
Federico Busato

High-Performance and
Power-Aware
Graph Processing on GPUs

Ph.D. Thesis

January 13, 2018

Università degli Studi di Verona

Dipartimento di Informatica

Advisor:
prof. Nicola Bombieri

Series N˝: ???? (ask the PhD coordinator!)

Università di Verona
Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona
Italy

Contents

1 Thesis Abstract . 1

Part I Background

2 Graphic Processing Unit (GPU) . 11
2.1 Computed Unified Device Architecture (CUDA) 11
2.2 Modern GPU architectures . 13

3 Static Graph Representation . 15
3.0.1 Adjacency Matrices . 15
3.0.2 Adjacency Lists . 16
3.0.3 Edges List . 18

Part II Performance-Oriented Implementations of Graph Algorithms
for GPU

4 Related Work . 25
4.1 The workload partitioning problem in GPUs . 25

4.1.1 Static mapping techniques . 26
4.1.2 Semi-dynamic mapping techniques . 28
4.1.3 Dynamic mapping techniques . 31

4.2 Graph Traversal and Breadth-First Search . 34
4.3 Single-Source Shortest Path . 35
4.4 Strongly Connected Components . 36

4.4.1 Forward-Backward algorithm . 37
4.4.2 Coloring algorithm . 37
4.4.3 Other algorithms . 38

5 Load Balancing - Multi-Phase Search Algorithm 41
5.1 Introduction . 41
5.2 The proposed Multi-phase Mapping . 43

5.2.1 Hybrid partitioning . 43

VI Contents

5.2.2 Iterative Coalesced Expansion . 45
5.2.3 Optimizing the Multi-Phase implementation 47

5.3 Comprehensive comparison of complexity and limiting factors of
the approaches . 49

5.4 Experimental results . 52
5.4.1 Multi-phase Mapping Analisys . 58

5.5 Conclusions . 60

6 Breadth-First Search - BFS-4K . 61
6.1 Introduction . 61

6.1.1 Breadth First Search (BFS) . 63
6.2 BFS-4K Overview . 63
6.3 Implementation Features in Details . 65

6.3.1 Exclusive Prefix-Sum . 65
6.3.2 Dynamic Virtual Warps . 66
6.3.3 Dynamic Parallelism . 67
6.3.4 Edge-discover . 69
6.3.5 Single-block vs. Multi-block Kernel . 71
6.3.6 Coalesced Read/Write Memory Accesses 72

6.4 Duplicate Detection and Correction . 74
6.5 Experimental results . 77
6.6 Concluding remarks . 82

7 Breadth-First Search - Helix . 83
7.1 Introduction . 83
7.2 Parallel graph traversal through BFS . 84
7.3 The Helix framework . 85

7.3.1 Load balancing . 86
7.3.2 Load balancing support techniques . 88
7.3.3 Frontier queue types . 90
7.3.4 Synchronization between BFS iterations 90
7.3.5 Frontier updating . 91
7.3.6 Duplicate removing . 91
7.3.7 Bitmask status lookup . 92
7.3.8 Programming model . 92
7.3.9 Modified Graph Representation . 93
7.3.10 Optimized Prefix-sum . 94

7.4 Experimental Results . 95
7.4.1 Graph dataset and system setup . 95
7.4.2 The configurability analysis . 96
7.4.3 Performance evaluation . 100

7.5 Conclusions . 101
7.6 Appendix . 101

Contents VII

8 Single-Source Shortest Path - H-BF . 105
8.1 Introduction . 105
8.2 The Bellman-Ford’s algorithm. 107
8.3 The frontier-based algorithm and its optimizations 107

8.3.1 The edge classification optimization . 109
8.3.2 Duplicate removal with Kepler 64-bit atomic instructions . . . 111

8.4 Architecture-oriented Optimizations . 113
8.4.1 Memory coalescing, cache modifiers, and texture memory . . . 113
8.4.2 Dynamic virtual warps . 114
8.4.3 Dynamic parallelism . 116

8.5 Experimental Results . 116
8.5.1 Experimental setup . 116
8.5.2 Execution time analysis and comparison 117

8.6 Concluding Remarks . 120

9 Strongly Connected Components - Multi-Step Algorithm 123
9.1 Introduction . 123
9.2 Multi-step Parametric Scheme for SCC Decomposition 124

9.2.1 Parallelization strategy for graph traversal 126
9.3 Experimental results . 127
9.4 Conclusions . 131

10 Approximate Subgraph Isomorphism - APPAGATO 133
10.1 Materials and methods . 133

10.1.1 Definitions and notations . 133
10.1.2 The APPAGATO algorithm . 134
10.1.3 The APPAGATO parallel implementation for GPUs 138
10.1.4 Datasets . 141

10.2 Results and discussion . 142
10.2.1 Performance . 142
10.2.2 Quality measurements of matches . 143
10.2.3 Querying protein complexes among different species. 144
10.2.4 Datasets and query details . 145

10.3 APPAGATO Implementation . 146
10.3.1 APPAGATO performance . 152

10.4 Functional coherence measurement in querying protein complexes
among different species. 153
10.4.1 Querying disease modules . 156

10.5 Conclusions . 159

Part III Profiling and Analysis Framework

11 Related Work . 165
11.1 Performance models . 165
11.2 GPU Microbenchmarking . 166

VIII Contents

12 Parallel Primitives Profiling . 169
12.1 Introduction . 169
12.2 Profiler Metrics . 172
12.3 Optimization Criteria . 173

12.3.1 Occupancy (OCC) . 173
12.3.2 Host Synchronization (HSync) . 174
12.3.3 Device Synchronization (DSync) . 175
12.3.4 Thread Divergence (TDiv) . 175
12.3.5 Warp Load Balancing (LBW) . 175
12.3.6 Streaming Multiprocessor Load Balancing (LBSM) 176
12.3.7 L1/L2 Granularity (GranL1/GranL2) . 176
12.3.8 Shared Memory Efficiency (SMemeff) . 177
12.3.9 Computation Intensity (CI) . 177
12.3.10Data Transfer (DT) . 177
12.3.11Overall Quality Metrics (QM) . 178

12.4 Weighing of Optimization Criteria on the Overall Quality Metrics . 178
12.4.1 Parallel Primitives . 178
12.4.2 Evaluation . 180

12.5 Case Studies . 183
12.5.1 The Load Balancing Search Primitive . 183
12.5.2 The Matrix Transpose . 184

12.6 Conclusion . 185

13 A Fine-grained Performance Model . 187
13.1 Introduction . 187
13.2 Microbenchmarks . 189

13.2.1 Microbenchmark Development . 190
13.2.2 GPU Device Characterization through Microbenchmarks . . . 190

13.3 Optimization Criteria . 191
13.3.1 Host Synchronization . 192
13.3.2 Device Synchronization . 192
13.3.3 Thread Divergence . 192
13.3.4 Warp Load Balancing . 193
13.3.5 Streaming Multiprocessor (SM) Load Balancing 193
13.3.6 L1/L2 Granularity . 193
13.3.7 Shared Memory Efficiency . 194
13.3.8 Throughput/Occupancy . 194

13.4 Performance Prediction . 195
13.5 Experimental Results . 196

13.5.1 Case study 1: Parallel Reduction . 196
13.5.2 Case study 2: BFS . 197
13.5.3 Case study 3: Matrix Transpose . 198

13.6 Remarks . 199

Contents IX

14 Power/Performance/Energy Microbenchmarking 201
14.1 Introduction . 201
14.2 The Microbenchmark Suite . 203

14.2.1 Arithmetic processing benchmarks . 204
14.2.2 Memory benchmarks . 205

14.3 Experimental Results . 207
14.4 Conclusions . 211

15 Power-aware Performance Tuning of GPU Applications
Through Microbenchmarking . 213
15.1 Introduction . 213
15.2 The Microbenchmark Suite . 215

15.2.1 GPU static characteristics . 216
15.2.2 GPU dynamic characteristics . 217

15.3 Experimental Results . 219
15.3.1 GPU Device Characterization . 219
15.3.2 Vector Reduction . 223
15.3.3 Matrix Transpose . 224

15.4 Conclusions . 225

16 A Performance, Power, and Energy Efficiency Analysis of
Load Balancing Techniques for GPUs . 227
16.1 Introduction . 227

16.1.1 The Multi-phase technique . 228
16.2 Load balancing analysis . 231

16.2.1 Characteristics of datasets, GPU devices, and equipment
for performance, power, energy efficiency measurement 231

16.2.2 Performance, power, energy efficiency analysis 233
16.3 Conclusion . 237

Part IV Dynamic Graph Processing

17 Related Work . 243
17.0.1 Dynamic Sparse Formats . 243
17.0.2 K-Truss . 246
17.0.3 Triangle Counting . 247
17.0.4 GPU Triangle Counting . 247
17.0.5 Streaming and Dynamic Triangle Counting 247

18 Hornet: An Efficient Data Structure for Dynamic Sparse
Graphs and Matrices . 249
18.1 Introduction . 249
18.2 Hornet Overview . 250

18.2.1 Block arrays . 253
18.2.2 Vectorized Bit Tree . 253
18.2.3 B`Trees of block arrays . 255
18.2.4 Data structure initialization . 255

X Contents

18.2.5 Dynamic Updates . 256
18.2.6 Handling graphs with extra properties 258

18.3 Experimental Results . 259
18.4 The Hornet data structure . 259

18.4.1 Memory utilization efficiency. 259
18.4.2 Initialization Time. 261
18.4.3 Update rates . 262
18.4.4 Dynamic Triangle Counting . 263
18.4.5 Breadth-first search . 263
18.4.6 SpMV . 263

18.5 Conclusions . 265

19 Quickly Finding a Truss in a Haystack . 267
19.1 Introduction . 267
19.2 KTruss Algorithm Using Dynamic Graphs . 268

19.2.1 Problem Definition . 269
19.3 Proposed Algorithm . 269

19.3.1 Triangle Subtraction . 269
19.3.2 Triangle Detection For Single Edge-Pair Deletions 270
19.3.3 Triangle Detection For Dual Edge-Pair Deletions 271

19.4 Experimental Results . 271
19.4.1 Dynamic Graphs . 272
19.4.2 Benchmarks . 272
19.4.3 Dataset . 273

19.5 Conclusions . 276

Part V Applications

20 Invariant Mining . 281
20.1 Introduction . 281
20.2 Preliminary definitions . 282
20.3 Invariant mining . 282

20.3.1 The parallel implementation for GPUs 283
20.3.2 Generation of the variable dictionary . 285
20.3.3 Data transfer and overlapping of the mining phase 285

20.4 Experimental results . 286
20.5 Concluding remarks . 287

21 cuRnet: an R package for graph traversing on GPU 289
21.1 Background . 289
21.2 Methods . 290

21.2.1 Parallel implementation of Breadth-First Search for GPUs . . 293
21.3 Results and discussion . 294

21.3.1 Data . 295
21.3.2 cuRnet performance . 295

21.4 Conclusion . 299

Contents 1

22 Conclusions . 301

Part VI Ph.D. Candidate’s Bibliografy

References . 309

1

Thesis Abstract

Graphs are a common representation in many problem domains, including engi-
neering, finance, medicine, and scientific applications. Different problems map to
very large graphs, often involving millions of vertices. Even though very efficient se-
quential implementations of graph algorithms exist, they become impractical when
applied on such actual very large graphs. On the other hand, graphics processing
units (GPUs) have become widespread architectures as they provide massive par-
allelism at low cost. Parallel execution on GPUs may achieve speedup up to three
orders of magnitude with respect to the sequential counterparts. Nevertheless,
accelerating efficient and optimized sequential algorithms and porting (i.e., paral-
lelizing) their implementation to such many-core architectures is a very challenging
task. The task is made even harder since energy and power consumption are be-
coming constraints in addition, or in same case as an alternative, to performance.
This work aims at developing a platform that provides (I) a library of parallel,
efficient, and tunable implementations of the most important graph algorithms
for GPUs, and (II) an advanced profiling model to analyze both performance and
power consumption of the algorithm implementations.

Overview of the proposed platform.

2 1 Thesis Abstract

The platform goal is twofold. Through the library, it aims at saving developing
effort in the parallelization task through a primitive-based approach. Through the
profiling framework, it aims at customizing such primitives by considering both the
architectural details and the target efficiency metrics (i.e., performance or power).

Performance-Oriented Implementations of Graph
Algorithms for GPU

A library of the most important graph algorithms has been implemented for
GPU architectures. It provides high efficient, maintainable, flexible, extendable
and power-aware parallel implementations of graph algorithms. The library is fo-
cused on main graph algorithms in the literature that have huge applications in
real world problems. It includes:

Breadth-first search (BFS-4K). BFS is one of the most common graph
traversal algorithms and the building block for a wide range of graph applications.
This work presents BFS-4K, a parallel implementation of BFS for GPUs that
exploits the more advanced features of GPU-based platforms (i.e., NVIDIA Kepler)
and that achieves an asymptotically optimal work complexity. An analysis of the
most representative BFS implementations for GPUs at the state of the art and their
comparison with BFS-4K are reported to underline the efficiency of the proposed
solution.

Fully Configurable BFS (Helix). This work presents Helix, a fully config-
urable BFS for GPUs. It relies on a flexible and expressive programming model
that allows selecting, for each BFS feature (e.g., frontier handling, load balanc-
ing, duplicate removing, etc.) and among different implementation strategies of
them, the best combination to address the graph characteristics. Thanks to the
high reconfigurability, Helix provides high-performance and customized BFSs with
speedups ranging from 1.2x to 18.5x with regard to the best parallel BFS solutions
for GPUs at the state of the art.

Single source shortest path (H-BF). Finding the shortest paths from a
single source to all other vertices is a common problem in graph analysis. This
work presents a parallel implementation of the Bellman-Ford algorithm that ex-
ploits the architectural characteristics of recent GPU architectures (i.e., NVIDIA
Kepler, Maxwell, Pascal) to improve both performance and work efficiency. The
work presents different optimizations to the implementation, which are oriented
both to the algorithm and to the architecture. The experimental results show that
the proposed implementation provides an average speedup of 5x higher than the
existing most efficient parallel implementations for SSSP, that it works on graphs
where those implementations cannot work or are inefficient.

Approximate Sub-graph Isomorphism in Biological Network (AP-
PAGATO). Biological network querying is a problem in bioinformatics which
solution requires a considerable computational effort. Given a target and a query
network, the problem is to find occurrences of the query in the network allowing
nodes and edges mismatches, i.e. similarities on node labels, nodes or edges dele-
tions. This work proposes APPAGATO, a stochastic and parallel algorithm to find

1 Thesis Abstract 3

approximate occurrences of a query network in biological networks. APPAGATO
allows nodes and edges mismatches. Thanks to its randomic and parallel nature,
it results feasable on large networks compared to existing tools and also statically
more accurate.

Strongly Connected Component (SCC). The problem of decomposing a
directed graph into strongly connected components (SCCs) is a fundamental graph
problem that is inherently present in many scientific and commercial applications.
This work introduces a novel parametric multi-step scheme to evaluate existing
GPU-accelerated algorithms for SCC decomposition in order to alleviate the bur-
den of the choice and to help the user to identify which combination of existing
techniques for SCC decomposition would fit an expected use case the most. The
study confirms that there is no algorithm that would beat all other algorithms in
the decomposition on all of the classes of graphs. The contribution thus represents
an important step towards an ultimate solution of automatically adjusted scheme
for the GPU-accelerated SCC decomposition.

Load balancing in graph algorithms. Load balancing is a fundamental
performance aspect when facing irregular problems and in particular graph al-
gorithms. The latter strongly rely on prefix-scan values to provide an efficient
memory representation. Prefix-scan is one of the most common operation and
building block for a wide range of parallel applications for GPUs. It allows the
GPU threads to efficiently find and access in parallel to the assigned data. Nev-
ertheless, the workload decomposition and mapping strategies that make use of
prefix-scan can have a significant impact on the overall application performance.
This work presents presents Multi-Phase Search, an advanced dynamic technique
that addresses the workload unbalancing problem by fully exploiting the GPU de-
vice characteristics whose complexity is sensibly reduced with respect to the other
dynamic approaches in the literature.

Profiling and Analysis Framework

The increasing programmability, performance, and cost/effectiveness of GPUs have
led to a widespread use of such many-core architectures to accelerate general-
purpose applications. Nevertheless, tuning applications to efficiently exploit the
GPU potentiality is a very challenging task, especially for inexperienced program-
mers. This is due to the difficulty of developing a SW application for the specific
GPU architectural configuration, which includes managing the memory hierarchy
and optimizing the execution of thousands of concurrent threads while maintain-
ing the semantic correctness of the application. Even though several profiling tools
exist, which provide programmers with a large number of metrics and measure-
ments, it is often difficult to interpret such information for effectively tuning the
application. This research focuses on the development of a performance model that
allows accurately estimating the potential performance of the application under
tuning on a given GPU device and, at the same time, it provides programmers
with interpretable profiling hints.

Although, in general, the goals of algorithms and applications in computer sci-
ence are to minimize measures related to time and space, another interesting and

4 1 Thesis Abstract

tangible cost on a modern computing platform is the power consumption. Many
analytical and quantitative models have been proposed in the literature to esti-
mate or predict the power consumption of parallel applications but none of these
approaches takes into account how algorithms and parallel programming tech-
niques are related to power and energy consumption of the device. In particular,
existing solutions provide information that is rarely useful to effectively improve
the code. This work aims at developing a power consumption model and profiling
framework that provides useful feedback to identify the causes of power and energy
consumption of an application, to understand where and suggest how to modify
the application to improve the power behavior. It includes:

Parallel Primitives Profiling Framework (Pro++). Parallelizing soft-
ware applications through the use of existing optimized primitives is a common
trend that mediates the complexity of manual parallelization and the use of less
efficient directive-based programming models. On the other hand, the spreading of
such a primitive-based programming model and the different GPU architectures
have led to a large and increasing number of third-party libraries, which often
provide different implementations of the same primitive, each one optimized for a
specific architecture. This work presents Pro++, a profiling framework for GPU
primitives that allows measuring the implementation quality of a given primitive
by considering the target architecture characteristics.

GPU Performance Model. Tuning applications to efficiently exploit the
GPU potentiality is a very challenging task, especially for inexperienced program-
mers. This is due to the difficulty of developing a SW application for the specific
GPU architectural configuration, which includes managing the memory hierarchy
and optimizing the execution of thousands of concurrent threads while maintain-
ing the semantic correctness of the application. This work presents a performance
model that allows accurately estimating the potential performance of the appli-
cation under tuning on a given GPU device and, at the same time, it provides
programmers with interpretable profiling hints.

Microbenchmark Suite (MIPP). This work presents a suite of microbench-
marks, which are specialized chunks of GPU code that exercise specific device
components (e.g., arithmetic instruction units, shared memory, cache, DRAM,
etc.) and that provide the actual characteristics of such components in terms of
throughput, power, and energy consumption. The suite aims at enriching standard
profiler information and guiding the GPU application tuning on a specific GPU
architecture by considering all three design constraints (i.e., power, performance,
energy consumption).

Power-aware Performance Tuning Through Microbenchmarking. Tun-
ing GPU applications is a very challenging task as any source-code optimization
can sensibly impact performance, power, and energy consumption of the GPU de-
vice. Such an impact also depends on the GPU on which the application is run.
This work presents a suite of microbenchmarks that provides the actual charac-
teristics of specific GPU device components (e.g., arithmetic instruction units,
memories, etc.) in terms of throughput, power, and energy consumption. It shows
how the suite can be combined to standard profiler information to efficiently drive
the application tuning by considering the three design constraints (power, per-

1 Thesis Abstract 5

formance, energy consumption) and the characteristics of the target GPU device.

Case Study: Performance, Power, and Energy efficiency of Load Bal-
ancing Algorithms. Load balancing is a key aspect to face when implementing
any parallel application for GPUs. It is particularly crucial if one considers that
it strongly impacts on performance, power and energy efficiency of the whole ap-
plication. This work shows and compares, in terms of performance, power, and
energy efficiency, the experimental results obtained by applying all the different
static, dynamic, and semi-dynamic techniques at the state of the art to different
datasets and over different GPU technologies.

Dynamic graph representation and algorithms

Sparse data computations are ubiquitous in science and engineering. Unlike their
dense data counterparts, sparse data computations have less locality and more
irregularity in their execution, making them significantly more challenging to op-
timize. Even more challenging is their optimization for parallel applications and
algorithms. Dynamic sparse data applications are now pervasive and can be found
in many domains. Dynamic refers to the fact that the data is changing at very
high rates. For example, updates might represent the change in the current-flow of
a power network or the road-congestion for a transportation network. The number
of applications is considerably high and many formulations of these problems end
up being either graph-based or linear-algebra based. This thesis section includes
two main contributions:

Efficient Data Structure for Dynamic Sparse Graphs and Matrices
(Hornet). Most of the existing formats for sparse data representations on parallel
architectures are restricted to static data sets, while those for dynamic data suffer
from inefficiency both in terms of performance and memory footprint. This work
presents Hornet, a novel data representation that targets dynamic graph analyt-
ics and linear algebra based problems. The data structure includes an optimized
memory manager that is responsible for memory allocation, reclamation, and for
ensuring low overhead to represent the data during its evolution. Hornet is scal-
able with the input data, flexible in representing data set properties, and does not
require any data re-allocation or re-initialization during the data evolution.

K-Truss. The KTruss of a graph is a subgraph such that each edge is tightly
connected to the remaining elements in the k-truss. This work presents a novel
algorithm for finding both the KTruss of the graph (for a given k), as well as the
maximal KTruss using a dynamic graph formulation. The algorithm has two main
benefits. The algorithm shows high work-efficiency and it is extremely scalable in
contrast to past approaches.

Applications

Invariant mining (Mangrove). Invariant mining is a promising strategy that
extracts logic formulas holding between a couple (or several couples) of points

6 1 Thesis Abstract

in an implementation. Such formulas express stable conditions in the behavior of
the system under verification (SUV) for all its executions, which can be used to
analyze several aspects in verification of SW programs and HW designs, at different
abstraction levels. For complex SUV, this could require to elaborate thousands of
execution traces, including millions of clock cycles, and predicating over hundreds
of variables, which becomes an unmanageable time-consuming activity for existing
approaches. This research activity aims at providing very efficient and flexible
parallel algorithm based on advanced GPU optimization techniques and on run-
time inference to avoid redundant elaboration to allow the analysis of huge SUV
traces in short time.

cuRnet. R has become the de-facto reference analysis environment in Bioin-
formatics. Plenty of tools are available as packages that extend the R functionality,
and many of them target the analysis of biological networks. Several algorithms for
graphs, which are the most adopted mathematical representation of networks, are
well-known examples of applications that require high-performance computing,
and for which classical sequential implementations are becoming inappropriate.
This work presents cuRnet, a R package that provides a parallel implementation
for GPUs of the breath-first search (BFS), the single-source shortest paths (SSSP),
and the strongly connected components (SCC) algorithms. The package allows of-
floading computing intensive applications to GPU devices for massively parallel
computation and to speed up the runtime up to one order of magnitude with
respect to the standard sequential computations on CPU.

Part I

Background

Introduction

This part of the thesis presents some preliminary concepts concerning GPU
(Graphic Processing Unit), CUDA programming model, and static graph rep-
resentation, which facilitate the reader to better understand the context of the
work.

The part is organized as follows. Section 2 summarizes the programming and
architectural characteristics of the most recent GPUs that have been exploited in
the following works. Besides GPU characteristics, the section focuses on the pro-
gramming model of such devices (CUDA) and related advanced primitives which
allows to improve the common parallel operations. Section 3 introduces the topic
of static graph data structures on GPUs. It presents and compares the main im-
portant data structures and techniques applied for representing graphs on GPUs
at the state of the art.

2

Graphic Processing Unit (GPU)

GPU devices are massive multithreaded architectures composed by scalable arrays
of parallel processors called Streaming Multiprocessors (SMs). Each SM contains a
set of cores, called Stream Processors (SPs) that executes warp instructions. Each
SP executes fixed-point and floating-point single-precision operations through ded-
icated ALU and FPU units. SPs are supported by special purpose units that exe-
cute double-precision instructions (DFU), transcendental operations (SFU), such
as trigonometric functions, and load/store units to issue memory instructions and
to calculate memory addresses. The number of SPs per streaming multiproces-
sor is fixed by the compute capability of the device, while the number of DFU,
SFU, load/store units depends on the particular chip. On the other hand, the SM
has limited instruction throughput per clock cycle. GPUs also feature a sophisti-
cated memory hierarchy, which involves thread registers, shared memory, DRAM
memory and two-level cache (L1 within a SP, while L2 accessible to all threads).

In the last NVIDIA GPU architectures, Kepler, Maxwell, Pascal and Volta,
a small read-only cache per-SM (called Texture cache) is also available to reduce
global memory data access.

2.1 Computed Unified Device Architecture (CUDA)

The threads run the same kernel concurrently, and each one is associated with a
unique thread ID. A kernel is executed by a 1-, 2-, or 3-dimensional grid of thread
blocks. Threads are arranged into three-dimensional thread blocks.

CUDA is a parallel computing platform and programming model proposed by
NVIDIA. CUDA comes with a software environment that allows developers to use
C/C++ as a high-level programming language targeting heterogeneous computing
on CPUs and GPUs. Through API function calls, called kernels, and language
extensions, CUDA allows enabling and controlling the offload of compute-intensive
routines. A CUDA kernel is executed by a grid of thread blocks. A thread block
is a batch of threads that can cooperate and synchronize each other via shared
memory, atomic operations and barriers. Blocks can execute in any order while
threads in different blocks cannot directly cooperate.

12 2 Graphic Processing Unit (GPU)

Groups of 32 threads with consecutive indexes within a block are called warps.
A thread warp executes in SIMD-like way the same instruction on different data
concurrently. In a warp, the synchronization is implicit since the threads execute
in lockstep. Different warps within a block can synchronize through fast barrier
primitives. In contrast, there is no native thread synchronization among different
blocks as the CUDA execution model requires independent block computation for
scalability reasons. The lack of support for inter-block synchronization requires
explicit synchronization with the host, which involves significant overhead.

A warp thread is called active if it successfully executes a particular instruction
issued by the warp scheduling. A CUDA core achieves the full efficiency if all
threads in a warp are active. Threads in the same warp stay idle (not active)
if they follow different execution paths. In case of branch divergence, the core
serializes the execution of the warp threads.

In modern GPU architectures (e.g., NVIDIA Kepler, Maxwell, Pascal, and
Volta) each SM can handle up to 2048 threads and 64 warps concurrently. The
number of warps per SM is called theoretical occupancy of the device. Each SM
has four warp schedulers, that issue the instructions from a given warp to the
corresponding SIMD core, allowing 8 instructions to be execute per clock cycle.
Thread blocks are dynamically dispatched to the SMs through a hardware sched-
uler that works at device-level. The grid configuration and the thread block/warp
scheduling strongly affects performance.

Threads of the same block cooperate by sharing data through fast on-chip
shared memory and by synchronizing their execution through extremely fast (i.e.,
HW implemented) barriers. Shared memory is organized in a 32-column matrix
(i.e., memory banks). When multiple threads of the same block access different
32-bit words of the same bank, a conflict occurs. Such a bank conflict involves
re-execution of the memory instructions, with a consequent lost of performance.
The GPU memory hierarchy includes also the DRAM, constant, and L2 cache
memories, which are visible to all the threads of a grid. The constant cache is a
fast and small read-only memory space commonly used to kernel parameter passing
and for storing data that will not change during the kernel execution. In contrast,
DRAM and L2 cache provide high latency read/write spaces to all threads.

Private variables of threads and local arrays with static indexing are placed
into registers. Large local arrays and dynamic indexing arrays are stored in L1
and L2 cache. Thread variables that are not stored in registers are also called
local memory. The access pattern of global memory accesses is critical for the
performance. In order to maximize the global memory bandwidth and to reduce
the number of bus transactions, multiple memory accesses can be combined into
a single transaction. Memory coalescing consists of executing memory accesses by
different warp threads to an aligned and continuous segment of memory.

Finally, the host-GPU device communication bus allows overlapping CPU-GPU
data transfers with the kernel computations to minimize the host-device data
transfers.

2.2 Modern GPU architectures 13

2.2 Modern GPU architectures

With the most recent GPU architectures (e.g., NVIDIA Kepler [210], Maxwell
[211], Pascal [212]), and Volta [9], several advanced programming techniques and
primitives have been introduced to improve the efficiency of the most common par-
allel operations and to simplify the programming model. Some examples are warp
shuffle, warp voting, and dynamic parallelism. They allow a more straightforward
porting of sequential applications to GPUs through transparent thread coordina-
tion and communication mechanisms, while guaranteeing high-performance at the
same time.

Warp shuffle instructions provide a fast mechanism to move data among
threads of the same warp by exchanging thread register values in a single op-
eration. Warp shuffle operations avoid shared memory accesses, thus increasing
the available space of such memory at run-time for other uses.

Warp voting implements efficient procedures for intra-warp coordination (e.g.,
any, all, and ballot instructions), which allow simplifying the application control
flow.

Recent GPUs also extend the execution model with the dynamic parallelism,
which allows the GPU kernel to create and synchronize new nested work directly
without returning the control to the host. Dynamic parallelism helps developers
to balance irregular workload in applications that show complex patterns.

The recent architectures also introduced the read-only data cache. Such a sep-
arate cache (i.e., with separate memory pipe), which is available to each symmet-
ric multiprocessor, SM, (generally 48KB per SM) allows improving performance
through bandwidth-limited kernels. The implementation proposed in this work
takes advantage of this feature to alleviate the L1 cache pressure during data
loads from global memory .

Such architectures also expand the native support for 64-bit atomic operations
in global memory. This feature is used in this work to improve the work efficiency.
The Kepler architecture also introduces the 8-byte access mode to the shared
memory. The shared memory throughput is doubled by increasing the bank width
to 8 bytes.

From the perspective of architectural characteristics, GPU application develop-
ers can more and more afford on atomic operations for fast hardware-implemented
shared memory and on an increasing amount of such a shared memory. From the
NVIDIA Maxwell architecture on, for example, the amount of shared memory has
been doubled compared to the Kepler architecture, and developers can exploit the
unified L1/Texture cache for global memory loads. This allows reaching higher hit
rates compared to the separated L1 and Texture caches of older architectures.

3

Static Graph Representation

The graph representation adopted when implementing a graph algorithm for GPUs
strongly affects the implementation efficiency and performance. The three most
common representations are adjacency matrices, adjacency lists, and egdes lists
[74,237]. They have different characteristics and each one finds the best application
in different contexts (i.e., graph and algorithm characteristics).

As for the sequential implementations, the quality and efficiency of the graph
representation can be measured over three properties: the involved memory foot-
print, the time required to determine whether a given edge is in the graph, and the
time it takes to find the neighbours of a given vertex. For GPU implementations,
such a measure also involves the load balancing and the memory coalescing.

Given a graph G “ pV,Eq, where V is the set of vertices, E is the set of edges,
and dmax is the largest diameter of the graph, Table 3.1 summarizes the main
features of the data representations, which will be discussed in detail in the next
paragraphs.

Space pu, vq P E pu, vq P adjpvq
Load
Balancing

Mem.
Coalescing

Adj Matrices Op|V |2q Op1q Op|V |q Yes Yes

Adj Lists Op|V |`|E|q Opdmaxq Opdmaxq Difficult Difficult

Edges Lists Op2|E|q Op|E|q Op|E|q Yes Yes

Table 3.1: Main feature of data
representations.

3.0.1 Adjacency Matrices

An adjacency matrix allows representing a graph with a V ˆV matrix M “ rfpi, jqs
where each element fpi, jq contains the attributes of the edge pi, jq. If the edges
do not have any attribute, the graph can be represented with a boolean matrix to
save memory space (see Figure 3.1).

16 3 Static Graph Representation

Common algorithms that use this representation are all-pair shortest path and
transitive closure [54,92,139,171,181,266,269]. If the graph is weighted, each value
of fpi, jq is defined as follows:

M ri, js

$

&

%

0 if i “ j
w pi, jq if i ‰ j and pi, jq P E
8 if i ‰ j and pi, jq R E

On GPUs, both directed and undirected graphs represented by an adjacency ma-
trix take Op|V |2q memory space, since the whole matrix is stored in memory with
a large continuous array. In GPU architectures, it is also important, for perfor-
mance reasons, to align the matrix with memory to improve coalescence of mem-
ory accesses. In this context, the CUDA language provides the function cudaMal-
locPitch [207] to pad the data allocation, with the aim of meeting the alignment
requirements for memory coalescing. In this case the indexing changes as follow:

M ri ¨ V ` js ÑM ri ¨ pitch` js

0	 0	 1	

1	 0	 0	

1	 0	 0	

v1 v0 v2 v|V|

v2

v1

v3

v|V|

pad

pitch

….

….

V0

V2

V4

V3

V1

V8

V7

V6

V5

fig. 3.1: Matrix representation of a graph in memory

The Op|V |2q memory space required is the main limitation of the adjacency
matrices . Even on recent GPUs, they allow handling fairly small graphs. As an
example, considering a GPU device with 4GB of DRAM, the biggest graph that
can be represented through an adjacency matrix can have a maximum number
of vertices equals to 32,768 (which, for actual graph datasets, is considered re-
strictive). In general, adjacency matrices best apply to represent small and dense
graphs (i.e. |E| « |V |2). In some cases, such as for the all-pairs shortest path prob-
lem, graphs larger than the GPU memory are partitioned and each part processed
independently [92,181,266].

3.0.2 Adjacency Lists

Many linear systems and graph problems arising from the discretization of real-
world problems show high sparsity in the sense that the elements of these structures

3 Static Graph Representation 17

are loosely coupled or connected. The adjacency lists are the most common rep-
resentation for sparse graphs, where the number of edges is typically a constant
factor larger than |V |. Since the sequential implementation of the adjacency lists
relies on pointers, it is not suitable for GPUs. they are replaced, in GPU imple-
mentations, by the Compressed Sparse Row (CSR) or Compressed Row Storage
(CRS) sparse matrix format [36,37].

In general, an adjacency list consists of an array of vertices (ArrayV) and an
array of edges (ArrayE), where each element in the vertex array stores the starting
index (in the edge array) of the edges outgoing from each node. The edge array
stores the destination vertices of each edge (see Figure 5.5). This allows visiting
the neighbors of a vertex v by reading the edge array from ArrayV[v] to ArrayV[v
+ 1].

V0

V2

V4

V3

V1

V8

V7

V6

V5

0	 3	 3	 5	 8	 10	 11	 11	 11	

2	 3	 4	 1	 8	 8	 7	 2	 5	 6	 7	

V0 V1 V3 V2 V8 V4 V5 V6 V7

0 1 3 2 8 4 5 6 7 10 9

vertex array
(ArrayV)

edge array
(ArrayE)

fig. 3.2: Adjacency list representation of a weighted graph

The attributes of the edges are in general stored in the edge array through an
array of structures (AoS). For example, in a weighted graph, the destination and
the weight of an edge can be stored in a structure with two integer values (int2 in
CUDA [208]). Such a data organization allows many scattered memory accesses
to be avoided and, as a consequence, the algorithm performance to be improved.

Undirected graphs represented with the CSR format take Op|V | ` 2|E|q space
since each edge is stored twice. If the problem requires also the incoming edges,
the same format is used to store the reverse graph where the vertex array stores
the offsets of the incoming edges. The space required with the reverse graph is
Op2|V | ` 2|E|q.

The main issues of the CSR format are the load balancing and the memory
coalescing, due to the irregular structure of such a format. If the algorithm involves
visiting each vertex at each iteration, the memory coalescing for the vertex array
is simple to achieve but, on the other hand, it is difficult to achieve for the edge
array. Achieving both load balancing and memory coalescing requires advanced
and sophisticated implementation techniques.

For many graph algorithms, the adjacency list representation guarantees better
performance than adjacency matrix and edge lists [59,118,125,172,190].

18 3 Static Graph Representation

2	 3	 4	 1	 8	 8	 7	 2	 5	 6	 7	

0 1 3 2 8 4 5 6 7 10 9

0 1 3 2 8 4 5 6 7 10 9

0	 0	 0	 2	 2	 3	 3	 3	 4	 4	 6	

V0

V2

V4

V3

V1

V8

V7

V6

V5

sources array

destination array

fig. 3.3: Edges list representation of a weighted graph

3.0.3 Edges List

The edge list representation of a graph, also called coordinate list (COO) sparse
matrix [81], consists of two arrays of size |E| that store the source and the desti-
nation of each edge (see Figure 3.3). To improve the memory coalescing, similarly
to CSR, the source, the destination and other edge attributes (such as the edge
weight) can be stored in a single structure (AoS) [245].

Storing some vertex attributes in external arrays is also necessary in many
graph algorithms. For this reason, the edge list is sorted by the first vertex in
each ordered pair, such that adjacent threads are assigned to edges with the same
source vertex. This allows improving coalescence of memory accesses for retrieving
the vertex attributes. In some cases, sorting the edge list in the lexicographic order
may also improve coalescence of memory accesses for retrieving the attributes of
the destination vertices [135]. The edge organization in a sorted list allows reducing
the complexity (from Op|E|q to Oplog |E|q) of verifying whether an edge is in the
graph, by means of a simple binary search [214].

For undirected graphs, the edge list should not be replicated for the reverse
graph. Processing the incoming edges can be done by simply reading the source-
destination pairs in the inverse order, thus halving the number of memory accesses.
With this strategy, the space required for the edge list representation is Op2|E|q.

The edge list representation is suitable in those algorithms that iterate over
all edges. For example, it is used in the GPU implementation of algorithms like
betweenness centrality [135,183]. In general, this format does not guarantee perfor-
mance comparable to the adjacency list but it allows achieving both perfect load
balancing and memory coalescing with a simple thread mapping. In graphs with
a non-uniform distribution of vertex degrees, the COO format is generally more
efficient than CSR [135,249].

Final Notes: These different formats vary in their representation character-
istics: memory footprint, memory access patterns involved for applications, suit-
ability to exploit the memory hierarchy, design complexity, implementation com-
plexity, conversion time, and tuning capabilities. While many of them can be

3 Static Graph Representation 19

considered ideal data layout for specific applications, CSR still remains the most
popular format, in part due to its simplicity and its reduced memory requirements.

Part II

Performance-Oriented Implementations of Graph
Algorithms for GPU

Introduction

This part of the thesis presents the topic of efficient implementations of graph
algorithms for GPU architectures. It starts by presenting and comparing the main
important techniques applied for analyzing graphs on GPUs at the state of the art
with particular emphasis on load balancing strategies and their main issues. It then
presents the theory and an updated review of the state of the art implementations
of graph algorithms for GPUs. Later, the part focuses on graph traversal algo-
rithms (BFS), single-source shortest path (SSSP), strongly connected components
decomposition (SCC), and approximate subgraph isomorphism.

This part of the thesis is organized as follows. Section 4 presents the related
work concerning the workload partitioning problem, the most important graph
algorithms and the related implementations targeting performance. Section 5 in-
troduces an efficient dynamic partitioning and mapping technique, called Multi-
phase Mapping, to address the workload unbalancing problem in both regular and
irregular problems and how it has been implemented by fully exploiting the GPU
device characteristics. Section 6 presents BFS-4K, a parallel implementation of
BFS for GPUs, which exploits the more advanced features of NVIDIA Kepler
GPU and achieve an asymptotically optimal work complexity. Section 7 describes
Helix, a fully configurable BFS for GPUs which further improves the previous
implementation by adapting and tuning its features depending on the graph char-
acteristics. Section 8 introduces H-BF, a high-performance implementation of the
Bellman-Ford algorithm for GPUs, which exploits the more advanced features
of GPU architectures to improve the execution speedup and the work efficiency
with respect to any implementation at the state of the art for solving the SSSP
problem. Section 9 presents a new parametric multi-step scheme that allows us to
compactly define a set of algorithms for SCC graph decomposition as well as a
type of the parallelization for individual graph operations. The scheme covers the
existing algorithms and techniques mentioned above, but also introduces several
new variants of the multi-step algorithm. Finally, Section 10 describes APPA-
GATO, a stochastic and parallel algorithm to find approximate occurrences of a
query network in biological networks. APPAGATO, handles node, edge, and node
label mismatches. Thanks to its randomic and parallel nature, it applies to large
networks and, compared to existing tools, it provides higher performance as well
as statistically significant more accurate results.

4

Related Work

This section introduces the related work concerning efficient implementations of
graph algorithms for GPU devices. It first describes the workload partition prob-
lem on fine-grained parallel architectures and the main techniques in the litera-
ture to deal with irregular workload applications such graph algorithms. Later, it
describes state-of-the-art approaches for graph traversal and breadth-first search
which represent a common aspect of most graph procedures. Then, it presents the
related work for two important graph algorithms, single-source shortest path, and
strongly connected components.

4.1 The workload partitioning problem in GPUs

Consider a workload to be partitioned and mapped to GPU threads (see Fig. 4.1).
The workload consists of work-units, which are grouped into work-items. As a sim-
ple and general example, in the parallel breadth-first search (BFS) implementation
for graphs, the workload is the whole graph, the work-units are the graph nodes,

A3	

A2	

A1	 B1	

C2	

C1	

D2	

F1	D1	

G2	

G1	E1	

E2	

E3	C3	

C4	

Workload

Work-item

E4	

E5	

H1	

H2	

H3	

0 1 2 3 4 5 6 7

E6	

E7	

F2	

F3	

F4	

C5	

G3	

Work-unit

t1 t0 t31
…

Warp0

t33 t32 t63
…

Warp1

t127 …
Warp3

t65 t64
…

Warp2

t95 t96 t97

Block0

t1 t0 t31
…

Warp0

t33 t32 t63
…

Warp1

t127 …
Warp3

t65 t64
…

Warp2

t95 t96 t97

Block1

0	 3	 4	 9	 11	 18	 22	 25	 28	

0	 1	 2	 3	 4	 5	 6	 7	 8	

Exclusive prefix-sum

fig. 4.1: Overview of the load balancing problem in the workload partitioning and
mapping to threads of scan-based applications

26 4 Related Work

and the work-items are the node neighbors of each node. The native mapping is
implemented over work-items through the prefix-sum procedure. A prefix-sum ar-
ray, which stores the offset of each work-item, allows the GPU threads to easily and
efficiently access the corresponding work-units. Considering the example of Fig.
4.1 associated to the BFS, the neighbor analysis of eight nodes is partitioned and
mapped to eight threads. t0 elaborates the neighbors of node 0 (work-units A), t1
elaborates the neighbors of node 1 (work-unit B), and so on. Even though such
a native mapping is very easy to implement and does not introduce considerable
overhead in the parallel application, it leads to load imbalance across work-items
since, as shown in the example, each work-item may have a variable number of
work-units.

In the literature, the techniques for partitioning and mapping (for the sake
of brevity, mapping in the following) a workload to threads based on prefix-sum
for GPU applications can be organized in three classes: Static mapping, semi-
dynamic mapping, and dynamic mapping. They are all based on the prefix-sum
array that, in the following, is assumed to be already generated (the prefix-sum
array is generated, depending on the mapping technique, in a preprocessing phase
[284], at run-time if the workload changes at every iteration [59, 190], or it could
be already part of the problem [287]).

4.1.1 Static mapping techniques

This class includes all the techniques that statically assign each work-item (or block
of work-units) to a corresponding GPU thread. In general, this strategy allows the
overhead for calculating the work-item to thread mapping to be negligible during
the application execution but, on the other hand, it suffers from load unbalancing
when the work-units are not regularly distributed over the work-items. The main
important techniques are summarized in the following.

Work-items to threads

A1	 B1	 C1	 F1	D1	 G1	H1	

t1 t0 t3
Warp0

t33 t32
Warp1

Block0

t2

A2	 C2	 D2	
A3	 C3	

C4	
C5	

id

id

id

id

id

id

id

id

id

E1	

t35 t34

F2	 G2	H2	E2	

F3	 G3	H3	E3	

F4	E4	

E5	

E6	

E7	

id

id

id

id

id

id

id id

id id id

fig. 4.2: Example of work-items to threads mapping

4.1 The workload partitioning problem in GPUs 27

It represents the simplest mapping approach by which each work-item is
mapped to a single thread [117]. Fig. 4.2 shows an example, in which the eight
items of Fig. 4.1 are assigned to a corresponding number of threads. For the sake of
clarity, only four threads per warp have been considered in the example to under-
line more than one level of possible unbalancing of this technique. First, irregular
(i.e., unbalanced) work-items mapped to threads of the same warp lead the warp
threads to be in idle state (i.e., branch divergence). t1, t3, and t0 of warp0 in Fig.
4.2 are an example. Irregular work-items lead to whole warps to be in idle state
(e.g., warp0 w.r.t. warp1 in 4.2).

In addition, considering that work-units of different items are generally stored
in non-adjacent addresses in global memory, this mapping strategy leads to sparse
and non-coalesced memory accesses. As an example, threads t0, t1, t2, and t3
of Warp0 concurrently access to the non adjacent units A1, B1, C1, and D1,
respectively. For all these reasons, this technique is suitable to applications running
on very regular data structures, in which any more advanced mapping strategy
run at run time (as explained in the following sections) would lead to unjustified
overhead.

Virtual Warps

A1	 B1	 C1	 F1	D1	 G1	 H1	

Warp0
Block0

A2	 C2	 D2	
A3	 C3	 C4	

C5	
id

id

id

id

id

id

id

E1	 F2	 G2	 H2	E2	

F3	 G3	 H3	E3	 F4	E4	

E5	 E6	

E7	

t1 t0

VW0

t3 t2

VW1
Warp1

id id

id

VW0 VW1

t32 t33 t34 t35

Warp2

t1 t0

VW0

t3 t2

VW1
Warp3

id

VW0 VW1

t32 t33 t34 t35

id id

id id

id

fig. 4.3: Example of Virtual warps work-units mapping (black circles represent coalesced
memory accesses)

This technique consists of assigning chunks of work-units to groups of threads
called virtual warps, where the virtual warps are equally sized and the threads of
a virtual warp belong to the same warp [125]. Fig. 4.3 shows an example in which
the chunks correspond to the work-items and, for the sake of clarity, the virtual
warps have size equal to two threads. Virtual warps allow the workload assigned
to threads of the same group to be almost equal and, as a consequence, it allows
reducing branch divergence. This technique improves the coalescing of memory ac-
cesses since more threads of a virtual warp access to adjacent addresses in global
memory (e.g., t0, t1 of Warp2 in Fig. 4.3). These improvements are proportional to
the virtual warp size. Increasing the warp size leads to reducing branch divergence
and better coalescing the work-unit accesses in global memory. Nevertheless, vir-
tual warps have several limitations. Given the number of work-items and a virtual
warp size, the required number of threads is:

28 4 Related Work

VirtualWarp

1: VW Index = Th Index / |VirtualWarp|
2: Lane Offset = Th Index % |VirtualWarp|
3: Init = prefixsum[VW Index] + Lane Offset
4: for i = Init to prefixsum[VW Index+1] do
5: Output[i] = VW Index
6: i “ i` |VirtualWarp|
7: end

#RequiredThreads “ #workitems ¨ |VirtualWarp|

If the number is greater than the available threads, the work-item processing
is serialized with a consequent decrease of performance. Indeed, a wrong sizing of
the the virtual warps can significantly impact on the application performance. In
addition, this technique provides good balancing among threads of the same warp,
while it does not guarantee good balancing among different warps nor among dif-
ferent blocks. Another major limitation of such a static mapping approach is that
the virtual warp size has to be fixed statically. This represents a major limitation
when the number and size of the work-items change at run time.

The algorithm run by each thread to access the corresponding work-units is
summarized as follows:
where VW Index and LANE Offset are the virtual warp index and offset for the
thread (e.g., VW0, and 0 for t0 in the example of Fig. 4.3), Init represents the
starting work-unit id, and the for cycle represents the accesses of the thread to
the assigned work-units (e.g., A1, A3 for t0 and A2 for t1).

4.1.2 Semi-dynamic mapping techniques

This class includes the techniques by which different mapping configurations are
calculated statically and, at run time, the application switches among them.

Dynamic Virtual Warps + Dynamic Parallelism

This technique has been introduced in the work [59] and relies on two main strate-
gies. It implements a virtual warp strategy in which the virtual warp size is calcu-
lated and set at run time depending on the workload and work-item characteristics
(i.e., size and number). At each iteration, the right size is chosen among a set of
possible values, which spans from 1 to the maximum warp size (i.e., 32 threads
for NVIDIA GPUs, 64 for AMD GPUs). For performance reasons, the range is
reduced to power of two values only. Considering that a virtual warp size equal
to one has the drawbacks of the work-item to thread technique and that memory
coalescence increases proportionally with the virtual warp size (see Section 4.1.1),
too small sizes are excluded from the range a priori. The dynamic virtual warp
strategy provides a fair balancing in irregular workloads. Nevertheless, it is inef-
ficient in case of few and very large work-items (e.g., in benchmarks representing
scale free networks or graphs with power-law distribution in general).

4.1 The workload partitioning problem in GPUs 29

fig. 4.4: Example of Dynamic Virtual Warps + Dynamic Parallelism work-units
mapping where the dynamic parallelism is applied to a subset of the workload with a

power-law distribution

A1	 B1	

C1	 F1	

D1	 G1	
H1	

t1	t0	 t3	
Warp0	

t33	t32	
Warp1	

Block0	

t2	

A2	

C2	

D2	A3	

C3	 C4	
C5	 id	id	 id	id	id	

E1	

t35	t34	

F2	

G2	
H2	

E2	

F3	

G3	 H3	

E3	

F4	

E4	 E5	 E6	 E7	

id	id	

id	

id	

id	

id	

id	 CTA	

WARP	

SCAN	

fig. 4.5: Example of CTA+Warp+Scan work-units mapping (black circles represent
coalesced memory accesses)

On the other hand, dynamic parallelism, which exploits the most advanced
features of the GPU architectures (e.g., from NVIDIA Kepler on) [202] allows re-
cursion to be implemented in the kernels and, thus, threads and thread blocks
to be dynamically created and properly configured at run time without requiring
kernel returns. This allows fully addressing the work-item irregularity. Neverthe-
less, the overhead introduced by the dynamic kernel stack may elude this feature
advantages if replicated for all the work-items unconditionally [59] [62].

To overcome these limitations, dynamic virtual warps and dynamic parallelism
are combined into a single mapping strategy and applied alternatively at run time.
The strategy applies dynamic parallelism to the work-items having size greater
than a threshold (DynTH), otherwise it applies dynamic virtual warps (Fig. 4.4
shows an example). It best applies to applications with few and strongly unbal-
anced work-items that may vary at run time (e.g., applications for sparse graph
traversal). This technique guarantees balancing among threads of the same warps
and among warps. It does not guarantee balancing among blocks.

CTA+Warp+Scan

In the context of graph traversal, Merrill et al. [190] proposed an alternative ap-
proach to the load balancing problem. Their algorithm consists of three steps:

30 4 Related Work

Strip-Mined Gathering

1: while any(Workloads[THID] ą CTATH) do
2: if Workloads[THID] ą CTATH then
3: SharedWinnerID = THID
4: sync

5: if ThID “ SharedWinnerID
6: SharedStart = prefixsum[THID]
7: SharedEnd = prefixsum[THID + 1]
8:
9: sync

10: Init = SharedStart + THID%|THSET|

11: for i = Init to SharedEnd do
12: Output[i] = SharedWinnerID
13: i “ i` |THSET|

14: end
15: end

1. All threads of a block access the corresponding work-item (through the work-
item to thread strategy) and calculate the item sizes. The work-items with
size greater than a threshold (CTATH) are non-deterministically ordered and,
one at a time, they are (i) copied in the shared memory, and (ii) processed
by all the threads of the block (called cooperative thread array - CTA). The
algorithm of such a first step (which is called strip-mined gathering) is run by
each thread (THID). It can be summarized as follows:
where row 3 implements the non-deterministic ordering (based on iterative
match/winning among threads), rows 5-8 calculate information on the work-
item to be copied in shared memory, while rows 10-14 implement the item
partitioning for the CTA. This phase introduces significant overhead for the
two CTA synchronizations and, rows 5-8 are run by one thread only.

2. In the second step, the strip-mined gathering is run with a lower threshold
(WARPTH) and at warp level. That is, it targets smaller work-items and a
cooperative thread array consists of threads of the same warp. This allows
avoiding any synchronization among threads (as they are implicitly synchro-
nized in SIMD-like fashion in the warp) and addressing work-items with sizes
proportional to the warp size.

3. In the third step the remaining work-items are processed by all block threads.
The algorithm computes a block-wide prefix-sum on the work-items and stores
the resulting prefix-sum array in the shared memory. Finally, all threads of the
block get use of such an array to access to the corresponding work-unit. If the
array size exceeds the shared memory space, the algorithm iterates.

This strategy provides a perfect balancing among threads and warps. On the
other hand, the strip-mined gathering procedure run at each iteration introduces
a significant overhead, which slows down the application performance in case of
quite regular workloads. The strategy well applies only in case of very irregular
workloads.

4.1 The workload partitioning problem in GPUs 31

Fig. 4.5 shows an example of the three phases of the algorithm in which the CTA
phase computes the largest work-item in one iteration, the Warp phase is applied
on work-items greater than three, and the Scan phase computes the remaining
work-units in two steps.

4.1.3 Dynamic mapping techniques

Contrary to static mapping, the dynamic mapping approaches achieve perfect
workload partition and balancing among threads at the cost of additional compu-
tational overhead at run time. The core of such a computation is the binary search
over the prefix-sum array. The binary search aims at mapping work-units to the
corresponding threads.

Thread 5

25

3

Thread Id
(From–To) Work-item

0 – 2 0

3 1

4 – 8 2

9 – 10 3

11 – 17 4

18 – 21 6

22-24 7

25-27 8

(a)

0 3 4 9 11 18 22 25 28

0 1 2 3 4 5 6 7 8

18

9

(b)

fig. 4.6: Example of assignment of thread th5 to work-item 2 through binary search over
the prefix-sum array (a), and overall threads-items mapping (b).

Direct Search

Given the exclusive prefix-sum array of the work-unit addresses stored in global
memory, each thread performs a binary search over the array to find the corre-
sponding work-item index (Fig. 4.6 shows an example). This technique provides
perfect balancing among threads (i.e., one work-unit is mapped to one thread),
warps and blocks of threads. Nevertheless, the large size of the array involves an
arithmetic intensive computation (i.e., #threadsˆbinarysearchpqq and the binary
search performed by the threads to solve the mapping to be very scattered. This
often eludes the benefit of the provided balancing.

Local Warp Search

To reduce both the binary search computation and the scattered accesses to the
global memory, this technique first loads chunks of the prefix-sum array from the
global to the shared memory. Each chunk consists of 32 elements, which are loaded
by 32 warp threads through a coalesced memory access. Then, each thread of the
warp performs a lightweight binary search (i.e., maximum log2pWarpSizeq steps)
over the corresponding chunk in the shared memory.

32 4 Related Work

In the context of graph traversal, this approach has been further improved by
exploiting data locality in registers [59]. Instead of working on shared memory, each
warp thread stores the workload offsets in the own registers and then performs a
binary search by using Kepler warp-shuffle instructions [202].

In general, the local warp search strategy provides a fast work-units to threads
mapping and guarantees coalesced accesses to both the prefix-sum array and work-
units in global memory. On the other hand, since the sum of work units included in
each chunk of prefix-sum array is greater than the warp size, the binary search on
the shared memory (or registers for the enhanced version for Kepler) is repeated
until all work-units are processed. This leads to more work-units to be mapped
to the same thread. Although this technique guarantees a fair balancing among
threads of the same warp, it suffers from work unbalancing between different warps
since the sum of work-units for each warp can be not uniform in general. For the
same reason, it does not guarantee balancing among blocks of threads.

Block Search

To deal with the local warp search limitations, Davidson et al. [83] introduced
the block search strategy through cooperative blocks. Instead of warps performing
32-element loads, in this strategy each block of threads loads a maxi chunk of
prefix-sum elements from the global to the shared memory, where the maxi chunk
is as large as the available space in shared memory for the block. The maxi chunk
size is equal for all blocks. Each maxi chunk is then partitioned by considering the
amount of work-units included and the number of threads per block. For example,
considering that the nine elements of the prefix-sum array of Fig. 4.1 exactly fits
the available space in shared memory and that each block is sized 4 threads (for the
sake of clarity), the maxi chunk will be partitioned into 4 slots, each one including
7 work-units. Finally, each block thread performs only one binary search to find
the corresponding slot.

With the block search strategy, all the units included in a slot are mapped
to the same thread. As a consequence, all the threads of a block are perfectly
balanced. The binary searches are performed in shared memory and the overall
amount of searches is significantly reduced (i.e., they are equal to the block size).
Nevertheless, this strategy does not guarantee balancing among different blocks.
This is due to the fact that the maxi chunk size is equal for all the blocks, but the
chunks can include a different amount of work-units. In addition, this strategy does
not guarantee memory coalescing among threads when they access to the assigned
work-units. Finally, this strategy cannot exploit advanced features for intra-warp
communication and synchronization among threads, such as, Kepler warp shuffle
instructions.

Two-phase Search

Davidson et al. [83], Green et al [113] and Baxter [30] proposed three equivalent
methods to deal with the inter-block load unbalancing. All the methods rely on
two phases: partitioning and expansion.

4.1 The workload partitioning problem in GPUs 33

First, the whole prefix-sum array is partitioned into balanced chunks, i.e.,
chunks that point to the same amount of work-units. Such an amount is fixed
as the biggest multiple of the block size that fits in shared memory. As an ex-
ample, considering blocks of 128 threads, two prefix-sum chunks pointing to 128
ˆK units, and 1,300 slots in shared memory, K is set to 10. The chunk size may
differ among blocks (see for example Fig. 4.1, in which a prefix-sum chunk of size
8 points to 28 units). The partition array, which aims at mapping all the threads
of a block into the same chunk, is built as follows. One thread per block runs
a binary search on the whole prefix-sum array in global memory by using the
own global id times the block size (THglobal idˆ blocksizeq. This allows finding the
chunk boundaries. The number of binary searches in global memory for this phase
is equal to the number of blocks. The new partition array, which contains all the
chunk boundaries, is stored in global memory.

In the expansion phase, all the threads of each block load the corresponding
chunks into the shared memory (similarly to the dynamic techniques presented in
the previous sections). Then, each thread of each block runs a binary search in such
a local partition to get the (first) assigned work-unit. Each thread sequentially
accesses all the assigned work units in global memory. The number of binary
searches for the second step is equal to the block size. Fig. 4.7 shows an example
of expansion phase, in which three threads (t0, t1, and t2) of the same warp access
to the local chunk of prefix-sum array to get the corresponding starting point of
assigned work-unit. Then, they sequentially access the corresponding K assigned
units (A1 ´D1 for t0, D2 ´ F2 for t1, etc.) in global memory.

0	 3	 4	 9	 11	 18	 22	 25	 28	

A1	 A2	 A3	 B1	 C1	 C2	 C3	 C4	 C5	 D1	 D2	 E1	 E2	 E3	 E4	 E5	 E6	 E7	 F1	 ..	

Prefix-sum array
(shared memory)

NON-COALESCED MEM
ACCESSES

Global	
memory	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 ..	

Thread 0 Thread 1

Thread 0 Thread 1

I II III I III (Expansion step) II II

Thread 2

I

fig. 4.7: Example of expansion phase in the two-phase strategy (10 work-units per
thread)

In conclusion, the two-phase search strategy allows the workload among
threads, warps, and blocks to be perfectly balanced at the cost of two series of
binary searches. The first is run in global memory for the partitioning phase,
while the second, which mostly affects the overall performance, is run in shared
memory for the expansion phase. The number of binary searches for partition-
ing is proportional to the K parameter. High values of K involve less and bigger
chunks to be partitioned and, as a consequence, less steps for each binary search.
Nevertheless, the main problem of such a dynamic mapping technique is that the
partitioning phase leads to very scattered memory accesses of the threads to the
corresponding work-units (see lower side of Fig. 4.7). Such a problem worsens by
increasing the K value.

