraint. (Line 92 to Line

94)

Algorithm 4.1: Replica Creation Algorithm

Input: 𝐷𝐶, 𝐽, 𝐷

Output: Replica creation solution

74

1. Initialization { Create 𝑡𝑙[], 𝑑𝑙[]

2. Empty FixD, FlexD, FFlexD, CFlexD}

3. Classify(𝐷) //Classify data into FixD and FlexD

4. for each data 𝑑𝑖 in FlexD, 𝑑𝑖 ∈ 𝐷

5. for each data 𝑑𝑘 in FlexD, 𝑑𝑘 ∈ 𝐷

6. Calculate 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘), 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖), 𝑖 ≠ 𝑘

7. Calculate 𝐴𝐹(𝑑𝑖) and 𝐴𝐹(𝑑𝑘)

8. Empty 𝑡𝑙[], 𝑑𝑙[]

9. if 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘), 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) ≥ 𝜔

10. if 𝐴𝐹(𝑑𝑖) ≥ ∅ and 𝐴𝐹(𝑑𝑘) ≥ ∅

11. Search 𝑑𝑐 in 𝐷𝐶 where 𝐽(𝑑𝑖) located and add into 𝑡𝑙[]

12. Search 𝑑𝑐 in 𝐷𝐶 where 𝐽(𝑑𝑘) located and add into 𝑑𝑙[]

13. for each element 𝑡𝑙[𝑢] in 𝑡𝑙[] do

14. for each element 𝑑𝑙[𝑟] in 𝑑𝑙[] do

15. if 𝑡𝑙[𝑢] = 𝑑𝑙[𝑟]

16. if 𝑆𝑖𝑧𝑒(𝑑𝑖), 𝑆𝑖𝑧𝑒(𝑑𝑘), 𝑆𝑖𝑧𝑒(𝑑𝑖) + 𝑆𝑖𝑧𝑒(𝑑𝑘) ≤ 𝑡𝑙[𝑢]

17. Transform 𝑑𝑖 and 𝑑𝑘 from FlexD to FFlexD

18. Replicate 𝑑𝑖 and 𝑑𝑘 to 𝑡𝑙[𝑢]

19. Update 𝐴𝑆𝑆(𝑡𝑙[𝑢])

20. else if 𝑆𝑖𝑧𝑒(𝑑𝑖) ≤ 𝐴𝑆𝑆(𝑡𝑙[𝑢])

21. if 𝑆𝑖𝑧𝑒(𝑑𝑘), 𝑆𝑖𝑧𝑒(𝑑𝑖) + 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑡𝑙[𝑢])

22. Transform 𝑑𝑘 from FlexD to CFlexD

23. Transform 𝑑𝑖 from FlexD to FFlexD

24. Replicate 𝑑𝑖 to 𝑡𝑙[𝑢]

25. Update 𝐴𝑆𝑆(𝑡𝑙[𝑢])

26. end if

27. else if 𝑆𝑖𝑧𝑒(𝑑𝑘) ≤ 𝐴𝑆𝑆(𝑡𝑙[𝑢])

28. if 𝑆𝑖𝑧𝑒(𝑑𝑖), 𝑆𝑖𝑧𝑒(𝑑𝑖) + 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑡𝑙[𝑢])

29. Transform 𝑑𝑖 from FlexD to CFlexD

30. Transform 𝑑𝑘 from FlexD to FFlexD

31. Replicate 𝑑𝑘 to 𝑡𝑙[𝑢]

32. Update 𝐴𝑆𝑆(𝑡𝑙[𝑢])

33. end if

75

34. else if 𝑆𝑖𝑧𝑒(𝑑𝑖), 𝑆𝑖𝑧𝑒(𝑑𝑘) ≤ 𝐴𝑆𝑆(𝑡𝑙[𝑢])

35. if 𝑆𝑖𝑧𝑒(𝑑𝑖) + 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑡𝑙[𝑢])

36. Random transform 𝑑𝑖 or 𝑑𝑘 from FlexD to CFlexD

37. Transform the rest one from FlexD to FFlexD

38. Replicate 𝑑𝑖 or 𝑑𝑘 in FFlexD to 𝑡𝑙[𝑢]

39. Update 𝐴𝑆𝑆(𝑡𝑙[𝑢])

40. end if

41. else if 𝑆𝑖𝑧𝑒(𝑑𝑖), 𝑆𝑖𝑧𝑒(𝑑𝑘), 𝑆𝑖𝑧𝑒(𝑑𝑖) + 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑡𝑙[𝑢])

42. Transform 𝑑𝑖 and 𝑑𝑘 from FlexD to CFlexD

43. end if

44. else if 𝑡𝑙[𝑢] ≠ 𝑑𝑙[𝑟]

45. if 𝑆𝑖𝑧𝑒(𝑑𝑖) ≤ 𝐴𝑆𝑆(𝑡𝑙[𝑢]), 𝑆𝑖𝑧𝑒(𝑑𝑘) ≤ 𝐴𝑆𝑆(𝑑𝑙[𝑟])

46. Transform 𝑑𝑖 and 𝑑𝑘 from FlexD to FFlexD

47. Replicate 𝑑𝑖 to 𝑡𝑙[𝑢] and 𝑑𝑘 to 𝑑𝑙[𝑟]

48. Update 𝐴𝑆𝑆(𝑡𝑙[𝑢]), 𝐴𝑆𝑆(𝑑𝑙[𝑟])

49. else if 𝑆𝑖𝑧𝑒(𝑑𝑖) ≤ 𝐴𝑆𝑆(𝑡𝑙[𝑢]), 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑑𝑙[𝑟])

50. Transform 𝑑𝑖 from FlexD to FFlexD

51. Transform 𝑑𝑘 from FlexD to CFlexD

52. Replicate 𝑑𝑖 to 𝑡𝑙[𝑢]

53. Update 𝐴𝑆𝑆(𝑡𝑙[𝑢])

54. else if 𝑆𝑖𝑧𝑒(𝑑𝑘) ≤ 𝐴𝑆𝑆(𝑑𝑙[𝑟]), 𝑆𝑖𝑧𝑒(𝑑𝑖) > 𝐴𝑆𝑆(𝑡𝑙[𝑢])

55. Transform 𝑑𝑘 from FlexD to FFlexD

56. Transform 𝑑𝑖 from FlexD to CFlexD

57. Replicate 𝑑𝑘 to 𝑑𝑙[𝑟]

58. Update 𝐴𝑆𝑆(𝑑𝑙[𝑟])

59. else if 𝑆𝑖𝑧𝑒(𝑑𝑖) > 𝐴𝑆𝑆(𝑡𝑙[𝑢]), 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑑𝑙[𝑟])

60. Transform 𝑑𝑖 and 𝑑𝑘 from FlexD to CFlexD

61. end if

62. end if

63. end for

64. end for

65. else if 𝐴𝐹(𝑑𝑖) ≥ ∅ and 𝐴𝐹(𝑑𝑘) < ∅

66. Search 𝑑𝑐 in 𝐷𝐶 where 𝐽(𝑑𝑖) located and add into 𝑡𝑙[]

76

67. Transform 𝑑𝑘 from 𝐹𝑙𝑒𝑥𝐷 to 𝐶𝐹𝑙𝑒𝑥𝐷

68. for each element 𝑡𝑙[𝑢] in 𝑡𝑙[] do

69. if 𝑆𝑖𝑧𝑒(𝑑𝑖) > 𝐴𝑆𝑆(𝑡𝑙[𝑢])

70. Transform 𝑑𝑖 from FlexD to CFlexD

71. else

72. Transform 𝑑𝑖 from FlexD to FFlexD

73. Replicate 𝑑𝑖 to 𝑡𝑙[𝑢]

74. Update 𝐴𝑆𝑆(𝑡𝑙[𝑢])

75. end if

76. end for

77. else if 𝐴𝐹(𝑑𝑖) < ∅ and 𝐴𝐹(𝑑𝑘) ≥ ∅

78. Search 𝑑𝑐 in 𝐷𝐶 where 𝐽(𝑑𝑘) located and add into 𝑑𝑙[]

79. Transform 𝑑𝑖 from FlexD to CFlexD

80. for each element 𝑑𝑙[𝑟] in 𝑑𝑙[] do

81. if 𝑆𝑖𝑧𝑒(𝑑𝑘) > 𝐴𝑆𝑆(𝑑𝑙[𝑟])

82. Transform 𝑑𝑘 from FlexD to CFlexD

83. else

84. Transform 𝑑𝑘 from FlexD to FFlexD

85. Replicate 𝑑𝑘 to 𝑑𝑙[𝑟]

86. Update 𝐴𝑆𝑆(𝑑𝑙[𝑟])

87. end if

88. end for

89. else if 𝐴𝐹(𝑑𝑖) < ∅ and 𝐴𝐹(𝑑𝑘) < ∅

90. Transform𝑑𝑖 and 𝑑𝑘 from FlexD to CFlexD

91. end if

92. else if 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘), 𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) < 𝜔

93. Transform 𝑑𝑖 and 𝑑𝑘 from FlexD to CFlexD

94. end if

95. end for

96. end for

4.1.7 Case study and discussions

A sample workflow in [139] is studied as a case to evaluate the total cost with and

without the proposed replica creation strategy. The sample workflow is shown in Figure

77

4.2. In this case, the storage capacity at each data centre is assumed large enough.

Figure 4.2 Sample workflow [139]

Figure 4.3 Data dependency matrix [139]

Firstly, the data dependency of each pair of data is calculated for this sample workflow.

The result of the data dependency calculation is stored in a data dependency matrix as

shown in Figure 4.3. According to this data dependency matrix and the data dependency

78

threshold parameter 𝜔, the data which satisfies the data dependency constraint can be

identified. For example, if the threshold parameter of the data dependency constraint 𝜔

is set to 1, then 𝐷𝑒𝑝(𝑑1, 𝑑2) satisfy the data dependency constraint. The access

frequency of each data is also calculated for the sample workflow. According to the

access frequency of each data and the access frequency threshold parameter ∅, the data

which satisfies the access frequency constraint can also be identified.

Table 4.1 The settings of the main parameters

Parameters Value

𝑆𝑃(𝑑𝑐) 0.175 per data unit

𝛼 0.173 per data unit

𝑆𝑖𝑧𝑒(𝑑1) 10 data unit

𝑆𝑖𝑧𝑒(𝑑2) 20 data unit

𝑆𝑖𝑧𝑒(𝑑3) 5 data unit

𝑆𝑖𝑧𝑒(𝑑4) 10 data unit

𝑆𝑖𝑧𝑒(𝑑5) 15 data unit

𝐴𝐹(𝑑1) 2 times per time unit

𝐴𝐹(𝑑2) 8 times per time unit

𝐴𝐹(𝑑3) 4 times per time unit

𝐴𝐹(𝑑4) 5 times per time unit

𝐴𝐹(𝑑5) 10 times per time unit

To evaluate the effectiveness of the proposed replica creation strategy, the main

parameters are set, as shown in Table 4.1. The data storage time interval for each data

will be set to 1 time unit in a consistent value for the calculation convenience. The data

storage cost and the data transfer cost are referenced from the cloud storage service

pricing model in the Microsoft Azure Australia East area. The data dependency

79

threshold parameter 𝜔 is randomly set to 1 and the access frequency threshold

parameter ∅ is randomly set to 4 times per time unit.

It assumes that the initial data placement and task placement for this sample workflow is

already done by [139]. In Figure 4.4, 𝑑1 and 𝑑3 are located in 𝑑𝑐1, 𝑑2 and 𝑑4 are located

in 𝑑𝑐2, and 𝑑5 is located in 𝑑𝑐3. 𝑗1 and 𝑗2 are located in 𝑑𝑐1, 𝑗3 and 𝑗4 are located in 𝑑𝑐2,

and 𝑗5 is located in 𝑑𝑐3.

Figure 4.4 Initial data placement in sample workflow [139]

It is also clear in Figure 4.4 that, if the proposed replica creation strategy is not applied,

𝑑2 is located at 𝑑𝑐2 and should be accessed remotely by 𝑗2 which is located in 𝑑𝑐1. 𝑑5 is

located at 𝑑𝑐3 and should be accessed remotely by 𝑗4 which is located in 𝑑𝑐2.

By applying the proposed replica creation strategy in this case, 𝑑2 and 𝑑5 are two

eligible data for replica creation. Hence, 𝑑2 and 𝑑5 should be replicated to 𝑑𝑐1 and 𝑑𝑐2,

respectively. After that, the new replicas of 𝑑2 and 𝑑5 can be accessed locally by 𝑗2 and

80

𝑗4, respectively.

The total cost is firstly tested by applying the proposed replica creation strategy into the

cloud environment. In this case, 𝑑2 and 𝑑5 will be replicated to 𝑑𝑐1 and 𝑑𝑐2 ,

respectively, as abovementioned. Besides, the total cost without the proposed replica

creation strategy applied is calculated. In this case, 𝑑2 will be accessed 8 times remotely

by 𝑗2 located in 𝑑𝑐1 and 𝑑5 will be accessed 10 times remotely by 𝑗4 in 𝑑𝑐2. The cost of

other data is ignored because they will be accessed locally. The total cost comparison is

shown in Figure 4.5.

Figure 4.5 Total cost comparison

It is evident that the total cost has a sharp decrease by applying the proposed replica

creation strategy. There is a 69.36% decrease in terms of total cost from 59.76 to 18.31

by applying the proposed replica creation strategy as shown in Figure 4.5. As a result,

the proposed replica creation strategy can significantly reduce the total cost for cloud

applications.

4.2 Cloud Map Oriented and Cost Efficiency Driven Replica Creation

Based on the findings from the replica creation strategy in Section 4.1, data dependency

81

and access frequency can significantly influence the replica creation process. Data

dependency refers to the data relationship between a pair of data. Access frequency

refers to the frequency of access in a specific time duration.

In this research, data dependency and access frequency are still followed to use as two

of the replica creation constraints. However, as discussed in Chapter 2, the cloud map

should be considered to make a more precise replica creation decision. Each data centre

can be recognized as an individual host entity in the cloud environment. A specific data

in one specific data centre may have multiple data relationships to other data inside this

data centre and outside this data centre. The data relationship can be further categorised

into local data relationship and remote data relationship. Therefore, a detailed analysis

of the data relationship inside data centre and outside data centre is required to identify

the local data relationship and the remote data relationship, as this research is conducted

at the data centre level. Therefore, different to Section 4.1, the data dependency is

analysed and classified into two new categories, Within-DataCentre Data Dependency

and Between-DataCentre Data Dependency, to identify the local data relationship and

the remote data relationship for the data in the cloud environment, respectively.

Besides, nine different replica creation scenarios are addressed in Section 4.1. However,

those replica creation scenarios increase the complexity of the proposed replica creation

algorithm in Section 4.1. Thus, this research develops two eligible data candidate pools

to reduce the algorithm complexity. The two eligible data candidate pools enable fast

eligible data identification for replica creation. By identifying the overlapping elements

in these two eligible data candidate pools, the data which is highly-dependent and hot-

accessed can be directly collected as the eligible data for replica creation. The data

which cannot satisfy the data dependency constraint or the access frequency constraint

will not be processed in the replica creation algorithm. Thus, the complexity of the

82

replica creation algorithm can be reduced.

Apart from that, the proposed replica creation strategy in Section 4.1 focuses on cost

reduction as the optimisation objective only. It aims to place the newly created replicas

to the locations of all its relevant tasks. The proposed replica creation strategy in

Section 4.1 lacks control to the number of replicas. Therefore, the number of replicas

might not be the optimal case sometimes. Thus, how to control the number of replicas

while cutting costs is a major research question in this research. A recommended access

frequency threshold value will be identified to achieve the optimal cost reduction per

replica.

4.2.1 Assumed scenarios

Before the start of the proposed replica creation strategy in this research, the same

assumptions are made by following Section 4.1, in which initial data placement and task

placement have been completed by using the strategy from [139]. Data and tasks are

allocated into geographical data centres in 𝐷𝐶. Besides, this strategy assumes that each

data centre has enough resources to store the data replicas. Thus, the data size constraint

can be ignored in this strategy. Apart from that, this research assumes that all data in 𝐷

are flexible data.

4.2.2 System model

As mentioned in Section 4.1, the data dependency represents the data relationship

between each pair of data. The data dependency between 𝑑𝑖 and 𝑑𝑘 is calculated same

to the strategy in Section 4.1, as shown in Eq. 4.1.

This replica creation strategy is a cloud map oriented strategy which aims to analyse the

local data relationship and the remote data relationship according to the cloud map. Two

novel data dependency categories are defined, Within-DataCentre Data Dependency

(W-DCD) and Between-DataCentre Data Dependency (B-DCD) for further analysing

83

the data relationship inside data centre and outside data centre. For a data 𝑑𝑖 ∈ 𝐷, W-

DCD(𝑑𝑖) is the data dependency between the data 𝑑𝑖 and all other correlated data in 𝐷

within the same location of 𝑑𝑖. B-DCD(𝑑𝑖) is the data dependency between the data 𝑑𝑖

and all other correlated data in 𝐷 outside the same location of 𝑑𝑖.

A 𝐷𝐶𝐷(𝑑𝑐, 𝑑𝑖) function is used to calculate W-DCD(𝑑𝑖) and B-DCD(𝑑𝑖) for the data

𝑑𝑖 at the data centre 𝑑𝑐. W-DCD(𝑑𝑖) and B-DCD(𝑑𝑖) can be calculated using Eq. 4.8

and Eq. 4.9.

 W-DCD(𝑑𝑖) = ∑ 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘)
𝑛
𝑘=1 , 𝑖 ≠ 𝑘 (𝑑𝑖 and 𝑑𝑘 store at the same location) (4.8)

 B-DCD(𝑑𝑖) = ∑ 𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘)
𝑛
𝑘=1 , 𝑖 ≠ 𝑘 (𝑑𝑖 and 𝑑𝑘 store at different locations) (4.9)

For a data 𝑑𝑖, if B-DCD(𝑑𝑖) > W-DCD(𝑑𝑖), this data will be added into a new data set

called High-Dependent Data (HDD). A 𝐷𝑒𝑝𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑𝑖) function is used to compare

between W-DCD(𝑑𝑖) and B-DCD(𝑑𝑖) for the data 𝑑𝑖 ∈ 𝐷.

The access frequency of each data is calculated same as proposed in Section 4.1. The

access frequency 𝐴𝐹(𝑑𝑖) is counted for each data 𝑑𝑖 ∈ 𝐷. Then the sum of the access

frequency of all data 𝐴𝐹𝑡𝑜𝑡𝑎𝑙 is calculated as in Eq. 4.10. Then the average access

frequency of all data, 𝐴𝐹𝑎𝑣𝑔, is calculated as in Eq. 4.11, where 𝑁𝑢𝑚(𝐷) denotes the

total amount of data in 𝐷. A 𝐴𝐹𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛() function is used to calculate the value of

𝐴𝐹𝑡𝑜𝑡𝑎𝑙 and 𝐴𝐹𝑎𝑣𝑔 . An access frequency threshold value ∅ is set for the access

frequency constraint. The access frequency threshold value ∅ can be dynamically

changed from 0 to 𝑁𝑢𝑚(𝐷) in order to identify an optimal ∅ value which enables the

optimal cost reduction per replica with balancing the total cost and the number of

replicas.

 𝐴𝐹𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐴𝐹(𝑑𝑖)
𝑛
𝑖=1 , 𝑑𝑖 ∈ 𝐷 (4.10)

 𝐴𝐹𝑎𝑣𝑔=
𝐴𝐹𝑡𝑜𝑡𝑎𝑙

𝑁𝑢𝑚(𝐷)
 (4.11)

84

If 𝐴𝐹(𝑑𝑖) > ∅ ∗ 𝐴𝐹𝑎𝑣𝑔, then the data 𝑑𝑖 will be added into a new data set called Hot-

Access Data (HAD). A 𝐴𝐹𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑𝑖) function is designed to compare the value

between 𝐴𝐹(𝑑𝑖) and ∅ ∗ 𝐴𝐹𝑎𝑣𝑔 in order to determine whether a data 𝑑𝑖 should be

categorised into HAD. In addition, the cost model in Section 4.1 is also followed to use

in this research.

4.2.3 Eligible data candidate pool for replica creation

This research develops two new types of data sets, High-Dependent Data (HDD) and

Hot-Access Data (HAD). These two data sets are compared to identify the eligible data

candidates for making the replica creation decision. In particular, the HAD candidate

pool can be enlarged or shrunk by dynamically changing the access frequency threshold

value∅.

Figure 4.6 Four different situations segmented by HDD and HAD

The eligible data candidates can be identified by analysing the overlapping elements in

HDD and HAD. These eligible data candidates are both highly-dependent and hot-

accessed.

The replicas of these eligible data candidates should be created and placed into

85

appropriate data centres by using the same replica placement strategy proposed in

Section 4.1. The eligible data candidate pool for replica creation is shown in Figure 4.6.

HDD and HAD segment the whole data pool in four different situations as shown in

Figure 4.6 and the four different situations can be described in Table 4.2.

Table 4.2 Four different data situations

Situations Data belongs to …

High data dependency but low access

frequency

HDD but not in HAD

High access frequency but low data

dependency

HAD but not in HDD

High data dependency and high access

frequency

Both HDD and HAD

Low data dependency and low access

frequency

Not in both HDD and HAD

4.2.4 Recommended value of ∅

This replica creation strategy is also a cost efficiency driven strategy which aims to

achieve the optimal cost efficiency performance in terms of the cost reduction per

replica. A recommended value of the access frequency threshold value ∅ will be

returned when the result of the following Eq. 4.12 is optimal, where 𝑇𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 denotes

the total cost when there is no replica creation strategy applied, and 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and

𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 denote the current total cost value and the current number of replicas,

respectively, when the access frequency threshold value ∅ stays at a specific value. A

cost efficiency evaluation parameter 𝐶𝐸 is introduced to evaluate the cost efficiency in

terms of the cost reduction per replica, which can be calculated as in Eq. 4.12. It means

the cost reduction per replica is optimal when 𝐶𝐸 is maximum value at a specific value

86

of ∅. Then, this value of ∅ can be returned as the recommended value of ∅.

 𝐶𝐸 =
𝑇𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 −𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡
 (4.12)

4.2.5 Replica creation algorithms

Two algorithms are proposed in this cloud map oriented and cost efficiency driven

replica creation strategy. Algorithm 4.2 aims to control the replica creation process for

each eligible data candidate. It can also contribute to obtaining the recommended value

of ∅. Firstly, the array 𝑟𝑒𝑐[] for storing the recommended value ∅ and the array 𝑒𝑣𝑎[]

for storing the evaluation parameter 𝐶𝐸 will be created at Line 1. The size of these two

arrays is set to 1 at Line 2. Then 𝑟𝑒𝑐[] will be emptied and 𝑒𝑣𝑎[0] will be initially set to

0 at Line 3.

Then ∅ is dynamically changed from 0 to 𝑁𝑢𝑚(𝐷) by stepping a self-defined increment

at Line 4 to evaluate the cost reduction per replica under each ∅. For each ∅, Algorithm

4.3 is initiated to identify all eligible data for replica creation at Line 5. After that, the

new replicas for all eligible data are created at Line 6 and they are placed to their

relevant task locations at Line 7 by adopting the same replica placement method

proposed in Section 4.1. The number of replicas will be counted at Line 8. 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡

and 𝑇𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 will also be calculated at Line 9. Finally, the evaluation parameter 𝐶𝐸 will

be calculated at Line 10 for each ∅ . The comparison between 𝐶𝐸 and 𝑒𝑣𝑎[] is

conducted from Line 11 to Line 16. If 𝐶𝐸 > 𝑒𝑣𝑎[] then, 𝐶𝐸 will be replaced into 𝑒𝑣𝑎[]

at Line 12 and its corresponding ∅ will be loaded into 𝑟𝑒𝑐[] at Line 13. At the same

time, the corresponding current number of replicas 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 will be recorded and

updated at Line 14. Otherwise, if 𝐶𝐸 ≤ 𝑒𝑣𝑎[], ∅ will be changed to the next step at

Line 16. ∅ will be increased by following its step at Line 16 until all cases of ∅

completed from 0 to 𝑁𝑢𝑚(𝐷). Then 𝑒𝑣𝑎[], 𝑟𝑒𝑐[] and 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 will be loaded at Line

19. The ∅ value in 𝑟𝑒𝑐[] will be marked as the recommended value at Line 20. Finally,

87

the recommended value of ∅ from 𝑟𝑒𝑐[] and the number of replicas from 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 will

be returned at Line 21 and Line 22. The time complexity of Algorithm 4.2 is O(𝑛).

Algorithm 4.2: Replica Creation and Recommendation Value Analysis Algorithm

Input: 𝐷𝐶, 𝐷, 𝐶𝑆𝑃,

Output: The recommended value of ∅, the number of replicas 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡

1. Initialization { Create 𝑟𝑒𝑐[] and 𝑒𝑣𝑎[]

2. Set 𝑆𝑖𝑧𝑒𝑜𝑓𝑟𝑒𝑐[] = 1 and 𝑆𝑖𝑧𝑒𝑜𝑓𝑒𝑣𝑎[] = 1

3. Empty 𝑟𝑒𝑐[] and set 𝑒𝑣𝑎[0] = 0 }

4. for ∅ = 0, ∅ ≤ 𝑁𝑢𝑚(𝐷) , ∅ + +

5. Do Algorithm 4.3

6. Create new replicas for all eligible data

7. Place all replicas to corresponding relevant task locations

8. Count the number of replicas 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡

9. Calculate 𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑇𝐶𝐼𝑛𝑖𝑡𝑖𝑎𝑙

10. Calculate 𝐶𝐸

11. if 𝐶𝐸 > 𝑒𝑣𝑎[]

12. Replace 𝐶𝐸 into 𝑒𝑣𝑎[]

13. Load current ∅ into 𝑟𝑒𝑐[]

14. Record and update 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡

15. else

16. ∅ + +

17. end if

18. end for

19. Load 𝑒𝑣𝑎[], 𝑟𝑒𝑐[] and 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡

20. Mark 𝑟𝑒𝑐[] as the recommended value

21. Return the recommended value of ∅ from 𝑟𝑒𝑐[]

22. Return the number of replicas 𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Algorithm 4.3 aims to identify the eligible data for replica creation, which will be

iteratively executed at Line 3 in Algorithm 1 until all eligible data are returned. In

Algorithm 4.3, the locations of all data are located at Line 1. Then 𝐴𝐹𝑡𝑜𝑡𝑎𝑙 and

𝐴𝐹𝑎𝑣𝑔will be calculated by collecting the access frequency of each data in 𝐷 at Line 2.

88

Then the eligible data will be identified for each data 𝑑 ∈ 𝐷 from Line 3 to Line 19. All

data dependencies for the data 𝑑 are calculated at Line 4. The access frequency of the

data 𝑑 will also be collected at Line 4. Then the location of 𝑑 will be loaded at Line 5.

W-DCD(𝑑) and B-DCD(𝑑) will be calculated by the function 𝐷𝐶𝐷(𝑑𝑐, 𝑑) at Line 6

based on the location of 𝑑. Then the function 𝐷𝑒𝑝𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑) will be used to compare

between W-DCD(𝑑) and B-DCD(𝑑) at Line 7. The data 𝑑 will be added into HDD if

B-DCD(𝑑) > W-DCD(𝑑) from Line 8 to Line 10. The data access frequency will also

be compared by the function 𝐴𝐹𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑) at Line 11. The data 𝑑 will be added into

HAD if 𝐴𝐹(𝑑) > ∅ * 𝐴𝑇𝑎𝑣𝑔 from Line 12 to Line 14. After that if the data 𝑑 belongs to

both HDD and HAD, it will be marked as an eligible data for replica creation at Line

16. All eligible data for replica creation will be returned to the output at Line 19. The

time complexity of Algorithm 4.3 is O(𝑙𝑜𝑔2𝑛).

Algorithm 4.3: Eligible Data Identification for Replica Creation

Input: 𝐷𝐶, 𝐷, 𝐶𝑆𝑃, ∅

Output: All eligible data

1. Locate the location of all data

2. Calculate 𝐴𝐹𝑡𝑜𝑡𝑎𝑙 and 𝐴𝐹𝑎𝑣𝑔

3. for each 𝑑 in 𝐷

4. Calculate all data dependencies for 𝑑 and collect 𝐴𝐹(𝑑)

5. Load 𝑑𝑐 in 𝐷𝐶 where 𝑑 located

6. Calculate W-DCD(𝑑) and B-DCD(𝑑) by function 𝐷𝐶𝐷(𝑑𝑐, 𝑑)

7. 𝐷𝑒𝑝𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑)

8. while B-DCD(𝑑) > W-DCD(𝑑)

9. Add 𝑑 to HDD

89

10. end while

11. 𝐴𝐹𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑)

12. while 𝐴𝐹(𝑑) > ∅ * 𝐴𝑇𝑎𝑣𝑔

13.. Add 𝑑 to HAD

14. end while

15. if 𝑑 ∈ {HDD ∩ HAD}

16. Label 𝑑 as an eligible data for replica creation

17. end if

18. end for

19. Return all eligible data

4.2.6 Simulations

4.2.6.1 Simulation settings

Three scientific workflows are performed in different sizes, namely 25 nodes Montage

workflow, 30 nodes CyberShake workflow, and 30 nodes LIGO Inspiral workflow, to

simulate the effectiveness of the proposed cloud map oriented and cost efficiency driven

replica creation strategy. These three types of scientific workflows are referenced and

adjusted from [10].

To evaluate the performance of the proposed cloud map oriented and cost efficiency

driven replica creation strategy, two simulations are conducted on CloudSim. The first

simulation aims to test the total cost performance with and without the proposed cloud

map oriented and cost efficiency driven replica creation strategy in all three types of

scientific workflows. The second simulation aims to identify the recommended value of

the access frequency threshold ∅ in order to achieve the optimal cost reduction per

replica performance for the three types of scientific workflows, respectively.

The data items of the Montage workflow are shown in Table 4.3. The applied Montage

90

workflow has 18 data and 25 tasks. The data items of the CyberShake workflow are

shown in Table 4.4. The applied CyberShake workflow has 5 data and 30 tasks. The

data items of the LIGO Inspiral workflow are shown in Table 4.5. The applied

CyberShake workflow has 8 data and 30 tasks.

