48 research outputs found

    Adaptive Partitioning for Iterated Sequences of Irregular OpenCL Kernels

    Get PDF
    International audienceOpenCL defines a common parallel programming language for all devices, although writing tasks adapted to the devices, managing communication and load-balancing issues are left to the programmer. We propose in this paper a static/dynamic approach for the execution of an iterated sequence of data-dependent kernels on a multi-device heterogeneous architecture. The method allows to automatically distribute irregular kernels onto multiple devices and tackles, without training, both load balancing and data transfers issues coming from hardware heterogeneity, load imbalance within the application itself and load variations between repeated executions of the sequence

    Easing parallel programming on heterogeneous systems

    Get PDF
    El modo más frecuente de resolver aplicaciones de HPC (High performance Computing) en tiempos de ejecución razonables y de una forma escalable es mediante el uso de sistemas de cómputo paralelo. La tendencia actual en los sistemas de HPC es la inclusión en la misma máquina de ejecución de varios dispositivos de cómputo, de diferente tipo y arquitectura. Sin embargo, su uso impone al programador retos específicos. Un programador debe ser experto en las herramientas y abstracciones existentes para memoria distribuida, los modelos de programación para sistemas de memoria compartida, y los modelos de programación específicos para para cada tipo de co-procesador, con el fin de crear programas híbridos que puedan explotar eficientemente todas las capacidades de la máquina. Actualmente, todos estos problemas deben ser resueltos por el programador, haciendo así la programación de una máquina heterogénea un auténtico reto. Esta Tesis trata varios de los problemas principales relacionados con la programación en paralelo de los sistemas altamente heterogéneos y distribuidos. En ella se realizan propuestas que resuelven problemas que van desde la creación de códigos portables entre diferentes tipos de dispositivos, aceleradores, y arquitecturas, consiguiendo a su vez máxima eficiencia, hasta los problemas que aparecen en los sistemas de memoria distribuida relacionados con las comunicaciones y la partición de estructuras de datosDepartamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)Doctorado en Informátic

    A metadata-enhanced framework for high performance visual effects

    No full text
    This thesis is devoted to reducing the interactive latency of image processing computations in visual effects. Film and television graphic artists depend upon low-latency feedback to receive a visual response to changes in effect parameters. We tackle latency with a domain-specific optimising compiler which leverages high-level program metadata to guide key computational and memory hierarchy optimisations. This metadata encodes static and dynamic information about data dependence and patterns of memory access in the algorithms constituting a visual effect – features that are typically difficult to extract through program analysis – and presents it to the compiler in an explicit form. By using domain-specific information as a substitute for program analysis, our compiler is able to target a set of complex source-level optimisations that a vendor compiler does not attempt, before passing the optimised source to the vendor compiler for lower-level optimisation. Three key metadata-supported optimisations are presented. The first is an adaptation of space and schedule optimisation – based upon well-known compositions of the loop fusion and array contraction transformations – to the dynamic working sets and schedules of a runtimeparameterised visual effect. This adaptation sidesteps the costly solution of runtime code generation by specialising static parameters in an offline process and exploiting dynamic metadata to adapt the schedule and contracted working sets at runtime to user-tunable parameters. The second optimisation comprises a set of transformations to generate SIMD ISA-augmented source code. Our approach differs from autovectorisation by using static metadata to identify parallelism, in place of data dependence analysis, and runtime metadata to tune the data layout to user-tunable parameters for optimal aligned memory access. The third optimisation comprises a related set of transformations to generate code for SIMT architectures, such as GPUs. Static dependence metadata is exploited to guide large-scale parallelisation for tens of thousands of in-flight threads. Optimal use of the alignment-sensitive, explicitly managed memory hierarchy is achieved by identifying inter-thread and intra-core data sharing opportunities in memory access metadata. A detailed performance analysis of these optimisations is presented for two industrially developed visual effects. In our evaluation we demonstrate up to 8.1x speed-ups on Intel and AMD multicore CPUs and up to 6.6x speed-ups on NVIDIA GPUs over our best hand-written implementations of these two effects. Programmability is enhanced by automating the generation of SIMD and SIMT implementations from a single programmer-managed scalar representation