34 4 Related Work

4.2 Graph Traversal and Breadth-First Search

Several solutions for GPUs have been proposed in the last decade to accelerate
graph traversal. Harish et al. [118], Hong et al. [128] and Jia et al. [135] presented
the first solutions that exploit both node and edge parallelism to inspect every
vertices/edges for each BFS iteration. Since they do not require to maintain addi-
tional data structures, they involve very simple implementations but, on the other
hand, they perform quadratic work. Nevertheless, the proposed approach leads to
a sensible workload imbalance whenever the graph is non homogeneous in terms
of vertex degree. In addition, let D be the graph diameter, the computational
complexity of such a solution is OpV D ` Eq, where OpV Dq is spent to check the
frontier vertices and OpEq is spent to explore each graph edge. While this ap-
proach fits on dense graphs, in the worst case of sparse graphs (where D “ OpV q)
the algorithm has a complexity of OpV 2q. This implies that, for large graphs, the
proposed algorithm is slower than the sequential version of the algorithm.

The authors in [289] presents an alternative solution based on matrices for
sparse graphs. Each frontier propagation is transformed into a matrix-vector mul-
tiplication. Given the total number of multiplications D (which corresponds to the
number of levels), the computational complexity of the algorithm is OpV ` EDq,
where OpV q is spent to initialize the vector, and OpEq is spent for the multipli-
cation at each level. In the worst case, that is, with D “ OpV q the algorithm
complexity is OpV 2q.

More recent research focused on efficient algorithms for linear-work graph
traversal. Luo et al. [172] described the first work-efficient BFS implementation
based on hierarchical vertex queue management and global synchronization. The
proposed solution shows significant speedup compared to the quadratic algorithms
for graphs with high diameter.

Merrill et al. [190] presented a high-performance solution (B40C) that combines
three different workload balancing techniques (CTA+Warp+Scan) to process ver-
tices according to their degrees, duplicate removing, and a bitmask for the status
lookup. The authors also proposed three strategies to organize the frontier explo-
ration through vertex, edge, and two-phase queues.

Busato et al. [60] proposed an efficient BFS implementation specialized for
Kepler architecture (BFS-4K), which exploits advanced device features such as
dynamic parallelism, warp shuffle, and shared memory bank organization.

Bisson et al. [42] presented a BFS solution for distributed multi-node GPU
platforms, which relies on a binary search algorithm to achieve perfect load bal-
ancing among all device threads. Davidson et al. [83] proposed another remarkable
solution for load balancing, which relies on binary search even though at differ-
ent thread hierarchy levels (i.e., warp, block, and device) in the context of the
single-source shortest path (SSSP) problem.

Wang et al. [275] presented an optimized and flexible GPU graph library (Gun-
rock) that provides an high-level abstraction to reduce the developing effort of
graph primitive programming. The Gunrock library relies on filtering operations
and on two complementary thread mapping strategies selected according to the
frontier size.

4.3 Single-Source Shortest Path 35

Beamer et al. [33] presented a hybrid top-down/bottom-up BFS solution fo-
cused on low-diameter and scale-free graphs. The algorithm visits the graph by
propagating the exploration in the reverse direction when the number of unvisited
edges is less than the frontier edges. The hybrid approach significantly reduces the
exploration work as it does not necessarily explore all the graph edges. With a sim-
ilar top-down/bottom-up approach, Liu et al. [164] proposed an efficient BFS so-
lution for GPU architectures that relies on a quadratic-work graph traversal. Even
though very efficient, such hybrid solutions provide advantages only on graphs
with well-defined characteristics, they require double memory space to store the
inverse graphs, and they can be applied to a subset of problems compared to the
more standard top-down solutions. As an example, the algorithms single-source
shortest path (SSSP), betweenness centrality (BS), cluster coefficient (CC), and
other graph procedures that require propagating values along edges cannot be im-
plemented through a bottom-up BFS visit due to such a partial visit of the graph
edges.

4.3 Single-Source Shortest Path

At the state of the art, the reference approaches to SSSP are the Dijkstra’s [91] and
Bellman-Ford’s [38, 102] algorithms. These two classic algorithms span a parallel
vs. efficiency spectrum. Dijkstra’s allows the most efficient (Op|V | log |V | ` |E|q)
sequential implementations [70, 290] but exposes no parallelism across vertices.
Indeed, the solutions proposed to parallelize the Dijkstra’s algorithm for GPUs
have shown to be asymptotically less efficient than the fastest CPU implementa-
tions [180, 215]. On the other hand, at the cost of a lower efficiency (Op|V ||E|q),
the Bellman-Ford’s algorithm has shown to be more easily parallelizable for GPUs,
by providing speedups up to two orders of magnitude compared to the sequential
counterpart [56,118].

Meyer and Sanders [192] proposed the ∆-stepping algorithm, a trade-off be-
tween the two extremes of Dijkstra and Bellman-Ford. The algorithm involves a
tunable parameter ∆, whereby setting ∆ “ 1 yields a variant of Dijsktra’s al-
gorithm, while setting ∆ “ 8 yields the Bellman-Ford algorithm. By varying
∆ in the range r1,8s, we get a spectrum of algorithms with varying degrees of
processing time and parallelism. Crobak et al. [76] and Chakaravarthy et al. [64]
presented two different solutions to efficiently expose parallelism of this algorithm
on the massively multi-threaded shared memory system IBM Blue Gene/Q.

Parallel SSSP algorithms for multi-core CPUs have been also proposed by Kel-
ley and Schardl [140], who presented a parallel implementation of Gabow’s scaling
algorithm [105] that outperforms Dijkstra’s on random graphs. Shun and Blel-
loch [242] presented a Bellman-Ford’s scalable parallel implementation for CPUs
on a 40-core machine. Recently, several packages have been developed for pro-
cessing large graphs on parallel architectures including the parallel Boost graph
library [96], Pregel [177] and Pegasus [86].

In the context of GPUs, Martin et al. [180] and Ortega et al. [215] proposed
two different solutions to parallelize the Dijsktra’s algorithm. Although both the
solutions provide a good speedup in many cases, they have shown to be asymp-

36 4 Related Work

totically less efficient than the fastest CPU implementations due to the intrinsic
sequential nature of the Dijsktra’s algorithm.

In contrast, Harish et al. [118] and Burtscher et al. [56] proposed two differ-
ent parallel implementations of the Bellman-Ford’s algorithm. Both the solutions
always provide good speedups with respect to the sequential counterpart and, in
any case, speedups higher than the Dijkstra’s solutions. Nevertheless, they showed
to have a poor work efficiency since they only target to performance.

Davidson et al. [82] proposed three different work-efficient solutions for the
SSSP problem. Workfront Sweep implements a queue-based Bellman-Ford algo-
rithm that reduces redundant work due to duplicate vertices during the frontier
propagation. Such a fast graph traversal method relies on the merge path algo-
rithm [214], which equally assigns the outgoing edges of the frontier to the GPU
threads at each algorithm iteration. Near-Far Pile refines the Workfront Sweep
strategy by adopting two queues similarly to the ∆-Stepping algorithm. Davidson
et al. [82] also propose the bucketing method to implement the ∆-Stepping algo-
rithm. ∆-Stepping algorithm is not well suited for SIMD architectures as it requires
dynamic data structures for buckets. However, the authors provide an algorithm
implementation based on sorting that, at each step, emulates the bucket struc-
ture. The Bucketing and Near-Far Pile strategies heavily reduce the amount of
redundant work compared to the Workfront Sweep method but, at the same time,
they introduce overhead for handling more complex data structure (i.e., frontier
queue). These strategies are less efficient than the sequential implementation on
graphs with large diameter since they suffer from thread under-utilization caused
by such unbalanced graphs.

4.4 Strongly Connected Components

Data structures encoding the graph have to allow independent thread-local data
processing and coalesced access. The adjacency list representation is typically en-
coded as two one-dimensional arrays [117]. One array keeps the target vertices of
all the edges. The second array keeps an index to the first array for every vertex.
The index points to the position of the first edge emanating from the correspond-
ing vertex. Other data associated to a vertex are organized in vectors as well.
In [24,89,162], techniques for improving memory consumption and access pattern
for SCC decomposition algorithms have been proposed.

The core procedure of every graph algorithm is the graph traversal. The SCC
decomposition algorithms build on several types of the traversal as explained in
the next section. Parallelization of this procedure fundamentally affects the overall
performance of the decomposition. There exist several approaches [57,117,125,190]
that differ in the granularity of the task allocation (thread-per-vertex vs. warp-per-
vertex vs. block-per-vertex) and in the number of vertices/edges processed during
a single kernel (linear vs. quadratic parallelization). In the context of the SCC
decomposition the performance of these approaches significantly depends on the
structure of the graphs and the type of the traversal.

4.4 Strongly Connected Components 37

4.4.1 Forward-Backward algorithm

The Forward-Backward (FB) algorithm [101] represents the fundamental al-
gorithm for parallel SCC decomposition. It is listed as Algorithm 1 and proceeds
as follows. A vertex called pivot is selected and the strongly connected component
the pivot belongs to is computed as the intersection of the forward and back-
ward closure of the pivot. Computation of the closures divides the graph into four
subgraphs that are all SCC-closed. These subgraphs are 1) the strongly connected
component with the pivot, 2) the subgraph given by vertices in the forward closure
3) the subgraph given by vertices in the backward closure , and 4) the subgraph
given by the remaining vertices. The later three subgraphs form independent in-
stances of the same problem, and therefore, they are recursively processed in par-
allel. The time complexity of the FB algorithm is Opn ¨ pm`nqq since it performs
Opm` nq work to detect a single strongly connected component.

Practical performance of the algorithm may be further improved by performing
elimination of leading and terminal trivial strongly connected components – the
so-called trimming [184]. The Trimming procedure builds upon a topological sort
elimination. A vertex cannot be part of a non-trivial strongly connected compo-
nent if its in-degree (out-degree) is zero. Therefore, such a vertex can be safely
removed from the graph as a trivial SCC, before the pivot vertex is selected. The
elimination can be iteratively repeated until no more vertices with zero in-degree
(out-degree) exist.

In [24] is designed a GPU-acceleration of the FB algorithm that provides a
good performance and scalability on regular graphs. In [162] the acceleration is
improved by the linear parallelization of the graph traversal and by a better pivot
selection, which result in a performance gain including also a good performance on
less regular graphs. The main limitation of the FB algorithm is that it performs
Opm ` nq work to detect a single SCC. This mitigates the benefits of the GPU-
acceleration if the graph contains many small but non-trivial components.

Algorithm 1 FB

FB(V)

1: pivot Ð PivotSelection(V)
2: F Ð FWD-Reach(pivot, V)
3: B Ð BWD-Reach(pivot, V)
4: F X B is SCC
5: In parallel do
6: FB(F z B)
7: FB(B z F)
8: FB(V z (B Y F))

4.4.2 Coloring algorithm

The Coloring algorithm [216] is capable of detecting many strongly connected
components in a single recursion step, however, for the price of an Opn ¨ pm` nqq

38 4 Related Work

Algorithm 2 Coloring

Coloring(V)

1: pmaxcolor,Vkq Ð FDW-MaxColor(V)
2: Parallel for k P maxColor do
3: Bk Ð BWDpk, Vkq
4: Bk is SCC
5: if pVkzBk ‰ 0q then
6: Coloring(VkzBk)

procedure. Therefore, the time complexity of the algorithm is Oppl`1q¨n ¨pm`nqq
where l is the longest path in the component graph.

The pseudo-code of the algorithm is listed as Algorithm 2. It propagates unique
and totally ordered identifiers (colors) associated with vertices. Initially, each ver-
tex keeps its own color. The colors are iteratively propagated along edges of the
graph (line 2:1) so that each vertex keeps only the maximum color among the ini-
tial color and colors that have been propagated into it (maximal preceding color).
After a fixpoint is reached (no color update is possible), the colors associated with
vertices partition the graph into multiple SCC-closed subgraphs Vk. All vertices
of a subgraph are reachable from the vertex v whose color is associated with the
subgraph. Therefore, the backward closure of v restricted to the subgraph forms
a SCC component that is removed from the graph before the next recursion step.
Propagation procedure is rather expensive if there are multiple large components
which limits the overall performance [24].

4.4.3 Other algorithms

Both the presented algorithms typically show limited performance and poor scal-
ability when applied to large real-world graph instances with many nontrivial
components and a high diameter. Fundamental properties of these graphs have
been consider to propose a series of extensions of the FB algorithm [126] and a
multi-step algorithm [250] that adequately combines the FB and Coloring algo-
rithms. These two, originally multi-core, algorithms have been recently redesigned
to allow data-parallel processing [89], which led to the fastest GPU-accelerated
SCC decomposition.

Barnat et al. [25] introduced the OBF algorithm that aims at decomposing
the graph in more than three SCC-closed subgraphs within a single recursion step.
However, unlike the Coloring algorithm, the price of the OBF procedure is
Opm ` nq. Despite the better asymptotic complexity, the work in [24] attempt
indicate that effective data-parallelization of the OBF algorithm is a very hard
problem and the approaches based on the multi-step algorithm performs generally
better on SIMT-based architectures.

Very recently a multi-core version of the Tarjan algorithm based on paralleliza-
tion of depth-first search [47] has been proposed. It preserves the liner complexity
of SCC decomposition and on a variety of graph instances it outperforms previous
multi-core solutions. However, on real-word graphs it considerably lags behind the

4.4 Strongly Connected Components 39

approaches by [126,250] and the proposed parallelization is principally not suitable
for SIMT architectures.

5

Load Balancing - Multi-Phase Search Algorithm

Workload partitioning and the subsequent work item-to-thread mapping are key
aspects to face when implementing any efficient GPU application. Different tech-
niques have been proposed to deal with such issues, ranging from the computation-
ally simplest static to the most complex dynamic ones. Each of them finds the best
use depending on the workload characteristics (static for more regular workloads,
dynamic for irregular workloads). Nevertheless, no one of them provides a sound
trade off when applied in both cases. Static approaches lead to load unbalanc-
ing with irregular problems, while the computational overhead introduced by the
dynamic or semi-dynamic approaches often worsens the overall application perfor-
mance when run on regular problems. This Section presents an efficient dynamic
technique for workload partitioning and work item-to-thread mapping whose com-
plexity is significantly reduced with respect to the other dynamic approaches in
literature. The Section shows how the partitioning and mapping algorithm has
been implemented by fully taking advantage of the GPU device characteristics
with the aim of minimizing the involved computational overhead. The Section
shows, compares, and analyses the experimental results obtained by applying the
proposed approach and several static, dynamic, and semi-dynamic techniques at
the state of the art to different benchmarks and over different GPU technologies
(i.e., NVIDIA Fermi, Kepler, and Maxwell) to understand when and how each
technique best applies.

5.1 Introduction

Partitioning a workload and mapping work items to threads are correlated impor-
tant issues to face when structuring and implementing any parallel application.
In the context of GPU applications, these tasks are generally implemented by
exploiting scan-based operations [44, 46]. Given a list of input values and a bi-
nary associative operator, a prefix-scan procedure computes a list of elements in
which each element is the reduction of the elements occurring earlier in the input
list [40,93,186,240]. When the operator is the addition, the prefix-scan represents
a prefix-sum, which is useful when parallel threads have to allocate dynamic data
within shared data structures such as global queues [74].

42 5 Load Balancing - Multi-Phase Search Algorithm

A3	

A2	

A1	 B1	

C2	

C1	

D2	

F1	D1	

G2	

G1	E1	

E2	

E3	C3	

C4	

Workload

Work-item

E4	

E5	

H1	

H2	

H3	

0 1 2 3 4 5 6 7

E6	

E7	

F2	

F3	

F4	

C5	

G3	

Work-unit

t1 t0 t31
…

Warp0

t33 t32 t63
…

Warp1

t127 …
Warp3

t65 t64
…

Warp2

t95 t96 t97

Block0

t1 t0 t31
…

Warp0

t33 t32 t63
…

Warp1

t127 …
Warp3

t65 t64
…

Warp2

t95 t96 t97

Block1

0	 3	 4	 9	 11	 18	 22	 25	 28	

0	 1	 2	 3	 4	 5	 6	 7	 8	

Exclusive prefix-sum

fig. 5.1: Overview of the load balancing problem in the workload partitioning and
mapping to threads of scan-based applications

Given a workload to be allocated over the GPU threads (see Fig. 5.1), prefix-
sum is applied to efficiently calculate the offset for each thread to access to the cor-
responding work-items (coarse-grained mapping) or work-units (fine-grained map-
ping) [190]. Nevertheless, even though prefix-scan operations allows the threads
to efficiently access in parallel to the corresponding data, they are not enough to
solve the load balancing problem. Indeed, the workload decomposition and map-
ping strategies are left to the application designer. How the application implements
such a mapping can have a significant impact on the overall application perfor-
mance.

Different techniques have been presented in literature to decompose and
map the workload to threads through the use of prefix-sum data structures
[30, 59, 83, 113, 117, 125, 190]. All these techniques differ from the complexity of
their implementation and from the overhead they introduce in the application
execution to address the most irregular workloads. In particular, the simplest so-
lutions [117, 125] apply well to very regular workloads while they cause strong
unbalancing and, as a consequence, lost of performance in case of irregular work-
loads. More complex solutions [30,59,83,113,190] best apply to irregular problems
through semi-dynamic or dynamic workload-to-thread mappings. Nevertheless, the
overhead introduced for such a mapping often worsens the overall application per-
formance when run on regular problems.

This Section first presents an accurate analysis of the most important and
widespread load balancing techniques existing in the literature based on prefix-
scan, by underlining their advantages and drawbacks over different workload char-
acteristics. The analysis includes details on their coalescing issues involved during
the memory accesses both to the prefix-sum structure and to the global memory,
which are strictly related to the strategy implementation.

Then the Section presents an efficient dynamic partitioning and mapping tech-
nique, called Multi-phase Mapping, to address the workload unbalancing problem
in both regular and irregular problems and how it has been implemented by fully
exploiting the GPU device characteristics. In particular, Multi-phase Mapping im-

5.2 The proposed Multi-phase Mapping 43

plements a dynamic mapping of work-units to threads through an algorithm whose
complexity is significantly reduced with respect to the other dynamic approaches
in the literature. This allows the proposed approach to efficiently handle irregular
problems and, at the same time, to provide good performance also when applied
to very regular and balanced workloads.

The Section presents the experimental results obtained by applying all the
analyzed techniques and Multi-phase Mapping to different benchmarks and over
different GPU technologies (i.e., NVIDIA Fermi, Kepler, and Maxwell) to under-
stand when and how each technique best applies.

The work is organized as follows. Section 5.2 presents the proposed multi-
phase mapping technique. Section 5.4 presents the experimental results and their
analysis, while Section 5.5 is devoted to the conclusions.

5.2 The proposed Multi-phase Mapping

The proposed strategy aims at exploiting the balancing advantages of the two-
phase algorithms while overcoming the limitations of the scattered memory ac-
cesses. It consists of a hybrid partitioning phase and an iterative coalesced expan-
sion.

5.2.1 Hybrid partitioning

Differently from the dynamic techniques in literature, which strongly rely on the
binary search (see Section 4.1.3), the proposed approach relies on a hybrid parti-
tioning strategy by which each thread searches the own work-items. Such a hybrid
strategy dynamically switches between an optimized binary search and an inter-
polation search depending on the benchmark characteristics.

Optimized binary search

In the standard implementation of the binary search, each thread finds the searched
element, on a prefix-sum array of N elements, through one memory access in the
best case or through 2 logN memory accesses in the worst case (see the example of
Fig. 4.6). Indeed, at each iteration, each thread performs two memory accesses, to
check the lower bound (value at the left of the index) and the upper bound (value
at the right of the index) to correctly update the index for the next iteration.
Nevertheless, in the context of binary search on prefix-sum, since all threads must
be synchronized by a barrier before moving to the next iteration, and since at least
one thread executes all iterations involving 2 logN memory accesses, each binary
search actually has a time complexity equal to 2 logN memory accesses.

In the proposed approach, each thread checks, at each iteration, only the lower
bound, thus involving only one memory access per iteration. On the other hand,
this approach requires all the threads to perform all iterations (logN) indistinctly.
Overall, such an optimization halves the binary search complexity to logN memory
accesses.

44 5 Load Balancing - Multi-Phase Search Algorithm

Interpolation Search pArray, left, right, Sq

1: while S ě Arrayrlefts and S ď Arrayrrights do

2:
K “ left` pS ´Array rleftsq ¨

right´left
Arrayrrights´Arrayrlefts

3: if Array rKs ă S then
4: left “ K ` 1

5: else if Array rKs ą S then
6: right “ K ´ 1

7: else
8: return K
9: end

10: end

Interpolation search

In case of uniformly distributed inputs (i.e., low standard deviation of work-item
size) and a low average number of work-units, the proposed approach implements
an interpolation search [219] in alternative to the optimized binary search. The
interpolation search has a very low complexity (Oplog logNq) at the cost of addi-
tional computation. The algorithm pseudocode is the following:

The idea is to use information about the underlying distribution of data to be
searched in a human-like fashion when searching a word in a dictionary. Given
a chunk of prefix-sum elements (Array) and the item to be searched (S), the
procedure iteratively calculates the next search position K (row 2 of the algorithm)
by mapping S in the distribution Arrayrlefts,Arrayrrights. The algorithm shows
an average number of comparisons equal to Oplog log nq that increase to OpNq in
the worst case, differently to the binary search that shows complexity OplogNq in
all cases.

The main drawback is the higher computational cost to calculate the next in-
dex of the search (row 2), which involves double precision floating-point operations
(division, multiplication, and casting). Such operations present a very low arith-
metic throughput in GPU devices compared with single precision operations. To
limit such a cost, Multi-Phase Search implemented the computation by minimiz-
ing the expensive double precision operations and by replacing them with 64-bit
integer operations when possible.

The proposed hybrid approach switches between interpolation and binary
search depending on the benchmark characteristics. In particular, the interpo-
lation search runs if the following conditions hold:

Std Dev WIsize ď ThresholdSD

and
Average WIsize ď ThresholdAVG

where the standard deviation of the work-item size and the average work-
item size of the benchmark are calculated runtime. The switching between the

5.2 The proposed Multi-phase Mapping 45

two methods is parametrized through the two thresholds that, as explained in
the experimental results, have been heuristically set to ThresholdSD “ 8 and
ThresholdAVG “ 9 for all the analysed benchmarks.

5.2.2 Iterative Coalesced Expansion

In the expansion phase, all the threads of each block load the corresponding chunks
into the shared memory (similarly to the dynamic techniques presented in the
previous sections). Then, each thread performs an binary search (optimized as in
the partitioning phase presented in Section 5.2.1) in such a local partition to get
the assigned work-unit.

Then, the expansion phase consists of three iterative sub-phases, by which the
scattered accesses of threads to the global memory are reorganized into coalesced
transactions. This is done in shared memory and by taking advantage of local
registers:

1. Writing on registers. Instead of sequentially writing on the work-units in global
memory, each thread sequentially writes a small amount of work-units in the
local registers. Fig. 5.2 shows an example. The amount of units is limited by
the available number of free registers.

2. Shared mem. flushing and data reorganization. After a thread block synchro-
nization, the local shared memory is flushed and the threads move and reorder
the work-unit array from the registers to the shared memory.

3. Coalesced memory accesses. The whole warp of threads cooperate for a coa-
lesced transaction of the reordered data into the global memory. It is important
to note that this step does not require any synchronization since each warp
executes independently on the own slot of shared memory.

Steps two and three iterate until all the work-units assigned to the threads are
processed. Even though these steps involve some extra computation with respect to
the direct writings, the achieved coalesced accesses in global memory significantly
improve the overall performance.

0	 0	 0	 3	 4	 4	 .	 9	 11	 11	 11	 11	 11	 .	 Thread	registers	

A1	 A2	 A3	 B1	 C1	 C2	 C3	 C4	 C5	 D1	 D2	 E1	 E2	 E3	 E4	 E5	 E6	 E7	 F1	 ..	

Prefix-sum	
array	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 ..	

Thread	1	Thread	0	

Thread	0	 Thread	1	

Threads		
0-9	

Threads		
10-19	 Coalesced		

memory		
accesses	

0	 3	 4	 9	 11	 18	 22	 25	 28	

Thread	0	 Thread	1	

I	 II	 III	 I	 III	II	 II	

Thread	2	

I	

Shared	Memory	

Shared	Memory	

Global	Memory	

WriLng		
on	registers	1

2
Shared	mem.	

flushing	and	data	
reorganizaLon	

3

fig. 5.2: Overview of the coalesced expansion optimization (10 work-units per thread)

46 5 Load Balancing - Multi-Phase Search Algorithm

0 3 4 9 11 18 22 25 28 .. 56

0 1 2 3 4 5 6 7 8 12

0 3 4 9 11 18 22 25 28 .. 56

0 1 2 3 4 5 6 7 8 12 13 14 Prefix-sum array (global memory)

0 #items_1 #items_2 #items_3

0 1 2 3 4 5

Partition array
(global memory)

#items_1

IS x #WU pointers to
work-units (=IS x Smem)

#items_2 #items_3

Partition
phase

IS x #WU pointers to
work-units (=IS x Smem)

IS x #WU pointers to
work-units (=IS x Smem)

Prefix-sum array
(shared memory)

Global-to-shared
mem copyTh0

I II III IV V

Th1

I II III IV

fig. 5.3: Overview of the iterated search optimization (10 work-units per thread and
IS=2)

The shared memory size and the size of thread blocks play an important role in
the coalesced expansion phase. The bigger the block size, the shorter the partition
array stored in shared memory. On the other hand, the bigger the block size,
the more the synchronization overhead among the block warps, and the more
the binary search steps performed by each thread (see final considerations of the
Two-phase search in Section 4.1.3).

In particular, the overhead introduced to synchronize the threads after the
register writing (see sub-phase 1) is the bottleneck of the expansion phase (each
register writing step requires two thread barriers). To reduce such an overhead, we
propose an iterative search optimization as follows:

1. In the partition phase, the prefix sum array is partitioned into balanced chunks
(see Fig. 5.3). Differently from the two-phase search strategy, the size of such
chunks is fixed as a multiple of the available space in shared memory:

ChunkSize “ BlockSizeˆK ˆ IS

where BlockSize ˆ K represents the biggest number of work-units (i.e., a
multiple of the block size) that fits in shared memory (as in the two-phase
algorithm), while IS represents the iteration factor. The number of threads
required in this step decreases linearly with IS.

2. Each block of threads loads from global to shared memory a chunk of prefix-
sum, performs the function initialization, and synchronizes all threads.

3. Each thread of a block performs IS binary searches on such an extended chunk.
4. Each thread starts with the first step of the coalesced expansion (upper-side

of Fig. 5.3), i.e., it sequentially writes an amount of work-units in the local
registers. Such an amount is IS times larger than in the standard two-phase
strategy.

5. The local shared memory is flushed and each thread moves a portion of the
extended work-unit array from the registers to the shared memory. The portion
size is equal to BlockSizeˆK. Then, the whole warp of threads cooperate for
a coalesced transaction of the reordered data into the global memory, as in

5.2 The proposed Multi-phase Mapping 47

the coalesced expansion phase presented in Section 5.2.2. This step iterates IS
times, until all the data stored in the registers has been processed.

The iterative search optimization reduces the number of synchronization barriers
by a factor of 2 ˚ IS, avoids many block initializations, decreases the number of re-
quired threads, and maximizes the shared memory utilization during the loading of
the prefix-sum values with larger consecutive intervals. Nevertheless, the required
number of registers grows proportionally to the IS parameter. Considering that
the maximum number of registers per thread is a fixed constraint for any GPU
device (e.g., 32 for NVIDIA Kepler devices) and that exceeding such a constraint
involves data to be spilled in L1 cache and then in L2 cache or global memory,
too high values of IS may compromise the overall performance of the proposed
approach.

5.2.3 Optimizing the Multi-Phase implementation

The proposed algorithm achieves perfect load balancing and overcomes the lim-
itations related to scattered memory accesses and synchronization overhead. In
addition, the algorithm structure is particularly well suited for advanced opti-
mizations targeting GPU architectures, which aim at reducing the computational
workload, simplifying the overall execution flow, and improving the memory access
pattern.

Full loop unrolling and instruction-level parallelism.

Loop unrolling is a common technique widely applied by sequential code compilers
to reduce the number of branch-related instructions. Since GPU compilers cannot
always guarantee such an optimization (while preserving the semantics correct-
ness), loop unrolling has been forced in Multi-phase Mapping, through #PRAGMA

UNROLL directives where possible, to take advantage of instruction level parallelism
(ILP) on the GPU device [271].

Loop unrolling has been forced in the coalesced expansion phase: (i) in the
chunk loading into shared memory and (ii) in the subsequent iterative subphases
(writing on registers, shared memory flushing, and coalesced memory accesses).
Indeed, loop unrolling in these phases can be applied since all threads perform the
same number of loop iterations and such a number is known at compile time.

Data and Pointer Hoisting.

Similarly to the loop unrolling optimization, loop-invariant code motion has been
forced to all kernel loops. It includes hoisting of data and address computations
as in the example of Fig. 5.4.

Global data prefetching.

Data movement particularly affects the expansion phase of the proposed algo-
rithm. Global-to-shared memory and shared-to-global memory data movement is

48 5 Load Balancing - Multi-Phase Search Algorithm

Before hoisting

1: for (; ;) do
2: x = y + z;
3: devInput[blockIdx.x + i] = x * x;
4: end

After hoisting

1: devInput += blockIdx.x;
2: x = y + z;
3: t = x * x;
4: for (; ;) do
5: devInput[i] = t;
6: end

fig. 5.4: Example of data and pointer hoisting.

optimized by introducing an additional intermediate step between the accesses to
these memory spaces, as proposed in [29]. We exploited the thread registers as fast
intermediate local memory, thus hiding the memory access latency.

Vectorized shared memory accesses.

The CUDA model provides vectorized memory accesses (up to 16-bytes per single
transaction) to fully exploit the memory bandwidth. We implemented vectorized
accesses in almost all steps that involve shared memory and during the expansion
phase in global memory. The same technique cannot be applied to global memory
loads since the offset of blocks in such a memory are not aligned.

Warp-synchronous programs.

In GPU computation, each thread warp executes in lock-step way and it does not
require any explicit synchronization barrier to correctly preserve the semantics.
In order to eliminate communications and explicit synchronizations also between
warps, we organized the memory accesses by splitting the shared memory in chunks
of the same size on which each warp can operate independently.

Scheduler overhead minimization.

Implementing the proposed partitioning and mapping approach requires a ker-
nel structure similar to that shown in Alg. 3. The kernel mainly consists of (i)
an initialization phase to declare and initialize data structures (rows 1-4), and
(ii) the actual computational phase on the data structures (rows 6-8). The com-
putational phase iterates (for loop in rows 5-10) if the grid size (number of
thread blocks) are less than the generated chunks (see Section 5.2.2). The fig-
ure also shows three different kernel configurations. Considering that, in general,
WorkLoadSize " ResidentThreads (i.e., 3-4 orders of magnitude), configuration
(a) generates much more blocks than the other configurations (b, c). This allows
branch conditions involved by the loop construct and thread barriers (row 9) to be

5.3 Comprehensive comparison of complexity and limiting factors of the approaches 49

Algorithm 3 Kernel structure and configurations.

Kernel implementation (device side):

1: var “ 0 zz Initialization
2: thread offset = ... zz Initialization
3: shared SMem zz Initialization
4: ... zz Initialization
5: for (i = blockIdx.x; i ă rWorkLoadSize

ChunkSize
s; i += gridDim.x) do

6: /* Computational phase
7: through SMem accesses
8: */
9: synchthreads()

10: end

Kernel configurations (host side):

(a) deviceFuncÎ
P

WorkLoadSize
ChunkSize

T

, blockDim Ï()

(b) deviceFuncÎ
P

ResidentThreads
BlockSize

T

, blockDim Ï()

(c) deviceFuncÎ
P

ResidentThreads
BlockSize

T

¨K, blockDim Ï()

avoided. On the other hand, the larger number of blocks also involves more over-
head due to the initialization rows executed at each block context switch. Such
an overhead increases linearly with the initialization activity and the number of
generated blocks. The orthogonal configuration (b) generates a smaller number of
blocks, reduces the block context switches but, on the other hand, involves loop
iterations, branch conditions, and synchronization barriers. Multi-phase Mapping
implements a trade-off solution (c), where the number of blocks of solution (c) is
modulated by a constant, K. As reported in the experimental results, solution (c)
in which K has been heuristically set to 32, provided the best scheduler overhead
minimization in all the analysed benchmarks.

Read-only cache and pointer aliasing.

Recent architectures introduce the read-only data cache [209,211]. It is faster and
larger than the L1 cache, but requires all data to be guaranteed read-only for the
duration of the whole kernel and not to be overlapped with other output pointers
(i.e., restrict pointer). We exploited the read-only cache to load the global prefix-
scan into the local memory.

5.3 Comprehensive comparison of complexity and limiting
factors of the approaches

To accurately compare Multi-phase Mapping and the existing counterparts, the
Section presents an overall overview of the performance limiting factors and the
complexity analysis of each approach core algorithm. Table 5.1 summarizes the
main performance limiting factors ordered by relevance for each technique and

50 5 Load Balancing - Multi-Phase Search Algorithm

Technique Sub-phase Performance limiting factors

Work-it to
Threads

\ Non-coalesced memory accesses, warp divergence

Virtual Warps \ Non-coalesced memory accesses, warp divergence, block scheduling over-
head, Nontrivial tuning

Dyn. Virtual
Warps + Dyn.
Parallelism

Dyn. Virtual Warps
Non-coalesced memory accesses, warp divergence, block scheduling over-
head

Dyn. Parallelism Dynamic kernels overhead

Cta+Warp+Scan

CTA Synchronization overhead

Warp \
Scan Available shared memory, synchronization overhead

Direct Search \ Non-coalesced memory accesses, warp divergence

Local Warp
Search

\ Non-coalesced memory accesses, compute intensive

Block Search \ Non-coalesced memory accesses, synchronization overhead

Two-Phase
Search

Partition Non-coalesced memory accesses, warp divergence

Expansion Available shared memory

Multi-Phase
Mapping

Partition - Binary Search Non-coalesced memory accesses, warp divergence

Partition - Interpolation Search Compute intensive

Expansion Available shared memory

Table 5.1: Summary of the performance limiting-factors.

corresponding sub-phases. Non-coalesced memory accesses have a significant im-
pact on the performance and penalize most of the procedures that do not im-
plement an efficient cooperation among threads. Warp divergence heavily affects
the whole partitioning phase of static techniques, while, in dynamic techniques,
it is limited to the computation of the binary search. The amount of available
shared memory also plays an important role from the performance point of view
in all the techniques based on data locality. The partition phase of the Multi-phase
and Two-phase techniques suffers from non-coalesced memory accesses and warp
divergence. However, since this phase involves a small fraction of the overall com-
putation, such limiting factors do not affect the overall performance significantly.
In general, as shown in Table 5.1, Multi-phase Mapping presents several and dif-
ferent limiting factors. However, the impact of each factor in the corresponding
sub-phase is significantly lower than that in the counterparts. This guarantees,
as shown in the result section, the best overall performance for all the different
dataset typologies.

Given a workload consisting of N work-items and a total number of W work-
units, we express the complexity of each technique in terms of work complexity (i.e.,
the time required by a single-thread execution of the approach), parallel complexity
(i.e., the time required by the parallel execution of the approach with a hypotheti-
cal infinite number of threads, also called critical path), number of threads required

5.3 Comprehensive comparison of complexity and limiting factors of the approaches 51

Technique Work Complexity Parallel Complexity N. of required threads

Coalesced
accesses to
prefix-sum

array

Coalesced
accesses to
work-units

Work-it to
threads

OpW q OpWMAXq N Yes No

Virtual Warp OpW q O
´

WMAX
|VirtualWarp|

¯

N ¨ |VirtualWarp| Yes Partial

Dyn. Virtual
Warps + Dyn.
Parallelism

OpW q O
´

DynTh
|VirtualWarp|

¯

N `
ř

WiěDynTH

Wi Yes Partial/Yes

Cta+Warp+Scan OpW q maxi

$

’

’

’

’

&

’

’

’

’

%

WiěCTATH
Wi
|CTA|

WiěWarpTH
Wi

|Warp|

otherwise Wi

N Yes Yes

Direct Search OpW ¨ logNq OplogNq W No Yes

Local Warp
Search

OpW ¨ log |Warp|q
O

˜
ř

iPWarp
Wi

|Warp|
¨log |Warp|

¸

N Yes Yes

Block Search
O
´

N ¨|Block|
SMem

¨log SMem`W

¯

O

ˆ

log SMem`

ř

iPBlock
Wi

|Block|

˙

N Yes No

Table 5.2: Comprehensive comparison of complexity of the workload partitioning techniques. N is the number of
work-items, W is the total number of work-units, Wi is the number of work-units of a single work-item, WMAX is the
maximum number of work-units among all work-items, and SMem is the available shared memory. The Two-Phase

Search and Multi-Phase Search specify the complexity for the Partition and Expansion phases.

for the overall computation, and coalesced memory accesses. We distinguish the
coalescing characteristics by specifying whether the technique performs coalesced
accesses to the prefix-sum array (to load the work-unit addresses) and coalesced
accesses to the work-units in global memory.

The work complexity allows us to understand the work efficiency of each tech-
nique, to be compared with the work complexity of the reference sequential tech-
nique (i.e., OpW q). The number of required threads allows us to understand how
much each approach involves thread scheduling activity. This is particularly rele-
vant when considering N much greater than the number of resident threads pro-
vided by the GPU device.

Table 5.2 reports the results. All the static and semi-dynamic techniques are
work-efficient, as they achieve the same work complexity of the sequential algo-

52 5 Load Balancing - Multi-Phase Search Algorithm

Workload Source
Number of

Rows/Columns
Number of
nonzeros

Structure
Avg.

work-item size
Std. Dev.

work-item size
Max work-item

size

great-britain osm 7,733,822 16,313,034 symmetric 2.1 0.5 8

cit-Patents 3,774,768 16,518,948 asymmetric 4.8 7.5 770

web-NotreDame 325,729 1,497,134 asymmetric 5.2 21.4 3,445

regular8 1,000,000 8,000,000 asymmetric 8.0 0.0 8

circuit5M 5,558,326 59,524,291 asymmetric 10.7 1,356.6 1,290,501

as-Skitter 1,696,415 22,190,596 symmetric 13.1 136.9 35,455

kron g500-logn20 1,048,576 89,239,674 symmetric 96.2 1,033.1 413,378

Table 5.3: Benchmark Characteristics

rithm. On the other hand, they present important differences in the parallel com-
plexity, due to the different strategies adopted to deal with the workload unbal-
ancing. In the static and semi-dynamic mapping classes, only CTA+Warp+Scan
achieves coalesced accesses on both the prefix-sum array and work-units. The tech-
niques based on virtual warps achieve coalesced accesses on the prefix-sum array
only among threads of the same group. The Dynamic Virtual Warp + Dynamic
Parallelism technique allows for fully coalesced accesses only in the child kernels
invocations (i.e., with problems with very high average of work-items size).

All the dynamic techniques pay extra overhead in work complexity to uniformly
distribute the workload among GPU threads, but, on the other hand, their parallel
complexity is always logarithmic in the input size. Two-phase Search and Multi-
phase Mapping have the same parallel complexity, but only the latter achieves full
memory coalescing. In addition, thanks to the iterative search (see Section 5.2.2),
Multi-phase Mapping improves the work complexity and the number of required
threads by a term of IS both in the partition and expansion phases.

All techniques do not require extra (global) memory space in addition to the
input and output data, except for Two-phase Search and Multi-phase Mapping
that need W

SMem and W
SMem¨IS additional bytes, respectively, to store the partition

array. Finally, CTA+Warp+Scan, Two-phase Search, and Multi-phase Mapping
take advantage of the shared memory to address the load balancing among threads
of the same block. As a consequence, they best apply in GPU devices with a large
amount of shared memory.

5.4 Experimental results

We tested the load balancing efficiency of all the techniques presented in Sec-
tion 4.1 and Multi-phase Mapping over different benchmarks, whose character-
istics are reported in Table 5.3. The benchmarks have been selected from The
University of Florida Sparse Matrix Collection [84], which consists of a huge set
of data representation from different contexts (e.g., circuit simulation, molecular
dynamic, road networks, linear programming, vibroacoustic, web-crawl). The six
benchmarks have been selected among the whole collection to cover very different
data characteristics in terms of average work-item size, standard deviation from
the item size, and maximum work-item size. As summarized in the table, they span

5.4 Experimental results 53

0 1 2 3 4 5 6

0 7 9 2

1 3 8

2 4

3 4 3

4 1 5

5 6

6 2

Column Index

R
o

w
 In

d
ex

3 41

R
Row Index

C

13

4 0 3 6 5

0

0

1

3

2

5

3

7

0

4

9

2

5

11

1

6

12

0

Full matrix representation

V 37 9 2 3 8 4 4 1 5 6 2

Sparce matrix representation (CSR)

fig. 5.5: The CSR data structure.

from very regular to strongly irregular workloads. Since sparse matrices are irreg-
ular by nature, we also included a synthetic benchmark (regular8) to understand
how different algorithms behave in a very regular case.

In this problem formulation, the work-items correspond to the rows of the input
matrix, while the number of work-units per work-item is the number of elements
with nonzero values in the matrix columns for both symmetric and asymmetric
matrix structures. The average work-item size and the standard deviation have
been computed by considering the number of nonzero values independently from
the matrix structure. We computed the prefix-sum of the number of work-units to
generate the input data that is equivalent to the row offset array of the CSR sparse
matrix format [37, 153, 195, 230]. CSR is one of most important and widely used
sparse-matrix format. It allows storing nonzero elements (nnz) of a mˆ n matrix
by using three arrays. Fig. 5.5 shows an example of a full matrix representation and
the corresponding CSR data structure. The C array of size |nnz| is a concatenation
row-by-row of the nnz column indices. The R array consists of m`1 elements that
point at where each row element list begins and ends within the array of the column
indices. The V array holds the corresponding nnz values of the matrix. Since the
specific values of the matrix are not relevant for the load balancing problem, we
discard the V array and map the work-items and work-units respectively to the R
and C arrays.

The great-britain osm benchmark represents a road network with very uniform
distribution and low average. Cit-patent represents the U.S. patent dataset, which
has moderate average and not-uniform distribution. web-NotreDame is a web-crawl
with a slightly higher average and middle-sized standard deviation. Circuit5M rep-
resents a circuit simulation instance, which shows a very high standard deviation.
As-skitter is an autonomous system, while kron g500-logn20 is a synthetic graph
based on the Kronecker model. The last two benchmarks are characterized both
by highly not-uniform distribution, while they have low and high average, respec-
tively.

54 5 Load Balancing - Multi-Phase Search Algorithm

(a) great-britain osm (b) cit-Patent

fig. 5.6: Comparison of execution time on the benchmarks.

GPU model
N. of
SMs

N. of
cores

Mem.
Bandwitdh

DRAM
Memory

Shared
Memory

GeForce GTX 780 (Kepler) 12 2304 288 GB/s 3 GB 48 KB

Tesla K40 (Kepler) 15 2880 288 GB/s 12 GB 48 KB

GeForce GTX 980 (Maxwell) 16 2048 224 GB/s 4 GB 96 KB

GeForce GTX 460 (Fermi) 7 480 115 GB/s 1 GB 48 KB

GeForce GTX 570 (Fermi) 15 336 152 GB/s 1.2 GB 48 KB

Table 5.4: GPU Characteristics

All the techniques have been integrated in a corresponding basic application, in
which the threads access and update, in parallel, each work-unit of the benchmark
workload. We ran the experiments on five GPU devices with three different micro-
architectures (Fermi, Kerpler, and Maxwell). We included desktop-oriented devices
(i.e., GeForce graphics cards) and a HPC-oriented device (Tesla K40). Table 5.4
summarizes their characteristics in terms of number of streaming multiprocessors
(SMs), number of cores (stream processors), DRAM memory bandwidth, available
DRAM memory, and shared memory.

Figures 5.6, 5.7, and 5.8 report the execution times required by the reference
application (implemented with each of the analysed techniques) on the bench-
marks. The benchmarks are orderly presented from the most regular to the most

5.4 Experimental results 55

(a) cit-Patent (b) cit-Patent

fig. 5.7: Comparison of execution time on the benchmarks.

irregular. The reported values represent the best performance obtained by tuning
the kernel configuration in terms of number of threads per block. For the GPU
devices used in this analysis, we obtained the best results with 128-256 threads
per block for all the techniques. As confirmed by the profiler, such a configuration
led to the maximum device occupancy and lowest synchronization overhead.

The results obtained with the Direct Search and Block Search techniques are
far worse than the other techniques and, for the sake of clarity, have not been
reported in the figures. For the Two-Phase Search algorithm, we used the well-
know ModernGPU library [30] developed by NVIDIA Research, which is based on
the merge path algorithm proposed by Green et al. [214]. All the other techniques
have been implemented by accurately following the algorithm and optimization
details presented in the corresponding papers. Dynamic Virtual Warp and Local
Warp Search use advanced device features such as dynamic parallelism and reg-
isters shuffle among warp threads that are not supported by Fermi architectures
(GTX 460 and GTX 570).

In the first benchmark (Fig. 5.6a), as expected, the static techniques are the
most efficient. This is due to the very regular workload and to the low average
work-item size. The semi-dynamic Dyn. VW + Dyn. Parallelism performs well
since the dynamic parallelism feature is always switched off in such a regular
workload. The static Virtual Warps approach provides good performance as long
as the virtual warp size is properly set, while it sensibly worsens with wrongly-
sized warps. In this benchmark, any overhead for the dynamic item-to-thread

56 5 Load Balancing - Multi-Phase Search Algorithm

(a) cit-Patent (b) cit-Patent

fig. 5.8: Comparison of execution time on the benchmarks.

mapping may compromise the overall algorithm performance (see for instance Local
warp search and Two-phase Search). However, the proposed Multi-Phase Mapping
is among the most efficient technique for Kepler and Fermi architectures. The
efficiency is comparable with the best static approaches with the GTX 780, while
it is the most efficient technique with Tesla K40 and GTX 980. This underlines
the reduced amount of overhead introduced by such a dynamic technique, which
well applies also in case of very regular workloads.

The second benchmark (Fig. 5.6b) presents slightly higher average and stan-
dard deviation. Multi-phase Mapping shows the best results with all devices, while
the best static techniques perform similarly to the semi-dynamic and dynamic
ones. Beside strongly depending on the virtual warp sizing, the performance of
the static techniques are very sensitive to the GPU device characteristics. Their
performance strongly worsen (three times for the Work-items to threads, and al-
most twice for the best sized Virtual Warps) even on different devices of the same
Kepler micro-architecture.

In web-NotreDame (Fig. 5.7a), Multi-phase Mapping is the most efficient tech-
nique and provides almost twice the performance with respect to the second best
technique (Virtual Warps). It is three times faster than the other dynamic map-
ping techniques (Local Warp Search and Two-Phase) on all the GPU devices. Also
with this benchmark, the virtual warp sizing strongly affects the Virtual Warps
performance. We noticed that the optimal virtual warp size is proportional to the
average of work-item sizes.

5.4 Experimental results 57

fig. 5.9: Comparison of execution time on the regular8 benchmark.

In these first three benchmarks, CTA+Warp+Scan, which is one of the most
advanced and sophisticated balancing technique at the state-of-the-art, provides
low performance. This is due to the fact that the CTA and the Warp phases are
never or rarely activated, while the activation controls involve much overhead.

Multi-phase Mapping provides the best results also in the circuit5M bench-
mark (Fig. 5.7b). In such a benchmark, we observed that the CTA+Warp+Scan,
Two-Phase Search, and Multi-phase Mapping dynamic techniques are one order of
magnitude faster than the static ones.

In web-Notredame and in circuit5M, Multi-phase Mapping shows the best re-
sults due to the low average (less than warp size) and high standard deviation.

In the last irregular benchmarks, as-skitter (Fig. 5.8a) and kron g500-logn20
(Fig. 5.8b), Multi-phase Mapping and CTA+Warp+Scan provide the best re-
sults. In the most irregular benchmark (kron g500-logn20) CTA+Warp+Scan has
slightly better performance than Multi-phase Mapping, particularly on the GTX
780 device, since the CTA and Warp phases are frequently activated and ex-
ploited. Since Kepler devices are throughput-oriented architectures (higher mem-
ory bandwidth) while Maxwell devices are more focused on power consumption,
CTA+Warp+Scan provides better performance on GTX 780 than GTX 980 device
by exploiting the higher memory bandwidth of the former.

Dynamic Virtual Warps and Virtual Warps provide similar performance. They
are very efficient on benchmarks with high-average work-item sizes since, with a
thread group size of 32, they completely avoid warp divergence.

In the regular benchmark, regular8 (Fig. 5.9), the most efficient technique is
the Virtual Warps for all the considered GPU devices as expected. The perfectly

58 5 Load Balancing - Multi-Phase Search Algorithm

uniform workload benefits from the static techniques in which the size of the
thread group is properly set according to the benchmark characteristics. While
the work-unit average equal to eight should provide higher performance for 8-
thread groups, 4-threads virtual warps show lower execution time thanks to a
smaller block scheduling overhead. CTA+Warp+Scan and Multi-Phase Mapping
provide slightly lower performance since they involve extra work to organize the
computation.

Finally, we observed that the Dynamic Parallelism feature, implemented in the
corresponding semi-dynamic technique, finds the best application with the GTX
780 device and only when the work-item sizes and their average are very large. In
any case, all the dynamic load balancing techniques, and in particular Multi-phase
Mapping, perform better without such a feature in all the analysed datasets. GPU
devices with limited DRAM memory (GTX 460 and GTX 570) do not support
Circuit5M and kron g500-logn20 with Two-Phase Search and Multi-phase Map-
ping as they need additional space to store the intermediate partitioning results. In
general we observed that all the techniques provide performance two/three times
better on recent architectures (i.e. Kepler and Maxwell) than on the previous GPU
generation (Fermi).

fig. 5.10: Execution time of Partition and Expansion phases by varying the block size
(on 226 items with unif. distributed random work-sizes).

5.4.1 Multi-phase Mapping Analisys

Fig. 5.10 shows the impact of the thread block size on the performance of the
main phases of Multi-phase Mapping. The partition phase performance improves
linearly to the block size. This is due to the fact that large blocks involve the
input workload to be partitioned in fewer work-unit chunks and, as a consequence,
they require fewer threads for such a computation. The computation is completely
independent among threads. In contrast, large block sizes penalize the performance
of the expansion phase. This is due to the synchronization overhead required to

5.4 Experimental results 59

fig. 5.11: GPU workload breakdown of Multi-phase algorithm on Kepler and Maxwell
Architectures

fig. 5.12: Execution time by varying the number of iterations (on 226 work-items with
uniformly distributed random work-item sizes).

coordinate the shared memory accesses. We observed that the best trade-off size
of blocks is 128 or 256 (see the partition+expansion line in Fig. 5.10).

Fig. 5.11 depicts the contribution of each of the three main steps of the ex-
pansion phase to the overall kernel execution time, for the Kepler and Maxwell
architectures. For both architectures the main step of the load balancing (i.e., bi-
nary searches) takes more than one third of the whole execution. The time spent
for the store activity is two/three times higher than the time spent for loading
data, even though data storing involves much more memory accesses than data
loading. This is due to the fact that the size of the data loaded into the block local
memory is known only at run-time. This prevent us form applying any of the op-
timizations presented in Section 5.2.3, in particular, loop unrolling and vectorized
memory accesses.

Fig. 5.12 reports the Multi-phase Mapping execution time obtained by varying
the number of iterations (i.e., the IS value). IS affects the number of required
registers and, as a consequence, the overall balancing performance. In the GPU
devices used for these experiments, the maximum number of registers per thread
is 32. As for the standard behaviour of GPU devices, exceeding such a threshold
involves data to be spilled in L1 cache and then in L2 cache or global memory.
With IS values from two to five, we obtained the best performance, as all the

60 5 Load Balancing - Multi-Phase Search Algorithm

data elaborated by the threads mainly fits in registers and, in small part, in L1
cache. From seven iterations onwards, the performance drastically decreases since
the compiler places the data variables outside the on-chip memory.

5.5 Conclusions

This Section presented an accurate analysis of the load balancing techniques based
on prefix-scan in the literature, by underlining their advantages and drawbacks
over different workload characteristics. The Section then presented an advanced
dynamic technique, called Multi-phase Mapping, which addresses the workload un-
balancing problem by fully exploiting the GPU device characteristics. The Section
showed how Multi-phase Mapping implements a dynamic partitioning and map-
ping approach through an algorithm whose complexity is sensibly reduced with
respect to the other dynamic approaches. This allows the proposed approach to
provide good performance when applied both to very irregular and to regular and
balanced workloads. The Section presented a comparison between the proposed
solution and the existing approaches by considering different benchmarks as well
as different GPU architectures in order to understand advantages and drawbacks
of each technique also considering the underlying device characteristics.

6

Breadth-First Search - BFS-4K

Breadth-first search (BFS) is one of the most common graph traversal algorithms
and the building block for a wide range of graph applications. With the advent of
graphics processing units (GPUs), several works have been proposed to accelerate
graph algorithms and, in particular, BFS on such many-core architectures. Never-
theless, BFS has proven to be an algorithm for which it is hard to obtain better
performance from parallelization. Indeed, the proposed solutions take advantage of
the massively parallelism of GPUs but they are often asymptotically less efficient
than the fastest CPU implementations. This Section presents BFS-4K, a paral-
lel implementation of BFS for GPUs that exploits the more advanced features of
GPU-based platforms (i.e., NVIDIA Kepler) and that achieves an asymptotically
optimal work complexity. The Section presents different strategies implemented
in BFS-4K to deal with the potential workload imbalance and thread divergence
caused by any actual graph non-homogeneity. The Section presents the experi-
mental results conducted on several graphs of different size and characteristics to
understand how the proposed techniques are applied and combined to obtain the
best performance from the parallel BFS visits. Finally, an analysis of the most
representative BFS implementations for GPUs at the state of the art and their
comparison with BFS-4K are reported to underline the efficiency of the proposed
solution.

6.1 Introduction

Graphs are a common representation in many problem domains, including engi-
neering, finance, medicine, and scientific applications. Breadth-first search (BFS)
is a crucial graph traversal algorithm used by many graph-processing applica-
tions. Different problems, such as VLSI chip layout, phylogeny reconstruction,
data mining, and network analysis, map to very large graphs, often involving mil-
lions of vertices. Even though very efficient sequential implementations of BFS
exist [71, 74, 159], they have work complexity of the order of number of vertices
and edges. As a consequence, such sequential implementations become impractical
when applied on very large graphs.

62 6 Breadth-First Search - BFS-4K

Recently, graphics processing units (GPUs) have become widespread platforms
as they provide massive parallelism at low cost. Parallel executions on GPUs may
achieve speedup up to three orders of magnitude with respect to the sequential
counterparts on CPUs. Nevertheless, accelerating efficient and optimized sequen-
tial algorithms and porting (i.e., parallelizing) their implementation to such many-
core architectures is a very challenging task. Several solutions in literature take
advantage of the massive parallelism of GPUs [117,125,134,249,289] but they are
often asymptotically less efficient than the fastest CPU implementations [74]. After
a certain graph size and, thus, for graph sizes typical of many actual problem do-
mains, the parallel implementations for GPUs become slower than the sequential
implementations for CPUs.

Thread divergence, workload imbalance, and poorly coalesced memory accesses
are the most representative issues that come up when traversing a graph with a
parallel implementation. In particular, sparse graphs, scale free networks or graphs
with power-law distribution in general show up the limits of the parallel imple-
mentations suffering from these problems [14,156,236,280].

On the other hand, GPU vendors continue to innovate and meet that demand
for high performance parallel computing with extremely powerful GPU computing
architectures (e.g., NVIDIAs new Kepler GK110 [202]). The most recent architec-
tures, not only offer much higher processing power than the prior GPU generations,
but, also, they provide new programming capability to improve the efficiency of
the parallel implementations.

This Section presents BFS-4K, a parallel implementation of BFS for GPUs,
which exploits the more advanced features of GPU-based platforms (i.e., NVIDIA
Kepler) to improve the execution speedup w.r.t. the sequential CPU implemen-
tations and to achieve an asymptotically optimal work complexity. The Section
presents the different features implemented in BFS-4K to deal with the potential
workload imbalance and thread divergence caused by the graph non-homogeneity
(i.e., number of vertices, edges, diameter, and vertex degree variability). An analy-
sis of every single technique is also presented to show how much they influence the
overall performance and how they can be customized to exploit the architecture
configurations for the graph characteristics.

Finally, the performance of the proposed implementation (which is available
for download in http : {{profs.sci.univr.it{ „ bombieri{BFS ´ 4K{index.html)
is compared with the most efficient BFS implementations for GPUs at the state
of the art over several graphs of different sizes and characteristics.

The work is organized as follows. Section 6.2 gives an overview of the pro-
posed approach while the single techniques implemented in BFS-4K are detailed
in Section 6.3. Section 6.4 presents the problem of duplicates and the proposed
approach to deal with them. Finally, Section 6.5 presents the experimental results
by underlying the single technique contributions in the overall visit performance
and a comparison of BFS-4K with the BFS implementations for GPU at the state
of the art. Section 6.6 is devoted to concluding remarks.

This section presents some preliminary concepts concerning CUDA architec-
tures and BFS, which facilitate the reader to better understand the proposed
solution.

6.2 BFS-4K Overview 63

6.1.1 Breadth First Search (BFS)

BFS is one of the most import graph algorithms. It is used in several different
contexts such as image processing, state space searching, network analysis, graph
partitioning, and automatic theorem proving. Given a graph GpV,Eq, where V is
the set of vertices and E is the set of edges, and a source vertex s, the BFS visit
inspects every edge of E to find the minimum number of edges or the shortest path
to reach every vertex of V from source s. The traditional sequential algorithm [74]
can be summarized as follows:

for all verticies u P V pGq do
u.distÐ8

u.π Ð ´1
end
v0.distÐ 0
v0.π Ð v0

QÐ tv0u

while Q ‰ H do
uÐ dequeue(Q)
for all verticies v P adj rus do

if v.dist “ 8 then
v.distÐ u.dist` 1
v.π Ð u
enqueuepQ, vq

end
end

where Q is a FIFO queue data structure that stores not yet visited vertices,
v.dist represents the distance of vertex v from the source vertex s (number of edges
in the path) , and v.π represents the parent vertex of v. An unvisited vertex v is
denoted with v.dist equal to 8. The asymptotic time complexity of the sequential
algorithm is OpV ` Eq.

6.2 BFS-4K Overview

Given a graph GpV,Eq and a source vertex s, BFS-4K exploits the concept of
frontier [74] to achieve work efficiency OpV `Eq for the parallel BFS visits of G.
The tool generates a breadth-first tree that has root s and contains all reachable
vertices. The vertices in each level of the tree compose a frontier (F). Frontier
propagation checks every neighbor of a frontier vertex to see whether it is visited
already. If not, the neighbour is added into a new frontier.

BFS-4K implements the frontier propagation through two data structures, Fd
and Fdnew. Fd represents the actual frontier, which is read by the parallel threads
to start the propagation step. Fdnew is written by the threads to generate the
frontier for the next BFS step. At each step, Fdnew is filtered and swapped into

64 6 Breadth-First Search - BFS-4K

!"

#"

$"

%"

&"

'"

("

)"

*"

+,-."/0-1-02"#"

$

+,-."/0-1-02"%3"

+,-."/0-1-02"!3"

453"

4567-83"

453"

' ! % ' (*)4567-83"

453"

4567-83"

490,-:97;"

490,-:97;"

% ! &

% ! &

' (*)

fig. 6.1: Example of BFS visit starting from vertex ”0”

Fd for the next iteration. Figure 6.1 shows an example, in which starting from
vertex ”0”, the BFS visit concludes in three steps1.

The filtering steps aims at guaranteeing correctness of the BFS visit as well
as avoiding useless thread work and waste of resources. When a thread visits a
neighbor already visited, that neighbor is eliminated from the frontier (e.g., vertex
2 visited by a thread from vertex 3 in step two of Figure 6.1). When more threads
visit the same neighbor in the same propagation step (e.g., vertex 8 visited by
threads 2 and 3 in step two), they generate duplicate vertices in the frontier.
Duplicate vertices cause redundant work in the subsequent propagation steps (i.e.,
more threads visit the same path) and useless occupancy of shared memory. BFS-
4K implements a duplicate detection and correction strategy based on hash tables,
Kepler 8-byte memory access mode, and warp shuffle instructions, as explained in
Section 6.4.