Table 4.3 The data items of the Montage workflow

Data number Access frequency Data size

𝑑1 1 0.29

𝑑2 45 4000

𝑑3 45 4000

𝑑4 45 4000

𝑑5 45 4000

𝑑6 45 4000

𝑑7 107 0.26

𝑑8 107 270

𝑑9 1 7.2

𝑑10 1 2.3

𝑑11 1 2.8

𝑑12 1 21

𝑑13 1 12

𝑑14 1 7.2

𝑑15 1 165430

𝑑16 1 165430

𝑑17 1 6600

𝑑18 1 320

91

Table 4.4 The data items of the CyberShake workflow

Data number Access frequency Data size

𝑑1 90 220

𝑑2 572 5500

𝑑3 574 0.3

𝑑4 200 2000

𝑑5 1 2100

Table 4.5 The data items of the LIGO Inspiral workflow

Data number Data access frequency Data size

𝑑1 42 800

𝑑2 84 150

𝑑3 42 8600

𝑑4 14 230

𝑑5 79 300

𝑑6 14 320

𝑑7 35 940

𝑑8 42 1200

The pricing model of four real cloud service providers including Amazon, Microsoft,

AT&T, and Google are applied, as shown in Table 4.6. The data storage cost rate and

the data transfer cost rate are included in the pricing model of these four real cloud

service providers.

Besides, the cost model proposed in Section 4.1 is followed as abovementioned. Apart

from that, the data storage time interval for each data is set to 1 for the cost calculation

convenience in order to make the data storage time interval consistent in each cloud

92

service provider.

Table 4.6 The pricing model of the cloud service providers

Cloud service provider Storage service Storage price (per data

unit)

Amazon Amazon S3 0.025

Microsoft Microsoft Azure 0.034

AT&T AT&T Cloud Storage 0.040

Google Google Cloud Storage 0.026

Data transfer cost 0.070 per data unit

4.2.6.2 Simulation results

In Simulation 1, four comparative scenarios on all three scientific workflows are tested.

As shown in Figure 4.7, it is evident that the proposed cloud map oriented and cost

efficiency driven replica creation strategy can significantly decrease the total cost of all

three scientific workflows in Scenario 1 in comparison with all other three comparative

scenarios. The four comparative scenarios are listed as follows.

• Scenario 1: The proposed replica creation strategy applied.

• Scenario 2: No replication strategy applied.

• Scenario 3: Only data dependency constraint applied.

• Scenario 4: Only data access times constraint applied.

The proposed cloud map oriented and cost efficiency driven replica creation strategy in

Scenario 1 has 94.12%, 99.10%, and 69.91% total cost reduction on the Montage

workflow, the CyberShake workflow, and the LIGO Inspiral workflow, respectively, in

comparison with the Montage workflow, the CyberShake workflow, and the LIGO

Inspiral workflow under Scenario 2. Besides, the proposed cloud map oriented and cost

efficiency driven replica creation strategy in Scenario 1 has 40.11% and 92.49% total

93

cost reduction on the Montage workflow and the CyberShake workflow, respectively, in

comparison with the Montage workflow and the CyberShake workflow under Scenario

3. The proposed cloud map oriented and cost efficiency driven replica creation strategy

in Scenario 1 achieves almost equal total cost in comparison with the LIGO Inspiral

workflow under Scenario 3. Apart from that, the proposed cloud map oriented and cost

efficiency driven replica creation strategy in Scenario 1 has 31.41%, 92.80%, and

67.32% total cost reduction on the Montage workflow, the CyberShake workflow, and

the LIGO Inspiral workflow, respectively, in comparison with the Montage workflow,

the CyberShake workflow, and the LIGO Inspiral workflow under Scenario 4.

Figure 4.7 The result of simulation 1

In Simulation 2, the access frequency threshold Ø is dynamically changed by a self-

defined increment 0.001 in order to view the impact on the number of replicas and the

total cost. The simulation 2 results are shown in Figure 4.8, Figure 4.9, and Figure 4.10.

The values of Ø, which corresponds to the change points of the cost reduction per

replica, are shown in these figures. As shown in Figure 4.8, there is a clear fluctuation

on the total cost and the number of replicas when the value of Ø dynamically increases

from 0 to 18 in the Montage workflow. It is recommended that the cost reduction per

replica 𝐶𝐸 remains at a maximum level when Ø stays at 2.3 in the Montage workflow.

94

Figure 4.8 The result of the Montage workflow in Simulation 2

Figure 4.9 The result of the CyberShake workflow in Simulation 2

Similarly, the recommended value of Ø for the CyberShake workflow and the LIGO

Inspiral workflow can be identified in Figure 4.9 and Figure 4.10, respectively. The

value of Ø dynamically increases from 0 to 5 in the CyberShake workflow. The value of

95

Ø dynamically increases from 0 to 8 in the LIGO Inspiral workflow. It is recommended

that the cost reduction per replica 𝐶𝐸 exists at a maximum level when Ø stays at 0.79 in

the CyberShake workflow and when Ø stays at 0.95 in the LIGO Inspiral workflow.

Figure 4.10 The result of the LIGO Inspiral workflow in Simulation 2

4.3 Network Performance Based Replica Selection

As described in the last two replica creation strategies in Section 4.1 and 4.2, replica

creation is a significant process to create multiple data copies at multiple data centres.

By applying the replica creation strategy, the cloud performance can be improved, as

proved in Section 4.1 and Section 4.2. According to the literature in Chapter 2, the

cloud performance can be further improved by applying the replica selection strategy.

The replica selection strategy can guide the tasks to access the optimal data replica.

Although the existing research has made significant progress in the replica selection

strategies, there are still some research gaps to be filled. Most of the current replica

selection strategies focus on how to select a data replica to access without consideration

96

of the impacts among multiple concurrent-running cloud application instances under

limited network capability. In particular, some of the current research might not be

suitable to address the scenario when the increased number of cloud application

instances and data access needs result in overloading in certain parts of the network.

Thus, those replica selection strategies might not be able to perform well in the cloud

environment with heavy workloads. Besides, most of the current data replication

strategies model the network performance metrics in an isolated way. It may lose the

comprehensiveness of evaluating the overall network performance.

To address the problems mentioned above, a network performance oriented replica

selection strategy (NPRS) is proposed to avoid the potential network overloading

problems. It also aims to increase the number of concurrent-running cloud application

instances at the same time. Three common network performance metrics are applied to

measure the network performance to generate the optimal replica selection solution. The

replica selection decision for a single cloud application instance is made in the context

of multiple concurrent-running cloud application instances with consideration of their

access needs to different data replicas and their impacts on the network resource. The

final replica selection decision may be one of the following:

• Find the best replica for a data access request to access

• Recreate a new replica for the required replica to access

4.3.1 System modelling

In this NPRS strategy, three network performance metrics are used to evaluate the

overall network performance in the cloud environment and further support the replica

selection decision making. Network latency, available network resource, and error rate

are considered as three major network performance metrics. The network latency

depends on a variety of factors including the data transmission speed of the network

97

path, the nature of the transmission medium, the physical distance between two

locations, the size of the transferred data, the number of other data transmission requests

being handled concurrently, etc. It is usually measured as either one-way delay or

round-trip delay. The round-trip delay is commonly quoted by network managers for the

reason that it can be measured from a single point. Ping value has been widely used to

measure the round-trip delay. To simplify the problem in this research, the network

latency of a data centre 𝑑𝑐 ∈ 𝐷𝐶, 𝑁𝐿(𝑑𝑐), is modelled as a constant value.

The bandwidth is adopted to represent the network resource in this research because it is

one of the most common network performance metrics to measure the network resource

in the past literature. The bandwidth consumption of a specific data centre 𝑑𝑐 ∈ 𝐷𝐶,

𝐵𝐶(𝑑𝑐), can be calculated using the equation in Eq. 4.13, where 𝐽𝑑𝑐 is the set of tasks

accessing this data centre 𝑑𝑐, 𝑆𝑖𝑧𝑒(𝑗𝑑𝑐) is the size of the data that is requested by a task

𝑗𝑑𝑐 ∈ 𝐽𝑑𝑐, and 𝐿𝑒𝑛(𝑗𝑑𝑐) denotes the task execution duration of the task 𝑗𝑑𝑐.

 𝐵𝐶(𝑑𝑐) = ∑
𝑆𝑖𝑧𝑒(𝑗𝑑𝑐)

𝐿𝑒𝑛(𝑗𝑑𝑐)𝑗𝑑𝑐∈ 𝐽𝑑𝑐 (4.13)

Similarly, the bandwidth consumption of a specific data 𝑑 ∈ 𝐷 being accessed, 𝐵𝐶(𝑑),

can be calculated as in Eq. 4.14, where 𝐴𝐶𝐿𝑒𝑛(𝑑) denotes the maximum time length of

the data 𝑑 being accessed by its relevant tasks.

 𝐵𝐶(𝑑) =
𝑆𝑖𝑧𝑒(𝑑)

𝐴𝐶𝐿𝑒𝑛(𝑑)
 (4.14)

Then the available bandwidth of the data centre 𝑑𝑐, 𝐴𝐵(𝑑𝑐), refers to the difference

between the maximum bandwidth of this data centre 𝑚𝑎𝑥𝐵(𝑑𝑐) and the current

bandwidth consumption in this data centre 𝐵𝐶(𝑑𝑐), which can be presented as in Eq.

4.15.

 𝐴𝐵(𝑑𝑐) = 𝑚𝑎𝑥𝐵(𝑑𝑐) - 𝐵𝐶(𝑑𝑐) (4.15)

The error rate is also a significant parameter to evaluate the network performance

98

because a network with a lower error rate is always greater to use than a network with a

higher error rate. The error rate of the data centre 𝑑𝑐 ∈ 𝐷𝐶, 𝐸𝑅(𝑑𝑐), refers to the ratio

of the total number of transmitted data units in error to the total number of transmitted

data units, which can be represented as in Eq. 4.16.

 𝐸𝑅(𝑑𝑐) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑢𝑛𝑖𝑡𝑠 𝑖𝑛 𝑒𝑟𝑟𝑜𝑟

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑑𝑎𝑡𝑎 𝑢𝑛𝑖𝑡𝑠
 (4.16)

4.3.2 Network performance based replica selection (NPRS) strategy

4.3.2.1 NPRS replica selection strategy

The proposed network performance based replica selection (NPRS) strategy is an

evaluation method to the overall cloud network performance by applying three network

performance metrics mentioned in Section 4.3.1 to select the best replica site to access.

The Min-Max normalisation method is applied in the proposed NPRS strategy to

develop a comprehensive evaluation among different network performance metrics.

Three weighted parameters are developed to configure the network performance

metrics. 𝑊𝐴𝐵
𝑑𝑐 denotes the weight of the available bandwidth metric of the data centre

𝑑𝑐, 𝑊𝑁𝐿
𝑑𝑐 denotes the weight of the network latency metric of the data centre 𝑑𝑐, and

𝑊𝐸𝑅
𝑑𝑐 denotes the weight of the error rate metric of the data centre 𝑑𝑐. The final weight

of this data centre 𝑑𝑐, 𝐹𝑊(𝑑𝑐), can be formulated in Eq. 4.17, where 𝑁𝐶𝐴𝐵
𝑑𝑐 denotes the

normalisation component of the available bandwidth metric of the data centre 𝑑𝑐, 𝑁𝐶𝑁𝐿
𝑑𝑐

denotes the normalisation component of the network latency metric of the data centre

𝑑𝑐, and 𝑁𝐶𝐸𝑅
𝑑𝑐 denotes the normalisation component of the error rate metric of the data

centre 𝑑𝑐. For a request to access a data that has replicas at multiple data centres, the

data centre with the maximum final weight value will be selected as the optimal data

access route. Tie-breaking is done randomly.

 {
𝐹𝑊(𝑑𝑐) = 𝑊𝐴𝐵

𝑑𝑐 ∗ 𝑁𝐶𝐴𝐵
𝑑𝑐 +𝑊𝑁𝐿

𝑑𝑐 ∗ 𝑁𝐶𝑁𝐿
𝑑𝑐 +𝑊𝐸𝑅

𝑑𝑐 ∗ 𝑁𝐶𝐸𝑅
𝑑𝑐

𝑊𝐴𝐵
𝑑𝑐 +𝑊𝑁𝐿

𝑑𝑐 +𝑊𝐸𝑅
𝑑𝑐 = 1

 (4.17)

99

All of these three network performance metrics have big impact on network

performance. However, different network performance metrics should be treated in

different ways depending on their own nature. The available bandwidth metric with the

highest value should be the best case while the network latency metric and the error rate

metric with the highest value should be the worst case. Hence, the normalisation

processes of three network performance metrics can be formulated for a specific data

centre 𝑑𝑐𝑧 ∈ 𝐷𝐶 as in Eq. 4.18, Eq. 4.19, and Eq. 4.20, respectively.

 𝑁𝐶𝐴𝐵
𝑑𝑐𝑧 =

𝐴𝐵(𝑑𝑐𝑧) − 𝑚𝑖𝑛{𝐴𝐵(𝑑𝑐)}

𝑚𝑎𝑥{𝐴𝐵(𝑑𝑐)} − 𝑚𝑖𝑛{𝐴𝐵(𝑑𝑐)}
; 𝑑𝑐 ∈ 𝐷𝐶 (4.18)

 𝑁𝐶𝑁𝐿
𝑑𝑐𝑧 =

𝑚𝑎𝑥{𝑁𝐿(𝑑𝑐)} − 𝑁𝐿(𝑑𝑐𝑧)

𝑚𝑎𝑥{𝑁𝐿(𝑑𝑐)} − 𝑚𝑖𝑛 {𝑁𝐿(𝑑𝑐)}
; 𝑑𝑐 ∈ 𝐷𝐶 (4.19)

 𝑁𝐶𝐸𝑅
𝑑𝑐𝑧 =

𝑚𝑎𝑥{𝐸𝑅(𝑑𝑐)} − 𝐸𝑅(𝑑𝑐𝑧)

𝑚𝑎𝑥{𝐸𝑅(𝑑𝑐)} − 𝑚𝑖𝑛{𝐸𝑅(𝑑𝑐)}
; 𝑑𝑐 ∈ 𝐷𝐶 (4.20)

4.3.2.2 Replica re-creation mechanism

In this research, the initial replica creation and placement is assumed that it is already

completed by applying the same rule to the proposed replica creation strategies in

Section 4.1 or Section 4.2.

The proposed replica re-creation mechanism in the NPRS strategy will be initiated when

the loss of replica availability occurs due to network overloading issues. A new replica

of the required data will be re-created by considering the resource load at the data

centres. Firstly, the required data to be replicated should be FlexD as mentioned in

Section 4.1. Then a set of eligible data centres which meet the resource requirement of

the required data are identified. The eligible data centres with sufficient resources will

be sorted based on their current resource in descending order. The eligible data centre

with the largest available resource will be chosen to create the new replica by copying a

new required replica from the nearest replica-ready data centre. Tie-breaking is done

randomly.

100

4.3.2.3 NPRS algorithm

The NPRS algorithm is a nested algorithm that contains two algorithms, the NPRS

replica selection algorithm and the NPRS replica re-creation algorithm. The NPRS

replica selection algorithm and the NPRS replica re-creation algorithm collaboratively

determine the optimal data access route for each data request. The NPRS replica

selection algorithm is shown in Algorithm 4.4. Line 2 maps all required data in 𝐷 to the

data requests from the task 𝑗 in 𝐽, and those required data will be added into an array for

listing the required data 𝑟𝑑[]. Each element in 𝑟𝑑[] will be tried to identify its optimal

data access route 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 for the task 𝑗 from Line 3 to Line 23. For each element

𝑟𝑑[𝑣] in 𝑟𝑑[], all replica-ready data centres are mapped to 𝑟𝑑[𝑣] and add into a new

array for the replica-ready data centre list 𝑟𝑟[] at Line 4. For each element 𝑟𝑟[𝑢] in

𝑟𝑟[], if the available bandwidth of 𝑟𝑟[𝑢] satisfies the condition in Line 6, 𝐹𝑊(𝑟𝑟[𝑢])

will be calculated in Line 7 under Eq. 4.17. Then it will be added into a new array 𝑓𝑤[]

for listing the final weight including different weights of the elements in 𝑟𝑟[] at Line 8.

Otherwise, the algorithm will move to the next element in 𝑟𝑟[] at Line 10. The capacity

of 𝑓𝑤[] will be checked at Line 13. If the capacity of 𝑓𝑤[] is empty, then the NPRS

replica re-creation algorithm will be initiated at Line 14. Otherwise, the new array 𝑓𝑤[]

will be sorted by the Reverse QuickSort algorithm at Line 16 and then 𝑓𝑤[0] will be

mapped to its corresponding value 𝑓𝑤(𝑟𝑟[𝑤]) at Line 17. Then the optimal replica

selection route 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 will be generated from Line 18 to Line 19 to guide the

optimal data access route for the task 𝑗. After that, 𝑓𝑤[] and 𝑟𝑟[] will be emptied at

Line 20 and then the algorithm will be move to the next element in 𝑟𝑑[] at Line 21 until

the replica selection solution of all elements in 𝑟𝑑[] is founded. The replica selection

solution for all tasks in 𝐽 can be worked out by iteratively run Algorithm 4.4 from Line

1 to Line 24. The time complexity of Algorithm 4.4 is O(𝑛2).

101

Algorithm 4.4: NPRS Replica Selection

Input: 𝐷, 𝐷𝐶, 𝐽

Output: Optimal data access route 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒

1. for each 𝑗 in 𝐽

2. Map all required data to 𝑗 and add all required data into 𝑟𝑑[]

3. for 𝑟𝑑[𝑣] in 𝑅𝐷[], 𝑣 = 0, 𝑣 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑟𝑑[])

4. Map the replica-ready locations to 𝑟𝑑[𝑣] and add into 𝑟𝑟[]

5. for 𝑟𝑟[𝑢] in 𝑟𝑟[], 𝑢 = 0, 𝑢 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑟𝑟[])

6. if 𝐴𝐵(𝑟𝑟[𝑢]) ≥ 𝐵𝐶(𝑟𝑑[𝑣])

7. 𝐹𝑊(𝑟𝑟[𝑢]) under Eq. 4.17

8. Add 𝐹𝑊(𝑟𝑟[𝑢]) → 𝑓𝑤[]

9. else

10. 𝑢 + +

11. end if

12. end for

13. if 𝑓𝑤[] = 𝑁𝑈𝐿𝐿

14. Do Algorithm 4.5

15. else

16. Reverse QuickSort 𝑓𝑤[]

17. Map 𝑓𝑤[0] → 𝐹𝑊(𝑟𝑟[𝑤])

18. Load 𝑟𝑑[𝑣], 𝑟𝑟[𝑤] and 𝑗

19. Return 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 = {𝑟𝑑[𝑣], 𝑟𝑟[𝑤], 𝑗}

20. Empty 𝑓𝑤[] and 𝑟𝑟[]

21. 𝑣 + +

22. end if

23. end for

24. end for

The proposed Algorithm 4.5 is used to identify a suitable data centre to re-create a new

data replica for the required data because of the availability loss of the required data. In

Algorithm 4.5, Line 1 identifies the qualified data centres where do not have the

required data replica and add them into a new array 𝑞𝑢𝑎𝑙[]. Then, from Line 2 to Line

102

9, the qualified data centres in 𝑞𝑢𝑎𝑙[] will be checked their available bandwidth

situations in comparison with the bandwidth consumption of the input data 𝑟𝑑[𝑣] from

Algorithm 4.4. If the resource utilisation condition is satisfied at Line 3, then the

qualified data centre will be added into a new array 𝑒𝑙𝑖𝑔[] for collecting the eligible

data centres for replica re-creation. Otherwise, the next qualified data centre in 𝑞𝑢𝑎𝑙[]

will be checked.

After the checking of the resource consumption condition, the capacity of the array

𝑒𝑙𝑖𝑔[] will be further checked from Line 10 to Line 25. If the capacity of 𝑒𝑙𝑖𝑔[] is

empty, then the array 𝑞𝑢𝑎𝑙[] will be emptied and the algorithm will back to Line 3 in

Algorithm 4.4 to process the next element in 𝑟𝑑[]. Otherwise, the available bandwidth

value will be mapped to each element in 𝑒𝑙𝑖𝑔[] at Line 14. Then it will be added to a

new array 𝑎𝑏[] for storing the available bandwidth information of the eligible data

centres in 𝑒𝑙𝑖𝑔[] at Line 15. The new array 𝑎𝑏[] will be sorted by the Reverse

QuickSort algorithm at Line 17 and then 𝑎𝑏[0] will be mapped to its corresponding

value 𝑒𝑙𝑖𝑔[𝑟] in 𝑒𝑙𝑖𝑔[] at Line 18. Then the optimal replica re-creation route 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒

will be generated from Line 19 to Line 21 to make the replica re-creation to enable the

data access for the task 𝑗. After that, 𝑞𝑢𝑎𝑙[], 𝑒𝑙𝑖𝑔[], and 𝑎𝑏[] will be emptied at Line 22

and 𝑓𝑤[] and 𝑟𝑟[] will also be emptied in Algorithm 4.4, at Line 23 in Algorithm 4.5.

At the same time, the algorithm will be move to the next element in 𝑟𝑑[] at Line 3 in

Algorithm 4.4 at Line 24. The time complexity of Algorithm 4.5 is O(𝑛).

Algorithm 4.5: NPRS Replica Re-Creation

Input: 𝑟𝑟[], 𝑟𝑑[𝑣]

Output: Optimal data access route 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒

1. Remove 𝑟𝑟[] from 𝐷𝐶 and add the rest 𝐷𝐶 into 𝑞𝑢𝑎𝑙[]

2. for 𝑞𝑢𝑎𝑙[𝑐], 𝑐 = 0, 𝑐 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑞𝑢𝑎𝑙[]) do

3. if 𝐵𝐶(𝑟𝑑[𝑣]) ≤ 𝐴𝐵(𝑞𝑢𝑎𝑙[𝑐])

103

4. Add 𝑞𝑢𝑎𝑙[𝑐] → 𝑒𝑙𝑖𝑔[]

5. 𝑐 + +

6. else

7. 𝑐 + +

8. end if

9. end for

10. if 𝑒𝑙𝑖𝑔[] = 𝑁𝑈𝐿𝐿

11. Empty 𝑞𝑢𝑎𝑙[] and 𝑣 + + at Line 3 in Algorithm 4.4

12. else

13. for each element in 𝑒𝑙𝑖𝑔[] do

14. Map 𝐴𝐵(𝑒𝑙𝑖𝑔[]) → 𝑒𝑙𝑖𝑔[]

15. Add 𝐴𝐵(𝑒𝑙𝑖𝑔[]) → 𝑎𝑏[]

16. end for

17. Reverse QuickSort 𝑎𝑏[]

18. Map 𝑎𝑏[0] → 𝑒𝑙𝑖𝑔[𝑟]

19. Load 𝑟𝑑[𝑣] and 𝑒𝑙𝑖𝑔[𝑟]

20. Load 𝑗 from Algorithm 4.4

21. Return 𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 = {𝑟𝑑[𝑣], 𝑒𝑙𝑖𝑔[𝑟], 𝑗}

22. Empty 𝑞𝑢𝑎𝑙[], 𝑒𝑙𝑖𝑔[], and 𝑎𝑏[]

23. Empty 𝑓𝑤[] and 𝑟𝑟[] in Algorithm 4.4

24. 𝑣 + + at Line 3 in Algorithm 4.4

25. end if

4.3.3 Simulations

To evaluate the effectiveness of the proposed NPRS strategy, three simulations under

three different scenarios are performed on OMNeT++ 5.4.1. OMNeT++ is an

extensible, modular, component-based C++ simulation library and framework, primarily

for building network simulators [41][86].

The comparison between the proposed NPRS strategy and the least response time

replica selection algorithm [42] is performed in all three simulations. The Montage

scientific workflow and the LEAD Mesoscale Meteorology workflow are applied as the

input cloud application instances.

104

In Simulation 1 and Simulation 2, a total of 25 workflow instances in a single workflow

type are executed. While in Simulation 3, 25 instances of each workflow type are

executed. All of the data settings of the Montage scientific workflow and the LEAD

Mesoscale Meteorology workflow are referenced and adjusted from [10] and [43].

Table 4.7 The network latency of each data centre

Data Centre Network Latency (ms)

𝑑𝑐1 40

𝑑𝑐2 100

𝑑𝑐3 25

𝑑𝑐4 150

𝑑𝑐5 200

𝑑𝑐6 250

𝑑𝑐7 50

A multi-cloud environment is constructed, including 3 different cloud service providers

with a total of 7 data centres. The traditional three-replica placement strategy has been

applied to this simulation environment. The network bandwidth in each data centre is

set to 100 Gbps with a 100 Gigabit Ethernet network connection. The network latency

of each data centre is shown in Table 4.7.

Several assumptions are made for the following simulations. Firstly, all cloud

application instances are requested by a single user to keep a consistent view of the

network latency in all three simulations. Secondly, the network performance evaluation

metrics are assumed to be collectable in the network. Thirdly, 𝑊𝐸𝑅 is set to 0 because

the network is assumed to be performed well in this simulation environment, which

aims to simplify the problem. The network with a certain error rate will also be tested in

the following chapters.

105

4.3.5.1 Simulation 1 – Synchronous instance input

In Simulation 1, the Montage workflow instances are synchronously input into the

simulation environment. 𝑊𝑁𝐿 and 𝑊𝐴𝐵 are randomly set to 50% and 50%, respectively.

Then the proposed NPRS algorithm is compared to the least response time replica

selection algorithm to test the network bandwidth changes and the number of

concurrent-running workflow instances.

Figure 4.11 Simulation result 1 – Synchronous instance input

The result of Simulation 1 is shown in Figure 4.11. Along with the synchronous

106

instance input, the least response time replica selection algorithm has a sharp bandwidth

utilisation increase in some data centres in the simulation environment when the number

of concurrent-running workflow instances is before 10. Then those data centres will

encounter the network overloading problem when the number of concurrent-running

workflow instances reaches 10. The number of concurrent-running workflow instances

peaks at 10 by applying the least response time algorithm.

Differently, the proposed NPRS strategy has a milder bandwidth utilisation increase

before 20 concurrent-running workflow instances and then peaks the number of

concurrent-running workflow instances at 20. Therefore, it is evident that the proposed

NPRS strategy can significantly increase the number of concurrent-running workflow

instances and balance the network utilisation when the workflow instances are

synchronously input.

4.3.5.2 Simulation 2 – Asynchronous instance input

In Simulation 2, the Montage scientific workflow instances are asynchronously input

into the simulation environment for testing the proposed NPRS replica selection

strategy and the least response time replica selection algorithm. The instances will be

input into the simulation environment one by one. In Simulation 2, 𝑊𝑁𝐿 and 𝑊𝐴𝐵 are

randomly set to 10% and 90%, respectively.

Along with the asynchronous instance input, the least response time replica selection

algorithm still has a sharp bandwidth utilisation increase in some data centres when the

number of concurrent-running workflow instances is before 10. Then those data centres

will encounter the network overloading problem when the number of concurrent-

running workflow instances reaches 10. The number of concurrent-running workflow

instances still peaks at 10 by applying the least response time algorithm. Differently, the

proposed NPRS strategy has a milder bandwidth utilisation increase before 14

107

concurrent-running workflow instances and then still peaks the number of concurrent-

running workflow instances at 14. Therefore, it is clear that the proposed NPRS strategy

can still increase the number of concurrent-running workflow instances and balance the

network utilisation when the workflow instances are asynchronously input.

Figure 4.12 Simulation result 2 – Asynchronous instance input

108

Figure 4.13 Simulation result 3 – Iterative input with instance group

4.3.5.3 Simulation 3 – Iterative input with instance group

In Simulation 3, the workflow instance group including both the Montage workflow

instances and the LEAD Mesoscale Meteorology workflow instances are iteratively

input for testing the proposed NPRS strategy and the least response time replica

selection algorithm. The workflow instance group is input into the simulation

environment one group by one group. Each workflow instance group contains one

109

Montage workflow instance and one LEAD workflow instance. The parameter setting in

Simulation 3 is same to Simulation 1. The result of Simulation 3 is shown in Figure

4.13.

Along with the iterative instance input of the workflow instance group, the least

response time algorithm peaks the number of concurrent-running workflow instance

groups at 9. The proposed NPRS strategy peaks the number of concurrent-running

workflow instances when the number of concurrent-running workflow instance groups

reaches 13. Therefore, the proposed NPRS strategy can also significantly increase the

number of concurrent-running workflow instance groups. At the same time, the

proposed NPRS strategy still has better and more balanced bandwidth usage in

comparison with the least response time replica selection algorithm, as shown in Figure

4.13.

4.4 Summary

In Chapter 4, two replica creation strategies and one replica selection strategy are

proposed for creating, placing, and selecting the data replicas. The replica placement

rule is included in the first two replica creation strategies. In Section 4.1, the first replica

creation strategy is developed to reduce the total cost by considering both the data

dependency and the access frequency when making the replica creation decision. A data

classification method is introduced to classify the flexible data into two new data types,

free-flexible data and constrained-flexible data. The free-flexible data can identify the

flexible data which can be freely replicated to a specific data centre, while the

constrained-flexible data can identify the flexible data which cannot be replicated to a

specific data centre. A replica creation algorithm is proposed to address nine different

scenarios for each pair of data. The total cost reduction is achieved by applying the

proposed replica creation strategy in Section 4.1.

110

In Section 4.2, the second replica creation strategy is proposed to achieve the optimal

cost reduction per replica by identifying a recommended access frequency threshold

value. The data dependency and the access frequency are followed to use as two

constraint parameters to constrain the replica creation. The data dependency is

categorised into Within-DataCentre Data Dependency and Between-DataCentre Data

Dependency to analyse the local data relationship and the remote data relationship,

respectively. An eligible data candidate pool is introduced to identify the highly-

dependent and hot-access data. The proposed replica creation strategy can obtain a

recommended value of the access frequency threshold parameter to achieve the optimal

cost reduction per replica.

In Section 4.3, a NPRS strategy is proposed for increasing the number of concurrent-

running workflow instances and balancing the resource load. The network performance

based replica selection method is developed by jointly considering different network

performance metrics. Different network performance metrics are treated in different

ways in the proposed replica selection method. A nested replica selection algorithm is

introduced to handle both the normal case and the limited case of the cloud network.

The proposed NPRS strategy in Section 4.3 achieves a greater number of concurrent-

running workflow instances and more balanced network resource load in comparison

with the least response time replica selection algorithm.

111

Chapter 5 Reactive Fault Tolerance for Independent Tasks

As stated in Chapter 2, the data replication strategies can enable a replica-applied cloud

environment to protect the cloud environment against the upcoming faults. Normally,

the task is operated on the primary data in the cloud environment. By adopting the

proposed data replication strategies in Chapter 4, multiple data replicas can be created

into multiple data centres by the replica creation strategies. Besides, a replica selection

strategy can be developed for guiding the data access. In case that the primary data

becomes inaccessible, the task execution can remain continuous by accessing one of the

required replicas if the replica-applied cloud environment is deployed beforehand. The

replica-applied cloud environment is widely adopted to achieve cloud robustness in

many famous cloud environments such as Google Cloud and Amazon S3. However, it is

not sufficient for improving the overall cloud performance when encountering faults.