    Running stream-like programs on heterogeneous multi-core systems

    Get PDF
    All major semiconductor companies are now shipping multi-cores. Phones, PCs, laptops, and mobile internet devices will all require software that can make effective use of these cores. Writing high-performance parallel software is difficult, time-consuming and error prone, increasing both time-to-market and cost. Software outlives hardware; it typically takes longer to develop new software than hardware, and legacy software tends to survive for a long time, during which the number of cores per system will increase. Development and maintenance productivity will be improved if parallelism and technical details are managed by the machine, while the programmer reasons about the application as a whole. Parallel software should be written using domain-specific high-level languages or extensions. These languages reveal implicit parallelism, which would be obscured by a sequential language such as C. When memory allocation and program control are managed by the compiler, the program's structure and data layout can be safely and reliably modified by high-level compiler transformations. One important application domain contains so-called stream programs, which are structured as independent kernels interacting only through one-way channels, called streams. Stream programming is not applicable to all programs, but it arises naturally in audio and video encode and decode, 3D graphics, and digital signal processing. This representation enables high-level transformations, including kernel unrolling and kernel fusion. This thesis develops new compiler and run-time techniques for stream programming. The first part of the thesis is concerned with a statically scheduled stream compiler. It introduces a new static partitioning algorithm, which determines which kernels should be fused, in order to balance the loads on the processors and interconnects. A good partitioning algorithm is crucial if the compiler is to produce efficient code. The algorithm also takes account of downstream compiler passes---specifically software pipelining and buffer allocation---and it models the compiler's ability to fuse kernels. The latter is important because the compiler may not be able to fuse arbitrary collections of kernels. This thesis also introduces a static queue sizing algorithm. This algorithm is important when memory is distributed, especially when local stores are small. The algorithm takes account of latencies and variations in computation time, and is constrained by the sizes of the local memories. The second part of this thesis is concerned with dynamic scheduling of stream programs. First, it investigates the performance of known online, non-preemptive, non-clairvoyant dynamic schedulers. Second, it proposes two dynamic schedulers for stream programs. The first is specifically for one-dimensional stream programs. The second is more general: it does not need to be told the stream graph, but it has slightly larger overhead. This thesis also introduces some support tools related to stream programming. StarssCheck is a debugging tool, based on Valgrind, for the StarSs task-parallel programming language. It generates a warning whenever the program's behaviour contradicts a pragma annotation. Such behaviour could otherwise lead to exceptions or race conditions. StreamIt to OmpSs is a tool to convert a streaming program in the StreamIt language into a dynamically scheduled task based program using StarSs.Totes les empreses de semiconductors produeixen actualment multi-cores. Mòbils,PCs, portàtils, i dispositius mòbils d’Internet necessitaran programari quefaci servir eficientment aquests cores. Escriure programari paral·lel d’altrendiment és difícil, laboriós i propens a errors, incrementant tant el tempsde llançament al mercat com el cost. El programari té una vida més llarga queel maquinari; típicament pren més temps desenvolupar nou programi que noumaquinari, i el programari ja existent pot perdurar molt temps, durant el qualel nombre de cores dels sistemes incrementarà. La productivitat dedesenvolupament i manteniment millorarà si el paral·lelisme i els detallstècnics són gestionats per la màquina, mentre el programador raona sobre elconjunt de l’aplicació.El programari paral·lel hauria de ser escrit en llenguatges específics deldomini. Aquests llenguatges extrauen paral·lelisme implícit, el qual és ocultatper un llenguatge seqüencial com C. Quan l’assignació de memòria i lesestructures de control són gestionades pel compilador, l’estructura iorganització de dades del programi poden ser modificades de manera segura ifiable per les transformacions d’alt nivell del compilador.Un dels dominis de l’aplicació importants és el que consta dels programes destream; aquest programes són estructurats com a nuclis independents queinteractuen només a través de canals d’un sol sentit, anomenats streams. Laprogramació de streams no és aplicable a tots els programes, però sorgeix deforma natural en la codificació i descodificació d’àudio i vídeo, gràfics 3D, iprocessament de senyals digitals. Aquesta representació permet transformacionsd’alt nivell, fins i tot descomposició i fusió de nucli.Aquesta tesi desenvolupa noves tècniques de compilació i sistemes en tempsd’execució per a programació de streams. La primera part d’aquesta tesi esfocalitza amb un compilador de streams de planificació estàtica. Presenta unnou algorisme de partició estàtica, que determina quins nuclis han de serfusionats, per tal d’equilibrar la càrrega en els processadors i en lesinterconnexions. Un bon algorisme de particionat és fonamental per tal de queel compilador produeixi codi eficient. L’algorisme també té en compte elspassos de compilació subseqüents---específicament software pipelining il’arranjament de buffers---i modela la capacitat del compilador per fusionarnuclis. Aquesta tesi també presenta un algorisme estàtic de redimensionament de cues.Aquest algorisme és important quan la memòria és distribuïda, especialment quanles memòries locals són petites. L’algorisme té en compte latències ivariacions en els temps de càlcul, i considera el límit imposat per la mida deles memòries locals.La segona part d’aquesta tesi es centralitza en la planificació dinàmica deprogrames de streams. En primer lloc, investiga el rendiment dels planificadorsdinàmics online, non-preemptive i non-clairvoyant. En segon lloc, proposa dosplanificadors dinàmics per programes de stream. El primer és específicament pera programes de streams unidimensionals. El segon és més general: no necessitael graf de streams, però els overheads són una mica més grans.Aquesta tesi també presenta un conjunt d’eines de suport relacionades amb laprogramació de streams. StarssCheck és una eina de depuració, que és basa enValgrind, per StarSs, un llenguatge de programació paral·lela basat en tasques.Aquesta eina genera un avís cada vegada que el comportament del programa estàen contradicció amb una anotació pragma. Aquest comportament d’una altra manerapodria causar excepcions o situacions de competició. StreamIt to OmpSs és unaeina per convertir un programa de streams codificat en el llenguatge StreamIt aun programa de tasques en StarSs planificat de forma dinàmica.Postprint (published version

