43,551 research outputs found

    ATOM: AI-Powered Sustainable Resource Management for Serverless Edge Computing Environments

    Get PDF
    Serverless edge computing decreases unnecessary resource usage on end devices with limited processing power and storage capacity. Despite its benefits, serverless edge computing's zero scalability is the major source of the cold start delay, which is yet unsolved. This latency is unacceptable for time-sensitive Internet of Things (IoT) applications like autonomous cars. Most existing approaches need containers to idle and use extra computing resources. Edge devices have fewer resources than cloud-based systems, requiring new sustainable solutions. Therefore, we propose an AI-powered, sustainable resource management framework called ATOM for serverless edge computing. ATOM utilizes a deep reinforcement learning model to predict exactly when cold start latency will happen. We create a cold start dataset using a heart disease risk scenario and deploy using Google Cloud Functions. To demonstrate the superiority of ATOM, its performance is compared with two different baselines, which use the warm-start containers and a two-layer adaptive approach. The experimental results showed that although the ATOM required more calculation time of 118.76 seconds, it performed better in predicting cold start than baseline models with an RMSE ratio of 148.76. Additionally, the energy consumption and CO2CO_{2} emission amount of these models are evaluated and compared for the training and prediction phases

    Models of everywhere revisited: a technological perspective

    Get PDF
    The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the environmental science of a place, changing the nature of the underlying modelling process, from one in which general model structures are used to one in which modelling becomes a learning process about specific places, in particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere, models of everything and models at all times, being constantly re-evaluated against the most current evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the remaining research questions. The paper concludes by identifying the key elements of a research agenda that should underpin such experimentation and deployment

    Machine Learning-Based Elastic Cloud Resource Provisioning in the Solvency II Framework

    Get PDF
    The Solvency II Directive (Directive 2009/138/EC) is a European Directive issued in November 2009 and effective from January 2016, which has been enacted by the European Union to regulate the insurance and reinsurance sector through the discipline of risk management. Solvency II requires European insurance companies to conduct consistent evaluation and continuous monitoring of risks—a process which is computationally complex and extremely resource-intensive. To this end, companies are required to equip themselves with adequate IT infrastructures, facing a significant outlay. In this paper we present the design and the development of a Machine Learning-based approach to transparently deploy on a cloud environment the most resource-intensive portion of the Solvency II-related computation. Our proposal targets DISAR¼, a Solvency II-oriented system initially designed to work on a grid of conventional computers. We show how our solution allows to reduce the overall expenses associated with the computation, without hampering the privacy of the companies’ data (making it suitable for conventional public cloud environments), and allowing to meet the strict temporal requirements required by the Directive. Additionally, the system is organized as a self-optimizing loop, which allows to use information gathered from actual (useful) computations, thus requiring a shorter training phase. We present an experimental study conducted on Amazon EC2 to assess the validity and the efficiency of our proposal

    Adaptive and Resilient Revenue Maximizing Dynamic Resource Allocation and Pricing for Cloud-Enabled IoT Systems

    Full text link
    Cloud computing is becoming an essential component of modern computer and communication systems. The available resources at the cloud such as computing nodes, storage, databases, etc. are often packaged in the form of virtual machines (VMs) to be used by remotely located client applications for computational tasks. However, the cloud has a limited number of VMs available, which have to be efficiently utilized to generate higher productivity and subsequently generate maximum revenue. Client applications generate requests with computational tasks at random times with random complexity to be processed by the cloud. The cloud service provider (CSP) has to decide whether to allocate a VM to a task at hand or to wait for a higher complexity task in the future. We propose a threshold-based mechanism to optimally decide the allocation and pricing of VMs to sequentially arriving requests in order to maximize the revenue of the CSP over a finite time horizon. Moreover, we develop an adaptive and resilient framework based that can counter the effect of realtime changes in the number of available VMs at the cloud server, the frequency and nature of arriving tasks on the revenue of the CSP.Comment: American Control Conference (ACC 2018

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Towards Business Integration as a Service 2.0

    No full text
    Cloud Computing Business Framework (CCBF) is a framework for designing and implementation of Could Computing solutions. This proposal focuses on how CCBF can help to address linkage in Cloud Computing implementations. This leads to the development of Business Integration as a Service 1.0 (BIaS 1.0) allowing different services, roles and functionalities to work together in a linkage-oriented framework where the outcome of one service can be input to another, without the need to translate between domains or languages. BIaS 2.0 aims to allow full automation, enhanced security, advanced risk modelling and improved collaboration between processes in BIaaS 1.0. The benefits from adopting BIaS 1.0 and developing BIaS 2.0 are illustrated using a case study from the University of Southampton and several collaborators including IBM US. BIaS 2.0 can work with mainstream technologies such as scientific workflows, and the proposal and demonstration of BIaaS 2.0 will certainly benefit industry and academia
    • 

    corecore