The reactive fault tolerance strategies are still needed to achieve better overall cloud

performance if the fault already occurred.

Therefore, two reactive fault tolerance strategies are proposed for the independent tasks

in the replication-applied cloud environment. The task resubmission technique and the

task migration technique are introduced into these reactive fault tolerance strategies by

integrating the proposed replica selection method proposed in Section 4.3.

5.1 Utility-Based Fault Tolerance for Independent Tasks

As explained in earlier chapters, most of the contemporary fault tolerance strategies

paid insufficient attention to both the network performance and the attributes of affected

tasks. When the tasks at the faulty data centre are resubmitted to other data centres, the

impacts to the overall cloud performance have been largely overlooked. The task

resubmission operations and the task migration operations may deplete the resources of

112

other data centres [102]. In addition, some tasks may not be able to catch the deadline

even if they have been rescued to access one of the required data replicas in the replica-

applied cloud environment under fault scenarios. This may result in cloud resiliency

decrease, user dissatisfaction, reputation damage, future profit reduction, and economic

compensation. Therefore, both the resource load of the cloud data centres and the task

attributes are all significant factors to cloud resiliency. It is desirable to develop a

reactive fault tolerance strategy to the replica-applied cloud environment, which fully

considers both the resource load of the cloud data centres and the attributes of the

affected tasks.

A utility-based reactive fault tolerance (UBFT) strategy is proposed for more efficient

independent task rescue at the faulty data centre. The common network performance

metrics and the task attributes are jointly considered as the major constraint parameters

in this strategy. A utility function is developed to prioritise the tasks to be rescued, in

other words, to be resubmitted. For each independent task rescue operation, the network

performance at each replica-ready data centre is evaluated to find the optimal task

resubmission route so that the task can be migrated out of the faulty data centre to

access the required data replica. By doing so, this strategy aims to achieve better cloud

resiliency in terms of task resilience ratio, task rescue utility, and task operation profit.

The simulation results show that the proposed UBFT strategy has better task resilience

ratio, task rescue utility, and task operation profit than the other three comparative

HDFS, RR, and JSQ strategies.

5.1.1 System modelling

5.1.1.1 Definitions

The following definitions are defined in this reactive fault tolerance strategy. Cloud

resiliency refers to the ability to rescue the tasks when a fault occurs at a data centre.

113

Cloud resiliency is commonly measured in terms of task resilience ratio (TRR). TRR

refers to the ratio of the tasks successfully rescued from the faulty data centre to the

total number of tasks to be rescued at the faulty data centre. The TRR for a faulty data

centre can be demonstrated as follows in Eq. 5.1.

 Task Resilience Ratio =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑐𝑢𝑒𝑑 𝑗𝑜𝑏𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑡𝑜 𝑏𝑒 𝑟𝑒𝑠𝑐𝑢𝑒𝑑
 (5.1)

The task utility refers to the modelled value of the tasks. The task rescue utility is the

sum of the task utilities of those tasks which have been rescued from the faulty data

centre. The task rescue utility is also used to measure cloud resiliency.

The task operation profit is directly proportional to revenue, and it is also inversely

proportional to cost. The task operation profit refers to the subtracting result between

the revenue and the cost. The cloud service providers always prefer to alleviate the task

operation profit decrease as much as possible, at least at an acceptable level, after the

fault occurred. The task operation profit is also used to measure cloud resiliency from

an economic perspective.

5.1.1.2 Task urgency and task operation profit model

Each task 𝑗 ∈ 𝐽 is associated with a hard deadline 𝐷𝐸𝐴𝐷(𝑗). In this research, the task

deadline is defined as a specific point on the timeline. If such a requirement is not

specified, the task has an infinite deadline. This research only considers the task with a

definite deadline because the task with an infinite deadline does not suffer from the

negative influences of the fault and can be resumed when the faulty data centre is fully

recovered from the fault.

There are two common task resubmission or migration scenarios for the independent

tasks in the cloud environment when handling faults. The task at the faulty data centre

might be re-executed if the task is resubmitted or migrated to another cloud data centre,

or maybe the task rescued from the faulty data centre will be resumed to complete from

114

the most recent state after resubmitting or migrating to another cloud data centre if the

checkpointing/restarting technique applied. In this research, all tasks are assumed to be

re-executed if the task is resubmitted or migrated out of its initial location. To ensure the

quality of service in this research, all resubmitted or migrated tasks should satisfy their

own deadline requirement. Otherwise, the resubmission or the migration will be

deterred.

Each task 𝑗 also has a task execution duration 𝐿𝑒𝑛(𝑗) which is determined by the nature

of the task 𝑗. Besides, the past processing time in its original execution location 𝑃𝐴(𝑗)

should be considered if the task 𝑗 has been selected to migrate or redirect out of its

initial location. 𝑃𝐴(𝑗) equals to 0 if the task has not been executed in its initial location.

In addition, the internodal communication delay 𝐼𝐶(𝑗) is another factor to be considered

because the extra time will be generated when the task 𝑗 is migrated across multiple

network nodes. Furthermore, the input scheduling delay 𝐼𝑆(𝑗) is the extra time

generated by scheduling the execution of the task 𝑗.

Most importantly, the task urgency (𝑈𝑅) is defined as the time buffer of the task. The

higher the task urgency value is, the more time buffer the task has. The task urgency is

formulated as in Eq. 5.2, where 𝑈𝑅(𝑗) is the task urgency value of the task 𝑗.

 𝑈𝑅(𝑗) = 𝐷𝐸𝐴𝐷(𝑗) – (𝐿𝑒𝑛(𝑗) + 𝑃𝐴(𝑗) + 𝐼𝐶(𝑗) + 𝐼𝑆(𝑗)) (5.2)

Each task 𝑗 ∈ 𝐽 is also associated with the value of its task operation profit, 𝑃𝑅𝑂(𝑗),

which is the subtracting result between the revenue and the cost of the task 𝑗.

5.1.1.3 Task utility and task rescue utility

The utility function is often used to compare the objects with multiple requirements and

attributes. Generally, a data centre prefers to rescue as many tasks as possible to fit their

deadline requirements. In this case, task urgency is a significant parameter to be

considered for the task priority assignment when handling the tasks at the faulty data

115

centre. At the same time, cloud service providers always try to maximise their profit. In

this case, the tasks that bring more profits to the data centre should have higher

importance. The task utility value is proposed to prioritise the tasks by jointly

considering the task urgency and the task operation profit.

For the task 𝑗 ∈ 𝐽, the general expression of the task utility 𝑈(𝑗) is shown in Eq. 5.3 and

should satisfy the condition in Eq. 5.4, where 𝑈𝑈𝑅(𝑗) and 𝑈𝑃𝑅𝑂(𝑗) denote the utility

value of the task urgency and the task operation profit of the task 𝑗, respectively. 𝑊𝑈𝑅

and 𝑊𝑃𝑅𝑂 denote the corresponding weight of the task urgency and the task operation

profit, respectively.

 𝑈(𝑗) = 𝑊𝑈𝑅 * 𝑈𝑈𝑅(𝑗) + 𝑊𝑃𝑅𝑂 * 𝑈𝑃𝑅𝑂(𝑗) (5.3)

 𝑊𝑈𝑅 + 𝑊𝑃𝑅𝑂 = 1 (5.4)

For a specific task 𝑗𝑚
𝑑𝑐 ∈ 𝐽𝑑𝑐 at the faulty location 𝑑𝑐 , the utility value of the task

urgency of this task, 𝑈𝑈𝑅(𝑗𝑚
𝑑𝑐), is calculated as follows in Eq. 5.5.

 𝑈𝑈𝑅(𝑗𝑚
𝑑𝑐) =

𝑚𝑎𝑥(𝑈𝑅(𝑗𝑑𝑐)) − 𝑈𝑅(𝑗𝑚
𝑑𝑐)

𝑚𝑎𝑥(𝑈𝑅(𝑗𝑑𝑐)) − 𝑚𝑖𝑛(𝑈𝑅(𝑗𝑑𝑐))
; 𝑗𝑑𝑐 ∈ 𝐽𝑑𝑐 (5.5)

For a specific task 𝑗𝑚
𝑑𝑐 ∈ 𝐽𝑑𝑐 at the faulty location 𝑑𝑐 , the utility value of the task

operation profit of this task, 𝑈𝑃𝑅𝑂(𝑗𝑚
𝑑𝑐), is calculated as follows in Eq. 5.6.

 𝑈𝑃𝑅𝑂(𝑗𝑚
𝑑𝑐) =

𝑃𝑅𝑂(𝑗𝑚
𝑑𝑐)− 𝑚𝑖𝑛(𝑃𝑅𝑂(𝑗𝑑𝑐))

𝑚𝑎𝑥(𝑃𝑅𝑂(𝑗𝑑𝑐)) − 𝑚𝑖𝑛(𝑃𝑅𝑂(𝑗𝑑𝑐))
; 𝑗𝑑𝑐 ∈ 𝐽𝑑𝑐 (5.6)

In this strategy, one of the optimisation objectives is the task rescue utility. The task

rescue utility of a faulty data centre 𝑑𝑐, 𝑇𝑅𝑈(𝑑𝑐), can be calculated in Eq. 5.7, where 𝜗

is a variable parameter to judge the task rescue situation. If the task is rescued from the

faulty data centre, 𝜗 will be 1, otherwise 0.

 𝑇𝑅𝑈(𝑑𝑐) = ∑ 𝜗𝑗𝑚
𝑑𝑐 ∈ 𝐽𝑑𝑐 ∗ 𝑈(𝑗𝑚

𝑑𝑐) (5.7)

5.1.1.3 Replica selection method

The replica selection schema aims to guide the optimal replica-ready data centre

116

selection to access the required data replicas by evaluating the resource load at each

replica-ready data centre. This strategy adopts the replica selection method proposed in

Section 4.3 to find the optimal data access route for the task resubmission and migration

operations.

5.1.2 Utility-based fault tolerance (UBFT) strategy and algorithms

Put simply, the proposed utility-based fault tolerance (UBFT) strategy tries to rescue the

tasks from the faulty data centre and resubmit them to the backup replica-ready data

centre. The task rescue process not only considers the resource load of accessing backup

replicas but also strives to satisfy the deadline constraints. To achieve this goal, the

UBFT algorithm uses two functions, task resubmission function Resubmission() and

task migration function Migration(), to generate fault handling solutions under different

scenarios for each task at the faulty data centre.

The UBFT algorithm applies the utility-based ranking method to calculate the task

priority for the task resubmission or migration operations. The task utility should be

treated in different ways depending on the fault circumstances in different data centres.

The task with lower task utility has higher migration priority at the backup data centre

while the task with higher task utility has higher migration priority at the faulty data

centre. The proposed UBFT algorithm is shown in Algorithm 5.1.

Firstly, the tasks at the faulty data centre will be ranked in a descending order based on

their task utility and then add into rank list 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[] at Line 1. Then the fault handling

solution 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 will be worked out for each element in the 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[] by calling the

task resubmission function Resubmission() in Function 5.1 at Line 3. The input

parameter of the task resubmission function Resubmission() is the task in the 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[]

to be rescued. The 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 contains a set of data centre information including the task

resubmission destination 𝑑𝑐𝑟𝑒𝑠 and the task migration destination 𝑑𝑐𝑚𝑖𝑔. The 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡

117

will guide the fault handling processes for each task at the faulty data centre from Line

8 to Line 12 until all tasks in the 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[] are addressed. The time complexity of

Algorithm 5.1 is O(𝑛3).

Algorithm 5.1: UBFT Algorithm

Input: Resource situations at each data centre, 𝐽, task utility, fault location

Output: Fault handling solution

1. Quicksort 𝑗𝑑𝑐 in 𝐽𝑑𝑐 based on the task utility and add into 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[]

2. for 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣] in 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[], 𝑣 = 0, 𝑣 ≤ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[]) do

3. Do Function 5.1

4. Load 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 = {𝑑𝑐𝑟𝑒𝑠, 𝑑𝑐𝑚𝑖𝑔}

5. Do 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 {

6. Resubmit 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣] to 𝑑𝑐𝑟𝑒𝑠

7. Migrate 𝑚𝑜𝑣[𝑟] to 𝑑𝑐𝑚𝑖𝑔 }

8. 𝑣 + +

9. end for

10. End Algorithm 5.1

The task resubmission function is called at Line 3 in Algorithm 5.1. The task

resubmission function is shown in Function 5.1. When the task submission function is

called, the backup replica-ready data centres will be mapped to the input task at Line 4.

A comparison between the bandwidth consumption of the input task and the available

bandwidth of the backup replica-ready data centres is created to find out the optimal

task resubmission route from Line 2 to Line 22.

In case that all backup data centres do not have sufficient resource capacity to

accommodate a task rescued from the faulty data centre, the task migration function

Migration() in Function 5.2 will be initiated at Line 17 in Function 5.1. The task

migration function Migration() in Function 5.2 aims to migrate a current-running task

out of a replica-ready backup data centre to release some resources for accommodating

a task rescued from the faulty data centre. It is a one-stop nested function for addressing

118

the limited resource case, in order to avoid the task rescue failures as much as possible.

Function 5.1: Resubmission Function - Resubmission()

Input: Resource situations at each data centre, 𝐽, 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣]

Output: 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡

1. Initialization {

2. Empty 𝑟𝑒𝑠𝑑𝑒𝑠[]

3. Set 𝑆𝑖𝑧𝑒𝑜𝑓(𝑟𝑒𝑠𝑑𝑒𝑠[]) = 1 }

4. Map the replica-ready data centres to 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣] and add into 𝑟𝑟[]

5. for each element 𝑟𝑟[𝑢] in 𝑟𝑟[] do

6. Compare 𝐵𝐶(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣]) with 𝐴𝐵(𝑟𝑟[𝑢])

7. if 𝐵𝐶(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣]) ≤ 𝐴𝐵(𝑟𝑟[𝑢])

8. 𝐹𝑊(𝑟𝑟[𝑢])

9. if 𝐹𝑊(𝑟𝑟[𝑢]) > 𝐹𝑊(𝑟𝑒𝑠𝑑𝑒𝑠[])

10. Update 𝑟𝑟[𝑢] into 𝑟𝑒𝑠𝑑𝑒𝑠[]

11. Go to Line 19

12. else

13. Remain 𝑟𝑒𝑠𝑑𝑒𝑠[]

14. Go to Line 19

15. end if

16. else

17. Do Function 5.2

18. end if

19. Map 𝑟𝑒𝑠𝑑𝑒𝑠[] → 𝑑𝑐𝑟𝑒𝑠

20. Return {𝑑𝑐𝑟𝑒𝑠, 𝑛𝑢𝑙𝑙} → 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡

21. Empty 𝑟𝑟[]

22. end for

The task migration function Migration() in Function 5.2 contains a series of operations

to release an existing task out of a replica-ready backup data centre to accommodate the

task rescued from the faulty data centre. Firstly, Line 1 collects a set of current-running

tasks in 𝐽𝑟𝑟[𝑢] on 𝑟𝑟[𝑢]. A bandwidth utilisation comparison between the bandwidth

consumption of the input task and the sum of the bandwidth consumption of 𝑗𝑟𝑟[𝑢] and

119

the available bandwidth in its backup replica-ready data centres will be conducted at

Line 3. A new group of migratable tasks will be further created in the array 𝑚𝑜𝑣[] at

Line 5. A Quicksort algorithm will be applied on 𝑚𝑜𝑣[] to re-order the task in 𝑚𝑜𝑣[] in

an ascending order based on the task utility at Line 7. A comparison between the

bandwidth consumption of the migratable task in 𝑚𝑜𝑣[] and the available bandwidth of

its backup replica-ready data centres is conducted at Line 10 to identify the eligible

replica-ready data centres for releasing the migratable task in 𝑚𝑜𝑣[]. Then based on the

proposed replica selection method in Section 4.3, the optimal task resubmission route

for rescuing the task from the faulty data centre and the optimal task migration route for

the migratable task in 𝑟𝑟[𝑢] will be finalized from Line 11 to Line 26.

Function 5.2: Migration Function – Migration()

Input: Resource situations at each data centre, 𝑟𝑟[𝑢], 𝐽, 𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣], task utility

Output: 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡

1. Collect the set of current-running tasks 𝐽𝑟𝑟[𝑢] in 𝑟𝑟[𝑢]

2. for each 𝑗𝑟𝑟[𝑢] in 𝐽𝑟𝑟[𝑢] do

3. Compare 𝐵𝐶(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣]) with 𝐴𝐵(𝑟𝑟[𝑢]) + 𝐵𝐶(𝑗𝑟𝑟[𝑢])

4. if 𝐵𝐶(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣]) ≤ 𝐴𝐵(𝑟𝑟[𝑢]) + 𝐵𝐶(𝑗𝑟𝑟[𝑢]) and 𝑈(𝑗𝑟𝑟[𝑢]) < 𝑈(𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[𝑣])

5. Add 𝑗𝑟𝑟[𝑢] into 𝑚𝑜𝑣[]

6. end if

7. Quicksort 𝑚𝑜𝑣[] based on the task utility

8. for 𝑚𝑜𝑣[𝑟] in 𝑚𝑜𝑣[], 𝑟 = 0, 𝑟 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑚𝑜𝑣[]) do

9. Map each replica-ready data centre to 𝑚𝑜𝑣[𝑟] and add into 𝑚𝑖𝑔𝑟𝑟[]

10. Add 𝑚𝑖𝑔𝑟𝑟[] where 𝐵𝐶(𝑚𝑜𝑣[𝑟]) ≤ 𝐴𝐵(𝑚𝑖𝑔𝑟𝑟[]) into 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[]

11. if 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[] = 𝑛𝑢𝑙𝑙

12. Return {𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙}→ 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡

13. 𝑟 + +

14. else

15. for 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[𝑐] in 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[], 𝑐 = 0, 𝑐 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑒𝑙𝑖𝑔𝑚𝑖𝑔[]) do

16. 𝐹𝑊(𝑒𝑙𝑖𝑔𝑚𝑖𝑔[𝑐])

120

17. end for

18. Load the maximum 𝐹𝑊 value of 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[𝑤] in 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[]

19. Map 𝑒𝑙𝑖𝑔𝑚𝑖𝑔[𝑤] → 𝑑𝑐𝑚𝑖𝑔

20. Load 𝑟𝑟[𝑢] → 𝑑𝑐𝑟𝑒𝑠 and 𝑚𝑜𝑣[𝑟]

21. Go to Line 25

22. end if

23. end for

24. end for

25. Return {𝑑𝑐𝑟𝑒𝑠, 𝑑𝑐𝑚𝑖𝑔}→ 𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡

26. End Function 5.2

5.1.3 Simulation results

To evaluate the effectiveness and efficiency of the proposed UBFT strategy, three

simulations are performed on OMNeT++ 5.4.1. A cloud environment was implemented

including 5 data centres with 250 circuits of 100 Gbps optical-fibre network integrated

at each data centre site. The major parameters of each data centre are shown in Table

5.1. The following settings are applied in all simulations.

• To avoid the fluctuation of uncertain internodal communication delay and input

scheduling delay, both internodal communication delay and input scheduling

delay are set to 5ms.

• To avoid the fluctuation of the uncertain network latency between different users

and different data centres, a single user is applied to assign multiple tasks to

different data centres. Therefore, the network latency can be regarded as stable

between the user and different data centres, as shown in Table 5.1.

• A fault is set to occur at 10ms system running time in 𝑑𝑐2, which leads to the

closing down of 𝑑𝑐2.

• The task deadline and the task execution duration are randomly set in the range

of 0ms to 1000ms.

• The required data size of each task is randomly selected in the range of 0GB to

121

5GB.

• Each data has 3 replicas that are randomly placed in 5 data centres, one for

primary accessed replica and two for backup replicas.

Table 5.1 The major parameters of each data centre

Data Centre Maximum

Bandwidth (Gbps)

Network

Latency(ms)

Error Rates

𝑑𝑐1 25000 20 0.1%

𝑑𝑐2 25000 60 0.2%

𝑑𝑐3 25000 40 0.5%

𝑑𝑐4 25000 60 0.1%

𝑑𝑐5 25000 100 0.4%

The proposed UBFT strategy is compared with the typical HDFS robustness strategy

applied in the HDFS system, the RR strategy [42] applied in SQL server 2016, and the

JSQ strategy applied in Cisco Local Director, IBM Network Dispatcher, and Microsoft

SharePoint [28][33][111].

The cloud resiliency of these three strategies is evaluated in terms of task resilience

ratio, task rescue utility, and task operation profit. The utility weights are changed in

different simulations under the equivalent scenario, the urgency highly-weighted

scenario, and the profit highly-weighted scenario to test the effectiveness of the

proposed UBFT strategy. To simplify the problem, the proposed UBFT strategy, the

typical HDFS robustness strategy, the RR strategy and the JSQ strategy are assumed to

implement under a single-fault scenario in all simulations.

5.1.4.1 Simulation 1 – Equivalent utility weights

In Simulation 1, both the utility weights of the task urgency 𝑊𝑈𝑅 and the task operation

profit 𝑊𝑃𝑅𝑂 are set to 0.5 for evaluating an equivalent utility weight scenario between

122

the task urgency and the task operation profit. The simulation 1 results of the task

resilience ratio, the task rescue utility, and the task operation profit are shown in Figure

5.1, Figure 5.2, and Figure 5.3, respectively.

Figure 5.1 The TRR comparison of Simulation 1

In Figure 5.1, the proposed UBFT strategy has better task resilience ratio than the other

three comparative strategies when the resource is sufficient to support the task

execution. In contrast, when the resource becomes more and more limited, the proposed

UBFT strategy aims to migrate the lower-utility tasks at the backup data centre to

release resources for the higher-utility tasks to be rescued from the faulty data centre.

By adopting this operation under limited resource cases, some lower-utility tasks might

be sacrificed. This leads to a decrease in cloud resiliency when the resource becomes

insufficient. For example, as shown in Figure 5.1, the proposed UBFT strategy has

better TRR when the number of tasks is equal to or less than 340. However, the

proposed UBFT strategy encounters a TRR decrease when the number of tasks is more

123

than 340.

Figure 5.2 The task rescue utility comparison of Simulation 1

Figure 5.3 The task operation profit comparison of Simulation 1

In Figure 5.2 and Figure 5.3, it is evident that the proposed UBFT strategy is better than

the other three comparative strategies in terms of task rescue utility and task operation

124

profit. When the number of tasks is equal to or less than 340 tasks, the proposed UBFT

strategy achieves higher task rescue utility by a maximum of 11.89% increase and

higher task operation profit by a maximum of 9.46% increase than the other three

comparative strategies. When the number of tasks is more than 340, the proposed UBFT

strategy still achieves higher task rescue utility by a maximum of 11.04% increase and

higher task operation profit by a maximum of 5.09% increase than the other three

comparative strategies.

5.1.4.2 Simulation 2 – Utility weights with urgency highly-weighted

In Simulation 2, the utility weight of the task urgency 𝑊𝑈𝑅 is increased to 0.67 and

decrease the utility weight of the task operation profit 𝑊𝑃𝑅𝑂 to 0.33 for evaluating the

urgency highly-weighted scenario between the task urgency and the task operation

profit. The simulation 2 results of the task resilience ratio, the task rescue utility, and the

task operation profit are shown in Figure 5.4, Figure 5.5, and Figure 5.6, respectively.

Figure 5.4 The TRR comparison of Simulation 2

125

In Figure 5.4, the proposed UBFT strategy remains higher TRR in comparison with the

other three comparative strategies when the number of tasks is equal to or less than 340.

However, the proposed UBFT strategy still encounters a mild degree of TRR decrease

due to the same reason in Simulation 1 when the number of tasks is more than 340.

Figure 5.5 The task rescue utility comparison of Simulation 2

In Figure 5.5 and Figure 5.6, the proposed UBFT strategy remains the same trend as in

Simulation 1. When the number of tasks is equal to or less than 340 tasks, the proposed

UBFT strategy achieves higher task rescue utility by a maximum of 11.49% task rescue

utility increase and a maximum of 9.46% task operation profit increase than the other

three comparative strategies. When the number of tasks is more than 340, the proposed

UBFT strategy still achieves higher task rescue utility by a maximum of 8.29% increase

and higher task operation profit by a maximum of 4.29% increase than the other three

comparative strategies.

126

Figure 5.6 The task operation profit comparison of Simulation 2

5.1.4.3 Simulation 3 – Utility weights with profit highly-weighted

In Simulation 3, the weight of the task urgency 𝑊𝑈𝑅 is decreased to 0.33 and increase

the weight of the task operation profit 𝑊𝑃𝑅𝑂 to 0.67 for evaluating the profit highly-

weighted scenario between the task urgency and the task operation profit. The

Simulation 3 results are shown in Figure 5.7, Figure 5.8, and Figure 5.9.

In Figure 5.7, the proposed UBFT strategy still keeps higher TRR in comparison with

the other three comparative strategies when the number of tasks is equal to or less than

340. However, the proposed UBFT strategy again experiences a TRR decrease due to

the same reason in Simulation 1 when the number of tasks is more than 340.

In Figure 5.8 and Figure 5.9, the proposed UBFT strategy still maintains higher task

rescue utility and higher task operation profit in comparison with the other three

comparative strategies. The proposed UBFT strategy still achieves a maximum of

9.36% task rescue utility increase and a maximum of 8.84% task operation profit

127

increase than the other three comparative strategies.

Figure 5.7 The TRR comparison of Simulation 3

Figure 5.8 The task rescue utility comparison of Simulation 3

128

Figure 5.9 The task operation profit comparison of Simulation 3

5.2 Timeline-Oriented Fault Tolerance for Independent Tasks

The fault tolerance strategy is a significant way to enable the capability of a cloud data

centre to keep performing its current-running and intended tasks in the presence of

faults as the last strategy did in Section 5.1. The task resubmission and the task

migration are two of the reactive fault tolerance techniques which are applied in Section

5.1. The core method of these two reactive fault tolerance techniques is the task

scheduling method. Particularly, the HEFT series strategies are one of the most

significant series of task scheduling strategies published from 2002 to date. Although

the HEFT series strategies were proposed over the past decade, selecting the first

available server might not be the optimal solution when handling faults [11][94][96]. It

may cause unnecessary deadline contention and resource contention between the task

with high priority and the task with low priority. As a result, the cloud resiliency might

not be optimal with many low-priority tasks unsaved. Apart from that, selecting the first

129

available server may cause a temporary and dramatic resource load increase at some

specific time points on the timeline, which leads to the performance bottleneck in the

cloud data centres.

Therefore, a timeline-oriented reactive fault tolerance (TOFT) strategy for independent

task rescue is proposed to achieve better cloud resiliency and load balancing

performance. The proposed TOFT strategy further considers the timeline scenarios at

each cloud data centre upon the proposed strategy in Section 5.1. The following

questions are addressed in this TOFT fault tolerance strategy.

• How to handle the task rescue priority to ensure a better cloud resiliency?

• How to select the optimal eligible time slot for the rescued tasks to avoid the

resource wastefulness and improve the load balancing performance?

• How to further improve the cloud resiliency when some tasks cannot be rescued

directly?

A two-dimensional task parsing system is deployed to identify the eligible time slots for

the independent tasks in the cloud environment. Then a three-dimensional priority

assignment system is developed to prioritise the independent tasks in the cloud

environment. To handle different cases, two sub-algorithms are applied in the proposed

dynamic TOFT task rescheduling algorithm. The simulation results show that the

proposed TOFT strategy has better cloud resiliency and load balancing performance

than the HEFT series strategies. Besides, the proposed strategy can also fit both the

single-fault scenario and the multi-fault scenario when handling faults.

5.2.1 System modelling

In general, each task 𝑗 ∈ 𝐽 is associated with 𝑅(𝑗), 𝐷𝐸𝐴𝐷(𝑗) and 𝑃𝑅𝑂(𝑗), which present

the resource requirement, the task deadline and the task operation profit of the task 𝑗,

respectively. Each task 𝑗 has a fixed task execution duration 𝐿𝑒𝑛(𝑗). The task urgency

130

value of the task 𝑗, 𝑈𝑅(𝑗), refers to the time buffer between current time point and its

deadline 𝐷𝐸𝐴𝐷(𝑗). Same to Section 5.1, the task deadline is defined as a specific point

in time without the consideration of the task with an infinite deadline. Only the task

with a definite deadline need to be rescued, as tasks with infinite deadline can be

rescheduled when the faulty data centre is fully recovered from the fault. In this

research, a task that is completed beyond its deadline is meaningless. All tasks in this

research are independent, which means there are no task dependencies among the tasks.

Additionally, like in other common strategies [20], this strategy assumes that all tasks

are required to be restarted.

In this research, cloud resiliency is one of the optimisation objectives. The cloud

resiliency for a faulty data centre can be calculated as same as the method used in

Section 5.1 in terms of TRR.

5.2.2 Task parsing system

A two-dimensional task parsing system is developed to identify the eligible time slots

for the tasks in the cloud environment. Firstly, a timeline exists at each data centre. The

timeline range cannot be infinite because the tasks with the infinite deadline are not

considered in this strategy. Therefore, the timeline range refers to [𝑇0, 𝑇𝐿𝑎𝑡𝑒], where 𝑇0

denotes the current time point and 𝑇𝐿𝑎𝑡𝑒 denotes the latest deadline time point of the

tasks in 𝐽.

The time slot is defined as a series of continuous time points. The available resource at

each time point is the most significant factor for the further reception of the rescheduled

tasks from the faulty data centre. Therefore, the timeline is parsed at each data centre

site in a two-dimensional vector space. The 𝑥 axis is the discrete time points ranged

from [𝑇0, 𝑇𝐿𝑎𝑡𝑒] and the 𝑦 axis is the available resource. Thus, the line in this space

represents the available resource over time. In this strategy, it is called a resource line.

131

Each task can be parsed into this two-dimensional vector space as a rectangle. The

height of the rectangle represents the resource requirement of the task and the length of

the rectangle corresponds to the task execution duration. The rectangle will horizontally

move from 𝑇0 to 𝑇𝐿𝑎𝑡𝑒. An eligible time slot for a task starts from a time point when the

rectangle starts to stand completely below the resource line and ends at a time point

when the rectangle starts to stand above the resource line. A function 𝐶𝑜𝑢𝑛𝑡(𝐸𝑇(𝑗𝑑𝑐))

is deployed to count the number of eligible time slots of the task 𝑗 at the data centre 𝑑𝑐.

Figure 5.10 The example of the eligible time slot identification

An example of the proposed task parsing system is shown in Figure 5.10, if 𝑇𝐿𝑎𝑡𝑒 is 𝑇7

and the rest available resource values at each time point from 𝑇0 to 𝑇7 are {100, 150,

200, 350, 350, 350, 150, 150} resource units and if the task needs 250 resource units,

then the eligible time slot identification processes will be done as shown in Figure 5.10.