    MASSIVELY PARALLEL ALGORITHMS FOR POINT CLOUD BASED OBJECT RECOGNITION ON HETEROGENEOUS ARCHITECTURE

    Get PDF
    With the advent of new commodity depth sensors, point cloud data processing plays an increasingly important role in object recognition and perception. However, the computational cost of point cloud data processing is extremely high due to the large data size, high dimensionality, and algorithmic complexity. To address the computational challenges of real-time processing, this work investigates the possibilities of using modern heterogeneous computing platforms and its supporting ecosystem such as massively parallel architecture (MPA), computing cluster, compute unified device architecture (CUDA), and multithreaded programming to accelerate the point cloud based object recognition. The aforementioned computing platforms would not yield high performance unless the specific features are properly utilized. Failing that the result actually produces an inferior performance. To achieve the high-speed performance in image descriptor computing, indexing, and matching in point cloud based object recognition, this work explores both coarse and fine grain level parallelism, identifies the acceptable levels of algorithmic approximation, and analyzes various performance impactors. A set of heterogeneous parallel algorithms are designed and implemented in this work. These algorithms include exact and approximate scalable massively parallel image descriptors for descriptor computing, parallel construction of k-dimensional tree (KD-tree) and the forest of KD-trees for descriptor indexing, parallel approximate nearest neighbor search (ANNS) and buffered ANNS (BANNS) on the KD-tree and the forest of KD-trees for descriptor matching. The results show that the proposed massively parallel algorithms on heterogeneous computing platforms can significantly improve the execution time performance of feature computing, indexing, and matching. Meanwhile, this work demonstrates that the heterogeneous computing architectures, with appropriate architecture specific algorithms design and optimization, have the distinct advantages of improving the performance of multimedia applications

    High-Performance and Power-Aware Graph Processing on GPUs

    Get PDF
    Graphs are a common representation in many problem domains, including engineering, finance, medicine, and scientific applications. Different problems map to very large graphs, often involving millions of vertices. Even though very efficient sequential implementations of graph algorithms exist, they become impractical when applied on such actual very large graphs. On the other hand, graphics processing units (GPUs) have become widespread architectures as they provide massive parallelism at low cost. Parallel execution on GPUs may achieve speedup up to three orders of magnitude with respect to the sequential counterparts. Nevertheless, accelerating efficient and optimized sequential algorithms and porting (i.e., parallelizing) their implementation to such many-core architectures is a very challenging task. The task is made even harder since energy and power consumption are becoming constraints in addition, or in same case as an alternative, to performance. This work aims at developing a platform that provides (I) a library of parallel, efficient, and tunable implementations of the most important graph algorithms for GPUs, and (II) an advanced profiling model to analyze both performance and power consumption of the algorithm implementations. The platform goal is twofold. Through the library, it aims at saving developing effort in the parallelization task through a primitive-based approach. Through the profiling framework, it aims at customizing such primitives by considering both the architectural details and the target efficiency metrics (i.e., performance or power)

    Generalized database index structures on massively parallel processor architectures