The considered graphs may have significant variability in terms of number
of vertices, edges, diameter, and vertex degree, which may imply several issues
to a parallel BFS visit. To handle the potential workload imbalance and thread
divergence caused by such a graph non-homogeneity, BFS-4K implements the
following features:

• Exclusive prefix-Sum. To improve data access time and thread concurrency
during the propagation steps, the frontier data structures are stored in shared
memory and handled by a prefix-sum procedure. Such a procedure is imple-
mented through warp shuffle instructions of the Kepler architecture, as ex-
plained in Section 6.3.1.

• Dynamic virtual warps. The virtual warp technique presented in [125] is applied
to minimize the waste of GPU resources and to reduce the divergence during
the neighbour inspection phase. Differently from [125], this work proposes a
strategy to dynamically calibrate the warp size at each frontier propagation
step, as explained in Section 6.3.2.

1 For the sake of clarity, the figure shows Fdnew firstly written and then filtered. As
explained in the following sections, to reduce the global memory accesses, the next
frontier is firstly filtered and, then, Fdnew is written. The Fd and Fdnew data struc-
tures have the same size in memory.

6.3 Implementation Features in Details 65

• Dynamic parallelism. In case of vertices with degree much greater than the
average, (e.g., scale free networks or graphs with power-law distribution in
general), BFS-4K applies the dynamic parallelism provided by the Kepler
architecture instead of virtual warps. Dynamic parallelism implies an overhead
that, if not properly used, may worse the algorithm performance. BFS-4K
checks, at run time, the characteristics of the frontier to decide whether and
how applying this technique, as explained in Section 6.3.3.

• Edge-Discover. With the edge-discover technique, threads are assigned to edges
rather than vertices to improve the thread workload balancing during frontier
propagation. The edge-discover technique makes intense use of warp shuffle
instructions. BFS-4K checks, at each propagation step, the frontier configura-
tion to apply this technique rather than dynamic virtual warps, as explained
in details in Section 6.3.4.

• Single-block vs. Multi-block kernel. BFS-4K relies on a two-kernel implemen-
tation. The two kernels are alternately used and combined with the features
presented above during frontier propagation. Section 6.3.5 presents an analysis
of the two-kernel features and explains how they are applied to better exploit
the GPU stream multiprocessor properties.

• Coalesced read/write memory accesses. To reduce the overhead caused by the
many accesses in global memory, BFS-4K implements a technique to induce
coalescence among warp threads through warp shuffle, as explained in Section
6.3.6..

The Section presents an analysis of the advantages and limits of each proposed
technique to understand how and when they can be applied and combined to
improve the performance of the BFS visits. As explained in the following sections,
the techniques can also be calibrated through several knobs to customize BFS-4K
depending on both the GPU device characteristics and the graphs to be visited.

6.3 Implementation Features in Details

This section deepens the BFS-4K implementation features and presents an analysis
and some examples of each feature contribution to the overall visit performance.

6.3.1 Exclusive Prefix-Sum

Given a list of input values and a binary associative operator, a prefix-scan proce-
dure computes an output list of elements in which each element is the reduction
of the elements occurring earlier in the input list. Prefix-scan has been largely
investigated in the past years and several solutions have been presented for both
array processor architectures [45,65] and GPUs [40,93,186,240].

When the operator is the addition, the prefix-scan represents a prefix-sum.
Prefix-sum is useful when parallel threads must allocate dynamic data within
shared data structures such as global queues. Given a total amount of data to be
allocate for each thread, prefix-sum calculates the offsets to be used by the threads
to start writing the output elements [107].

66 6 Breadth-First Search - BFS-4K

exclusiveWarpPrefixSum

for (i = 1; i ď 16; i “ i ˚ 2) do
n = shfl up(v, i, 32)
if laneid ě i then

v += n

end
shfl up(v, 1, 32)

if laneid “ 0 then
v = 0

fig. 6.2: Overview of a prefix-sum procedure implemented with shuffle instructions

BFS-4K exploits prefix-sum procedures to manage the frontier queues as well as
the edge-discover visit (see Section 6.3.4). During frontier propagation, the prefix-
sum is used to compute the scatter offset needed by each thread to assemble,
in parallel, global edge frontiers from expanded neighbours and when producing
unique unvisited vertices into global vertex frontiers. Since the first offset must be
zero, the prefix-sum results are shifted to right of one position to implement the
exclusive variant.

BFS-4K implements a two-level exclusive prefix-sum, that is, at warp-level and
block-level. The first is implemented by using Kepler warp-shuffle instructions,
which guarantee the result computation in log n steps rather than 2 log n as in
the most efficient implementations in literature that rely on shared memory (e.g.,
[107]). Figure 6.2 shows a high-level representation of such a prefix-sum procedure
implemented with a warp shuffle instruction (i.e., shfl uppq).

Each frontier assembling step requires also synchronization among thread
blocks, which eventually write the final frontier into the global memory. These
last steps are performed through the block-level exclusive prefix-sum, which is im-
plemented through atomic operations and relies on shared memory. However, the
warp-level prefix-sum computes the majority amount of work of the frontier as-
sembling steps, and its efficient implementation trough shuffle instructions sensibly
impacts on the overall BFS visit.

Finally, at each frontier propagation step, BFS-4K checks whether every fron-
tier vertices have at most one neighbor (i.e., scatter offset either 0 or 1 for each
thread). The check, which work complexity is Op1q, aims at running, when pos-
sible, a more efficient binary variant of the exclusive prefix-sum [120], which has
been implemented with the intrinsics instructions ballot and popc.

6.3.2 Dynamic Virtual Warps

The concept of virtual warp has been presented in [125] to address the problem
of workload imbalance in GPU programming. The idea is to allocate a chunk of
tasks to each warp and to execute different tasks as serial rather than assigning
a different task to each thread. Multiple threads are used in a warp for explicit
SIMD operations only, thus preventing branch-divergence altogether.

6.3 Implementation Features in Details 67

The speedup provided by virtual warps is strictly related to the virtual warp
size. As shown in the experimental results [125], a wrong size setting could also
lead to a speedup decrease.

In the BFS context, the virtual warps technique can be applied to increase
the thread coalescence during the accesses to the adjacent lists and to reduce
their divergence in the frontier propagation steps. The main limitation of such a
technique in BFS occurs when the virtual warp size does not properly fit the vertex
degree, thus leading to unused threads. In case of vertices with very different degree
over the propagation steps, the size choice may not be always appropriated. Thus,
differently from [125], BFS-4K implements a dynamic virtual warp, whereby the
warp size is calibrated at each frontier propagation step i, as follows:

WarpSizei “ nearest pow2

ˆ

#ResThreads

|Fi|

˙

P rK1, 32s

where #ResThreads refers to the maximum number of resident threads in case of
multi-block kernel while thread block size in case of single-block kernel (see Section
6.3.5). nearest pow2 is the lower nearest power of two that rounds the division,
while |Fi| is the size of the actual frontier.

Even though the warp size may range between 1 and 32, BFS-4K is parametrized
to set the minimum warp size (K1). Too small sizes of virtual warps may lead to
poor coalescence and thread divergence depending on the graph characteristics.
As explained in the experimental results, we heuristically set K1 “ 4 for all the
analysed graphs.

The choice of the warp size also directly affects the problem of duplicate ver-
tices. A small size, which leads to finer granularity of warp work and fine grained
synchronization, involves less duplicate vertices during frontier propagation. In
contrast, large sizes of warps may reduce the synchronization overhead but they
lead to more duplicates, thus requiring more resources for the duplicate detection
and correction, as explained in Section 6.4.

6.3.3 Dynamic Parallelism

The exclusive prefix-sum and dynamic virtual warp strategies guarantee a fair
workload balancing during the BFS visit of irregular graphs. Nevertheless, they
found their main limitation in several categories of graphs, e.g., scale free networks
or graphs with power-law distribution in general. In these cases, the visit of very
few vertices with very high degree can compromise the performance of the entire
BFS visit.

To overcome this limitation, BFS-4K exploits the dynamic parallelism feature
of the Kepler architectures. Dynamic parallelism allows recursion to be imple-
mented in the kernels and, thus, threads and thread blocks to be dynamically
created at run time without requiring kernel returns. In the BFS context, the idea
is to invoke a multi-block kernel (which we call child kernel) properly configured to
manage the workload imbalance due to the difference of the vertex degrees. Never-
theless, even if low, the overhead introduced by the dynamic kernel stack may elude
this feature advantages when replicated for all frontier vertices unconditionally.

68 6 Breadth-First Search - BFS-4K

fig. 6.3: Example of dynamic parallelism applied to a sub-set of frontier vertices of a
power-law graph

BFS-4K applies dynamic parallelism to a limited number of frontier vertices at
each frontier propagation step. Given the degree distribution of the visited graph,
BFS-4K applies dynamic parallelism to the sub-set of vertices (K2%) having de-
gree far from the average (AVG), starting from those with highest degree (Figure
6.3 shows an example).

In particular, BFS-4K combines dynamic parallelism with dynamic virtual
warps. The threshold K2 is a further knob to be set in BFS-4K, which switches
the use of the former technique rather than latter. As explained in the experimental
results, we heuristically fixed K2 “ 0.15% (% of the total number of vertices V)
for all the analysed graphs.

The threshold is correlated with the virtual warp size and, in particular, with
K1. The smaller K1, the larger K2. That is, the larger the minimum warp size,
the smaller the sub-set of vertices that can be managed by dynamic kernels to
improve the BFS performance. This is due to the fact that large virtual warps
can handle the workload imbalance more efficiently (i.e, with less overhead) than
dynamic parallelism.

In BFS-4K, the child kernels are configured to ensure the minimum overhead
of the child thread synchronization, and the best balancing among parent and
child threads. Figure 6.4 shows an example of three different kernel settings in
terms of number of blocks (with a fixed block size), given a parent kernel (leftmost
side of figure) and a child kernel (lower side of the figure). Case (a) represents
an over-sized kernel, in which the blocks are more than the vertex neighbor and,
thus, they conclude shorter than the other threads of the parent. Nevertheless,
the many child blocks involve many atomic operations to update the frontier data
structures and an underutilization of the fast local queues. In contrast, case (c)
represents an undersized kernel, in which less blocks manage many vertex neigh-
bours. Even though it involves less atomic operations, this configuration leads to
imbalance with regards to the parent threads, since the parent kernel must wait for
all the threads (including child threads) to end before carrying on with the next
propagation step (see thread synchronization in Kepler dynamic parallelism [202]).

6.3 Implementation Features in Details 69

!"#$%&'

()$*+,-.',/$'

0"12&'

3$#.$2'

!""#$%&'(#

•  /%.4'%!-/1*'-5$#%,-.6'

•  2-7'8+$+$6'+,219%,-.'

)"&&$*+'

!""#'%+$#

•  :"#$%&6'+.&$#+6$&'

•  ;-7'<%#%22$216/'

<%#$.!'

3$#.$2'

=%>' =?>' =*>'

@2-*3'

fig. 6.4: Block number setting: (a) oversized kernel, (b) correctly sized kernel, (c)
undersized kernel

Case (b) represent the trade-off solution implemented in BFS-4K, in which the
child kernel returns at the same time or close to the parent kernel. The child kernel
is configured as follows:

• #Blocks “
V ertexDegree

K3 ˆ ThreadBlockSize

• BlockSize “ block size of the parent kernel to fully exploit the resident threads
on the streaming multiprocessors.

where V ertexDegree is the degree of the frontier vertex for which the thread
dynamically calls a child kernel.

In the experimental results, K3 “ 16 (i.e, each thread of the child kernels
sequentially manages a queue of 16 vertex neighbour) provides the best BFS per-
formance for the analysed graphs.

6.3.4 Edge-discover

In the edge-discover technique, the idea is to assign threads to edges rather than
to vertices during frontier propagation to better balance the thread workload. The
main problem is the cost of such a thread partitioning and assignment, which may
elude the advantages of the technique itself.

BFS-4K implements thread assignment through a binary search and by mak-
ing intense use of warp shuffle instructions. Given a thread warp, and the actual
frontier:

1) Each warp thread reads a frontier vertex, saves the degree and the offset of
the first edge.

2) Each warp computes the warp shuffle prefix-sum on the vertices degree.
3) Each thread of the warp performs a warp shuffle binary search of the own

warp id (i.e., laneid P t0, .., 31u) on the prefix-sum results. Figure 6.5 shows
an example, in which 20 threads of a warp are assigned to 6 vertices of a
frontier. In the example, thread 5 is assigned to vertex 2 of the frontier after
two binary search steps. The warp shuffle instructions guarantee the efficiency
of the search steps (which are less than log2pWarpSizeq per warp).

70 6 Breadth-First Search - BFS-4K

!"#"# $# %# &# '%# '(#

!" #" $" %" &" '"

()*+,-"'"

."

%" #/"

)*+,-.#/0#

12+34#5#)36#

7889:;,.#

<,+=,>#

!"0"$" !"

%" #"

&"0"/" $"

."0"#%" %"

#&"0"#1" &"

#/"0"#2" '"

3,4"

354"

6+7*++"

8*+9:;<=>"

?+*@+:"

AB-AC+<"

fig. 6.5: Example of partitioning and assignment of warp threads in the edge-discover
technique: (a) assignment of thread with laneid “ 5 to vertex 2 of the frontier, (b) final

assignment table of 20 warp threads to 6 frontier vertices

4) The threads of warp share, at the same time, the offset of the first edge with
an other warp shuffle operation.

5) Finally, the threads inspect the edges and store possible new vertices on the
local queue.

With this procedure, the workload is always balanced, the local queues are
filled equally and the duplicates are considerably reduced since the parallel visit is
for edges (see Section 6.4). The local queue management and the global memory
accessing and synchronization are similar to those implemented in the dynamic
virtual warp strategy.

Finally, BFS-4K implements an extended edge-discover technique (EXT) to
optimize the visit of middle size degree vertices. When the last thread of a warp
finds a vertex with a degree greater than the warp size, it shares the offset with a
shuffle operation and directly assigns threads without performing a new iteration
of binary search. As shown in Section 6.5, this optimization provides a sensible
speedup improvement in the BFS visit of several graphs.

BFS-4K applies the edge-discover technique as an alternative of dynamic vir-
tual warps to be combined with dynamic parallelism. With this new combination,
the threshold of dynamic parallelism (K2) can be increased more than in the for-
mer combination. This is due to the fact that the warp parallelism on edges allows
high-degree vertices to be handled more efficiently than the warp parallelism on
vertices. Nevertheless, the overhead introduced by the thread assignment limits
the edge-discover application.

6.3 Implementation Features in Details 71

In general, the edge-discover is more efficient than dynamic virtual warps if the
frontier vertices are less than the available (resident) threads. BFS-4K checks the
following condition at each frontier propagation step:

|Fd| ă
#ResThreads

K4

where K4 is a further knob that allows the switch between one technique over
the other to be calibrated depending on the graphs characteristics. In the experi-
mental results, we found K4 P t1, 2, 4u as the best configuration for the analysed
graphs.

6.3.5 Single-block vs. Multi-block Kernel

In a parallel BFS visit based on frontier propagation, the frontier size follows a
trend as that shown in Figure 6.6. In the first and last steps of the overall frontier
propagation the available parallelism is particularly limited. As a consequence, in
these propagation periods, it is more convenient to handle the frontier vertices
with a single block of threads. This allows the whole frontier to be maintained in
shared memory and the block threads to exploit the efficient synchronization and
communication mechanisms.

fig. 6.6: Single and multi-block kernel use during frontier propagation steps

BFS-4K implements two different kernels (i.e., single-block and multi-block
kernels) that are combined with the edge-discover and the dynamic virtual warp
techniques presented in the previous sections.

A threshold (F Threshold) is statically calibrated depending on the graph
characteristics. At each propagation step, BFS-4K runs the single-block or the
multi-block kernel if the current frontier size is smaller or larger, respectively,
than the threshold. In general, the single-block kernel is run in the first and last
propagation steps, while the multi-block kernel is run in the middle steps, as shown
in Figure 6.6.

The threshold calibration impacts on the organization of the shared memory of
each streaming multiprocessor. Figure 6.7 depicts the shared memory organization
in case of single or multi-block kernel. In the first case, the shared memory stores
the frontier data structures (Fd and Fd new), kernel variables, and the hash

72 6 Breadth-First Search - BFS-4K

���� �����

���

������ ��	
���� ���

���� ��	
���� ���
���

���������

��	�� ��

��� ���

���������

��	�� ��

���

���������

��	�� ��

���������

��	�� ��

fig. 6.7: Shared memory organization: (a) single-block kernel, (b) multi-block kernel

table for implementing duplicate detection and correction. The memory is sized
as follows:

F Threshold “MaxThreadsPerBlock ¨K5;

Fdsize ě
F Threshold ¨ 4

2
;

HashTsize “ nearest pow2 p|SM | ´ pFdSize ¨ 2q ´ V arsizeq .

where MaxThreadsPerBlock is the maximum size of the single block (which
must satisfy the GPU device constraints), and K5 is a further knob to assign
more frontier vertices per thread. |SM | is the total size of the shared memory. For
efficiency reason, the hash table partition must be a power of two. Considering,
for example, a 48K shared memory, the hash table size can be set to 32K, 16K,
8K or less.

In case of multi-block kernel, the shared memory is organized as depicted in
Figure 6.6(b). In this case, a hash table instance is dedicated to each thread block,
and the tables are sized as follows:

HashTsize “ nearest pow2

ˆ

p|SM | ´ V arsizeq ¨K6

MaxThrPerMultiproc

˙

.

where K6 is the knob to size blocks (in terms of number of threads) and
MaxThrPerMultiproc is the maximum number of threads per multiprocessor
(i.e., GPU device constraint).

K5 impacts on the threshold and it aims at shifting the single-multi kernel
switch points. This knob can be properly set to avoid both a premature switch
to the multi kernel (with a consequent underutilisation of the multi-block threads
and more overhead due the CPU synchronization) and a late switch whereby the
single kernel serializes the visit of the many frontier vertices. In the single kernel
context, K5 allows the user to partition the shared memory between frontier data
structures and hash table depending on the graph characteristics, in particular
frontier size distribution and number of duplicates.

6.3.6 Coalesced Read/Write Memory Accesses

In the Kepler architectures, the maximum coalescence in memory accesses can
be achieved by four threads belonging to the same half warp. In these cases, the
memory access is performed by 128-bit transactions (32 bits per thread).

6.3 Implementation Features in Details 73

With virtual warps, the maximum coalescence is inversely proportional to the
warp size. For example, given a 32 thread warp and 4 virtual warps (each one of 8
threads), the maximum coalescence can be achieved by two virtual warp threads
belonging to the same half warp. In this case, the memory access is performed by
64-bit transactions. The worst case occurs when the virtual warps are sized 32, in
which the accesses cannot be coalesced.

To deal with such a problem involved by virtual warps, BFS-4K takes advan-
tage of warp shuffle instructions to share the read data among the virtual warp
threads. To elude the overhead involved by the warp shuffle operations, such a
reading technique is applied under two constraints:

1. |Fd| ą ResThreads, that is, only if all the virtual warp threads are involved
in the frontier propagation;

2. WarpSizei = 32, that is, only in propagation steps in which there would not
be coalescence in memory reading.

The coalescence problem for memory reads is suffered from the virtual warp
technique only. In contrast, coalescence for memory writes is suffered from all
the techniques in general (i.e., virtual warps, dynamic parallelism, and edge dis-
cover). At each propagation step, the threads exploit local queues, which are data
structures in thread registers, to store and filter the neighbour vertices. After the
filtering phase, each thread updates the own frontier segment in the global mem-
ory (Fdnew). In the classic context, the Fdnew updating is performed in parallel,
where each thread sequentially writes the own vertices starting from the scatter
offset calculated by prefix-sum (see Section 6.3.1). This leads to coalescence prob-
lems since the memory accesses rely on the number of vertices to be written in
global memory.

BFS-4K implements a technique to induce coalescence in memory writes as
follows (see Figure 6.8):

1. The shortest size of the queues (which we call minimum) is calculated through
warp-shuffle instructions in log time.

2. Each thread updates Fdnew by writing the vertices stored in the local queues
at the same position (e.g., the first thread writes the four blue vertices in
global memory, the second thread writes the green four vertices, etc.). Each
write is coalesced and the scatter offset is equal to the number of local queues.
The minimum value represents the total number of coalesced writes and the
starting point for the remaining writes with the prefix-sum technique.

The overhead involved by the minimum value calculation is not negligible, es-
pecially for large sized virtual warps. Thus, a further knob, K7, allows the user to
set a threshold for switching the writing mode between induced coalescence and
standard non coalesced (prefix-sum). The K7 value depends on the GPU charac-
teristics (warp shuffle efficiency). In the experimental results, we heuristically set
K7 “ 10.

74 6 Breadth-First Search - BFS-4K

!"#$%"&'()#*+&

,& -& .& /&

01*(%2&"#3%"&45(5(6&

!"#"$%$&

7#8&9#%"(63(2&

:;*(<=>65)?&

9#%"(63(2&

:@A253(2?&

fig. 6.8: Example of induced coalescence in memory accesses

!"

#"

$"

%"

&"

'()*"+,"

'()*"+-.,"

/0,"

/012)3,"

/+4()5+26"73+(89:("

0:*4+;<()"0)();=92>"

."

?"

$ $ $

. ! ?

$ $ $/0,"

& % # & % # & %

'()*"+-!,"

& % # & % # & %

/012)3,"

/0,"

fig. 6.9: Example of duplicates exponential growth

6.4 Duplicate Detection and Correction

Duplicate vertices are a relevant problem in the parallel BFS visit of graphs. Du-
plicate vertices are generated whenever two or more threads visit the same vertex
at the same time and, as a consequence, they cause redundant work among threads
during frontier propagation. Figure 6.9 shows an example that underlines how such
a redundant work grows exponentially through the frontier propagation steps.

BFS-4K implements a hash table in shared memory (i.e., one per streaming
multiprocessor) to detect and correct duplicates, and takes advantage of the 8-
bank shared memory mode of Kepler to guarantee high performance of the table
accesses. At each propagation step, each frontier thread invokes the hash64 pro-
cedure depicted in Figure 6.10 to update the hash table with the visited vertex
(v).

Given the size of the hash table (Hash Table Size), each thread of a block
calculates the address (h) in the table for v (row 2). The thread identifier (threadid)
and the visited vertex identifier (v) are merged into a single 64-bit word, to be
then saved in the calculated address (row 3). The merge operation (as well as the
consequent split in row 5) is efficiently implemented through bitwise instructions.
A duplicate vertex causes the update of the hash table in the same address by
more threads. Thus, each thread recovers the two values in the corresponding
address (rows 4, 5) and checks whether they have been updated (row 6) to notify
a duplicate. In particular, the recovered information classifies a vertex v as follows:

6.4 Duplicate Detection and Correction 75

hash64

1: H SZ : Hash Table Size

2: h “ hashpvq Ñ h P r0,h szs

3:* HashTable[h] = mergepv, threadidq

4: recover = HashTable[h];
5:* (vR, threadidRq “ splitprecoverq

6: return threadid ‰ threadidR ^ v “ vR
*volatile int2 are not supported in CUDA

fig. 6.10: Main steps of the hash table managing algorithm

• If v “ vR and threadid “ threadidR: the vertex is valid (not a duplicate).
• If v “ vR and threadid ‰ threadidR: the vertex is a duplicate.
• If v ‰ vR: there has been a conflict, that is, different threads wrote in the same

hash table address (i.e., hashpvq “ hashpvRq). Since it is not possible to know
whether the conflict hides a valid or a duplicate vertex, v is conservatively
maintained in the frontier.

Conflicts are proportionally related to the size of the hash table and, thus, to
the size of shared memory allocated for the hash table. As explained in Section
6.3.5 and shown in Figure 6.6, the setting of the FrontierLimit knob to run a
single block rather than a multi-block kernel directly impacts on the hash table
size and, thus, to the capability of BFS-4K of detecting duplicate vertices rather
than conflicts.

The vertex classification is feasible for threads of the same warp, since they
are synchronized at each instruction of the procedure and each access to the hash
table is atomic. When duplicates are generated by threads of different warps of
the same block, the procedure detects the duplicate whenever the warp scheduling
does not generate a race condition. For example, the sequence:

HashTablerhs “ mergepvx, thread1q

HashTablerhs “ mergepvx, thread2q

recover “ HashTablerhs // by thread1

recover “ HashTablerhs // by thread2

allows the procedure to detect the duplicate, while the sequence:

HashTablerhs “ mergepvx, thread1q

recover “ HashTablerhs // by thread1

HashTablerhs “ mergepvx, thread2q

recover “ HashTablerhs // by thread2

does not allow the procedure to detect the duplicate, which is conservatively main-

76 6 Breadth-First Search - BFS-4K

fig. 6.11: Example of duplicates caused by different visiting techniques and the effect of
the proposed detection strategy

tained in the frontier. Duplicates generated by threads of different blocks are not
detectable.

Since the duplicate issue occurs mainly among threads of the same warp, the
problem affects more the visit by virtual warps than by edge-discover. Indeed,
since in edge-discover the exploration is performed on edges, the chances to visit
the same vertex more times is considerably small. Figure 6.11 shows the problem
with the different visit strategies and the efficiency of the implemented technique
of duplicate detection.

The virtual warp size (1 and 4 in the figure) is proportionally related to the
number of duplicates. The sequential visit does not suffers from duplicates. Plots
Edge Discover + Hash64 and VirtualWarp4 + Hash64 represent the frontier sizes
obtained by combining the duplicate detection technique to the dynamic virtual
warps and edge-discover, respectively. VirtualWarp1 + Hash64 overlaps Virtual-
Warp4 + Hash64 and has not been reported in the figure for the sake of clarity.

For the best of my knowledge, the duplicate detection and correction problem
has been addressed in literature only in [107]. Differently from the proposed so-
lution, [107] implements a hash table per warp and a procedure that writes and
reads laneid (instead of threadid) and v non atomically in the hash table. This
involves more overhead due to the number of memory accesses and, by imple-
menting disjointed hash tables, it suffers more from conflicts and non detectable
duplicates. Figure 6.12 shows a representative example in which the techniques
implemented in [107] and in BFS-4K are compared. In particular, Figure 6.12(a)
shows the duplicates generated by adopting virtual warp of size 4 over the prop-

6.5 Experimental results 77

!"#"$$%&'

(%)#%$*'+&,-'
.%/0,1'

23456178'

!"9:%);/"$'

2*<:#;=%>?/8'

!"9:%);/"$'

2@9?8'

!"#"$#"%&%'()*$+#",&&

-.+/(01&-21&
304567& 384336& 96:4:;&

<=>?&@:4A;&

B+C?&@AD;&

EFGH*$#,&

-.+/(01&-21&
I4::5& 64I3D& @7A;&

JF#&%"#"$#"%&

%'()*$+#",&-.+/(01&-21&
354583& 3640I3& @3A45;&

-+1&

-K1&

D&

3DD&

0DD&

7DD&

5DD&

6DDD&

63DD&

60DD&

A4*A'

L/F(+>+MFG&,#"(,&

NOP@0Q&.+/(0& PRSTRJUV<W&

fig. 6.12: Comparison between the duplicate detection techniques implemented in [107]
and in BFS-4K

agation steps. Figure 6.12(b) reports the total number of detected duplicates for
both the solutions and the corresponding improvement on the overall performance
(average and maximum improvement). The figure also reports the total number
of conflicts and non detected duplicates.

6.5 Experimental results

Figure 6.13 summarizes the differences between the most representative BFS im-
plementations at the state of the art and BFS-4K.

BFS-4K has been run on two main sets of graphs. The first set is from Stan-
ford Network Analysis Platform (SNAP) [252]. It includes graphs from different
contexts, such as, product co-purchasing networks, web page hyperlink graphs,
network with ground-truth communities, road networks, social networks, time-
evolving graphs and small-word phenomenon graphs. The second set is from
the 10th DIMACS Implementation Challenge [1]. The random.2Mv.128Me and
rmat.2Mv.128Me datasets have been generated by using GTGraph [3]. Table 6.1
shows each graph characteristics in terms of number of vertices (V , in millions),
edges (E, in millions), size of graph diameter, average degree, standard deviation,
and mode. BFS-4K has been run on a NVIDIA GEFORCE GTX 780 device [7]
with CUDA Toolkit 5.0, with AMD Phenom II X6 1055T (3GHz) host processor
(Ubuntu 10.04 operating system).

78 6 Breadth-First Search - BFS-4K

Harish [117]
Virtual

Warps [125]

Edge
Parallelism

[134]
Luo [172] Garland [107] BFS-4K

Work
complexity

OpV D ` Eq OpV D ` Eq OpEDq OpV ` Eq OpV ` Eq OpV ` Eq

Space
complexity

Op3V ` Eq Op2V ` Eq Op2Eq N/A Ωp4V ` 2Eq Ωp4V ` Eq

Type of
parallelismn

Vertices Virtual Warp Edges Vertices
Vertices,

Edges, CTA

Vertices,
Edges,

Dynamic
Virtual Warp,

Dynamic
Parallelism

High-degree

vertex
management

no yes indifferent no yes yes

Duplicate
detection

no no no no yes yes

Type of
synchronization

Host-Device Host-Device Host-Device

Host-Device,
Inter-

block [281],
Thread
barriers

Host-Device
Inter-

block [281]

Host-Device,
Inter-

block [281],
Thread
barriers

fig. 6.13: Comparison of the most representative BFS implementations at the state of
the art with BFS-4K

Figure 6.14 shows an example of the impact of each BFS-4K feature (Section
6.3) and the duplicate detection and correction technique (Section 6.4) on the over-
all speedup. The feature contributions are shown for a sample graph (as-skitter),
by taking the speedup of the parallel BFS implementations in [117] and [134] versus
the sequential implementation as reference point. The figure underlines that the
best speedup is achieved by the combination of these features. In particular, the
best feature configuration and combination can be obtained by properly setting
the presented knobs. As explained in the follows, such a setting is correlated to the
characteristics of the visited graphs and the characteristics of the GPU device.

Table 6.2 and Figure 6.15 report the performance comparison of BFS-4K with
the most representative implementations at the state of the art in terms of visiting
time and speedup, respectively. The performance of the state-of-the-art implemen-
tations are the best ones we obtained by tuning the kernel configurations (in terms
of number of threads per block and number of blocks per grid) for the GPU de-
vice used. For the static virtual warp technique [125], Table 6.2 reports the size of

6.5 Experimental results 79

fig. 6.14: Impact of virtual warp, edge discover, dynamic parallelism and duplicate
detection

fig. 6.15: Performance comparison (speedup) of BFS-4K with the most representative
implementations at the state of the art

virtual warp statically set to obtain the best performance results. The Garland’s
implementation [107] does not support the template representation of the first set
of graphs.

The results show how BFS-4K outperforms all the other implementations in
every graph. This is due to the fact that BFS-4K exploits the more advanced
architecture characteristics (in particular, Kepler features) and that it allows the
user to optimize the visiting strategy through the knobs (K1 ´K7).

We observed that K1 is strictly related to the graph standard deviation and
average degree. In particular, we measured the best speedups by increasing this

80 6 Breadth-First Search - BFS-4K

V p106
q E p106

q

Approx.
Diameter

[279]

Avg.
Degree

Std.
Deviation

Mode

Set 1

Amazon0505 0.4 3.4 40 8.2 3.1 10

web-Google 0.9 5.1 34 5.6 6.5 456

com-youtube 1.2 6.0 24 5.2 50.2 28,754

as-skitter 1.7 22.2 31 12.1 136.9 35,455

roadNet-CA 2.0 5.5 865 2.8 1.0 12

soc-LiveJournal1 4.8 69.0 19 14.2 36.1 20,293

Gen-ForestFire
(f:0.35,b:0.32,s:1)

1.0 7.3 19 7.3 38.3 2,416

Gen-SmallWorld
(k:10 ,p: 0.3)

2.0 40.0 7 20.0 2.3 32

Set 2

europe.osm 50.9 108.1 30,102 2.1 0.5 13

hugehubbles-
00020

21.2 63.6 7,905 3.0 0.0 3

nlpkkt160 8.3 221.2 162 26.5 2.7 27

audikw1 0.9 76.7 81 81.3 42.4 344

cage15 5.2 94.0 56 18.2 5.7 46

kkt power 2.1 13.0 49 6.3 7.5 95

coPapersCiteseer 0.4 32.1 34 73.9 101.3 1,188

kron g500-lon20 1.0 100.7 7 96.0 1,033.2 413,378

random.2M.128M 2.0 128.0 5 64.0 10.6 183

rmat.2M.128M 2.0 128.0 5 64.0 136.8 8,785

Table 6.1: Characteristics of the graph datasets on which BFS-4K has been
evaluated

knob value proportionally to the graph deviation and degree, starting from the
lowest value (K1 “ 4) for graphs with low deviation and degree (e.g., road networks
in general, web-Google, kkt power, etc.), to the highest value (K1 “ 32) in graphs
with high average (e.g., random.2Mv.128Me) or high standard deviation (e.g.,
com-youtube).

K2 controls the use of dynamic parallelism, which achieves the best results
with very high mode networks (e.g., mode greater than 2048 such as in as-skitter,
rmat.2Mv.128Me, etc.) to deal with the sporadic high workloads. K2, which max-
imum value is 0.15% in the experiments, should be higher for graphs with low
average and inversely proportional to K1. As explained in Section 6.3.3, the larger
is the minimum warp size, the smaller is the sub-set of vertices that can be man-
aged by dynamic kernels to improve the BFS performance. This is due to the fact

6.5 Experimental results 81

Harish
[117]
(ms)

Edge
Parall. [134]

(ms)

Static Virtual
Warp [125]

(ms)

Luo [172]
(ms)

Garland [107]
(ms)

BFS-4K
(ms)

Set 1

Amazon0505 5.2 7.2 5.2 (W1) 4.3 – 1.5

web-Google 12.0 9.2 12.0 (W1) 7.3 – 1.6

com-youtube 57.0 5.5 19.0 (W4) out-of-time – 3.1

as-skitter 95.0 24.0 28.0 (W4) out-of-time – 6.5

roadNet-CA 120.7 154.4 120.7 (W1) 20.2 – 5.5

soc-LiveJournal1 91.0 61.0 52.0 (W2) out-of-time – 24.4

Gen-ForestFire 37.0 5.4 14.0 (W4) out-of-time – 2.7

Gen-SmallWorld 33.0 27.0 24.0 (W2) out-of-time – 15.1

Set 2

europe.osm 59,620.0 78,422.0
59,620.0

(W1)
684.0 305 264.8

hugehubbles-
00020

8,123.0 11,922.0 8,123.0 (W1) 220.0 103 95.9

nlpkkt160 351.0 1486.0 351.0 (W1)
out-of-

memory
80.4 39.2

audikw1 68.0 185.0 36.0 (W4) 54 21.5 11.1

cage15 95.0 213.0 95.0 (W1) 96 42.2 28.8

kkt power 36.0 24.5 36.0 (W1) 24 8.8 8.5

coPapersCiteseer 21.2 40.6 11.4 (W4)
out-of-

memory
8.6 4.9

kron g500-lon20 675.0 47.4 67.0 (W32) out-of-time
out-of-

memory
34.4

random.2Mv.128Me 112.0 73.0 63.0 (W16) out-of-time 66.5 52.0

rmat.2Mv.128Me 103.0 62.0 56.0 (W4) out-of-time
out-of-

memory
43.4

Table 6.2: Performance comparison (BFS visiting time) of BFS-4K with the
most representative implementations at the state of the art

that large virtual warps can handle the workload imbalance more efficiently (i.e,
with less overhead) than dynamic parallelism.

K3 impacts on the block size of child kernels when applying dynamic par-
allelism. The right value is more related to the GPU device characteristics and
should be optimized heuristically. In the experimental results, K3 “ 16 provides
the best BFS performance for all the analysed graphs.

K4 controls the edge-discover technique to contrast the workload imbalance
and it is strongly related to the standard deviation and average. We set K4 “

2 for graphs with low average and high standard deviation (e.g., com-youtube,

82 6 Breadth-First Search - BFS-4K

ForestFire, etc.). We decreased K4 to 1 for graphs with medium standard deviation
(e.g., kkt power, web-Google, etc.). The edge-discover technique should not be used
(K4 “ 0) with graphs with both high average degree and high standard deviation
since, in these cases, the virtual warp size is expected to be high. This is due to the
fact that the assignment of edges (rather than vertices) to threads is more efficient
for high degree vertices.

The use of the single-block rather than the multi-block kernel is ruled by K5,
which is strictly related to the average degree and, though to a lesser extent, to
the standard deviation. The single-block kernel should not be used (K5 “ 0) in
graphs with high average since they provide enough parallelism for the multi-
block kernel. In the experiments, we mainly set K5 “ 1 to provide a good trade-off
between parallelism and synchronization.

Finally, K6 and K7 sets the block size in the multi-block kernel and the thresh-
old for switching the writing mode in global memory, respectively. They best values
depend on the GPU device characteristics. In the experiments, we heuristically set
K6 “ 128 and K7 “ 10.

6.6 Concluding remarks

This Section presented BFS-4K, a parallel implementation of BFS for Kepler GPU
architectures. BFS-4K implements different techniques to deal with the poten-
tial workload imbalance and thread divergence caused by any actual graph non-
homogeneity. The Section presented an analysis of the advantages and limits of
each proposed technique to understand how and when they can be applied and
combined to improve the performance of the BFS visits. The Section also showed
how such techniques can be calibrated through several knobs to customize BFS-4K
depending on both the GPU device characteristics and the graphs to be visited.
Finally, a comparison between the most efficient BFS implementations for GPUs
at the state of the art and BFS-4K is reported to underline the efficiency of the
proposed solution.

7

Breadth-First Search - Helix

Breadth-first search (BFS) is a core primitive for graph traversal and a basis
for many higher-level graph processing algorithms. It is also representative of a
class of algorithms whose implementation for graphic processing units (GPUs) is a
very challenging task. Indeed, the irregularity of the input datasets makes each of
the many parallel solutions proposed in literature suitable only for specific graph
characteristics. This Section presents Helix, a fully configurable BFS for GPUs.
It relies on a flexible and expressive programming model that allows selecting,
for each BFS feature (e.g., frontier handling, load balancing, duplicate removing,
etc.) and among different implementation strategies of them, the best combination
to address the graph characteristics. The Section presents the analysis conducted
on a large set of representative real-world and synthetic graphs to understand
the correlation between graph characteristics and BFS configurations. The results
show that Helix allows reaching throughput up to 14,000 MTEPS on single GPU
devices, with speedups ranging from 1.2x to 18.5x with regard to the best parallel
BFS solutions for GPUs at the state of the art.

7.1 Introduction

Breadth-first search (BFS) is a fundamental technique for graph exploration and
analysis, and it is used as core primitive in a great variety of graph algorithms.
The irregular nature of the problem and its high variability over multiple dimen-
sions such as, graph size, diameter, and degree distribution, make the parallel
implementation of BFS for graphics processing units (GPUs) a very challenging
task.

Different parallel BFSs for GPUs have been proposed to efficiently deal with
such issues during graph traversal [118,125,190,275]. Although they provide good
results for specific graph characteristics, no one of them is flexible enough to be
considered the most efficient for any input dataset. This makes each of these so-
lutions, and in turn the higher level algorithm in which they are included, not
efficient in several circumstances (in some cases, less efficient than the sequential
implementation [172]).

84 7 Breadth-First Search - Helix

This Section presents Helix, a fully configurable BFS for GPUs. It includes
many strategies that can be adopted to deal with any implementation issue (e.g.,
node-based mapping, scan-based, binary search for load balancing and vertex, edge,
hybrid queues for the frontier implementation). Some of them have been collected
from the literature and properly re-implemented to fully take advantage of the most
recent programming and architectural characteristics of GPUs. Other strategies
have been defined and implemented ex-novo to complete the Helix flexibility to
cover the large class of graph characteristics. Thanks to a flexible and expressive
programming model, Helix allows selecting the best implementation strategy for
each BFS issue by considering the characteristics of the given graph.

The Section presents an analysis conducted on a large set of representative real-
world and synthetic graphs to understand the correlation between graph charac-
teristics and BFS configurations. The results show that some widespread strategies
adopted to deal with specific implementation issues (e.g., binary search for load
balancing) are the most efficient when considered singularly while not the best
when combined to the others for building a complete BFS solution.

Finally, the analysis results show that average degree, Gini coefficient, and max-
imum degree of a graph are the necessary and sufficient information to correctly
customize the BFS for any input dataset. The results show that Helix, which is
available for download from https://profs.scienze.univr.it/bombieri/Helix, allows
reaching throughput up to 14,000 MTEPS on single GPU device, with speedups
from 1.2x to 18.5x with regard to the best parallel BFS solutions at the state of
the art in all the analysed graphs.

The Section is organized as follows. Section 7.2 presents some background.
Section 7.3 presents Helix in details. Section 7.4 presents the experimental results,
while Section 7.5 is devoted to the concluding remarks.

7.2 Parallel graph traversal through BFS

Graph traversal consists of visiting each reachable vertex in a graph from a given
set of root vertices. Given a graph G “ pV,Eq with a set V of vertices, a set E of
edges, and a source vertex s, the parallel graph traversal through BFS explores the
reachable vertices level-by-level starting from s. Algorithm 4 illustrates the main
structure of such an algorithm, which, in the parallel version, is commonly based
on frontiers. The algorithm expresses the parallelism in two in two for loops (lines
3 and 4). The first loop provides trivial parallelism by iterating over the frontier
vertices. In contrast, the second (nested) loop requires advanced parallelization
techniques. This is mainly due to the fact that the loop aims at exploring the
immediate neighbors of the frontier vertices, each of them requires a different
number of iterations, and such a number depends on the out-degree of the vertices.
As the corresponding sequential algorithm, the frontier-based BFS algorithm shows
linear work-complexity OpV ` Eq.

7.3 The Helix framework 85

Algorithm 4 Frontier-based Parallel Graph Traversal

Input: GpV,Eq graph, s source vertex

@v P V zs : v.dist “ 8
s.dist = 0
Frontier1 “ s
Frontier2 “ H

1: level = 1
2: while Frontier1 ‰ H do
3: Parallel for v P Frontier1 do
4: Parallel for u P neighborpvq do
5: if u.dist “ 8 then
6: u.dist “ level
7: insertpFrontier2, uq
8:
9: end

10: end
11: barrier
12: level = level + 1
13: swappFrontier1, F rontier2q
14: Frontier2 “ H
15: end

Single kernel callMultiple kernel calls

FRONTIER QUEUE
TYPE

LOAD BALANCING

FRONTIER
UPDATING

DUPLICATE
REMOVING

BITMASK

Vertex Edge Two-phase

LOAD BALANCING
SUPPORT

SYNCH. BETWEEN

BFS ITERATIONS

Node-based mapping
Standard Warp shuffle

Warp-based
gathering

Block-based
gathering

Dynamic
parallelism

Supplementary
queues

Yes

Ballot cooperation Through local queues

During neighbors
lookup

After frontier
loadingWarp-level Block-level

Atomic
CAS

Binary search
Warp-level Block-level

Scan
Warp-level Block-level

Combination allowed
Combination not allowed

Feature Implementation strategies

Device-wide
binary search

No

fig. 7.1: Helix framework overview.

7.3 The Helix framework

Helix allows selecting, combining, and evaluating different implementation strate-
gies for each basic feature of the BFS algorithm. Figure 7.1 shows the framework
overview, which lists the features of the parallel BFS and the corresponding possi-
ble implementation strategies for GPUs. Some strategies have been collected from

86 7 Breadth-First Search - Helix

V1 V2 V3 …

t1 t3 t2 t4 t5 t6 t7 t8
V1 V3 V4 …V5 V6 V7 V8

t1 t3 t2 t4 t5 t6 t8 t7

t3 t2 t4 t5 t6 t8 t7

t1 t1 broadcast (warp shuffle)

t2

t3 t4 t5 t6 t8 t7 t1

t2 broadcast (warp shuffle)

(a) Node-based mapping (b) Warp-shuffle Node-based mapping

V2

Frontier

Thread Group

1 2 3 …

Thread Group

1

2

2

...

fig. 7.2: Node-based mapping strategies.

the literature and properly re-implemented to fully take advantage of the most
recent programming and architectural characteristics of GPUs. Other strategies
have been added ex-novo. The following sections present and compare the strate-
gies in details as well as the programming model. The framework relies on a smart
programming model to reduce the code size and to simplify the kernel procedure
implementations. It also relies on a novel graph representation and provides an
optimized prefix-sum implementation as described in the following sections.

7.3.1 Load balancing

Helix allows addressing the load balancing issue of the parallel BFS visit in four
different ways. They rely on node-based mapping, scan-based procedures, binary
search, or device-wide binary search.

The node-based technique partitions the workload by directly mapping groups
of threads to the edges of each frontier vertex. The left-most side of Figure 7.2
shows an example, in which the 8 threads of a thread group first access to the
vertex V1 identifier in parallel and, then, each thread calculates the corresponding
edge to be processed. Then, in sequence, the whole thread group moves to the
other frontier vertices. The thread group size can be set depending on the average
degree of the graphs (smaller warp sizes for graphs with lower average degrees).
Nevertheless, in case of large thread group sizes, it may lead to many non-coalesced
memory accesses during the frontier loading (8 accesses in the example), which in
turn cause a strong loss of performance.

In these cases (i.e., large thread group sizes), Helix allows adopting an improved
version of the node-based technique, which combines warp shuffle instructions to
the direct thread-to-edge mapping to guarantee high performance. The right-most
side of Figure 7.2 shows an idea of the strategy. Each thread accesses to a different
frontier vertex and broadcasts the vertex identifier to the threads through warp
shuffle (the frontier loading in the example requires 1 coalesced memory access at
the cost of a minimum overhead involved by the warp-shuffle instructions).

The scan-based load balancing strategy is an alternative of node-based map-
ping. Instead of directly mapping threads to edges, each thread organizes the own
edge offsets in shared memory through scan operations. Helix provides a warp-level

7.3 The Helix framework 87

Algorithm 5 Optimized warp-level binary search

Input: Sequence of values represented by the variable val

of each thread; value to search: searched
Output: lower bound of searched

1: low = 0;
2: #pragma unroll
3: for (i “ 1; i ď log2(WarpSize); i++) do
4: pos = low + (WarpSize " i); //": compile time evaluated

5: if (searched ě shfl(val, pos)) then
6: low = pos;

7: end
8: return low;

scan strategy that exploits an optimized prefix-sum procedure (see Section 7.3.10),
that exploits the whole shared memory during the frontier expansion phase, and
that adopts the warp-synchronous paradigm to avoid any kind of explicit synchro-
nization. The block-level scan strategy follows the same steps, even though each
iteration involves additional overhead for the mandatory thread synchronization
through barriers.

The binary search technique provides the best load balancing among all threads
at warp level, at the cost of additional computation. With even more computation,
such a balancing can be guaranteed at block level. Helix implements an efficient
version of the binary search that fully exploits the GPU shared memory. The
algorithm consists of four steps:

(1) It computes the prefix-sum of the out-degrees of the frontier vertices.
(2) It executes an optimized binary search to equally partitioning the workload

among threads. Algorithm 5 shows the pseudo-code of such an optimized
binary search at warp-level (the binary search at block level is similarly
implemented).

(3) It stores and reorganizes the edge offsets in shared memory.
(4) It processes the shared memory elements in parallel.

Thanks to the organization of the frontier information into shared memory, the
binary search allows the following operations on the edge offsets to be performed
through coalesced memory accesses. As for the scan-based technique, this strat-
egy has been implemented by adopting the warp-synchronous paradigm to avoid
barriers among warps of the same block. In general, the warp-level binary search
provides perfect load balancing only among warp threads, while the block-level
technique guarantees uniform workload among warps of the same block. For this
reason, the block-level binary search best applies to highly irregular graphs.

The device-wide binary search strategy is a special case of the previous solution
and guarantees equal workload among all threads of the GPU device. It implements
a revisited algorithm of the merge-path strategy proposed by Green et al. [113] in
the context of merge-sort, which is strongly oriented to graph traversal. Given
the prefix-sum of the out-degrees and the edge offsets of the frontier vertices, the
algorithm consists of three main steps:

88 7 Breadth-First Search - Helix

(1) A simple and fast kernel computes the binary search over the whole workload
to uniformly partition the frontier edges among the grid blocks (Figure 7.3(a)
shows an example, where pi are the prefix-sum elements and ci are the equally
sized chunks of elements). The size of a workload chunk (i.e., the number of
edges per chunk) is equal to the available shared memory per block.

(2) A second kernel applies a block-level load partition by following the steps of
the binary search. Each block identifies the corresponding workload chunk by
using the offsets calculated by the first kernel. This step generates the neighbor
frontier starting from the edge offsets (Figure 7.3(b)).

(3) A third kernel generates all the information to build the new frontier (Figure
7.3(c)). The kernel procedure executes the status lookup and update of the
frontier elements, it removes previously visited vertices, and it computes an
online unordered prefix-sum. In this particular case, the online procedure com-
putes the prefix-sum of the out-degrees and of the number of warp elements at
the same time. This allows avoiding double memory accesses to compute the
prefix-sum offline through a specialized kernel procedure, which must load and
store the degrees of the frontier vertices. The two information are merged into
a single value through the 64-bit atomicAdd instructions. A second optimiza-
tion has been implemented to discard vertices with out-degree equal to zero
(for directed graphs) and equal to one (for undirected graphs) since they never
contribute to the new frontier generation. In general, such an optimization is
useful in power-law graphs since they present a high number of leaf vertices
(up to 20% in some instances).

The basic implementation of the device-wide binary search sets the workload
chunk size proportional to the available shared memory per block. It is suitable
for large frontiers, but it involves inactive threads in case of small frontiers. Such
a search strategy has been implemented in Helix with a third optimization, which
allows dynamically configuring the workload chunk size between BFS iterations as
follows:

min

$

’

’

&

’

’

%

R

sum of out-degrees

#resident threads

V

¨ block size

shared mem per block

The device-wide binary search is an atomic strategy. Because of its radical
structure, it cannot be combined with any of the other frontier queue or load
balancing support techniques.

7.3.2 Load balancing support techniques

Helix provides a set of strategies to support load balancing. They can be singularly
applied or combined to address the irregularity of the graph to be visited.

The warp-based gathering consists of collecting frontier vertices with out-degree
greater than a threshold (warp size) and, then, cooperatively processing their ad-
jacency lists among warp threads.

Helix implements such a gathering through a low latency binary prefix-sum (see
Section 7.3.10). The prefix-sum is computed on the condition upon the threshold

7.3 The Helix framework 89

p1	

BINARY	SEARCH	

p2	 p3	 p4	 …	

Prefix-sum	of	out-degrees	

c1	 c2	 …	

Workload	chunk	offsets	
(Global	Mem.)	

	(a)	
Edge	fron?er	(Global	Mem.)	

s1	 s2	 s3	 s4	 …	 Start	offsets	of	
fron?er	ver?ces	

p1	 p2	 p3	 p4	 …	

Prefix-sum	of	
out-degrees	

e1	 e2	 e3	 e4	 …	e5	 e6	 e7	 e8	

c1	 c2	 …	

BINARY	SEARCH	
Workload	

chunk	offsets	

(b)	

e1	 e2	 e3	 e4	 …	e5	 e6	 e7	 e8	
Status	lookup	and	update	

Edge	Fron?er		(Global	Mem.)	

s'1	 s'2	 s'3	 …	

p'1	 p'2	 p'3	 …	

Online	unordered	
prefix-sum	

(c)	
Start	offsets	of	
fron?er	ver?ces	

Prefix-sum	of	
out-degrees	

warp3	 warp1	
d1	 d2	 d3	 d4	 d5	

Online	unordered	
prefix-sum	

0	 0	 3	 d1+d2+d3	

…	

Queue	posi?on	
(Prefix-sum	on	the	number	

of	warp	elements)	

Prefix-sum	on	
out-degrees	

Out-degree	of	
unvisited	ver?ces	

(d)	

(Global		
Mem.)	

(Global		
Mem.)	

fig. 7.3: Overview of the device-wide binary search.

of each thread (1 if out-degree ą warp size, 0 otherwise). The prefix-sum result
allows storing the vertices to be processed in consecutive locations of the shared
memory. This solution requires only a single iteration and one shared memory
access for the whole computation.

The block-level gathering follows the same idea of the previous procedure. Helix
implements the block-level gathering through a single step of unordered binary
prefix-sum, which significantly reduces the technique complexity and improves its
applicability to very irregular graphs.

Helix includes the dynamic parallelism presented by Busato et al. [60] to pro-
cess vertices with very large out-degrees. It provides benefits only with a fine
tuning of the out-degree threshold. A wrong setting of such a value leads to a sen-
sible overhead (caused by the dynamic kernel) that may compromise the overall
performance of the application.

Helix introduces a different strategy, which relies on supplementary queues to
organize the high degree vertices in different bins. Each bin holds vertices with sizes
of the same (approximate) power of two (see the example of Figure 7.4). More in
detail, the i-th bin holds vertices with out-degree in the range r2pb`iq, 2pb`i`1qs,
where 2b identifies the base threshold, and b is tuned by the user. Such a classi-
fication allows running a single kernel for the different bins, properly configured
for the bin characteristics. In Helix, the total number of grid threads has been set
equal to the lower bound of the bin (2pb`iq) times the number of bin elements. In
this way, the worst case involves at most two memory accesses among elements in
consecutive queues. Finally, the threshold of the last bin is limited to the maxi-

90 7 Breadth-First Search - Helix

1

10

100

1.000

10.000

100.000

1.000.000

1 4 16 64 256 1024 4096 16384 65536 262144N
u

m
b

e
r

o
f

ve
rt

ic
e

s
(l

o
g 1

0
sc

al
e

)

Out-degree (log2 scale)

B1 B2 B3 BMAX

Histogram bins

fig. 7.4: Example of the supplementary queues applied to the kron g500-logn21 graph.

mum number of resident device threads, since no more parallelism is possible for
greater values.

7.3.3 Frontier queue types

The frontier queue represents the fundamental data structure of any work-efficient
BFS. Such a queue stores either the vertices or the edges of the frontier, it allows
an efficient neighbour exploration, and updates at each BFS iteration. Many ap-
proaches in literature store the vertices to be visited at the next iteration in the
frontier queue [42,60,172,190]. The amount of global memory accesses involved to
maintain such a vertex queue is in the order of 2V .

Two possible alternatives are the edge queue and the two-phase queue [190].
The edge queue stores the neighbors of the vertex frontier, and it involves 2E mem-
ory accesses. The two-phase queue alternates the two representations, by involving
2V ` 2E memory accesses.

In general, the vertex queue allows minimizing the global memory data move-
ment but suffers from thread inactivity during the status lookup1. On the other
hand, the edge queue involves more memory accesses, but it provides better perfor-
mance for the status lookup phase. The two-phase queue guarantees high thread
utilization at the cost of a high number of memory accesses.

7.3.4 Synchronization between BFS iterations

Thread synchronization between BFS iterations strongly impacts on performance
in the exploration of large diameter graphs. Implementing the whole graph traver-
sal in one single kernel call requires synchronizing all threads at device level with-
out returning to the host. This procedures can easily lead to low SM utilization
or significant overhead at each iteration if not properly implemented.

Helix implements a strategy that guarantees a sound trade-off between SM
occupancy and synchronization overhead. It restricts the number of blocks per SM

1 The status lookup (e.g., updating of vertex distance) is the most expensive step of the
algorithm due to the sparse memory accesses involved by the graph data structure.

7.3 The Helix framework 91

to the maximum number of resident blocks (i.e., max blocks with resident threads),
in which each block has size always greater than the number of grid blocks.

Helix also provides thread synchronization through explicit multiple kernel calls
(i.e., one call per BFS iteration). Even though it introduces overhead at each kernel
call, which strongly impacts on the overall performance especially in graphs with
large diameter2, it has three advantages: (i) it allows flushing the GPU caches
between kernel calls, improving the hit rate for status lookups; (ii) it provides
more flexibility in the kernel configuration; (iii) it improves the device occupancy
for each kernel. Indeed, differently from the global synchronization, it does not
require including many different synchronization functions into a single kernel,
thus limiting the usage of thread registers.

7.3.5 Frontier updating

The frontier updating through write instructions is a key aspect to consider when
implementing the linear-work graph traversal. Helix provides two alternatives:
Ballot cooperation and through local queues. The first stores unvisited vertices at
each step in global memory by using a fast binary prefix-sum. This approach allows
for coalesced memory accesses and low-latency prefix-sum, but it involves a higher
number of atomic operations. The second strategy relies on a local register queue
for each thread, which holds unvisited vertices for the frontier generation. The
warp threads coordinate each other through fast voting functions (see Section 2.2)
to know when a thread fills his local queue. Then, each warp performs a prefix-sum
and an atomic operation with the total sum of thread elements to reverse a chunk
of frontier, and stores the concatenation of local queues. The strategy minimizes
the atomic operations but involves sparse accesses due to non-consecutive memory
addresses among warp threads.

7.3.6 Duplicate removing

Linear-work graph traversal can cause concurrent visits of the same vertex neigh-
bors by different threads. This involves duplicate vertices in the frontier queue.
Helix addressed this issue by hashing vertex identifiers in shared memory. The
duplicate removing is implemented by merging vertex and thread id in a single
vector data, store the result, and then recover the data. The duplicate vertices are
progressively eliminated through multiple iterations and different hash functions
in both warp and block memory spaces. Helix allows applying this process at dif-
ferent phases of the BFS iteration, including during the neighbor lookup and after
the frontier loading.

Helix also allows applying the status lookup through atomic operations (atomicCAS),
which completely eliminate duplicate vertices. On the other hand, such operations
introduce more overhead since they are not as efficient as standard memory ac-
cesses.

2 In the tested GPU devices, we experimentally measured such an overhead equal to
15µs per kernel call, which leads to a 15 ms overhead in graphs with one thousand
depth. This overhead is consistent with other recent GPU devices [189,260].

92 7 Breadth-First Search - Helix

Graph Category U/D V (M) E (M) Avg. degree Std. deviation Gini coeff. Max degree Avg. eccentricity

asia osm Road Network U 12.0 25.4 2.1 0.5 0.08 9 36,626.7

europe osm Road Network U 50.9 108.1 2.1 0.5 0.09 13 19,738.2

USA-road-d.USA Road Network U 23.9 58.3 2.4 0.9 0.21 9 6,418.6

hugebubbles-00020 Num. simulation U 21.2 63.6 3.0 0.0 0.00 3 6,205.9

rgg n 2 23 s0 Random Geometric U 8.4 127.0 15.1 3.9 0.14 40 1,715.7

delaunay n24 Structural U 16.8 100.7 6.0 1.3 0.12 26 1,588.3

channel-500x100x100 Num. simulation U 4.8 85.4 17.8 1.0 0.01 18 381.6

ldoor Structural U 1.0 47.5 49.9 11.9 0.13 78 161.4

nlpkkt160 Num. simulation U 8.3 237.9 28.5 2.7 0.02 29 145.2

audikw 1 Structural U 0.9 78.6 83.3 42.4 0.23 346 61.8

circuit5M Circuit simulation D 5.6 59.5 10.7 772.6 0.52 1,290,501 58.0

FullChip Circuit simulation D 3.0 26.6 8.9 23.1 0.35 2,312,481 38.3

cage15 DNA electrophoresis D 5.2 99.2 19.2 5.7 0.17 47 37.3

indochina-2004 Social Network D 7.4 194.1 26.2 215.8 0.74 6,985 31.0

soc-LiveJournal1 Social Network D 4.8 69.0 14.2 36.1 0.72 20,293 14.3

soc-pokec-relationships Social Network U 1.6 61.2 37.5 59.5 0.62 20,518 10.2

er-fact1.5-scale23 Erdös-Rényi U 8.4 200.6 23.9 4.9 0.12 53 7.8

hollywood-2009 Social Network U 1.1 115.0 100.9 271.9 0.73 11,469 7.6

kron g500-logn21 Kronecker U 2.1 182.1 86.8 680.1 0.92 213,906 5.1

Table 7.1: Graph dataset.

7.3.7 Bitmask status lookup

The bitmap structure aims at improving the efficiency of the status lookup phase.
Thanks to its compact size, it generally fits in the L2 cache and allows the threads
to retrieve visited/unvisited information of frontier vertices without accessing the
global memory. On the other hand, the massive parallelism of GPU threads often
leads to false negatives (unvisited vertices that actually have been already visited).
This is due to the concurrent accesses of threads to the same memory locations.