The available resource from 𝑇0 to 𝑇2 cannot meet the resource requirement of this task

rectangle. When the task rectangle reaches 𝑇3 and 𝑇4 , the task rectangle completely

stands under the resource line (red line in Figure 5.10). Therefore, the range from 𝑇3 to

𝑇5 and 𝑇4 to 𝑇6 will be recognized first as eligible time slot because the task rectangle

132

width is 2 time unit. As 𝑇3 to 𝑇6 are continuous time points, thus a final range of this

eligible time slot can be identified between 𝑇3 and 𝑇6, as dash area shown.

5.2.3 Timeline-oriented fault tolerance (TOFT) strategy

The proposed timeline-oriented fault tolerance (TOFT) strategy has three phases, task

prioritising phase, replica selection phase, and eligible time slot selection phase. It is an

independent task rescheduling strategy for a bounded number of data centres when

faults occur. In the case of a single-fault scenario, the proposed TOFT strategy can be

applied by the faulty data centre in one time to rescue the tasks at the faulty data centre.

While in the case of multi-fault scenarios, the proposed TOFT strategy should be

separately applied in each faulty data centre.

• Task prioritising phase

This phase distributes the task rescue priority to the task at the faulty data centre. The

task rescue priority list will preserve an ascending processing order based on the task

rescue priority until no more tasks can be allocated. Tie-breaking is done randomly. In

Section 5.1, a utility-based task prioritising method was proposed to prioritise the tasks

by only considering the utility difference among tasks. Differently, in this TOFT

strategy, a three-dimensional evaluation method is proposed to evaluate two significant

task attributes used in Section 5.1 and the number of eligible time slots together for a

comprehensive evaluation of the task priority from different domains.

A three-dimensional priority assignment system is developed to assign the task rescue

priority by jointly taking the task urgency, the task operation profit, and the number of

eligible time slots of the task into account. The task 𝑗 can be parsed into a cuboid in a

three-dimensional vector space as shown in Figure 5.11, where the cuboid length 𝑎

denotes the task urgency value 𝑈𝑅(𝑗) on the 𝑦 axis, the cuboid height 𝑐 represents the

reciprocal of the task operation profit,
1

𝑃𝑅𝑂(𝑗)
, on the 𝑧 axis and the cuboid width 𝑏

133

denotes the number of eligible time slots of the task 𝑗 on the 𝑥 axis.

Figure 5.11 Task prioritising cuboid

According to the parsing method above, the volumes among cuboids will be compared.

The smaller volume the cuboid has, the more urgent, the more profitable, and the more

processing difficulty the task has. Hence, the cuboid with the smaller volume has a

higher priority. The task allocation priority list is created based on the volume value of

each task cuboid.

• Replica selection phase

The proposed TOFT strategy has a performance-oriented replica selection policy that

adopts the replica selection method proposed in Section 4.3 to select the optimal replica

to access. Tie-breaking is done randomly.

• Eligible time slot selection phase

The proposed eligible time slot selection method aims to select the optimal eligible time

slot for the received tasks on the timeline at each working-proper data centre. The

scenario-based allocation is applied for the normal cases (Algorithm 5.3) and the

134

limited resource or the insufficient time slot length cases (Algorithm 5.4), respectively.

Tie-breaking is done randomly.

Both the time slot length similarity and the corresponding time slot resource situations

are considered in this research to accommodate the task at its optimal eligible time slot.

The eligible time slot with the more similar time slot length similarity to the task

execution duration is more suitable to accommodate the task with less wastefulness in

the time slot space. The higher the minimum available resource in the eligible time slot

achieves the less possibility of the load spike problem.

Let 𝐸𝑇(𝑗𝑑𝑐) denotes a set of eligible time slots for the task 𝑗 at the data centre 𝑑𝑐. Then

𝑒𝑡(𝑗𝑑𝑐)𝑝 ∈ 𝐸𝑇(𝑗𝑑𝑐) is the 𝑝th eligible time slot in 𝐸𝑇(𝑗𝑑𝑐). Let 𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝) denotes

the time slot length similarity of 𝑒𝑡(𝑗𝑑𝑐)𝑝, where 𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝) equals to 𝐿𝑒𝑛(𝑒𝑡(𝑗𝑑𝑐)𝑝)

- 𝐿𝑒𝑛(𝑗𝑑𝑐) . Let 𝑀𝑅(𝑒𝑡(𝑗𝑑𝑐)𝑝) denotes the minimum available resource value of

𝑒𝑡(𝑗𝑑𝑐)𝑝. Then the Min-Max normalisation method is applied in the timeline allocation

method to identify the optimal eligible time slot by obtaining the maximum ranking

value from Eq. 5.8, where 𝑊𝐿𝑆 and 𝑊𝑀𝑅 denote the weight of the time slot length

similarity and the minimum available resource, respectively. The sum of 𝑊𝐿𝑆 and 𝑊𝑀𝑅

is 1. The optimal eligible time slot of a task 𝑗 will be marked as 𝑂𝐸(𝑗).

{

 𝑟𝑎𝑛𝑘 (𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝)) =

𝑚𝑎𝑥(𝐿𝑆(𝐸𝑇(𝑗𝑑𝑐)))−𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝)

𝑚𝑎𝑥(𝐿𝑆(𝐸𝑇(𝑗𝑑𝑐)))−𝑚𝑖𝑛(𝐿𝑆(𝐸𝑇(𝑗𝑑𝑐)))

𝑟𝑎𝑛𝑘 (𝑀𝑅(𝑒𝑡(𝑗𝑑𝑐)𝑝)) =
𝑀𝑅(𝑒𝑡(𝑗𝑑𝑐)𝑝)− 𝑚𝑖𝑛(𝑀𝑅(𝐸𝑇(𝑗

𝑑𝑐)))

𝑚𝑎𝑥(𝑀𝑅(𝐸𝑇(𝑗𝑑𝑐)))−𝑚𝑖𝑛(𝑀𝑅(𝐸𝑇(𝑗𝑑𝑐)))

𝑟𝑎𝑛𝑘(𝑒𝑡(𝑗𝑑𝑐)𝑝) = 𝑊𝐿𝑆 ∗ 𝑟𝑎𝑛𝑘 (𝐿𝑆(𝑒𝑡(𝑗
𝑑𝑐)𝑝)) +𝑊𝑀𝑅 ∗ 𝑟𝑎𝑛𝑘 (𝑀𝑅(𝑒𝑡(𝑗

𝑑𝑐)𝑝))

(5.8)

To implement the three phases discussed above, a dynamic task rescheduling algorithm

is proposed in Algorithm 5.2. Algorithm 5.2 firstly sets the timeline at each data centre

in the cloud environment at Line 2 and initialises the task parsing vector space and the

priority assignment system from Line 3 to Line 4. Then the tasks at the faulty data

135

centre are collected into the faulty task list 𝑓𝑗[] at Line 5. The tasks in𝑓𝑗[] will be

prioritised at Line 6. The faulty task list 𝑓𝑗[] will be sorted by the QuickSort algorithm

based on the task priority of each task in 𝑓𝑗[] at Line 7. Then the task rescheduling

solution will be worked out for each task in the faulty task list 𝑓𝑗[] from Line 8 to Line

23. The optimal replica-ready data centre is selected by following the proposed replica

selection strategy in Section 4.3 at Line 9. Then the task will be scheduled to the

optimal replica-ready data centre at Line 10. The task will be parsed to identify the

eligible time slots on the timeline of the optimal replica-ready data centre at Line 11.

The number of the eligible time slots will be counted at Line 12.

Two different scenarios are treated in Algorithm 5.2. Algorithm 5.3 is initiated at Line

14 to handle the case under normal circumstances if the number of eligible time slots is

not equal to 0 at Line 13. Then the fault handling solution will be implemented at Line

15 for the normal circumstances. Algorithm 5.4 initiated at Line 17 to handle the

limited resource or the insufficient time slot length cases if the number of eligible time

slots is equal to 0 at Line 16. Then the fault handling solution will be implemented from

Line 18 to Line 21 for the limited resource or the insufficient time slot length cases.

The time complexity of Algorithm 5.2 is O(𝑛).

Algorithm 5.2: Dynamic Task Rescheduling Algorithm

Input: 𝐷𝐶, 𝐽, fault location

Output: Task rescheduling solution

1. Initialization {

2. Set timeline

3. Create the two dimensional task parsing vector space

4. Create the three dimensional priority assignment system }

5. Load the tasks at the fault location and add into 𝑓𝑗[]

6. Prioritise the tasks in 𝑓𝑗[]

7. QuickSort 𝑓𝑗[] based on the task priority

136

8. for 𝑓𝑗[𝑣] in 𝑓𝑗[], 𝑣 = 0, 𝑣 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑓𝑗[]) - 1 do

9. Select the optimal replica-ready data centre in 𝐷𝐶 and add into 𝑟𝑟[]

10. Schedule 𝑓𝑗[𝑣] to 𝑟𝑟[]

11. Parse 𝑓𝑗[𝑣] and the timeline at 𝑟𝑟[]

12. 𝐶𝑜𝑢𝑛𝑡(𝐸𝑇(𝑓𝑗[𝑣])𝑟𝑟[])

13. if 𝐶𝑜𝑢𝑛𝑡(𝐸𝑇(𝑓𝑗[𝑣])𝑟𝑟[]) > 0

14. Do Algorithm 5.3

15. Move 𝑓𝑗[𝑣] → 𝑂𝐸(𝑓𝑗[𝑣])

16. else

17. Do Algorithm 5.4

18. Load “Optimal Migratable Task” and “Migration Destination”

19. Migrate “Optimal Migratable Task” → 𝑇𝐵𝑒𝑔𝑖𝑛 of “Migration Destination”

20. Record the original location of “Optimal Migratable Task” as 𝑂𝐸(𝑓𝑗[𝑣])

21. Move 𝑓𝑗[𝑣] → 𝑂𝐸(𝑓𝑗[𝑣])

22. end if

23. end for

Algorithm 5.3: Optimal Eligible Time Slot Selection

Input: 𝑓𝑗[𝑣], 𝑟𝑟[]

Output: Optimal eligible time slot 𝑂𝐸(𝑓𝑗[𝑣]])

1. Insert the task 𝑓𝑗[𝑣] from Line 14 in Algorithm 5.2

2. Calculate 𝑟𝑎𝑛𝑘(𝐸𝑇(𝑓𝑗[𝑣])𝑟𝑟[]) under Eq. 5.8

3. Generate 𝑂𝐸(𝑓𝑗[𝑣)

4. Load the beginning time point 𝑇𝐵𝑒𝑔𝑖𝑛 of 𝑂𝐸(𝑓𝑗[𝑣])

5. Allocate 𝑓𝑗[𝑣] at 𝑇𝐵𝑒𝑔𝑖𝑛

6. Update resource line for 𝑂𝐸(𝑓𝑗[𝑣])

7. 𝑣 + + at Line 8 in Algorithm 5.2

Algorithm 5.3 is used to generate the optimal eligible time slot for the input task from

Algorithm 5.2. In Algorithm 5.3, the task 𝑓𝑗[𝑣] is inserted from Line 14 in Algorithm

5.2 at Line 1. Then the optimal eligible time slot is identified for the inserted task 𝑓𝑗[𝑣]

from Line 2 to Line 7. The ranking value for the eligible time slots will be calculated

for the inserted task under Eq. 5.8 at Line 2. After that, the optimal eligible time slot for

137

the inserted task will be generated at Line 3. The optimal eligible time slot will be

loaded to find its beginning time point 𝑇𝐵𝑒𝑔𝑖𝑛 at Line 4. The inserted task should be

allocated to the beginning time point of the optimal eligible time slot at Line 5. The

resource consumption of the inserted task should be updated to the resource line in the

task parsing vector space at Line 6. Finally, the next task in 𝑓𝑗[] will be addressed by

increasing one order number at Line 7. In this strategy, the rescheduled task is

commonly allocated at the first time point (the beginning time point) in the optimal

eligible time slot because the “as early as possible” principle is insisted for all task

completeness. For tie-breaking eligible time slots, the task is placed at the earliest

available time slot as well. The time complexity of Algorithm 5.3 is O(1).

By applying Algorithm 5.3, the proposed TOFT strategy can rescue the tasks that

already have eligible time slots. The tasks which are left unsaved are known as residual

tasks because of the rescue failures due to the insufficient resource or the insufficient

number of eligible time slots case. A residual task allocation is developed in Algorithm

5.4 by using the one-stop task migration technique to make a concession mechanism for

better cloud resiliency.

In Algorithm 5.4, the current rest time slots are identified in the optimal data centre in

𝑟𝑟[] at Line 1, which meets the resource requirement of the input task 𝑓𝑗[𝑣]. Those

identified time slots will be added to the probable eligible time slot list 𝑝𝑡𝑠[]. The

capacity of 𝑝𝑡𝑠[] will be checked at Line 2. If 𝑝𝑡𝑠[] is empty, the optimal data centre

will be re-selected from Line 3 to Line 5. Otherwise, the current-running tasks in 𝑟𝑟[]

will be collected and added into the current-running task list 𝑐𝑟𝑗[] at Line 7. Each task

in 𝑐𝑟𝑗[] will be processed to find the probable-release tasks by comparing between the

resource requirement of the input task 𝑓𝑗[𝑣] and the task in 𝑐𝑟𝑗[] at Line 9. Then the

probable-release tasks will be identified and collected into the probable-release task list

138

𝑝𝑟𝑗[] at Line 11. After that, the capacity of 𝑝𝑟𝑗[] will be checked at Line 16. If 𝑝𝑟𝑗[] is

empty, the input task rescue will be failed at Line 17 and the order number at Line 8 in

Algorithm 5.2 will be increased one. Otherwise, the element in 𝑝𝑟𝑗[] which are discrete

to 𝑝𝑡𝑠[] will be removed at Line 19.

After the removal operations at Line 19, the input task rescue will be failed at Line 21 if

𝑝𝑟𝑗[] is empty and the order number at Line 8 in Algorithm 5.2 will be increased one.

Otherwise, the probable release tasks in 𝑝𝑟𝑗[] will be processed at Line 26. The

algorithm will try to release the probable-release task in 𝑝𝑟𝑗[] at Line 27.

Then the after-release task completeness to this probable-release task in 𝑝𝑟𝑗[] will be

confirmed at Line 28. If the probable-release task in 𝑝𝑟𝑗[] can be completed in time

after the release, the after-release time slot length will be evaluated at Line 29 for

further testing its feasibility to accommodate the input task 𝑓𝑗[𝑣] at Line 30. If the

after-release time slot length is feasible to accommodate the input task 𝑓𝑗[𝑣] , the

probable-release task in 𝑝𝑟𝑗[] will be added into the migratable task list 𝑚𝑖𝑔[] at Line

32. Otherwise, the order number of 𝑝𝑟𝑗[] will be increased one at Line 34. If the

probable-release task in 𝑝𝑟𝑗[] cannot be completed in time after the release, the order

number in 𝑝𝑟𝑗[] will be increased one at Line 37.

The migratable task list 𝑚𝑖𝑔[] will be sorted by the QuickSort algorithm based on the

task execution duration at Line 40. Then the migratable task list 𝑚𝑜𝑣[] will start to be

processed from Line 41 to Line 54. An alternative eligible time slot will be identified

for the current processing task in 𝑚𝑜𝑣[] at Line 42. If an alternative eligible time slot

can be founded, then the current-processing task in𝑚𝑜𝑣[] will be labelled as “Optimal

Migratable Task” and this alternative eligible time slot will be labelled as “Migration

Destination” at Line 44 and Line 45, respectively. Then the “Optimal Migratable Task”

and the “Migration Destination” will be returned to the output at Line 46 and the order

139

number at Line 8 in Algorithm 5.2 will increase one. An alternative eligible time slot

cannot be identified for the current-processing task in 𝑚𝑜𝑣[] , the order number in

𝑚𝑜𝑣[] will increase one to test the next element in 𝑚𝑜𝑣[] at Line 49. If the bottom of

𝑚𝑜𝑣[] is reached, the input task rescue will be failed at Line 51 and the order number at

Line 8 in Algorithm 5.2 will increase one. The time complexity of Algorithm 5.4 is

O(𝑛).

Algorithm 5.4: Residual Task Allocation

Input: 𝑓𝑗[𝑣], 𝑟𝑟[]

Output: “Optimal Migratable Task” and “Migration Destination”

1. Identify the current rest time slots in 𝑟𝑟[] which meets 𝑅(𝑓𝑗[𝑣]) and add into 𝑝𝑡𝑠[]

2. if 𝑝𝑡𝑠[] = 𝑁𝑈𝐿𝐿

3. Remove 𝑟𝑟[] from 𝐷𝐶

4. Empty 𝑟𝑟[]

5. Back to Line 9 in Algorithm 5.2

6. else

7. Collect the current-running tasks in 𝑟𝑟[] and add into 𝑐𝑟𝑗[]

8. for each 𝑐𝑟𝑗[𝑤] in 𝑐𝑟𝑗[], 𝑤 = 0, 𝑤 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑐𝑟𝑗[]) − 1] do

9. Compare 𝑅(𝑓𝑗[𝑣]) with 𝑅(𝑐𝑟𝑗[𝑤])

10. if 𝑅(𝑐𝑟𝑗[𝑤]) > 𝑅(𝑓𝑗[𝑣])

11. Add 𝑐𝑟𝑗[𝑤] into 𝑝𝑟𝑗[]

12. else

13. 𝑤 ++

14. end if

15. end for

16. if 𝑝𝑟𝑗[] = 𝑁𝑈𝐿𝐿

17. 𝑣 + + at Line 8 in Algorithm 5.2

18. else

19. Remove the element in 𝑝𝑟𝑗[] which are discrete to 𝑝𝑡𝑠[]

20. if 𝑝𝑟𝑗[] = 𝑁𝑈𝐿𝐿

21. 𝑣 + + at Line 8 in Algorithm 5.2

22. else

140

23. Go to Line 26

24. end if

25. end if

26. for 𝑝𝑟𝑗[𝑐] in 𝑝𝑟𝑗[], 𝑐 = 0, 𝑐 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑝𝑟𝑗[]) − 1] do

27. Try to release 𝑝𝑟𝑗[𝑐]

28. Evaluate after-release task completeness to 𝑝𝑟𝑗[𝑐]

29. if Line 28 = 𝑇𝑟𝑢𝑒

29. Evaluate the after-release time slot length

30. Test the after-release time slot length to accommodate 𝑓𝑗[𝑣]

31. if Line 30 = 𝑇𝑅𝑈𝐸

32. Add 𝑝𝑟𝑗[𝑐] into 𝑚𝑜𝑣[]

33. else

34. 𝑐 + +

35. end if

36. else

37. 𝑐 + +

38. end if

39. end for

40. QuickSort 𝑚𝑜𝑣[] based on the task execution duration

41. for 𝑚𝑜𝑣[𝑠] in 𝑚𝑜𝑣[], 𝑠 = 0, 𝑠 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑚𝑜𝑣[]) − 1] do

42. Find an alternative eligible time slot to 𝑚𝑜𝑣[𝑠]

43. if Line 42 = 𝑇𝑅𝑈𝐸

44. Label 𝑚𝑜𝑣[𝑠] as “Optimal Migratable Task”

45. Label the alternative eligible time slot as “Migration Destination”

46. Return “Optimal Migratable Task” and “Migration Destination”

47. 𝑣 + + at Line 8 in Algorithm 5.2

48. else

49. 𝑠 + +

50. if the bottom of 𝑚𝑜𝑣[] is reached

51. 𝑣 + + at Line 8 in Algorithm 5.2

52. end if

53. end if

54. end for

141

55. end if

56. End Algorithm 5.4

5.2.4 Simulation results

To evaluate the performance of the proposed strategy, three simulations are performed

on OMNeT++ 5.4.1. The following assumptions are made in the simulations:

• Traditional three-replicas strategy is deployed. The replica placement policy is

to put one replica on the local data centre, another two replicas are placed into

two different remote data centres.

• The latency among data centres is insignificant.

• All data centres are interconnected. The data can be freely exchanged among

data centres.

• Bandwidth is set as the consumed resource.

• 𝑊𝐿𝑆 and 𝑊𝑀𝑅 are set to 0.5 to simplify the problem.

Three types of real-world workflows are implemented in the simulations, such as

Montage scientific workflow, LIGO Inspiral Analysis workflow, and SIPHT program.

Each scientific workflow instance is compressed into a task package as an independent

task. The details of these workflows are adjusted and referenced from [10].

The cloud resiliency is measured in all three simulations and the resource load situation

is tested specifically in Simulation 2. The performance of the proposed TOFT strategy is

compared to the average performance of the HEFT series strategies.

5.2.4.1 Simulation 1 – Multiple types of tasks with different deadlines

A cloud environment of 4 data centres with 6 circuits of 100 Gbps optical-fibre network

integrated at each data centre site is set up in Simulation 1. The maximum bandwidth at

each data centre is 600 Gbps. The disaster occurs at 𝑇0 in the data centre 𝑑𝑐1.

In Simulation 1, the task input rule is set as follows. 200 tasks are input per input round.

• A random number of two types of tasks out of a total of 200 tasks is input per

142

input round when the resource is sufficient.

• Only feasible input combinations can be input per input round to the cloud

environment when the resource is insufficient.

The result of the cloud resiliency in Simulation 1 is shown in Figure 5.12. It is evident

that the proposed TOFT strategy has better cloud resiliency than the HEFT series

strategies. As the number of tasks increases from 400 to 1400, the proposed TOFT

strategy continues to rescue 100% of the faulty tasks. The HEFT series strategies fail to

rescue 100% faulty tasks when the number of tasks exceeds 600. The cloud resiliency of

the proposed TOFT strategy drops to 74.67% at 1600 tasks due to resource limitations

and insufficient eligible time slots. However, the proposed TOFT strategy still remains

greater cloud resiliency than the HEFT series strategies at 1600 tasks.

Figure 5.12 The TRR result of Simulation 1

5.2.4.2 Simulation 2 – Expanded cloud scale and load testing

In Simulation 2, not only the cloud resiliency but also the load balancing performance

are evaluated under an expanded cloud scale. Normally, the great load balancing

performance helps the cloud service providers avoid traffic spikes and degraded

143

performance. A cloud environment of 4 data centres with 60 circuits of 100 Gbps

optical-fibre network integrated at each data centre is developed in Simulation 2. The

maximum bandwidth at each data centre is 6000 Gbps. The disaster occurs at 𝑇0 in the

data centre 𝑑𝑐1.

In Simulation 2, the task input rule is set as follows. 1000 tasks are input per input

round.

• A random number of random types of tasks out of a total of 1000 tasks is input

per input round when the resource is sufficient.

• Only feasible input combinations can be input per input round to the cloud

environment when the resource is insufficient.

Figure 5.13 The TRR result of Simulation 2

The result of the cloud resiliency in Simulation 2 is shown in Figure 5.13. It is also

evident that the proposed TOFT strategy has better cloud resiliency than the HEFT

series strategies when the cloud scale expands. As the number of tasks increases from

9000 to 14000, the proposed TOFT strategy continues to keep 100% cloud resiliency.

144

The HEFT series strategies fail to rescue all tasks when the number of tasks exceeds

9000. The cloud resiliency of the proposed TOFT strategy drops to 51.03% at 15000

tasks because of the same reason in Simulation 1. However, the proposed TOFT

strategy still keeps higher cloud resiliency than that of the HEFT series strategies at

15000 tasks.

In Simulation 2, the load situations are also tested at each time point for all proper-

working data centres in the simulation environment. The resource load situations are

shown in Figure 5.14, Figure 5.15, and Figure 5.16.

Figure 5.14 Resource load in 𝑑𝑐2

The HEFT series strategies remain a peak load between 𝑇0 and 𝑇2500 in 𝑑𝑐2 and 𝑑𝑐4,

and then have a sharp load decrease. They leave a long-time idle load after 𝑇2500 in 𝑑𝑐2

and 𝑑𝑐4 and make a crowd load before that time point.

However, the proposed TOFT strategy significantly reduces the load before 𝑇2500 in 𝑑𝑐2

and 𝑑𝑐4, and balances the load to the suitable time points at all three proper-working

145

data centres. Although the short-time peak load still exists, the proposed TOFT strategy

is clearly better than the HEFT series strategies in terms of load balancing.

Figure 5.15 Resource load in 𝑑𝑐3

Figure 5.16 Resource load in 𝑑𝑐4

146

5.2.4.3 Simulation 3 – Multi-fault scenario

In Simulation 3, the multi-fault scenario is tested to evaluate the adaptability of the

proposed TOFT strategy because the faults cannot be predicted and have high

randomness. The multi-fault scenario testing is necessary and indispensable when

evaluating the effectiveness and adaptability of the fault tolerance strategies [103]. In

Simulation 3, multiple faults are set to generate at random time points to test the

adaptability of the proposed TOFT strategy. As a result of the random fault occurrence,

the first disaster occurs at 𝑇0 in 𝑑𝑐1 and another fault occurs at 𝑇1000 in 𝑑𝑐4 . The

number of tasks is fixed at 1000 and the cloud resiliency is evaluated with the same

cloud environment in Simulation 1.

Figure 5.17 The cloud resiliency result of Simulation 3

The result of the cloud resiliency in Simulation 3 is shown in Figure 5.17. It is evident

that the proposed TOFT strategy still has better cloud resiliency than the HEFT series

strategies when multiple faults occur. The proposed TOFT strategy remains 100% cloud

resiliency between 𝑇0 and 𝑇1000 after the first fault occurs, while the HEFT series

147

strategies only achieve 56% cloud resiliency at that time period. As time goes on, the

proposed TOFT strategy keeps continuous higher cloud resiliency than the HEFT series

strategies after the second fault occurs at 𝑇1000, although the proposed TOFT strategy

experiences a cloud resiliency drop from 100% to 77.67%.

5.3 Summary

In Chapter 5, two reactive fault tolerance strategies are proposed for the independent

tasks in the cloud environment. The task resubmission and the task migration are two

reactive fault tolerance techniques applied in these two strategies. The proposed reactive

fault tolerance strategy in Section 5.1 not only considers the resource load of accessing

backup replicas but also strives to satisfy the deadline constraints. A utility-based task

priority assignment system is developed to assign the task priority to each task by

jointly considering the task operation profit and the task urgency. A utility-based fault

tolerance algorithm is proposed to select appropriate data centres to accommodate the

tasks rescued from the faulty data centre. The proposed utility-based fault tolerance

strategy in Section 5.1 increases the cloud resiliency performance in terms of task

resilience ratio, task rescue utility, and task operation profit in comparison with the

typical HDFS robustness strategy, the RR strategy, and the JSQ strategy.

The proposed timeline-oriented fault tolerance strategy in Section 5.2 aims to avoid the

degradation of both cloud resiliency and load balancing performance caused by

selecting the first available server when doing the timeline allocation for the

independent tasks rescued from the faulty data centre. A two-dimensional task parsing

system is developed to identify the eligible time slots on the timeline by parsing the task

into a rectangle based on its task execution duration and resource requirement. A novel

three-dimensional priority assignment system is introduced to assign the task rescue

priority to the tasks at the faulty data centre by evaluating the task urgency, the task

148

operation profit, and the number of eligible time slots of the task. A timeline allocation

method is proposed to identify the optimal eligible time slot for the task rescued from

the faulty data centre by considering the time slot length similarity and the

corresponding time slot resource situations. A dynamic task rescheduling algorithm is

developed to avoid timeline wastefulness and to improve cloud resiliency. The proposed

timeline-oriented fault tolerance strategy in Section 5.2 achieves better cloud resiliency

and load balancing performance in comparison with the HEFT series strategies.

149

Chapter 6 Reactive Fault Tolerance for Workflows

As mentioned in Chapter 2, independent tasks and dependent tasks should be treated in

different ways because the fault tolerance for dependent tasks is more complex than the

fault tolerance for independent tasks. In this chapter, the proposed strategy focuses on

the reactive fault tolerance for the workflow applications in the replication-applied

cloud environment because the workflows always have vast dependent tasks. The

dependent tasks must be prioritised by inclusively considering the task dependencies

among the tasks within the same workflow instance if a task cannot be initiated until all

its preceding tasks are completed. The cloud performance will be largely degraded if a

fault tolerance plan lacks the consideration of the task dependencies among workflow

tasks. Hence, the proposed reactive fault tolerance strategies in Chapter 5 for the

independent tasks in the replica-applied cloud environment are not suitable to apply to

the dependent tasks because of a lack of task dependency analysis. It is important to

develop a method to analyse the task dependencies when rescuing the workflow

applications at the faulty data centre.

Besides, as mentioned in both Chapter 2 and also proved in Chapter 5, the idea behind

the HEFT series, i.e., selecting the first available server, may not be the optimal solution

when rescuing the tasks because of the resource contention problems. Particularly, the

HEFT-T strategy focuses on the internal dependencies among the workflow tasks by

applying an upward rank method. The external contention among different workflow

instances and the entire workflow topology are hardly considered. For example, in the

Montage workflow in Figure 6.1, all mProjectPP tasks in the workflow have the same

priority when the HEFT-T strategy is applied. However, as the last mProjectPP task has

more outbound tasks, compared with other mProjectPP tasks, it may be unreasonable to

assign them the same priority value because this task will influence more tasks in the

150

context of the workflow topology. Therefore, the workflow topology should be further

analysed to assign more accurate task priority when prioritising the workflow tasks.

Figure 6.1 The example of the Montage workflow and the Meteorological workflow

[10][130]

In rescuing workflow tasks, a common strategy is to migrate the workflow tasks to a

proper-working data centre where a required replica is stored. In its implementation, it

is important to take two significant parameters into consideration, the task deadline and

the task execution duration [124]. As mentioned in Chapter 5, completing a task beyond

its deadline is meaningless. However, in some real cases, the fault tolerance strategies

often aim to complete the task with respect to its deadline requirement as much as

possible. The fault tolerance strategies may not be able to rescue all tasks in each

workflow instance, which means some workflow instances may still fail. For those

failed workflow instances, they may still be required to be completed after the cloud

data centre is fully recovered from the outage. Thus, it is assumed that the more tasks

saved within an incomplete workflow instance, the better business continuity the fault

tolerance strategy has. Nevertheless, the influence on business continuity is hardly

151

considered in most of the contemporary fault tolerance strategies. Hence, it is significant

to evaluate the influence on business continuity when developing a fault tolerance

strategy.