    Get PDF
    Height-balanced search trees are ubiquitous in database management systems as well as in other applications that require efficient access methods in order to identify entries in large data volumes. They can be configured with various strategies for structuring the search space for a given data set and for pruning it when different kinds of search queries are answered. In order to facilitate the development of application-specific tree variants, index frameworks, such as GiST, exist that provide a reusable library of commonly shared tree management functionality. By specializing internal data organization strategies, the framework can be customized to create an index that is efficient for an application's data access characteristics. Because the majority of the framework's code can be reused development and testing efforts are significantly lower, compared to an implementation from scratch. However, none of the existing frameworks supports the execution of index operations on massively parallel processor architectures, such as GPUs. Enabling the use of such processors for generalized index frameworks is the goal of this thesis. By compiling state-of-the-art techniques from a wide range of CPU- and GPU-optimized indexes, a GiST extension is developed that abstracts the physical execution aspect of generic, tree-based search queries. Tree traversals are broken-down into vectorized processing primitives that can be scheduled to one of the available (co-)processors for execution. Further, a CPU-based implementation is provided as well as a new GPU-based algorithm that, unlike prior art in this area, does not require that the index is fully stored inside a GPU's main memory buffer. The applicability of the extended framework is assessed for image rendering engines and, based on microbenchmarks, the parallelized algorithm performance is compared for different CPU and GPU generations. It will be shown that cases exist, where the GPU clearly outperforms the CPU and vice versa. In order to leverage the strengths of each processor type, an adaptive scheduler is presented that can be calibrated to schedule index operations to the best-fitting device in a hybrid system. With the help of a tree traversal simulation different scheduling strategies are evaluated and it will be shown that the adaptive scheduler can be used to make near-optimal decisions.Suchbäume sind allgegenwärtig in Datenbanksystemen und anderen Anwendungen, die eine effiziente Möglichkeit benötigen um in großen Datensätzen nach Einträgen zu suchen, die bestimmte Suchkriterien erfüllen. Sie können mit verschiedenen Strategien konfiguriert werden um den Suchraum zu strukturieren und die für ein Suchergebnis irrelevante Bereiche von der Bearbeitung auszuschließen. Die Entwicklung von anwendungsspezifischen Indexen wird durch Frameworks wie GiST unterstützt. Jedoch unterstützt keines der heute bereits existierenden Frameworks die Verwendung von hochgradig parallelen Prozessorarchitekturen wie GPUs. Solche Prozessoren für generische Index Frameworks nutzbar zu machen, ist Ziel dieser Arbeit. Dazu werden Techniken aus verschiedensten CPU- und GPU-optimierten Indexen analysiert und für die Entwicklung einer GiST-Erweiterung verwendet, welche die für eine Suche in Suchbäumen nötigen Berechnungen abstrahiert. Traversierungsoperationen werden dabei auf vektorisierte Primitive abgebildet, die auf parallelen Prozessoren implementiert werden können. Die Verwendung dieser Erweiterung wird beispielhaft an einem CPU Algorithmus demonstriert. Weiterhin wird ein neuer GPU-basierter Algorithmus vorgestellt, der im Vergleich zu bisherigen Verfahren, ein dynamisches Nachladen der Index Daten in den Hauptspeicher der GPU unterstützt. Die Praktikabilität des erweiterten Frameworks wird am Beispiel von Anwendungen aus der Computergrafik untersucht und die Performanz der verwendeten Algorithmen mit Hilfe eines Benchmarks auf verschiedenen CPU- und GPU-Modellen analysiert. Dabei wird gezeigt, unter welchen Bedingungen die parallele GPU-basierte Ausführung schneller ist als die CPU-basierte Variante - und umgekehrt. Um die Stärken beider Prozessortypen in einem hybriden System ausnutzen zu können, wird ein Scheduler entwickelt, der nach einer Kalibrierungsphase für eine gegebene Operation den geeignetsten Prozessor wählen kann. Mit Hilfe eines Simulators für Baumtraversierungen werden verschiedenste Scheduling Strategien verglichen. Dabei wird gezeigt, dass die Entscheidungen des Schedulers kaum vom Optimum abweichen und, abhängig von der simulierten Last, die erzielbaren Durchsätze für die parallele Ausführung mehrerer Suchoperationen durch hybrides Scheduling um eine Größenordnung und mehr erhöht werden können

    Fast algorithm for real-time rings reconstruction

    Get PDF
    The GAP project is dedicated to study the application of GPU in several contexts in which real-time response is important to take decisions. The definition of real-time depends on the application under study, ranging from answer time of μs up to several hours in case of very computing intensive task. During this conference we presented our work in low level triggers [1] [2] and high level triggers [3] in high energy physics experiments, and specific application for nuclear magnetic resonance (NMR) [4] [5] and cone-beam CT [6]. Apart from the study of dedicated solution to decrease the latency due to data transport and preparation, the computing algorithms play an essential role in any GPU application. In this contribution, we show an original algorithm developed for triggers application, to accelerate the ring reconstruction in RICH detector when it is not possible to have seeds for reconstruction from external trackers

    Performance-aware component composition for GPU-based systems

    Full text link
    corecore