Helix implements a bitmap structure based on 8-bit data types (the smallest
possible), which reduces the access overlapping and, as a consequence, the number
of false negatives.

7.3.8 Programming model

Recent CUDA implementations provide full support of advanced C++11 language
features. This allows reducing the code size and simplifying common kernel pro-
cedures. Figure 7.5 shows an example on how Helix organizes kernel code by
exploiting such features. The commented lines represent possible configuration
alternative.

The model relies on C++ forward iterators to coordinate the device threads
during the frontier processing. It encapsulates the frontiers in a specialized struc-

7.3 The Helix framework 93

1: auto it item = vertex item(Frontier); //vertex frontier

2: //auto it node = edge item(Frontier); //edge frontier

3: auto F = frontierădecltype(node)ą(frontier size, it item);

4: load balancing::BinarySearch LB;

5: //load balancing::Scan LB;

6: auto lambda = [&](int limit) {
7: writeOnFrontier(LB.SharedMem, limit); };

8: for (auto it : F)

9: LB.exec(lambda, it);

fig. 7.5: Example of kernel function. The red text represents possible alternatives.

ture (line 3) and defines the functionality to extract an element from the frontier in
a separated procedure (line 1). Such iterators are extended to support range-based
loop (line 8) to simplify and to make clearer the code.

All load balancing functions (lines 4-5) are defined in terms of input/output.
They take in input the start and the end offset of a vertex provided by an iterator
and generate the corresponding list of neighbors. Given the neighbor list, the
functions allow applying any operation on them through lambda expressions (lines
6-7). The main advantage of the lambda construct is an easy mechanism to capture
variables from the context without modifying the rest of the code.

The PTX code (intermediate representation) generated from the C++11 imple-
mentation has been compared to that generated by the standard implementation
approach to ensure they produce the same PTX instruction sequence.

The framework strongly relies on C++ templates and constant expressions to
save the register usage and to avoid unnecessary operations.

Thanks to the adopted programming model, Helix allows generating up to
45,824 different configurations, counting only «4,000 lines of code for the core
functionality (i.e., without considering the input parsing). It does not require any
other external sequential or parallel library (e.g., Boost, CUB [187], ModernGPU
[31], etc.).

7.3.9 Modified Graph Representation

Most sequential and parallel graph applications adopt the Compressed Sparse Row
(CSR) format to store graphs. The CSR format, commonly used in sparse linear
algebra applications, allows storing graphs in the adjacency list representation with
two arrays without using pointers. The edges array consists of the concatenation
of adjacency lists, while the row-offset array is formed by the prefix-sum values of
vertex degrees that correspond to adjacency list offsets in the edges array. The CSR
graph representation shows great space efficiency, able to store graphs with billions
of vertices/edges in few GBs. In contrast, it requires advanced load-balancing
techniques to efficiently traverse the data structure.

All graph operations on the basic CSR representation involves two memory
accesses for each thread to obtain the start and the end offsets of vertices. This

94 7 Breadth-First Search - Helix

leads to non-coalesced memory accesses through continuous addresses with a con-
sequent performance penalty. To face such a problem, Helix adopts a modified
graph representation, called CSR-M, which replaces the standard CSR row-offsets
with an array of two-component vector data type. Each array element stores, in a
single vector, the start and the end offset of the adjacency lists in the edge array.
The CSR-M representation overcomes non-coalesced accesses by forcing vectorized
accesses. The modified representation improves the performance by 10{15% for all
graphs ad the cost of negligible additional memory space. The observation relies
on the fact that, in general, graphs show a number of edges one or two orders of
magnitude greater than the number of vertices.

7.3.10 Optimized Prefix-sum

Prefix-sum is a fundamental parallel primitive, used as a building block for design-
ing a wide range of parallel algorithms and applications. In the context of graph
traversal and load balancing we make extensive use of different prefix-sum algo-
rithms and at different thread hierarchy levels for workload partition, reorganize
sparse data, and coordinate threads. How such parallel primitive is implemented
has a significant impact on the performance of the overall application.

The prefix-sum algorithms can be classified on the ordering of involved oper-
ations and on the produced output. Given an input sequence a1, a2, . . . , an the
ordered prefix-sum algorithm computes the output result a1, pa1 ` a2q, . . . , pa1 `

. . . ` anq. We implement the warp prefix-sum by using intrinsic warp shuffle in-
structions combined with PTX assembly to elide wasted operations of inactive
lanes during the computation.

A variant of the common prefix-sum algorithm, called unordered prefix-sum,
does not guarantee a strict ordering of the output while maintaining monotonic
increasing values in the resulting sequence. A possible output of unordered variant
is a3, pa3 ` a5q, pa3 ` a5 ` a1q, . . . , pa1 ` . . .` anq. The parallel implementation of
such algorithm at global and block-level can take advantage of loose ordering to
accelerate the computation. The unordered prefix-sum applies the same procedure
of ordered variant at warp level but relies on atomic operations among different
warps. In particular, each warp atomically updates a single value in shared memory
for block-wide computation and in global memory for device-wide computation
with the total sum of its values and getting back the previously stored value.
Thanks to hardware-implemented atomic operations in both shared and global
memory, Maxwell and Pascal architectures achieve better execution times for the
unordered variant compared to the conventional ordered scan-then-fan algorithm
[277].

Finally, a special case of the general prefix-sum, called binary prefix-sum, in-
volves only boolean values. We implement the binary prefix-sum at warp-level with
only three instructions by improving the procedure described in [121]. First, we
evaluate the predicate for each lane with the ballot instruction, then we compute
the bitwise and between the ballot result and the lane lower mask (e.g. the lower
mask of the lane 3 is 111), and finally each lane counts the number of true values
of preceding lanes with the popc instruction. The lane lower mask is obtained by
reading a special register via PTX instruction instead computing multiple instruc-
tions.

7.4 Experimental Results 95

7.4 Experimental Results

7.4.1 Graph dataset and system setup

We conducted the analysis and the performance evaluation of Helix on a dataset of
20 graphs, which includes both real-world and synthetic graphs from different ap-
plication domains. Table 7.1 presents the graphs and their characteristics in terms
of structure (directed/undirected), number of vertices (V, in millions), edges (E, in
millions), average degree, standard deviation, Gini coefficient, maximum degree,
and average eccentricity (or BFS depth). The Gini coefficient [151] measures the
inequality among vertex degrees. It is complementary to the standard deviation in-
formation to express the graph irregularity and it is considered a clear and reliable
alternative to the power-law. It is expressed in the range r0, 1s, where 0 indicates
the maximum regularity among vertex degree (i.e., all vertices with equal degree),
while 1 indicates the maximum inequality among vertex degree (i.e., there exists
one vertex with degree equal to the total number of edges).

The graphs have been selected to be representative of a wide range of character-
istics, including size, diameter, degree distribution (from regular to power-law).The
variability of the dataset is essential to fully stress the proposed solution and the
state-of-the-art counterparts under very different input types. The graphs have
been selected from the University of Florida Sparse Matrix Collection [85], the
10th DIMACS Challenge [23], and the SNAP dataset [160].

We ran the experiments on a NVIDIA Maxwell GeForce GTX 980 device with
CUDA Toolkit 7.5, AMD Phenom II X6 1055T 3GHz host processor, Ubuntu 14.04
O.S., and clang 3.6.2 host compiler with the -O3 flag. The GPU device consists
of 16 SMs (2,048 SPs) capable of concurrently executing 32,768 threads. For a
fair comparison, we did not perform any modification to the input graphs and we
adopted the Matrix Market format (.mtx) representation for all the evaluated tools.
We ran all tests 100 times from random sources to obtain the average execution
time tavg. The traversal throughput is computed as E{tavg for all tools and is
expressed in MTEPS (million traversed edges per second). For all the state-of-the-
art BFS implementations, we considered the best performance results obtained by
trying any possible configuration (if available).

96 7 Breadth-First Search - Helix

7.4.2 The configurability analysis

(1
00

.9
, 0

.7
3)

 h
ol

ly
wo

od
-2

00
9

(8
6.

8,
 0

.9
2)

 k
ro

n_
g5

00
-lo

gn
21

(8
3.

3,
 0

.2
3)

 a
ud

ikw
_1

(4
9.

9,
 0

.1
3)

 ld
oo

r

(3
7.

5,
 0

.6
2)

 so
c-

po
ke

c-
re

la
tio

ns
hi

ps

(2
8.

5,
 0

.0
2)

 n
lp

kk
t1

60

(2
6.

2,
 0

.7
4)

 in
do

ch
in

a-
20

04

(2
3.

9,
 0

.1
2)

 e
r-f

ac
t1

.5
-s

ca
le

23

(1
9.

2,
 0

.1
7)

 c
ag

e1
5

(1
7.

2,
 0

.0
1)

 c
ha

nn
el

-5
00

(1
5.

1,
 0

.1
4)

 rg
g_

n_
2_

23
_s

0

(1
4.

2,
 0

.7
2)

 so
c-

Liv
eJ

ou
rn

al
1

(1
0.

7,
 0

.5
2)

 c
irc

ui
t5

M

(8
.9

, 0
.3

5)
 F

ul
lC

hi
p

(6
, 0

.1
2)

 d
el

au
na

y_
n2

4

(3
.0

, 0
.0

) h
ug

eb
ub

bl
es

-0
00

20

(2
.4

, 0
.2

1)
 U

SA
-ro

ad
-d

.U
SA

(2
.1

, 0
.0

8)
 a

sia
_o

sm

(2
.1

, 0
.0

9)
 e

ur
op

e_
os

m

Graph

VQ MK BC NB1
VQ MK BC NB2

VQ MK BC NB2sh
VQ MK BC NB4

VQ MK BC NB4sh
VQ MK BC NB8

VQ MK BC NB8sh
VQ MK BC NB16

VQ MK BC NB16sh
VQ MK BC NB32

VQ MK BC NB32sh
VQ MK BC SB

VQ MK Lq NB1
VQ MK Lq NB2

VQ MK Lq NB2sh
VQ MK Lq NB4

VQ MK Lq NB4sh
VQ MK Lq NB8

VQ MK Lq NB8sh
VQ MK Lq NB16

VQ MK Lq NB16sh
VQ MK Lq NB32

VQ MK Lq NB32sh
VQ MK Lq SB

VQ SK BC NB1
VQ SK BC NB2

VQ SK BC NB2sh
VQ SK BC NB4

VQ SK BC NB4sh
VQ SK BC NB8

VQ SK BC NB8sh
VQ SK BC NB16

VQ SK BC NB16sh
VQ SK BC NB32

VQ SK BC NB32sh
VQ SK BC SB

VQ SK Lq NB1
VQ SK Lq NB2

VQ SK Lq NB2sh
VQ SK Lq NB4

VQ SK Lq NB4sh
VQ SK Lq NB8

VQ SK Lq NB8sh
VQ SK Lq NB16

VQ SK Lq NB16sh
VQ SK Lq NB32

VQ SK Lq NB32sh
VQ SK Lq SB

EQ MK BC NB1
EQ MK BC NB2

EQ MK BC NB2sh
EQ MK BC NB4

EQ MK BC NB4sh
EQ MK BC NB8

EQ MK BC NB8sh
EQ MK BC NB16

EQ MK BC NB16sh
EQ MK BC NB32

EQ MK BC NB32sh
EQ MK BC SB

EQ MK Lq NB1
EQ MK Lq NB2

EQ MK Lq NB2sh
EQ MK Lq NB4

EQ MK Lq NB4sh
EQ MK Lq NB8

EQ MK Lq NB8sh
EQ MK Lq NB16

EQ MK Lq NB16sh
EQ MK Lq NB32

EQ MK Lq NB32sh
EQ MK Lq SB

EQ SK BC NB1
EQ SK BC NB2

EQ SK BC NB2sh
EQ SK BC NB4

EQ SK BC NB4sh
EQ SK BC NB8

EQ SK BC NB8sh
EQ SK BC NB16

EQ SK BC NB16sh
EQ SK BC NB32

EQ SK BC NB32sh
EQ SK BC SB

EQ SK Lq NB1
EQ SK Lq NB2

EQ SK Lq NB2sh
EQ SK Lq NB4

EQ SK Lq NB4sh
EQ SK Lq NB8

EQ SK Lq NB8sh
EQ SK Lq NB16

EQ SK Lq NB16sh
EQ SK Lq NB32

EQ SK Lq NB32sh
EQ SK Lq SB

TQ MK BC NB1
TQ MK BC NB2

TQ MK BC NB2sh
TQ MK BC NB4

TQ MK BC NB4sh
TQ MK BC NB8

TQ MK BC NB8sh
TQ MK BC NB16

TQ MK BC NB16sh
TQ MK BC NB32

TQ MK BC NB32sh
TQ MK BC SB

TQ MK Lq NB1
TQ MK Lq NB2

TQ MK Lq NB2sh
TQ MK Lq NB4

TQ MK Lq NB4sh
TQ MK Lq NB8

TQ MK Lq NB8sh
TQ MK Lq NB16

TQ MK Lq NB16sh
TQ MK Lq NB32

TQ MK Lq NB32sh
TQ MK Lq SB

TQ SK BC NB1
TQ SK BC NB2

TQ SK BC NB2sh
TQ SK BC NB4

TQ SK BC NB4sh
TQ SK BC NB8

TQ SK BC NB8sh
TQ SK BC NB16

TQ SK BC NB16sh
TQ SK BC NB32

TQ SK BC NB32sh
TQ SK BC SB

TQ SK Lq NB1
TQ SK Lq NB2

TQ SK Lq NB2sh
TQ SK Lq NB4

TQ SK Lq NB4sh
TQ SK Lq NB8

TQ SK Lq NB8sh
TQ SK Lq NB16

TQ SK Lq NB16sh
TQ SK Lq NB32

TQ SK Lq NB32sh
TQ SK Lq SB

Co
nf

ig
ur

at
io

n

VQ: vertex queue MK: multiple kernel calls NB<size>[shuffle]: node-based
EQ: edge queue SK: single kernel call SB: scan-based
TQ: two-phase queue BC: ballot cooperation Lq: local queue

fastestslowest

Normalized execution time per graph

1.00.80.60.40.20.0

fig. 7.6: Configuration heatmap. The colour gradations represent the normalized
performance of the Helix configurations

We ran the analysis of Helix on the whole graph dataset to understand the corre-
lation between graph characteristics and BFS configurations.

7.4 Experimental Results 97

Figure 7.6 shows the results, which are represented through a heatmap. Each
row represents a Helix configuration (i.e., a combination of the BFS features of
Fig. 7.1). For the sake of clarity, the figure reports the subset of the most relevant
(i.e., in terms of performance incisiveness) configuration features (i.e., load bal-
ancing, frontier queue type, synchronization, and frontier updating). Each column
represents a graph, whose most significant characteristics (average degree and Gini
coefficient) are reported in brackets for the following analysis. The performance
(i.e., execution time) of each configuration for each graph has been normalized
over the Helix best performance and represented by colour gradations (the darker
the better).

The results show that, for load balancing, the node-based mapping technique
is well-suited to graphs with regular degree distribution. This is due to the fact
that the direct mapping of threads to work items implemented through node-
based mapping, differently from the other balancing techniques, does not uselessly
introduce overhead of complex mapping computations.

Node-based mapping with warp shuffle provide the best throughput when such
instructions involve at least half warp threads (16) and if there exists enough
parallelism (double thread group size) during the exploration of vertex neighbours

The scan-based load balancing is well-suited to irregular graphs thanks to the
thread cooperation implemented by such technique in shared memory.

We found that both binary search and device-wide binary search are never bet-
ter than the other balancing approaches for the BFS visit of any graph. This is due
to the significant overhead they introduce in the workload partition procedures. In
particular, even though they are the most efficient techniques from the balancing
point of view for very irregular graphs and very popular in literature [31,42,83,275],
we found that the best BFS configurations for such graphs do not include them.
It is worth noting that the binary search load balancing implemented in Helix has
speedups from 1.1x (in regular graphs) to 9.7x (in irregular graphs) with respect to
the same technique at the state of the art that does not rely on edge reorganization
in shared memory and on the unordered prefix-sum. The optimized device-wide
binary search shows speedups from 1.9x to 4.28x compared to the Gunrock [275]
implementation.

Warp-level and block-level gathering provide performance benefits when ap-
plied to graphs in which the maximum degree is greater than their corresponding
work sizes (warp and block size, respectively). Below these thresholds, the effi-
ciency of the techniques are affected by thread inactivity by construction. The
supplementary queues provide the best efficiency in graphs with maximum degree
greater than half of the available device threads, which corresponds to a threshold
of 16,384 on the GeForce 980 GTX. Such a threshold is motived by the fact that
the device is well exploited when at least half threads are active.

We found that dynamic parallelism never performs better than the supplemen-
tary queues for any graph of the dataset. For this reason, it does not belong to the
best BFS configuration we identified for the analysed dataset.

The vertex queue is the most efficient solution to represent the frontiers thanks
to the low number of memory accesses. The edge queue well applies only when
the available parallelism is low and in case of irregular workload as it reduces
the thread inactivity. For this reason, Helix adopts the edge queue combined with

98 7 Breadth-First Search - Helix

node-based mapping 1 on graphs with low average degree and that present not
uniform distribution.

Differently to the approach proposed by Merrill et al. [190], the two-phase
queue does not provide the best performance. The two-phase queue can alleviate
the workload unbalancing combined with simple techniques but, on the other hand,
the high number of memory accesses strongly affect the performance. For these
reasons, the two-phase queue does not belong to the best BFS configuration.

The multiple kernel calls strategy provides the best performance in graphs with
average eccentricity less than 100. After such a value, the amount of overhead
generated by each single kernel invocation eludes all the advantages provided by
the strategy and makes the single kernel call a better alternative. Since the average
eccentricity is not known a priori, we consider average degree greater than 20 or
Gini coefficient greater than 0.6 as a good heuristic for identifying graphs with
average eccentricity less than 100.

The ballot cooperation strategy for frontier updating strongly relies on an ef-
ficient single-step warp-level procedure. For this reason, it provides the best per-
formance in graphs with average degree less than the warp size. The technique
requires more atomic operations than the local queue strategy, but the number
of such operations does not affect the execution time in low-sized workloads. The
local queue strategy performs less atomic operations but involves non-coalesced
memory accesses. We also found that the ballot cooperation works well only in
graphs with Gini coeff. greater than 0.9 as, in these cases, it allows preventing the
workload (average degree) to be distorted by the distribution of the edges. Indeed,
a Gini coeff. greater than 0.9 clearly indicates a strong power-law distribution in
which most vertices have low degree [151].

We also found that the choice of the duplicate removing technique can be asso-
ciated to the chosen load balancing technique. It reduces the redundant work in the
frontier exploration by introducing additional computation. Removing duplicates
during the neighbor lookup allows eliminating a high number of vertices, but the
amount of introduced overhead completely eludes the advantages of the technique.
For this reason, duplicate removing during the neighbour lookup does not belong
to any best BFS configuration. In contrast, duplicate removing after the frontier
loading provides more efficiency at the cost of a lower number of eliminated ver-
tices. In the same way, block-level removing is more effective than the warp-level
procedure, but it requires synchronization barriers if used in conjunction with
load balancing techniques that rely on shared memory. For this reason, the best
combination is removing after frontier loading at warp-level with scan load bal-
ancing, while removing after frontier loading at block-level with node-based load
balancing. Duplicate removing through atomicCAS operations completely elimi-
nates duplicate vertices at the cost of a considerable overhead. It never performs
better than the other duplicate removing strategies for any graph of the dataset.

The choice of the bitmask application depends on how the input graph has been
built. We observed a 70%-99% usage of the whole bitmask in synthetic graphs af-
ter the whole graph exploration. This is due to the fact that such graph vertices
are randomly enumerated and, as a consequence, neighbor vertices have not close
identifiers. This prevents concurrent accesses of threads to the same memory lo-
cations during the frontier exploration. In contrast, real-world graphs, for which

7.4 Experimental Results 99

Feature Rules

Load balancing

- Node-based 1 : avg. degree ă 5 and
Gini coeff. ě 0.2 (edge queue),

- Node-based 4 : avg. degree ă 5 and Gini coeff. ă 0.2,
- Node-based 16 (with shuffle): avg. degree ą Warp size and

Gini coeff. ă 0.3,
- Node-based 32 (with shuffle): avg. degree ą Warp size * 2

and Gini coeff. ă 0.3,
- Scan-based (warp-level): otherwise

Load balancing
support

- Warp-based gathering : max. degree ą Warp size,
- Block-based gathering : max. degree ą Block size,
- Supplementary queues: max. degree ą Half device threads

Frontier queue type
- edge queue: avg. degree ă 5 and Gini coeff. ě 0.2

(Node-based 1),
- vertex queue: otherwise

Synchronization
between BFS

iterations

- Multiple kernel calls.: eccentricity ă 100
(avg. deg. ą 20 or Gini coeff. ě 0.6, heuristic)

- Single kernel call : otherwise

Frontier updating
- Local queue: avg. degree ą Warp size and Gini coeff. ă 0.9
- Ballot cooperation: otherwise

Duplicate removing
- After frontier load at warp-level with Scan-based
- After frontier load at block-level with Node-based

Bitmask - Synthetic graphs and DNA electrophoresis

Table 7.2: Configuration table.

the vertex enumeration is implicitly done during the graph generation, present
neighbor vertices with close identifiers. We measured a 20%-30% usage of the
whole bitmask and a high number of conflicts during the frontier exploration in
such non-randomly enumerated graphs. We claim that the bitmask technique is
not suited to all graphs in which the vertex labeling follows the topological struc-
ture of the graph. In contrast, the bitmask provides positive speedups in synthetic
graphs generated with random vertex labeling

Finally, from the large set of obtained data, we derived a configuration table,
with the aim of matching the best (near-optimal) Helix configurations and the
characteristics of the graphs to be visited. To do that, we applied a decision tree
for multiclass classification [5]. Table 7.2 summarizes the result of such a regression,
which reports, for each BFS feature, the graph characteristics considered to select
the best implementation strategies. It is worth noting that average degree, Gini
coefficient, and maximum degree are the necessary and sufficient information to
correctly customize the BFS for every analysed graphs.

Many rules are expressed in function of GPU device parameters (warp size,
block size, etc.) or according to architecture-independent graph properties, such
as the Gini coefficient. A fine-tuning of Helix by considering also the characteris-
tics of the specific GPU device is still possible, even though, by considering the
preliminary results with different GPU architectures, it plays a minor role. It is
part of current and future work.

100 7 Breadth-First Search - Helix

0

2.000

4.000

6.000

8.000

10.000

12.000

14.000

Th
ro

u
gh

p
u

t
(M

TE
P

S)

HELIX BFS-4K B40C Gunrock CPU

1.5x

1.6x

18.5x

3.8x

2.2x

1.2x

9.9x

25.6x

2.6x

1.3x

11.9x

33.4x

2.2x

1.6x

10.8x

43.5x

3.4x

1.3x

4.2x

38.5x

2.6x

1.5x

5.9x

39.3x

2.1x

1.8x

3.8x

37.5x

4.3x

2.8x

2.7x

47.0x

1.2x

3.5x

2.9x

24.0x

4.7x

8.5x

2.8x

21.8x

6.7x

5.9x

2.7x

38.0x

3.3x

1.7x

2.2x

45.2x

1.7x

2.9x

1.8x

34.2x

2.7x

2.4x

2.5x

57.9x

3.1x

5.0x

2.5x

43.6x

3.5x

3.5x

3.8x

94.1x

1.8x

4.3x

2.3x

40.4x

4.8x

3.5x

2.6x

50.4x

1.6x

2.5x

3.7x

15.6x

SPEEDUP OVER STATE-OF-THE-ART SOLUTIONS

vs. BFS-4K

vs. Gunrock

vs. B40C

vs. CPU

2.6x

2.5x

4.0x

31.6x

GEOMETRIC MEAN

fig. 7.7: Performance comparison of Helix with the most representative
implementations at the state of the art.

7.4.3 Performance evaluation

Figure 7.7 shows the performance comparison of Helix (which has been set with
the configurations reported in Table 7.2) with the best and most representative
GPU implementations at the state of the art (B40C [190], Gunrock [275], BFS-
4K [60]) and with a sequential CPU implementation for completeness. The figure
reports the throughput (in MTEPS) and the speedup of Helix over the different
solutions.

The results show that Helix is significantly faster than all the other implemen-
tations in all graphs. We observed that, in general, the throughput of the GPU
implementations is strongly related to the average degree and the graph size.

All the GPU solutions provide lower throughput in the left-most graphs as
these graphs do not allow for much parallelism during exploration. Despite the
low average degree and the high eccentricity, Helix provides speedups from 3.8x
to 43.5x with regard to the CPU implementation for the first four graphs of the
dataset. This is due to the combination of the global synchronization strategy with
an efficient load balancing technique. Helix has speedups from 1.2x to 1.6x w.r.t.
B40C for these graphs since this last implements an edge frontier queue and a
slightly less efficient global synchronization. Helix has speedups up to 18.5x w.r.t.
Gunrock as this last supports only host-device synchronization. It is worth to note
that the lack of global synchronization in Gunrock translates into an execution
time higher than the sequential CPU implementation for the asia osm graph.

The results show a significant throughput improvement of Helix compared to
the other GPU solutions in graphs with a very high maximum degree (circuit5M,
FullChip, kron g500-logn21, soc-LiveJournal1, soc-pokec-relationships). This is due
to the efficient block-level gathering and to the supplementary queue technique.
Indeed, B40C provides a technique to process such vertices only at block-level,
BFS-4K applies the dynamic parallelism which has been proved to be less efficient
than the supplementary queues, while the device-wide binary search technique

7.6 Appendix 101

implemented in Gunrock suffers from high overhead despite the perfect load bal-
ancing.

Finally, the 8-bit bitmask implemented in Helix significantly improves the per-
formance for synthetic graphs (kron g500logn21 and er-fact1.5-scale23), which
present full-random labeling.

7.5 Conclusions

This Section presented Helix, a fully configurable BFS for GPUs. Helix, thanks to
a flexible and expressive programming model, allows selecting the most efficient
combination of features and their implementation strategy for a BFS visit (i.e.,
frontier handling, load balancing, duplicate removing, and other optimized sup-
porting techniques). The Section presented the analysis conducted on a large set
of representative real-world and synthetic graphs to understand the correlation
between graph characteristics and BFS configurations. The experimental results
showed that Helix provides high-performance and customized BFSs with speedups
ranging from 1.2x to 18.5x with regard to the best parallel BFS solutions for GPUs
at the state of the art, with peak throughput of 14,000 MTEPS on a single GPU
device.

7.6 Appendix

This appendix describes how to download (from online repository), compile, and
run Helix, the performance-oriented framework for graph traversal. It also describes
how to download the datasets and to reproduce the results obtained in the article
“Helix: A Fully Configurable Breadth-first Search for GPUs”.

Description

Check-list (SW meta information)

• Algorithm: Breadth-first Search, Graph Traversal.
• Program: CUDA and C++11 code.
• Compilation: NVIDIA nvcc (v7.5 or higher) CUDA compiler, GNU g++/gcc

(v4.8.4 or higher) or LLVM clang++ (v3.6.2 or higher) host compiler, KitWare
CMake (v3.5 or higher), and GNU make. All the tool versions listed above have
been successfully tested.

• Binary: CUDA executable.
• Data set: Publicly available matrix market files (.mtx); SNAP dataset (.txt); DI-

MACS 9th dataset (.gr), DIMACS 10th dataset (.graph), Koblenz Network Collection
(.out), Network Data Repository (.edges).

• Run-time environment: Ubuntu 14.04 64-bit O.S. with CUDA toolkit/driver v7.5.
• Hardware: Any CUDA GPU device with compute capability 3.5 or higher (i.e.,

with dynamic parallelism support). Tested on NVIDIA GeForce 980 GTX.
• Execution: Command line
• Output: Graph dataset statistics, elapsed running time, MTEPS throughput.
• Experiment workflow: download the project; download the datasets (see Section

7.6); run the tests; observe the results.
• Experiment customization: run-time parameters.
• Publicly available?: Yes.

102 7 Breadth-First Search - Helix

How the Software can be obtained

The source code of Helix is available here:

https://profs.scienze.univr.it/bombieri/Helix

Hardware dependencies

For adequate reproducibility, we suggest an NVIDIA GPU device with compute
capability 3.5 or higher (Kepler GPU architecture with support for dynamic par-
allelism). To fully exploit all features of Helix, more recent GPU architectures are
necessary (Maxwell, Pascal, or more recent).

Software dependencies

The GPU graph traversal evaluation requires the CUDA GPU driver, nvcc CUDA
compiler (v7.5 required, v8.0 or higher recommended), and KitWare CMake. No
other additional libraries are required. The software has been tested on Ubuntu
14.04 64-bit O.S., but it has been implemented to run correctly under other Linux
distributions.

Datasets

Helix supports six different input formats, for which several datasets are publicly
available. Many of them, which are listed in the following, have been used for the
experimental results reported in the Section:

1. matrix market (.mtx) :
www.cise.ufl.edu/research/sparse/matrices/

2. SNAP graph (.txt) :
http://snap.stanford.edu/

3. DIMACS 9th (.gr) :
http://www.dis.uniroma1.it/challenge9/

4. DIMACS 10th (Metis format)(.graph) :
http://www.cc.gatech.edu/dimacs10/

5. Koblenz (.out) :
http://konect.uni-koblenz.de/

6. Network Data Repository (.edges)

http://networkrepository.com/index.php

Installation

After cloning the repository, the following steps are required:

$ cd helix/build

$ cmake ..

$ make

Note: the code will be automatically configured for the first GPU device founded
in the system, with no need to specify the compute capability.

www.cise.ufl.edu/research/sparse/matrices/
http://snap.stanford.edu/
http://www.dis.uniroma1.it/challenge9/
http://www.cc.gatech.edu/dimacs10/
http://konect.uni-koblenz.de/
http://networkrepository.com/index.php

7.6 Appendix 103

Experiment workflow

To run the executable on the selected dataset:

$ Helix ăinput graphą ăoptionsą

Note: use the --help commandline option to see the extended command line
usage, including all options to configure the Helix framework (e.g., load balancing,
bitmask, duplicate removing, etc.)

Evaluation and expected result

The expected results include graph statistics (number of vertices, number of
edges, average degree, etc.), elapsed running time for the graph traversal, MTEPS
throughput.

Experiment customization

It is possible to customize the graph traversal framework (e.g., load balancing,
bitmask, duplicate removing, etc.) through run-time command line options or at
compile-time by following the instructions included in the CMakeList.txt file in
the root directory.

Notes

For up-to-date information, please visit the Helix project’s page:
https://profs.scienze.univr.it/bombieri/Helix.

8

Single-Source Shortest Path - H-BF

Finding the shortest paths from a single source to all other vertices is a com-
mon problem in graph analysis. The Bellman-Ford’s algorithm is the solution that
solves such a single-source shortest path (SSSP) problem and better applies to be
parallelized for many-core architectures. Nevertheless, the high degree of paral-
lelism is guaranteed at the cost of low work efficiency, which, compared to similar
algorithms in literature (e.g., Dijkstra’s) involves much more redundant work and
a consequent waste of power consumption. This Section presents a parallel imple-
mentation of the Bellman-Ford algorithm that exploits the architectural character-
istics of recent GPU architectures (i.e., NVIDIA Kepler, Maxwell) to improve both
performance and work efficiency. The Section presents different optimizations to
the implementation, which are oriented both to the algorithm and to the architec-
ture. The experimental results show that the proposed implementation provides
an average speedup of 5x higher than the existing most efficient parallel imple-
mentations for SSSP, that it works on graphs where those implementations cannot
work or are inefficient (e.g., graphs with negative weight edges, sparse graphs), and
that it sensibly reduces the redundant work caused by the parallelization process.

8.1 Introduction

Given a weighted graph G “ pV,Eq, where V is the set of vertices and E Ď pV ˆV q
is the set of edges, the single-source shortest paths (SSSP) problem consists of
finding the shortest paths from a single source vertex to all other vertices [74].
Such a well-known and long-studied problem arises in many different domains,
such as, road networks, routing protocols, artificial intelligence, social networks,
data mining, and VLSI chip layout.

The de-facto reference approaches to SSSP are the Dijkstra’s [91] and Bellman-
Ford’s [38,102] algorithms. The Dijkstra’s algorithm, by utilizing a priority queue
where one vertex is processed at a time, is the most efficient, with a computational
complexity almost linear to the number of vertices (Op|V | log |V | ` |E|qq.

Nevertheless, in several application domains, where the modelled data maps
to very large graphs involving millions of vertices, any Dijkstra’s sequential im-
plementation becomes impractical. In addition, since the algorithm requires many

106 8 Single-Source Shortest Path - H-BF

iterations and each iteration is based on the ordering of previously computed re-
sults, it is poorly suited for parallelization. Indeed, the parallel solutions proposed
in literature for graphics processing units (GPUs) [180,215] are asymptotically less
efficient than the fastest CPU implementations.

On the other hand, the Bellman-Ford’s algorithm relies on an iterative process
over all edge connections, which updates the vertices continuously until final dis-
tances converge. Even though it is less efficient than Dijkstra’s (Op|V ||E|q), it is
well suited to parallelization [56].

In the context of parallel implementations for GPUs, where the energy and
power consumption is becoming a constraint in addition to performance [128],
an ideal solution to SSSP would provide both the performance of the Bellman-
Ford’s and the work efficiency of the Dijkstra’s algorithms. Some work has been
recently done to analyse the spectrum between massive parallelism and efficiency,
and different parallel solutions for GPUs have been proposed to implement parallel-
friendly and work-efficient methods to solve SSSP [82]. Experimental results con-
firmed that these trade-off methods provide a fair speedup by doing much less
work than traditional Bellman-Ford methods while adding only a modest amount
of extra work over serial methods.

On the other hand, all these solutions as well as Dijkstra’s implementations, do
not work in graphs with negative weights [74]. Indeed, the Bellman-Ford algorithm
is the only solution that can be also applied in application domains where the
modeled data maps on graphs with negative weights, such as, power allocation in
wireless sensor networks [229,291], systems biology [146], and regenerative braking
energy for railway vehicles [168].

In addition, the most recent GPU architectures (e.g., NVIDIA Kepler GK110
[13] and Maxwell [204]), not only offer much higher processing power than the
prior GPU generations, but, also, they provide new programming capability that
allows improving the efficiency of the parallel implementations.

This Section presents H-BF, a high-performance implementation of the
Bellman-Ford algorithm for GPUs, which exploits the more advanced features
of GPU architectures to improve the execution speedup with respect to any im-
plementation at the state of the art for solving the SSSP problem. In particular,
H-BF implements a parallel version of the Bellman-Ford algorithm based on fron-
tiers [74] and active vertices [237] with the aim of optimizing, besides the perfor-
mance, the algorithm work efficiency. The Section presents different optimizations
implemented in H-BF, which are oriented both to the algorithm and to the archi-
tecture to underline the synergy of parallelism in the algorithm, programming and
architecture.

Experimental results have been conducted on graphs of different sizes and
characteristics to compare, firstly in terms of performance and, then, in terms
of work efficiency, the H-BF implementation (which is available for download in
http: // profs. sci. univr. it/ ~ bombieri/ H-BF/ index. html) with the most
efficient sequential and parallel implementations at the state of the art of both
Dijkstra’s and Bellman-Ford’s algorithms.

The work is organized as follows. Section 8.2 summarizes the Bellman-Ford’s
algorithm.Sections 8.3 and 8.4 present the optimizations of the proposed approach

http://profs.sci.univr.it/~bombieri/H-BF/index.html

8.3 The frontier-based algorithm and its optimizations 107

oriented to the algorithm and GPU architecture, respectively. Section 8.5 reports
the experimental results, while Section 8.6 is devoted to concluding remarks.

8.2 The Bellman-Ford’s algorithm

Given a graph GpV,Eq (directed or undirected), a source vertex s and a weight
function w : E Ñ R, the Bellman-Ford algorithm visits G and finds the shortest
path to reach every vertex of V from source s. The pseudocode of the original
sequential algorithm is the following:

Algorithm 6 Bellman-Ford’s algorithm

for all vertices u P V pGq do
dpuq “ 8

d(s) = 0
while edges pu, vq P EpGq do

Relax pu, v, wq
end

where the Relax procedure of an edge pu, vq with weight w verifies whether,
starting from u, it is possible to improve the approximate (tentative) distance to v
(which we call dpvq) found in any previous algorithm iteration. The relax procedure
can be summarized as follows:

Algorithm 7 Relax Procedure

Relax(u, v, w)

if dpuq ` w ă dpvq then
dpvq “ dpuq ` w

The algorithm, whose asymptotic time complexity is Op|V ||E|q, updates the
distance value of each vertex continuously until final distances converge.

8.3 The frontier-based algorithm and its optimizations

The complexity of a SSSP algorithm is strictly related to the number of relax
operations. The Bellman-Ford algorithm performs a number of relax operations
higher than the Dijkstra or ∆-stepping algorithms while, on the other hand, it has
a simple and lightweight management of the data structures. The relax operation
is the most expensive in the Bellman-Ford algorithm and, in particular, in a par-
allel implementation, each relax involves an atomic instruction for handling race
conditions, which takes much more time than a common memory access.

To optimize the number of relax operations, H-BF implements the graph visit-
ing by adopting the idea proposed in the sequential queue-based Bellman-Ford of

108 8 Single-Source Shortest Path - H-BF

Sedgewick et al. [237]. Such a sequential algorithm uses a FIFO data structure to
keep track of active vertices, that is, all and only vertices whose tentative distance
has been modified and, thus, that must be considered for the relax procedure at
the next iteration. If dpvq does not change during iteration i, there is no need
to relax any edge outgoing from v in iteration i ` 1. As a consequence, v is not
inserted in the queue to avoid useless computation.

Differently from Dijkstra’s, the queue-based Bellman-Ford’s algorithm does not
rely on a priority queue and the vertex processing can be performed in any order.
The parallel algorithm implemented in H-BF exploits the concept of frontier [74]
rather than FIFO queue to visit the vertices concurrently. Given a graph G and a
source vertex s, the parallel algorithm can be summarized as in Algorithm 8.

Algorithm 8 Frontier-based Bellman-Ford’s algorithm

for all vertices u P V pGq do
dpuq “ 8

dpsq “ 0
F1 Ð tsu
F2 ÐH

while F1 ‰ H do
Parallel for vertices u P F1 do

uÐ dequeue(F1)
Parallel for vertices v P adj rus do

if dpuq ` w ă dpvq then
dpvq “ dpuq ` w
enqueuepF2, vq

end
end
swappF1, F2q

end

Considering two frontier data structures, F1 and F2, at each iteration i of the
while loop, the algorithm concurrently extracts the vertices from F1 and inserts all
the active neighbors in F2 for the next iteration step. Each iteration step concludes
by swapping the F2 contents (which will be the actual frontier at the next iteration
step) in F1. Fig. 8.1 shows an example of the basic algorithm iterations starting
from vertex ”0”. For the sake of clarity, the figure only reports the actual frontier
(F1 of Algorithm 8, reported as F in Fig. 8.1) at each iteration step, and D as
the corresponding data structure containing the tentative distances. The example
shows, for each algorithm iteration, the dequeue of each vertex form the frontier,
the corresponding relax operations, i.e., the distance updating for each vertex
(if necessary), and the vertex enqueues in the new frontier. In the example, the
algorithm converges in a total of 23 relax operations over six iterations.

The parallel frontier-based Bellman-Ford’s algorithm (Algorithm 8) preserves
the semantics of the original Bellman-Ford’s algorithm (Algorithm 6). The only
difference between the sequential and parallel algorithms is that the first adopts

8.3 The frontier-based algorithm and its optimizations 109

fig. 8.1: Example of the basic algorithm iterations starting from vertex ”0”

a queue structure in which all nodes are stored and processed sequentially. The
second adopts a frontier structure (as proposed by Cormen et al. [74]), in which all
and only active nodes are processed in parallel. The parallel processing of active
nodes does preserve the semantics of the algorithm. This is due to the fact that (i)
each node processing is independent from the others, and (ii) including non-active
nodes in the processing phase of any propagation step does not change the result
(next frontier), as proved by Sedgewick et al. [237] and by Pape [217].

Frontier-based data structures have been similarly applied in literature for im-
plementing parallel breadth-first search (BFS) visits [59,107]. The main difference
from BFS is the number of times a vertex can be inserted in the queue. In BFS, a
vertex can be inserted in such a queue only once, while, in the proposed Bellman-
Ford implementation, a vertex can be inserted Op|E|q times in the worst case.

H-BF implements three main optimizations to improve both the performance
and the work efficiency:

1. The edge classification. During each frontier propagation step, the edge outgo-
ing the vertices of the frontier are classified and processed differently to simplify
as much as possible the relax operations, as explained in Section 8.3.1.

2. The duplicate removal. It allows avoiding redundancy when processing dupli-
cate vertices in the frontier propagation steps, as explained in Section 8.3.2.

8.3.1 The edge classification optimization

During the graph visit, the number of relax operations can be significantly reduced
by observing the properties of the edges outgoing the active vertices in the frontier.
In particular, given a vertex u and an outgoing edge pu, adjrusq, we identify four
different classes to which the edge may belong. Depending on the class, the edge
may involve operations lighter than the standard relax, with a consequent impact
on performance:

110 8 Single-Source Shortest Path - H-BF

Algorithm 9 Edge Classification Optimization

Relax Opt(u, v, w)

if u “ v or out´degreepvq “ 0 then
skip

else if u “ s or in´degreepvq “ 1 then
dpvq “ dpuq ` w

else
AtomicMinpdpvq, dpuq ` wq

end

1. Self-loop class (pu, adjrusq edges where u “ adjrus). Since a self-loop cannot
change the tentative distance of u, the relax operation can be avoided (see,
for example, edges p2, 2q and p4, 4q in Figure 8.2). The efficiency improvement
provided by the self-loop identification is proportional to the number of self-
loops in the graph. It best applies to graphs where each vertex includes a
self-loop (e.g., msdoor and circuit in the experimental results).

2. Source edge class (pu, adjrusq edges where u “ s). The relax operation for the
source vertex is substituted with a direct update of the tentative distance for
each source neighbour (v P adjrss) since, certainly, they have not been set
previously. This optimization best applies to graphs with small diameter and,
even more, when the source in such graphs is a high-degree vertex.

3. In-degree edge class (pu, adjrusq edges where in-degree of adjrus is equal to
1). The vertices with in-degree equal to one (e.g., p0, 2q, p2, 1q, p4, 5q, p7, 6q,
and p3, 7q in Figure 8.2) are never visited concurrently and, thus, the atomic
operations are avoided and replaced with a direct distance update.

4. Out-degree edge class (pu, adjrusq edges where out-degree of adjrus is equal to
0). The vertices with out-degree equal to zero in directed graphs (e.g., 1, 5,
and 8 in Figure 8.2) and equal to one in undirected graphs are ignored during
the algorithm iterations (the relax operation and the enqueue into the next
frontier are skipped). The correct distance is assigned at the end of the al-
gorithm iterations without using atomic instructions. H-BF implements this
optimization through an extra kernel, which is invoked after the main algo-
rithm procedure. Such a kernel involves a negligible amount of computational
work with respect to the (useless) relax operations performed for these edges
in the standard approach.

Algorithm 9 summarizes the main important steps of the edge classification,
while Figure 8.2 shows such an optimization applied to the example of Figure 8.1,
by underlining how it reduces the number of relax operations of about five times
with respect to the standard approach. The example in Figure 8.2 converges in a
total of 5 relax operations over five iterations.

The edge classification optimization has been implemented, in H-BF, through
a marking phase, in which each edge is classified by two bits. The marking bits are
added to the bits encoding the edge. In particular, in the adopted adjacency list
data structure, each edge is encoded with the id of the target vertex. In common

8.3 The frontier-based algorithm and its optimizations 111

fig. 8.2: Example of Edge-Classification optimization

GPU architectures, where the global DRAM memory is on the order of 4GBytes,
such an id may require at most 30 bits, since, considering 4Bytes-sized ids, 230 is
the maximum number of vertices that we can handle1. The two most significant
bits in a 32 integer id of a vertex, which are, thus, always available, are exploited
for such a classification. Reading those bits to identify the edge class does not
involve overhead since it is included in the memory access for reading the vertex
id.

8.3.2 Duplicate removal with Kepler 64-bit atomic instructions

In the execution of a parallel Bellman-Ford implementation, duplicate vertices are
generated when, during an algorithm iteration, more threads concurrently access
the same vertex for the relax operation. This causes a vertex to be redundantly
considered for relax and enqueued more times in the next frontier. Figure 8.3
shows an example. Initially, the frontier queue consists of vertices 1, 2, and 3. In
the first iteration, the algorithm dequeues the three vertices and performs, in par-
allel, the relax operation over edges p1, 4q, p2, 4q, and p3, 4q. The memory accesses
for updating the tentative distance of 4 are serialized through atomic operations to
handle race conditions, and the next frontier is generated by en-queuing duplicates
of vertex 4 (see iteration # 1 in the example). In turn, the duplicates are redun-
dantly evaluated for the successive iteration and relax operations. In the example,
the duplicate problem of the parallel implementation, by considering the atomic
operation order shown in the figure, causes 9 relax operations instead of the three
of any serial implementation.

1 Actually, the available global memory for storing the vertex ids is much less since the
implementation requires additional data structures for storing frontiers, edges, weights,
vertex offsets, and vertex weights.

112 8 Single-Source Shortest Path - H-BF

1

1

23

1

Atomic relax ops order

1 2 3

4

5 6

1 0

2 0

3 0

F D

1

3

2

6

Iter #

Relax ops:

4 3

4 2

4 1

F D

5 4

6 4

5

6

5

6

F D

fig. 8.3: The duplicate problem in the frontier propagation.

In literature, a technique to detect and remove duplicates has been proposed
by Davidson et al [107]. Such a technique allows eliminating duplicates by inter-
leaving the main computation kernel with two additional kernels. The first aims
at marking every frontier vertex through a lookup table in global memory, while
the second aims at accessing the look up table to check whether the vertex index
exists before proceeding with the relax phase. The non-duplicate vertices are com-
pacted before carrying on with a new algorithm iteration. This strategy involves
four memory accesses (two of them not coalesced) for each vertex in the frontier,
and it introduces overhead for the compacting routine and for synchronizing with
the host.

H-BF implements a different technique to completely avoid duplicate vertices
during the graph visit by adding information (extra to the distance value) to each
vertex. The distance (D) of each vertex is coupled with the number of the current
algorithm iteration. The coupled information (vertexInfo) is stored into a 64-bit
int2 CUDA datatype, where D resides in the 32 most significant bits while the
iteration number in the 32 least significant bits (see Figure 8.4). Access to such a
variable is implemented through single-transaction 64-bit atomic operations, which
are available for the GPU architectures with compute capability 3.5 onwards (i.e.,
Kepler, Maxwell GPUs).

Iteration#

vertexInfo (int2 variable)

if (d[u] + w < d[v]) then {

d[v] = d[u] + w

if (IterationNr[v] != currentIteration) then

ENQUEUE(v)

}

oldInfo = atomicMin(&vertexInfo[v], vertexInfo[u])

if (oldInfo.iteration != currentIteration) then

ENQUEUE(v)

Distance (D)(a)

(b)

(c)

fig. 8.4: Use of 64-bit atomic instructions in the implementation of duplicate removal.

Algorithm 10 represents the high-level implementation of the technique, which
highlights how each vertex enqueue is controlled by a condition on the current
algorithm iteration. If the iteration number stored in the variable is equal to the
actual iteration, the vertex is already in the queue, otherwise it is going to be
visited, and thus inserted for the first time in the frontier. Algorithm 11 repre-
sents the low-level implementation of such a control, by showing how the atomic
primitives provided by Kepler have been applied.

8.4 Architecture-oriented Optimizations 113

Algorithm 10 Atomic64 Relax Pseudocode

Relax Atom(u, v, w)

if dpuq ` w ă dpvq then
dpvq “ dpuq ` w
if IterationNumberrvs ‰ currentIterationNumber then

Enqueuepvq

Algorithm 11 Atomic64 Relax Implementation

Relax Atom(u, v, w)

u info = Merge(dpuq, currentIteration)
old info = AtomicMin(&vertexInfo[v], u info)
if (old info.iteration ‰ currentIteration)

Enqueuepvq

8.4 Architecture-oriented Optimizations

Besides optimizations that target work efficiency (i.e., edge classification and dupli-
cate removal), this Section presents different optimizations that aim at improving
the memory accesses bandwidth and the workload balancing.

8.4.1 Memory coalescing, cache modifiers, and texture memory

Coalesced memory access or memory coalescing refers to combining multiple mem-
ory accesses into a single transaction. When threads of the same warp concurrently
access to aligned addresses in global memory, they are coalesced by the device hard-
ware into a single transaction. In the NVIDIA Fermi, Kepler, and Maxwell archi-
tectures, the maximum coalescence in memory accesses is achieved when threads
of the same warp access 128 Bytes in an contiguous region. The coalescing con-
trol in GPUs is hardware-implemented and relies on the use of cache memory.
The memory coalescing is the key to reduce the overhead involved by the DRAM
memory latency, which, in GPU architectures, is amplified by the thousands of
threads accessing such a ”slow” memory.

Cache modifiers [203] are a feature provided by Kepler GPU architectures that
allows the L1 cache to be enabled or disabled at run time. This allows reducing the
miss rate of cache accesses by skipping the cache use for those data not frequently
used or too sparse in memory.

In H-BF, memory coalescing has been implemented and combined with cache
modifiers as follows. Considering each algorithm step (see Section 8.3):

1. The first step (dequeuepF q) aims at reading the frontier vertices, which are
stored in global memory in consecutive locations thanks to the use of adjacency
list data structures. H-BF forces the cache streaming policy to take advantage
of L1/L2 caches to perform coalesced memory accessed, thus avoiding cache

114 8 Single-Source Shortest Path - H-BF

pollution2. The same cache policy is used to load edge offsets of each vertex,
which are scattered and occur only one time. In this way, the caches are mainly
reserved to the other steps.

2. The threads read information of edges (v P adjrus), which, similarly to the
vertices, are stored in global memory in consecutive locations. Nevertheless,
since the edges are much more with respect to the vertices, overloading the
L1 cache may decrease the performance. H-BF disables the L1 cache for such
data while takes advantage of the L2 cache and read-only texture memory
(through the ldg() Kepler operators) for caching these accesses.

3. H-BF implements the relax phase through atomic instructions, which do not
allow exploiting memory coalescing or caching. However, in several cases, the
relax operations are replaced by direct updating of the vertex distance dpvq (see
class 3 in Section 8.3.1). Memory accesses for such an operation are inevitably
scattered and each distance reading occurs only once. H-BF directly accesses
to the global memory by skipping (and avoiding cache pollution) through low-
level PTX instructions [203].

4. The enqueuepF, vq operation performed by each thread consists of updating
the frontier data structure in global memory with each vertex v, which infor-
mation is stored in the thread register. H-BF handles such a massively parallel
memory writing by stepping into the SM shared memory to organize the data
before moving into the global memory. The data organization aims at ordering
the data values to enable memory coalescing. Figure 8.5 shows the main idea.
The shared memory is partitioned into slots, one per warp. Each thread writes
the vertices composing the own partial frontier into the shared memory. The
threads write in parallel and start from the shared memory address (offset)
computed through a prefix-sum procedure [179]. Then, all threads in a warp
collaborate to read from the warp slot in shared memory and to perform a coa-
lesced writing in the global memory. In Kepler architectures, the total memory
dedicated to registers in each SM exceeds the size of the shared memory. This
implies that a warp slot may be used more times for different transactions.
Considering, for example, a 48KBytes shared memory and 2048 threads per
SM, each slot is 768 Bytes sized (maximum 192 vertices per slot) and allows
maximum 6 coalesced transactions to be performed. Then, the slot is released
for a new set of data. In general, the thread registers are enough to store the
whole frontier. In those particular cases the frontier size exceeds the available
registers, the frontier updating in global memory is split in many iterations
(register filling, writing in shared memory of the partial frontier, coalesced
transaction in global memory, register filling, and so on).

8.4.2 Dynamic virtual warps

Virtual warp programming has been introduced in [125] to address the problem
of workload imbalance and thread divergence in GPU graph algorithms. Such a
thread scheduling strategy consists of organizing the GPU threads into groups

2 The L1 cache could be disabled or partially enabled by the compiler to be used for
other memory accesses like, for example, the edge reading.

8.4 Architecture-oriented Optimizations 115

fig. 8.5: Example of memory coalescing for the enqueue phase

fig. 8.6: The Virtual Warp concept

(i.e., virtual warps) smaller than a warp and whose size is statically tuned. The
idea is to assign smaller tasks to few threads (i.e., less than a warp size) to reduce
as much as possible the thread divergence. This helps increasing the speedup even
when the parallelism degree is low. For example, the graph algorithms exploit
the virtual warp strategy to allocate one virtual warp per vertex with the aim
of partitioning and equally assigning the work over the edges outgoing the vertex
to each thread (Figure 8.6 shows an example) and finds the best application in
low-degree graphs.

H-BF exploits the virtual warp technique to increase the thread coalescence
during the accesses to the adjacent lists and to reduce their divergence in the
frontier propagation steps. In this context, the main limitation of such a technique
occurs when the virtual warp size does not properly fit the vertex degree, thus
leading to unused threads. In case of vertices with very different degrees over the
propagation steps (e.g., power-law graphs), the size choice may be appropriated
for some vertices only. Thus, differently from [125], H-BF implements a dynamic
virtual warp, whereby the warp size is calibrated at each frontier propagation step
i, as follows:

WarpSizei “ nearest pow2

ˆ

#ResThreads

|Fi|

˙

P r4, 32s

where #ResThreads is the maximum number of resident threads in the GPU device
and nearest pow2 is the lower nearest power of two that rounds the division. |Fi|

is the size of the actual frontier.
The virtual warp size may range between 1 and the maximum size of a warp

(i.e., 32 for NVIDIA GPUs). Nevertheless, we heuristically found that sizes smaller

116 8 Single-Source Shortest Path - H-BF

than 4 threads per warp lead to a decrease of performance due to the excessive
non-coalescence (close to a mere serialization) of threads. In addition, the tech-
nique proposed in [125] suffers from two problems. First, it overloads the the warp
scheduler when the virtual warp size is small and the number of virtual warps is
large. Then, it provides workload balancing at warp-level while while, considering
that the workload assigned to each virtual warp may be different, it does not pro-
vide workload balancing at block level. Indeed, a heavier virtual warp may lead to
the situation in which lighter warps of the same block terminate (and thus some
SM cores become ready for new warps) but any new block allocation is prevented
until the end of all warps.

H-BF overcomes such a problem by assigning more than one vertex per virtual
warp. The warp scheduler overhead is minimized since there are less thread blocks
in the kernel grid and the thread local queues are filled with more items that, in
average, are more uniformly distributed. This provides better load balancing and
coalesced global memory accesses. We heuristically fixed such a workload to 32
vertices per warp. We found that such a value leads to an increase of performance
for all the analysed graphs. Higher values lead to a slight performance improvement
only in graph with very high average degree.

8.4.3 Dynamic parallelism

The dynamic virtual warp strategy provides a fair workload balancing when ap-
plied to irregular graphs. Nevertheless, to further improve the speedup in case of
very irregular graphs (i.e., scale free networks or graphs with power-law distribu-
tion), H-BF exploits the dynamic parallelism feature of the Kepler architectures.
Dynamic parallelism allows implementing recursion in the kernels and, thus, dy-
namically creating threads and thread blocks at run time without requiring kernel
returns. In the H-BF context, the idea is to invoke a multi-block kernel properly
configured to manage the workload imbalance due to the difference of the ver-
tex degrees. Nevertheless, the (even low) overhead caused by the dynamic kernel
stack may elude this feature advantages when replicated for all frontier vertices
unconditionally.

H-BF applies dynamic parallelism to a limited number of frontier vertices at
each frontier propagation step. Given the degree distribution of the visited graph,
H-BF applies dynamic parallelism to the sub-set of vertices that have degree far
from the average (AVG) and that exceeds a threshold, TDP (Figure 8.7 shows an
example).

H-BF combines dynamic parallelism with dynamic virtual warps. The thresh-
old TDP is a knob to be set in H-BF, which switches from the use of the former
technique to the use of the latter. As explained in the experimental results, we
heuristically fixed TDP “ 4096 vertices for all the analysed graphs.

8.5 Experimental Results

8.5.1 Experimental setup

H-BF has been run on two sets of graphs. The first set is from the 9th and 10th
DIMACS implementation challenges [21, 22] and from the University of Florida

8.5 Experimental Results 117

fig. 8.7: Example of dynamic parallelism applied to a sub-set of frontier vertices of a
power-law graph (flickr)

Sparse Matrix Collection [85]. It consists of graphs from different contexts such as,
road networks, three-dimensional meshes, circuit simulations, social and synthetic
graphs. The second set is from SNAP [252], 10th DIMACS, and GTGraph gener-
ator [21]. It consists of graphs from contexts like 2D dynamic simulations, com-
munication networks, road networks, autonomous systems, and synthetic based
on the Erdős-Rényi model. The graphs of the second set include some edges with
negative weights though no negative cycles.

Table 1 shows the graph characteristics in terms of directed/undirected, ver-
tices, edges, average degree, degree standard deviation, maximum degree, graph
diameter, and degree distribution of the edges (abscissa) over the vertices (ordi-
nate). The degree distribution, which is shown in log scale, expresses the potential
unbalancing of a parallel algorithm to visit the graph. For example, graphs like
msdoor or random 0.1Mv.20Me have the best balancing as they include many
vertices with the same (high) degree. In contrast, rmat.3Mv.20Me or wiki-talk are
strongly unbalanced as they include many vertices with low degree, few vertices
with high degree and, in general, the degree is not uniform over the vertices.

H-BF has been run on a NVIDIA (Kepler) GEFORCE GTX 780 device, which
has 12 SMs, 192 Cores per SM, 3 GB of DRAM, and 5 GHz PCI Express 2.0 x16,
with CUDA Toolkit 6.0, AMD Phenom II X6 1055T (3GHz) host processor, and
Debian 7 operating system.

8.5.2 Execution time analysis and comparison

Table 2 reports the results in terms of execution time and millions of traversed
edges per second (MTEPS) and the comparison of H-BF with the most repre-
sentative SSSP implementations (both sequential and parallel for GPUs) at the
state of the art. They include the Boost library sequential Dijkstra [246], which is
based on priority queues and relaxed heap, and a queue-based sequential Bellman-
Ford. As parallel implementations for GPUs, we selected the Lonestar GPU graph
suite [56], which is a parallel implementation of Bellman-Ford, and Workfront
Sweep and Near-Far Pile, which are the most efficient parallel implementations of
Davidson et al. [82] (see Section 4.2). The results are presented as the average time

118 8 Single-Source Shortest Path - H-BF

and the average MTEPS obtained by running the tool from 100 sources randomly
chosen, where, for each source, the connected component has at least 105 vertices.

fig. 8.8: Comparison of speedups

Figure 8.8 summarizes the speedup of the different implementations with re-
spect to the sequential queue-based Bellman-Ford implementation. The results
show how H-BF outperforms all the other implementations in every graph. The
speedup on graphs with very high diameter (left-most side of the figure) is quite
low for every parallel implementation. This is due to the very low degree of paral-
lelism for propagating the frontier in such graph typology. In these graphs, H-BF
is the only parallel implementation that outperforms the Boost Dijkstra solution
in asia.osm, while it preserves comparable performance in USA-road.d-CAL. On
the other hand, the sequential Boost Dijkstra implementation largely outperforms
all the other parallel solutions in literature.

We observed the best H-BF performance (time and MTEPS) on the graphs in
the right-most side of Figure 8.8 that allow high parallelism due to small diameter
and high average degree. H-BF provides high speedup also in rmat.3Mv.20Me and
flickr, which are graphs largely unbalanced (see standard deviation and power-law
degree distribution in Table 8.1). This underlines the effectiveness of the proposed
methods to deal with such an unbalancing problem in traversing graphs. We also
verified that the optimization based on the 64-bit atomic instruction strongly im-
pacts on performance for graphs with small diameters. This is due to the fact that
such graph visits are characterized by a rapid grow of the frontier, which implies
a high number of duplicate vertices. The edge classification technique successfully
applies to the majority of the graphs. In particular, asia.osm has a high number of

8.5 Experimental Results 119

vertices with in-degree equal to one, while in msdoor and circuit5M dc each vertex
has a self-loop. Scale-free graphs (e.g., rmat.3Mv.20Me and flickr) are generally
characterized by a high number of vertices with low out-degree.