To address the above issues, a PageRank based fault tolerance (PRFT) strategy is

proposed for the workflow rescue in the replica-applied cloud environment in this

chapter. This strategy focuses on the workflow task rescue when handling faults based

on the attributes of the task, the timeline scenario at each proper-working data centre,

and the overall cloud performance. Firstly, a priority assignment system is developed

based on the modified PageRank algorithm to prioritise the workflow tasks. Then a

Min-Max normalisation method is applied for the replica selection method and the

timeline allocation method. The replica selection method is based on the evaluation of

the network performance at the replica-ready data centres by considering the common

network performance metrics. The timeline allocation method is based on the evaluation

of the time slot length similarity and the minimum available resource value in the time

slot. A dynamic PageRank-constrained task scheduling algorithm is proposed to

generate the task rescheduling solution for the tasks at the faulty data centre. The

simulation results show that the proposed PRFT strategy can achieve better task

resilience ratio, workflow resilience ratio, and workflow continuity ratio in comparison

with the HEFT-T strategy, in both the traditional three-replica data replication

environment and the image backup data replication environment.

6.1 System Modelling

This strategy focuses on the cloud-based workflow execution in which a number of

workflow instances are deployed to cloud data centres. As mentioned in Chapter 3, the

cloud environment may have 𝑥 workflow instances running concurrently. A workflow

instance 𝐺 consists of multiple dependent tasks, which can be presented by a Directed

152

Acyclic Graph (DAG), 𝐺 = (𝑁, 𝐸), where 𝑁 denotes a set of nodes and 𝐸 denotes a set

of edges among nodes. 𝑒𝑑𝑔𝑒(𝑁𝑜𝑑𝑝, 𝑁𝑜𝑑𝑞) denotes the edge between 𝑁𝑜𝑑𝑝 and 𝑁𝑜𝑑𝑞.

Each node 𝑁𝑜𝑑𝑝 ∈ 𝑁 represents a task in the workflow and each 𝑒𝑑𝑔𝑒(𝑁𝑜𝑑𝑝, 𝑁𝑜𝑑𝑞)

represents the control dependency between 𝑁𝑜𝑑𝑝 and 𝑁𝑜𝑑𝑞. For example, the DAGs of

the Montage scientific workflow and the Meteorological workflow are shown in Figure

6.1. In a DAG, the node is known as an entry task 𝑁𝑜𝑑𝑒𝑛𝑡𝑟𝑦 if it has no predecessors,

while the node is known as an exit task 𝑁𝑜𝑑𝑒𝑥𝑖𝑡 if it has no successors. This strategy

assumes that a node cannot be initiated until all of its predecessors have been completed

[81].

Each workflow instance 𝐺 has an attribute associated with its deadline, 𝐷𝐸𝐴𝐷(𝐺) ,

which is a specific time point in the timeline. This deadline is known as a hard deadline

as it cannot be negotiated. If the deadline is not specified for the workflow instance 𝐺,

its hard deadline 𝐷𝐸𝐴𝐷(𝐺) is regarded as infinite. When the faults occur at a data

centre, only the workflow instance with a definite deadline need to be rescued, as the

workflow instance with an infinite deadline can be rescheduled when the faulty data

centre is fully recovered from the fault. Each node 𝑁𝑜𝑑𝑝 ∈ 𝑁 is also associated with a

fixed task execution duration 𝐿𝑒𝑛(𝑁𝑜𝑑𝑝) . To simplify the problem, this strategy

assumes that a task will be re-executed if it is migrated out of its original location.

Each task 𝑁𝑜𝑑𝑝 ∈ 𝑁 in the workflow application 𝐺 has its own soft deadline. The soft

task deadline of each task in the workflow can be calculated by reversely engineering

from the exit task 𝑁𝑜𝑑𝑒𝑥𝑖𝑡 . For example, if {𝑁𝑜𝑑0 , 𝑁𝑜𝑑1 , ..., 𝑁𝑜𝑑𝑞−1} are tandem

nodes in a workflow instance 𝐺, the soft deadline of 𝑁𝑜𝑑𝑞−1 can be the time range from

the time point of 𝑇0 + ∑ 𝐿𝑒𝑛(𝑁𝑜𝑑𝑝)
𝑞−2
𝑝=0 to the time point of 𝐷𝐸𝐴𝐷(𝐺) −

𝐿𝑒𝑛(𝑁𝑜𝑑𝑞−1). Then the soft deadline of 𝑁𝑜𝑑𝑞−2 can be the time range from the time

153

point of 𝑇0 + ∑ 𝐿𝑒𝑛(𝑁𝑜𝑑𝑝)
𝑞−3
𝑝=0 to the time point of 𝐷𝐸𝐴𝐷(𝐺) − 𝐿𝑒𝑛(𝑁𝑜𝑑𝑞−1) −

𝐿𝑒𝑛(𝑁𝑜𝑑𝑞−2). By parity of reasoning, each soft task deadline can be calculated. In this

strategy, the task parsing system is also applied, which is the same as the task parsing

system proposed in Section 5.2.2.

The proposed PRFT strategy in this chapter focuses on the fault tolerance performance

in terms of task resilience ratio (TRR), workflow resilience ratio (WRR), and workflow

continuity ratio (WCR). The TRR refers to the ratio of the successfully rescued tasks

from the faulty data centre to the total number of tasks to be rescued at the faulty data

centre. The WRR refers to the ratio of the total number of rescued workflow instances

out of the total number of workflow instances at the faulty data centre. The WCR refers

to the number of tasks in a single workflow successfully rescued from the faulty data

centre out of the total number of tasks in this workflow. The overall WCR will be

evaluated by calculating the average value of the WCR in different workflow instances.

The higher TRR is, the stronger task resilience performance is. The higher WRR is, the

stronger workflow resilience performance is. The higher WCR is, the better potential

business continuity can be achieved.

The TRR can be calculated using the same formula in Eq. 5.1 in Section 5.1. The WRR

can be formulated as in Eq. 6.1. The WCR can be formulated as in Eq. 6.2.

 Workflow Resilience Ratio =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑢𝑐𝑒𝑑 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤𝑠
 (6.1)

 Workflow Continuity Ratio =
𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑐𝑢𝑒𝑑 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤
 (6.2)

6.2 PageRank-Based Fault Tolerance (PRFT) Strategy

Originally, the PageRank algorithm is a link analysis algorithm to rank the web pages in

the Google search engine results. It outputs a distribution probability to represent the

likelihood that a user clicks on the links to other web pages. The PageRank value is

154

calculated using a mathematical algorithm based on the digraph of the web topology.

The World Wide Web pages and the hyperlinks among those pages are represented as

nodes and edges, respectively. Each element of a hyperlinked set of documents will be

assigned a numerical weighting with the purpose of assigning its relative significance.

Based on the characteristics of the PageRank algorithm, it may be applicable to any

entity set with reciprocal quotations and references or any entities which can be parsed

into a digraph. The web topology is similar to the workflow topology to some extent

because most of the workflows, especially scientific workflows, can be parsed into a

digraph. Therefore, the PageRank algorithm may be applicable to the workflow

topology which can assign the numerical weighting to the nodes in the workflow

digraph.

On the other hand, the PageRank algorithm lacks the relationship analysis among

websites when ranking different websites. Therefore, the PageRank algorithm itself

cannot be directly applied to the workflow topology. It should be modified to fit the

workflow topology analysis. Additionally, as the PageRank algorithm only considers

the topology structure to rank the websites, there is a lack of consideration of the

workflow complexity and the workflow deadline when applying the PageRank

algorithm to the workflow research. Therefore, the PageRank algorithm should be

modified to generate more precise task rescue priority for further constraining the

workflow rescue from the faulty data centre.

In this chapter, a PageRank based fault tolerance (PRFT) strategy is developed

including the PageRank-based priority assignment system, the replica selection method,

the timeline allocation method, and the PageRank-constrained task scheduling

algorithm. Firstly, the PageRank-based priority assignment system is used to prioritise

the tasks in the replica-applied cloud environment based on the modified PageRank

155

algorithm. Then the replica selection method aims to find the optimal replica-ready data

centres for the tasks to be resubmitted or migrated. The timeline allocation method

focuses on the allocation of the tasks to be rescued or migrated on the timeline of the

target data centre. Lastly, the PageRank-constrained task scheduling algorithm

generates the task scheduling solution for rescuing the tasks at the faulty data centre.

A PageRank-based priority assignment system is developed for workflow applications

to assign the task rescue priority to each task in the workflow. Each node 𝑁𝑜𝑑𝑝 ∈ 𝑁 has

its own PageRank value 𝑃𝑅(𝑁𝑜𝑑𝑝) . The PageRank value for the node 𝑁𝑜𝑑𝑝 ,

𝑃𝑅(𝑁𝑜𝑑𝑝), can be formulated as follows in Eq. 6.3, where 𝑠𝑢𝑐𝑐(𝑁𝑜𝑑𝑝) denotes the set

of successors of 𝑁𝑜𝑑𝑝, 𝐿(𝑁𝑜𝑑𝑞) represents the number of the outbound nodes of 𝑁𝑜𝑑𝑞,

and 𝜌 is the total number of nodes in the workflow. A damping factor 𝛿 is applied,

which normally has a value of 0.85 in the PageRank algorithm, to handle the probability

of the task termination. The purpose of applying this damping factor 𝛿 is to find out the

probability that a task can be successfully executed at any given time with a successful

inheritance to its outbound nodes. Correspondingly, 1 − 𝛿 is the probability that a task

is terminated.

 𝑃𝑅(𝑁𝑜𝑑𝑝) =
1−𝛿

𝜌
 + 𝛿 ∗ ∑

𝑃𝑅(𝑁𝑜𝑑𝑞)

𝐿(𝑁𝑜𝑑𝑞)
𝑁𝑜𝑑𝑞∈ 𝑠𝑢𝑐𝑐(𝑁𝑜𝑑𝑝) (6.3)

Although the workflows have a similar topology to the web topology, the relationship

among workflow tasks is more complex than the relationship among websites. Each

website is held independently in the web topology, while an intermediate task in the

workflow should wait to start until all its preceding tasks are completed in the workflow

as abovementioned. Therefore, the workflow tasks are given priority values and are

sorted according to their upward rank values. The upward rank value of a task 𝑁𝑜𝑑𝑝,

𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝), can be calculated as in Eq. 6.4. If a task is an exit task, its upward rank

156

value is computed as 𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝) = 𝑃𝑅(𝑁𝑜𝑑𝑝).

𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝) = 𝑃𝑅(𝑁𝑜𝑑𝑝) + 𝑚𝑎𝑥𝑁𝑜𝑑𝑞∈𝑠𝑢𝑐𝑐(𝑁𝑜𝑑𝑝)(𝑃𝑅(𝑁𝑜𝑑𝑞) + 𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑞))(6.4)

In the proposed priority assignment system, the upward rank value is calculated

according to the 𝑃𝑅 value. This means the rank value of a task’s predecessor is always

higher than that of the task itself. However, one workflow instance may be impacted by

other workflow instances in the cloud environment when doing task resubmission or

migration. Thus, two balancing coefficients are introduced to jointly balance the upward

ranking values among different workflow instances in accordance with the hard

deadline of the workflow and the workflow complexity. As mentioned in Chapter 3, 𝑥

workflow instances {𝐺1, 𝐺2… ,𝐺𝑥} are studied in this thesis. The balancing coefficient 𝛾

for a workflow instance 𝐺 ∈ {𝐺1, 𝐺2… ,𝐺𝑥} can be formulated in Eq. 6.5, where

{𝑈𝑅(𝐺1), 𝑈𝑅(𝐺2),… , 𝑈𝑅(𝐺𝑥)} is a set of the urgency values of 𝑥 workflow instances.

The urgency of a workflow 𝐺 is the time buffer between the fault occurrence time point

and its hard deadline.

 𝛾(𝐺) =
𝑚𝑎𝑥({𝑈𝑅(𝐺1),𝑈𝑅(𝐺2),…,𝑈𝑅(𝐺𝑥)}) − 𝑈𝑅(𝐺)

𝑚𝑎𝑥({𝑈𝑅(𝐺1),𝑈𝑅(𝐺2),…,𝑈𝑅(𝐺𝑥)}) − 𝑚𝑖𝑛({𝑈𝑅(𝐺1),𝑈𝑅(𝐺2),…,𝑈𝑅(𝐺𝑥)})
 (6.5)

The balancing coefficient 𝜎 for a workflow instance 𝐺 ∈ {𝐺1, 𝐺2… ,𝐺𝑥} can be

formulated in Eq. 6.6, where 𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑑(𝐺) is a count function which counts the

number of nodes in the workflow instance 𝐺, 𝐶𝑜𝑢𝑛𝑡𝐸𝑑𝑔𝑒(𝐺) is a count function which

counts the number of edges in the workflow instance 𝐺, 𝑁𝑢𝑚(𝑁𝑜𝑑) denotes the total

number of nodes in the cloud environment and 𝑁𝑢𝑚(𝐸𝑑𝑔𝑒) denotes the total number

of edges in the cloud environment.

 𝜎(𝐺) =
𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑑(𝐺)

𝑁𝑢𝑚(𝑁𝑜𝑑)
 *

𝐶𝑜𝑢𝑛𝑡𝐸𝑑𝑔𝑒(𝐺)

𝑁𝑢𝑚(𝐸𝑑𝑔𝑒)
 (6.6)

As the total number of the workflow instances, the total number of nodes, and the total

number of edges are constantly changing in the cloud environment, the two balancing

157

coefficients will be dynamically changed to influence the final upward rank value of a

specific task in a workflow instance. The final upward rank value of 𝑁𝑜𝑑𝑝 in 𝐺 can be

formulated in Eq. 6.7.

 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝) = (𝛾(𝐺) + 𝜎(𝐺)) * 𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝), 𝑁𝑜𝑑𝑝 ∈ 𝐺 (6.7)

A task priority list is created according to the final upward rank value in descending

order. The first element of this list has the highest priority and will be rescued first when

handling faults.

The replica selection schema aims to guide the best replica site to access by evaluating

the replica site performance when handling tasks according to the task priority list. In

this strategy, the replica selection method which is proposed in Section 4.3 is applied to

evaluate the optimal data access route for resubmitting or migrating the tasks.

The optimal eligible time slot selection method proposed in Section 5.2 is also applied

in this research, which fully considers the time slot length similarity and the

corresponding time slot resource situation at the target proper-working data centre for

the tasks to be rescued. The consideration of the time slot length similarity and the

corresponding time slot resource situation aims to minimise the waste of resources in

the time slots and avoid the resource contention problem.

6.3 PageRank-Constrained Task Scheduling Algorithm

A PageRank-constrained task scheduling algorithm is proposed in Algorithm 6.1 to

rescue the dependent tasks at the faulty data centre when the faults already occurred.

Algorithm 6.1 firstly initializes the timeline and the task parsing vector space at each

data centre and loads the tasks at the faulty data centre into the faulty task list 𝑓𝑡[] from

Line 1 to Line 4. It also initializes the task prioritising process for the tasks in the

replica-applied cloud environment based on Eq. 6.7 at Line 5. Then 𝑓𝑡[] will be sorted

158

based on the task priority in descending order by applying Reverse QuickSort algorithm

at Line 6. The tasks in 𝑓𝑡[] start to be processed from Line 7 by following the sorting

order. The optimal replica-ready data centre will be identified by applying the proposed

replica selection strategy in Section 4.3 and add into 𝑟𝑟[] at Line 8. After that, the

number of eligible time slots for the selected task from 𝑓𝑡[] is calculated at Line 9. If at

least one eligible time slot exists, Mechanism 6.1 will identify an optimal eligible time

slot at Line 11 and complete the task resubmission process for the selected task from

𝑓𝑡[] at Line 12. Otherwise, Mechanism 6.2 will produce a task migration solution for

the selected task from 𝑓𝑡[] at Line 14. The time complexity of Algorithm 6.1 is O(𝑛).

Algorithm 6.1: PageRank-Constrained Task Scheduling Algorithm

Input: 𝐽, fault location

Output: Task resubmission solution

1. Initialization {

2. Set timeline

3. Set up the task parsing vector space

4. Load the tasks at the faulty data centre and add them into 𝑓𝑡[]

5. Prioritise the tasks using Eq. 6.7 }

6. Reverse QuickSort 𝑓𝑡[] based on the task priority

7. for 𝑓𝑡[𝑣] in𝑓𝑡[], 𝑣 = 0, 𝑣 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑓𝑡[]) − 1 do

8. Select the optimal replica-ready data centre and add into 𝑟𝑟[]

9. 𝐶𝑜𝑢𝑛𝑡(𝐸𝑇((𝑓𝑡[𝑣])𝑟𝑟[]))

10. if 𝐶𝑜𝑢𝑛𝑡(𝐸𝑇((𝑓𝑡[𝑣])𝑟𝑟[])) > 0

11. Do Mechanism 6.1

12. Move 𝑓𝑡[𝑣] to 𝑂𝐸(𝑓𝑡[𝑣])

13. else

14. Do Mechanism 6.2

15. end if

16. end for

Mechanism 6.1 is used to identify the optimal eligible time slot when the number of

159

eligible time slots is greater than 1 at the replica-ready data centres. In Mechanism 6.1,

the ranking values of the eligible time slots in 𝑟𝑟[] will be calculated using Eq. 5.8 in

Section 5.2 for the input task 𝑓𝑡[𝑣] at Line 1. After that, the optimal eligible time slot of

the task will be identified at Line 2 by selecting the maximum ranking values of the

eligible time slots in 𝑟𝑟[]. The beginning time point 𝑇𝐵𝑒𝑔𝑖𝑛 of the optimal eligible time

slot will be loaded at Line 3. Then the input task 𝑓𝑡[𝑣] should be allocated to the

beginning time point of the optimal eligible time slot 𝑂𝐸(𝑓𝑡[𝑣]) at Line 4. The resource

line in the task parsing vector space will be updated to reflect the resource consumption

of the input task 𝑓𝑡[𝑣] at Line 5. Then the order number at Line 7 in Algorithm 6.1 will

increase one at Line 6.By applying Mechanism 6.1, the task at the faulty data centre

which has the eligible time slots at the replica-ready data centres can be rescued.

Mechanism 6.1: Optimal Eligible Time Slot Selection

Input: 𝑓𝑡[𝑣], 𝑟𝑟[]

Output: Optimal eligible time slot 𝑂𝐸(𝑓𝑡[𝑣])

1. Calculate 𝑟𝑎𝑛𝑘(𝐸𝑇((𝑓𝑡[𝑣])𝑟𝑟[])) using Eq. 5.8 in Section 5.2

2. Generate 𝑂𝐸(𝑓𝑡[𝑣]) by selecting the maximum 𝑟𝑎𝑛𝑘(𝐸𝑇((𝑓𝑡[𝑣])𝑟𝑟[]))

3. Load the beginning time point 𝑇𝐵𝑒𝑔𝑖𝑛 of 𝑂𝐸(𝑓𝑡[𝑣])

4. Allocate 𝑓𝑡[𝑣] at 𝑇𝐵𝑒𝑔𝑖𝑛

5. Update the resource line for 𝑂𝐸(𝑓𝑡[𝑣])

6. 𝑣 + + at Line 7 in Algorithm 6.1

Mechanism 6.2 is used to generate the task migration solution for the input task 𝑓𝑡[𝑣]

with no eligible time slots at the optimal replica-ready data centre. The current running

tasks at the optimal replica-ready data centre are added into 𝑐𝑟𝑗[] at Line 1. The current-

running tasks in 𝑐𝑟𝑗[] starts to be processed at Line 2.

160

Then the final upward rank value is calculated and the soft task deadline is counted for

the selected task in 𝑐𝑟𝑗[] at Line 3. The final upward rank values between the input task

𝑓𝑡[𝑣] and the selected task in 𝑐𝑟𝑗[] are compared at Line 4 and then the selected task in

𝑐𝑟𝑗[] are removed if they cannot satisfy the requirements of the upward rank value, the

resource, the time slot length, and the soft task deadline, respectively, from Line 5 to

Line 8. The 𝐶ℎ𝑒𝑐𝑘(𝑆𝑜𝑓𝑡𝐷()) function is used to evaluate the after-release end time

point of the selected task in 𝑐𝑟𝑗[] in comparison with its soft deadline. If this function is

satisfied, it means the task can be migrated and will not influence the workflow hard

deadline. Otherwise, the task cannot be migrated.

After the processing of the initial current-running task list 𝑐𝑟𝑗[], 𝑐𝑟𝑗[] is sorted based on

the final upward rank value by applying the QuickSort algorithm at Line 10. If 𝑐𝑟𝑗[] is

empty, the input task 𝑓𝑡[𝑣] will be failed at Line 12 and the order number of 𝑓𝑡[] will

increase one Line 7 in Algorithm 6.1. Otherwise, 𝑐𝑟𝑗[] will be re-processed from the

first element in𝑐𝑟𝑗[] from Line 14 to Line 30. The eligible time slots of the selected

task in 𝑐𝑟𝑗[] will be identified at Line 15. If the number of eligible time slots is not

equal to 0, the optimal eligible time slot will be identified for the selected task in 𝑐𝑟𝑗[]

at Line 17. Then the selected task in 𝑐𝑟𝑗[] can be released to its optimal eligible time

slot at Line 18. The after-release time slot at the original location of the selected task in

𝑐𝑟𝑗[] will be re-organised at Line 19. Then the after-release end time point of the input

task 𝑓𝑡[𝑣] will be checked at Line 20 by applying the 𝐶ℎ𝑒𝑐𝑘(𝑆𝑜𝑓𝑡𝐷()) function. If the

soft deadline of the input task 𝑓𝑡[𝑣] is satisfied, the input task 𝑓𝑡[𝑣] will be moved to

the beginning time point of the reorganized after-release time slot at Line 22. Then the

order number of 𝑓𝑡[] will increase one at Line 7 in Algorithm 6.1. If the soft deadline of

the input task 𝑓𝑡[𝑣] cannot be satisfied, then the order number of 𝑐𝑟𝑗[] will increase one

at Line 14. If the number of eligible time slots of the selected task in 𝑐𝑟𝑗[] is equal to 0

161

when identifying the eligible time slots at Line 15, then the order number of 𝑐𝑟𝑗[] will

increase one at Line 14.

Mechanism 6.2: PageRank-Constrained Residual Task Processing

Input: 𝑓𝑡[𝑣], 𝑟𝑟[]

Output: Task migration solution

1. Load the current-running tasks in 𝑟𝑟[] and add into 𝑐𝑟𝑗[]

2. for 𝑐𝑟𝑗[𝑤] in 𝑐𝑟𝑗[], 𝑤 = 0, 𝑤 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑐𝑟𝑗[]) − 1] do

3. Calculate 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑐𝑟𝑗[𝑤]) and 𝑆𝑜𝑓𝑡𝐷(𝑐𝑟𝑗[𝑤])

4. Compare 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑓𝑡[𝑣]) with 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑐𝑟𝑗[𝑤])

5. Remove 𝑐𝑟𝑗[𝑤] from 𝑐𝑟𝑗[] if 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑐𝑟𝑗[𝑤]) > 𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑓𝑡[𝑣])

6. Remove 𝑐𝑟𝑗[𝑤] from 𝑐𝑟𝑗[] with insufficient resource release

7. Remove 𝑐𝑟𝑗[𝑤] from 𝑐𝑟𝑗[] with insufficient time slot length release

8. Remove 𝑐𝑟𝑗[𝑤] from 𝑐𝑟𝑗[] if 𝐶ℎ𝑒𝑐𝑘(𝑆𝑜𝑓𝑡𝐷(𝑐𝑟𝑗[𝑤])) cannot be satisfied

9. end for

10. QuickSort 𝑐𝑟𝑗[] based on the final upward rank value

11. if 𝑐𝑟𝑗[] = null

12. 𝑣 + + at Line 7 in Algorithm 6.1

13. else

14. for 𝑐𝑟𝑗[𝑢] in 𝑐𝑟𝑗[], 𝑢 = 0, 𝑢 ≤ 𝑆𝑖𝑧𝑒𝑜𝑓(𝑐𝑟𝑗[]) − 1] do

15. Identify 𝐸𝑇(𝑐𝑟𝑗[𝑢])

16. if 𝐸𝑇(𝑐𝑟𝑗[𝑢]) != 𝑛𝑢𝑙𝑙

17. Identify 𝑂𝐸(𝑐𝑟𝑗[𝑢])

18. Release 𝑐𝑟𝑗[𝑤] to 𝑂𝐸(𝑐𝑟𝑗[𝑢])

19. Re-organise the after-release time slot at the original location of 𝑐𝑟𝑗[𝑢]

20. 𝐶ℎ𝑒𝑐𝑘(𝑆𝑜𝑓𝑡𝐷(𝑓𝑡[𝑣]))

21. If 𝐶ℎ𝑒𝑐𝑘(𝑆𝑜𝑓𝑡𝐷(𝑓𝑡[𝑣])) is satisfied

22. Move 𝑓𝑡[𝑣] to the 𝑇𝑏𝑒𝑔𝑖𝑛 of the reorganized after-release time slot

23. 𝑣 + + at Line 7 in Algorithm 6.1

24. else

25. 𝑢 + +

26. end if

162

27. else

28. 𝑢 + +

29. end if

30. end for

31. end if

6.4 Simulations

To evaluate the performance of the proposed PRFT strategy, two simulations are

performed on OMNeT++ 5.4.1. Two types of workflows are implemented in the

simulations, the Montage scientific workflow referenced from [10] and the

meteorological workflow referenced from [130]. The hard deadlines of the Montage

workflow and the meteorological workflow are dynamically changed to evaluate the

fault tolerance performance of the HEFT-T strategy and the proposed PRFT strategy,

respectively. The fault tolerance performance is measured in terms of TRR, WRR, and

WCR in all two simulations. The available bandwidth, the error rate, and the network

latency are assumed to be three major network performance metrics in the replica

selection stage. The values of these three network performance metrics are set

randomly.

6.4.1 Simulation 1 – Single workflow type with image backup environment

A cloud environment of 4 data centres with 80 circuits of 100 Mbps fibre-optic network

integrated at each data centre is set up in Simulation 1. The image backup data

replication environment is applied in this simulation. The fault occurs at 𝑇0 in 𝑑𝑐3. Only

the meteorological workflow instances are applied in this simulation and they are

randomly placed at 4 data centres. In this simulation, one group of 10 meteorological

workflow instances, labelled Meteorological 1, is scheduled at 𝑇0 and another group of

10 meteorological workflow instances, labelled Meteorological 2, is scheduled at 𝑇13.60.

The deadline of two groups of meteorological workflow instances is dynamically

163

changed to evaluate the TRR, the WRR, and the WCR. The simulation results of the

TRR are shown in Figure 6.2 and Figure 6.3.

Figure 6.2 The TRR of the HEFT-T strategy

Figure 6.3 The TRR of the proposed PRFT strategy

The HEFT-T strategy keeps the TRR at 55.77% when the deadline of the

Meteorological 1 group is in [𝑇130.47, 𝑇157.67) and that of the Meteorological 2 group is

in [𝑇157.67, +∞). When the deadline of the Meteorological 1 group is in [𝑇157.67, 𝑇171.27)

and that of the Meteorological 2 group is in [𝑇157.67, +∞), the TRR becomes 67.31%.

The major difference between the proposed PRFT strategy and the HEFT-T strategy is

164

that the proposed PRFT strategy increases the TRR to 67.31% when the deadline of the

Meteorological 1 group is in [𝑇144.07, 𝑇157.67) and that of the Meteorological 2 group is

in [𝑇157.67, 𝑇171.27), and increases the TRR to 100% when the deadline of the

Meteorological 1 group is in [𝑇144.07, 𝑇171.27) and that of the Meteorological 2 group is

in [𝑇171.27, +∞).

Figure 6.4 The WRR of Meteorological 1 (HEFT-T applied)

Figure 6.5 The WRR of Meteorological 1 (PRFT applied)

The simulation results of the WRR are shown in Figure 6.4 to Figure 6.7. It is evident

that the proposed PRFT strategy can significantly improve the WRR in comparison with

the HEFT-T strategy. Both the proposed PRFT strategy and the HEFT-T strategy keep

165

the same WRR trend in the Meteorological 2 group in Figure 6.6 and Figure 6.7.

The proposed PRFT strategy and the HEFT-T strategy achieve different WRR in the

Meteorological 1 group. As shown in Figure 6.4 and Figure 6.5, the proposed PRFT

strategy achieves better WRR performance when the deadline of the Meteorological 1

group is in [𝑇144.07, 𝑇171.27) and that of the Meteorological 2 group is in [𝑇171.27, +∞).

The WRR increases from 50% to 100%.

Figure 6.6 The WRR of Meteorological 2 (HEFT-T applied)

Figure 6.7 The WRR of Meteorological 2 (PRFT applied)

The simulation results of the WCR are shown in Figure 6.8 to Figure 6.11. It is clear

that the proposed PRFT strategy can significantly improve the WCR in comparison with

166

the HEFT-T strategy. Firstly, the proposed PRFT strategy and the HEFT-T strategy

achieve different WCR in the Meteorological 1 group. As shown in Figure 6.8, the

WCR value stays at 9.70% when the deadline of Meteorological 1 group is in

[𝑇130.47, 𝑇157.67) and that of Meteorological 2 group is in [𝑇144.07, +∞) with the HEFT-T

strategy applied. The WCR value increases to 14.18% when the deadline of the

Meteorological 1 group is in [𝑇157.67, 𝑇171.27) and that of the Meteorological 2 is in

[𝑇157.67, +∞) with the HEFT-T strategy applied. The WCR value increases to 100%

when the deadline of the Meteorological 1 group is in [𝑇157.67, +∞) and that of the

Meteorological 2 group is in [𝑇144.07, 𝑇157.67) or when the deadline of the

Meteorological 1 group is in [𝑇171.27, +∞) and that of the Meteorological 2 group is in

[𝑇157.67, +∞) with the HEFT-T strategy applied.

Figure 6.8 The WCR of Meteorological 1 (HEFT-T applied)

Different from the HEFT-T strategy, as shown in Figure 6.9, the proposed PRFT

strategy increases the WCR when the deadline of the Meteorological 1 group is in

[𝑇144.07, 𝑇157.67) and that of the Meteorological 2 group is in [𝑇157.67, 𝑇171.27). The WCR

is also increased to 100% when the deadline of the Meteorological 1 group is in

[𝑇144.07, 𝑇171.27) and that of the Meteorological 2 group is in [𝑇171.27, +∞).

167

Besides, both the proposed PRFT strategy and the HEFT-T strategy keep the same trend

in the Meteorological 2 group in Figure 6.10 and Figure 6.11. The WCR value stays at

9.70% when the deadline of the Meteorological 1 group is in [𝑇130.47, +∞) and that of

the Meteorological 2 group is in [𝑇144.07, 𝑇157.67). The WCR value will increase to

100% when the deadline of the Meteorological 1 group is in [𝑇130.47, +∞) and that of

the Meteorological 2 group is in [𝑇157.67, +∞).