The second set contains graphs with negative weights (and no negative cy-
cles) and, thus, the Dijkstra-based sequential implementation as well as the other
parallel solutions at the state of the art could not be tested. For these graphs,
we compared H-BF with respect to the Bellman-Ford sequential implementation
and we evaluated the effects of each proposed optimization (see Sections 8.3 and
8.4) on the overall speedup. Table 8.3 reports the results. The basic frontier-based
solution provides a speedup that ranges from 12.5x to 20x with respect to the
sequential counterpart. The proposed optimizations improve such a speedup from
a minimum of twice (from 58.1x to 110.5x by enabling the duplicate removal) to
almost four times (from 15.4x to 52.6x by enabling the edge classification).

We evaluated the impact of the warp workload optimization (section 8.4.2) to
deal with the lack of parallelism in the hugetrace 00000 graph, since it represents
a 2D dynamic simulation with a low and perfect uniform degree and it is represen-
tative to be hardly visited in parallel. The warp workload optimization improves
the load balancing and the coalesced global memory accesses by filling the local
queues with more vertices.

The second graph, wiki-talk, is a community network with very low average de-
gree and power-law distribution. The edge classification optimization in this graph
allows improving the performance by more than three times. The edge classification
optimization is particularly effective in graphs with power-law distribution since
they present a high number of low-degree vertices that, in many cases, have in-
degree equal to 1 and out-degree equal to 0. This allows avoiding expensive atomic
operations and vertex reinsertions in the frontier. For this graph, we reported both
the time spent for the main computation and the additional time to perform the
two complementary kernels (in round brackets). With a high maximum degree and
the highest standard deviation, the as-Skitter graph has the most workload unbal-
ancing. In this case, we underlined the effects of the Dynamic Virtual Warp and
Dynamic Parallelism optimizations. The combination of these techniques allows
reaching high throughput with irregular workload, by dealing with both low and
high degree vertices. Finally, we considered a random-generated graph with a very
low diameter and a high average degree. Traversing any graph with these char-
acteristics leads to a high number of redundant vertices since many threads have
high probability to concurrently access the same vertex for the relax operation. In
this case, the duplicate removal optimization allows improving the performance of
twice by avoiding multiple extractions of the same vertex from the frontier.

Finally, Figure 8.9 shows the global effect of the presented optimizations on
the H-BF work efficiency. The figure reports such an analysis by comparing a
Bellman-Ford queue-less (i.e., without frontier) sequential implementation, the
basic Bellman-Ford queue-based sequential implementation, the Boost Dijkstra
queue-based sequential implementation [246], and H-BF in terms of total number
of relax operations performed during the SSSP elaboration on the msdoor graph
(the analysis results are similar for the other graphs). For the sake of clarity, the
Boost Dijkstra result is not reported in the figure since it consists of a very long
horizontal line (one relax operation for each 20M of edges). As expected, the Di-

120 8 Single-Source Shortest Path - H-BF

fig. 8.9: Impact of the proposed optimizations on the implementation work efficiency

jkstra’s and Bellman-Ford’s queue-less are the most and the least work efficient
implementations, respectively. The use of the frontier concept on the Bellman-
Ford implementation sensibly reduces the relax operations. H-BF further reduces
such a work to a final difference of one order of magnitude with respect of Dijk-
stra’s rather than six orders of magnitude of the original Bellman-Ford’s queue-less
implementation.

8.6 Concluding Remarks

This Section presented H-BF, a parallel implementation of the Bellman-Ford algo-
rithm for Kepler GPU architectures. The Section presented different optimizations
oriented both to the algorithm and to the architecture, which have been imple-
mented in H-BF to improve the performance and, at the same time, to optimize
the work inefficiency typical of the Bellman-Ford algorithm. Experimental results
have been conducted on graphs of different sizes and characteristics to compare the
proposed approach with the most representative sequential and parallel implemen-
tations at the state of the art for solving the SSSP problem. Finally, the Section
presented an analysis of the impact of the proposed optimization strategies over
different graph characteristics to understand how they impact on the H-BF work
efficiency. An OpenCL implementation of the proposed solution is currently under
study. The challenge is to observe how much the performance of the OpenCL and
CUDA implementations differ since they provide different low-level instructions as
well as the opportunity of implementing different hardware-oriented techniques.

8.6 Concluding Remarks 121

Graph Name
Directed /
Undireced

Group Vertices Edges
Avg.

Degree
Std.

Deviation
Max.

Degree
Diameter Degree

Distribution

asia.osm U Dimacs 10th [22] 12.0M 25.4M 2.1 0.5 9 38,576

USA-road-d.CAL D Dimacs 9th [87] 1.9M 4.7M 2.5 0.9 7 2,575

delaunay n20 U Dimacs 10th [22] 1.9M 6.3M 6.0 1.3 23 380

msdoor U INPRO [85] 415K 20.6M 49.7 11.7 78 167

circuit5M dc D Freescale [85] 3.5M 19.2M 5.4 2.1 27 135

rmat.3Mv.20Me U GTGraph [21] 3.0M 20.0M 6.7 10.2 521 15

flickr D Gleich [85] 820K 9.8M 12.0 87.7 10,272 12

Hugetrace 00000 U Dimacs 10th [22] 4.6M 13.8M 3.0 0.0 3 4,119

wiki-talk D SNAP [252] 2.4M 5.0M 2.1 99.9 100,022 9

as-Skitter U SNAP [252] 1.7M 22.2M 13.1 136.9 35,455 31

random 2Mv.128Me U GTGraph [21] 2.0M 128.0M 64.0 8 114 5

Table 8.1: Characteristics of the graph datasets on which H-BF has been evaluated,
including both real and synthetic datasets

Graph Name

Bellman-Ford
Queue-Based Seq.

Boost Dijkstra
Seq. [246]

LoneStar [56]
WorkFront Sweep /
Near-Far Pile [107]

H-BF

Time MTEPS Time MTEPS Time MTEPS Time MTEPS Time MTEPS

asia.osm 32.0 s 0.8 5.2 s 4.9 280 s 0.1 12.7 s 2 3.4 s 7.5

USA-road-d.CAL 20.6 s 0.2 588 ms 7.9 3.9 s 1.2 4.6 s 1 720 ms 6.4

delaunay n20 3.2 s 2.0 581 ms 10.8 902 ms 7.0 420 ms 15 105 ms 60

msdoor 1.2 s 17.2 676 ms 30.6 1.9 s 10.8 206 ms 100 36 ms 570

circuit5M dc 3.2 s 6.0 4.1 s 4.7 657 ms 29.2 240 ms 80 68 ms 282

rmat.3Mv.20Me 6.4 s 3.1 4.0 s 5.0 520 ms 38.5 133 ms 150 99 ms 201

flickr 887 ms 11.1 963 ms 10.2 1.2 s 8.2 49 ms 200 32 ms 307

Table 8.2: Performance comparison of H-BF with the most representative
implementations at the state of art.

Graph Name Optimization Notes
Belman-Ford

Queue-Based Seq.
H-BF w/out

Opt.

Speedup
w/out Opt.

vs. Seq.

H-BF with
Opt.

Speedup
with Opt.

vs. Seq.

hugetrace 00000 Warp Workload Sparse graph 82.0 s 4.1 s 20.0x 1.4 s 58.6x

wiki-talk Edge Classification Sparse graph 1.0 s 65 ms 15.4x 17(+2) ms 52.6x

as-Skitter
Dynamic Parallelism +
Dynamic Virtual Warp

High Std. Deviation
and Max. Degree 2.5 s 199 ms 12.5x 77 ms 32.5x

random 2Mv.128Me 64-bit Atomic Instr. Small Diameter 84 s 1,445 ms 58.1x 760 ms 110.5x

Table 8.3: Impact of H-BF optimizations. Comparison between the speedups versus the sequential
implementation obtained by enabling or disabling a specific optimization.

9

Strongly Connected Components - Multi-Step
Algorithm

The problem of decomposing a directed graph into strongly connected components
(SCCs) is a fundamental graph problem that is inherently present in many scien-
tific and commercial applications. Clearly, there is a strong need for good high-
performance, e.g., GPU-accelerated, algorithms to solve it. Unfortunately, among
existing GPU-enabled algorithms to solve the problem, there is none that can be
considered the best on every graph, disregarding the graph characteristics. Indeed,
the choice of the right and most appropriate algorithm to be used is often left to
inexperienced users. In this Section, we introduce a novel parametric multi-step
scheme to evaluate existing GPU-accelerated algorithms for SCC decomposition
in order to alleviate the burden of the choice and to help the user to identify
which combination of existing techniques for SCC decomposition would fit an ex-
pected use case the most. We support such scheme with an extensive experimental
evaluation that dissects correlations between the internal structure of GPU-based
algorithms and their performance on various classes of graphs. The measurements
confirm that there is no algorithm that would beat all other algorithms in the
decomposition on all of the classes of graphs. The contribution thus represents an
important step towards an ultimate solution of automatically adjusted scheme for
the GPU-accelerated SCC decomposition.

9.1 Introduction

Fundamental graph algorithms such as breadth first search, spanning tree con-
struction, shortest paths, etc., are building blocks to many applications. Sequential
implementations of these algorithms become impractical in those application do-
mains where large graphs need to be processed. As a result, parallel algorithms for
the processing of large graphs have been devised to efficiently use compute clusters
and multi-core architectures. The transformation of a sequential algorithm into a
scalable parallel algorithm, however, is not an easy task. Typically, the best se-
quential algorithm is not necessarily the best parallel algorithm from the practical
point of view. This is especially the case of massively parallel graphics process-
ing units (GPUs). These devices contain several hundreds of arithmetic units and
can be harnessed to provide tremendous acceleration for many computation inten-

124 9 Strongly Connected Components - Multi-Step Algorithm

sive scientific applications. The key to effective utilization of GPUs for scientific
computing is the design and implementation of data-parallel algorithms that can
scale to hundreds of tightly coupled processing units following a single instruction
multiple thread (SIMT) model.

Section focuses on the problem of decomposing a directed graph into its
strongly connected components (SCC decomposition). This problem has many ap-
plications leading to very large graphs, including for example web analysis [165],
which require high performance processing.

Parallelization of the SCC decomposition is a particularly difficult problem.
The reason is that the optimal (i.e., linear) sequential algorithm by Tarjan [261]
strongly relies on the depth-first search which is difficult to be computed in par-
allel. The work in [24] shows how selected nonlinear parallel SCC decomposition
algorithms, namely the Forward-Backward (FB) algorithm [101,184], the Col-
oring algorithm [216] and the OBF algorithm [25], can be modified in order to
be accelerated on a vector processing SIMT architecture. In particular, we have
decomposed the algorithms into primitive data-parallel graph operations and refor-
mulated the recursion present in the algorithms by means of iterative procedures.
This approach has been recently improved by warp-wise and block-wise task al-
location for primitive graph operations [89, 162]. The authors of [89] have further
proposed a SIMT parallelisation of multi-step algorithms by [126, 250] extending
the FB algorithm and combining it with the Coloring algorithm.

This Section presents a new parametric multi-step scheme that allows us to
compactly define a set of algorithms for SCC graph decomposition as well as a
type of the parallelization for individual graph operations. The scheme covers the
existing algorithms and techniques mentioned above, but also introduces several
new variants of the multi-step algorithm. We use the scheme to carry out an
extensive experimental evaluation that helps us to dissect the performance of the
individual parametrization on various classes of graphs. The results indicate that
there is no single algorithm that would outperform other algorithms on all type of
graphs. Moreover, the results show that there is a nontrivial correlation between
the parameterization and the performance.

Based on the evaluation we identify, for each type of graphs, the key parameters
of the scheme that significantly affect the performance and relate such behavior to
the structural properties of the graph. Such analysis is essential for designing an
adaptive scheme that would either automatically select an adequate parametriza-
tion based on a priori knowledge of the graph structure or automatically switch
to a more viable parametrization during the decomposition process.

9.2 Multi-step Parametric Scheme for SCC Decomposition

This section introduces a new multi-step scheme for SCC decomposition, which
consists of two levels of parametrization. The first allows setting the individual
steps of the algorithm, while the second allows defining the parallelization strategy
for the graph traversal.

The multi-step algorithm consists of 3 steps: 1) It iterations of the Trimming
procedure that identifies trivial components of the graph (see Section 4.4.1), 2)

9.2 Multi-step Parametric Scheme for SCC Decomposition 125

Algorithm 12 Parametric Multi-step

1: Input: G pV,Eq, parameters It and If
2: Ouput: SCC decomposition of G

3: for i “ 1; i ă It ^ scc ‰ V ; i “ i` 1 do
4: OneStepTrimming(G, scc)

5: for i “ 1; i ă If ^ V ‰ scc; i “ i` 1 do
6: PivotSelection(G, pivots, ranges)
7: FWD-Reach(G, pivots, ranges, visited.f)
8: BWD-Reach(G, pivots, ranges, visited.b)
9: Update(scc, ranges, visited)

10: while terminate ‰ false do
11: FWD-MaxColor(G, ranges, colors)
12: BWD-Reach(G, ranges, colors, visited.b)
13: Update(ranges, visited.b, colors, visited)

If iterations of the FB algorithm that aims at identifying big components, and 3)
the Coloring algorithm that decomposes the rest of the graph. The algorithm
parametrization determines the values of It and If . Algorithm 12 depicts the host
code for the GPU-accelerated version of the algorithm.

In the first step (lines 1-2), the kernel oneStepTrimming implements a single
iteration of the trimming procedure. It identifies and eliminates vertices of G that
form trivial SCCs. It stores the eliminated vertices in the array scc. Note that
the proposed scheme does not perform the trimming procedure in the later steps
of the algorithm, i.e., within every FB iteration as in [24], since the Coloring
algorithm handles the remaining trivial components more efficiently.

In the second step (lines 3-7), the algorithm selects a single pivot from the
remaining (i.e., not eliminated) part of the graph, it computes the forward and
backward closure for such a vertex, and it marks the four subgraphs (see Sec-
tion 4.4.1) by using the Update kernel. Then, through further iterations of the
second step, the algorithm selects multiple pivots and computes multiple closures
restricted to the individual subgraphs. The array ranges is used to maintain the
identification of the subgraphs, while the arrays visited indicate the vertices vis-
ited during the closure computations. The array scc is updated at every iteration
to store all vertices that has been already identified in a SCC. For the pivot se-
lection over multiple subgraphs, the algorithm implements the approach proposed
in [89] extended to apply the heuristics defined in [250] to favour vertices with
a high in-degree and out-degree. The FWD-Reach and BWD-Reach kernels
implement parallel BFS visits of the graph, which have been adequately modified
for providing reachability results.

The last step implements the coloring algorithm, which is iteratively applied to
decompose the remaining subgraphs. The max color is propagated to the successor
non-eliminated vertices, and stored in the array colors (line 9). The parametric
BWD-Reach kernel implements the backward closure to identify a single compo-
nent for each subgraph. Finally, the updating kernel partitions each subgraph into

126 9 Strongly Connected Components - Multi-Step Algorithm

multiple subgraphs based on the max colors and updates the ranges accordingly
for the next iteration.

Note that in the implementation the data associated to vertices in the form of
the aforementioned arrays are merged and stored in two 32-bit arrays.

9.2.1 Parallelization strategy for graph traversal

Another dimension of parametrization relates to the way reachability procedures
are implemented within the FB and Coloring parts of the Algorithm 12 (lines
5, 6, and 10 respectively).

Recall that when computing the reachability relation (closure), the longest
path along which the algorithm has to traverse is given by the diameter of the
graph. Assuming that the closure computation consists of multiple kernel calls,
where each kernel call shortens this distance by at least one, we immediately have
that the diameter of the graph also gives the bound on the number of kernel calls
needed. However, there are multiple strategies how to implement such a single
kernel call. If the kernel call is guaranteed to shorten the distance only by one,
but its complexity itself is linear (e.g. it inspects all vertices/edges), we obtain an
overall procedure that computes the closure in a quadratic amount of work in the
worst case with respect to the size of the graph.

Alternatively, we may employ a strategy that mimics the serial graph traversal
procedure and uses queue of vertices to be processed as the uderlying data structure
(the so called frontier queue). In such the case, the complexity of the kernel call is
proportional to the amount of vertices processed and the overall complexity of the
procedure remains linear. And indeed, when dealing with large graphs, it has been
shown that this works the best among various GPU-oriented implementations [57].
On the other hand, the overhead introduced by the maintanance of the frontier
queue may render the linear solution inefficient when applied to compute the
closure operation on subgraphs with small diameter.

In The parametric scheme we, therefore, allow to specify which strategy should
be used to compute the closures in individual phases. In particular, we support
the three following options.

1. Quadratic parallelization (Q). The closure computation is based on the quad-
ratic parallel breadth-first search as proposed in [117]. It implements the sim-
plest static workload partitioning and vertex-per-thread mapping, thus involv-
ing the smallest runtime computation overhead. This strategy works the best
for large graphs with regular structure and small diameter.

2. Quadratic parallelization with Virtual Warps (QVW). In this strategy we also
employ the quadratic parallel breadth-first search, however, the workload par-
titioning and mapping rely on the virtual warps as proposed in [125]. This
modification allows for almost even workload assigned to individual threads,
which after all results in reduced branching divergence – an aspect very cru-
cial for the performance of GPU algorithm. Virtual warps also allow improved
coalescing of memory accesses since more threads of a virtual warp access to
adjacent addresses in the global memory. This strategy is supposed to work
the best for graphs with uneven edge distribution.

9.3 Experimental results 127

3. Linear parallelization (L). This strategy is the implementation of the linear
closure procedure as proposed in [57]. It provides a highly tunable solution
that allows efficient handling of very irregular graphs with the overhead of
queue maintenance and dynamic load balancing at the runtime. This strategy
should work the best for graphs with large diameter and nonuniform edge
distribution.

Since the Trimming step is typically performed only through a couple of iter-
ations, the strategy used in the Trimming kernel rely on a very light thread-per-
vertex allocation and the quadratic parallelisation. The overhead of the linear or
even more complex approach in this step would never pay off. The very same strat-
egy has also been used for the implementation of the maximal color propagation
in the Coloring phase (line 9 of Algorithm 12).

9.3 Experimental results

The experimental results have been run on a dataset of 17 graphs, which have
been collected to represent very different structure of the graphs. The dataset
covers both synthetic and real-world graphs from different sources and contexts
such as social networks, road networks, and recursive graph models. The real-
world graphs have been selected from Stanford Network Analysis Platform (SNAP)
[252], Koblenz Network Collection [150], and University of Florida Sparse Matrix
Collection [85], while the random and R-MAT graphs have been generated by
using the GTGraph tool [21].

Table 9.1 summarizes the graph features in terms of number of vertices (in
million), edges (in million), average degree, the percentage of vertices with out-
degree equal to zero (dpvq “ 0), out-degree standard deviation, average diameter
(over 100 BFS from random sources), number of SCCs, percentage of vertices in
the largest SCC, and the percentage of vertices in SCCs with size equal to one.

The table underlines, for instance, that road networks, such as CA-road and
USA-road, present in general a single SCC, a low average degree, and a low number
of vertices with dpvq “ 0. In contrast, social networks (LiveJournal and Flickr)
and the R-MAT model show small-world network properties, which imply one large
SCC and a high number of single-vertex SCCs.

We run the experiments on a Linux system (Ubuntu 14.04) with a NVIDIA
Kepler Tesla K40 GPU device with 12 GB of memory, CUDA Toolkit 7.5, AMD
Phenom II X6 1055T 3GHz host processor, and gcc host compiler v. 4.8.4.

We compared three implementations: a sequential version that implements the
Tarjan algorithm [261], which is considered the most efficient sequential algorithm.
The data-parallel GPU implementation by Devshatwar et al. [89], the fastest GPU
solution at the state of the art, and the proposed approach. Table 9.2 reports the
results in terms of runtime (milliseconds) and performance (million of edges per
seconds - MTEPS). The results show that the application throughput (MTEPS) of
the parallel implementations is directly related to the size and the average diameter
of graphs. For instance, cit-Patents graph shows a high value of MTEPS due to
a low average diameter and a regular degree distribution that allow a high GPU

128 9 Strongly Connected Components - Multi-Step Algorithm

Graph Name Vertices Edges
Avg.

Degree
N. of

d(v) = 0
Std.

Deviation
Avg.

Diameter
N. of SCCs

Largest
SCC

Trivial
SCCs

amazon-2008 [252] 0.7M 5.2M 7.0 12.0% 3.9 25.7 90,660 85% 12%

LiveJournal [252] 4.8M 69.0M 14.2 11.1% 36.1 12.6 971,232 79% 20%

Flickr [150] 2.3M 33.1M 14.4 32.3% 87.7 8.0 277,277 70% 19%

R-MAT [21] 10.0M 120.0M 12.0 20.2% 22.3 7.8 2,083,372 79% 21%

cit-Patents [252] 3.8M 16.5M 4.4 44.6% 7.8 4.2 3,774,768 0% 100%

Random [21] 10.0M 120.0M 12.0 0.0% 3.5 9.0 125 100% 0%

Pokec [252] 1.6M 30.6M 18.8 12.4% 32.1 9.9 325,892 80% 20%

Language [150] 0.4M 1.2M 3.0 0.0% 20.7 33.6 2,456 99% 1%

Baidu [150] 23.9M 58.3M 8.3 22.7% 23.2 12.8 1,503,003 28% 69%

Pre2 [150] 0.7M 6.0M 9.0 0.0% 22.1 60.7 391 100% 0%

CA-road [252] 23.9M 5.5M 2.8 0.3% 1.0 655.9 2,638 100% 0%

web-Berkstan [150] 0.9M 7.6M 2.8 0.7% 16.4 465.6 109,409 49% 15%

SSCA8 [21] 8.4M 99.0M 11.8 0.2% 4.4 1,535.9 55,900 97% 0%

trec-w10g [150] 1.6M 8.0M 5.0 4.4% 72.0 54.8 531,539 29% 31%

Fullchip [85] 3.0M 26.6M 8.9 0.0% 23.1 37.2 35 100% 0%

USA-road [88] 23.9M 58.3M 2.4 0.0% 0.9 6,277.0 1 100% 0%

Wiki-Talk [252] 18.3M 127.3M 9.4 93.8% 80.0 0.4 14,459,546 21% 79%

Table 9.1: Characteristics of the graph dataset.

Graph Name
Sequential SCC Devshatwar et al. [89] Proposed implementation

Time MTEPS Time MTEPS Time MTEPS

amazon-2008 162 32 16 325 17 305

LiveJournal 2,575 26 86 802 87 793

Flickr 821 40 54 611 54 611

R-MAT 9,182 13 193 621 192 625

cit-Patents 536 31 16 1,031 16 1,031

Random 10,619 11 231 519 218 550

Pokec 1,344 23 42 729 33 927

Language 75 16 29 41 22 55

Baidu 582 100 70 832 50 1,166

Pre2 127 47 30 200 19 316

CA-road 223 25 166 33 79 70

web-Berkstan 94 81 1,754 4 717 11

SSCA8 4,237 23.4 1,174 84 465 213

trec-w10g 147 54 12,508 1 2,218 4

Fullchip 547 49 506 53 72 369

USA-road 2,191 27 7,041 8 669 87

Wiki-Talk 5,835 22 18,907 7 731 174

Table 9.2: Runtime (milliseconds) and performance of the three
implementations.

utilization. On the other hand, the performance of the sequential version depends
on the number of vertices and edges of the graphs.

Table 9.3 presents the configuration of the proposed parametric approach that
leads to the best performance and compares such performance to those provided
by the ”static” solution of Devshatwar et al. The configurations are expressed in
terms of which strategy is used in the FB and in the coloring step, i.e., linear (L),

9.3 Experimental results 129

Graph Name FB Alg.
Coloring

Alg.
Trimming

steps
FB steps

Speedup vs.
Sequential

Speedup vs.
Devshatwar et

al. [89]

amazon-2008 QV W {L Q/L 1 1 9.1x 1.0x

LiveJournal QV W Q/L 1 1 29.5x 1.0x

Flickr QV W {L Q/L 1 1 15.9x 1.0x

R-MAT QV W Q/L 1 1 47.8x 1.0x

cit-Patents Q/L Q/L 1 1 34.5x 1.0x

Random QV W Q/L 0 1 48.7x 1.0x

Pokec QV W L 1 1 41.0x 1.3x

Language L Q 0 2 3.4x 1.3x

Baidu L L 3 1 11.6x 1.4x

Pre2 L L 0 1 6.8x 1.6x

CA-road L L 0 1 2.8x 2.1x

web-Berkstan L L FULL 17 0.13x 2.5x

SSCA8 L L 0 1 9.1x 2.5x

trec-w10g L L 2 20 0.07x 5.7x

Fullchip L L 0 1 7.6x 7.0x

USA-road L Q 0 1 3.3x 10.5x

Wiki-Talk L L 5 1 8.0x 25.9x

Table 9.3: Parametrization results and performance comparison.

static quadratic (Q), and quadratic with virtual warps (QVW), and the number of
iterations of the trimming and FB steps. Notations Q{L or QVW {L indicate that
the two algorithms provide similar performance.

The proposed implementation provides similar performance compared to De-
vshatwar et al. for the first six graphs of the dataset, while it reports speedup
up to 26 times for the other graphs. This is due to the parametric feature of
the proposed approach, which allows properly combining the quadratic and lin-
ear algorithms and tuning the algorithm iterations for each step i.e. trimming (It
parameter), forward-backward (If parameter), and coloring. In particular, graphs
with low average diameter, such as Flickr, R-MAT, cit-Patents, Random, show
good performance also with the quadratic traversal algorithms due to less over-
head compared to the linear approach that maintains frontier data queues.

The LiveJournal graph presents the same average diameter of Baidu but shows
different SCC characteristics. LiveJournal has a very large SCC and a small per-
centage of trivial components, while Baidu the opposite. In this case, a high number
of vertices with out-degree equal to zero (22.7%) favours quadratic parallelization
and one iteration of trimming.

The amazon-2008 graph, even though it has a middle-sized average diameter,
shows the best results with the quadratic approach. This is due to its very small size
(amazon-2008 is the second smallest graph in the dataset). The Language graph
has similar size but it has a high unbalanced out-degree distribution (i.e., standard
deviation 20.7 versus 3.9 of amazon-2008) and thus the load balancing techniques
implemented in the linear BFS outperforms the quadratic parallelisation of the
FB algorithm.

The proposed parametric implementation clearly outperforms the static De-
vshatwar et al. approach on graphs with high average diameter, such as USA-Road,
and not uniform workload, such as Wiki-Talk (std. deviation equal to 80) thanks to
the switch to the linear algorithm, which is more efficient in such a kind of graphs.

130 9 Strongly Connected Components - Multi-Step Algorithm

Finally, both parallel implementations provide poor performance in Web-Berkstan
and trec-w10g graphs due to the lack of data parallelism, which results from the
small size, high diameter and low average out-degree.

We can also observe that the trimming step in road networks (CA-Road and
USA-Road), Pre2, Random and Fullchip graphs does not significantly improve the
overall performance, since the graphs contain small number of trivial SCCs. The
web-Berkstan and trec-w10g require a high number of FB algorithm steps due to
a high number of middle-sized SCCs. For instance, trec-w10g graph has the sum
of the percentages of the largest SCC (29%) and trivial SCCs (31%) equal to 61%
which indicates a remaining of 39% of middle-sized SCCs.

amazon0505 − cap at 100% more than min.
FB linear − col. BFS lin.

T
rim

m
in

g
st

ep
s

FB steps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

Full

>=100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

(a) Amazon-2008

wiki − cap at 100% more than min.
FB linear − col. BFS quad. (1)

T
rim

m
in

g
st

ep
s

FB steps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

Full

>=100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

(b) Wiki-Talk

Flickr growth − cap at 100% more than min.
FB linear − col. BFS quad. (1)

T
rim

m
in

g
st

ep
s

FB steps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

Full

>=100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

(c) Flickr

rmat10 − cap at 100% more than min.
FB linear − col. BFS lin.

T
rim

m
in

g
st

ep
s

FB steps

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2

3

4

5

Full

>=100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

(d) R-MAT

fig. 9.1: Performance analysis through parametrization of It and If

Figure 9.1 illustrates the impact of the parameters It and If on the overall
performance for the selected graphs. The performance is represented using a color
scale – lighter colors denote lower runtime. The linear parallelization evaluated
on Amazon-2008 (Fig. 9.1a) shows that the performance strongly depends on the
number of FB iterations (If set around 1 gives the best results), while the number
of trimming iterations does not affect the execution time. The linear parallelization
applied to Wiki-Talk (Fig. 9.1b) shows the opposite behavior: If has a very low

9.4 Conclusions 131

impact on the performance, while setting a wrong It (e.g., It equal to 1 as in
Deshatawar et al.) leads to 60% performance decrease. Such a different behavior
of performance over It and If relies on the different characteristics of the two
graphs. Amazon-2008 has one large SCC and a very small number of trivial SCCs,
while Wiki-Talk has a high number of trivial SCCs. The performance of the linear
parallelization over It and If on graphs Flickr and R-MAT shows a more uniform
behavior (Fig. 9.1c and 9.1d), since the graphs have one large SCC but also a high
number of trivial SCCs.

9.4 Conclusions

We have presented a novel parametric multi-step scheme to evaluate existing GPU-
accelerated algorithms for SCC decomposition. The extensive experimental results
clearly indicate that there is no algorithm that would be the best for all classes of
the graphs. We have dissected correlations between the internal structure of the al-
gorithms and their performance on structurally different graphs. The contribution,
thus, represents an important step towards an ultimate solution of automatically
adjusted GPU-aware algorithm for SCC decomposition.

10

Approximate Subgraph Isomorphism -
APPAGATO

Motivation: Biological network querying is a problem requiring a considerable
computational effort to be solved. Given a target and a query network, it aims to
find occurrences of the query in the target by considering topological and node
similarities (i.e. mismatches between nodes, edges, or node labels). Querying tools
that deal with similarities are crucial in biological network analysis since they
provide meaningful results also in case of noisy data. In addition, since the size of
available networks increases steadily, existing algorithms and tools are becoming
unsuitable. This is rising new challenges for the design of more efficient and
accurate solutions.
This Section presents APPAGATO, a stochastic and parallel algorithm to find
approximate occurrences of a query network in biological networks. APPA-
GATO, handles node, edge, and node label mismatches. Thanks to its randomic
and parallel nature, it applies to large networks and, compared to existing
tools, it provides higher performance as well as statistically significant more
accurate results. Tests have been performed on protein-protein interaction
networks annotated with synthetic and real gene ontology terms. Case studies
have been done by querying protein complexes among different species and tissues.

10.1 Materials and methods

10.1.1 Definitions and notations

A graph G is a pair pV,Eq, where V is the set of nodes and E Ď pV ˆ V q is the
set of edges. If pu, vq P E, we say that v is a neighbour of u. G is undirected iff
@pu, vq P E, then pv, uq P E, i.e. u is a neighbour of v and vice-versa. The degree
of a node u, Degpuq, is the number of its neighbours. Given a set of labels A, the
function Lab : V Ñ A assigns a label to each node of G. We assume that graphs
are undirected and labelled only on nodes.

134 10 Approximate Subgraph Isomorphism - APPAGATO

Exact Subgraph Isomorphism

Let Q “ pV,Eq and T “ pV 1, E1q two graphs, named query and target, respec-
tively. The exact SubGraph Isomorphism problem (SubGI) aims to find an in-
jective function, M : V Ñ V 1, which maps each node in Q to a unique node in
T , such that @pu, vq P E: (i) pMpuq,Mpvqq P E1; (ii) Labpuq “ LabpMpuqq; (iii)
Labpvq “ LabpMpvqq. A solution of the SubGI problem can be represented as the
set m “ tpv1,Mpv1qq, pv2,Mpv2qq, . . . , pv|V |,Mpv|V |qqu, called a match of Q in T .
Q may have different maps mi in T .

Inexact Subgraph Isomorphism and matching costs

In this Section, we deal with the Inexact SubGraph Isomorphism problem
(ISubGI)1, which is a variant of the SubGI problem, and in which we admit
node and edge mismatches. A mismatch occurs when (i) two nodes with different
labels are mapped through a similarity function, or (ii) a query edge or (iii) a query
node is missing in the target graph. The absence of a node implies mismatches for
all its edges. A cost c is associated to each mismatch. For the sake of simplicity,
the same cost c “ 1 is associated to each of the three types of mismatch.

We denote with C “
ř

c the total cost of mismatches between Q and T .
The goal of the ISubGI problem is to find an injective function M : V Ñ

V 1, such that C is minimized. In this case, a solution for the ISubGI, m “

tpv1,Mpv1qq, pv2,Mpv2qq, . . . , pvk,Mpvkqqu with k ď |V |, is called an approximate
match with a cost C ě 0.

Let Qm “ pVm, Emq be the subgraph of query Q that has been mapped in
the match m, that is, Vm “ tv P V : pv,Mpvqq P mu and Em “ tpu, vq P E :
pu,Mpuqq P m pv,Mpvqq P m pMpuq,Mpvqq P E1u. We define Vm̄ “ V zVm and
Em̄ “ EzEm, the nodes and the edges in Q, respectively, that have not been
matched in m. Let S|V |ˆ|V 1| be the label similarities between each node q P Q and
t P T . The label similarity values belong to the interval r0, 1s. The computation
of S is application dependent. In the case of PPI networks, the similarity can be
based on sequences, functional, or structural protein similarity.

For example, establishing the conservation of a protein-complex CO of the
species A within the species B, consists of searching the subgraph QCO, extracted
from the PPI of A (named GA), into the PPI of B (named GB). The two PPIs may
have different proteins (i.e., nodes with different names), but with similar function,
detectable by looking at sequence similarities. An ISubGI algorithm must search
for occurrences of QCO in GB that minimize sequences and topology differences.
We conclude that CO is conserved in B if we find highly similar occurrences.

The total matching cost C is obtained by summing all node and edge costs and
by normalizing them over the number of query elements, as follows:

C “

ř

qPVm
p1´ Spq,Mpqqq ` |Vm̄| ` |Em̄|q

|V | ` |E|
(10.1)

10.1.2 The APPAGATO algorithm

The method consists of the following three main phases.

1 Here called also approximate subgraph querying

10.1 Materials and methods 135

Phase 1: Computation of matching probability matrix

Before starting the search, APPAGATO computes a matrix P of matching prob-
abilities between all possible node pairs ăq, tą (q P Q and t P T), by combin-
ing (i) the label similarity Spq, tq, (ii) the degree similarity Dpq, tq, and (iii) the
breadth-first similarity BFSSimpq, tq. The label similarity has been defined in Sec-
tion 10.1.1. In APPAGATO, the label similarity matrix, S, may be provided as
input by the user. Alternatively, APPAGATO computes a boolean similarity func-
tion to compare node labels. It assigns 1 if labels are identical, 0 otherwise. The
degree similarity is a binary function D(q,t) “ 1 if Degpqq ď Degptq, otherwise
it is 0. BFSSimpq, tq is computed by performing breadth-first visits (BFSs) of the
query and target graphs by starting from q and t and evaluating label and degree
similarities of the visited nodes, level by level. The maximum depth of the BFS
visits is a user-defined parameter lmax, with lmax ě 1. Given a node x, and a level
l ď lmax we denote with BFSlpxq the set of nodes at level l in the BFS tree rooted
at x. An edge e “ pu, vq in the BFS tree of q is defined matchable iff there exists
an edge e1 “ pu1, v1q in the BFS tree of t such that Spu, u1q and Spv, v1q are not
0 and Dpu, u1q = Dpv, v1q = 1. We denote with MaxMatchpBFSlpqq, BFSlptqq a
maximal set of matchable edges in the BFS tree of q at level l, with respect to the
BFS tree of level l rooted in t. The BFS similarity between q and t assumes values
in r0, 1s and is defined as follows:

BFSSimpq, tq “

řlmax

l“1 l ˆ |MaxMatchpBFSlpqq, BFSlptqq|
řlmax

l“1 l ˆ |BFSlpqq|
(10.2)

Matching probability matrix.

The three similarity values are linearly combined in MScorepq, tq “ Spq, tq `
Dpq, tq `BFSSimpq, tq and normalized to get the matching probability:

P pq, tq “
MScorepq, tq

ř

zPT MScorepq, zq
(10.3)

Equation 10.3 ensures that
ř

tPT P pq, tq “ 1. In phase 2, the probability matrix
is used as a transition matrix within an iterative sampling to extract the best
possible matches. The upper side of Figure 10.1 shows an example of such a matrix
computation.

Phase 2: Seed selection

APPAGATO searches the first pair of nodes to be matched by randomly selecting
q and t according to the probabilities defined in Equation 10.3 (see the example
of Figure 10.1).

Phase 3: Extension

Gibbs sampling is used to navigate within a Markov chain, where each state rep-
resents a possible query-target node match. The initial state corresponds to the

136 10 Approximate Subgraph Isomorphism - APPAGATO

fig. 10.1: The APPAGATO approximate matching algorithm.

10.1 Materials and methods 137

fig. 10.2: The parallel search of APPAGATO on the GPU device.

138 10 Approximate Subgraph Isomorphism - APPAGATO

seed selected in phase 2. The sampling method iteratively performs a transition
from a state to another, by replacing the query-target nodes pair with a new one,
according to a properly defined transition probability. As an example, Figure 10.1
shows the first two iterations of the extension phase. Transition probabilities are
defined by starting from similarity scores, and by taking into account the connec-
tions of candidate nodes with already matched nodes. Let Qm and Tm be the set
of query-target matched nodes at a certain step of the extension process. We de-
note with Qmris (Tmris) the i-th query (target) node added to the partial match.
Let q be a query node neighbour to at least one node in Qm and t be a target
node neighbour to at least one node in Tm. We represent the set of connections
between q and the nodes in Qm through a bit vector CP pqq of |Qm| elements,
called connection profile of q, where the i-th element is defined as follows:

CP pqqris “

$

’

&

’

%

1 if pq,Qmrisq P E

0 otherwise

(10.4)

We define CP ptq in the same way. The connection profile similarity between q and
t is the corresponding number of equal bits in the connection profiles of q and t:

CPSimpq, tq “
|t1 ď i ď |CP pqq| : CP pqqris “ CP ptqrisu|

|CP pqq|
(10.5)

The overall similarity scores is MScoreExtpq, tq “ Spq, tqˆCPSimpq, tq. The result
value is normalized to obtain the final transition probability2:

PT pq, tq “
MScoreExtpq, tq

ř

zPT MScoreExtpq, zq
(10.6)

After a number of iterations, n, which is a user-defined parameter, the algorithm
returns the reached match between the query and the target node. The quality
of such a match is evaluated by summing the costs of node and edge mismatches
between Q and T . APPAGATO does not require any user-defined threshold for
the maximum allowed cost of a match. In Figure 10.1, the approximate match
has only a label mismatch, vQ2 whose label C is mapped with vT0 having label
D, and the cost of the match is C “ 0.1, computed by applying equation 10.1.
APPAGATO iterates K times phases 2 and 3 and, in each iteration, it starts the
sampling procedure from a different seed. Each run of APPAGATO always returns
K solutions (approximate matches), each one with the corresponding cost.

10.1.3 The APPAGATO parallel implementation for GPUs

APPAGATO has been implemented to take advantage of massively parallel GPU
architectures. All the processing phases presented in Section 10.1.2 have been im-
plemented through different CUDA kernels 3, which are invoked by the host CPU.

2 Notice that MScore is not used in the extension phase. MScoreExt strongly influences
the convergence of the approach [154,194].

3 http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html

http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html

10.1 Materials and methods 139

This allows performing the most compute-intensive tasks of the search algorithm
on the GPU device. As for the parallel implementation paradigm for GPUs, each
kernel is executed in parallel by several blocks of threads. Thread blocks spread
and run concurrently and independently over streaming multiprocessors (SMs).
Threads of the same block efficiently cooperate through fast shared memory and
by synchronizing their execution through extremely fast (i.e., HW implemented)
barriers. Groups of 32 threads of the same block are called warps. Each warp
executes one kernel instruction at time in parallel on different data (i.e., single
instruction multiple data-SIMD architecture) over the many stream processors
(cores) of the GPU device. A warp scheduler efficiently switches between warps
with the aim of hiding the latency of thread accesses to the memory.

Given the query and the target graphs, Q and T , the three phases have been
implemented as follows (see Figure 10.2).

Phase 1: Parallel computation of matching probability matrix.

Computing the matching probability matrix is one of the most computation-
intensive part of the whole algorithm. It requires |V |ˆ |V 1| computations of Equa-
tion 10.3 and, in particular, Op|V |`|V 1|q BFSs over Q and T and the corresponding
comparisons between the visited edges (Equation (10.2)).

APPAGATO implements such a phase through a customized version of BFS-
4K [59], a parallel implementation of BFS for GPU architectures. BFS-4K relies
on the concept of frontier [74] (i.e., a FIFO queue that contains the nodes to be
visited at each BFS iteration) to implement the graph visit. Through the frontier-
based visiting, BFS-4K allows equation (3) to be performed over two levels of
parallelism: Each parallel warp of a block is mapped to each node of the frontier,
and, each parallel thread of a warp is mapped to each outgoing edge from a frontier
node.

APPAGATO extends the BFS visit over a third level of parallelism, by running
a total number of |V | ` |V 1| independent BFSs in parallel, one for each node of
Q and T . This is done by allocating one block of threads per BFS. The block
allocation is automatically done at runtime. A total number of |V | thread blocks
perform, in parallel, |V | BFSs (of depth lmax) for the query graph. The result
consists of source-destination matrices, one per node, which are stored in the global
memory (the left-most side of Figure 10.2 shows an example, assuming lmax “ 2).
Each matrix contains information on the labels of such edges visited during the
BFS from the node along lmax levels. In the example of Figure 10.2, the V Q

0 matrix
contains information on the edges of the first level BFS (A´B, A´C, A´D) as
well as the edges of the second level BFS (B ´A, B ´C, C ´A, C ´B, D ´A).

Similarly, and concurrently, a total number of |V 1| thread blocks perform the
BFSs for the target graph. The result consists of a set of source-destination ar-
rays, one per node, which are stored in the device shared memory. This allows
an extremely fast memory access for the following comparisons between the gen-
erated node structures. The array data structure has been chosen as it allows to
represent in a more compact way the source-destination information of T in the
limited shared memory. In contrast, the matrix data structure has been chosen
as it guarantees a faster access to the source-destination information of Q, to be
stored in the larger global memory.

140 10 Approximate Subgraph Isomorphism - APPAGATO

Finally, |V 1| thread blocks compare, in parallel, their own source-destination
array stored in the local shared memory with all the source-destination matrices
in global memory. Such a data structure organization over the GPU memory hi-
erarchy allows the complexity of equation (3) to be reduced from Op|V | ˆ |V 1|q as
for the sequential algorithm, to a parallel complexity of Op1q. The result of Phase
1 is the matrix P|V |x|V 1|, which is stored in the device global memory (see center
part of Figure 10.2).

Phase 2: Parallel seed selection.

APPAGATO emulates the Gibbs sampling to select the K seeds for the suc-
cessive extension phase. The emulation relies on two parallel primitives, prefix-
sum [40, 179] and weighed random number generation 4, which are efficiently im-
plemented in the literature for GPUs. Given the similarity value of each query-
target node pair pxy of P|V |ˆ|V 1|, APPAGATO performs the parallel prefix-sum of
such values through |V | ˆ |V 1| threads (i.e., one thread per similarity value). The
result is a prefix-sum array, in which each element is associated to a thread and the
corresponding similarity value. As an example, Figure 10.2 shows the prefix-sum
array of four threads, t01, t02, t03, t04 having similarity value 0.1, 0.9, 0.8, and 0.2,
respectively. The array elements have been depicted through different sizes to bet-
ter represent the corresponding similarity values. Then, all the threads generate a
random sequence of K values in the interval r0,

ř

pxys (i.e., r0, 2s in the example).
The parallel primitive for the random number generation allows the threads to
share the generation seed and, as a consequence, to generate the same sequence
of random values. This allows the threads to concurrently recognize whether the
own boundaries in the prefix-sum array include any randomly generated value. In
the example, the sequence of random values K1 “ 1.25 and K2 “ 0.15 leads to the
pair of nodes pvQ0 , vT3 q and pvQ0 , vT2 q associated to threads t03 and t02, respectively,
to be selected for the extension phase.

Phase 3: Parallel extension.

The extension phase has been implemented through primitives of BFS, prefix-sum,
weighed random number generation over different levels of parallelism. As a first
level, the K query-target nodes selected in phase 2 are mapped to thread blocks
(i.e., one pair of query-target nodes per block). They are concurrently processed

as follows. Given a node pair (e.g., (vQ0 , vT3) in Figure 10.2) the two nodes are
processed in parallel by two thread warps (second level of parallelism). The two
warps perform a one-step parallel BFS (third level of parallelism) on Q and T ,

respectively, to visit the neighbour nodes (i.e., candidate connections) of vQ0 and

vT3 . The result is two frontiers of neighbours ({vQ1 , vQ2 , vQ4 } and {vT0 , vT1 , vT2 , vT5 } in
the example). One step of extension over Q performs through a random selection of

a node (connection) from the first frontier (vQ1 in the example). For such a node,
APPAGATO generates the connection profile through a one-step parallel BFS.
Such a connection profile strongly affects the extension over T , which is performed

4 https://developer.nvidia.com/curand

https://developer.nvidia.com/curand

10.1 Materials and methods 141

as follows. Starting from all the nodes of the second frontier, APPAGATO (i) runs
one step of parallel BFS (one per node), (ii) generates the connection profiles of
the visited nodes, and (iii) generates the connection profile similarity of each of
such nodes with the connection of Q. Through an emulation of the Gibbs sampling
similar to that implemented in phase 2, APPAGATO selects the new connection
for T . The algorithm iterates over the new pair of nodes (i.e., connection of Q and
connection T) for a total number n “ |V | iterations.

10.1.4 Datasets

Physical Interaction Networks

We used the PPI networks taken from the STRING v10.0 databases [256] of three
species: Mus musculus, Homo sapiens, and Danio rerio. These networks differ sig-
nificantly in size (number of nodes and edges) and density (i.e, the average number
of neighbours per node). For each network, we used up to 250 synthetic labels and
gene ontologies annotation downloaded from BioDbNet 5. This yielded 12 differ-
ent PPIs (i.e., 3 species, each one labelled in 4 different ways). We constructed
the queries by randomly extracting sets of 100 connected subgraphs, from each
network, by varying the size of the queries up to 128 nodes. In this dataset, the
similarities matrix S|V |x|V 1|pq, tq “ 1 if Labpqq “ Labptq otherwise is set to 0.

Functional Interaction Networks

The STRING database reports, among two proteins and beside the direct physical
interactions used above, indirect functional relations such as structural similarity,
similarity between the transcript sequences encoding them, and functional corre-
lations. It gives a score, ranging from 0 (namely no relation is known) to 999,
which combines physical and functional (i.e., co-expression data analysis) interac-
tions. We constructed a second dataset by taking into account such a combined
score. We extracted 4 PPI networks related to the species Mus musculus, Homo
sapiens, Danio rerio and Saccharomyces cerevisiae. We fixed the interaction score
threshold at 998 to get few but highly functional related interactions within each
network. As queries, we used 10 human protein complexes taken from the CORUM
database [226]. Since CORUM only reports the set of proteins belonging to a given
complex, and not their interactions, we reconstructed the topology of the complex
by taking into account the interactions reported in the full STRING database with
respect to the Homo sapiens species. Finally, we labeled target and query nodes
with the protein sequences. We computed the query-target node similarities ma-
trix S|V |x|V 1|, by making use of CUDASW 6, which implements a parallel version
for GPUs of the Smith-Waterman algorithm for local alignment of sequences. We
normalized the matrix by row in order to set to 1 the maximum similarity of the
target and query node. We used this dataset to investigate the biological signifi-
cance of the results. The approximate subgraph matching algorithms were capable
to identify functional conservation of protein complexes among different species.
We refer the reader to Section 1 and Tables S1-S2 of the Supplementary for more
details.
5 http://biodbnet.abcc.ncifcrf.gov
6 http://cudasw.sourceforge.net

http://biodbnet.abcc.ncifcrf.gov
http://cudasw.sourceforge.net

142 10 Approximate Subgraph Isomorphism - APPAGATO

10.2 Results and discussion

We compared APPAGATO with NeMA [142] and RESQUE [231] on both the
physical and functional datasets described in Section 2.4. All the tools solve ISubGI
by taking into account the query topology. Unless differently specified, with the
term APPAGATO we refer to its implementation on top of CUDA. In the Sup-
plementary, Section 2, we report details on the APPAGATO implementation and
tuning of parameters (Fig. S1-S3), we assess the robustness of APPAGATO over
query construction (Fig. S4-S5) and the efficiency of both sequential and parallel
versions of APPAGATO (Fig. S6-S7).

10.2.1 Performance

For the physical interaction networks, we report the comparison results only be-
tween APPAGATO and NeMA, since RESQUE does not support such a large
dataset. Fig. 10.3 shows the average running times of the two tools on the Danio
rerio network. In the total running time of NeMa, we distinguish the target pre-
processing and the querying time. Note that APPAGATO does not perform any
prepocessing step. The results show that APPAGATO is at least three times faster
than NeMA in case of very small queries (i.e., 4, 8, 16 nodes). The performance
difference sensibly increases with larger queries. The plots clearly show that the
APPAGATO running time is almost constant when increasing the query size and
the number of labels. We do not report the comparison results on Mus musculus
and Homo sapiens since, in those networks, the running time difference is even
more evident (i.e., NeMa requires more than 10,000 seconds for the preprocessing
phase and more than 6,000 seconds for the execution phase, while APPAGATO
always requires around two seconds). Fig. S8 in Section 3 of Supplementary re-
ports the details on the APPAGATO running time in all the physical interaction
networks, by showing its efficiency varying the number of labels, query size, and
network size.

Fig. 10.4 reports the comparison of APPAGATO with RESQUE on the func-
tional interaction networks. For the sake of clarity, we do not include the NeMa
results in the comparison since in this kind of networks, RESQUE outperforms
NeMa. The performance of RESQUE mainly depends on the size of query and
target and on the number of possible candidates for each query node. RESQUE
requires, as an input, a similarity matrix between query and target nodes. Such a
matrix can be partially defined and this affects the quality of the results. If the
similarity matrix is fully defined, then the algorithm execution becomes infeasible
(i.e., RESQUE takes hours for a single query run). Therefore, we run several tests
by changing the percentage of target nodes that can match to a specific query
node. Given a threshold t, we set all entries in the similarity matrix with values
less than t to 0 (i.e., making them not possible candidates). We then normalized
each row by the row maximum value. We chose the percentages 10%, 5% and 1%
to obtain reasonable RESQUE running times (i.e., 14, 5, 1 seconds, respectively.
APPAGATO always requires around 0.69 seconds). The RESQUE running time
rapidly rises as the t threshold increases. In contrast, the APPAGATO running
times are always below 1 second.

10.2 Results and discussion 143

fig. 10.3: The running time comparison between APPAGATO and NeMa on the Danio
rerio PPI network, randomly labeled with 32, 64 and 250 labels. Chart values report the
average time on 100 queries. Queries are grouped with respect to the number of nodes,

namely 4, 8, 16, 32, 64, 128. For each query, the tools have been run to find 10, 50 and
100 matches.

fig. 10.4: Running times of APPAGATO and RESQUE on the functional interaction
networks. Results are grouped by the similarity thresholds. The running time of

RESQUE highly depends on the number of target nodes that can be matched with a
query node (i.e., on the similarity threshold t).

10.2.2 Quality measurements of matches

Fig. 10.5 shows a comparison of the average response costs of APPAGATO and
NeMA on the Danio rerio physical PPI network. We removed the duplicated
matches from the results of APPAGATO to avoid the bias coming from low cost
matches. Both algorithms are executed to return the best 10, 50, 100 matches. As
expected, both algorithms are highly dependent on the query size. However there

144 10 Approximate Subgraph Isomorphism - APPAGATO

is a clear difference in their output quality. The cost of NeMa results are often
close to 1, which means they involve a high number of mismatches. In contrast, the
averages of the APPAGATO costs range from 0.1 to 0.55. Fig. S9-S10 in Section
3 of Supplementary confirm the accuracy of APPAGATO, also on Homo sapiens
and Mus musculus.

fig. 10.5: Average costs (and their standard deviations) by taking into account the set of
distinct output matches. Analysis have been performed on the physical interaction PPI

of Danio rerio. Results are grouped with respect to the number of target labels and query
size.

We measured the statistical significance of the differences between the AP-
PAGATO and NeMa performance. We computed the p-values with a Wilcoxon
rank-sum test together with a FDR-correction (false discovery rate) for multiple
testing. Fig. S11 in Section 3 of Supplementary shows that APPAGATO signif-
icantly outperforms NeMa. The number of tested queries having lower p-values
increases as the output size becomes larger, particularly when the number of re-
quired output matches increases.

10.2.3 Querying protein complexes among different species.

We compared APPAGATO and RESQUE using 10 human protein complexes
taken from CORUM and queried on the functional interaction dataset composed by
Mus musculus, Homo sapiens, Drosophila melanogaster and Saccharomyces cere-
visiae networks (see Fig. 10.6 and Fig. S12 Supplementary). We test RESQUE
using two similarity threshold values, 1% and 100%. RESQUE shows the main

10.2 Results and discussion 145

performance limitation with a similarity threshold equal to 1% on every target net-
work, while it provides better performance by increasing the cut-off. In all cases,
APPAGATO outperforms RESQUE even on the quality of the results. To confirm
this, we run the Wilcoxons rank-sum tests (see Fig. S13 in Supplementary). For
low similarity thresholds (from 1% to 10%), APPAGATO provides p-values close
to 1ˆ 10´12. Better p-values (between 1ˆ 10´5 and 1ˆ 10´6) are shown when we
defined the whole similarity matrix. Nevertheless, this turned out to be unfeasible
from the running time point of view.

fig. 10.6: A chart showing the costs of the 10 protein complexes over the S. cerevisiae
and H. Sapiens networks. The CORUM ID of the protein complexes is reported on the
x-axis. In the top charts, the similarity threshold is equal to 1%. For those reported in

the bottom side the similarity matrix has not been filtered.

Fig. S14 in Section 4 of Supplementary shows the functional coherence of re-
sults with respect to gene ontology. We computed the average p-value for both
algorithms obtained by querying the 10 protein complexes for each of the four
species. APPAGATO outperforms RESQUE on every type of target networks and
similarity threshold. We refer the reader to Sections 4-5 (Fig. S15-S16-S17) of
the Supplementary for details and further application of APPAGATO to compare
disease modules over tissue specific protein interaction networks.

10.2.4 Datasets and query details

We built two datasets of protein-protein interaction (PPI) networks taken from
STRING [256]. Table 1 reports the topology properties of each network.

The physical dataset contains large networks. The network size, which is ex-
pressed in terms of number of nodes, ranges from 5,700 to 173,780 edges. In each

146 10 Approximate Subgraph Isomorphism - APPAGATO

network, nodes are proteins and edges represent the experimentally validated phys-
ical interactions between two proteins. We labeled each network first by randomly
assigning 32, 64, and 250 labels through a uniform distribution. Then we used real
labeling taken from gene ontologies (GOs) annotations in the following way. We
downloaded from BioDbNet [198] the GO biological processes relative to the pro-
teins of the PPI networks. Second, for each species, we built a representative set
of the most recurrent GO terms among proteins and we mapped each GO process
to the closest representative GO term. We used the shortest path in the GO tree
as a distance measure between two GOs. Finally, we assigned to each protein a
unique label as the most frequently mapped GO term in the list of GO processes
linked to that protein. The process returned up to 43 different labels.

For this dataset, we constructed the queries by randomly extracting sets of
100 connected subgraphs from each network. We varied the query size over 4, 8,
16, 32, 64, and 128 nodes. By construction, the queries are exact subgraphs of
the networks. APPAGATO returns matches with costs ě 0. However, the analysis
focuses on matches with costs greater than 0 (i.e., it does not take into account
exact matches, whose number is negligible, and which are of less interest w.r.t.
the approximate ones). This dataset was inspired by the benchmark used for the
contest on graph matching algorithms for pattern search in biological databases
(http://biograph2014.unisa.it/). We used this dataset to assess the algorithm per-
formance in terms of running time and to show that the existing tools, except
APPAGATO,, do no scale on such large biological networks. That is, considering
the compared systems, only NeMa [142] runs in reasonable time on the smallest
specie, i.e., Danio rerio.

To compare APPAGATO with RESQUE [231], we created functional PPI net-
works of smaller size (compared to the physical interaction datasets, see Table 2.
We constructed the functional interaction networks in the following way. Beside
the physical interactions between proteins, PPI networks have been constructed
by using: (i) the structural similarity; (ii) the similarity between the transcript (or
gene) sequences encoding them; and (iii) the functional correlations (activation,
catalysis, inhibition and so on). The STRING dataset reports a score, ranging from
0 (namely no relation is known) to 999, which combines all above interactions. We
set the threshold to 998 to get few but highly functional related interactions. The
network size, which is expressed in terms on number of nodes, varies from 1,920
to 3,131, while there are up to 17,560 edges. The query size, which is expressed
in number of nodes, ranges from 9 to 23. They are protein complexes taken from
CORUM [226].

10.3 APPAGATO Implementation

APPAGATO, has been developed on top of the CUDA-C++ Toolkit 7.0 frame-
work. The experimental results have been run on a personal computer with AMD
Phenom II X6 1055T (3Ghz) CPU, 8 GB of RAM, NVIDIA GTX 780 GPU de-
vice, and Debian 7 operating system. APPAGATO takes as input the maximum
depth of the BFS visits, lmax, which has been set to 2 in all experiments. APP-
AGATO takes as input queries with maximum 254 nodes and 65, 536 edges, and

10.3 APPAGATO Implementation 147

Physical interactions nodes edges avg. degree

Homo sapiens 12,575 173,780 27.63 (52.06)

Mus musculus 9,781 104,322 21.33 (39.48)

Danio rerio 5,720 51,464 17.99 (31.60)

Functional interactions

Homo sapiens 3,131 17,560 5.60 (10.98)

Saccharomyces cerevisiae 3,214 41,230 12.82 (26.91)

Mus musculus 1,572 8,708 5.53 (11.99)

Drosophila melanogaster 1,920 14,242 7.41 (16.16)

Table 10.1: Topology properties (number of nodes, number of edges, and average
degree) of the target networks, for both physical and functional interaction types.

CORUM ID nodes edges name

86 10 72 Nucleosomal methylation activator complex

96 9 72 Anaphase-promoting complex

191 14 182 20S proteasome

788 10 90 Exosome

924 7 40 Toposome

1097 13 156 eIF3 complex

2174 9 72 TRAF6 oligomer complex

2686 13 140 BRCA1-core RNA polymerase II complex

5209 6 26 Ubiquilin-proteasome complex

5609 9 32 Emerin regulatory complex

Table 10.2: Queries of the CORUM complexes.

target graphs having maximum 65, 536 nodes and 232 edges. APPAGATO , run
with in input the similarity matrix, does not have constrains on the number of
labels, otherwise, the number of labels is fixed to 256. The extension phase of
APPAGATO in Section 10.1.2 describes the standard application of Gibbs sam-
pling, which iterates the extension a sufficiently large number (n) times. That is,
the sampling replaces the target node with another one, according to a properly
defined transition probability, and this is iterated n times. The sampling proce-
dure in APPAGATO is inspired by the procedure that finds the local alignment
of biological networks presented in [194]. n should be a user parameter, but since
APPAGATO is implemented in parallel and K seeds are processed, APPAGATO,
sets n “ |V |, where |V | is the number of nodes in the query. APPAGATO is
also released as a sequential version, to be run on CPU-based architectures with
no GPU accelerators. This allows us to understand how much the APPAGATO
efficiency is due to the algorithm and how much it is due to the parallel imple-
mentation. The sequential implementation has been developed in C++11.

148 10 Approximate Subgraph Isomorphism - APPAGATO

Danio rerio Mus musculus Homo sapiens

1 2 3 4 5 1 2 3 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Ti
m

e
 (

se
c.

)

fig. 10.7: Running times (and their standard deviation) of APPAGATO results over the
physical PPI networks obtained by varying the seed BFS depth lmax from 1 to 5.

1 2 3 4 5 1 2 3 1 2
0.25

0.27

0.29

0.31

0.33

0.35

A
ve

ra
g

e
 c

o
st

Danio rerio Mus musculus Homo sapiens

fig. 10.8: Average costs (and their standard deviation) of APPAGATO results over the
physical PPI networks obtained by varying the BFS depth lmax from 1 to 5.

Computing the matching probability matrix. APPAGATO computes a ma-
trix P of matching probabilities between all possible query-target node pairs based
also on the similarity of the neighbors of the two nodes (see Section 10.1.2). This
section explains the rationality behind several choices made by APPAGATO to
compute P .

Default value of lmax.

In order to compute the matrix P , APPAGATO performs breadth-first visits
(BFSs) of target e query nodes. The maximum depth of BFS visit, lmax, is, per
default, set to 2. This value has been empirically chosen by analysing the perfor-
mance of APPAGATO by varying the value of lmax from 1 to 5. A BFS depth
equal to 1 means taking into account only the adjacent nodes of the starting one.

Figure 10.7 reports the running time obtained by varying lmax over the three
physical PPI networks. The time grows exponentially as the BFS depth increases.

10.3 APPAGATO Implementation 149

Danio rerio Mus musculus Homo sapiens

S D

B
F

S

S
+

D

S
+

B
F

S

D
+

B
F

S

S
+

D
+

B
F

S S D

B
F

S

S
+

D

S
+

B
F

S

D
+

B
F

S

S
+

D
+

B
F

S S D

B
F

S

S
+

D

S
+

B
F

S

D
+

B
F

S

S
+

D
+

B
F

S

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
ve

ra
g

e
 c

o
st

fig. 10.9: Average costs (and their standard deviation) obtained by aggregation of the
MScore components: label similarity (S), degree similarity (D), and BFS similarity

(BFS), over the physical PPI networks.

Danio rerio Mus musculus Homo sapiens

5% 10% 20% 50% 5% 10% 20% 50% 5% 10% 20% 50%
0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
g

e
 c

o
st

fig. 10.10: Average costs of matches obtained by querying a set of perturbed queries over
the physical PPI networks. The results are grouped according to the percentage of

alterations, which ranges from 5% to 50%.

Due to memory limitations, BFS depth greater than 3 is not applicable on the Mus
musculus PPI, as well as a depth greater than 2 on the Homo sapiens network.

However, we noticed that, the running times for lmax “ 2 do not substantially
increase with respect to lmax “ 1 in all datasets. Figure 10.8 shows the solution
costs obtained by varying lmax over the three physical PPI networks. The lowest
costs are achieved with lmax “ 2.

Score contribution.

The P values are based on a linear combination of three distinct scores: label
similarity S, degree similarity D, and BFSSim similarity (see Section 10.1.2).
We evaluated the contribution that these three components give to the accuracy
of APPAGATO,. We analyzed each of them alone and by combining them two
by two. Figure 10.9 shows the average costs over the physical PPI networks. If

150 10 Approximate Subgraph Isomorphism - APPAGATO

5%

32 64 250 32 64 250 32 64 250 32 64 250
0.4

0.42

0.44

0.46

0.48

0.5

0.52

A
ve

ra
g

e
 c

o
st

10% 20% 50%

fig. 10.11: Average cost of matches by querying a set of perturbed queries over the
physical PPI networks of Danio rerio. Firstly, the results are grouped according to the
percentage of alterations, which ranges from 5% to 50%. Then they are grouped by the

number of distinct labels of the target graph.

4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128
0

5

10

15

20

25

30

parallel sequential NeMa

Ti
m

e
 (

se
c.

)

35 (33)

Danio rerio Mus musculus Homo sapiens

fig. 10.12: Running times (and their standard deviation) of NeMa and the sequential
and parallel version of APPAGATO over the physical PPI networks. The results are

grouped by query dimension.

the three similarity functions are used alone, the BFS similarity is the one that
reaches the lowest costs, and every combination that includes the BFS similarity
maintains the same behavior. However, the lowest costs are obtained by combining
together the three similarity functions. This becomes more evident by increasing
the network size.

APPAGATO robustness over query perturbations. We evaluated how
query perturbations can influence the matching costs. We randomly modified the
queries constructed in the datasets (as explained in Section 10.1.4) by applying
label alterations and edge swapping to a number of nodes, where such a number
varies from 5% to 50% of the total nodes (perturbation degree). A node label
alteration simply consists of randomly changing the node label. Given an edge
connecting two nodes, an edge swapping consists of randomly changing one of the

10.3 APPAGATO Implementation 151

1% 5% 10% 100%
0

1

10

100

1,000

parallel sequential RESQUE

Ti
m

e
 (

se
c.

)
-

lo
g

. s
ca

le

fig. 10.13: Running times (and their standard deviation) of RESQUE and the
sequential and parallel version of APPAGATO over the functional PPI networks. The

results are grouped by similarity threshold.

two nodes. Figure 10.10 shows the average costs of 100 perturbed queries, over the
physical PPI dataset. Figure 10.11 shows the results obtained on the Danio rerio
network by varying the number of labels of the target nodes. For each perturbed
query, we extracted the top 10 matches. Figures 10.10 and 10.11, which have to be
compared with Figure 10.5, show that the perturbation degree affects the solution
costs non linearly. Any minimal perturbation (e.g., 5%) increments the solution
costs around 30% (see for example the average costs of 32-node queries with 32
labels of Figure 10.3 and the Danio rerio results of Figures 10.10 and 10.11). Then,
any further perturbation (from 5% to 50%) still increases the costs, even though
to a lesser extent.

Parallel versus sequential implementation of APPAGATO. We cre-
ated a sequential version of APPAGATO in order to understand how much its
efficiency is due to the algorithm and how much it is due to the parallel imple-
mentation. It is important to note that, beside efficiency, an important feature of
the algorithm core is the high degree of potential parallelism. This allows us to
parallelize the implementation massively for GPUs. Figures 10.12 and 10.13 show
that the sequential version outperforms the parallel one on very small queries.
The parallel implementation provides a significant speed-up as soon as the query
size increases. The gained speed-up also depends on the size of the target network
(see Figure 10.12). The sequential version is faster then the parallel one in case
of queries with size up to 16 over the Danio rerio network, which is the smallest
one in the dataset. However, the performance difference between sequential and
parallel in these cases is negligible. In contrast, the parallel version outperforms
the sequential one also on queries of size equal or less than 16 in the Homo sapi-
ens PPI networks. Similar results have been obtained by taking into account the
functional PPI networks. The sequential implementation is slightly more efficient
than the parallel one for a similarity threshold equal to 1%, and it loses its (neg-
ligible) gain for higher thresholds (see Figure 10.13). The results also show that
the sequential version of APPAGATO is faster than the two compered methods,

152 10 Approximate Subgraph Isomorphism - APPAGATO

fig. 10.14: APPAGATO running times over the physical interaction networks. In the
upper side of the figure, the whole set of queries is grouped by species. For each query,
10, 50 and 100 results are given. In the lower side of the figure, the same set of results

is grouped according to the number of target labels (from 32 to 250) and number of
query nodes (from 4 to 128). The times include the whole software execution (host CPU

plus GPU device).

NeMa and RESQUE. The sequential version is released together with parallel one
at http://profs.sci.univr.it/%7Ebombieri/APPAGATO.

10.3.1 APPAGATO performance

Figure 10.14 reports the running time of APPAGATO over the physical interaction
networks. For each query, APPAGATO returns K “ 10, 50, 100 matches. The
upper side of the figure reports the whole set of query results for species. The
parallel implementation allows the algorithm to handle larger match sizes (i.e., to
set K up to 100) without decreasing the performance in a significant way. On the
other hand, by varying K, the overhead due to the loading and downloading data
towards the GPU device increases. The performance mainly depends on the size
and topology of the target network and on the number of query nodes. The lower
side of Figure 10.14 reports and groups the results for each species with respect

10.4 Functional coherence measurement in querying protein complexes among different species. 153

to the number of label and query size. The figure shows how the performance
highly depends on the query size, since it increases the number of extension steps
performed by the algorithm. On the other hand, increasing the number of target
labels does not cause significant differences.

Due to the randomness of sampling, APPAGATO, may return duplicated
matches. The upper side of Figure 10.15 shows the ratio between the number
of distinct matches and the total number of results. By taking into account both
average and standard deviation, the ratio is always above 90%. The chart shows
that the percentage decreases as long as the number of target labels increases. The
lack of distinct labels reduces the number of matches having a low node mismatch
cost. Figure 10.15 (lower side) reports the average query costs of APPAGATO over
the physical interaction networks. APPAGATO maintains relatively low costs even
for targets with 250 labels. The cost chart shows a very slight difference between
synthetically labeled targets and those annotated with GOs. Such a difference may
depend on the distribution of labels (we recall that synthetic labels are uniformly
distributed). This may reduce the label variability of target node neighbourhood,
thus leading APPAGATO to node mismatches.

Figure 10.16 shows the solution costs provided by APPAGATO ordered over
query size, grouped per species and per number of labels. Notice that the costs
do not increase by increasing the network density or the number of labels. The
costs vary by changing the size of the query graph. This result is highly related to
the number of exact matches that exist within a target network and by varying
the query size [51], since the probability of finding an exact match decreases as
the size of the query increases. Figure 10.18 shows that APPAGATO outperforms
RESQUE on the term of low query costs obtained in Mus musculus and Danio
rerio with similarity threshold t per RESQUE set to 1% and 100%.

Figures 10.17 and 10.19 report the p-values with a Wilcoxon rank-sum test
together with a FDR-correction (false discovery rate) for multiple testing, thus
showing that APPAGATOsignificantly outperforms NeMa and RESQUE. Finally,
Figure 10.20 shows the functional coherence of the results with respect to gene on-
tology. We computed the average p-value for both algorithms obtained by querying
the 10 protein complexes for each of the four species. APPAGATO outperforms
RESQUE on every type of target networks and similarity threshold.

10.4 Functional coherence measurement in querying protein
complexes among different species.

We computed the functional coherence of APPAGATO and RESQUE results
with respect to GO. The average p-value for both algorithms have been ob-
tained by querying the 10 protein complexes for each of the four species. We
adapted the algorithm used in GO::TermFinder [52] to work with proteins (see
Fig. 10.20). Protein annotations have been retrieved through the BioStar frame-
work (www.biostars.org). We used the three GO domains: Cellular components,
molecular function, and biological process. Then, we extracted the complete DAG
(directed acyclic graph) of GOs. The functional coherence determines whether any
GO term annotates a specific list of proteins at a frequency greater than that we

154 10 Approximate Subgraph Isomorphism - APPAGATO

fig. 10.15: APPAGATO average and standard deviation costs over Homo sapiens and
Mus musculus physical interaction networks grouped by number of labels. For each

interaction network, the complete set of 600 queries (100 for each query size) has been
tested by requiring 10, 50 and 100 APPAGATO matches.

expected by chance. Given a match, we extracted the set of GOs that are associ-
ated with any of the protein reported in the match. For each extracted GO, we
calculated a p-value by making use of the hypergeometric distribution:

p “ 1´
k´1
ÿ

i“0

`

M
i

˘`

N´M
n´i

˘

`

N
i

˘ (10.7)

where N is the total number of proteins in the background distribution, namely
the total number of nodes in the target graph; M is the number of proteins within
the whole target graph, which are annotated with the specific GO term, n is the
number of matched proteins of the query, and k is the number of query nodes
annotated with the specific GO term. The complete set of p-values, one for each
GO term, has been corrected with the false discovery rate (FDR). Finally, we
calculated the average of such p-values. Fig. 10.20 shows the functional coherence
of APPAGATO and RESQUE results with respect to GO and that APPAGATO
outperforms RESQUE on every type of target networks and similarity threshold.

10.4 Functional coherence measurement in querying protein complexes among different species. 155

fig. 10.16: Average costs and their standard deviation of APPAGATO approximate
matches over the Homo sapiens and Mus musculus physical interaction networks. The

whole set of queries is firstly grouped (upper side of the figure) by species and query size
(number of nodes), and then by the number of labels and query size (lower side of the

figure).

Figure 10.21 shows the results of APPAGATO and RESQUE on the protein
CORUM7 complex Ubiquilin-proteasome complex (CORUM id: 5209). The topol-
ogy of the protein complex 5209 has been extracted from the Homo sapiens PPI
and its phylogenetic conservation has been searched in Saccharomyces cerevisiae,
Mus musculus and Drosophila melanogaster PPIs. According to the information re-
ported in CORUM, the 5209 protein complex is conserved with a decreasing score
from very high, medium to medium-low in Mus musculus, Drosophila melanogaster,
and Saccharomyces cerevisiae, respectively. The compared algorithms consider
both similarities on nodes (sequence similarity) and topology. We show that an
accurate algorithm that maximizes both the above similarities better captures the
phylogenetic conservation. Moreover, Figure 10.21 reports that APPAGATO is
more accurate than RESQUE, since according to APPAGATO, the protein com-
plex 5209 is much more conserved in Mus musculus than in the other two species,

7 http://mips.helmholtz-muenchen.de/genre/proj/corum/

156 10 Approximate Subgraph Isomorphism - APPAGATO

fig. 10.17: Statistical significance of match costs. Wilcoxon rank-sum test of
APPAGATO, versus NeMa.

fig. 10.18: A chart showing the costs of the 10 protein complexes over the Mus
musculus and Drosophila melanogaster networks. The CORUM ID of the protein

complexes is reported on the x-axis. In the top charts, the similarity threshold is equal to
1%. For those reported in the bottom side the similarity matrix has not been filtered.

whereas RESQUE gives higher conservation in Saccharomyces cerevisiae. By com-
bining topology and node similarities in the query matching helped us to rank
the results in Drosophila melanogaster closer than the one in Saccharomyces cere-
visiae. APPAGATO maintains similar quality results with the similarity matrix
filtered to 1%, 5%, and 10%, while the performance of RESQUE drastically de-
creases. Figure 10.21 shows the results obtained with the filter set to 10%. In
this case, RESQUE tries to maximize the topology, but it finds in Mus musculus
another protein complex named Minichromosome Maintenance Complex. We also
recall that RESQUE gains quality and increases running time as the filter on the
similarity matrix decreases.

10.4.1 Querying disease modules

Recently, great attention has been given to tissue-specific PPI networks, in which
nodes represent proteins whose genes are preferentially expressed in specific tis-

10.4 Functional coherence measurement in querying protein complexes among different species. 157

fig. 10.19: Wilcoxon rank-sum tests and FDR correction of APPAGATO results with
respect to RESQUE, grouped by similarity thresholds (from 1% to 100%) on the

functional interaction network. 10 human protein complexes have been queried over all
target networks.

fig. 10.20: Averages (and standard deviations) of functional coherence. P-values are
grouped by similarity threshold (from 1% to 100%). Within each group, the order of the

bars correspond to the S. cerevisiae, D. rerio, H. sapiens and M. musculus networks,
respectively. For each query, the functional coherence of the single RESQUE response

has been taken into account, while the 100 APPAGATO responses (requested as output)
have been averaged to report a single value. The APPAGATO p-values range from 0.010

to 9ˆ 10´5, while RESQUE values range from 0.053 to 6ˆ 10´4.

sues. Proteins form tissue-selective complexes and remain inactive in other tis-
sues [28, 282]. Moreover, disease genes have higher transcript levels and more in-
teracting partners in the disease-tissue specific PPI networks with respect to the
unaffected tissues [27, 174]. Differently from most of the available PPI network
repositories, which represent interactions ignoring where these take place, SPEC-
TRA [193], MyProteinNet [28] and GIANT [114] collect tissue- and tumor-specific
networks. Given a tissue or a condition, by integrating expression data from public
repositories [26,228,268], they score the edges in PPI networks based on the node
co-expression.

We used tissue-specific PPI networks extracted from GIANT [114] to analyze
protein interaction modules related to the Obsessive-compulsive Disorder (OCD).
Nodes have been compared by using the query-target node sequence similarities
(as described in Section 10.1.2). OCD is a pathologic neuropsychiatric condition

158 10 Approximate Subgraph Isomorphism - APPAGATO

UBQLN1

PSMA1

PSMA2

UBE3A

UBQLN2

PSMA6

CG30382 (0.34)

Prosβ7 (0.06)

Prosα4 (0.03)

Prosα3T (0.39)

Prosβ6 (0.02)

Prosα3 (0.11)

PRE10 (0.42)

PRE9 (0.62)

PRE7 (0.18)

SCL1 (1.0)

PRE8 (0.15)

PRE5 (0.06)

Psma8 (0.26)

Psmb8 (0.94)

Psmb5 (0.42)

Psma6 (1.0)

Psmb1 (0.52)

Psmb2 (0.09)

UBQLN1

PSMA1

PSMA2

UBE3A

UBQLN2

PSMA6

Prosa6 (1.0)

Rpn10 (0.03)

Rpn12 (0.03)
CG30382 (1.0)

Ubqn (1.0)

Rpt1 (0.09)

PRE5 (1.0)

PRE8 (1.0)

PRE1 (0.13)

SCL1 (1.0)

PBA1 (0.15)

PUP3 (0.06)

Psma1 (1.0)

Psma2 (1.0)

Psma7 (0.33)

Psmb5 (0.42)

Psmb9 (0.06)

Psma6 (1.0)

RESQUE

APPAGATO

H. sapiens D. melanogaster S. cerevisiaeM. musculus

fig. 10.21: Top matches of human Ubiquilin-proteasome complex (CORUM id: 5209)
in Mus musculus, Drosophila melanogaster, and Saccharomyces cerevisiae retrieved by
APPAGATO and RESQUE with no filter (100%) on the similarity matrix. Matched

nodes in different species are horizontally aligned.

Query OCDB Brain Thalamus Basal ganglion

AFF2

NTRK3

NEUROD6

GRIK3

SLC1A2

DRD2

AFF2 (1.0)

CACNA1E

(0.88)

NEUROD6
(1.0)

PLXNA2
(0.82)

TACR1
(0.80)

DRD2
(1.0)

AFF2 (1.0)

NTRK3
(1.0)

PSG6
(0.18)

GNAZ
(0.23)

SLC1A2

(1.0)

GABRA5

(0.67)

AFF2 (1.0)

TMEM164

(0.02)

SLC8A1
(0.43)

RPH3A
(0.51)

DRD2
(1.0)

NTRK3

(1.0)

Blood

TCF4 (0.84)

LDLRAD4

(0.83)

MAGEH1

(0.17)

PRR5L

(0.66)

PLXNC1

(0.82)

BLNK

(0.69)

PLCH1 (0.72)

SH3PXD2A

(0.62)

NEUROD6

(1.0)

GRIK3
(1.0)

RYK
(0.81)

RAI14

(0.37)

Frontal lobe

fig. 10.22: APPAGATO top matches of OCDB query in Brain, Thalamus, Basal
ganglion, Frontal lobe, and Blood tissues. Matched nodes in different tissues are

horizontally aligned. Dashed lines represent edges of target graphs that are not present in
the query. Solid lines are edges that are present in both the query and the target graphs.

characterized by obsession (recurring thoughts) and compulsions (recurring be-
haviors), which produces considerable problems for the patients [222]. Given the
nature of such a disorder, we have investigated five tissue-specific networks: Brain,
Thalamus, Basal ganglion, Frontal lobe and Blood. The networks have sizes vary-
ing from about 3,000 to 12,000 nodes and degrees ranging from 3 to 68. The choice

8 Due to the size of the target networks and the use of matrix similarities, we could
not run the compared systems on these instances. Sections 10.2 reports details on the
system performance.

10.5 Conclusions 159

of these tissues is motivated by the fact that cortico-striato-thalamo-cortical cir-
cuitry (CSTC) shows dysfunctions in OCD patients [50, 218] and, in this circuit,
the functional areas involved are Prefrontal cortex, Basal Ganglion and Thalamus.
Moreover, we chose Brain to have a general disease-associate tissue and Blood
since several soluble factors circulate in the serum and can influence the mood.
According to this, one can try to understand if there are other probable genes,
and therefore genetics products, that could have a role in OCD pathophysiology.

We queried a dedicated database, OCDB [222], to achieve lists of disease-
candidate genes to be investigated. The connections among genes have been ex-
tracted from the Brain network by choosing only edges with medium-high confi-
dential score (greater than 30). Fig. 10.22 reports the APPAGATO results on a
query composed by 6 nodes (genes), differently associated to OCD according to
the OCDB classification: DRD2 (Class 1), SLC1A2 (Class 1), NTRK3 (Class 1),
GRIK3 (Class 2), NEUROD6 (Class 4) and AFF2 (Class 4).

The chart confirms that the module is generally well conserved in the Brain
(where different occurrences of the query beside the exact one are returned), in
Thalamus, and Basal ganglion and let us to formulate some hypothesis. Notably,
the glutamate amino acid transporter family SLC1 is involved in function of CSTC
circuits [138]. The SLC1 (SLC1A1, SLC1A2, SLC6A2, SLC6A4) family is a het-
erogeneous group of genes whose members have been deeply studied in OCD. So
far, only the neuronal glutamate transporter gene (SLC1A1) has been reported as
expressed gene in CSTC circuits [138,222]. The APPAGATO results highlight the
solute carrier family 8 (sodium/calcium exchanger), member 1 (SLC8A1) as a pos-
sible candidate gene in OCD (see the ”Basal ganglion” network). By exploring the
literature, we have found that SLC8A1 contributes to the regulation of Ca(2+)-
dependent events in several cell types [143]. In the literature, a precise association
with OCD is not reported, nevertheless the Na(+)/Ca(2+) exchangers (NCX) pro-
tein encoded by SLC8A1 contributes to long-term potentiation of the brain and
learning, neurotransmitter as well as in immune responses. Moreover, a functional
annotation of SLC8A1 using DAVID [129] shows that that SLC8A1 is expressed
in the Brain as well as in other tissues (Airway smooth muscle, Heart, Liver, PCR
rescued clones, Placenta). By querying OCDB genes in blood tissue, we found an
approximate match containing the transcription factor 4 (TCF4) that has a role in
Schizophrenia. Therefore, a possible association, in OCD, of the matched genes in
the Blood and in the other tissues could be further experimentally investigated.

10.5 Conclusions

We have developed APPAGATO, a stochastic and parallel algorithm to find
approximate occurrences of a query in biological networks. APPAGATO deals
with node, edge, and node label mismatches. It is implemented for GPUs. The
choice of such devices is motivated by their accessible costs, high-performance,
and widespread availability on any personal computer. All above features allow
APPAGATO to compute efficiently functional and topological node similarity to-
gether with fast searching of a large number of query matching within the target
graph. The results show that APPAGATO outperforms the existing tools in terms

160 10 Approximate Subgraph Isomorphism - APPAGATO

of running time and result accuracy and, unlike competitors, it scales also on very
large PPI networks.

Part III

Profiling and Analysis Framework

Introduction

This part of the thesis presents a study of advanced profiling models to analyze
performance, energy and power consumption of algorithm implementations. It first
focuses on a specific class of algorithms called parallel primitives which are widely
used as building blocks for more complex applications. The proposed model (Sec-
tion 12) aims at evaluating such primitives by considering both architectural details
and low-level profiling information. Then, it presents a performance model based
on complementary features and a set of microbenchmarks to provide a comprehen-
sive characterization of a given GPU device from the performance point of view
(Section 13). Thanks to the collected information, it allows accurately estimating
the potential performance of the application under tuning, at the same time, it
provides programmers with interpretable profiling hints. Later, this part describes
a extended set of microbenchmarks to characterize a given GPU device in terms
of power and energy consumption beside performance (Section 14). In Section 15,
we present an overall model which considers and extends the previous results to
allow efficiently driving the application tuning by considering the three design con-
straints (power, performance, energy consumption) and the characteristics of the
target GPU device.

This part of the thesis is organized as follows. Section 11 discusses related work
concerning GPU performance models and microbenchmarking. Sections 12, 13, 14,
and 15 introduce the methodology and the experimental results in this context.
Finally, Section 16 presents the evaluation of the workload decomposition problem
as case of study. The section analyzes and compares the most important strategies
and approaches for load balancing in the literature in terms of performance, power,
and energy efficiency.

11

Related Work

The related work section presents the main approaches in the literature for two
fundamental aspects which compose the profiling framework, performance models
and microbenchmarking. The section first introduces state-of-the-art models for
performance evaluation and prediction which rely on analytical analysis, instruc-
tion simulators, and machine learning algorithms. Secondly, it presents the related
work for power, performance, and energy consumption analysis and characteriza-
tion through microbenchmarking.

11.1 Performance models

Different performance models for GPU architectures have been proposed in lit-
erature. They can be classified into specific models, which apply on a particular
application or pattern only, and general-purpose models, which are applicable to
any program/kernel for a comprehensive profiling [166].

In the class of specific models, [90] proposes an approach for performance anal-
ysis of code regions in CUDA kernels, while, in [75], the authors focus on profil-
ing divergences in GPU applications. A different analytical approach is proposed
in [115], which aims at predicting the kernel execution times of sparse matrix-
vector multiplications.

General-purpose models allow profiling applications from more optimization
criteria point of view and, thus, they can give different hints on how to optimize
the code. As an example, [127] proposes a model for NVIDIA GPUs based on two
different metrics: Memory warp parallelism (MWP) and computation warp paral-
lelism (CWP). Although the model predicts the execution costs fairly well, the un-
derstanding of performance bottlenecks from the model is not so straightforward.
This model has been extended in two different ways [148, 247]. [148] introduces
two kernel behaviors, MAX and SUM, and shows how they allow generating pre-
dictions close to the real measurements. Nevertheless, they do not provide clues
as how to choose the right one for a given kernel. In contrast, [247] extends the
model with additional metrics, such as cache effect and SFU instructions.

All these analytical performance models, although accurate in several cases,
rely on simulators (e.g., Ocelot, GPGPU, Barra) to collect necessary information

166 11 Related Work

for profiling, which implies a high overhead in the profiling phase. An attempt
has been made in [292] for collecting more efficiently information on the GPU
characteristics and using simple static analysis methods to reduce the overhead of
runtime profiling.

Besides the often prohibitive overhead introduced in the profiling phase, es-
pecially for complex applications, a big problem of the simulator-based models is
portability. They can be applied to profile applications on GPU models that are
supported by the simulator, which, often, is not updated to the last releases of
GPU models.

Differently from the analytical models, [141] and [233] are based on machine-
learning techniques, which allow identifying hardware features and using feature
selection, clustering and regression techniques to estimate the execution times.
Nevertheless, both these models are inaccurate, thus providing approximate esti-
mations with high variability.

11.2 GPU Microbenchmarking

In [201], the authors evaluated throughput and the power efficiency of three 128-
bit block ciphers (AES, Camellia, and SC2000) on Nvidia Geforce GTX 680 with
Kepler architecture and on AMD Radeon HD 7970 with GCN architecture. For
the comparison, the authors used Nvidia Geforce GTX 580 and AMD Radeon
HD 6770 with architecture of one generation earlier. The authors developed a mi-
crobenchmark suite that allows understanding that arithmetic logical instructions
are required by encryption processing but are eliminated from some of the process-
ing cores in NVIDIA Kepler architecture, unlike AMD graphics core next (GCN)
architectures.

In [286], the authors propose an OpenCL microbenchmark suite for GPUs and
CPUs. They present the performance results of hardware and software features
such as bus bandwidth, memory architectures, branch architectures and thread
hierarchy, etc., evaluated through the proposed microbenchmarks on multi-core
X86 CPU and NVIDIA GPUs.

In [98], the authors propose a microbenchmarking methodology based on short
elapsed-time events (SETEs) to obtain comprehensive memory microarchitectural
details in multi- and many-core processors. This approach requires detailed anal-
ysis of potential interfering factors that could affect the intended behavior of such
memory systems. They lay out guidelines to control and mitigate those interfering
factors.

In [185], the authors propose a fine-grained benchmarking approach and apply
it on two popular GPUs (i.e., Fermi and Kepler), to expose the previously unknown
characteristics of their memory hierarchies. The authors investigate the structures
of different cache systems, such as data cache, texture cache, and the translation
lookaside buffer (TLB). They also investigate the impact of bank conflict on shared
memory access latency. the GPU memory hierarchy, which can help in the software
optimization and the modelling of GPU architectures.

Thoman et al. [264] proposed a suite of OpenCL microbenchmarks, which
allows measuring functional characteristics of both GPUs and CPUs. Lemeire et

11.2 GPU Microbenchmarking 167

al. [158] presented the most complete and comprehensive set of microbenhmarks
among those proposed in literature, for both computational units and memory
analysis.

Each of these contributions either presents microbenchmarks for characteriz-
ing a GPU device from a specific design constraint point of view (performance or
power) or presents and analysis of GPU performance and power of a specific appli-
cation. Nevertheless, all these approaches have three main limitations. First, they
are limited to static characteristics of GPUs. Indeed, as explained in Section 15.2,
also the dynamic characteristics of a GPU are essential to understand how appli-
cation bottlenecks involving selected functional components or underutilization of
them can affect the code quality. Second, they do not cover all the functional com-
ponents of the GPU devices. Third, they are sensitive to the compilation phase,
which often makes the generated low-level code very inaccurate in measuring the
GPU characteristics.

12

Parallel Primitives Profiling

Parallelizing software applications through the use of existing optimized primi-
tives is a common trend that mediates the complexity of manual parallelization
and the use of less efficient directive-based programming models. Parallel primitive
libraries allow software engineers to map any sequential code to a target many-
core architecture by identifying the most computational intensive code sections
and mapping them into one ore more existing primitives. On the other hand, the
spreading of such a primitive-based programming model and the different GPU
architectures have led to a large and increasing number of third-party libraries,
which often provide different implementations of the same primitive, each one op-
timized for a specific architecture. From the developer point of view, this moves
the actual problem of parallelizing the software application to selecting, among
the several implementations, the most efficient primitives for the target platform.
This Section presents Pro++, a profiling framework for GPU primitives that al-
lows measuring the implementation quality of a given primitive by considering the
target architecture characteristics. The framework collects the information pro-
vided by a standard GPU profiler and combines them into optimization criteria.
The criteria evaluations are weighed to distinguish the impact of each optimization
on the overall quality of the primitive implementation. The Section shows how the
tuning of the different weights has been conducted through the analysis of five of
the most widespread existing primitive libraries and how the framework has been
eventually applied to improve the implementation performance of two standard
and widespread primitives.

12.1 Introduction

Computing platforms have evolved dramatically over the last years. Because of the
physical limitations imposed by thermal and power requirements, frequency scaling
has proven to be no longer the solution to increase the performance of processors.
As a consequence, many hardware manufacturers have turned to scale the number
of cores in a processor in order to boost application performance. Apart from the
significantly improved simultaneous multi-threading capabilities, such heteroge-
neous multi-core platforms also contain general-purpose graphic processing units

170 12 Parallel Primitives Profiling

(GPUs) to exploit fine-grained parallelism [4]. As a result of such hardware trends,
the heterogeneity of these platforms and the need to program them efficiently has
led to a spread of parallel programming models, such as CUDA and OpenCL.
In this context, many parallel applications frmo different context have been de-
veloped for GPUs, ranging from artificial intelligence [43], to electronics design
automation [39,49,270].

fig. 12.1: Overview of the Pro++ framework

On the other hand, while many software developers possess a working knowl-
edge of basic programming concepts, they typically lack of expertise in developing
efficient parallel programs in a short time. As a matter of fact, the programming
process with a CUDA or OpenCL-based environment is much more complicated
and time-consuming than that with a parallel programming environment for con-
ventional multiprocessor systems. Programmability of such parallel platforms is
consequently a strategic factor impacting on the approach feasibility as well as
costs and quality of the final product.

In this context, directive-based extensions to existing high-level languages
(OpenACC [10], OpenHMPP [223]) have been proposed to help software engi-
neers through sets of directives (annotations) for marking up the code regions
intended for execution on a GPU. Based on this information, the compiler gener-
ates hybrid executable binary. Despite their user-friendliness and expressiveness,
such directive-based solutions require notable effort from the developers in orga-
nizing correct and efficient computations and, above all, compilers are often over
conservative, thus leading to poor performance gain by the parallelization pro-
cess [254].

Domain-specific languages (DSLs) (e.g., Delite [255], Spiral [12]) have been
also proposed to express the application parallelism for GPUs in specific prob-
lem domains. DSL-based approaches allow the language features and the specific
problem domain features to be brought closer and, at the same time, the parallel
applications to be developed not strictly customized for any particular hardware

12.1 Introduction 171

platform. Nevertheless, these solutions require the user to implement the algo-
rithms by using a proprietary language, with consequent limitations to SW IP
reuse and portability.

A more user-friendly and common trend is to implement the application algo-
rithm through existing primitives for GPUs. This generally provides sound trade-
off between parallelization costs and code performance. Such primitive-based pro-
gramming model relies on identifying parts of code computationally intensive and
re-implementing their functionality through one or more basic primitives provided
by an existing library. Due to its efficiency, the primitive-based programming model
has been recently also combined to both directive-based solutions and DSLs [259]
to exploit the portability of annotations/DSLs as well the performance provided
by the GPU primitives.

An immediate consequence of such a trend has been the spreading of an ex-
tensive list of accelerated, high-performance libraries of primitives for GPUs ([6]
and [2] are some exampling collections of them). On the one hand, all these li-
braries cover a wide spectrum of use cases, such as basic linear algebra, machine
learning, and graph applications. On the other hand, many libraries provide differ-
ent implementations of the same primitives. From the developer point of view, this
moves the actual problem of parallelizing a software application to selecting the
most efficient primitives for the target platform among several implementations.

The motivation for this work is precisely the observation that it would be
nice to measure the implementation quality of a given primitive, with the aim of
helping the software developer (i) to choose the best implementation of a given
primitive among different libraries, and (ii) to understand whether such a primitive
implementation fully exploits the architecture characteristics and how the imple-
mentation efficiency could be improved. To do that, this Section presents Pro++
(see Figure 12.1), an enhanced profiling framework for the analysis and the opti-
mization of parallel primitives for GPUs. Pro++ collects the information about a
given primitive implementation (i.e., profiling metrics) through a standard GPU
profiler. The framework combines the standard metrics into optimization criteria,
such as, multiprocessor occupancy, load balancing, minimization of synchroniza-
tion overheads, and memory hierarchy use. The criteria are evaluated, weighed,
and finally merged into an overall measure of quality metrics. The quality metrics
allows the user to classify and compare the different implementations of a primi-
tive in terms of performance over the selected GPU architecture configuration.

The main contributions of this work are the following:

• A classification of optimization criteria that mainly impact on the primitive
performance.

• An analysis of such optimization criteria over five different primitive libraries
for GPUs to weigh the impact of each single criterion on the overall primitive
performance.

• A framework that combines profiling metrics, optimization criteria, and
weights to provide (i) an overall quality metrics of a given primitive and (ii)
profiling feedbacks to improve the primitive implementation.

The work is organized as follows. Section 12.2 summarizes the key concepts
of GPU profiling. Section 12.3 presents the optimization criteria by which the

172 12 Parallel Primitives Profiling

primitives are evaluated. Section 12.4 reports the analysis conducted to measure
the impact of the optimization criteria on the overall quality metrics of primitives.
Section 12.5 presents the case studies of Pro++ application while Section 12.6 is
devote to the conclusions.

12.2 Profiler Metrics

Extracted Information Information source Description

#SM Hardware Info Total number of stream multiprocessors.

#SM threads Hardware Info Total number of threads per stream multiprocessor.

reg granularity Hardware Info Register allocation granularity.

block size Kernel Configuration Number of threads per block associated to a kernel call.

grid size Kernel Configuration Number of thread blocks associated to a kernel call.

#registers Compiler Info Number of used registers per thread associated to a kernel call.

SM registers Hardware Info Total number of registers per Streaming Multiprocessor.

#Blocks per SM Profiler Event Number of resident blocks per Streaming Multiprocessor.

max SM blocks Hardware Info
Maximum number of resident blocks per Streaming Multiproces-
sor.

#resident threads Hardware Info
Maximum number of threads that can run concurrently on the
device.

Static SMem Compiler Info Bytes of static shared memory per block.

Dynamic SMem Kernel Configuration Bytes of dynamic shared memory per block.

SM SMem Hardware Info Total available shared memory per Streaming Multiprocessor.

active warps Profiler Event Number of active warps per cycle per SM.

threads launched Profiler Event Number of threads run on a multiprocessor.

stall sync Profiler Event
Percentage of stalls occurring because the warp is blocked at a

syncthreads() call.

Int instr, SP instr, DP instr Profiler Event
Number of arithmetic instructions (integer, single-precision float-
ing point, double-precision floatig point) executed by all threads.

cudacopy size Profiler Event
Number of bytes associated to a host-device memory transfer func-
tion.

DRAM transactions Profiler Event Total number of DRAM memory accesses.

#L1 transactions Profiler Event Total number of L1 memory accesses.

#L2 transactions Profiler Event Total number of L2 memory accesses.

#Mem instrT Profiler Event
Total number of global memory instructions of size T . Where T
can be 1/2/4/8/16 bytes.

#SharedLoadTrans, #Shared-
StoreTrans

Profiler Event Total number of shared memory load/store transactions.

#SharedLoadAcc, #SharedStore-
Acc

Profiler Event Total number of shared memory load/store accesses.

alu utilization Profiler Event Utilization level of the GPU arithmetic units (ALU/FPU).

ld st utilization Profiler Event Utilization level of the GPU load/store instruction units.

KernelStart, cuda-
copy start time, KernelExeTime,
cudacopy time

Profiler Info
Start time and duration of a kernel call or CUDA memory transfer
function.

Table 12.1: Profiler events, compiler information, hardware (device) information, and kernel
configuration considered in the proposed optimization criteria.

Developing high performance applications requires adopting tools for under-
standing the application behaviour and for analyzing the corresponding perfor-
mance. At the state of the art, there exist several profiling tools for GPU applica-
tions that provide advanced profiling information through the analysis of events,

12.3 Optimization Criteria 173

kernel configuration, hardware and compiler information. Table 12.1 summarizes
a selected list of such profiling information, which are strongly related to the ap-
plication performance.

In this work we refer to the NVIDIA nvprof profiler terminology and infor-
mation. However, the proposed methodology is independent from the adopted
profiler. Nvprof has two operating modes that generate two distinct outputs. The
first mode is the trace mode, which provides a timeline of all activities taking place
on the GPU in chronological order. From this mode, we extract the kernel config-
uration and any timing associated to a kernel (e.g., start time, latency, etc.). The
second mode, called summary mode, reports a user-specified set of events for each
kernel, both aggregating values across the GPU units and showing the individual
counter for each SM.

12.3 Optimization Criteria

We define different optimization criteria, which express the quality of a given
primitive to exploit a GPU characteristic. Examples are the occupancy of all the
computing (SP) resources, the load balancing, and the memory coalescing. The
selection of the most representative and influential optimization criteria has been
guided by the best practices guide [206], by the main CUDA books [145] [68]
and by the programming experience [59]. The optimization criteria are defined
to cover all the crucial properties a GPU application should satisfy to exploit
the full potential of the GPU device. We consider the properties adopted in [75,
90,127,148,247] concerning divergence, memory coalescing, and load balancing. In
addition, we define optimization criteria to cover synchronization issues. Differently
from the literature, the proposed criteria are more accurate (i.e., fine-grained) to
evaluate such properties. All the criteria are defined in terms of events and static
information, which are all provided by any standard GPU profiler. Each criterion
value is expressed in the range [0, 1], where 0 represents the worst and 1 represents
the best evaluation of such an optimization.

12.3.1 Occupancy (OCC)

In order to take advantage of the computational power of the GPU, it is important
to maximize the SP utilization of each SM. This criterion gives information on the
maximum theoretical occupancy of the GPU multiprocessors in terms of active
threads over the maximum number of threads that may concurrently run on the
device.

The criterion value, which is calculated statically, depends on the kernel con-
figuration as well as on the kernel implementation. In particular, it depends on
the block size (i.e., number of threads per block), grid size (i.e., number of blocks
per kernel) as well as amount of used shared memory for the kernel variables, and
number of used registers. In general, the kernel configuration of the primitives is
set at compile time by exploiting information on the device compute capability and
no tuning is allowed to the user (to comply with the principle of user-friendliness).
The criterion takes into account how well the limited resources like registers and

174 12 Parallel Primitives Profiling

shared memory have been exploited in the kernel implementation and, thus, how
and how many variables have been declared (e.g., automatic and shared). A low
value means underutilization of the GPU multiprocessors. More in details, the
overall occupancy is calculated as the minimum value between the occupancy re-
lated to block size (taking into account also the maximum number of blocks per
SM), to shared memory utilization (StaticalSMem + DynamicSMem), to the reg-
ister utilization (#registers), and to the grid size with respect to the minimum
number of blocks required to keep busy all SMs 1:

SMEM OCC “

Z

SM SMem

StaticSMem`DynamicSMem

^

Reg OCC “

[

block size
warp size ¨ rwarp size¨#registerss

rreg granularitys

SM Register

_

Block OCC “ max

˜

max SM blocks,

[

SM threads

rblock sizes
rwarp sizes

_¸

Thread OCC “
grid size ¨ rblock sizes

rwarp sizes

#resident threads

OCC “ min pSMEM OCC,Reg OCC,Block OCC,Thread OCC,1q

12.3.2 Host Synchronization (HSync)

Many complex parallel applications organize the compute-intensive work into sev-
eral functions offloaded to GPUs through host-side kernel calls. Depending on the
code complexity and on the workflow scheduling, this mechanism may involve sig-
nificant overhead that can compromise the overall application performance. The
host synchronization criterion aims at evaluating the amount of time spent to
coordinate the kernel calls. It is defined as follows:

HSync “

řN
i“1 KernelExeTimei

KernelStartN ` KernelExeTimeN ´ KernelStart1

where N is the number of kernels in which the application has been orga-
nized, KernelExeT imei is the real execution time of kernel i on the device, and
KernelStarti is the clock time in which kernel i starts executing. A fragmented
computation that involves many kernel invocations and many small data transfers
is represented by a low value of this criterion.

This criterion helps programmers to understand if the overall application
speedup is bounded by an excessive host synchronization activity. Merging dif-
ferent kernels, using inter-block synchronization [281] or reducing small memory
transfers improve the quality value of this criterion.

1 The notation rAs
rBs denotes the nearest multiple of B equal or greater than A.

12.3 Optimization Criteria 175

12.3.3 Device Synchronization (DSync)

In GPU computing, the synchronizations of threads in blocks are one of the main
causes of idle state and, thus, they strongly impact on the application performance.
Beside introducing overhead in the kernel execution, they also limit the efficiency
of the multiprocessors in the warp scheduling activity. This criterion gives a quality
value of a kernel by measuring the total time spent by the kernel for synchronizing
thread blocks:

DSync “ 1´

ˆ

1´
TotActiveWarps{warps size

CLK cycles

˙

¨ StallSync

where TotActiveWarps “
řCLK cycles

i“1 ActiveWarpsi.

|Warps| represents the maximum number of thread warps of the device, while
CLK cycles represents the total number of GPU clock cycles elapsed to execute
the kernel. The formula takes into account the number of active warps at each
clock cycle, and it adds them to the total counter TotActiveWarps. The value in
the round bracket represents the overall percentage of inactivity of the GPU warps
(i.e., warps in waiting state). StallSync represents the percentage of the GPU time
spent in synchronization stalls over the total number of stalls. StallSync depends
on the load balancing among threads as well as the number of synchronization
points (i.e. thread barriers) in the kernel.

12.3.4 Thread Divergence (TDiv)

Branch conditions that lead threads of the same warp to execute different paths
(i.e., thread divergence) are one of the main causes of inefficiency of a GPU kernel.
This criterion evaluates the thread divergence of a kernel as follows:

TDiv “
#ExeInstructions

#PotExeInstructions

where #ExeInstructions represents the total number of instructions executed by
the threads of a warp and #PotExeInstructions represents the total number of
instructions potentially executable by the threads of a warp. The final value is
calculated as the average over all warps run by the kernel. The criterion gives a
clear evaluation of the branching factor of a kernel code.

12.3.5 Warp Load Balancing (LBW)

This criterion expresses how well the workload is uniformly distributed over the
cores of each single SM:

LBW “

´

TotActiveWarps
TotActiveCycles

¯

´

block size
warp size

¯

¨#Blocks per SM

where TotActiveCycles represents the total number of clock cycles in which

176 12 Parallel Primitives Profiling

the single SMs are not in idle state. The formula takes into account the num-
ber of active warps at each clock cycle, and it adds them to the total counter
TotActiveWarps. The denominator represents the theoretical maximum occu-
pancy of the SMs in terms of number of warps. It is calculated by considering
the block size and the number of blocks mapped to each single SM. A low value of
this criterion underlines that some warps doing most of the work while others are
in the idle state. This is a common behavior in irregular problems and suggests to
programmers to choose a different load balancing strategy.

12.3.6 Streaming Multiprocessor Load Balancing (LBSM)

Besides the load balancing on each single SM, the model evaluates the load bal-
ancing at SM level. The SM load balancing criterion is defined as follows:

LBSM “ 1´
max
SM

pTotActiveCyclesq ´ AvgCycles

max
SM

pTotActiveCyclesq

where

AvgCycles “

ř

SM

TotActiveCycles

#SM

The formula expresses the SM Load Balancing as the difference between the
maximum execution cycles required among all SMs and the best case where all
SMs take the same execution cycles.

12.3.7 L1/L2 Granularity (GranL1/GranL2)

GPU applications require optimized data access patterns and properly aligned data
structures to achieve high memory bandwidths. In particular, efficient applications
hide the latency of memory accesses by combining multiple memory accesses into
single transactions that match the granularity (i.e., the cache line size) of the
memory space2. Hides latency of memory accesses in CUDA is feasible by combin-
ing multiple memory accesses into a single transaction that match the granularity
(cache line size) of the memory space. The proposed performance model includes
two complementary criteria to describe the quality of memory access patterns:

GranL1 “
#L1 transactions ¨ 128
ř

TPtMem instru

#Mem instrT ¨ sizeT

GranL2 “
#L2 transactions ¨ 32
ř

TPtMem instru

#Mem instrT ¨ sizeT

The criteria take into account the number of actual transactions towards the

2 This concept applied to the L1 cache is also known as memory coalescing.

12.3 Optimization Criteria 177

L1(L2) memory, the cache line size (128 Bytes for L1, 32 Bytes for L2), the total
number of memory instructions (load and store) to access the global memory,
and the size of their accesses sizeT (1/2/4/8/16 Bytes). The ratio of useful data
accesses to total data accesses is calculated by comparing the total size of the data
required by threads with the number of transactions multiplied by the respective
memory granularity.

12.3.8 Shared Memory Efficiency (SMemeff)

This criterion measures the kernel efficacy to exploit the data locality concept
through the on-chip shared memory. The shared memory allows high memory
bandwidth for concurrent accesses, but it requires appropriate access patterns to
achieve the full efficiency. On the other hand, an excessive and disorganized use of
the shared memory leads to bank conflicts, which involve the memory instructions
to be re-executed thus serializing the thread execution flow. This optimization
criterion is defined as follows:

SMemeff “
#SharedLoadTrans + #SharedStoreTrans

#SharedLoadAcc + #SharedStoreAcc

The formula is defined in terms of total number of transactions towards shared
memory for both load and store operations over the total number of accesses in
shared memory for load and store instructions (which includes the re-executed
memory instructions due to bank conflicts).

12.3.9 Computation Intensity (CI)

This criterion takes into account the amount of instructions that make use of
arithmetic units, both integer and floating point, and load-store (instruction) units
(LDST) for all memory spaces.

CI “
alu utilization` ld st utilization

2

The formula expresses the computation intensity as the average of the utiliza-
tion level of the ALU/FPU units and the LDST units. This criterion is strictly
related to the code optimization. A high value of computation intensity criterion
means that the ALU, FPU and LDST units have not been wasted. Considering also
the same functionality of all tested code for the same primitive, this information
indicates how much the code is optimized. A high value of the utilization level of
an instruction unit indicates that the unit performs a high number of independent
operations of the same type. As a consequence, all the operations can be run in
parallel and saturate the computational throughput of the specific unit.

12.3.10 Data Transfer (DT)

It takes gives a quality measure of the primitive to address the data transfer
overhead. As an example, pipelining (overlapping) between data transfer and data
computation allows the primitive to rich higher value of this criterion:

178 12 Parallel Primitives Profiling

DT “ 0.5`
Overlapping mem transf

GPU allocated byte`
ř

cudacopy size

´

ř

cudacopy size

GPU allocated byte`
ř

cudacopy size

Overlapping data transfers with kernel computation may reduce the execution
time, but it requires a fine-tuning of the data size to be transferred. Too large
data sizes may involve no advantage, while too small sizes may involve heavy
synchronization overhead.

It also takes into account the amount of bytes transferred in the host-device
communication during a kernel computation over the actual I/O bytes required for
the computation. Any extra data transfer between host and device is considered
as overhead.

12.3.11 Overall Quality Metrics (QM)

All the proposed values of the optimization criteria are finally combined into an
overall quality metric to provide, through a single value, an evaluation of the
profiled code. We express this value as the weighted average of the values of the
optimization criteria as follows:

QM“

OCC ¨WOCC`HSync ¨WHSync`

DSync ¨WDSync`TDiv ¨WTDiv`

GranL1 ¨WGranL1
`GranL2 ¨WGranL2

`

LBW ¨WLBW
`LBSM ¨WLBSM

`

SMemeff ¨WSMemeff
` CI ¨WCI `DT ¨WDT

WOCC `WHSync `WDSync `WTDiv`

WGranL1
`WGranL2

`WLBW
`WLBSM

`

WSMemeff
`WCI`WDT

Wxy express the weight of each single criterion in the overall quality measure. In
this work, we tuned the different weights through the analysis of different libraries
of primitive, as detailed in the following section.

12.4 Weighing of Optimization Criteria on the Overall
Quality Metrics

12.4.1 Parallel Primitives

The impact of the optimization criteria classified in the previous section on the
overall quality metrics has been measured through the analysis of five primitive

12.4 Weighing of Optimization Criteria on the Overall Quality Metrics 179

Parallel
Primitives

Library

ArrayFire CUB CUPDD MGPU Thrust

Independent Linear
Transformation

Fill/Generate/Sequence/
Tabulate

X X

Modify/Transform/ Re-
place/Adjacent Differ-
ence

X X

Modify If X
Comparison X
Simple Copy X

Advanced Coping

Gathering X
Gathering If X
Scattering X
Scattering If X

Reduction

Couting X X
Extrema X X X
Reduction X X X X X
Reduce by keys/
Segmented Reduction X X X X

Histogram X X

Prefix-Scan
Inclusive X X X X X
Exclusive X X X X X
Prefixscan By Key/
Segmented Prefixscan X X

Search
Unsorted Search/Find X
Vectorized Binary Search X X
Load-Balancing Search X

Reordering

Partitioning/Partitioning If X X
Compaction/Copy If/Select X X X
Merge X X
Merge Sort X X
Radix Sort X X X

Set (ordered)

Union X X X
Intersection X X X
Set Difference X X
Unique X X X

Table 12.2: Parallel primitives evaluated for the weight tuning. The table reports also the alternative names of
primitives.

libraries for NVIDIA GPU architectures. The first library, Thrust v1.8.1 [124], is
provided by NVIDIA in the CUDA Toolkit and it is based on the C++ Standard
Template Library high-level interface. This library provides a wide range of par-
allel primitives to simplify the parallelization of fundamental parallel algorithms
such as scan, sort, and reduction. The second library, CUB v1.4.1 [188], provides
a set of high performance parallel primitives for generic programming for both
host and device programming layer. The third library, CUDPP v2.2 [122], focuses
on common data-parallel algorithms such as reduction and prefix-scan, and in-
cludes also a set of specific-domain primitives such as compression and suffix array
functions. The fourth library, ModernGPU v1.1 (MGPU) [32], implements basic
primitives such as reduction and prefix-scan but the main goal of ModernGPU is
providing very efficient implementations of parallel binary search algorithm appli-
cations such as segmented reduction/prefix-scan, load balancing algorithm, merge,

180 12 Parallel Primitives Profiling

set operations and matrix-vector multiplication. Finally, ArrayFire v3 [176] in-
cludes hundreds of high performance parallel computing functions. In particular,
it is focused on complex algorithms across various domains such image processing,
computer vision, signal processing and linear algebra. In ArrayFire, the common
parallel primitives are proposed as vector algorithms.

These libraries have been selected as they provide different implementations of
widely used and common primitives for the parallelization of fundamental algo-
rithms. This allowed us to compare such implementations by running them over
several datasets and by measuring their actual speedups w.r.t. a reference sequen-
tial implementation. The comparison results has been finally used to tune the
weight of each optimization criteria in the overall quality metrics.

Table 12.2 summarizes the parallel primitives that have been evaluated for
such a tuning, by specifying which libraries provide an implementation of a spe-
cific primitive. The primitives are grouped by similar functionality in seven main
classes. The most basic primitives implementing data elaboration are grouped in
the Independent Linear Transformation class, which applies concurrent operations
on every single element of the input data. This class includes primitives implement-
ing predicate functions for linear transformation on subsets of the input data as
well as on multiple sets of data concurrently. The second class, Advanced Copying,
includes two classic collective operations, i.e., gathering and scattering, as well as
their version with predicate. The Reduction class refers to all the primitives that
apply an operation to the input data and that return a single value as result (e.g.,
counting, maximum, reduction). The segmented version of the reduction applies
the operation to a subset of input data. The fourth class includes all variants (i.e.,
inclusive, exclusive, etc.) of the prefix-scan procedure, which represents the build-
ing blocks of many parallel algorithms. The search class contains primitives for
searching elements in sorted or unsorted sets of data. The load-balancing prim-
itives are a specialization of the vectorized sorted search. They are largely used
to extrapolate, from a given input data, the indices to map threads to the corre-
sponding input elements. The primitives in the Reordering class include different
procedures to manipulate the input data or to select a subset of such a data by
using predicates. Finally, the Set class covers the most common operations on sets
represented as continuous sorted data values.

12.4.2 Evaluation

For all parallel primitives, we firstly measured the value of each optimization cri-
terion as proposed in Section 12.3. The evaluation of all primitives has been run
on two different systems: a NVIDIA Kepler GeForce GTX 780 device with CUDA
Toolkit 7.5, AMD Phenom II X6 1055T 3GHz host processor, and Debian 7 OS
and a NVIDIA Fermi GeForce GTX 570 device with CUDA Toolkit 7.0, AMD
FX-4100 1.4 GHz host processor, and Debian 7 OS. The dataset applied for the
evaluation consists of a large set of random generated input data.

Figure 12.2 reports, as an example, the values of the optimization criteria of
the reduction and prefix-scan primitives. The figure shows that the Host Syn-
chronization criterion reaches the maximum value for all the implementations of
the five libraries of both the primitives. This is due to the fact that both the

12.4 Weighing of Optimization Criteria on the Overall Quality Metrics 181

(a) Reduction (b) Prefix-Scan

fig. 12.2: Optimization criteria evaluation of the reduction and prefix-scan primitives

GPU vs. CPU Simulation speedup Quality metrics value ([0, 1])
Parallel Primitives

ArrayFire CUB CUDPP MGPU Thrust ArrayFire CUB CUDPP MGPU Thrust

Compaction 67 24 14 0.87 0.75 0.59

Merge 32 21 0.93 0.78

Partition 44 6 0.83 0.58

PrefixScan 63 223 114 135 68 0.82 0.81 0.78 0.89 0.87

Reduction 1009 961 865 1074 1069 0.66 0.89 0.74 0.76 0.69

Segmented PrefixS-
can

26 4 0.93 0.85 0.62

Segmented Reduc-
tion

err 28 28 8 err 0.86 0.46

SetUnion 3 13 3 0.68 0.90 0.73

Sort 80 85 39 48 80 0.68 0.69 0.51 0.58 0.69

Unique err 73 17 err 0.70 0.56

Vect. Binary Search 527 167 0.48 0.32

Table 12.3: Quality metrics values obtained with WOCC “ 30; WGranL1
“ 100; WGranL2

“ 100;
WHSync “ 40; WDSync “ 15; WTDiv “ 40; WLBW

“ 50; WLBSM
“ 30; WSMemeff

“ 30; WCI “ 100; WDT “ 50
and the corresponding actual GPU vs. CPU simulation speedup. Blank cells indicate that the

corresponding libraries do not support the parallel primitive, while the err notation means that the
primitive execution returns a run-time error.

182 12 Parallel Primitives Profiling

reduction and the prefix-scan execute few kernel calls to compute the respective
algorithms involving negligible host-device synchronization overhead. The differ-
ent implementations of the reduction also show a high value in almost all criteria
except Computation Intensity and Data Transfer. This is due to two main reasons.
First, the reduction primitive implements a highly regular computation on the in-
put data, which does not cause work unbalance and, second, involves a simple
memory access pattern that allows to achieve memory coalescing. In contrast, the
prefix-scan primitive has been implemented, in all the evaluated libraries, through
a two-phase algorithm that presents a more complex memory access pattern. This
involves lower values of L1 granularity and L2 granularity. The algorithm requires
also a sophisticated control flow that affects the device synchronization and the
thread divergence criteria. Finally, all implementations of both algorithms shows
a low value of computation intensity criterion because such primitives are clearly
memory-bounded. This characteristic limits the opportunity to take advantage of
the huge processing power of the GPU.

The impact of each criteria on the overall quality metric value has been weighed
by considering the criteria values and the actual CPU vs. GPU speedup of each sin-
gle primitive obtained during simulation. The tuning has been performed with the
aim of obtaining the quality metric value of each primitive implementation linearly
proportional to the actual CPU vs. GPU speedup of such an implementation. The
weight values of the optimization criteria are calculated through a multi-variable
regression analysis between all information returned by the different criteria and
the execution time. Since the weights depend on the actual architecture, future
work aims at automating such a weight computation. The idea is to define a
software framework based on a collection of primitives to be run on the target
architecture and that automatically extrapolates the weight values.

Table 20.3 reports some of the most meaningful obtained results. The table
reports the weights of the optimization criterion extrapolated during simulation,
the corresponding quality metrics values and the actual CPU vs. GPU simula-
tion speedup of each parallel primitive. The results show how, given the weights
reported in the table caption, the values of the overall quality metrics reflect the ac-
tual simulation speedup. The performance accuracy of the proposed model is with
10%-15%, as shown in the experimental results. All the other results, which have
not been reported in the table for the sake of brevity, show the same correlation.

From the results reported in Figure 12.2, it is possible to compare different
implementations of a given primitive in terms of performance and to understand
which characteristics of such implementations lead to the corresponding speedup.
As an example, the Thrust library provides the best implementation of the reduc-
tion primitive even though such an implementation presents a value lower than
one for load balancing warp criterion. On the other hand, the code has been im-
plemented by fully exploiting L1/L2 Granularity and by showing a good value
of computation intensity, whose criteria values have more impact in the overall
quality metrics. The reduction primitive implemented in CUDPP shows low val-
ues of load balancing warp, thread divergence and computation intensity that on
average are worse than the other library implementations. This underlines that
the threads organization and coordination presents many issues in the primitive.
Another example is the very low value of thread divergence criterion obtained with

12.5 Case Studies 183

the prefix-scan primitive of ArrayFire. The divergence issue indicates a high num-
ber of different execution paths among warp threads that, combined with a low
value of L1 Granularity, represent the main performance bottlenecks.

This analysis allows us to understand whether, given a primitive implemen-
tation, there is room to improve such an implementation and how. We applied
the proposed profiling framework to analyze and improve the implementations
of a load balancing search and a matrix transpose, as explained in the following
section.

12.5 Case Studies

(a) Optimization criteria values pr0, 1sq (b) CPU vs. GPU
sim. speedup

(c) Quality metrics
values ([0 ,1])

fig. 12.3: Load balancing search primitive evaluation

12.5.1 The Load Balancing Search Primitive

The load balancing search is a special case of vectorized sorted search (i.e., binary
search). It is commonly applied as an auxiliary function to uniformly partition ir-
regular problems. Given a set of input values that represent the problem workload,
the primitive generates a set of indices for mapping threads to the corresponding
input elements.