Figure 6.9 The WCR of Meteorological 1 (PRFT applied)

Figure 6.10 The WCR of Meteorological 2 (HEFT-T applied)

168

Figure 6.11 The WCR of Meteorological 2 (PRFT applied)

6.4.2 Simulation 2 – Multiple workflow types with mixed environment

A cloud environment of 4 data centres with 60 circuits of 100 Mbps fibre-optic network

integrated at each data centre is set up in Simulation 2. The image backup data

replication strategy and three-replicas data replication strategy are both applied to the

simulation environment. The fault is set to occur at 𝑇13.59 in 𝑑𝑐2 . 10 meteorological

workflow instances and 10 Montage workflow instances are applied in this simulation

and they are randomly placed at 4 data centres. In this simulation, the Montage

workflow instances are scheduled at 𝑇0 and the meteorological workflow instances are

scheduled at 𝑇24.18. The deadline of two types of workflow instances is dynamically

changed to evaluate the TRR, the WRR, and the WCR.

The simulation results of the TRR are shown in Figure 6.12 and Figure 6.13. The

proposed PRFT strategy is still better than the HEFT-T strategy. The TRR increases

from 53.19% to 100% with the proposed PRFT strategy when the deadline of Montage

workflow instances is in [𝑇123.65, 𝑇137.25) and that of meteorological workflow instances

is in [𝑇168.25, +∞) while the TRR remains unchanged at 53.19% with the HEFT-T

strategy in this deadline range.

169

Figure 6.12 The TRR of the HEFT-T strategy

Figure 6.13 The TRR of the proposed PRFT strategy

The simulation results of the WRR are shown from Figure 6.14 to Figure 6.17. It is

evident that the proposed PRFT strategy can achieve better WRR performance in

comparison with the HEFT-T strategy. Firstly, different WRR performance is achieved

in the Montage workflow instances as shown in Figure 6.14 and Figure 6.15. The

proposed PRFT strategy achieves 100% WRR when the deadline of the Montage

workflow instances is in [𝑇123.65, 𝑇137.25) and that of the meteorological workflow

instances is in [𝑇168.25, +∞), while the HEFT-T strategy only achieves 50% WRR in

170

this deadline range.

Figure 6.14 The WRR of the Montage workflow (HEFT-T applied)

Figure 6.15 The WRR of the Montage workflow (PRFT applied)

Figure 6.16 The WRR of the Meteorological workflow (HEFT-T applied)

171

Figure 6.17 The WRR of the Meteorological workflow (PRFT applied)

The proposed PRFT strategy keeps the same WRR trend to the HEFT-T strategy on the

meteorological workflow instances when the deadline of the Montage workflow

instances is in [𝑇123.65, +∞) and that of the Meteorological workflow instances is in

[𝑇154.65, +∞), as shown in Figure 6.16 and Figure 6.17.

Figure 6.18 The WCR of the Montage workflow (HEFT-T applied)

172

Figure 6.19 The WCR of the Montage workflow (PRFT applied)

The simulation results of the WCR are shown from Figure 6.18 to Figure 6.21. It is

evident that the proposed PRFT strategy can achieve better WCR in comparison with

the HEFT-T strategy. Firstly, as shown in Figure 6.18 and Figure 6.19 for the Montage

workflow instances, the proposed PRFT strategy achieves 100% WCR when the

deadline of the Montage workflow instances is in [𝑇123.65, 𝑇137.25) and that of the

Meteorological workflow instances is in [𝑇168.25, +∞), while the HEFT-T strategy only

achieves 69.46% WCR in this deadline range.

Figure 6.20 The WCR of the Meteorological workflow (HEFT-T applied)

173

Figure 6.21 The WCR of the Meteorological workflow (PRFT applied)

Besides, the proposed PRFT strategy keeps the same WCR trend to the HEFT-T

strategy on the Meteorological workflow instances when the deadline of the Montage

workflow instances is in [𝑇123.65, +∞) and that of the Meteorological workflow

instances is in [𝑇154.65, +∞), as shown in Figure 6.20 and Figure 6.21.

6.5 Summary

In Chapter 6, a PageRank based fault tolerance (PRFT) strategy is proposed for rescuing

dependent tasks. This strategy focuses on the workflow task rescue by considering the

attributes of the task, the timeline scenario, and the cloud performance. A priority

assignment system is developed based on the modified PageRank algorithm to prioritise

the workflow tasks. A dynamic PageRank-constrained task scheduling algorithm is

proposed to generate the task scheduling solution when rescuing the tasks from the

faulty data centre. The simulation results show that the proposed PRFT strategy can

achieve better task resilience ratio, workflow resilience ratio, and workflow continuity

ratio in comparison with the HEFT-T strategy, in both the traditional three-replica data

replication environment and the image backup data replication environment.

174

Chapter 7 Contribution Summary, Discussions and

Limitations

7.1 Contribution Summary

The proposed six strategies work in the field of replica creation, replica selection, fault

tolerance for independent tasks, and fault tolerance for dependent tasks, respectively.

Although the proposed six strategies aim to solve different problems and achieve

different optimisation objectives, they are inter-related strategies, which can be aligned

together to achieve a management chain by following the proposed data replication and

fault management framework. This section will discuss the contribution of each

proposed strategy and the inter-relationship among these six proposed strategies. The

contribution summary of the six proposed strategies is shown in Table A1.5 in

Appendix 1.

7.1.1 Contribution summary

• In Section 4.1, a replica creation strategy is discussed to consider both external

data attributes and internal data attributes when making the replica creation

decision. A data classification method categorises the flexible data type into two

new data types to identify whether the flexible data can be replicated to a

specific data centre. The external data attribute (access frequency) and the

internal data attribute (data dependency) are jointly considered to constrain the

replica creation, as they have been independently proved many times as two of

the most significant data attributes in the past literature. The total cost is reduced

by applying the proposed replica creation strategy in Section 4.1, in comparison

with the total cost scenario without applying the proposed strategy.

• In Section 4.2, in addition to considering the data dependency and the access

175

frequency, the cloud map is also considered when making replica creation

decisions. The cloud map has essential impacts when doing data relationship

analysis because each data centre is seen as an individual host entity in the cloud

environment. The local data relationship and the remote data relationship should

be analysed towards the data location. Two new data dependency types, Within-

DataCentre Data Dependency and Between-DataCentre Data Dependency are

defined to analyse the local data relationship and the remote data relationship,

respectively. An eligible data candidate pool is developed by identifying the

highly-dependent and hot-access data. A recommended access frequency

threshold value will be worked out to enable the optimal cost reduction per

replica.

• In Section 4.3, a replica selection strategy is developed to avoid the potential

network overloading problems related to the increased number of concurrent-

running cloud application instances and the accompanying heavy data access

needs. Different network performance metrics are jointly evaluated in the replica

selection process and they are treated in different ways because of their own

nature. A nested replica selection algorithm is developed to guide the optimal

data replica access under the resource-sufficient scenario or the resource-

insufficient scenario. The proposed replica selection strategy achieves a greater

number of concurrent-running cloud application instances and more balanced

resource load in comparison with the least response time replica selection

algorithm.

The proposed three data replication strategies in the three sections above can be aligned

together to guide the replica creation, the replica placement, and the replica selection for

creating a replica-applied cloud environment. This replica-applied cloud environment

176

not only achieves the benefits mentioned above but also protects the cloud environment

against the upcoming faults. However, the reactive fault tolerance strategies can also

further improve the cloud performance after the faults occurred. The reactive fault

tolerance thus enters the research view.

• In Section 5.1, a reactive fault tolerance strategy is developed to rescue

independent tasks for better cloud resiliency. The task resubmission and the task

migration are two core reactive fault tolerance techniques used in Section 5.1.

However, frequent task resubmission and task migration operations may cause

the resource contention problem at the proper-working data centres. Besides,

some of the tasks at the faulty data centre may still fail to catch their deadlines

after the task resubmission or the task migration. Therefore, the proposed fault

tolerance strategy in Section 5.1 not only considers the resource load of

accessing backup replicas but also strives to satisfy the deadline constraints. The

utility-based task priority assignment system is developed by jointly considering

the task urgency and the task operation profit. Then a one-stop concession

mechanism is applied to the proposed fault tolerance algorithm for selecting

appropriate data centres to accommodate the task rescued from the faulty data

centre. The proposed reactive fault tolerance strategy achieves better cloud

resiliency in terms of task resilience ratio, task rescue utility, and task operation

profit in comparison with the typical HDFS robustness strategy, the RR strategy,

and the JSQ strategy.

• Section 5.2 further adds the timeline allocation to the reactive fault tolerance

strategy proposed in Section 5.1. To identify the eligible time slots on the

timeline for the tasks rescued from the faulty data centre, a two-dimensional task

parsing system is developed by parsing the task into a rectangle based on its task

177

execution duration and resource requirement. A novel three-dimensional priority

assignment system is introduced to assign the task rescue priority to the tasks at

the faulty data centre by comprehensively evaluating the task urgency, the task

operation profit, and the number of eligible time slots. A timeline allocation

method is proposed to identify the optimal eligible time slot for the tasks rescued

from the faulty data centre by considering the time slot length similarity and the

corresponding time slot resource situations. A one-stop concession mechanism is

also applied to the proposed dynamic task rescheduling algorithm for avoiding

timeline wastefulness and achieving better cloud resiliency. The proposed

reactive fault tolerance strategy in Section 5.2 achieves better cloud resiliency in

terms of task resilience ratio and enables more balanced resource load.

The two reactive fault tolerance strategies in Section 5.1 and Section 5.2 are both for

independent tasks. As discussed in Chapter 2, the independent tasks have different

nature in comparison with the dependent tasks. Therefore, the two proposed reactive

fault tolerance strategies in Section 5.1 and Section 5.2 might not be applicable to the

dependent tasks. The specific reactive fault tolerance strategy for rescuing dependent

tasks should be analysed.

• In Chapter 6, a reactive fault tolerance strategy is developed for rescuing the

workflow applications because the workflows always contain a large number of

dependent tasks. Firstly, the timeline allocation is still an important issue to the

dependent tasks when doing the task resubmission or the task migration

operations. As demonstrated in Section 5.2, selecting the first available server

may not achieve the optimal cloud resiliency. Besides, the insufficient

consideration of the resource contention and the deadline contention among the

tasks in different concurrent-running workflow instances may disrupt cloud

178

resiliency. Apart from that, the workflow topology should be fully analysed

because the workflow tasks must be prioritised by considering the task

dependencies, as a workflow task cannot be initiated until all its preceding

workflow tasks are completed. A PageRank-based priority assignment system is

developed to fully analyse the workflow topology and address the resource

contention and the deadline contention among the tasks in different concurrent-

running workflow instances. By following the task priority assigned by the

proposed PageRank-based priority assignment system, a dynamic PageRank-

constrained task scheduling algorithm is developed to generate the fault handling

solution for the tasks at the faulty data centre. The proposed reactive fault

tolerance strategy in Chapter 6 can significantly increase the task resilience ratio,

the workflow resilience ratio, and the workflow continuity ratio in comparison

with the HEFT-T strategy, in both the traditional three-replica data replication

environment and the image backup data replication environment.

7.1.2 Inter-relationship among the proposed strategies

The proposed six strategies are guided and developed by following the proposed data

replication and fault management framework in Chapter 3. Each proposed strategy can

be applied in a specific module in the proposed data replication and fault management

framework. They can be aligned together to achieve a management chain for the cloud

environment.

• The proposed replica creation strategies in Section 4.1 and 4.2 are two

alternative replica creation strategies including the replica placement rules, to be

applied into the replica creation module and the replica placement module in the

replica agent. These two replica creation strategies can guide the creation and

the placement of the data replicas to multiple cloud data centres. The replica

179

scheduling unit in the data centre scheduling module will create and place

multiple data replicas to multiple cloud data centres by referencing the replica

creation strategy applied in the replica creation module and the replica

placement strategy applied in the replica placement module.

• The proposed replica selection strategy in Section 4.3 can be applied in the

replica selection module in the replica agent. This replica selection strategy can

guide the tasks to access the optimal required replicas. The task scheduling unit

in the data centre scheduling module will control the replica selection processes

by referencing the replica selection strategy applied in the replica selection

module. The replica scheduling unit in the data centre scheduling module will

control the replica re-creation process and re-create the required replica by

referencing the replica creation strategy applied in the replica creation module.

• The proposed reactive fault tolerance strategy in Section 5.1, Section 5.2, and

Section 6.1 can be applied in the fault handling guide unit in the fault

management agent. The proposed reactive fault tolerance strategy in Section 5.1

and Section 5.2 are two alternative fault tolerance strategies for rescuing the

independent tasks. The proposed reactive fault tolerance strategy in Section 6.1

is to rescue the dependent tasks. The task scheduling unit in the data centre

scheduling module will reference the corresponding reactive fault tolerance

strategies for different task types from the fault handling guide unit in the fault

management agent.

7.2 Discussions

In this thesis, six strategies are proposed including two alternative replica creation

strategies, one replica selection strategy, two alternative reactive fault tolerance

strategies for independent tasks and one reactive fault tolerance strategy for dependent

180

tasks. The applicability of each proposed strategy will be discussed in this section.

• The applicability of the alternative replica creation strategies

The proposed two replica creation strategies are alternative. They cannot be

simultaneously applied in a single data centre. The first replica creation strategy

proposed in Section 4.1 considers the data dependency and the access frequency only to

constrain the replica creation. It focuses on the data attribute analysis without

consideration of any environmental information in the cloud environment. Differently,

the second replica creation strategy proposed in Section 4.2 considers the cloud map in

the data dependency analysis. Each data centre is recognized as an individual host entity

in the cloud environment. The data dependency analysis is conducted towards the data

location. The data dependency will be categorised into two new data dependency types

to reveal the local data relationship and the remote data relationship.

The difference between these two alternative replica creation strategies highly

distinguishes the applicability of these two alternative replica creation strategies in

different cloud architectures. The first replica creation strategy proposed in Section 4.1

is more suitable to apply in the public cloud architecture because the computing

resources of a data centre are always shared resources among the public cloud data

centres. There is no boundary among those public cloud data centres.

Differently, the second replica creation strategy proposed in Section 4.2 is more

applicable to the private cloud architecture. The private cloud architecture always

requires higher customisation and stronger cloud security than the public cloud

architecture. Therefore, a data in a private cloud data centre will encounter stronger

policy constraints to share with other cloud data centres than a data in a public cloud

data centre. Therefore, each private cloud data centre should be recognized as a strong

individual host entity. Hence, the cloud map oriented replica creation is more suitable to

181

be applied by strongly considering the analysis of the local data relationship and the

remote data relationship. This can enable more precise localization of the data

dependency situations to the data in the private cloud data centres.

• The applicability of the replica selection strategy

The proposed replica selection strategy in Section 4.3 can be applied in the replica

selection module to guide the optimal data to access. It can also be applied in three

proposed fault tolerance strategies to guide the replica selection when rescuing the tasks

from the faulty data centre. This replica selection strategy is applicable for any type of

cloud architecture because it is a network performance oriented strategy by analysing

the network performance metrics without any constraints to the cloud architectures.

Besides, the proposed replica selection algorithm is fit to adapt and extend more

network performance evaluation metrics. It should be noted that different evaluation

metrics should still be treated in different ways when extending the replica selection

algorithm.

• The applicability of the alternative fault tolerance strategies for independent

tasks

The proposed two fault tolerance strategies for independent tasks are alternative. They

also cannot be simultaneously applied in a single data centre. The proposed reactive

fault tolerance strategy in Section 5.1 places emphasis on the utility-based priority

assignment to prioritise the independent tasks. The task urgency and the task operation

profit are two major task attributes to be considered in the utility calculation. The goal

of the proposed strategy in Section 5.1 aims to achieve better task resilience ratio, task

rescue utility, and task operation profit. Although the overall network performance at

each replica-ready data centre is taken into account, it is used to identify the optimal

replica-ready data centre only. The detailed task allocation on the timeline of the

182

optimal replica-ready data centre is not considered. Therefore, the proposed reactive

fault tolerance strategy in Section 5.1 is more applicable to a cloud environment with

low workloads because each data centre in such a cloud environment will be influenced

by the task resubmission operations or the task migration operations to a small extent

when handling faults. The proposed strategy in Section 5.1 can significantly achieve

better task resilience ratio, task rescue utility, and task operation profit to the cloud

environment with low workloads.

Differently, the proposed reactive fault tolerance strategy in Section 5.2 puts emphasis

on the detailed task allocation on the timeline of the data centre. The timeline scenario is

considered in both the task prioritising phase and the eligible time slot selection phase

when handling faults. The consideration of the number of eligible time slots in the task

prioritising phase can reveal the task processing difficulty to allocate in a specific data

centre. The consideration of the time slot length similarity and the time slot resource

situations can avoid the time slot wasteness and the resource contention problem.

Therefore, the proposed reactive fault tolerance strategy in Section 5.2 is more

applicable to a cloud environment with high workloads because each data centre in such

a cloud environment will be largely impacted by the task resubmission operations or the

task migration operations when handling faults. The proposed strategy in Section 5.2

can significantly improve the task resilience ratio while balancing the resource load to

the cloud environment with high workloads.

• The applicability of the reactive fault tolerance strategy for dependent tasks

The proposed reactive fault tolerance strategy for dependent tasks in Chapter 6 develops

a PageRank-based priority assignment method to assign the priority to the workflow

tasks. This is the first time that the PageRank algorithm is applied in the fault tolerance

research area. The PageRank algorithm is modified to achieve an applicable priority

183

assignment system for the dependent tasks in the workflow applications by integrating

the task dependency analysis and the impact analysis among different workflow

instances into the priority calculation process. It can be applied to all workflow types

which a workflow task cannot be initiated until all its preceding tasks are completed.

7.3 Limitations

Although the research in this thesis achieves a lot of benefits to cloud performance, it

still has some limitations. Five major limitations are listed as follows.

• Optimisation objective diversity

Multiple optimisation objectives have been achieved in this thesis. There are still many

other optimisation objectives to be considered, such as energy consumption, response

time, and makespan, etc.

• Replica placement simplification

In this thesis, the replica placement is simplified by adopting the traditional replica

placement strategy, in which each replica will be placed to the locations of its relevant

tasks. Many replica placement strategies have been proposed in the past literature. In

some cases, the traditional replica placement strategy may increase the number of

replicas and incur more extra storage costs. It may also have other negative influences

in terms of energy consumption, data synchronization, and data deduplication, etc.

• Workflow type limitation

In this thesis, it is assumed that a workflow task can only be initiated after all its

preceding tasks are completed. However, this might not always be the case in reality.

Therefore, the proposed fault tolerance strategy for workflows in Chapter 6 may not be

applicable to all workflow types in the real world.

• Lack of experiments

184

In this thesis, the simulations are conducted to evaluate the proposed six strategies. In

the simulation results, it is evident that the proposed strategies can achieve better

performance than the comparative strategies. Nevertheless, the simulations are different

to the experiments because the simulations are always conducted in the virtual

simulation environment. More experiments are still needed to prove the applicability of

the proposed six strategies in the real world.

• The experiment threats

As mentioned above, the proposed six strategies in this thesis are evaluated based on

simulations. Although the simulations are commonly used to evaluate the cloud-related

research, the experiments are still required. However, there are also some technical and

social obstacles to the implementation of the proposed six strategies in the real world.

From the social perspective, the implementation of new management strategy in each

cloud service provider should be progressive to keep the stable running of cloud

services. Therefore, it may take a long time period to update the management rules.

Besides, from the technical perspective, the current cloud control system in each cloud

service provider may not be adaptable to implement the proposed algorithms. For

example, it may not be able to create a three-dimensional vector space to prioritise the

tasks. Apart from that, the proposed strategies may be not adaptable to the cloud

environment with multiple cloud service providers in some special cases if the cloud

service provider boundary is necessary.

• The applicability to the server level or the cloud service provider level

In this thesis, all of the six strategies are proposed for the cloud environment. As

mentioned many times, each cloud data centre is recognized as an individual host entity

in the cloud environment. The proposed six strategies can greatly work at the data

centre level. However, the servers in the cloud data centres or the cloud service

185

providers in the cloud environment can also be defined as individual host entities.

Therefore, the proposed six strategies in this thesis should be tested to prove their

applicability at the server level or the cloud service provider level.

186

Chapter 8 Conclusions and Future Work

To conclude, data explosion becomes one of the major challenges to organizations all

over the world. The cloud computing service offers a novel paradigm to alleviate

massive data processing challenges based on its on-demand service model and

distributed cloud architecture. As the number of users increases, the computing

capability in a single data centre might restrict the overall cloud performance. At the

same time, unexpected faults may occur in the cloud environment. Therefore, data

replication is proposed to enable a strategical data access distribution to multiple cloud

data centres to improve cloud performance. It can also achieve cloud robustness to

avoid the negative influences of the upcoming faults. Furthermore, the replica-applied

cloud environment still needs the reactive fault tolerance strategy to further improve the

cloud performance after the faults occurred.

A data replication and fault management framework is firstly introduced to achieve a

decentralised management to offer the flexibility, the adaptability, and the geo-diversity

for the global collaborators in the cloud environment. This framework contains two

types of platforms at the user side and the data centre side, respectively. Each type of

platform contains multiple modules which are responsible for different management

functionalities.

Six strategies have been proposed in this thesis, which include three data replication

strategies and three fault tolerance strategies. Firstly, a replica creation strategy is

proposed to reduce the total cost by jointly considering the data dependency and the

access frequency. Secondly, a cloud map oriented replica creation strategy is proposed

to achieve the optimal cost reduction per replica with the balancing between the total

cost and the number of replicas. Thirdly, a network performance based replica selection

strategy is proposed to avoid the potential network overloading problem and increase

187

the number of concurrent-running instances at the same time.

The data replication strategy as a data management approach is also widely adopted to

create a replica-applied cloud environment to protect the cloud environment against the

upcoming faults. The reactive fault tolerance strategies are also required to further

improve the cloud performance by rescuing the tasks from the faulty data centres after

the faults already occurred. A utility-based fault tolerance strategy is firstly proposed to

rescue the independent tasks at the faulty data centre for achieving better cloud

resiliency with respect to the resource load of accessing replicas and the task deadline.

Secondly, a timeline-oriented fault tolerance strategy for rescuing the independent tasks

is proposed to achieve better cloud resiliency and load balancing performance by taking

the timeline allocation into consideration. Thirdly, a PageRank based fault tolerance

strategy is proposed to rescue the workflow applications for improving the task

resilience ratio, the workflow resilience ratio, and the workflow continuity ratio by

applying the modified PageRank algorithm based priority assignment method.

However, this thesis still has the following limitations.

• Optimisation objective diversity

• Replica placement simplification

• Workflow type limitation

• Lack of experiments

• The applicability to the server level or the cloud service provider level

In future works, the proposed strategies are planned to extend into different types of

cloud architectures such as edge computing and mobile computing. The PageRank

algorithm is also planned to extend into the replica placement research area for

developing a PageRank-based replica placement strategy.

188

Bibliography

[1] Abdollahi Nami, A., & Rajabion, L. (2019). Data replication techniques in the

mobile ad hoc networks. International Journal of Pervasive Computing and

Communications, 15(3/4), 174–198. https://doi.org/10.1108/IJPCC-06-2019-0051

[2] Agarwal, H., & Sharma, A. (2015). A comprehensive survey of Fault Tolerance tech

niques in Cloud Computing. 2015 International Conference on Computing and Network

 Communications (CoCoNet), 408–413. https://doi.org/10.1109/CoCoNet.2015.7411218

[3] Almuttairi, R. M., Wankar, R., Negi, A., & Rao, C. R. (2010). Replica Selection in

Data Grids Using Preconditioning of Decision Attributes by K-means Clustering (K-RS

DG). 2010 Second Vaagdevi International Conference on Information Technology for R

eal World Problems, 18–23. https://doi.org/10.1109/VCON.2010.11

[4] Altiparmak, N., & Tosun, A. S. (2016). Multithreaded Maximum Flow Based Optim

al Replica Selection Algorithm for Heterogeneous Storage Architectures. IEEE Transac

tions on Computers, 65(5), 1543–1557. https://doi.org/10.1109/TC.2015.2451620

[5] Arabnejad, H., & Barbosa, J. G. (2014). List Scheduling Algorithm for Heterogeneo

us Systems by an Optimistic Cost Table. IEEE Transactions on Parallel and Distribute

d Systems, 25(3), 682–694. https://doi.org/10.1109/TPDS.2013.57

[6] Awad, A., Salem, R., Abdelkader, H., & Salam, M. A. (2021). A Novel Intelligent A

pproach for Dynamic Data Replication in Cloud Environment. IEEE Access, 9, 40240–4

0254. https://doi.org/10.1109/ACCESS.2021.3064917

[7] Aygun, B., Gunel Kilic, B., Arici, N., Cosar, A., & Tuncsiper, B. (2021). Applicatio

n of binary PSO for public cloud resources allocation system of video on demand (VoD)

 services. Applied Soft Computing, 99, 106870. https://doi.org/10.1016/j.asoc.2020.1068

70

[8] Bai, X., Jin, H., Liao, X., Shi, X., & Shao, Z. (2013). RTRM: A Response Time-Bas

https://doi.org/10.1108/IJPCC-06-2019-0051
https://doi.org/10.1109/CoCoNet.2015.7411218
https://doi.org/10.1109/VCON.2010.11
https://doi.org/10.1109/TC.2015.2451620
https://doi.org/10.1109/TPDS.2013.57
https://doi.org/10.1109/ACCESS.2021.3064917
https://doi.org/10.1016/j.asoc.2020.106870
https://doi.org/10.1016/j.asoc.2020.106870

189

ed Replica Management Strategy for Cloud Storage System. Grid and Pervasive Compu

ting, 124–133. https://doi.org/10.1007/978-3-642-38027-3_13

[9] Baldwin, M., & Cromity, J. (2012). SaaS and Cloud Computing, the Rise of Compar

tmentalizing Users Online Via Subscription. New Review of Information Networking, 17

(2), 120–126. https://doi.org/10.1080/13614576.2012.724302

[10] Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Mei-Hui Su, & Vahi, K. (200

8). Characterization of scientific workflows. 2008 Third Workshop on Workflows in Sup

port of Large-Scale Science, 1–10. https://doi.org/10.1109/WORKS.2008.4723958

[11] Bittencourt, L. F., Sakellariou, R., & Madeira, E. R. M. (2010). DAG Scheduling U

sing a Lookahead Variant of the Heterogeneous Earliest Finish Time Algorithm. 2010 1

8th Euromicro Conference on Parallel, Distributed and Network-Based Processing, 27–

34. https://doi.org/10.1109/PDP.2010.56

[12] Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., & Zomaya, A. Y. (2015). Energy

-efficient data replication in cloud computing datacenters. Cluster Computing, 18(1), 38

5–402. https://doi.org/10.1007/s10586-014-0404-x

[13] Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., & Zomaya, A. Y. (2015). Model

s for efficient data replication in cloud computing datacenters. 2015 IEEE International

Conference on Communications (ICC), 6056–6061. https://doi.org/10.1109/ICC.2015.7

249287

[14] Bouzerzour, N. E. H., Ghazouani, S., & Slimani, Y. (2020). A survey on the servic

e interoperability in cloud computing: Client‐centric and provider‐centric perspectives

. Software, Practice & Experience, 50(7), 1025–1060. https://doi.org/10.1002/spe.2794

[15] Cao, S., Deng, K., Ren, K., Li, X., Nie, T., & Song, J. (2019). A Deadline-Constrai

ned Scheduling Algorithm for Scientific Workflows in Clouds. 2019 IEEE 21st Internat

ional Conference on High Performance Computing and Communications; IEEE 17th In

https://doi.org/10.1007/978-3-642-38027-3_13
https://doi.org/10.1080/13614576.2012.724302
https://doi.org/10.1109/WORKS.2008.4723958
https://doi.org/10.1109/PDP.2010.56
https://doi.org/10.1007/s10586-014-0404-x
https://doi.org/10.1109/ICC.2015.7249287
https://doi.org/10.1109/ICC.2015.7249287
https://doi.org/10.1002/spe.2794

190

ternational Conference on Smart City; IEEE 5th International Conference on Data Scie

nce and Systems (HPCC/SmartCity/DSS), 98–105. https://doi.org/10.1109/HPCC/Smart

City/DSS.2019.00029

[16] Cao, X., DeVries, B., Scripps, J., & Trefftz, C. (2020). Data Allocation and Replica

tion in Data Center: Tradeoff and Solutions. 2020 IEEE International Conference on El

ectro Information Technology (EIT), 239–244. https://doi.org/10.1109/EIT48999.2020.9

208247

[17] Challita, S., Paraiso, F., & Merle, P. (2017). Towards Formal-Based Semantic Inter

operability in Multi-Clouds: The FCLOUDS Framework. 2017 IEEE 10th International

 Conference on Cloud Computing (CLOUD), 710–713. https://doi.org/10.1109/CLOUD.

2017.98

[18] Chang, R. S., & Chang, H. P. (2008). A dynamic data replication strategy using acc

ess-weights in data grids. The Journal of Supercomputing, 45(3), 277–295. https://doi.or

g/10.1007/s11227-008-0172-6

[19] Chellouf, M., & Hamrouni, T. (2021). Popularity and correlation aware data replica

tion strategy based on half‐life concept and clustering in cloud system. Concurrency an

d Computation, 33(10). https://doi.org/10.1002/cpe.6159

[20] Chen, G., Guan, N., Huang, K., & Yi, W. (2020). Fault-tolerant real-time tasks sch

eduling with dynamic fault handling. Journal of Systems Architecture, 102, 101688. http

s://doi.org/10.1016/j.sysarc.2019.101688

[21] Chen, T., Chuang, T.-T., & Nakatani, K. (2016). The perceived business benefit of

cloud computing: an exploratory study. Journal of International Technology and Inform

ation Management, 25(4), 101–121.