Among the libraries evaluated in this work, only ModernGPU provides an
implementation of the load balancing search primitive. We applied Pro++ to such
a primitive to calculate the optimization criteria values, the CPU/GPU simulation
speedup, and the overall quality metric value by considering the weights proposed
in Section 12.4 (Table 20.3). Figure 12.3 reports the results (MGPU columns).
Then, starting from the ModernGPU implementation, we optimized the code by
exploiting the profiling information with the aim of improving the CPU vs. GPU
simulation speedup.

184 12 Parallel Primitives Profiling

Considering the different optimization criteria weights, we started from the
analysis of the criteria related to the memory coalescing. To improve these values,
we modified the code to better organize the data in shared memory, registers
and texture memory. Such a modification led to a better organization of the data
in local memory, which also simplified the management of the memory accesses
and allowed us to improve the memory coalescing among threads. These first
modifications of the code increased both the L1 Granularity and L2 Granularity
criteria values from 0.44 to 0.83 and from 0.85 to 1, respectively. Further improving
memory coalescing has been evaluated as a hard task, due to the many sparse
global memory accesses that are closely related to the algorithm. Thus, it has not
been further investigated.

On the other hand, improving the two memory criteria required the intro-
duction of many extra control flow statements, which decreased the value of the
thread divergence criterion with respect to the original ModernGPU implementa-
tion. Nevertheless, considering such a decrease and the weight of the instruction
optimization criterion, we didn’t invest effort to limit such a side-effect.

Then, the analysis results underline the low value of the Occupancy criterion.
To improve this criterion, we modified the code by improving the kernel configu-
ration, the use of automatic variables (and thus the use of SM registers), and the
allocation of shared memory. Beside an improvement on occupancy, these mod-
ifications had an impact on the value of the load balancing criteria. This is due
to the fact that the execution flows of all threads during the primitive execu-
tion take similar paths and, as a consequence, improving the occupancy criterion
leads also to an improvement of the load balancing criteria. The modifications also
slightly reduced the thread divergence and Load Balancing Warp values, which,
on the other hand, still remains high. As a consequence, any further investigation
or modification of the code, targeting thread divergence would not be worth to
improve the overall quality of the primitive implementation. The device and host
synchronization criteria had the highest values, both in the original and the mod-
ified version of the code. Thus, no modifications on barriers or synchronization
have been considered.

In conclusion, the use of Pro++ allowed us to improve the loading balancing
search primitives by better concentrating the effort in those code optimizations
with more room for improvement and, as a consequence, to save time. The case
of study has shown how Pro++ framework has been applied to significantly im-
prove step-by-step, in the optimization cycle, the performance of the load balancing
search exploring the suggested guideline on the optimization criteria.

12.5.2 The Matrix Transpose

Transpose of a matrix is a basic linear algebra operation that has a deep impact
in many computational science applications. The performance of matrix transpose
is often compared with matrix copy due to the memory bottleneck. We analyzed
the matrix transpose implementation presented in [227], which is characterized by
data tiling in shared memory and thread organization in 2D hierarchical grids and
blocks.

Figure 12.4 shows the results. The original code already provides values close
to the maximum for the host and device synchronizations, thread divergence,

12.6 Conclusion 185

(a) Optimization criteria values ([0 ,1]) (b) CPU vs. GPU
sim. speedup

(c) Quality metrics
values ([0 ,1])

fig. 12.4: Matrix Transpose evaluation

Warp/SM load balancing and occupancy criteria. This is due to the fact that
the application algorithm relies on very regular and independent tasks.

All the other criteria have very low values (between 0.1 and 0.5), thus we
investigated to improve the code by considering memory related criteria both for
global and shared memory spaces.

In the first optimization (Version1), we focused on improving the shared mem-
ory bank conflicts (shared memory efficiency criterion) by applying the memory
padding technique. The optimization has been designed mainly for the NVIDIA
Fermi architecture that as a low number of independent memory banks. The
memory padding has less impact on NVIDIA Kepler architecture and the gained
speedup is marginal. We also improved the device synchronization criterion by
removing barriers and by re-organizing the execution flow in order to assign an
independent task to each warp .

In the second optimization (Version3) we have taken into account the memory
access patterns to improve the L1 and L2 granularity criteria. Their low values
suggest that the memory accesses do not match the granularity of the respective
caches, thus involving a waste of the memory bandwidth. We fully optimized both
the criteria by simply re-organizing the thread block configuration and by resizing
the memory tiles.

12.6 Conclusion

This Section presented Pro++, a profiling framework for GPU primitives that
allows measuring the implementation quality of a given primitive. The Section
showed how the framework collects the information provided by a standard GPU
profiler and combines them into optimization criteria. The criteria evaluations are
weighed to distinguish the impact of each optimization on the overall quality of
the primitive implementation. The Section reported the analysis conducted on
five among the most widespread existing primitive libraries to tune the different
weights. Finally, the Section presented how the framework has been applied to

186 12 Parallel Primitives Profiling

improve the implementation performance of two standard GPU primitives, i.e.,
the load balancing search and the matrix transpose.

13

A Fine-grained Performance Model

The increasing programmability, performance, and cost/effectiveness of GPUs have
led to a widespread use of such many-core architectures to accelerate general pur-
pose applications. Nevertheless, tuning applications to efficiently exploit the GPU
potentiality is a very challenging task, especially for inexperienced programmers.
This is due to the difficulty of developing a SW application for the specific GPU
architectural configuration, which includes managing the memory hierarchy and
optimizing the execution of thousands of concurrent threads while maintaining the
semantic correctness of the application. Even though several profiling tools exist,
which provide programmers with a large number of metrics and measurements, it
is often difficult to interpret such information for effectively tuning the application.
This Section presents a performance model that allows accurately estimating the
potential performance of the application under tuning on a given GPU device and,
at the same time, it provides programmers with interpretable profiling hints. The
Section shows the results obtained by applying the proposed model for profiling
commonly used primitives and real codes.

13.1 Introduction

Even though graphics processing units (GPUs) are increasingly adopted to run
general purpose applications in several domains, programming such many-core
architectures is a challenging task [106, 199]. Even more challenging is efficiently
tuning applications to fully take advantage of the GPU architectural configuration.
Bottlenecks of a GPU application such as high thread divergence or poor memory
coalescing have a different impact on the overall performance depending on which
GPU device the application is run [247].

Different profiling tools (e.g., CUDA nvprof, AMD APP) have been proposed
to help programmers in the application development and analysis. Nevertheless, in-
terpreting the large number of metrics and measurements they provide to improve
the application performance is often difficult or even prohibitive for inexperienced
programmers.

This Section proposes a comprehensive and accurate performance model for
GPU architectures, which aims at supporting programmers in the development and

188 13 A Fine-grained Performance Model

Profiling
File

Tracing
File

SM Trace

GPU device
characterization

GPU
characterization

functions

Profiling
(e.g., NVIDIA

nvprof)

Application
under tuning

Optimization
criteria

Optimization
criteria evaluation

& performance
prediction

Advanced
profiling
results

Application
tuning

(by user)

Micro-
benchmarks

fig. 13.1: Overview of proposed model components and application.

tuning of GPU applications. The model relies on two concepts, microbenchmarks
and optimization criteria. The microbenchmarks consist of specialized chunks of
GPU code that have been developed to (i) exercise specific functional components
of the device (e.g., arithmetic instruction units, shared memory, cache, DRAM,
etc.) and (ii) measure the actual characteristics of such components (i.e., through-
put, latency, delay). The result of the measure allows the model to weigh the
performance prediction by considering the GPU architecture configuration.

The optimization criteria aim at quantitatively expressing the quality of a
given application to exploit the potential of a specific GPU device (e.g., strong
coalescence in memory accesses) as well as identifying causes of performance bot-
tlenecks (e.g., high thread divergence, workload unbalancing). At the same time,
they aim at guiding the application developer during the tuning activity through
understandable hints, by selectively pointing out the causes of such bottlenecks.

Figure 13.1 shows an overview of the proposed model application for tun-
ing a GPU application. First, the microbenchmarks are run on the GPU device
to extrapolate the characterization functions, i.e., dynamic characteristics of the
functional components of the device. Then, the application under tuning is pro-
filed through a standard profiling tool and the resulting information is combined
with the characterization functions to measure how much the given application
satisfies the optimization criteria. The resulting information provides the actual
quality level and the potential improvement of each optimization criterion, the im-
pact of each improvement on the overall application performance, and the overall
potential performance of the application under tuning. The model allows the flow
(underlined by grey arrows in Figure 13.1) to be iterated for incremental tuning
of the application.

The Section presents the results obtained by applying the proposed model
for tuning different GPU applications, by underlining how the advanced profil-
ing results have been effectively used to focus the tuning effort in specific code
optimizations.

13.2 Microbenchmarks 189

fig. 13.2: Microbenchmark development. (a) Code writing, (b) Compilation and PTX
analysis, (c) Disassembling and GPU ISA Analisys, (d) Profiling analysis.

The work is organized as follows. Section 13.2 presents the microbenchmark
concept and how they have been developed to support the proposed model. Sec-
tion 13.3 presents the optimization criteria definition and evaluation. Section 13.4
explains how all the information are combined to predict the application perfor-
mance, while Section 13.5 reports the experimental results. Section 13.6 is devoted
to the concluding remarks.

13.2 Microbenchmarks

Each microbenchmark is developed with the aim of satisfying the following prop-
erties:

P1: Stressing capability. The microbenchmark applies heavy and extensive work-
loads to the selected functional component. This allows reaching the fully work-
loaded steady state of the component and measuring the real (vs. theoretical) peak
performance, while minimizing any side effect that may incur during the measure-
ment, as described in Section 13.2.1. This includes measuring the real latency of
memory accesses for each memory level (i.e., registers, shared, L1 cache, L2 cache,
and global memory).

P2: Intensity variability. The microbenchmark must exercise the functional com-
ponent with different intensity. This allows predicting the effect of improving an
optimization criterion on the application performance (which is generally not lin-
ear), as explained in Section 13.2.2.

P3: Selectivity. The microbenchmark exercises, as much as possible, only a specific
functional component of the GPU device. This allows us to selectively associate
the microbenchmark to a specific optimization criterion, as described in Section
13.3.

P4: Portability. The microbenchmark is developed independently from any model
or configuration of GPU architecture.

190 13 A Fine-grained Performance Model

13.2.1 Microbenchmark Development

Figure 13.2 shows the design process of a microbenchmark. The microbenchmark
code is written with the aim of satisfying the four properties presented above. Since
the compiler may optimize such a code (e.g., dead code elimination, code-block
reordering etc.) and, through the consequent side effects it may elude the target
properties, the code is checked and refined at different steps along the compilation
process.

First, the code is written by combining CUDA C/C++ and inline PTX [205]
languages (Figure 13.2(a)). The PTX (intermediate) assembly statements allow the
code to be compilable for any device model (property P4) and, at the same time, to
prevent high-level compiler optimizations. As an example, Figure 13.3 shows the
microbenchmark code developed to measure the peak throughput of an integer
arithmetic operation (i.e., add) through a long sequence of the arithmetic instruc-
tions with no interrupt or intermediate operation. The code implements dynamic
value assignments to registers (see rows 1 and 2 in the upper side of the figure)
to avoid the constant propagation optimization by the compiler1. The code also
adopts recursive and template-based metaprogramming. This allows generating an
arbitrarily long sequence of arithmetic instructions (8, 191ˆN add instructions in
the example2).

As a second level checking, the code is compiled to generate both the interme-
diate file (Figure 13.2(b)) and the executable binary file. The intermediate PTX
file is analysed to verify whether the target properties still hold after the higher-
level compilation step. If not, the microbenchmark code undergoes a refinement
iteration. Once verified, the code undergoes a more accurate check, whereby the
executable binary file is disassembled in the native ISA code, called SASS (Shader
ASSembly), as shown in Figure 13.2(c). This allows checking the properties after
the lower-level compilation step.

Finally, the microbenchmark is validated through the profiler (Figure 13.2(d))
to ensure that it exercises only the target functional component.

13.2.2 GPU Device Characterization through Microbenchmarks

Similarly to the example of Figure 13.3, the developed microbenchmarks are ap-
plied to measure the peak performance of all arithmetic operations and of the
memory at different hierarchy levels. In particular, they measure the maximum
arithmetic instruction throughput of integer operations (add, mul, comparison,
bitwise, etc.), simple single precision floating-point operations (add, mul, etc.),
complex single precision floating-point operations (sin, rcp, etc.) and double pre-
cision floating-point operations.

Microbenchmarks are also applied to exercise the functional components with
different intensity. As an example, the shared memory throughput is analysed

1 Static value assignments to registers are generally solved and substituted by the com-
piler optimizations through inlining operations.

2 In the example, 8,191 is the maximum number of unrolling iterations the pragma
unroll supports. After that, the compiler would insert control statements for the
loop. Such a limitation is overcome through recursive calls (row 5 of the template in
Figure 13.2).

13.3 Optimization Criteria 191

global Add throughput()

1: int R1 = clock(); // assign dynamic values to R1,R2 toê

2: int R2 = clock(); // avoid constant propagation
3: int startTimer = clock();
4: Computationăną(R1, R2); // call the function N times
5: int endTimer = clock();

templateăint ną() // template metaprogramming
device forceinline Computation(int R1, int R2)

1: #pragma unroll 8191 // maximum allowed unrolling
2: for (int i = 0; i ă 8191; i++) do
3: asm volatile(”add.s32 : ”=r”(R1) : ”r”(R1), ”r”(R2));
4: end // volatile: prevent ptx compiler optimization
5: Computationăn-1ą(R1, R2); // recursive call

fig. 13.3: Example of microbenchmark code. The code aims at measuring the maximum
instruction throughput of the add operation.

by running a microbenchmark that generates a different amount of bank con-
flicts, from zero to the maximum value, and measures the corresponding access
times. The effect of the bank conflicts over the access time is then represented
by a characterization function through a sampling, quantization, and interpola-
tion process [48]. The characterization function strongly depends on the device
architecture.

Overall, in the proposed model, microbenchmarks are applied to extrapolate:

• zDivergence as the function that characterizes the effect of the thread diver-
gence on performance. It is obtained through a microbenchmark that incre-
mentally increases the percentage of control statements in the code.

• zDRAMThr as the function that characterizes the effect of the (un-
der)utilization of the global memory bandwidth on performance. It is ob-
tained through a microbenchmark that incrementally exercises the memory
bus through different amount of exchanged data.

• zARITHThr as the function that characterizes the effect of the (un-
der)utilization of the arithmetic units on performance.

• zSHMEM as explained in the example above.

The characterization functions are used as parameters in the evaluation of the
optimization criteria targeting the divergence, the throughput/occupancy, and the
shared memory efficiency, respectively, as explained in Section 13.3.7.

Finally, microbenchmarks have been defined to calculate the percentage of use
of each functional components (i.e., shared memory, L1 and L2 caches, DRAM,
arithmetic units) during an application run. They are used to calculate the appli-
cation potential speedups, as explained in Section 13.4.

13.3 Optimization Criteria

The optimization criteria are defined to cover all the crucial properties a GPU ap-
plication should satisfy to exploit the full potential of the GPU device. We consider

192 13 A Fine-grained Performance Model

the properties adopted in [75,90,127,148,247] concerning divergence, memory co-
alescing, and load balancing. In addition, we define optimization criteria to cover
synchronization issues. Differently from the literature, the proposed criteria are
more accurate (i.e., fine-grained) to evaluate such properties. All the criteria are
defined in terms of events and static information, which are all provided by any
standard GPU profiler. Each criterion value is expressed in the range [0, 1], where
0 represents the worst and 1 represents the best evaluation of such an optimization.

13.3.1 Host Synchronization

Many complex parallel applications organize the compute-intensive work into sev-
eral functions offloaded to GPUs through host-side kernel calls. Depending on the
code complexity and on the workflow scheduling, this mechanism may involve sig-
nificant overhead that can compromise the overall application performance. The
host synchronization criterion aims at evaluating the amount of time spent to
coordinate the kernel calls. It is defined as follows:

HostSync “

řN
i“1 KernelExeTimei

KernelStartN ` KernelExeTimeN ´ KernelStart1

where N is the number of kernels in which the application has been orga-
nized, KernelExeT imei is the real execution time of kernel i on the device, and
KernelStarti is the clock time in which kernel i starts executing.

This criterion helps programmers to understand if the overall application
speedup is bounded by an excessive host synchronization activity. Merging dif-
ferent kernels, using inter-block synchronization [281] or reducing small memory
transfers improve the quality value of this criterion.

13.3.2 Device Synchronization

In GPU computing, the synchronizations of threads in blocks are one of the main
causes of idle state and, thus, they strongly impact on the application performance.
Beside introducing overhead in the kernel execution, they also limit the efficiency
of the multiprocessors in the warp scheduling activity. This criterion gives a quality
value of a kernel by measuring the total time spent by the kernel for synchronizing
thread blocks:

DeviceSync “ 1´ StallSync

where StallSync represents the percentage of the GPU time spent in synchro-
nization stalls over the total number of stalls. StallSync depends on the load
balancing among threads as well as the number of synchronization points (i.e.
thread barriers) in the kernel.

13.3.3 Thread Divergence

Branch conditions that lead threads of the same warp to execute different paths
(i.e., thread divergence) are one of the main causes of inefficiency of a GPU kernel.
This criterion evaluates the thread divergence of a kernel as follows:

13.3 Optimization Criteria 193

Divergence “
#ExeInstructions

#PotExeInstructions
ˆzDivergence

where #ExeInstructions represents the total number of instructions executed by
the threads of a warp and #PotExeInstructions represents the total number of
instructions potentially executable by the threads of a warp. The final value is
calculated as the average over all warps run by the kernel. The value is weighted
by the characterization function zDivergence presented in Section 13.2.2.

13.3.4 Warp Load Balancing

This criterion expresses how well the workload is uniformly distributed over the
cores of each single SM:

LoadBalancWARP “

´

TotActiveWarps
TotActiveCycles

¯

`

BLOCKSIZE
32

˘

¨#Blocks per SM

where TotActiveCycles represents the total number of clock cycles in which
the single SMs are not in idle state. The formula takes into account the num-
ber of active warps at each clock cycle, and it adds them to the total counter
TotActiveWarps. The denominator represents the theoretical maximum occu-
pancy of the SMs in terms of number of warps. It is calculated by considering
the block size and the number of blocks mapped to each single SM.

13.3.5 Streaming Multiprocessor (SM) Load Balancing

Besides the load balancing on each single SM, the model evaluates the load bal-
ancing at SM level. The SM load balancing criterion is defined as follows:

LoadBalancSM “ 1´
max
SM

pTotActiveCyclesq ´ AvgCycles

max
SM

pTotActiveCyclesq

where AvgCycles “

ř

SM

TotActiveCycles

|SM|

13.3.6 L1/L2 Granularity

GPU applications require optimized data access patterns and properly aligned data
structures to achieve high memory bandwidths. In particular, efficient applications
hide the latency of memory accesses by combining multiple memory accesses into
single transactions that match the granularity (i.e., the cache line size) of the
memory space3. The proposed performance model includes two complementary
criteria to describe the quality of memory access patterns:

3 This concept applied to the L1 cache is also known as memory coalescing.

194 13 A Fine-grained Performance Model

L1 Granularity “
|#L1 transactions| ¨ 128
ř

TPtMem instru

|Mem instrT| ¨ sizeT

L2 Granularity “
|#L2 transactions| ¨ 32
ř

TPtMem instru

|Mem instrT| ¨ sizeT

The criteria take into account the number of actual transactions towards the
L1(L2) memory, the cache line size (128 Bytes for L1, 32 Bytes for L2), the total
number of memory instructions (load and store) to access the global memory,
and the size of their accesses sizeT (1/2/4/8/16 Bytes).

13.3.7 Shared Memory Efficiency

This criterion measures the kernel efficacy to exploit the data locality concept
through the on-chip shared memory. The shared memory allows high memory
bandwidth for concurrent accesses, but it requires appropriate access patterns to
achieve the full efficiency. On the other hand, an excessive and disorganized use of
the shared memory leads to bank conflicts, which involve the memory instructions
to be re-executed thus serializing the thread execution flow. This optimization
criterion is defined as follows:

ShMemEfficiency “
#SharedLoadTrans + #SharedStoreTrans

#SharedLoadAcc + #SharedStoreAcc
ˆ

ˆzSHMEM

The formula is defined in terms of total number of transactions towards shared
memory for both load and store operations over the total number of accesses in
shared memory for load and store instructions (which includes the re-executed
memory instructions due to bank conflicts). It is weighted by the shared memory
characterization function (zSHMEM) presented in Section 13.2.2

13.3.8 Throughput/Occupancy

The Throughput/Occupancy criterion is defined as follows:

Throughput/

Occupancy
“

#

1 if MemThr « 1

1´p1´occq ¨MemThr otherwise

where the occupancy value (occ) depends on the kernel configuration (i.e., block
size, grid size, and amount of shared memory allocated for the kernel variables),
and

MemThr “
AchivedThroughput

TheoreticalPeakThroughputˆzDRAMThr

The theoretical peak throughput is weighted through the zDRAMThr charac-
terisation function. If the memory throughput value is close to 1, the through-
put/occupancy criterion cannot be further improved. Otherwise, the through-
put/occupancy criterion is calculated as the potential improvement of the memory

13.4 Performance Prediction 195

throughput metric by using all device threads (1´ occ). This criterion is particu-
larly useful in such applications that do not achieve the theoretical occupancy of
the device. As proved in [271], a high theoretical GPU occupancy is not necessary
to reach the peak performance. In contrast, a high theoretical occupancy and a low
value of the throughput/occupancy criterion suggests optimizing the application
kernel through a re-configuration to increase the occupancy.

13.4 Performance Prediction

Improving any of the optimization criteria presented in Section 13.3 impacts on the
overall application speedup. A speedup increasing is proportional to the criterion
improvement. The potential speedup of the host synchronization, divergence, warp
and SM load balancing and throughput/occupancy criteria are defined as follows:

HostSyncSP “
1

HostSync

DivergenceSP
“

1

Divergence

LoadBalancWARP
SP “

1

LoadBalancWARP

LoadBalancSM
SP “

1

LoadBalancSM

Throughput/

OccupancySP
“

1

Throughput/Occupancy

The potential speedup of the device synchronization criterion also depends on
the fraction of time spent in stall state over the total kernel time:

DeviceSyncSP “

´

1´TotActiveWarps {|Warps|
CLK cycles

¯

¨ StallSync

|Warps| represents the maximum number of thread warps of the device, while
CLK cycles represents the total number of GPU clock cycles elapsed to execute
the kernel. The value in the round brackets represents the overall percentage of
inactivity of the GPU warps (i.e., warps in stall state).

The potential speedup definition of L1,L2 granularity and shared memory ef-
ficiency criteria also depends on the percentage of time the application uses the
L1, L2, and shared memory, respectively, over the total execution time:

L1 GranularitySP
“

1

L1 Granularity
¨ L1%

L2 GranularitySP
“

1

L2 Granularity
¨ L2%

ShMemEfficiencySP
“

1

ShMemEfficiency
¨ ShMem%

L1%, L2%, and ShMem% are evaluated as follows. The model classifies the
application activity in terms of DRAM accesses, cache accesses, shared memory

196 13 A Fine-grained Performance Model

accesses, arithmetic instructions, and idle states. The profiler provides the accurate
evaluation of the idle states, the exact amount of memory transactions for each
memory typology, and the number of arithmetic instructions. Twelve microbench-
marks (eight for memory accesses considering both load and store operations and
four for arithmetic instructions) allow estimating the memory latencies and the
arithmetic instruction throughputs. L1%, L2%, and ShMem% are calculated by
comparing the sum of such latencies spent in a specific memory level with the total
cycles elapsed during the kernel execution.

Finally, the overall potential speedup of the application is defined as follows:

PotentialSpeedup “

$

’

’

&

’

’

%

1

MemThr
if memory-bounded

1

ArithThr
if compute-bounded

where MemThr has been defined in Section 13.3.8, while ArithThr is defined
as follows:

ArithThr “
AchivedThroughput

TheoreticalPeakThroughputˆzARITHThr

The formula expresses the potential speedup of the application under tuning
as the inverse of the memory throughput or the arithmetic throughput depending
on whether the application is memory-bounded or compute-bounded. Such an
information is provided by the profiler.

13.5 Experimental Results

The proposed performance model has been applied for tuning and improving the
performance of three different CUDA applications, reduction, matrix transpose,
and BFS for an NVIDIA (Kepler) GEFORCE GTX 780 device. The experiments
have been run on such a device with CUDA Toolkit 7.0, AMD Phenom II X6 1055T
(3GHz) host processor, Debian 3.2.60 operating system, and NVIDIA nvprof pro-
filer.

13.5.1 Case study 1: Parallel Reduction

Given a vector of data tx1, x2, . . . , xnu, the reduction applies an operator ‘ to all
elements and returns a single element R “ x1 ‘ x2 ‘ . . . ‘ xn. We analysed the
reduction implementation provided in [119], and we applied two tuning iterations
with the proposed model.

Figure 13.4 shows the results. In the left-most side, the columns represent the
optimization value [0-1] for each criterion at each tuning iteration. The dot in a
column represents the potential contribution of an improvement of such a criterion
in the predicted overall speedup. In the right-most side, the figure reports the
overall potential speedup of the application (see Section 13.4), which is calculated
for the original code (Version1) as well as for the two optimized versions of the
code. The L1 and L2 granularity criteria has the same value and are thus reported
in Figure 13.4 as a single item.

13.5 Experimental Results 197

fig. 13.4: Experimental results of case study 1.

In the analysis of the original code (Version1), the model predicted a potential
speedup of 5.8x. The criteria values underline that the application bottlenecks are
mainly due to high thread divergence, inadequate synchronization of GPU threads,
and unbalancing at warp level. We first optimized the code by focusing on syn-
chronization. We organized the threads by using the warp-centric method proposed
by [125], which allowed us to reduce the number of barriers from logpBLOCKSIZEq
to one.

The analysis of such a first optimization (Version2) confirmed the improve-
ment on the thread synchronization (see device synchronization criterion), which
influenced (positively) the divergence level of threads. Nevertheless, the results un-
derlined a slight improvement of the memory troughput metrics, which motivates
the marginal increasing of the Version2 speedup (1.48x). On the other hand, the
model predicted a further potential improvement of the speedup up to 3.9x, by
suggesting to optimize the divergence aspect.

We addressed the divergence issue in the second optimization (Version3) by
increasing the number of elements computed by a single thread. We also applied
instruction-level parallelism techniques to increase the arithmetic throughput. The
analysis of Version3 shows that all the optimization criterion values are close to the
maximum and the potential speedup is close to 1x. These values suggest that any
further optimization on the considered criteria on the adopted GPU device would
not improve the current speedup. We measured the Version 3 speedup equals to
4.98x, while the potential speedup predicted by the model was 5.8x.

13.5.2 Case study 2: BFS

In parallel computing, BFS is one of the most representative irregular application
that involves thread divergence, workload imbalance, and poorly coalesced memory
accesses. We analysed the BFS implementation provided in [59].

Figure 13.5 shows the results obtained by applying the proposed performance
model for two optimization steps of the code. In the original imlementation (Ver-
sion1), the results indicate many different causes of performance bottlenecks and a

198 13 A Fine-grained Performance Model

fig. 13.5: Experimental results of case study 2.

potential speedup up to 10x. We first focused in the low value of the host synchro-
nization criterion, which was due to a high number of kernel calls. We optimized
the code by enabling the inter-block synchronization [281], which allows the device
and the host execution to be completely separated and, thus, the application to
be organized into one single kernel.

The analysis of such a first optimization (Version2) confirmed the total elim-
ination of the host synchronization overhead thanks to the single kernel imple-
mentation. This allowed reaching a fair speedup (2.44x). On the other hand, the
results show that the optimization didn’t impact on the other criterion values.
The results underline that the code suffers from L1/L2 granularity, for which the
criterion value is the lowest and the potential contribution (« 2.5x) in the overall
speedup is the highest. Nevertheless, to the best of my knowledge, we could not
have removed such a bottleneck, which is mainly due to the irregular data struc-
tures on which the implemented algorithm works. We focused on the low values of
the warp/SM load balancing criteria, which suggest to better organize the GPU
thread allocations. We optimized the code (Version3) by re-arranging the threads
in groups with the aim of cooperative visiting single vertices instead of sets of
vertices. Version3 provides a speedup of 4.1x w.r.t. the original code. The anal-
ysis of Version3 underlines that improving the L1/L2 granularity would be the
main important optimization to double the speedup and to reach the predicted
10x value.

13.5.3 Case study 3: Matrix Transpose

We analysed the matrix transpose implementation presented in [227], which is
characterized by data tiling in shared memory and thread organization in 2D
hierarchical grids and blocks.

Figure 13.6 shows the results. The original code already provides values close to
the maximum for the host and device synchronizations, divergence, and Warp/SM
load balancing criteria. For all the other criteria, even though they have very low
values (between 0.1 and 0.5), the model predicts marginal potential speedups.

13.6 Remarks 199

fig. 13.6: Experimental results of case study 3.

This is due to the fact that the application algorithm relies on very regular and
independent tasks. This justifies the limited potential overall speedup («3.3x)
predicted by the model.

In the first optimization (Version2), we focused on improving the shared mem-
ory bank conflicts (shared memory efficiency criterion) by applying the memory
padding technique [227]. As expected, since such a technique has more impact
on the NVIDIA Fermi than on the NVIDIA Kepler architecture [227] the gained
speedup is marginal.

In the second optimization (Version3) we taken into account the memory access
patterns to improve the L1 and L2 granularity criteria. Their low values suggest
that the memory accesses do not match the granularity of the respective caches,
thus involving a waste of the memory bandwidth. We fully optimized both the
criteria by simply re-organizing the thread block configuration and by resizing the
memory tiles (as shown by the third columns of the three criteria in Figure 13.6).
The Version3 implementation provides a speedup of 3x against the 3.3x predicted
by the model.

13.6 Remarks

This Section presented a fine-grained performance model for GPU architectures. It
relies on microbenchmarks to characterize the GPU device and on several applica-
tion criteria to measure the implementation quality, to give interpretable hints, and
to accurately calculate potential performance. The Section presented the results
obtained by applying the proposed model for tuning different GPU applications,
by underlining how the advanced profiling results have been effectively used to
focus the tuning effort in specific code optimizations.

14

Power/Performance/Energy Microbenchmarking

GPU-accelerated applications are becoming increasingly common in high-
performance computing as well as in low-power heterogeneous embedded systems.
Nevertheless, GPU programming is a challenging task, especially if a GPU ap-
plication has to be tuned to fully take advantage of the GPU architectural con-
figuration. Even more challenging is the application tuning by considering power
and energy consumption, which have emerged as first-order design constraints in
addition to performance. Solving bottlenecks of a GPU application such as high
thread divergence or poor memory coalescing have a different impact on the over-
all performance, power and energy consumption. Such an impact also depends on
the GPU device on which the application is run. This Section presents a suite of
microbenchmarks, which are specialized chunks of GPU code that exercise spe-
cific device components (e.g., arithmetic instruction units, shared memory, cache,
DRAM, etc.) and that provide the actual characteristics of such components in
terms of throughput, power, and energy consumption. The suite aims at enrich-
ing standard profiler information and guiding the GPU application tuning on a
specific GPU architecture by considering all three design constraints (i.e., power,
performance, energy consumption). The Section presents the results obtained by
applying the proposed suite to characterize two different GPU devices and to un-
derstand how application tuning may impact differently on them.

14.1 Introduction

With the growth of computational power and programmability, Graphic Processing
Units (GPUs) have become increasingly used as general-purpose accelerators. They
not only provide high peak performance, but also excellent energy efficiency [196].
As a consequence, besides supercomputers, GPUs are quickly spreading in low-
power and mobile devices like smartphones. NVIDIA Tegra X1 [8] and Qualcomm
Snapdragon [11] are some among the several system-on-chip examples available in
the mobile market that integrate GPUs with other processing units (i.e., CPUs,
FPGAs, DSPs).

On the other hand, the large number of operating hardware resources (e.g.,
cores and register files) employed in GPUs to support the massive parallelism leads

202 14 Power/Performance/Energy Microbenchmarking

GPU device
characterization

GPU performance,
power, energy efficiency

characterization

Profiling
(e.g., NVIDIA

nvprof)

Application
under tuning

Application tuning
(by user)

MIPP

Profiling
results

fig. 14.1: Overview of application tuning through MIPP.

to a significant power consumption. The elevated levels of power consumption have
a sensible impact on such many-core device reliability, aging, economic feasibility,
performance scaling and deployment into a wide range of application domains.
Different techniques have been proposed to manage such high levels of power dis-
sipation and to continue scaling performance and energy. They include approaches
based on dynamic voltage/frequency scaling (DVFS) [147], CPU-GPU work divi-
sion [173], architecture-level/runtime adaptations [274], dynamic resource alloca-
tion [127], and application-specific (i.e., programming-level) optimizations [288].
Particularly in this last category, it has been observed that source-code-level trans-
formations and application specific optimizations can significantly affect the GPU
resource utilization, performance, and energy efficiency [247].

In this context, even though profiling tools (e.g., CUDA nvprof, AMD APP)
exist to help programmers in the application analysis and optimization, they do
not provide a complete view of the GPU features (especially on power consump-
tion and energy efficiency) neither they provide a correlation among these design
constraints.

This Section presents MIPP, a suite of microbenchmarks that aims at charac-
terizing a GPU device in terms of performance, power, and energy consumption. In
particular, it aims at understanding how application bottlenecks involving selected
functional components or underutilization of them can affect the code performance,
power consumption, and energy efficiency on the given device. The functional com-
ponents include arithmetic instruction units, memories (shared, cache, DRAM,
constant), scheduling and synchronization components. Fig. 14.1 shows how the
suite can be applied during an application tuning. First, the microbenchmarks are
run on the GPU device to characterize the device in terms of performance, power
and energy over its main functional components. Then, the application under tun-
ing is profiled by using a standard profiling tool. The profiling results provide
information on bottlenecks and underutilization of functional components. The
microbenchmark results extend such an information by quantitatively showing
how such bottlenecks and underutilization affect performance, power and energy.
The proposed model allows the flow (underlined by grey arrows in Fig. 14.1) to
be iterated for incremental tuning of the application.

14.2 The Microbenchmark Suite 203

The suite has been applied to characterize two different GPU devices (i.e.,
an NVIDIA Kepler GTX660 and a low power embedded system NVIDIA Jetson
TK1). The results show how the same code optimizations have a different impact
on the design constraints on the two GPU architectures.

The work is organized as follows. Section 14.2 presents the microbenchmark
suite. Section 14.3 reports the experimental results, while Section 14.4 is devoted
to concluding remarks.

14.2 The Microbenchmark Suite

DRAM Memory

o Throughput

o Coalescence*

o Access size*

Shared Memory

o Throughput

o Conflict*

L2 Cache

o Throughput

Constant Memory

o Throughput

MEMORY

32-bit Integer (ALU)

o Simple (add, subtract, multiply-add or mad)

o Complex (multiply)

o Bit operations (clz, msb, bit-reverse, bit-insert)

o Shift

o Compare (<, >, ≤, ≥, min, max)

o Bit-Counting (population count)

64-bit Integer (ALU)

o Simple (add, subtract)

32-bit Floating-point (FPU)

o Simple (add, subtract, multiply, fused multiply-add or fma)

o Complex (division, division FTZ)

32-bit FP Special functions (SFU)

o Trascendental functions (sin, cos, exp, rsqrt, reciprocal, log)

64-bit Floating-point (DFU)

o Simple (add, subtract)

ARITHMETIC PROCESSING

fig. 14.2: Microbenchmark Classes

We developed a suite of microbenchmarks to selectively study the behaviour of
a wide range of GPU functional components. Fig. 14.2 gives an overview of such a
microbenchmark suite by reporting, for each microbenchmark, the exercised GPU
component, the involved specific instructions, and the considered features.

A microbenchmark consists of a GPU kernel code that exercises a specific func-
tional component of the architecture and whose instructions can be evaluated at a
clock-cycle accuracy. The generic structure of the microbenchmark main procedure
consists of a long sequence of one or more selected instructions (e.g., arithmetic in-
structions, memory accesses) that executes without any interference deriving from
other instructions. The microbenchmarks have been implemented to stress only
a specific functional component at a time, while affecting the others as little as
possible to obtain reliable and accurate feedback.

The microbenchmark code is written by combining the CUDA C/C++ lan-
guage with inline intermediate assembly to avoid compiler side effects that may
elude the target properties. The parallel thread execution (PTX) is a GPU
machine-independent language that allows expressing general purpose computa-
tion through virtual ISA. We exploited the PTX language to force a specific op-
eration on a data type, to avoid compiler optimizations, to prevent caching/local-
storage mechanisms, and to drive the memory accesses. We adopted several ar-

204 14 Power/Performance/Energy Microbenchmarking

rangements to preserve the code functionality. As an example, registers are initial-
ized with dynamic values to avoid constant propagation in arithmetic benchmarks.

Finally, to perform an extensive computation, we applied template meta-
programming and nested loops. Such programming techniques are required to
prevent compiler optimizations (e.g., loop collapsing and dead code elimination).
The same full control on the compiler cannot be obtained by simply handling
the compilation flags, since they apply only to arithmetic instruction optimiza-
tions (such as floating-point precision and floating-point multiply-add enabling.
The code controls the intensity variability, the amount of computation, and other
aspects through parameterized procedures.

Each microbenchmark run returns information like execution time, actual
throughput (to compare with the theoretical throughput from the device speci-
fications), average and max power consumption, energy consumption and energy
efficiency. Some microbenchmarks (marked with ”˚” in Fig. 14.2) are also ap-
plied to exercise functional components with different intensity. As an example, a
microbenchmark allows analysing the shared memory throughput by generating
a different amount of bank conflicts, from zero to the maximum value, and by
measuring the corresponding access time.

The microbenchmarks provide a quantitative model of the target GPU archi-
tecture based on performance and power, and provide important guidelines for the
application optimization. As shown in Fig. 14.2, the microbenchmarks are grouped
into two classes: Arithmetic processing and memory hierarchy.

14.2.1 Arithmetic processing benchmarks

This class of microbenchmarks targets the complete set of arithmetic instructions
natively supported by the GPU, by distinguishing between integer and floating
point over 32 and 64-bit word sizes.

The benchmarks perform a long sequence of instructions to stress the ALU
components. All PTX instructions of arithmetic benchmarks have a direct trans-
lation into the native ISA, called SASS (Shared ASSembly), except 64-bit integer
operations and floating-point divisions that are compiled into multiple instruc-
tions. A SM executes native instructions in one clock cycle, providing a through-
put (instructions per clock cycles) limited by the concurrency of the exercised
ALU component. Depending on the compute capability of the device and on the
architecture, the implementation of non-native instructions may correspond to a
different number and type of ISA instructions. Arithmetic benchmarks include also
four different types of division operations classified by approximation (IEEE754
Compliance and fast hardware approximation) and normalization (normal and
de-normal numbers).

As an example, Fig. 14.3 summarizes the microbenchmark developed to analyse
the 32-bit integer arithmetic processing unit (simple add). The code implements
dynamic value assignments to registers (see rows 1 and 2 in the upper side of the
figure) to avoid the constant propagation optimization by the compiler1. The code

1 Static value assignments to registers are generally solved and substituted by the com-
piler optimizations through inlining operations.

14.2 The Microbenchmark Suite 205

global Add throughput()

1: int R1 = clock(); // assign dynamic values to R1,R2 toê

2: int R2 = clock(); // avoid constant propagation
3: int startTimer = clock();
4: Computationăną(R1, R2); // call the function N times
5: int endTimer = clock();

templateăint ną() // template metaprogramming
device forceinline Computation(int R1, int R2)

1: #pragma unroll 4096 // maximum allowed unrolling
2: for (int i = 0; i ă 4096; i++) do
3: asm volatile(”add.s32 : ”=r”(R1) : ”r”(R1), ”r”(R2));
4: end // volatile: prevent ptx compiler optimization
5: Computationăn-1ą(R1, R2); // recursive call

fig. 14.3: Example of microbenchmark code. The code aims at measuring the maximum
instruction throughput of the add operation.

also adopts recursive and template-based metaprogramming. This allows generat-
ing an arbitrarily long sequence of arithmetic instructions without any control flow
instructions. (4096ˆN add instructions in the example2).

14.2.2 Memory benchmarks

This class of benchmarks focuses on the impact of throughput and access pat-
terns on DRAM, shared, constant, and L2 cache memories. The DRAM throughput
benchmark executes several global accesses to different memory locations with a
stride of 128 bytes between grid threads to avoid L1 coalescing. The L2 bench-
mark repeats a compile-time sequence of store instructions on the same memory
address. We use cache modifiers [205] to avoid L1 cache hits that can occur in the
store operations. Shared and constant memory benchmarks consist of a sequence
of load/store instructions respectively. In the coalescing benchmark, we vary the
number of threads within a warp that access to continuous locations. For example,
to test the impact of the worst memory access pattern (no coalescence) we apply
the same stride of the DRAM throughput benchmark, to evaluate 1/16 of coales-
cence we divide the warp threads into 16 groups of two threads where each group
accesses in different addresses. The access size benchmark copies one large array
into another multiple times and, in each execution, we vary the data type size.

Fig. 14.4 summarizes the microbenchmark developed to measure the impact of
shared memory bank conflicts on the memory access throughput. The procedure
first computes, for each thread of a warp, the address offsets of shared memory that
can lead to bank conflicts (line 2 in the upper side of Fig. 14.4, where LANE ID

represents the thread id in the warp, and CONFLICTS represents the number of
conflicts to generate). Fig. 14.5 shows, for example, the offsets generated to lead
to no and to one bank conflict. Then, it performs a long sequence of store oper-
ations with no interrupt or intermediate operation. The code implements volatile

2 In the example, 4,096 unrolls are a good compromise between loop body replication
and template recursion. Over a fixed number of loop unrolling iterations the compiler
would insert control statements in the loop to reduce the size of the binary code.

206 14 Power/Performance/Energy Microbenchmarking

device clock t devClocks[resident warps];

device int devTMP;

templateăint conflictsą

global SharedMemConflicts()

1: shared volatile int SMem[1024];

2: volatile int* Offset = SMem + lane id * (conflicts+1);

3: clock t startTimer = clock64();

4: Computationăną(Offset);// call the function N times

5: clock t endTimer = clock64();

6: if (lane id == 0) then

7: devClocks[warp id] = endTimer - startTimer;

8: if (thread id == 1024) then

9: devTMP = SMem[0]; // never executed

templateăint Ną // template metaprogramming

device forceinline Computation(volatile int* Offset)

1: #pragma unroll 4096

2: for (int i = 0; i ă 4096; i++) do

3: asm volatile(”st.volatile.s32 [%0], %1;” : :

4: ”l”(Offset), ”r”(i) : ”memory”);

5: // asm volatile: prevent PTX compiler optimization

6: end

7: Computationăn-1ą(Offset); // recursive call

fig. 14.4: Example of the microbenchmark code to measure the impact of shared
memory bank conflicts.

0x00 0x04 0x08 0x0C 0x78 0x7C

0x80 0x84 0x88 0x8C 0xF0 0xF4

4-byte
Bank 3

4-byte
Bank 2

4-byte
Bank 1

4-byte
Bank 4

4-byte
Bank 31

4-byte
Bank 32

Lane 0

Lane 0 Lane 16

Lane 3Lane 1 Lane 2 Lane 30 Lane 31

Lane 1 Lane 17
Warp

(CONFLICTS = 1)

Bank conflict

Lane 15 Lane 31

Warp’
(CONFLICTS = 0)

fig. 14.5: Example of memory accesses with no and one bank conflict.

quantifiers (lines 1,2 in the upper side of Fig. 14.4) to avoid local-storage opti-
mization by the compiler. As for the simple add example, the code adopts recursive
and template-based metaprogramming to generate an arbitrarily long sequence of
arithmetic instructions (4, 096ˆN store instructions in the example). In the last
step (Line 7 in the upper side of the figure) each warp sends the timing results

14.3 Experimental Results 207

Integer 32-bit
Integer
64-bit

FP 32-bit
FP

64-bit

Simple ComplexPop. Count Shift Bit OP. Compare Simple SimpleSpecial Simple

Execution
Time (ms)

9.6 34.3 34.3 34.3 36.7 9.8 24.5 9.7 36.6 137.0

Spec Through-
put
(OPs ˆ Cycle) ˆ
SM

160 32 32 32 32 160 n.a. 192 32 8

Real Throughput
(OPs ˆ Cycle) ˆ
SM

126.1 34.7 34.7 34.7 34.3 122.2 51.2 126.0 33.9 8.8

Avg. power (W) 54.4 54.4 53.7 52.5 56.8 54.3 57.6 55.7 60.6 53.3

Max Power (W) 62 59 56 56 60 59 62 62 65 59

Energy (J) 0.1 0.4 0.4 0.4 0.4 0.1 0.3 0.1 0.4 1.4

Energy efficiency
(MIPS ˆ Watt) ˆ

SM
2,057.1

576.3 583.8 597.0 514.6
2,020.0

760.2 1,990.3483.9 146.9

nanojoule per
instruction

0.1 0.3 0.3 0.3 0.4 0.1 0.2 0.1 0.4 1.3

Table 14.1: GTX 660 - Characterization with Arithmetic Processing benchmarks.

to the host through global memory. Line 8,9 ensure that the result is stored in
global variable with a fake write instruction (that is never executed since the higher
thread id in a block is 1023) to prevent dead code elimination by the compiler.

Similarly, other microbenchmarks of this class exercise their corresponding
functional components with different intensity. This allows characterizing the com-
ponents behavior under different workloads. For example, the global memory
throughput is affected by access pattern that involves a different number of mem-
ory transactions or by saturation of the instruction pipeline. Varying the intensity
of a microbenchmark allows us to better understand the main factors that af-
fect the performance and the power consumption in real-world applications, where
functional components show a wide range of utilization values.

In general, the microbenchmarks have been developed to guarantee enough
computation time (i.e., at least of some milliseconds) to overcome the limi-
tation of the sampling frequency in the measurement of the power features
(Pmax,Ptotal,Pavg) and to minimize the RLC effect in the kernel starting/ending
phases.

14.3 Experimental Results

We run the suite to characterize two different GPU devices. The first is an NVIDIA
Kepler GeForce GTX 660 with CUDA Toolkit 7.5, AMD Phenom II X6 1055T
(3GHz) host processor, and Ubuntu 14.04 OS. The second is a Tegra K1 SoC
(Kepler architecture) on an NVIDIA Jetson TK1 embedded system, with CUDA
Toolkit 6.5, 4-Plus-1 NVIDIA host multi processor (four ARM Cortex-A15 cores
on the general cluster and one ARM Cortex-A7 in the low power cluster), and
Ubuntu 14.04 OS.

208 14 Power/Performance/Energy Microbenchmarking

Integer 32-bit
Integer
64-bit

FP 32-bit
FP

64-bit

Simple ComplexPop. Count Shift Bit OP. Compare Simple SimpleSpecial Simple

Execution
Time (ms)

140.8 483.0 489.9 486.2 515.5 145.1 399.0 143.3 508.5 1,878.8

Spec Through-
put
(OPs ˆ Cycle) ˆ
SM

160 32 32 32 32 160 n.a. 192 32 8

Real Throughput
(OPs ˆ Cycle) ˆ
SM

123.0 32.1 32.1 32.1 32.1 121.0 40.6 123.1 30.7 8.0

Avg. Power (W) 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.2

Max Power (W) 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

Energy (J) 0.5 1.5 1.6 1.5 1.6 0.5 1.3 0.5 1.7 6.0

Energy efficiency
(MIPS ˆ Watt) ˆ

SM
2,376.2

703.1 688.3 699.1 658.7
2,318.6

844.5 2,355.2646.2 180.2

nanojoule per
instruction

0.4 1.4 1.5 1.4 1.5 0.4 1.2 0.4 1.5 5.5

Table 14.2: Jetson TK1 - Characterization with Arithmetic Processing benchmarks.

Performance information has been collected through the clock64 device in-
struction for all microbenchmarks to provide high accuracy. The microbenchmark
kernels are organized in such a way that each warp stores the starting and the end-
ing clock counters for each execution and sends the difference to the host, which
computes the average among all device warps.

Power and energy consumption information has been collected through the
Powermon2 power monitoring device [35]. The device allows measuring the volt-
age and the current values from different sources at the same time with a frequency
of 1024 Hz for every sensors. The GTX 660 requires five 12V pins, three for the
pci-express power connectors and two for auxiliary connectors. We used a pci-
express interposer to isolate the GPU power connectors from the motherboard.
The Jetson TK1 requires only a DC barrel connector adapter to enable the power
monitoring. We designed specific API and procedures to allow microbenchmarks
to communicate and to synchronize with the Powermon device. In particular, we
ensured that the kernel calls are synchronized with the first power measurement.
Each microbenchmark is repeated ten times with two seconds of idle activity be-
tween consecutive executions. The analysis has been performed with the default
GPU frequency setting on both devices. To measure, as much accurately as pos-
sible, the power consumption of the Jetson TK1 SoC, in which is not possible to
physically isolate the GPU (Tegra K1) from the rest of the system, we operated
as follows. We implemented the communication with the platform remotely with-
out any additional connected peripherals, we disabled the Linux display manager
(lightdm) and the HDMI port from the OS, we physically disabled the general
CPU cluster, and we forced the low power CPU cluster to run with the lowest
frequency.

Tables 14.1 and 14.2 report the results obtained by running the Arithmetic Pro-
cessing benchmarks on the GTX 660 and TK1, respectively. The benchnmarks,

14.3 Experimental Results 209

which are organized over columns, consist each one of 109 instructions per SM
(i.e., consider that the GTX 660 consists of 5 SMs, while the TK1 consists of
1 SM). For each benchmark, the tables report the execution time, the theoreti-
cal peak throughput of the corresponding functional unit provided in the device
specifications [213] (Spec Throughput) and that measured through the proposed
benchmark (Real throughput). The device specifications do not include the theo-
retical peak throughput of the Integer 64-bit simple unit since such an operation
has not an embedded hardware implementation (it is performed by combining dif-
ferent hardware units). The tables also show the average power, the peak power,
the energy consumption for a single SM, the energy efficiency [99], i.e. performance
per watt (Million Instructions Per Second per Watt - MIPS/Watt) and the energy
consumption for a single instruction in nanojoules.

For both the GTX 660 and TK1, the benchmarks underline that the theoreti-
cal peak throughput of several functional units (e.g., complex multiply, population
count, shift Integer 32-bit etc.) can be actually reached. The measured peak val-
ues often exceed the theoretical values provided by the device specifications. We
assume this is due to the fact that the theoretical values refer to the declared com-
pute capability of the GPU rather than actual GPU manufacturing of the vendor.
In any case, the difference between the two value is negligible. In contrast, the peak
throughput of selected functional units, such as the simple 32-bit either Integer
or Floating Point add cannot be actually fully exploited. We assume this is due
to the actual latency of the fetching subunits, which do not support the through-
put of the computation subunits. Even though the two devices are fairly different
(desktop-oriented GTX 660, and low-power embedded system TK1), the bench-
marks underline they rely on equivalent Kepler SMs, whose peak performance are
fully comparable.

Finally, Tables 14.1 and 14.2 report information about power and energy con-
sumption, which are not provided with the device specifications. Power and energy
characteristics refer to the whole GPU device and underline the structural char-
acteristics of the two GPU device architectures (5 SMs vs. 1 SM). The tables also
show that FP 64-bit operations have a significant impact on the energy consump-
tion of both the devices (15 times higher than Integer/FP 32-bit simple and Integer
compare instructions).

Tables 14.3 and 14.4 report the results obtained by running the microbench-
marks of the memory class to evaluate the throughput of the different device mem-
ories. The results allow understanding how the throughput differs among memories
and how it differs between the two devices. As an example, an application running
on the TK1 accesses the constant memory 4 times faster than in DRAM. The same
application running in the GTX 660 accesses the constant memory 20 times faster
than in DRAM. Moreover, the table shows that DRAM accesses strongly affect
the average and the max power of GTX 660 and TK1 devices while, the on-chip
memories (shared and constant memories) have sightly higher average power than
arithmetic instructions.

Figure 14.6a shows the impact of thread coalescence in DRAM memory accesses
on the GTX 660 performance, power and energy. The figure shows the effect start-
ing from no coalescence (one memory transaction per warp thread access), 1/16
coalescence (one transaction per two warp threads), until FULL coalescence (one

210 14 Power/Performance/Energy Microbenchmarking

DRAM L2 Shared Constant

Execution
Time (ms)

1,170 1,013 220.2 60.8

Real Throughput
(OPs per Cycle)

1.0 1.1 5.3 19.6

Avg. power (W) 92.1 71.5 59.2 63.3

Max power (W) 102.0 80.0 62.0 68.0

Energy (J) 107.8 72.5 13.0 3.8

Energy efficiency
(106Transactions/Watt)

10.0 14.8 82.4 279.1

nano Joule per
mem. transaction

100.4 67.5 12.1 3.6

Table 14.3: GTX 660 - Characteristics of accesses on
DRAM, L2, shared and constant memories.

DRAM L2 Shared Constant

Execution
Time (ms)

24,703 22,339 14,915 3,905

Real Throughput
(OPs per Cycle)

0.6 0.7 1.0 3.8

Avg. power (W) 4.1 3.8 3.3 3.3

Max power (W) 5.0 5.0 5.0 4.0

Energy (J) 100.4 85.4 49.2 12.9

Energy efficiency
(106Transactions/Watt)

10.7 12.6 21.8 83.3

nano Joule per
mem. transaction

93.5 79.5 45.8 12.0

Table 14.4: Jetson TK1 - Characteristics of accesses on
DRAM, L2, shared and constant memories.

transaction per a whole 32-threads warp). The figure shows how performance and
energy are proportional to the reached coalescence. In contrast, max and average
power reach the highest values at 1/8 coalescence, and they decrease until FULL
coalescence. This is due to the fact that from NO to 1/8, the coalescence is in-
crementally supported by the 32-Byte L2 memory banks, which saturate at 1/4
coalescence (i.e., each set of 4 transactions per warp, each one 32-Byte large, sat-
urate a 32-Byte L2 bank). From 1/4 on, the coalescence relies on the 128-Byte L1
memory banks. Figure 14.6b reports the same analysis on the TK1, for which the
decreasing of the max power can be observed at the FULL coalescence state only.

Figures 14.7a and 14.7b quantify the impact of bank conflicts in shared memory
on power, performance, and energy consumption. They underline that the bank
conflicts similarly impact on performance and energy on the two devices. In con-
trast the analysis underlines that up to 7 conflicts do not affect the max power on
the GTX 660, while up to 7 conflicts strongly affect the max power on the TK1.

14.4 Conclusions 211

(a) GTX 660 (b) Jetson TK1
fig. 14.6: DRAM coalescence

(a) GTX 660 (b) Jetson TK1
fig. 14.7: Shared Memory Conflict

Overall, the results obtained by running the proposed suite on a given GPU
device allows understanding the specific impact of a tuning step on the design
constraints (performance, power, and energy consumption). Improving the code
performance that affect a specific functional component (e.g., coalescence of mem-
ory accesses) may violate a design constraint on a device, while it may not on a
different device (see for instance the different effect on peak power on GTX660 and
TK1 by increasing the memory coalescence). Combined with the standard profiler
information, the proposed microbenchmark suite can efficiently guide developers
in choosing among the possible optimizations during the whole iterative tuning
flow.

14.4 Conclusions

This Section presented MIPP, a suite of microbenchmarks that aims at charac-
terizing a GPU device in terms of performance, power, and energy consumption.
MIPP aims at understanding how application bottlenecks involving selected func-
tional components or underutilization of them can affect code performance, power
consumption, and energy efficiency on a given device. The Section presented the
results obtained by applying the microbenchmark suite to characterize two dif-

212 14 Power/Performance/Energy Microbenchmarking

ferent GPU devices, i.e., an NVIDIA Kepler GTX660 and a low power embedded
system NVIDIA Jetson TK1. The results showed how the same code optimizations
have a different impact on the design constraints on the two GPU architectures.

15

Power-aware Performance Tuning of GPU
Applications Through Microbenchmarking

Tuning GPU applications is a very challenging task as any source-code optimiza-
tion can sensibly impact performance, power, and energy consumption of the GPU
device. Such an impact also depends on the GPU on which the application is run.
This Section presents a suite of microbenchmarks that provides the actual char-
acteristics of specific GPU device components (e.g., arithmetic instruction units,
memories, etc.) in terms of throughput, power, and energy consumption. It shows
how the suite can be combined to standard profiler information to efficiently drive
the application tuning by considering the three design constraints (power, perfor-
mance, energy consumption) and the characteristics of the target GPU device.

15.1 Introduction

Graphic Processing Units (GPUs) have become increasingly used as general-
purpose accelerators thanks to their computational power and programmabil-
ity. Besides providing high performance, they also achieve excellent energy effi-
ciency [196]. This makes them well suited to a variety of architectures, ranging
from supercomputers to low-power and mobile devices [8].

On the other hand, the large number of operating hardware resources (e.g.,
cores and register files) employed in GPUs to support the massive parallelism can
lead to a significant power consumption. The elevated levels of power consumption
have a sensible impact on such many-core device reliability, ageing, performance
scaling and deployment into a wide range of application domains. Different tech-
niques have been proposed to manage the high levels of power dissipation and
to continue scaling performance and energy. They include approaches based on
dynamic voltage/frequency scaling (DVFS) [147], CPU-GPU work division [173],
architecture-level/runtime adaptations [274], dynamic resource allocation [127],
and application-specific (i.e., programming-level) optimizations [288]. Particularly
in this last category, it has been observed that source-code-level transformations
and application specific optimizations can significantly affect the GPU resource
utilization, performance, and energy efficiency [247].

In this context, even though profiling tools (e.g., CUDA nvprof) exist to help
programmers in the application analysis and optimization targeting performance,

214 15 Power-aware Performance Tuning of GPU Applications Through Microbenchmarking

GPU	
applica*on	

Profiling	
results	

Opt.	
1	

Opt.	
2	

Opt.	
3	

User-defined	power-unaware	
performance	op*miza*on	strategies	

Sta*c	and	
dynamic	
micro-

benchmark	
results	

Power-aware	performance	
op*miza*on	selec*on	and	

implementa*on	

GPU	
device	

Profiling	

Microbenchmarking	

fig. 15.1: Overview of the proposed approach.

they do not provide a complete view of the GPU features (especially on power
consumption and energy efficiency) neither they provide a correlation among these
design constraints. What is missing is a solution to measure, on a given GPU
architecture, the potential effects of code optimizations on every design constraint
before implementing them.

To overcome this limitation, this Section presents a suite of microbenchmarks,
which aims at characterizing a GPU device in terms of performance, power, and
energy consumption. The microbenchmark suite has been designed to be compiled
and run on any CUDA GPU device, with the aim of quantitatively characterizing,
statically and dynamically, all the functional components of the device. The func-
tional components include arithmetic instruction units, memories (shared, cache,
DRAM, constant), scheduling and synchronization units.

Fig. 15.1 shows how the proposed microbenchmarking can be combined with
the standard profiling for a power-aware performance tuning of GPU applications.
Given a GPU application, the standard profiling information allows defining a set
of potential optimizations targeting performance. The microbenchmarks are run
once for all in the target GPU device. By considering the functional components
involved by an optimization strategy, the microbenchmark results on such compo-
nents allow classifying the potential and the useless optimization strategies for the
target design constraint before implementing them. The model allows the flow to
be iterated for incremental tuning of the application.

The suite has been applied to characterize two different GPU devices (i.e.,
NVIDIA Kepler GTX660 and Maxwell GXT980), which are representative of the
respective architectures, and to efficiently guide the tuning of two representative
and widely used parallel applications.

The work is organized as follows. Section 15.2 presents the suite and how it is
used to characterize a given device. Section 15.3 reports the experimental results,
while Section 15.4 draws the conclusions.