[22] Crago, S., Dunn, K., Eads, P., Hochstein, L., Dong-In Kang, Mikyung Kang, Modi

um, D., Singh, K., Jinwoo Suh, & Walters, J. P. (2011). Heterogeneous Cloud Computin

https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00029
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00029
https://doi.org/10.1109/EIT48999.2020.9208247
https://doi.org/10.1109/EIT48999.2020.9208247
https://doi.org/10.1109/CLOUD.2017.98
https://doi.org/10.1109/CLOUD.2017.98
https://doi.org/10.1007/s11227-008-0172-6
https://doi.org/10.1007/s11227-008-0172-6
https://doi.org/10.1002/cpe.6159
https://doi.org/10.1016/j.sysarc.2019.101688
https://doi.org/10.1016/j.sysarc.2019.101688

191

g. 2011 IEEE International Conference on Cluster Computing, 378–385. https://doi.org/

10.1109/CLUSTER.2011.49

[23] Cunha, D., Neves, P., & Sousa, P. (2014). PaaS manager: a platform-as-a-service a

ggregation framework. Computer Science & Information Systems, 11(4), 1209-1228. htt

ps://doi.org/10.2298/CSIS130828028C

[24] Deng, K., Song, J., Ren, K., Yuan, D., & Chen, J. (2011). Graph-Cut Based Cosche

duling Strategy Towards Efficient Execution of Scientific Workflows in Collaborative

Cloud Environments. 2011 IEEE/ACM 12th International Conference on Grid Computi

ng, 34–41. https://doi.org/10.1109/Grid.2011.14

[25] Deng, S., Huang, L., Taheri, J., & Zomaya, A. Y. (2015). Computation Offloading

for Service Workflow in Mobile Cloud Computing. IEEE Transactions on Parallel and

Distributed Systems, 26(12), 3317–3329. https://doi.org/10.1109/TPDS.2014.2381640

[26] Devarajan, H., Kougkas, A., & Sun, X. H. (2020). HReplica: A Dynamic Data Repl

ication Engine with Adaptive Compression for Multi-Tiered Storage. 2020 IEEE Intern

ational Conference on Big Data (Big Data), 256–265. https://doi.org/10.1109/BigData5

0022.2020.9378167

[27] Ebadi, Y., & Jafari Navimipour, N. (2019). An energy‐aware method for data repli

cation in the cloud environments using a Tabu search and particle swarm optimization a

lgorithm. Concurrency and Computation, 31(1), e4757. https://doi.org/10.1002/cpe.475

7

[28] ElYamany, H. F., Mohamed, M. F., Grolinger, K., & Capretz, M. A. (2015). A gen

eralized service replication process in distributed environments. In Proceedings of the 5t

h International Conference on Cloud Computing and Services Science, 186-193. https://

doi.org/10.5220/0005485201860193

[29] Faragardi, H. R., Saleh Sedghpour, M. R., Fazliahmadi, S., Fahringer, T., & Rasoul

https://doi.org/10.1109/CLUSTER.2011.49
https://doi.org/10.1109/CLUSTER.2011.49
https://doi.org/10.2298/CSIS130828028C
https://doi.org/10.2298/CSIS130828028C
https://doi.org/10.1109/Grid.2011.14
https://doi.org/10.1109/TPDS.2014.2381640
https://doi.org/10.1109/BigData50022.2020.9378167
https://doi.org/10.1109/BigData50022.2020.9378167
https://doi.org/10.1002/cpe.4757
https://doi.org/10.1002/cpe.4757
https://doi.org/10.5220/0005485201860193
https://doi.org/10.5220/0005485201860193

192

i, N. (2020). GRP-HEFT: A Budget-Constrained Resource Provisioning Scheme for Wo

rkflow Scheduling in IaaS Clouds. IEEE Transactions on Parallel and Distributed Syste

ms, 31(6), 1239–1254. https://doi.org/10.1109/TPDS.2019.2961098

[30] Gill, N. K., & Singh, S. (2014). Dynamic Cost-Aware Re-replication and Rebalanci

ng Strategy in Cloud System. In Proceedings of the 3rd International Conference on Fr

ontiers of Intelligent Computing: Theory and Applications (FICTA) 2014, 39–47. Spring

er International Publishing. https://doi.org/10.1007/978-3-319-12012-6_5

[31] Gill, N. K., & Singh, S. (2016). A dynamic, cost-aware, optimized data replication

strategy for heterogeneous cloud data centers. Future Generation Computer Systems, 65

, 10–32. https://doi.org/10.1016/j.future.2016.05.016

[32] Gupta, P., Seetharaman, A., & Raj, J. R. (2013). The usage and adoption of cloud c

omputing by small and medium businesses. International Journal of Information Mana

gement, 33(5), 861–874. https://doi.org/10.1016/j.ijinfomgt.2013.07.001

[33] Gupta, V., Harchol Balter, M., Sigman, K., & Whitt, W. (2007). Analysis of join-th

e-shortest-queue routing for web server farms. Performance Evaluation, 64(9), 1062–10

81. https://doi.org/10.1016/j.peva.2007.06.012

[34] Gupta, V., Kaur, B. P., & Jangra, S. (2019). An efficient method for fault tolerance

in cloud environment using encryption and classification. Soft Computing (Berlin, Germ

any), 23(24), 13591–13602. https://doi.org/10.1007/s00500-019-03896-6

[35] Hasan, M., & Goraya, M. S. (2018). Fault tolerance in cloud computing environme

nt: A systematic survey. Computers in Industry, 99, 156–172. https://doi.org/10.1016/j.c

ompind.2018.03.027

[36] He, L., Qian, Z., & Shang, F. (2020). A novel predicted replication strategy in clou

d storage. The Journal of Supercomputing, 76(7), 4838–4856. https://doi.org/10.1007/s1

1227-018-2647-4

https://doi.org/10.1109/TPDS.2019.2961098
https://doi.org/10.1007/978-3-319-12012-6_5
https://doi.org/10.1016/j.future.2016.05.016
https://doi.org/10.1016/j.ijinfomgt.2013.07.001
https://doi.org/10.1016/j.peva.2007.06.012
https://doi.org/10.1007/s00500-019-03896-6
https://doi.org/10.1016/j.compind.2018.03.027
https://doi.org/10.1016/j.compind.2018.03.027
https://doi.org/10.1007/s11227-018-2647-4
https://doi.org/10.1007/s11227-018-2647-4

193

[37] Jafari Navimipour, N., Rahmani, A. M., Habibizad Navin, A., & Hosseinzadeh, M.

(2015). Expert Cloud: A Cloud-based framework to share the knowledge and skills of h

uman resources. Computers in Human Behavior, 46, 57–74. https://doi.org/10.1016/j.ch

b.2015.01.001

[38] Janpet, J., & Yean-Fu Wen. (2013). Reliable and Available Data Replication Planni

ng for Cloud Storage. 2013 IEEE 27th International Conference on Advanced Informati

on Networking and Applications (AINA), 772–779. https://doi.org/10.1109/AINA.2013.

125

[39] Jayasinghe, M., Tari, Z., Zeephongsekul, P., & Zomaya, A. Y. (2011). Task assign

ment in multiple server farms using preemptive migration and flow control. Journal of

Parallel and Distributed Computing, 71(12), 1608–1621. https://doi.org/10.1016/j.jpdc.

2011.07.001

[40] Jhawar, R., & Piuri, V. (2017). Fault tolerance and resilience in cloud computing e

nvironments. In Computer and information security handbook (pp. 165-181). Morgan K

aufmann. https://doi.org/10.1016/B978-0-12-803843-7.00009-0

[41] Jiang, J., Li, Y., Hong, S. H., Xu, A., & Wang, K. (2018). A time-sensitive network

ing (TSN) simulation model based on OMNET++. In 2018 IEEE International Confere

nce on Mechatronics and Automation (ICMA), 643-648. https://doi.org/10.1109/ICMA.

2018.8484302

[42] Jiang, W., Xie, H., Zhou, X., Fang, L., & Wang, J. (2017). Performance Analysis a

nd Improvement of Replica Selection Algorithms for Key-Value Stores. 2017 IEEE 10t

h International Conference on Cloud Computing (CLOUD), 786-789. https://doi.org/10.

1109/CLOUD.2017.115

[43] Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta, G., & Vahi, K. (2013).

Characterizing and profiling scientific workflows. Future Generation Computer System

https://doi.org/10.1016/j.chb.2015.01.001
https://doi.org/10.1016/j.chb.2015.01.001
https://doi.org/10.1109/AINA.2013.125
https://doi.org/10.1109/AINA.2013.125
https://doi.org/10.1016/j.jpdc.2011.07.001
https://doi.org/10.1016/j.jpdc.2011.07.001
https://doi.org/10.1016/B978-0-12-803843-7.00009-0
https://doi.org/10.1109/ICMA.2018.8484302
https://doi.org/10.1109/ICMA.2018.8484302
https://doi.org/10.1109/CLOUD.2017.115
https://doi.org/10.1109/CLOUD.2017.115

194

s, 29(3), 682–692. https://doi.org/10.1016/j.future.2012.08.015

[44] Kaseb, M. R., Khafagy, M. H., Ali, I. A., & Saad, E. M. (2019). An improved tech

nique for increasing availability in Big Data replication. Future Generation Computer S

ystems, 91, 493–505. https://doi.org/10.1016/j.future.2018.08.015

[45] Kaul, S., Sood, K., & Jain, A. (2017). Cloud Computing and its Emerging Need: A

dvantages and Issues. International Journal of Advanced Research in Computer Science

, 8(3), 618-624.

[46] Khalajzadeh, H., Dong Yuan, Grundy, J., & Yun Yang. (2016). Improving Cloud-

Based Online Social Network Data Placement and Replication. 2016 IEEE 9th Internati

onal Conference on Cloud Computing (CLOUD), 678–685. https://doi.org/10.1109/CL

OUD.2016.0095

[47] Khaldi, M., Rebbah, M., Meftah, B., & Smail, O. (2020). Fault tolerance for a scien

tific workflow system in a Cloud computing environment. International Journal of Com

puters & Applications, 42(7), 705–714. https://doi.org/10.1080/1206212X.2019.164765

[48] Khelifa, A., Hamrouni, T., Mokadem, R., & Charrada, F. B. (2020). SLA-aware tas

k scheduling and data replication for enhancing provider profit in clouds. Procedia Com

puter Science, 176, 3143–3152. https://doi.org/10.1016/j.procs.2020.09.174

[49] Kim, W., Lee, J. H., Hong, C., Han, C., Lee, H., & Jang, B. (2012). An innovative

method for data and software integration in SaaS. Computers & Mathematics with Appli

cations (1987), 64(5), 1252–1258. https://doi.org/10.1016/j.camwa.2012.03.069

[50] Ko, A. C. & Zaw, W. T. (2014). Fault Tolerant Erasure Coded Replication for HDF

S Based Cloud Storage. 2014 IEEE Fourth International Conference on Big Data and C

loud Computing, 104–109. https://doi.org/10.1109/BDCloud.2014.69

[51] Kumar, P., & Kumar, R. (2019). Issues and Challenges of Load Balancing Techniq

ues in Cloud Computing: A Survey. ACM Computing Surveys, 51(6), 1–35. https://doi.o

https://doi.org/10.1016/j.future.2012.08.015
https://doi.org/10.1016/j.future.2018.08.015
https://doi.org/10.1109/CLOUD.2016.0095
https://doi.org/10.1109/CLOUD.2016.0095
https://doi.org/10.1080/1206212X.2019.164765
https://doi.org/10.1016/j.procs.2020.09.174
https://doi.org/10.1016/j.camwa.2012.03.069
https://doi.org/10.1109/BDCloud.2014.69
https://doi.org/10.1145/3281010

195

rg/10.1145/3281010

[52] Laribi, I. & Didi, F. (2014). Studies and Analysis of Cloud Computing Solution. Jo

urnal of Computer Science and Control Systems, 7(2), 19–22.

[53] Li, C., & Li, L. (2013). Efficient resource allocation for optimizing objectives of cl

oud users, IaaS provider and SaaS provider in cloud environment. The Journal of Super

computing, 65(2), 866–885. https://doi.org/10.1007/s11227-013-0869-z

[54] Li, C., Wang, C., Tang, H., & Luo, Y. (2019). Scalable and dynamic replica consist

ency maintenance for edge-cloud system. Future Generation Computer Systems, 101, 5

90–604. https://doi.org/10.1016/j.future.2019.05.014

[55] Li, C., Zhang, Y., & Luo, Y. (2020). Adaptive Replica Creation and Selection Strat

egies for Latency-Aware Application in Collaborative Edge-Cloud System. Computer J

ournal, 63(9), 1338–1354. https://doi.org/10.1093/comjnl/bxz070

[56] Li, W., Yang, Y., & Yuan, D. (2011). A Novel Cost-Effective Dynamic Data Repli

cation Strategy for Reliability in Cloud Data Centres. 2011 IEEE Ninth International Co

nference on Dependable, Autonomic and Secure Computing, 496–502. https://doi.org/10

.1109/DASC.2011.95

[57] Li, W., Yang, Y., & Yuan, D. (2016). Ensuring Cloud Data Reliability with Minim

um Replication by Proactive Replica Checking. IEEE Transactions on Computers, 65(5

), 1494–1506. https://doi.org/10.1109/TC.2015.2451644

[58] Limam, S., Mokadem, R., & Belalem, G. (2019). Data replication strategy with sati

sfaction of availability, performance and tenant budget requirements. Cluster Computin

g, 22(4), 1199–1210. https://doi.org/10.1007/s10586-018-02899-6

[59] Lin, J. W., Chen, C. H., & Chang, J. M. (2013). QoS-Aware Data Replication for D

ata-Intensive Applications in Cloud Computing Systems. IEEE Transactions on Cloud

Computing, 1(1), 101–115. https://doi.org/10.1109/TCC.2013.1

https://doi.org/10.1145/3281010
https://doi.org/10.1007/s11227-013-0869-z
https://doi.org/10.1016/j.future.2019.05.014
https://doi.org/10.1093/comjnl/bxz070
https://doi.org/10.1109/DASC.2011.95
https://doi.org/10.1109/DASC.2011.95
https://doi.org/10.1109/TC.2015.2451644
https://doi.org/10.1007/s10586-018-02899-6
https://doi.org/10.1109/TCC.2013.1

196

[60] Lin, Y., Chen, Y., Wang, G., & Deng, B. (2010). Rigel: A Scalable and Lightweigh

t Replica Selection Service for Replicated Distributed File System. 2010 10th IEEE/AC

M International Conference on Cluster, Cloud and Grid Computing, 581–582. https://d

oi.org/10.1109/CCGRID.2010.51

[61] Liu, G., Shen, H., & Chandler, H. (2016). Selective Data Replication for Online So

cial Networks with Distributed Datacenters. IEEE Transactions on Parallel and Distrib

uted Systems, 27(8), 2377–2393. https://doi.org/10.1109/TPDS.2015.2485266

[62] Liu, J., Wang, S., Zhou, A., Kumar, S. A. P., Yang, F., & Buyya, R. (2018). Using

Proactive Fault-Tolerance Approach to Enhance Cloud Service Reliability. IEEE Trans

actions on Cloud Computing, 6(4), 1191–1202. https://doi.org/10.1109/TCC.2016.2567

392

[63] Liu, L., Fan, Q., & Buyya, R. (2018). A Deadline-Constrained Multi-Objective Tas

k Scheduling Algorithm in Mobile Cloud Environments. IEEE Access, 6, 52982–52996.

 https://doi.org/10.1109/ACCESS.2018.2870915

[64] Liu, L., Yang, Y., Wang, H., Tan, Z. & Li, C. (2017). A group based genetic algorit

hm data replica placement strategy for scientific workflow. 2017 IEEE/ACIS 16th Intern

ational Conference on Computer and Information Science (ICIS), 459–464. https://doi.o

rg/10.1109/ICIS.2017.7960036

[65] Long, S. Q., Zhao, Y. L., & Chen, W. (2014). MORM: A Multi-objective Optimize

d Replication Management strategy for cloud storage cluster. Journal of Systems Archite

cture, 60(2), 234–244. https://doi.org/10.1016/j.sysarc.2013.11.012

[66] Lynn, T., Morrison, J. P., & Kenny, D. (2018). Heterogeneity, High Performance C

omputing, Self-Organization and the Cloud (1st ed. 2018.). Springer International Publis

hing. https://doi.org/10.1007/978-3-319-76038-4

[67] Mansouri, N. (2016). Adaptive data replication strategy in cloud computing for per

https://doi.org/10.1109/CCGRID.2010.51
https://doi.org/10.1109/CCGRID.2010.51
https://doi.org/10.1109/TPDS.2015.2485266
https://doi.org/10.1109/TCC.2016.2567392
https://doi.org/10.1109/TCC.2016.2567392
https://doi.org/10.1109/ACCESS.2018.2870915
https://doi.org/10.1109/ICIS.2017.7960036
https://doi.org/10.1109/ICIS.2017.7960036
https://doi.org/10.1016/j.sysarc.2013.11.012
https://doi.org/10.1007/978-3-319-76038-4

197

formance improvement. Frontiers of Computer Science, 10(5), 925–935. https://doi.org/

10.1007/s11704-016-5182-6

[68] Mansouri, N., & Javidi, M. M. (2018). A hybrid data replication strategy with fuzz

y-based deletion for heterogeneous cloud data centers. The Journal of Supercomputing

, 74(10), 5349–5372. https://doi.org/10.1007/s11227-018-2427-1

[69] Mansouri, N., & Javidi, M. M. (2020). A review of data replication based on meta-

heuristics approach in cloud computing and data grid. Soft Computing (Berlin, Germany

), 24(19), 14503–14530. https://doi.org/10.1007/s00500-020-04802-1

[70] Mansouri, N., Javidi, M. M., & Zade, B. M. H. (2021). Hierarchical data replicatio

n strategy to improve performance in cloud computing. Frontiers of Computer Science

, 15(2), 1-17. https://doi.org/10.1007/s11704-019-9099-8

[71] Mansouri, Y., & Buyya, R. (2019). Dynamic replication and migration of data obje

cts with hot-spot and cold-spot statuses across storage data centers. Journal of Parallel

and Distributed Computing, 126, 121–133. https://doi.org/10.1016/j.jpdc.2018.12.003

[72] Mansouri, Y., Toosi, A., & Buyya, R. (2018). Data Storage Management in Cloud

Environments: Taxonomy, Survey, and Future Directions. ACM Computing Surveys, 50

(6), 1–51. https://doi.org/10.1145/3136623

 [73] Manvi, S. S., & Krishna Shyam, G. (2014). Resource management for Infrastructu

re as a Service (IaaS) in cloud computing: A survey. Journal of Network and Computer

Applications, 41, 424–440. https://doi.org/10.1016/j.jnca.2013.10.004

[74] Marahatta, A., Wang, Y., Zhang, F., Sangaiah, A. K., Tyagi, S. K. S., & Liu, Z. (20

19). Energy-Aware Fault-Tolerant Dynamic Task Scheduling Scheme for Virtualized Cl

oud Data Centers. Mobile Networks and Applications, 24(3), 1063–1077. https://doi.org/

10.1007/s11036-018-1062-7

[75] Maresova, P., Sobeslav, V., & Krejcar, O. (2017). Cost-benefit analysis - evaluatio

https://doi.org/10.1007/s11704-016-5182-6
https://doi.org/10.1007/s11704-016-5182-6
https://doi.org/10.1007/s11227-018-2427-1
https://doi.org/10.1007/s00500-020-04802-1
https://doi.org/10.1007/s11704-019-9099-8
https://doi.org/10.1016/j.jpdc.2018.12.003
https://doi.org/10.1145/3136623
https://doi.org/10.1016/j.jnca.2013.10.004
https://doi.org/10.1007/s11036-018-1062-7
https://doi.org/10.1007/s11036-018-1062-7

198

n model of cloud computing deployment for use in companies. Applied Economics, 49(6

), 521–533. https://doi.org/10.1080/00036846.2016.1200188

[76] Marinescu, D. C. (2013). Cloud computing theory and practice (1st ed.). Morgan K

aufmann

[77] Matani, A., Naji, H. R., & Motallebi, H. (2020). A Fault-Tolerant Workflow Sched

uling Algorithm for Grid with Near-Optimal Redundancy. Journal of Grid Computing

, 18(3), 377–394. https://doi.org/10.1007/s10723-020-09522-2

[78] Milani, B. A., & Navimipour, N. J. (2016). A comprehensive review of the data rep

lication techniques in the cloud environments: Major trends and future directions. Journ

al of Network and Computer Applications, 64, 229–238. https://doi.org/10.1016/j.jnca.2

016.02.005

[79] Modisane, P., & Jokonya, O. (2021). Evaluating the benefits of Cloud Computing i

n Small, Medium and Micro-sized Enterprises (SMMEs). Procedia Computer Science

, 181, 784–792. https://doi.org/10.1016/j.procs.2021.01.231

[80] Mokadem, R., & Hameurlain, A. (2020). A data replication strategy with tenant per

formance and provider economic profit guarantees in Cloud data centers. The Journal of

 Systems and Software, 159, 110447.

https://doi.org/10.1016/j.jss.2019.110447

[81] Mousavi Nik, S. S., Naghibzadeh, M., & Sedaghat, Y. (2021). Task replication to i

mprove the reliability of running workflows on the cloud. Cluster Computing, 24(1), 34

3–359. https://doi.org/10.1007/s10586-020-03109-y

[82] Mseddi, A., Salahuddin, M. A., Zhani, M. F., Elbiaze, H., & Glitho, R. H. (2021).

Efficient Replica Migration Scheme for Distributed Cloud Storage Systems. IEEE Tran

sactions on Cloud Computing, 9(1), 155–167. https://doi.org/10.1109/TCC.2018.28587

92

https://doi.org/10.1080/00036846.2016.1200188
https://doi.org/10.1007/s10723-020-09522-2
https://doi.org/10.1016/j.jnca.2016.02.005
https://doi.org/10.1016/j.jnca.2016.02.005
https://doi.org/10.1016/j.procs.2021.01.231
https://doi.org/10.1016/j.jss.2019.110447
https://doi.org/10.1007/s10586-020-03109-y
https://doi.org/10.1109/TCC.2018.2858792
https://doi.org/10.1109/TCC.2018.2858792

199

[83] Mukwevho, M. A., & Celik, T. (2021). Toward a Smart Cloud: A Review of Fault-

Tolerance Methods in Cloud Systems. IEEE Transactions on Services Computing, 14(2)

, 589–605. https://doi.org/10.1109/TSC.2018.2816644

[84] Nazari Cheraghlou, M., Khadem-Zadeh, A., & Haghparast, M. (2016). A survey of

fault tolerance architecture in cloud computing. Journal of Network and Computer Appli

cations, 61, 81–92. https://doi.org/10.1016/j.jnca.2015.10.004

[85] Ouda, G. K., & Yas, Q. M. (2021). Design of Cloud Computing for Educational Ce

nters Using Private Cloud Computing: A Case Study. Journal of Physics. Conference Se

ries, 1804(1), 12119–. https://doi.org/10.1088/1742-6596/1804/1/012119

[86] Oujezsky, V., & Horvath, T. (2016). Case study and comparison of SimPy 3 and O

MNeT++ Simulation. 2016 39th International Conference on Telecommunications and

Signal Processing (TSP), 15–19. https://doi.org/10.1109/TSP.2016.7760821

[87] Peniak, P. (2014). MODEL OF INFRASTRUCTURE PROVISIONING IN IAAS

CLOUDS. Annals of Faculty Engineering Hunedoara, 12(3), 189–194.

[88] Phaphoom, N., Wang, X., Samuel, S., Helmer, S., & Abrahamsson, P. (2015). A su

rvey study on major technical barriers affecting the decision to adopt cloud services. Th

e Journal of Systems and Software, 103, 167–181. https://doi.org/10.1016/j.jss.2015.02.

002

[89] Prathiba, S., & Sowvarnica, S. (2017). Survey of failures and fault tolerance in clou

d. 2017 2nd International Conference on Computing and Communications Technologies

 (ICCCT), 169–172. https://doi.org/10.1109/ICCCT2.2017.7972271

[90] Rajalakshmi, A., Vijayakumar, D., & Srinivasagan, K. G. (2014). An improved dyn

amic data replica selection and placement in cloud. 2014 International Conference on R

ecent Trends in Information Technology, 1–6. https://doi.org/10.1109/ICRTIT.2014.699

6180

https://doi.org/10.1109/TSC.2018.2816644
https://doi.org/10.1016/j.jnca.2015.10.004
https://doi.org/10.1088/1742-6596/1804/1/012119
https://doi.org/10.1109/TSP.2016.7760821
https://doi.org/10.1016/j.jss.2015.02.002
https://doi.org/10.1016/j.jss.2015.02.002
https://doi.org/10.1109/ICCCT2.2017.7972271
https://doi.org/10.1109/ICRTIT.2014.6996180
https://doi.org/10.1109/ICRTIT.2014.6996180

200

[91] Rasool, Q., Li, J., Oreku, G. S., Zhang, S., & Yang, D. (2008). A load balancing re

plica placement strategy in Data Grid. 2008 Third International Conference on Digital I

nformation Management, 751-756. http://doi.org/10.1109/ICDIM.2008.4746731

[92] Ray, B. K., Saha, A., Khatua, S., & Roy, S. (2020). Proactive Fault-Tolerance Tech

nique to Enhance Reliability of Cloud Service in Cloud Federation Environment. IEEE

Transactions on Cloud Computing, 1–1. https://doi.org/10.1109/TCC.2020.2968522

[93] Reinsel, D., Gantz, J., & Rydning, J. (2018). The Digitization of the World. http://b

ook.itep.ru/depository/dig_economy/idc-seagate-dataage-whitepaper.pdf

[94] Samadi, Y., Zbakh, M., & Tadonki, C. (2018). E-HEFT: enhancement heterogeneo

us earliest finish time algorithm for task scheduling based on load balancing in cloud co

mputing. 2018 International Conference on High Performance Computing & Simulatio

n (HPCS), 601-609. https://doi.org/10.1109/HPCS.2018.00100

[95] Sampaio, A. M., & Barbosa, J. G. (2018). A comparative cost analysis of fault-toler

ance mechanisms for availability on the cloud. Sustainable Computing Informatics and

Systems, 19, 315–323. https://doi.org/10.1016/j.suscom.2017.11.006

[96] Sandokji, S., & Eassa, F. (2019). Dynamic Variant Rank HEFT Task Scheduling A

lgorithm Toward Exascle Computing. Procedia Computer Science, 163, 482–493. https:

//doi.org/10.1016/j.procs.2019.12.131

[97] Sarvabhatla, M., Konda, S., Vorugunti, C. S., & Babu, M. M. N. (2017). A Dynami

c and Energy Efficient Greedy Scheduling Algorithm for Cloud Data Centers. 2017 IEE

E International Conference on Cloud Computing in Emerging Markets (CCEM), 47–52

https://doi.org/10.1109/CCEM.2017.9

[98] Schwarzkopf, M., Murray, D. G., & Hand, S. (2012). The seven deadly sins of clou

d computing research. 4th {USENIX} Workshop on Hot Topics in Cloud Computing (Ho

tCloud 12), 1.

http://doi.org/10.1109/ICDIM.2008.4746731
https://doi.org/10.1109/TCC.2020.2968522
http://book.itep.ru/depository/dig_economy/idc-seagate-dataage-whitepaper.pdf
http://book.itep.ru/depository/dig_economy/idc-seagate-dataage-whitepaper.pdf
https://doi.org/10.1109/HPCS.2018.00100
https://doi.org/10.1016/j.suscom.2017.11.006
https://doi.org/10.1016/j.procs.2019.12.131
https://doi.org/10.1016/j.procs.2019.12.131
https://doi.org/10.1109/CCEM.2017.9

201

[99] Setlur, A. R., Nirmala, S. J., Singh, H. S., & Khoriya, S. (2020). An efficient fault t

olerant workflow scheduling approach using replication heuristics and checkpointing in

the cloud. Journal of Parallel and Distributed Computing, 136, 14–28. https://doi.org/1

0.1016/j.jpdc.2019.09.004

[100] Shakkeera, L., & Tamilselvan, L. (2016). QoS and load balancing aware task sche

duling framework for mobile cloud computing environment. International Journal of W

ireless and Mobile Computing. 10(4), 309–316. https://doi.org/10.1504/IJWMC.2016.0

78201

[101] Shorfuzzaman, M., Graham, P., & Eskicioglu, R. (2010). Adaptive popularity-dri

ven replica placement in hierarchical data grids. Journal of Supercomputing, 51(3), 374

–392. https://doi.org/10.1007/s11227-009-0371-9

[102] Shwe, T., & Aritsugi, M. (2018). PRTuner: Proactive-Reactive Re-Replication Tu

ning in HDFS-based Cloud Data Center. IEEE Cloud Computing, 5(6), 48–57. https://d

oi.org/10.1109/MCC.2018.064181120

 [103] Sivagami, V., & Easwarakumar, K. (2019). An Improved Dynamic Fault Toleran

t Management Algorithm during VM migration in Cloud Data Center. Future Generatio

n Computer Systems, 98, 35–43. https://doi.org/10.1016/j.future.2018.11.002

[104] Song, C., Kim, S. W., & Sohn, Y. (2020). Acceptance of public cloud storage serv

ices in South Korea: A multi-group analysis. International Journal of Information Mana

gement, 51, 102035. https://doi.org/10.1016/j.ijinfomgt.2019.11.003

[105] Stergiou, C., Psannis, K. E., Kim, B. G., & Gupta, B. (2018). Secure integration o

f IoT and Cloud Computing. Future Generation Computer Systems, 78, 964–975. https:/

/doi.org/10.1016/j.future.2016.11.031

[106] Subasi, O., Yalcin, G., Zyulkyarov, F., Unsal, O., & Labarta, J. (2017). Designing

 and Modelling Selective Replication for Fault-tolerant HPC Applications. Proceedings

https://doi.org/10.1016/j.jpdc.2019.09.004
https://doi.org/10.1016/j.jpdc.2019.09.004
https://doi.org/10.1504/IJWMC.2016.078201
https://doi.org/10.1504/IJWMC.2016.078201
https://doi.org/10.1007/s11227-009-0371-9
https://doi.org/10.1109/MCC.2018.064181120
https://doi.org/10.1109/MCC.2018.064181120
https://doi.org/10.1016/j.future.2018.11.002
https://doi.org/10.1016/j.ijinfomgt.2019.11.003
https://doi.org/10.1016/j.future.2016.11.031
https://doi.org/10.1016/j.future.2016.11.031

202

of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

, 452–457. https://doi.org/10.1109/CCGRID.2017.40

[107] Sun, D. W., Chang, G. R., Gao, S., Jin L. Z., & Wang X. W. (2012). Modeling a

Dynamic Data Replication Strategy to Increase System Availability in Cloud Computin

g Environments. Journal of Computer Science and Technology, 27(2), 256–272. https://

doi.org/10.1007/s11390-012-1221-4

[108] Sun, S., Yao, W., Qiao, B., Zong, M., He, X., & Li, X. (2019). RRSD: A file repli

cation method for ensuring data reliability and reducing storage consumption in a dyna

mic Cloud-P2P environment. Future Generation Computer Systems, 100, 844–858. http

s://doi.org/10.1016/j.future.2019.05.054

[109] Sun, Z., Shen, J. & Yong, J. (2011). DeDu: Building a deduplication storage syste

m over cloud computing. Proceedings of the 2011 15th International Conference on Co

mputer Supported Cooperative Work in Design (CSCWD), 348–355. https://doi.org/10.1

109/CSCWD.2011.5960097

[110] Sun, Z., Shen, J., & Yong, J. (2013). A novel approach to data deduplication over

the engineering-oriented cloud systems. Integrated Computer-Aided Engineering, 20(1),

 45–57. https://doi.org/10.3233/ICA-120418

[111] Thorsen, S. (2015). Replica selection in Apache Cassandra: Reducing the tail late

ncy for reads using the C3 algorithm. Digitala Vetenskapliga Arkivet. https://www.diva

-portal.org/smash/record.jsf?pid=diva2%3A827372&dswid=7119

[112] TOLE. A. A. (2015). Cloud Computing and Business Intelligence. Database Syste

ms Journal, V(4), 49–58.

[113] Tomas, L., Kokkinos, P., Anagnostopoulos, V., Feder, O., Kyriazis, D., Meth, K.,

Varvarigos, E., & Varvarigou, T. (2020). Disaster Recovery Layer for Distributed Open

Stack Deployments. IEEE Transactions on Cloud Computing, 8(1), 112–123. https://doi

https://doi.org/10.1109/CCGRID.2017.40
https://doi.org/10.1007/s11390-012-1221-4
https://doi.org/10.1007/s11390-012-1221-4
https://doi.org/10.1016/j.future.2019.05.054
https://doi.org/10.1016/j.future.2019.05.054
https://doi.org/10.1109/CSCWD.2011.5960097
https://doi.org/10.1109/CSCWD.2011.5960097
https://doi.org/10.3233/ICA-120418
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A827372&dswid=7119
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A827372&dswid=7119
https://doi.org/10.1109/TCC.2017.2745560

203

.org/10.1109/TCC.2017.2745560

[114] Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and low-co

mplexity task scheduling for heterogeneous computing. IEEE Transactions on Parallel

and Distributed Systems, 13(3), 260–274. https://doi.org/10.1109/71.993206

[115] Tos, U., Mokadem, R., Hameurlain, A., Ayav, T., & Bora, S. (2016). A Performa

nce and Profit Oriented Data Replication Strategy for Cloud Systems. 2016 Intl IEEE C

onferences on Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,

 Scalable Computing and Communications, Cloud and Big Data Computing, Internet of

People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 78

0–787. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.01

25

[116] Tudoran, R., Costan, A., & Antoniu, G. (2016). OverFlow: Multi-Site Aware Big

Data Management for Scientific Workflows on Clouds. IEEE Transactions on Cloud Co

mputing, 4(1), 76–89. https://doi.org/10.1109/TCC.2015.2440254

[117] Vahi, K., Rynge, M., Juve, G., Mayani, R., & Deelman, E. (2013). Rethinking dat

a management for big data scientific workflows. 2013 IEEE International Conference o

n Big Data, 27–35. https://doi.org/10.1109/BigData.2013.6691724

[118] Vardhan, M., Goel, A., Verma, A., & Kushwaha, D. S. (2012). A Dynamic Fault

Tolerant Threshold based Replication Mechanism in Distributed Environment. Procedia

 Technology, 6, 188–195. https://doi.org/10.1016/j.protcy.2012.10.023

[119] Verma, A., & Kaushal, S. (2015). Cost-Time Efficient Scheduling Plan for Execut

ing Workflows in the Cloud. Journal of Grid Computing, 13(4), 495–506. https://doi.or

g/10.1007/s10723-015-9344-9

[120] Wan, C., Wang, C., & Pei, J. (2012). A QoS-awared scientific workflow scheduli

ng schema in cloud computing. 2012 IEEE International Conference on Information Sci

https://doi.org/10.1109/TCC.2017.2745560
https://doi.org/10.1109/71.993206
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0125
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0125
https://doi.org/10.1109/TCC.2015.2440254
https://doi.org/10.1109/BigData.2013.6691724
https://doi.org/10.1016/j.protcy.2012.10.023
https://doi.org/10.1007/s10723-015-9344-9
https://doi.org/10.1007/s10723-015-9344-9

204

ence and Technology, 634–639. https://doi.org/10.1109/ICIST.2012.6221722

[121] Wang, C., Lu, Z., Wu, Z., Wu, J., & Huang, S. (2017). Optimizing Multi-Cloud C

DN Deployment and Scheduling Strategies Using Big Data Analysis. 2017 IEEE Intern

ational Conference on Services Computing (SCC), 273–280. https://doi.org/10.1109/SC

C.2017.42

[122] Wang, M., Zhang, J., Dong, F. & Luo, J. (2014). Data Placement and Task Sched

uling Optimization for Data Intensive Scientific Workflow in Multiple Data Centers En

vironment. 2014 Second International Conference on Advanced Cloud and Big Data, 77

–84. https://doi.org/10.1109/CBD.2014.19

[123] Wang, P., Gao, R. X., & Fan, Z. (2015). Cloud Computing for Cloud Manufacturi

ng: Benefits and Limitations. Journal of Manufacturing Science and Engineering, 137(4

), 40901. https://doi.org/10.1115/1.4030209

[124] Wang, Z., Zheng, W., Chen, P., Ma, Y., Xia, Y., Liu, W., Li, X., & Guo, K. (2020

). A Novel Coevolutionary Approach to Reliability Guaranteed Multi-Workflow Schedu

ling upon Edge Computing Infrastructures. Security and Communication Networks, 202

0. https://doi.org/10.1155/2020/6697640

[125] Wei, Q., Veeravalli, B., Gong, B., Zeng, L., & Feng, D. (2010). CDRM: A Cost-E

ffective Dynamic Replication Management Scheme for Cloud Storage Cluster. 2010 IE

EE International Conference on Cluster Computing, 188–196. https://doi.org/10.1109/C

LUSTER.2010.24

[126] Welsh, T., & Benkhelifa, E. (2020). On Resilience in Cloud Computing: A Surve

y of Techniques across the Cloud Domain. ACM Computing Surveys, 53(3), 1–36. https:

//doi.org/10.1145/3388922

[127] Wu, X. (2016). Data Sets Replicas Placements Strategy from Cost-Effective View

 in the Cloud. Scientific Programming, 2016, 1–13. https://doi.org/10.1155/2016/14967

https://doi.org/10.1109/ICIST.2012.6221722
https://doi.org/10.1109/SCC.2017.42
https://doi.org/10.1109/SCC.2017.42
https://doi.org/10.1109/CBD.2014.19
https://doi.org/10.1115/1.4030209
https://doi.org/10.1155/2020/6697640
https://doi.org/10.1109/CLUSTER.2010.24
https://doi.org/10.1109/CLUSTER.2010.24
https://doi.org/10.1145/3388922
https://doi.org/10.1145/3388922
https://doi.org/10.1155/2016/1496714

205

14

[128] Xia, Q., Xu, Z., Liang, W., Yu, S., Guo, S., & Zomaya, A. Y. (2019). Efficient Da

ta Placement and Replication for QoS-Aware Approximate Query Evaluation of Big Da

ta Analytics. IEEE Transactions on Parallel and Distributed Systems, 30(12), 2677–269

1. https://doi.org/10.1109/TPDS.2019.2921337

[129] Xu, H., Liu, W., Shu, G., & Li, J. (2016). Location-Aware Data Block Allocation

Strategy for HDFS-Based Applications in the Cloud. 2016 IEEE 9th International Conf

erence on Cloud Computing (CLOUD), 252–259. https://doi.org/10.1109/CLOUD.2016

.0042

[130] Xu, X., Mo, R., Dai, F., Lin, W., Wan, S., & Dou, W. (2020). Dynamic Resource

Provisioning with Fault Tolerance for Data-Intensive Meteorological Workflows in Clo

ud. IEEE Transactions on Industrial Informatics, 16(9), 6172–6181. https://doi.org/10.1

109/TII.2019.2959258

[131] Xue, M., Shen, J., & Guo, X. (2016). Two phase enhancing replica selection in cl

oud storage system. 2016 35th Chinese Control Conference (CCC), 5255–5260. https://

doi.org/10.1109/ChiCC.2016.7554173

[132] Yang, J., Meng, Q., Wang, S., Li, D., Huang, T., & Dou, W. (2016). Energy-Awar

e Tasks Scheduling with Deadline-constrained in Clouds. 2016 International Conferenc

e on Advanced Cloud and Big Data (CBD), 116–121. https://doi.org/10.1109/CBD.2016

.030

[133] Yao, G., Ding, Y., & Hao, K. (2017). Using Imbalance Characteristic for Fault-To

lerant Workflow Scheduling in Cloud Systems. IEEE Transactions on Parallel and Dist

ributed Systems, 28(12), 3671–3683. https://doi.org/10.1109/TPDS.2017.2687923

[134] Yao, G., Ren, Q., Li, X., Zhao, S., & Ruiz, R. (2020). A hybrid fault-tolerant sche

duling for deadline-constrained tasks in Cloud systems. IEEE Transactions on Services

https://doi.org/10.1155/2016/1496714
https://doi.org/10.1109/TPDS.2019.2921337
https://doi.org/10.1109/CLOUD.2016.0042
https://doi.org/10.1109/CLOUD.2016.0042
https://doi.org/10.1109/TII.2019.2959258
https://doi.org/10.1109/TII.2019.2959258
https://doi.org/10.1109/ChiCC.2016.7554173
https://doi.org/10.1109/ChiCC.2016.7554173
https://doi.org/10.1109/CBD.2016.030
https://doi.org/10.1109/CBD.2016.030
https://doi.org/10.1109/TPDS.2017.2687923

206

Computing, 1–1. https://doi.org/10.1109/TSC.2020.2992928

[135] Serhane, Y., Sekkaki, A., Benzidane, K., & Abid, M. (2020). Cost Effective Clou

d Storage Interoperability Between Public Cloud Platforms. International Journal of Co

mmunication Networks and Information Security, 12(3), 440–449.

[136] Ye, Z., Li, S., & Zhou, J. (2014). A two-layer geo-cloud based dynamic replica cr

eation strategy, Applied Mathematics & Information Sciences, 8(1), 431-439. https://dx.

doi.org/10.12785/amis/080154

[137] Yi, S., Andrzejak, A., & Kondo, D. (2012). Monetary Cost-Aware Checkpointing

and Migration on Amazon Cloud Spot Instances. IEEE Transactions on Services Compu

ting, 5(4), 512–524. https://doi.org/10.1109/TSC.2011.44

[138] Yuan, D., Cui, L., & Liu, X. (2014). Cloud Data Management for Scientific Work

flows: Research Issues, Methodologies, and State-of-the-Art. 2014 10th International C

onference on Semantics, Knowledge and Grids, 21–28. https://doi.org/10.1109/SKG.20

14.37

[139] Yuan, D., Yang, Y., Liu, X., & Chen, J. (2010). A data placement strategy in scie

ntific cloud workflows. Future Generation Computer Systems, 26(8), 1200–1214. https:

//doi.org/10.1016/j.future.2010.02.004

[140] Zhang, Q., Li, S., Li, Z., Xing, Y., Yang, Z., & Dai, Y. (2015). CHARM: A Cost-

Efficient Multi-Cloud Data Hosting Scheme with High Availability. IEEE Transactions

on Cloud Computing, 3(3), 372–386. https://doi.org/10.1109/TCC.2015.2417534

[141] Zhao, J., Xiang, Y., Lan, T., Huang, H. H., & Subramaniam, S. (2017). Elastic Re

liability Optimization Through Peer-to-Peer Checkpointing in Cloud Computing. IEEE

Transactions on Parallel and Distributed Systems, 28(2), 491–502. https://doi.org/10.11

09/TPDS.2016.2571281

[142] Zhao, P., Sun, X., Shang, J., Lin, J., Dong, M., & Li, B. (2019). A Dynamic Conv

https://doi.org/10.1109/TSC.2020.2992928
https://dx.doi.org/10.12785/amis/080154
https://dx.doi.org/10.12785/amis/080154
https://doi.org/10.1109/TSC.2011.44
https://doi.org/10.1109/SKG.2014.37
https://doi.org/10.1109/SKG.2014.37
https://doi.org/10.1016/j.future.2010.02.004
https://doi.org/10.1016/j.future.2010.02.004
https://doi.org/10.1109/TCC.2015.2417534
https://doi.org/10.1109/TPDS.2016.2571281
https://doi.org/10.1109/TPDS.2016.2571281

207

ergent Replica Selection Strategy Based on Cloud Storage. 2019 International Conferen

ce on Artificial Intelligence and Advanced Manufacturing (AIAM), 473–478. https://doi.

org/10.1109/AIAM48774.2019.00100

[143] Zhao, Y., Li, C., Li, L., & Zhang, P. (2017). Dynamic replica creation strategy bas

ed on file heat and node load in hybrid cloud. 2017 19th International Conference on Ad

vanced Communication Technology (ICACT), 213–220. https://doi.org/10.23919/ICAC

T.2017.7890086

[144] Zheng, W., & Sakellariou, R. (2013). Budget-Deadline Constrained Workflow Pla

nning for Admission Control. Journal of Grid Computing, 11(4), 633–651. https://doi.or

g/10.1007/s10723-013-9257-4

[145] Zhou, A., Wang, S., Cheng, B., Zheng, Z., Yang, F., Chang, R. N., Lyu, M. R., &

Buyya, R. (2017). Cloud Service Reliability Enhancement via Virtual Machine Placeme

nt Optimization. IEEE Transactions on Services Computing, 10(6), 902–913. https://doi.

org/10.1109/TSC.2016.2519898

[146] Zhou, A., Wang, S., Hsu, C. H., Sun, Q., & Yang, F. (2016). Task rescheduling op

timization to minimize network resource consumption. Multimedia Tools and Applicatio

ns, 75(20), 12901–12917. https://doi.org/10.1007/s11042-015-2549-x

[147] Zhu, X., Wang, J., Guo, H., Zhu, D., Yang, L. T., & Liu, L. (2016). Fault-Tolerant

 Scheduling for Real-Time Scientific Workflows with Elastic Resource Provisioning in

Virtualized Clouds. IEEE Transactions on Parallel and Distributed Systems, 27(12), 35

01–3517. https://doi.org/10.1109/TPDS.2016.2543731

https://doi.org/10.1109/AIAM48774.2019.00100
https://doi.org/10.1109/AIAM48774.2019.00100
https://doi.org/10.23919/ICACT.2017.7890086
https://doi.org/10.23919/ICACT.2017.7890086
https://doi.org/10.1007/s10723-013-9257-4
https://doi.org/10.1007/s10723-013-9257-4
https://doi.org/10.1109/TSC.2016.2519898
https://doi.org/10.1109/TSC.2016.2519898
https://doi.org/10.1007/s11042-015-2549-x
https://doi.org/10.1109/TPDS.2016.2543731

208

Appendices

Appendix 1 – Notations and Contribution Summary

The notations in the descriptions and equations of Chapter 4 are listed in Table A1.1.

Table A1.1 The notations in the descriptions and equations of Chapter 4

Symbols Explanation

𝐽(𝑑𝑖) The set of tasks which access the data 𝑑𝑖

𝐷𝑒𝑝(𝑑𝑖, 𝑑𝑘) The data dependency of the data 𝑑𝑖 to the data 𝑑𝑘

𝐷𝑒𝑝(𝑑𝑘, 𝑑𝑖) The data dependency of the data 𝑑𝑘 to the data 𝑑𝑖

𝐴𝐹(𝑑𝑖) The access frequency of the data 𝑑𝑖

𝐴𝑇(𝑑𝑖) The number of access times of the data 𝑑𝑖

𝐴𝐼(𝑑𝑖) The access time interval to the data 𝑑𝑖

𝜔 The data dependency threshold parameter

∅ The access frequency threshold parameter

𝑆𝑖𝑧𝑒(𝑑𝑖) The data size of the data 𝑑𝑖

𝐴𝑆𝑆(𝑑𝑐) The available storage capacity in the data centre 𝑑𝑐

𝑇𝐶(𝑑𝑖) The total cost of the data 𝑑𝑖

𝜇 The determinant variable for the data storage cost calculation

𝐷𝑆𝐶(𝑑𝑖) The data storage cost of the data 𝑑𝑖

𝐷𝑇𝐶(𝑑𝑖) The data transfer cost of the data 𝑑𝑖

𝑆𝑇(𝑑𝑖)
𝑑𝑐 The data storage time interval of the data 𝑑𝑖 stored in the data

centre 𝑑𝑐

𝑆𝑃(𝑑𝑐) The data storage price of the data centre 𝑑𝑐

𝛼 The transfer cost ratio

209

𝛽 The determinant variable for the data transfer cost calculation

𝑇𝐶 The overall total cost

𝑊-𝐷𝐶𝐷(𝑑𝑖) The Within-DataCentre Data Dependency of the data 𝑑𝑖

𝐵-𝐷𝐶𝐷(𝑑𝑖) The Between-DataCentre Data Dependency of the data 𝑑𝑖

𝐷𝐶𝐷(𝑑𝑐, 𝑑𝑖) A function to calculate 𝑊-𝐷𝐶𝐷(𝑑𝑖) and 𝐵-𝐷𝐶𝐷(𝑑𝑖) for the

data 𝑑𝑖 in the data centre 𝑑𝑐

𝐷𝑒𝑝𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑𝑖) A function to compare between 𝑊-𝐷𝐶𝐷(𝑑𝑖) and 𝐵-𝐷𝐶𝐷(𝑑𝑖)

for the data 𝑑𝑖

𝑁𝑢𝑚(𝐷) The total amount of data in 𝐷

𝐴𝐹𝑡𝑜𝑡𝑎𝑙 The sum of the access frequency of all data

𝐴𝐹𝑎𝑣𝑔 The average access frequency of all data

𝐴𝐹𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛() A function to calculate the value of 𝐴𝐹𝑡𝑜𝑡𝑎𝑙 and 𝐴𝐹𝑎𝑣𝑔

𝐴𝐹𝐶𝑜𝑚𝑝𝑎𝑟𝑒(𝑑𝑖) A function to compare the value between 𝐴𝐹(𝑑𝑖) and ∅ ∗

 𝐴𝐹𝑎𝑣𝑔

𝑇𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 The total cost when there is no replica creation happened

𝑇𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 The current total cost value

𝑁𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 The current number of replicas

𝐶𝐸 An evaluation parameter to evaluate the cost efficiency in

terms of cost reduction per replica

𝑁𝐿(𝑑𝑐) The network latency of the data centre 𝑑𝑐

𝐵𝐶(𝑑𝑐) The bandwidth consumption of the data centre 𝑑𝑐

𝐽𝑑𝑐 The set of tasks accessing the data centre 𝑑𝑐

𝑆𝑖𝑧𝑒(𝑗𝑑𝑐) The size of the data requested by the task 𝑗𝑑𝑐 ∈ 𝐽𝑑𝑐 at the data

centre 𝑑𝑐

210

𝐿𝑒𝑛(𝑗𝑑𝑐) The task execution duration of the task 𝑗𝑑𝑐 ∈ 𝐽𝑑𝑐 at the data

centre 𝑑𝑐

𝐴𝐶𝐿𝑒𝑛(𝑑) The maximum time length of the data 𝑑 being accessed by its

relevant tasks

𝐴𝐵(𝑑𝑐) The available bandwidth of the data centre 𝑑𝑐

𝑚𝑎𝑥𝐵(𝑑𝑐) The maximum bandwidth of the data centre 𝑑𝑐

𝐸𝑅(𝑑𝑐) The error rate of the data centre 𝑑𝑐

𝑊𝐴𝐵
𝑑𝑐 The weight of the available bandwidth metric of the data

centre 𝑑𝑐

𝑊𝑁𝐿
𝑑𝑐 The weight of the network latency metric of the data centre 𝑑𝑐

𝑊𝐸𝑅
𝑑𝑐 The weight of the error rate metric of the data centre 𝑑𝑐

𝐹𝑊(𝑑𝑐) The final weight of the data centre 𝑑𝑐

𝑁𝐶𝐴𝐵
𝑑𝑐 The normalisation component of the available bandwidth

metric of the data centre 𝑑𝑐

𝑁𝐶𝑁𝐿
𝑑𝑐 The normalisation component of the network latency metric

of the data centre 𝑑𝑐

𝑁𝐶𝐸𝑅
𝑑𝑐 The normalisation component of the error rate metric of the

data centre 𝑑𝑐

The notations in the descriptions and equations of Chapter 5 are listed in Table A1.2.

Table A1.2 The notations in the descriptions and equations of Chapter 5

Symbols Explanation

𝐷𝐸𝐴𝐷(𝑗) The task hard deadline of the task 𝑗

𝐿𝑒𝑛(𝑗) The task execution duration of the task 𝑗

𝑃𝐴(𝑗) The past processing time of the task 𝑗

211

𝐼𝐶(𝑗) The internodal communication delay of the task 𝑗

𝐼𝑆(𝑗) The input scheduling delay of the task 𝑗

𝑈𝑅(𝑗) The task urgency value of the task 𝑗

𝑃𝑅𝑂(𝑗) The task operation profit of the task 𝑗

𝑈(𝑗) The task utility of the task 𝑗

𝑈𝑈𝑅(𝑗) The utility value of the task urgency of the task 𝑗

𝑈𝑃𝑅𝑂(𝑗) The utility value of the task operation profit of the task 𝑗

𝑊𝑈𝑅 The weight of the task urgency

𝑊𝑃𝑅𝑂 The weight of the task operation profit

𝑇𝑅𝑈(𝑑𝑐) The task rescue utility of a faulty data centre 𝑑𝑐

Resubmission() The task resubmission function

Migration() The task migration function

𝜗 A variable parameter to judge the task rescue situation

𝑅(𝑗) The resource requirement of the task 𝑗

𝑇0 The current time point

𝑇𝐿𝑎𝑡𝑒 The latest deadline time point of the tasks in 𝐽

𝐶𝑜𝑢𝑛𝑡(𝐸𝑇(𝑗𝑑𝑐)) A function to count the number of eligible time slots of the

task 𝑗 at the data centre 𝑑𝑐

𝐸𝑇(𝑗𝑑𝑐) A set of eligible time slots for the task 𝑗 at the data centre

𝑑𝑐

𝑒𝑡(𝑗𝑑𝑐)𝑝 The 𝑝th eligible time slot in 𝐸𝑇(𝑗𝑑𝑐)

𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝) The time slot length similarity of 𝑒𝑡(𝑗𝑑𝑐)𝑝

𝐿𝑒𝑛(𝑒𝑡(𝑗𝑑𝑐)𝑝) The time slot length of 𝑒𝑡(𝑗𝑑𝑐)𝑝

𝑀𝑅(𝑒𝑡(𝑗𝑑𝑐)𝑝) The minimum available resource of 𝑒𝑡(𝑗𝑑𝑐)𝑝

212

𝑊𝐿𝑆 The weight of the time slot length similarity

𝑊𝑀𝑅 The weight of the minimum available resource

𝑂𝐸(𝑗) The optimal eligible time slot of the task 𝑗

𝑟𝑎𝑛𝑘 (𝐿𝑆(𝑒𝑡(𝑗𝑑𝑐)𝑝))
The ranking value of the time slot length similarity of

𝑒𝑡(𝑗𝑑𝑐)𝑝

𝑟𝑎𝑛𝑘 (𝑀𝑅(𝑒𝑡(𝑗𝑑𝑐)𝑝))
The ranking value of the minimum available resource of

𝑒𝑡(𝑗𝑑𝑐)𝑝

𝑟𝑎𝑛𝑘(𝑒𝑡(𝑗𝑑𝑐)𝑝) The ranking value of the 𝑝th eligible time slot in 𝐸𝑇(𝑗𝑑𝑐)

The notations in the descriptions and equations of Chapter 6 are listed in Table A1.3.

Table A1.3 The notations in the descriptions and equations of Chapter 6

Symbols Explanation

𝑁𝑜𝑑𝑒𝑛𝑡𝑟𝑦 The entry task in the workflow

𝑁𝑜𝑑𝑒𝑥𝑖𝑡 The exit task in the workflow

𝑃𝑅(𝑁𝑜𝑑𝑝) The PageRank value for the node 𝑁𝑜𝑑𝑝

𝑠𝑢𝑐𝑐(𝑁𝑜𝑑𝑝) The set of successors of 𝑁𝑜𝑑𝑝

𝐿(𝑁𝑜𝑑𝑞) The number of the outbound nodes of 𝑁𝑜𝑑𝑞

𝜌 The total number of nodes in the workflow

𝛿 A damping factor to handle the probability of the task

termination

𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝) The upward rank value of a task 𝑁𝑜𝑑𝑝

𝛾(𝐺) The urgency balancing coefficient for a workflow instance 𝐺

𝑈𝑅(𝐺) The urgency value of the workflow application 𝐺

𝜎(𝐺) The complexity balancing coefficient for a workflow instance

𝐺

213

𝐶𝑜𝑢𝑛𝑡𝑁𝑜𝑑(𝐺) A count function to count the number of nodes in the

workflow instance 𝐺

𝐶𝑜𝑢𝑛𝑡𝐸𝑑𝑔𝑒(𝐺) A count function to count the number of edges in the

workflow instance 𝐺

𝑁𝑢𝑚(𝑁𝑜𝑑) The total number of nodes in the cloud environment

𝑁𝑢𝑚(𝑒𝑑𝑔𝑒) The total number of edges in the cloud environment

𝐹𝑖𝑛𝑅𝑎𝑛𝑘𝑢(𝑁𝑜𝑑𝑝) The final upward rank value of the node 𝑁𝑜𝑑𝑝

The notations in the pseudocodes are listed in Table A1.4.

Table A1.4 The notations in the pseudocodes

Symbols Explanation

𝑡𝑙[] The array for storing the location information

𝑑𝑙[] The array for storing the location information

𝑟𝑒𝑐[] The array for storing the recommended value ∅

𝑒𝑣𝑎[] The array for storing the cost efficiency evaluation parameter

𝐶𝐸

𝑂𝑝𝑡𝑅𝑜𝑢𝑡𝑒 The optimal data access route including the required data

information, the target data centre information and the

relevant task information

𝑟𝑑[] The array for listing the required data

𝑟𝑟[] The array for storing the replica-ready data centre information

𝑓𝑤[] The array for listing the final weight of the data centres in

𝑟𝑟[]

𝑞𝑢𝑎𝑙[] The array for storing the information of the qualified data

centres

214

𝑒𝑙𝑖𝑔[] The array for collecting the eligible data centres

𝑎𝑏[] The array for storing the available bandwidth information of

the data centres in 𝑒𝑙𝑖𝑔[]

𝑟𝑎𝑛𝑘𝑙𝑖𝑠𝑡[] The array for storing the ranking value of the tasks

𝐹𝑇𝑅𝑒𝑠𝑢𝑙𝑡 The fault handling solution including the task resubmission

destination and task migration destination information

𝑑𝑐𝑟𝑒𝑠 The task resubmission destination

𝑑𝑐𝑚𝑖𝑔 The task migration destination

𝑟𝑒𝑠𝑑𝑒𝑠[] The array for storing the destination information for task

resubmission

𝑚𝑜𝑣[] The array for storing a group of migratable tasks

𝑚𝑖𝑔𝑟𝑟[] The array for storing the replica-ready data centres for the

migratable task

𝑒𝑙𝑖𝑔𝑚𝑖𝑔[] The array for storing the eligible replica-ready data centres

for migrating the migratable task

𝑓𝑗[] The array for storing the tasks at the fault location

𝑝𝑡𝑠[] The array for storing the probable time slots

𝑐𝑟𝑗[] The array for storing the current-running tasks in 𝑟𝑟[]

𝑝𝑟𝑗[] The array for storing the probable-release tasks

The contribution summary of the six proposed strategies is shown in Table A1.5,

including the context locations of the six proposed strategies, the research problems of

the six proposed strategies, the novelty of the six proposed strategies and the

optimisation objectives of the six proposed strategies.

215

Table A1.5 The contribution summary of the six proposed strategies

Context

Location

Research Problems Novelty Optimisation

Objectives

Section

4.1

• Lack of the joint

consideration of

external data

attributes and

internal data

attributes when

making the replica

creation decision

• The data

classification for

constraining the

replica creation

• The joint

consideration of

the external data

attribute (access

frequency) and the

internal data

attribute (data

dependency)

Total cost

reduction

Section

4.2

• The insufficient

consideration of

the cloud map

when analysing the

data relationship

• The analysis of the

data dependency

inside data centre

and outside data

centre

• Threshold-based

eligible data

candidate pool for

replica creation

• Recommended

The optimal

cost

reduction per

replica

216

value to achieve

the optimal cost

reduction per

replica with

balancing between

the total cost and

the number of

replicas

Section

4.3

• Network

overloading

problems because

of increased

number of

concurrent-running

instances and

heavy data access

needs

• Lack of the

consideration of

the impacts among

multiple

concurrent-running

instances under

limited network

• Min-Max

normalisation-

based replica

selection method

with the joint

consideration of

different network

performance

measurements

• Nested replica

selection strategy

with a replica re-

creation

mechanism to

collaboratively

guide the data

The number

of

concurrent-

running

instances

increase;

More

balanced

network load

217

capability access route

Section

5.1

• Resource

contention

problems because

of the task

resubmission and

task migration

operations

• Failure to meet the

task deadline when

rescuing tasks

• Joint consideration

of the resource

load capacity and

the task attributes

• Utility-based task

priority

assignment system

• A concession

mechanism for

task allocation to

appropriate data

centres

Task

resilience

ratio

increase;

Task rescue

utility

increase;

Task

operation

profit

increase

Section

5.2

• Selecting the first

available server to

enable early task

completion might

not be the optimal

solution in term of

cloud resiliency

when rescuing

tasks

• Selecting the first

available server

may cause a

• Two-dimensional

task parsing

system

• Three-dimensional

priority

assignment system

• A timeline

allocation method

with the joint

consideration of

the time slot

length similarity

Task

resilience

ratio

increase;

More

balanced

resource load

218

temporary and

dramatic load

increase when

allocating tasks

and the minimum

available resource

at each time slot

• A concession

mechanism for

task allocation on

the timeline at

each target data

centre

Chapter

6

• Selecting the first

available server to

enable early task

completion might

not be the optimal

solution in term of

cloud resiliency

when rescuing

tasks

• Insufficient

consideration of

the resource

contention and the

deadline contention

among the tasks in

different

• PageRank-based

priority

assignment system

• Dynamic

PageRank-

constrained task

scheduling

algorithm

Task

resilience

ratio

increase;

Workflow

resilience

ratio

increase;

Workflow

continuity

ratio increase

219

concurrent-running

workflow instances

when rescuing

tasks

• Lack of the

consideration of

the entire

workflow topology

when prioritising

tasks

• Lack of the

consideration of

the influence on

business continuity

when developing

fault tolerance

strategy

	Data Replication and Its Alignment with Fault Management in the Cloud Environment
	tmp.1646027127.pdf.x5IiN