15.2 The Microbenchmark Suite 215

Componet Benchmark Instructions Thoman et
al. [264]

Lemeire et
al. [158]

ALU
32-bit Integer
Simple

add, sub 7 X(ND)

ALU
32-bit Integer
Complex

mul 7 X(ND)

ALU
32-bit Integer Bit
operations

clz, mbs, brev,

bfi, bfe
7 7

ALU 32-bit Integer Shift shl, shr 7 7

ALU
32-bit Integer Pop.
count

popc 7 7

ALU
32-bit Integer
Remainder

rem 7 7

ALU
64-bit Integer
Simple

add, sub 7 7

FPU 32-bit FP Simple add, sub, mul X(74.0%) X(ND)

FPU 32-bit FP Complex
div, div.ftz,

div.approx,

div.approx.ftz
X(85.8%) X(ND)

SFU
32-bit FP
Transcendental op.

sin, cos, exp,

rsqrt, rcp, log
X(45.4%) X(ND)

DFU 64-bit FP Simple add, sub X(74.1%) X(ND)

DRAM DRAM load, store 7 X(ND)

L2 L2 load, store 7 X(ND)
L1/Shared
mem.

Shared memory load, store 7 X(ND)

Constant

mem.
Constant memory load, store 7 X(ND)

Table 15.1: Microbenchmarks for static characteristics

15.2 The Microbenchmark Suite

A microbenchmark is a GPU kernel that exercises a specific functional component
of the device and whose instructions can be evaluated at a clock-cycle accuracy.
A microbenchmark main procedure consists of a long sequence of one or more se-
lected instructions (e.g., arithmetic instructions, memory accesses) that executes
without any interference deriving from other instructions. Each microbenchmark
selectively stresses a functional component without or minimally affecting the oth-
ers to provide reliable and accurate feedback. To do that, we implemented the
microbenchmarks by combining common CUDA C/C++ language with inline in-
termediate assembly to avoid compiler side-effects.

The PTX language has been exploited to force a specific operation on a data
type, to avoid compiler optimizations (which cannot be avoided by simply set-
ting compiler flags like -O0 in both C/C++ and PTX compilation), to prevent
caching/local-storage mechanisms, and to restrict the memory access space.

Tables 15.1 and 15.2 summarize the GPU components and the corresponding
low-level instructions statically and dynamically exercised by the proposed suite.
The tables compare the completeness and the accuracy of the suite with the best
and more complete suites at the state of the art (i.e., [158, 264]). The accuracy is
essential for a correct characterization of the timing features of a GPU component,
and even more to understand how a generic application can affect power and energy
consumption of such a component. The accuracy is measured as the number of
useful (”pure”) instructions for a given component microbenchmarking over the
total number of the microbenchmark instructions. Each microbenchmark of the
proposed suite reaches an accuracy value equal to 99.99%. Such an accuracy is not
reached by the counterparts (as reported in brackets). We derived the accuracy
of the suite proposed by [158] experimentally (see Section 15.3), since the suite is
not released with the source code.

216 15 Power-aware Performance Tuning of GPU Applications Through Microbenchmarking

Componet Benchmark Thoman et
al. [264]

Lemeire et
al. [158]

ALU Loop unrolling 7 7
ALU ILP 7 7
DRAM Coalescence 7 7
DRAM Access size 7 7
Shared memory Bank conflicts 7 7
Streaming Multi-
processor

Device occupancy
(SM)

7 7

SM scheduler
Device synchro-
nization

7 7

SM scheduler Thread divergence 7 7

Table 15.2: Microb. for dynamic characteristics

15.2.1 GPU static characteristics

The suite allows analysing the peak characteristics of the arithmetic and memory
components of the GPU by applying extensive workloads on them. The arithmetic
microbenchmarks target the complete set of arithmetic instructions natively sup-
ported by the GPU, by distinguishing between integer and floating-point over 32
and 64-bit word sizes. The memory microbenchmarks give information on the
throughput (bandwidth) of DRAM, L1/shared, constant, and L2 cache memo-
ries. The DRAM microbenchmark executes several accesses at different memory
locations with a stride of 128 bytes between grid threads to avoid L1 cache in-
terferences. The L2 microbenchmark repeats a compile-time sequence of store in-
structions on the same memory address. We used cache modifiers [205] to avoid L1
cache hits in the store operations. Shared and constant memory microbenchmarks
consist of a sequence of store/load instructions.

device clock t devClocks[resident warps];
device int devTMP;
device volatile int devMemory[size];

templateăint th group sizeą
global Coalescence()

1: int thread group id = global thread id / th group size;
2: int L1 bank offset = thread group id ¨ cache line size;
3: volatile int* pointer = devMemory + L1 bank offset + (global thread id%th group size);
4: int R1 = threadIdx.x; // assign dynamic value
5: clock t start tm = clock64();
6: InstrSeqăNą(pointer, R1); // call the function N times
7: clock t end tm = clock64();
8: if (lane id ==0) then devClocks[warp id] = end tm - start tm;
9: if (thread id == 1024) then devTMP = R1; // never executed

templateăint Ną // template metaprogramming
device forceinline InstrSeq(volatile int* pointer, int& R1)

1: const int stride = resident warps ¨ cache line size;
2: #pragma unroll // loop unrolling
3: for (int i = 0; i ă 4096; i++) do
4: asm volatile(”ld.volatile.s32 %0, [%1]” : ”=r”(R1) :
5: ”l”(pointer + i * stride) : ”memory”);
6: end
7: InstrSeqăn-1ą(pointer, R1); // recursive call

fig. 15.2: Example of the microbenchmark code to measure the impact of global memory
coalescence.

15.2 The Microbenchmark Suite 217

15.2.2 GPU dynamic characteristics

The suite includes dynamic microbenchmarks, which analyse the dynamic char-
acteristics of the device by exercising the functional components with different
intensity.

The memory microbenchmarks analyse how the memory access pattern of
threads affects the memory throughput. This includes memory coalescence, mem-
ory access size, and bank conflicts involved by the implemented access pat-
tern. As an example, the microbenchmark in Fig. 15.2 measures the impact
of global memory coalescence on the memory throughput. To do that, the mi-
crobenchmark implements different patterns of memory accesses, where each
pattern guarantees a different coalescence degree. Considering a base address
(devMemory), each thread calculates the own L1 bank offset through the global
identifier (GLOBAL THREAD ID), the size of the L1 cache bank (CACHE LINE SIZE),
and through the TH GROUP SIZE variable (lines 1, 2 in the upperside of Fig. 15.2).
This allows forcing different thread accesses to be grouped into the same L1 cache
banks and, as a consequence, to group such thread accesses into coalesced global
memory transactions. Then, each thread calculates the final pointer through base
address, L1 bank offset, and thread offset in the bank. Fig. 15.3 shows an example,
which underlines how grouping threads into coalesced transactions is parametrized
through the TH GROUP SIZE variable. The microbenchmark dynamically sets such
a variable to control the coalescence degree.

The code implements volatile quantifiers (devMemory definition and line 3 in
the upper side of Fig. 15.2). This allows avoiding local-storage optimizations by the
compiler, which may change the coalescence degree forced by the proposed strat-
egy. The code adopts recursive and template-based meta-programming to gen-
erate an arbitrarily long sequence of arithmetic instructions (N ˆ 4, 096 store

instructions in the example). This allows improving the accuracy of the functional
characteristics measurement. In the bottom side of Fig. 15.2, the STRIDE variable
represents the minimum value of memory address offset that allows preventing
false positive L1 cache hits. Such an offset guarantees that any thread cannot cal-
culate the same pointer in two different loop iterations. Both the STRIDE and the
global memory offsets (i¨STRIDE) are computed at compile time to guarantee that
the measured memory throughput is not distorted by such value computation.

The arithmetic microbenchmarks analyse the dynamic characteristics of the
GPU computational units over two optimization aspects: unrolling and instruction-
level parallelism (ILP). The unrolling microbenchmark iteratively executes a
chunck of code in a loop, where the loop iterations/loop unrollings are set dynam-
ically and increasingly from the minimum to the maximum. The microbenchmark
returns the effect of eliminating conditional statements in terms of performance
and power. The ILP microbenchmark executes a sequence of unrelated instruc-
tions, where the sequence length is set dynamically and incrementally.

The suite includes the shared memory microbenchmark, which generates a
different amount of bank conflicts, from zero to the maximum value. The access
size microbenchmark copies one large array into another multiple times by varying,
at each iteration, the size of the data block.

The thread scheduling and synchronization microbenchmarks aim at studying
the dynamic behavior of the device by varying the streaming multiprocessor oc-

218 15 Power-aware Performance Tuning of GPU Applications Through Microbenchmarking

Integer 32-bit
Integer
64-bit

FP 32-bit
FP

64-bit

Simple Complex Pop. Count Shift Bit OP. Rem Simple Simple Special Simple

Execution
Time (ms)

8.6 31.5 29.6 15.5 15.5 965.2 18.8 8.6 32.5 223.9

Spec Throughput
OPs per Cycle per SM

128 n.a. 32 64 64 n.a. n.a. 128 32 4

Real Throughput
OPs per Cycle per SM

116.3
(66.3:)

31.8 32.0 63.4 63.5 1.0 51.6
116.3

(101.3‹)

(104.4:)

29.8
(33.9‹)

4.0 (7.6‹)

(err:)

Avg. Power (W) 75.2 88.2 69.4 70.8 79.1 100.2 80.9 72.2 84.4 76.8

Max Power (W) 86 93 72 77 85 114 88 86 99 88

Energy (J) 0.7 2.8 2.1 1.1 1.2 96.7 1.5 0.6 2.74 17.20

Energy efficiency
MIPS per Watt

26,564 6,190 8,370 15,672 13,995 178 11,269 28,120 6,262 999

nano Joule per
instruction

0.04 0.16 0.12 0.06 0.07 5.63 0.09 0.04 0.16 1.0

Table 15.3: GTX980 - Characterization of arithmetic instructions (static characteristics).
‹results of Thoman et al. [264], :results of Lemeire et al. [158]

Global	Memory	

L1	cache	
(128B	banks)	

Tr
an
s 0	

Bank0	 Bank1	 Bank2	 Bank3	

Tr
an
s 1	

Trans
2	

Trans
3	

th0	 th1	 th2	 th3	

th0	 th2	
th1	 th3	

TH_GROUP_SIZE=1	

TH_GROUP_SIZE=2	

th0	 th2	
th1	 th3	

TH_GROUP_SIZE=4	

0
	

2
	1

	

3
	

127
	

128
	

129
	

…	 …	

devMEM	=	0	
CACHE_LINE_SIZE	=	128	Bytes	
thread_group_id	=	3	/	2	=	1	
offset	=	1	*	128	=	128	
th3	pointer	=	0	+	128	+	(3	/	2)	=	129	
	

fig. 15.3: Controlled memory coalescence

cupancy and the degree of thread divergence. They also aim at characterizing the
device by considering the synchronization overhead caused by thread block barri-
ers over the whole kernel. The device occupancy (SM) microbenchmark evaluates
the contribution of different number of active SMs on the computation, while the
device synchronization one analyses the impact of synchronization barriers in the
code.

The arithmetic processing benchmarks allowed us to measure the impact of the
div precision in GPU applications running on the GTX 660 and GTX 980 devices,
respectively (see Tables 15.4 and 15.5). In both cases, the division precision can be
set at compile time, (prec-div=false enables fast approximation mode breaking
IEEE754 Standard, ftz=true flushes de-normal values to zero). The tables show
that in both devices, the execution time, the peak throughput, and the energy are
proportional to the selected precision. The table underlines that the throughput
and the energy consumption of the division operation with the lowest precision is
comparable with FP 32-bit special instructions.

15.3 Experimental Results 219

IEEE754 Fast Approximation

Div Div FTZ Div Div FTZ

Execution
Time (ms)

223.7 222.4 53.0 36.6

Real Throughput
(OPsˆCycle)ˆSM

5.3 5.3 24.1 34.3

Avg. power (W) 68.5 68.3 60.7 56.4

Max power (W) 73.0 72.0 64.0 59.0

Energy (J) 15.3 15.2 3.2 2.1

Energy efficiency
(MIPSˆWatt)ˆSM

70.1 70.7 334.2 519.5

nano Joule per
instruction

14.3 14.1 3.0 1.9

Table 15.4: 660 GTX - Impact of div precision.

IEEE754 Fast Approximation

Div Div FTZ Div Div FTZ

Execution
Time (ms)

276.0 274.7 59.3 32.4

Real Throughput
(OPsˆCycle)ˆSM

4.9 4.9 16.8 29.7

Avg. power (W) 100.8 89.5 81.8 81.3

Max power (W) 128.0 117.0 86.0 86.0

Energy (J) 1.74 1.54 0.30 0.17

Energy efficiency
(MIPSˆWatt)ˆSM

617 698 3,539 6,512

nano Joule per
instruction

1.62 1.43 0.28 0.15

Table 15.5: GTX 980 - Impact of div precision.

15.3 Experimental Results

15.3.1 GPU Device Characterization

We run the microbenchmarks on an NVIDIA GeForce GTX660 and on a GTX980,
which are representative of the Kepler and Maxwell architectures, respectively.

The devices have been evaluated with CUDA Toolkit 7.5, AMD Phenom II X6
1055T (3GHz) host processor, and Ubuntu 14.04 operating system. The proposed
suite is independent from the specific CUDA-enabled GPU device and from the
adopted CUDA Toolkit version.

Performance information has been collected through the CUDA runtime API
to measure the execution time and through the clock64() device instruction for
throughput values to ensure clock-cycle accuracy of time measurements.

220 15 Power-aware Performance Tuning of GPU Applications Through Microbenchmarking

Power and energy consumption information has been collected through the
Powermon2 power monitoring device [35]. The analysis has been performed with
the default GPU frequency setting and by disabling any PCI/GPU adaptive fre-
quency or thermal throttling mechanisms (i.e., GPUBoost).

Table 15.3 reports the results obtained by running the static microbenchmarks
on the GTX980 device. For the sake of space and without loss of generality, we
do not report the static characteristics of the GTX660 device, since they are not
necessary for understanding the focus of the Section. We only report, for the
GTX660, the most useful dynamic benchmarking results.

The static microbenchmarks are organized over columns and consist of 109 in-
structions per SM. For each microbenchmark, the table reports the execution time,
the theoretical peak throughput of the corresponding functional unit provided in
the device specifications [213] (Spec. throughput) and that measured through the
proposed microbenchmark (Real throughput). The static microbenchmarks mea-
sure the maximum arithmetic instruction throughput of simple integer operations
(add, sub , etc.), complex integer operations (mul, mad, etc.), integer population
count, shift, remainder, bitwise (bit insert, bit reverse, etc.), simple single precision
floating-point operations (add, mul, etc.), complex single precision floating-point
operations (transcendental functions such as sin, rcp, etc.) and double precision
floating-point operations. The device specifications do not include the theoretical
peak throughput of the integer 64-bit and integer 32-bit remain operation (rem)
and integer 32-bit complex operation since such operations have not an embedded
hardware implementation. They are performed through a combination of different
hardware units.

The results of the static microbenchmarking allow understanding the mi-
crobenchmark accuracy by comparing the measured throughput with the through-
put reported in the device specification.

They also underline the accuracy difference between each microbenchmark of
the proposed suite and the corresponding microbenchmark, when provided, of
the best suites at the state of the art (i.e., [158, 264]). It is worth noting that
the accuracy of the state of the art microbenchmarks for simple instructions is
very low. This is due to the compiler activity on the source code (unavoidable
even disabling any optimization flag), which inserts ”spurious” instructions in the
executable code. Such optimizations lead the throughput measured on the FP
instructions to be even higher than the real throughput

Table 15.3 also reports information about power and energy consumption,
which is not reported in the device specifications. The energy efficiency (or perfor-
mance per watt) [99] is defined as the number of operations/instructions computed
per second per Watt. We refer to million instructions per second (MIPS) for arith-
metic benchmarks and million of memory transactions for memory benchmarks. Fi-
nally, the table shows the power consumption (nJ) per single instruction/memory
transaction.

Table 15.6 reports the results of the static microbenchmarks on the GPU mem-
ories. They allow understanding how the throughput differs among memories. As
an example, an application running on the GTX980 accesses the shared memory
11 times faster than the DRAM (the corresponding microbenchmarking on the
GTX660 reports that the same application running on the GTX660 accesses the

15.3 Experimental Results 221

Dram L2 Shared Constant

Exec Time (ms) 9,536.2 2,522.5 847.6 226.4

Real Throughput
(TransˆCycle)ˆSM

0.09
(0.08:)

0.33
(0.14:)

1.02
(0.85:)

4.06
(3.08:)

Avg. power (W) 113.3 105.8 94.1 76.0

Max power (W) 117 112 105 87

Energy (J) 67.54 16.7 5.0 1.1

Energy efficiency
(106Transactions/Watt)

15.8 64.4 215.3 998.0

nano Joule per
mem. transaction

62.9 15.5 4.6 1.0

Table 15.6: Characteristics of mem. accesses on the GTX980. :results of Lemeire

et al. [158]

fig. 15.4: GTX980 DRAM access size

fig. 15.5: GTX980 thread divergence

shared memory 5 times faster than the DRAM). The DRAM accesses strongly
affect the average and peak power. The constant memory, which presents the
best energy efficiency, is 3.3 times more energy efficient than the L2 cache in the
GTX980 (1.5 times in the GTX660). The microbenchmarks of the state of the
art suites (i.e., [158, 264]) do not allow measuring power and energy consumption
since they are too fast also for the best sampling frequency available in literature
provided by the Powermon2 device.

222 15 Power-aware Performance Tuning of GPU Applications Through Microbenchmarking

(a) GTX660 (b) GTX980

fig. 15.6: Shared memory bank conflicts

Figures 15.4-15.6 report some of the dynamic microbenchmarking results (the
most relevant for the case study presented in Section 15.3). Fig. 15.4 reports the
impact of the thread access size in DRAM, starting from 1-byte to 16-byte blocks
per thread. Increasing the access size sensibly improves both performance and
energy consumption at the cost of slightly more average and peak power in the
GTX980. The results are proportionately similar in the GTX660.

Fig. 15.5 reports the analysis of thread divergence. Performance and energy
consumption linearly improve by moving from the maximum divergence (1-sized
thread groups in the left) to the minimum divergence (32-sized thread groups in
the right), at the cost of a slight increase of peak power.

Figures 15.6a and 15.6b quantify the effect of bank conflicts in shared mem-
ory for both the GTX660 and GTX980. They underline that the bank conflicts
similarly impact on performance and energy on the two devices, while they af-
fect average and peak power in the opposite way. In the GTX660, average and
max power sensibly decrease (up to 20%) by decreasing the bank conflicts from
the maximum (31) to 7. After that (from 7 to 0) there is no meaningful effect
on them. In the GTX980, there are no meaningful variations on the power by
decreasing the bank conflicts from the maximum to 7, while further reducing the
conflicts (from 7 to 0) involves the most sensible power increase. This is due to the
advanced instruction scheduler of the Maxwell architecture that, differently from
that in the GTX660, keeps up the throughput of few or no bank conflicts.

The memory coalescence microbenchmark analyses the impact of the coales-
cence in DRAM memory accesses on the device performance, power, and energy
consumption. The results, which are not reported for the sake of space, quantita-
tively show that performance, power, and energy are linearly proportional to the
coalescence degree.

We used the proposed microbenchmarks combined with the standard profiler
information to drive the tuning of two widespread parallel applications, vector
reduction and matrix transpose. Each application tuning has been performed for
both the GTX660 and GTX980 devices.

15.3 Experimental Results 223

GTX660 GTX980

Opt.
branch

Ver.
Profiler metrics and

features
Related

microbenchmark

Exec.
time
(ms)

Avg.
power
(W)

Peak
power
(W)

Energy
(J)

Exec.
time
(ms)

Avg.
power
(W)

Peak
power
(W)

Energy
(J)

- orig.
inst per warp“ 347
integer rem

- 260.8 83.2 101 21.7 108.7 165.3 169 17.9

1 v1.0 inst per warp“ 130
Divergence
Arith. throughput

184.7 73.7 77 13.6 52.6 167.5 135 6.7

2

v2.0 gmem throughput=75GB/s (GTX660)
gmem throughput=145GB/s (GTX980)

Access size 37.4 77.7 82 2.9 17.2 132.2 151 2.1

v2.1 gmem throughput=111GB/s (GTX660)
gmem throughput=165GB/s (GTX980)

Access size 23.2 77.1 85 1.7 15.2 133.5 153 1.6

Table 15.7: Vector reduction characteristics on GTX660 and GTX980 devices.

15.3.2 Vector Reduction

Vector reduction is one of the most common and important application cores in
parallel computing. It consists of performing a binary and associative operation
over all elements of a data vector to obtain a single final value.

We started from the implementation presented in [69], which applies, as asso-
ciative operator, the addition to a vector of integers. The goal was to generate two
distinct variants of the original code, the first (branch 1) targeting a lower peak
power, the second (branch 2) targeting performance speedup.

For the first branch, the best code optimization we identified to lower the peak
power without losing performance was reimplementing the following code pattern
to control the thread execution paths:

if (threadIdx.x % (2 * stride) == 0)

Mem[threadIdx.x]+=Mem[threadIdx.x+stride];

The idea was to replace the rem PTX operations used in the original code
with add and mul PTX operations (see Table 15.3 for the peak power comparison
among such arithmetic instructions). On the other hand, the identified modifica-
tion potentially reduces the thread divergence, since it forces only the neighbouring
threads to compute the reduction body (second line of the code above). However,
by analysing the microbenchmark results on the thread divergence (Fig. 15.5 for
the GTX980, and similar for the GTX660), we expected no meaningful increase
of peak power as a side-effect of any thread divergence reduction.

According to the results of such an analysis, we expected slightly higher per-
formance and much lower peak power in this code version w.r.t. the original code
in both the devices. We also expected a stronger peak power reduction and a lower
speedup in the GTX660 while a weaker power reduction and a higher speedup in
the GTX980, as then confirmed by the results (-24% peak power and 1.4x speedup
in GTX660, -20% peak power and 2.1x speedup in GTX980). Table 15.7 summa-
rizes the obtained results and reports, for each code version, the used profiler
metrics, the most relevant features that characterize the code, the analysed mi-
crobenchmarks, the execution time, the average and peak power, and the energy
consumption.

224 15 Power-aware Performance Tuning of GPU Applications Through Microbenchmarking

GTX660 GTX980

Opt.
branch

ID
Profiler metrics and

features
Related

microbenchmark

Exec.
time
(ms)

Avg.
power
(W)

Peak
power
(W)

Energy
(J)

Exec.
time
(ms)

Avg.
power
(W)

Peak
power
(W)

Energy
(J)

- orig.
global mem eff“ 0.125
ipc“ 0.3 (GTX660)
ipc“ 0.4 (GTX980)

- 52.2 75.0 79 3.9 55.8 86.5 92 4.8

1 v1.0
global mem eff“ 0.5
ipc“ 0.6 (GTX660)
ipc“ 0.6 (GTX980)

DRAM
Coalescence

9.3 69.3 87 0.6 26.8 94.2 103 2.5

2
v2.0 shared mem eff“ 6% Bank conflicts 10.4 69.5 81 0.7 16.3 90.8 97 1.4

v2.1 shared mem eff“ 100% Bank conflicts 6.3 61.4 74 0.4 10.4 90.2 105 0.9

Table 15.8: Matrix transpose characteristics on the GTX660 and GTX980 devices.

In the other optimization branch (v2.x) we identified a different memory ac-
cess strategy [170], which allows applying a variety of memory access sizes in the
application. We thus analysed the microbenchmark results on the memory access
sizes (Fig. 15.4) and observed that increasing the access size can lead to a sensi-
ble performance improvement with no meaningful side-effects on peak power. We
applied the technique proposed in [213] to cast the inputs to a data type of larger
size, thus forcing vectorized memory accesses. The technique improved both the
performance and the peak power w.r.t. the original code and, as expected, the in-
creasing of memory access size led to a further speedup with no significant power
increase in both the devices.

15.3.3 Matrix Transpose

We analyzed the matrix transpose implementation provided in [227] and, by con-
sidering the profiling information, we identified two optimization branches target-
ing memory coalescence for global memory accesses and bank conflict reduction
for shared memory accesses, respectively. Coalescence and memory access pattern
are two of the most important factors to be considered in the tuning phase of
any GPU application, especially if the application, like the matrix transpose, is
memory-bound.

In particular, the memory coalescence optimization allows sensibly improving
the performance speedup, while the bank conflict reductions allows tuning the
tradeoff between performance and peak power (see Fig. 15.6).

By combining the profiling information of the original code, which under-
lined a low global memory accesses efficiency (global mem eff=0.125) and the
dynamic characteristics of the memory coalescence provided by the corresponding
microbenchmark, we expected, for the first branch, an increase of both performance
speedup and peak power proportional to the memory coalescence improvement on
both the devices. We thus optimized the memory coalescence by re-organizing the
thread block configuration in v1.0. Table 15.8 shows the results, which confirm the
expected positive speedup at the cost of a higher peak power (5.6x speedup and
+10% peak power in GTX660, 2.1x speedup and +12% peak power in GTX980).

15.4 Conclusions 225

In the other branch (v2.x), we identified a different memory access pattern,
which allows taking advantage of the shared memory to locally transpose a tile
of the whole matrix and to optimize the memory load/store operations of the
matrix elements. The implementation of such an optimization (v2.1) provided a
further tuning opportunity, since the profiling of such a code version indicated
bad access patterns in shared memory. This was underlined by a low value of
shared mem eff1, which involves a waste of the memory bandwidth. By analysing
the results of the microbenchmarks on the bank conflicts (Figs. 15.6a and 15.6b),
we expected, as a consequence of solving such a bottleneck, an improvement on
both performance and peak power in the GTX660. We thus applied the memory
padding technique [227] to reduce the bank conflicts, which led to 8.3x speedup and
-5% peak power w.r.t the original version. As suggested by the microbenchmarks,
we would not have applied such a time consuming optimization to reduce the peak
power in the GTX980. The uselessness of such an optimization on the GTX980
has been then confirmed by the experimental results (+14% peak power w.r.t. the
original version).

15.4 Conclusions

This Section presented a suite of microbenchmarks to statically and dynamically
characterize GPU devices in terms of performance, power, and energy consump-
tion. The Section showed how the microbenchmark results can been combined with
the standard profiler information to efficiently tune any parallel application for a
given GPU device and for a given design constraint (performance speedup or peak
power reduction). Experimental results have been conducted on two widespread
parallel applications for two representative GPU devices. They showed how the
proposed microbenchmarking can improve the efficiency of the tuning task by iden-
tifying the potential from the useless optimization strategies before implementing
them.

1 A value of shared mem eff equal to 6% corresponds to 31 bank conflicts in the shared
memory microbenchmark (see Figs. 15.6a,15.6b):

1 access
total accesses“32

¨
smem bank size“8byte

data size“4byte
“ 6%.

16

A Performance, Power, and Energy Efficiency
Analysis of Load Balancing Techniques for GPUs

Load balancing is a key aspect to face when implementing any parallel application
for Graphic Processing Units (GPUs). It is particularly crucial if one considers that
it strongly impacts on performance, power and energy efficiency of the whole ap-
plication. Many different partitioning techniques have been proposed in the past
to deal with either very regular workloads (static techniques) or with irregular
workloads (dynamic techniques). Nevertheless, it has been proven that no one
of them provides a sound trade-off, from the performance point of view, when
applied in both cases. More recently, a dynamic multi-phase approach has been
proposed for workload partitioning and work item-to-thread allocation. Thanks
to its very low complexity and several architecture-oriented optimizations, it can
provide the best results in terms of performance with respect to the other ap-
proaches in the literature with both regular and irregular datasets. Besides the
performance comparison, no analysis has been conducted to show the effect of all
these techniques on power and energy consumption on both GPUs for desktop
and GPUs for low-power embedded systems. This chaper shows and compares, in
terms of performance, power, and energy efficiency, the experimental results ob-
tained by applying all the different static, dynamic, and semi-dynamic techniques
at the state of the art to different datasets and over different GPU technologies
(i.e., NVIDIA Maxwell GTX 980 device, NVIDIA Jetson Kepler TK1 low-power
embedded system).

16.1 Introduction

Graphic Processing Units (GPUs) have become increasingly used as general-
purpose accelerators thanks to their computational power and programmability.
Besides providing high peak performance, they also achieve excellent energy ef-
ficiency. This makes them well suited to a variety of architectures, ranging from
supercomputers to low-power and mobile devices [196].

Nevertheless, the current GPU programming paradigm does not allow devel-
opers to automatically address issues like load balancing and GPU resource uti-
lization. A meaningful example is the CUDA scheduler, which cannot handle the
unbalanced workload efficiently. Particularly with problems that do not exhibit

228 16 A Performance, Power, and Energy Efficiency Analysis of Load Balancing Techniques for GPUs

enough parallelism to fully utilize the GPU, employing the canonical GPU pro-
gramming paradigm easily leads to underutilization of the computation power.
These issues are essentially due to fundamental limitations on the current data
parallel programming methods [67]. Indeed, the workload decomposition and al-
location strategies are let to the application designer. How the application im-
plements such a mapping can have a significant impact on the overall application
performance. In addition, the load balancing strategy implemented in the GPU ap-
plication strongly affects also the power consumption and energy efficiency, which
are becoming fundamental design constraints in addition to performance [128].

Different techniques for GPU applications have been presented in literature
to decompose and map the workload to threads [30, 59, 83, 113, 117, 125, 190]. All
these techniques differ in the complexity of their implementation and from the
overhead they introduce in the application execution to address the most irregular
workloads. In particular, the simplest solutions [117,125] apply well to very regular
workloads while they cause strong unbalancing and, as a consequence, lost of
performance in case of irregular workloads. More complex solutions [30,59,83,113,
190] best apply to irregular problems through semi-dynamic or dynamic workload-
to-thread mappings. Nevertheless, the overhead introduced for such a mapping
often worsens the overall application performance when run on regular problems.
More recently, a partitioning and mapping technique called Multi-phase [58] has
been proposed to address the workload unbalancing problem in both regular and
irregular problems. It implements a dynamic allocation of work-units to threads
through an algorithm whose complexity is sensibly reduced with respect to the
other dynamic approaches in the literature.

Although all these techniques have been compared in terms of performance over
very different datasets [61], no analysis has been conducted to prove (i) whether
the most efficient in terms of performance can also guarantee the best power and
energy consumption (ii) the performance-power trade-off of such techniques when
applied on low-power embedded GPUs.

This chaper presents an experimental analysis of all the most efficient load bal-
ancing techniques at the state of the art applied on different benchmarks and over
different GPU architectures (i.e., NVIDIA Maxwell GTX 980 device, NVIDIA Jet-
son Kepler TK1 low-power embedded system) to understand when and how each
technique best applies in terms of performance, power, and energy consumption.

The chaper is organized as follows.Section 16.1.1 summaries the Multi-Phase
Search algorithm for GPUs. Section 16.2 presents the load balancing analysis,
while Section16.3 is devoted to the conclusions.

16.1.1 The Multi-phase technique

Multi-phase aims at exploiting the balancing advantages of the two-phase algo-
rithms while overcoming the limitations of the scattered memory accesses. It con-
sists of a hybrid partitioning phase and an iterative coalesced expansion.

Hybrid partitioning

Differently from all the other dynamic techniques in literature, which strongly rely
on the binary search, Multi-phase relies on a hybrid partitioning strategy by which

16.1 Introduction 229

each thread searches the own work-items. Such a hybrid strategy dynamically
switches between an optimized binary search and an interpolation search depending
on the benchmark characteristics.

Optimized binary search: In the standard implementation of the binary search,
each thread finds the searched element, on a prefix-sum array of N elements,
through one memory access in the best case or through 2 logN memory accesses
in the worst case. Indeed, at each iteration, each thread performs two memory
accesses, to check the lower bound (value at the left of the index) and the up-
per bound (value at the right of the index) to correctly update the index for the
next iteration. Nevertheless, in the context of binary search on prefix-sum, since all
threads must be synchronized by a barrier before moving to the next iteration, and
since at least one thread executes all iterations involving 2 logN memory accesses,
each binary search actually has a time complexity equal to 2 logN memory ac-
cesses. In Multi-phase, each thread checks, at each iteration, only the lower bound,
thus involving only one memory access per iteration. On the other hand, this
approach requires all threads to perform all iterations (logN) indistinctly. Over-
all, such an optimization halves the binary search complexity to logN memory
accesses.

Interpolation search: In case of uniformly distributed inputs (i.e., low standard
deviation of work-item size) and a low average number of work-units, Multi-phase
implements an interpolation search [219] in alternative to the optimized binary
search. The interpolation search has a very low complexity (Oplog logNq) at the
cost of additional computation. The algorithm pseudocode is the following:

Interpolation Search pArray, left, right, Sq

1: while S ě Arrayrlefts and S ď Arrayrrights do

2:
K “ left` pS ´Array rleftsq ¨

right´left
Arrayrrights´Arrayrlefts

3: if Array rKs ă S then
4: left “ K ` 1

5: else if Array rKs ą S then
6: right “ K ´ 1

7: else
8: return K
9: end

10: end

The idea is to use information about the underlying distribution of data to be
searched in a human-like fashion when searching a word in a dictionary. Given
a chunk of prefix-sum elements (Array) and the item to be searched (S), the
procedure iteratively calculates the next search position K (row 2 of the algorithm)
by mapping S in the distribution Arrayrlefts,Arrayrrights. The algorithm shows
an average number of comparisons equal to Oplog log nq that increase to OpNq in

230 16 A Performance, Power, and Energy Efficiency Analysis of Load Balancing Techniques for GPUs

the worst case, differently to the binary search that shows complexity OplogNq in
all cases.

The main drawback is the higher computational cost to calculate the next
index of the search (row 2), which involves double precision floating-point oper-
ations (division, multiplication, and casting). Such operations present a very low
arithmetic throughput in GPU devices compared with single precision operations.
To limit such a cost, Multi-phase implements the computation by minimizing the
expensive double precision operations and by replacing them with 64-bit integer
operations when possible.

Multi-phase switches between interpolation and binary search depending on
the benchmark characteristics. In particular, the interpolation search runs if both
the following conditions hold:

Std Dev WIsize ď ThresholdSD

and

Average WIsize ď ThresholdAVG

where the standard deviation of the work-item size and the average work-
item size of the benchmark are calculated runtime. The switching between the
two search methods is parametrized through the two thresholds that have been
heuristically set to ThresholdSD “ 5 and ThresholdAVG “ 3 for all the analyzed
benchmarks.

Iterative Coalesced Expansion

In the expansion phase, all threads of each block load the corresponding chunks
into the shared memory. Then, each thread performs a binary search (optimized as
in the partitioning phase presented in Section 16.1.1) in such a local partition to
get the assigned work-unit. Then, the expansion phase consists of three iterative
sub-phases, by which the scattered accesses of threads to the global memory are
reorganized into coalesced transactions. This is done in shared memory and by
taking advantage of local registers:

1. Writing on registers. Instead of sequentially writing on the work-units in global
memory, each thread sequentially writes a small amount of work-units in the
local registers.

2. Shared mem. flushing and data reorganization. After a thread block synchro-
nization, the local shared memory is flushed and the threads move and reorder
the work-unit array from the registers to the shared memory.

3. Coalesced memory accesses. The whole warp of threads cooperate for a co-
alesced transaction of the reordered data into the global memory. This step
does not require any synchronization since each warp executes independently
on the own slot of shared memory.

Steps two and three iterate until all the work-units assigned to the threads are
processed. Even though these steps involve some extra computation with respect to
the direct writings, the achieved coalesced accesses in global memory significantly
improve the overall performance.

16.2 Load balancing analysis 231

Workload Source
Avg. work-item

size
Std. Dev.

work-item size
Max work-item

size

great-britain osm 2.1 0.5 8

web-Notredame 5.2 21.4 3,445

cit-Patents 4.8 7.5 770

circuit5M 10.7 1,356.6 1,290,501

as-Skitter 13.1 136.9 35,455

Table 16.1: Benchmark Characteristics

16.2 Load balancing analysis

16.2.1 Characteristics of datasets, GPU devices, and equipment for
performance, power, energy efficiency measurement

We tested the load balancing efficiency in terms of performance, power consump-
tion and energy efficiency of all the more representative techniques in the literature
(presented in Section 4.1) over a dataset of different benchmarks (see Table 16.1).
The dataset, consists of five representative benchmarks selected from The Uni-
versity of Florida Sparse Matrix Collection [84], which consists of a huge set of
data representation from different contexts (e.g., circuit simulation, molecular dy-
namic, road networks, linear programming, vibroacoustic, web-crawl). The five
benchmarks have been selected among the collection to cover very different data
characteristics in terms of maximum work-item size, average, and standard devia-
tion from the item size. As summarized in the table, they span from very regular
to strongly irregular workloads. The great-britain osm benchmark represents a
road network with very uniform distribution and low average. web-NotreDame is
a web-crawl with a slightly higher average and middle-sized standard deviation.
Cit-patent represents the U.S. patent dataset, which has moderate average and
not-uniform distribution. Circuit5M represents a circuit simulation instance, while
as-skitter is an autonomous system. The last two benchmarks are characterized
both by highly not-uniform distribution and middle-sized average.

All the analyzed balancing techniques have been integrated in a reference ap-
plication, in which the threads access and update, in parallel, each work-unit of
the benchmark workload. We run the experiments on two different GPU devices.
The first is an NVIDIA Maxwell GeForce GTX 980 with CUDA Toolkit 7.5, AMD
Phenom II X6 1055T (3GHz) host processor, and Ubuntu 14.04 OS. The second
is a Tegra K1 SoC (Kepler architecture) on an NVIDIA Jetson TK1 embedded
system, with CUDA Toolkit 6.5, 4-Plus-1 NVIDIA-ARM host multi processor and
Ubuntu 14.04 OS.

Performance information has been collected through the CUDA runtime API
to measure the execution time and through the clock64() device instruction for
throughput values to ensure clock-cycle accuracy of time measurements.

Power and energy consumption information have been collected through the
Powermon2 power monitoring device [35]. It allows measuring the voltage and

232 16 A Performance, Power, and Energy Efficiency Analysis of Load Balancing Techniques for GPUs

the current values from different sources at the same time with a frequency of
3,072 Hz multiplexed across a subset of the 8 channels. We used a interposer/riser
card to isolate the GPU pci-express power connector from the motherboard, while
we directly connected the Powermon2 device to the ATX power connectors. For
each power supply source, we measured the instantaneous current and voltage to
compute the power values. The analysis has been performed at a constant 21.0˝C
temperature to avoid temperature-related current leakage variations. The analy-
sis has been performed with the default GPU frequency setting and by disabling
any PCI/GPU adaptive frequency or thermal throttling mechanisms (i.e., GPU-
Boost). The measurement protocol consists of executing each run several times to
validate the corresponding results. The procedures ensure the measuring of the
first voltage/current sample at the same instant the GPU kernel starts. We forced
five seconds delay across different runs to avoid RLC effects and the corresponding
interference with the subsequent experiment.

(a) GTX980 - Execution Time (b) GTX980 - Power and energy consumption

(c) Jetson TK1 - Execution Time (d) Jetson TK1 - Power and energy consumption

fig. 16.1: Comparison of execution time, power and energy consumption on
great-britain osm.

16.2 Load balancing analysis 233

(a) GTX980 - Execution Time (b) GTX980 - Power and energy consumption

(c) Jetson TK1 - Execution Time (d) Jetson TK1 - Power and energy consumption

fig. 16.2: Comparison of execution time, power and energy consumption on
web-Notredame.

16.2.2 Performance, power, energy efficiency analysis

Figures 16.1, 16.2, 16.3, 16.4, and 16.5 report the obtained experimental results in
terms of execution time, peak power, and energy consumption. In particular, the
reported values are the best results of each technique we obtained by tuning the
kernel configuration in terms of number of threads per block. For the two GPU
devices used in this analysis, the best results have been reached with 128-256
threads per block for all the techniques, which provide the maximum occupancy
of the device and the lowest synchronization overhead.

Work-item to threads [117] and Virtual warps [125] represent the static
techniques (Virtual warp has been evaluated with different warp sizes).
Dyn.VW+Dyn.Parallelism [59] and CTA+Warp+Scan [190] represent the semi-
dynamic techniques, while Local Warp Search [83], Two-Phase, and Multi-Phase
represent the dynamic ones. For the Two-Phase algorithm, we used the well-know
ModernGPU library [30], which is based on the GPU algorithm proposed by
Green [113].

In the first benchmark, great-britain osm, as expected, Work-items to threads
and Virtual Warps(2) are the approaches, among those in the literature, with the

234 16 A Performance, Power, and Energy Efficiency Analysis of Load Balancing Techniques for GPUs

(a) GTX980 - Execution Time (b) GTX980 - Power and energy consumption

(c) Jetson TK1 - Execution Time (d) Jetson TK1 - Power and energy consumption

fig. 16.3: Comparison of execution time, power and energy consumption on Cit-Patents.

best performance in both the GPU architectures (see Figs. 16.1a and 16.1c). This
is due to the fairly regular workload and the small average work-item size. In this
benchmark, the overhead for the dynamic item-to-thread mapping compromises
the overall algorithm performance. However, Multi-Phase outperforms all the ex-
isting techniques, including the static ones. This is due to the reduced amount of
overhead introduced by such a dynamic technique, which well applies also in case
of very regular workloads.

Figs. 16.1b and 16.1d report the average, maximum power and energy con-
sumption of the load balancing applications for the same first benchmark. The
static techniques show low average and maximum power on the GTX 980 device,
while the semi-dynamic and dynamic techniques present the highest values, which
are proportional to the technique complexity. The same characteristics show low
variability on the Jetson TK1 device, except for CTA+Warp+Scan, due to the
regular workload. On the other hand, Multi-Phase presents, on both devices, the
lowest energy consumption, which is two times lower than the other dynamic tech-
niques in most cases, at the cost of higher peak power in devices with multiple SMs
like the Maxwell GTX980.

16.2 Load balancing analysis 235

(a) GTX980 - Execution Time (b) GTX980 - Power and energy consumption

(c) Jetson TK1 - Execution Time (d) Jetson TK1 - Power and energy consumption

fig. 16.4: Comparison of execution time, power and energy consumption on Circuit5M.

In the web-NotreDame benchmark, Multi-Phase is the most efficient technique
and provides almost twice the performance with respect to the second best tech-
nique (Virtual Warps and three times faster than Two-Phase on GTX 980), while
it shows performance comparable with Virtual Warps(16) on the Jetson TK1 (see
Figs. 16.2a, 16.2c). It is important to note that Virtual Warps provides good per-
formance if the virtual warp size is properly set, while it sensibly worsens with
wrongly-sized sizes. The virtual warp size has to be set statically. For the ob-
tained results in these two benchmarks, we noticed that the optimal virtual warp
size is proportional and follows approximately the average of work-item sizes. In
these first two benchmarks, CTA+Warp+Scan, which is one of the most advanced
and sophisticated balancing technique at the state of the art, provides low perfor-
mance. This is due to the fact that the CTA and the Warp phases are never or
rarely activated, while the activation controls involve strong overhead.

The power and energy consumption (Fig. 16.2b, 16.2d) follows the behaviour
of the first benchmark, but with lower values due to a lower number of benchmark
work-units.

The efficiency of Multi-Phase becomes sharply evident as soon as the bench-
mark becomes more irregular, as for Cit-Patents and Circuit5M (see Figs.
16.3 and 16.4). In these benchmarks, we observed that the dynamic techniques

236 16 A Performance, Power, and Energy Efficiency Analysis of Load Balancing Techniques for GPUs

(a) GTX980 - Execution Time (b) GTX980 - Power and energy consumption

(c) Jetson TK1 - Execution Time (d) Jetson TK1 - Power and energy consumption

fig. 16.5: Comparison of execution time, power and energy consumption on Skitter.

(CTA+Warp+Scan, Two-Phase Search, and Multi-Phase) are one order of magni-
tude faster than the static approaches in most cases. In these benchmarks, Multi-
Phase shows the best results due to the low average (less than warp size) and high
standard deviation.

In the Cit-Patents (Fig. 16.3b, 16.3d) and circuit5M benchmarks (Fig. 16.4b,
16.4d), Multi-Phase shows good values of average and maximum power consump-
tion, which are comparable with the static-mapping techniques. On the other hand,
Two-Phase and Multi-Phase techniques present the best power consumption on
both the devices, which are three times lower on GTX 980 and two times lower on
Jetson TK1 compared to the static techniques.

In the last benchmark, as-skitter (Fig. 16.5a, 16.5c), Multi-Phase and
CTA+Warp+Scan provide the best results. CTA+Warp+Scan shows low execu-
tion time since the CTA and Warp phases are frequently activated and exploited.
Virtual Warps 16 and Dynamic parallelism techniques present quite good perfor-
mance on GTX 980, while the overhead involved by the dynamic kernels heavily
decreases the execution time on Jetson TK1 device.

As for Great-Britain osm and Web-Notredame, the average and maximum
power (Fig. 16.5b, 16.5d) of the dynamic techniques are higher than the static
mapping ones. However, all the dynamic techniques, except for Local-Warp Search,

16.3 Conclusion 237

show almost half energy consumption of the static techniques on GTX 980 and
slightly lower on the Jetson TK1 device. This underlines the suitability of the
dynamic approaches for application running on energy bounded environment.

Finally, we observed that the Dynamic Parallelism feature provided by the
NVIDIA Kepler and Maxwell architectures, implemented in the corresponding
semi-dynamic technique, finds the best application only when the work-item sizes
and their average are very large. In any case, all the dynamic load balancing
techniques, and in particular Multi-Phase, perform better without such a feature
in all the analyzed benchmarks.

In general, we found that Multi-Phase provides the best trade-off between per-
formance and power/energy consumption in all the benchmarks. This is due to the
fact that such a dynamic technique implements a high-throughput energy-efficient
workload balancing by minimizing the data movement throughout the memory
space hierarchy1, by exploiting fine-grained memory locality, and by organizing
the computation at different memory hierarchy levels (shared memory, registers,
caches).

16.3 Conclusion

This Section presented a survey of the most important and widely used load bal-
ancing techniques for GPUs. It summarized the main important aspects that char-
acterize the overall complexity of each technique. This allows better understanding
which one of them provides the best performance on different dataset characteris-
tics. More importantly, the Section presented an analysis of average, peak power
and energy consumption of each single technique over such a dataset. This allows
considering additional dimensions in the technique evaluation, by providing a com-
prehensive trade-off between performance and power/energy consumption of each
technique when applied on the different benchmarks and over different GPU ar-
chitectures (i.e., NVIDIA Maxwell GTX 980 device, NVIDIA Jetson Kepler TK1
low-power embedded system).

1 In GPU architectures, the off-chip global memory accesses consume a large amount
energy, while on-chip memory accesses show lower latencies, higher bandwidth, and
lower energy consumption.

Part IV

Dynamic Graph Processing

Introduction

Dynamic data structures are becoming increasingly important as many real-world
problems evolve over the time. Sparse data computation and graph analytics can
greatly benefit from dynamic features of underlying data structures that can be
updated at high rates. On the other hand, as evolving data structures arise, also
the algorithms build on top of them should be reconsidered and reformulated to
fully exploit such dynamic behavior. In particular, in the context of dynamic graph
analytics, it translates in avoiding redundant computation compared to reiterate
the same process on a new snapshot of the static data structure. As consequence,
implementations of dynamic graph algorithms may achieve execution times orders
of magnitude lower respect to static counterparts.

This part of the thesis focuses on dynamic graph data structures and algo-
rithms. First, in Section 17, it introduces some preliminary concepts and the related
work. Then it describes an efficient data structure for dynamic graph analytics and
sparse linear algebra for GPU architectures called Hornet (Section 18). Later, it
presents how this data structure has been applied to a special case of subgraph
isomorphism calledk-truss (Section 19). Thanks to the great flexibility of the data
structure, the dynamic algorithm has been designed to efficiently manipulate the
graph without needing to rebuild it after each change.

17

Related Work

This section describes the related work on dynamic data structures and the main
techniques in the literature to efficiently support graphs and sparse linear algebra
problems which can evolve over the time.

17.0.1 Dynamic Sparse Formats

While some of the static solutions allow for graph updating, they can only support
a limited number of updates, may have a large update time, or have an unaccept-
able overhead due to data structure re-allocation and re-initialization.

In order to fully support dynamic graph algorithms, more advanced and com-
plex data structures have been recently proposed. They aim at efficiently support-
ing dynamic operations in graphs or matrices like edge/node insertions, deletions,
or value/weight updates.

The STINGER data structure [95] was first introduced as a dynamic graph
structure for both temporal and spatial graphs with meta-data (such as vertex
and edge types) for multi-core architectures. It supports rapid graph updates at
rates of 3 million updates per second [95]. It outperforms both shared-memory
and distributed graph platforms and databases in supporting graph updates and
analytics computation [182].

cuSTINGER [110] extends the STINGER data-structure to GPU applications.
While the STINGER and cuSTINGER implementation of many features is similar
(e.g., meta-data support, temporal support), their underlying data structures are
very different. STINGER relies on blocked linked lists, while cuSTINGER uses
arrays for the neighbor lists. cuSTINGER use of arrays improves locality during
the parallel accesses to the memory and increases scalability.

GraphIn [239] and its extension for GPUs, Evograph [238], allow for incremental
graph processing on CPU-based architectures by combining two static graph data
structures: CSR for the original input and a dynamic edge-lists (COO) to store
new edges. These frameworks are constrained to a limited number of updates (pre-
defined by the users). Also, COO can lead to scattered memory accesses in case
of large updates.

AIM [278] implements a block linked-list data structure for GPUs by using
a STINGER-like data structure. It allocates a single array that is partitioned

244 17 Related Work

and used by an internal memory manager. AIM significantly1 over allocates the
amount of memory to ensure fast initialization and update rate. Such an allocation
strategy allows for fast updates but, on the other hand, strongly limits the AIM
adoption to support any analytics computation.

Dynamic CSR (DCSR) [144] is a CSR variant for supporting dynamic updates.
When initialized, the DCSR format is nearly equivalent to the basic CSR represen-
tation with some additional storage overhead. Any update to the graph requires a
concatenation to the initial CSR data structure. Concatenations involve significant
memory overhead, they require knowing the number of updates a priori, and they
require a data structure reorganization after each update.

1 According to [278], AIM allocates the entire available GPU memory.

T
a
b
l
e

17
.1

:
C

o
m

p
a
ri

so
n

o
f

sp
a
rs

e
g
ra

p
h

a
n
d

m
a
tr

ix
re

p
re

se
n
ta

ti
o
n
s.
m

e
re

p
re

se
n
ts

th
e

to
ta

l
n
u
m

b
er

o
f

av
a
il
a
b
le

/
ex

tr
a

ed
g
es

in
th

e
g
ra

p
h
.

In
se

rt
io

n
s

a
n
d

d
el

et
io

n
s

co
m

p
le

x
it

y
is

p
re

se
n
te

d
fo

r
si

n
g
le

u
p

d
a
te

s.

F
o
r
m

a
t

S
t
o
r
a
g
e

D
u
p
li

c
a
t
e

c
h
e
c
k
in

g
In

s
e
r
t
io

n
D

e
le

t
io

n
R

e
-

s
e
t

fr
e
q
u
e
n
c
y

M
e
m

o
r
y

r
e
c
la

m
a
-

t
io

n

F
ix

e
d

m
e
m

s
iz

e
a
ll

o
c
a
-

t
io

n

S
u
p
p

o
r
t

fo
r

a
d
d
it

io
n
a
l

g
r
a
p
h

p
r
o
p

e
r
t
ie

s

N
o
t
e
s

C
S
R

n
`

m
/

/
/

F
o
r

e
v
e
ry

u
p

d
a
te

N
o

Y
e
s

S
o
A

C
O

O
2
¨
p
m
`

m
e
q

E
n
a
b
le

d
O
p
m
q

O
p
m
q

A
ft

e
r
m

e
u
p

d
a
te

s
N

o
Y

e
s

S
o
A

P
o
o
r

lo
c
a
li
ty

D
is

a
b
le

d
O
p
1
q

O
p
m
q

G
r
a
p
h
In

[2
3
9
]

C
S
R

+
C

O
O

n
`

m
`

2
¨
m

e
N

o
t

su
p
p

o
rt

e
d

O
p
1
q

N
o
t

su
p
p

o
rt

e
d

A
ft

e
r
m

e

u
p

d
a
te

s
o
r

si
n
g
le

d
e
le

ti
o
n

N
o

Y
e
s

S
ta

ti
c
a
ll
y

fi
x
e
d

R
e
d
u
c
e
d

lo
c
a
li
ty

.
C

o
m

p
le

x
A

P
I.

E
v
o
g
r
a
p
h

[2
3
8
]

C
S
R

+
C

O
O

n
`

m
`

2
¨
m

e
N

o
t

su
p
p

o
rt

e
d

O
p
1
q

N
o
t

su
p
p

o
rt

e
d

A
ft

e
r
m

e

u
p

d
a
te

s
o
r

si
n
g
le

d
e
le

ti
o
n

N
o

Y
e
s

S
ta

ti
c
a
ll
y

fi
x
e
d

R
e
d
u
c
e
d

lo
c
a
li
ty

.
C

o
m

p
le

x
A

P
I.

D
C

S
R

[1
4
4
]

2
K
˚
n
`

m
`

m
e
N

o
t

su
p
p

o
rt

e
d

O
p
1
q

+
O
p
m
q

N
o
t

su
p
p

o
rt

e
d

A
ft

e
r
K

b
a
tc

h
e
s

o
r
m

e
e
d
g
e
s

N
o

Y
e
s

N
o

C
o
m

p
le

x
A

P
I

A
IM

[2
7
8
]

w
h
o
le

a
v
a
il
a
b
le

G
P

U
m

e
m

o
ry

A
lw

a
y
s

e
n
a
b
le

d
O
p
d
eg

m
a
x
q

O
p
d
eg

m
a
x
q

W
h
e
n
e
v
e
r

e
x
c
e
e
d

a
ll
o
c
a
te

d
m

e
m

o
ry

N
o

Y
e
s

S
ta

ti
c
a
ll
y

fi
x
e
d

c
u
S
T

IN
G

E
R

[1
1
0
] O
p
n
`

2
m
`

m
e
q
A

lw
a
y
s

e
n
a
b
le

d
O
p
d
eg

m
a
x
q

O
p
d
eg

m
a
x
q

N
o

N
o

N
o

S
ta

ti
c
a
ll
y

fi
x
e
d

E
n
a
b
le

d
O
p
1
q
1

O
p
1
q
1

H
o
r
n
e
t

O
p
n
`

2
m
q

D
is

a
b
le

d
O
p
1
q
1

O
p
1
q
1

N
o

Y
e
s

N
o

F
u
ll
y

su
p
p

o
rt

iv
e

a
n
d

a
d
a
p
ti

v
e

S
o
A

/
A

o
S

246 17 Related Work

17.0.2 K-Truss

The k-truss was first introduced by Cohen [72] as a relaxation of a clique (due
to the reduced complexity of the truss) while still ensuring that if two vertices
are in a given truss it is quite likely their common neighbors will be in the truss.
Several different approaches for finding trusses and the maximal k-truss are also
discussed in [72]. Yet, these share common algorithmic properties: 1) the algorithm
is executed in an iterative fashion and 2) in each iteration of the algorithm, a subset
of edges is removed from the graph. Edges are removed from the graph if their
support (i.e. number of triangles they participate in) is not large enough based on
the given iteration.

In [73], Cohen discusses the benefits of implementing graph algorithms in the
Map-Reduce framework which enables the analysis of large networks. It is worth
noting that the work in [73] preceded the creation of the Pregel [177] framework.
The introduction of Pregel improved expressibility and simplicity of implementing
graph algorithms in a Map-Reduce framework, though performance of these algo-
rithms did not improve as much. While the work in [73] showed the ability to scale
to larger networks, the work by Wang and Cheng [272] showed that an optimized
algorithm designed for a single shared-memory system can easily outperform the
Map-Reduce implementation.

Wang and Cheng [272] show several different optimizations for finding the
maximal k-truss , though these algorithms are sequential2. Further, Wang and
Cheng [272] discuss several iterative approaches for finding trusses, including a
bottom-up approach and a top-down approach. The bottom-up approach is closer
to the approach taken by [72], whereas the top-down approach works in the reverse
direction (starting from the edge with the largest number of triangles and working
its way down). The top-down approach is ideal for cases when there is a need to
find either the maximal k-truss or for k’s close to the maximal k-truss . In practice,
the top-down approach has a performance penalty making it more expensive than
the bottom-down approach in many instances.

Sariyuce et al. [232] present a new approach for decomposing a graph into a
forest of nuclei. These nuclei are dense sub-graphs with clique-like properties. One
nuclei subgraph used in the decomposition is the maximal k-truss.

Kabir and Madduri [137] show a parallel algorithm for k-truss decomposition
for multi-core systems. Their algorithm also uses an efficient triangle counting
phase that avoids unnecessary graph intersections as well as two edge queues for
storing the list of active edges in the graph. The active edges are used for updating
the support of edges and filtering edges not matching the necessary support.

Gadepally et al. present the Graphulo [104] framework which enables imple-
menting graph algorithm using linear algebra operators over the Apache Accumulo
NoSQL database. The formulation for finding a k-truss in Graphulo is similar to
the formulations of the baseline benchmarks of the HPEC Graph Challenge, which
are implemented in Matlab, Julia, and Python using highly optimized libraries.

2 One of the main challenges associated with a parallel implementation of their algo-
rithms is the need for correct triangle counting in parallel and dynamic environment.
A solution to the problem was recently given in [175] and is discussed in additional
detail in Section 17.0.5.

17 Related Work 247

The linear algebra based algorithm in [104] presents one iteration of [72, 272] for
a specific k, though this can be extended to find the maximal k-truss . Huang
et al. [130] show how to maintain the various trusses of a graph in a dynamic
environment.

17.0.3 Triangle Counting

Triangle counting is a building block for numerous applications. Therefore, it is not
overly surprising that numerous algorithms and optimizations have been designed
to efficiently compute it. Some libraries and implementations have focused on good
system utilization with good load-balancing [111,273], others have focused on data
scalability to support larger graphs GraphX [283], GraphLab [167]. Techniques
such as vertex re-ordering have been shown to help reduce the number of cache
misses [220, 243]. Other algorithms have used vertex covers to reduce the number
of necessary intersections [109].

17.0.4 GPU Triangle Counting

Leist et al. [157] show the first GPU algorithm for triangle counting. In this
approach each GPU thread is responsible for a different intersection. Green et
al. [112] offer a different parallelization scheme for the GPU that uses numer-
ous GPU threads for each adjacency intersection and extends the Merge-Path
formulation [113,214] to Intersect-Path. Intersect-Path improves the performance
over [157] by an order of magnitude. Wang et al. [273] analyze the performance of
several different approaches for triangle counting on the GPU.

17.0.5 Streaming and Dynamic Triangle Counting

Similar to the static graph triangle counting algorithms, numerous algorithms have
been designed for streaming graphs [34,55,152]. Streaming graphs are graphs were
the edges are inserted or removed one at a time (typically at high rates) and
the number of vertex and edges memory accesses per update is limited to Op1q
operations. In the case of triangle counting, many streaming graph algorithms
focus on approximating the number of triangles. Furthermore, many streaming
graph algorithms focus on the easier case of edges insertions [152]. Becchetti et
al. [34] note that there are numerous applications where these approximations are
not good enough - this is also true for the case of finding the exact and largest
k-truss in a graph.

In addition to streaming graphs algorithms, dynamic graph triangle counting
algorithm can be found in [94, 175, 239]. Ediger et al. [94] use the STINGER [95]
dynamic graph data structure for updating the graph and analytics in batches. For
a single update this is simple, however, then the update consists of multiple edges
(combined into a single batch) a situation can arise where numerous edges in a
batch can create a triangle - such a triangle can go undetected in a parallel envi-
ronment. Therefore the approach taken in [94] and GraphIn [239] is to recompute
the triangles of a vertex from scratch even if only one of its edges is affected.

248 17 Related Work

Recently, a dynamic graph triangle counting algorithm was presented by
Makkar et al. [175] that shows a new inclusion-exclusion formulation for detecting
triangles within a given batch, thereby reducing the amount of work required to
update the number of triangles per vertex. This new algorithm does not require
recomputing the number of triangles for a whole vertex as required by previous
approaches. This algorithm, with its ability to support a batch of edge deletion, is
extremely useful for finding the k-truss .

18

Hornet: An Efficient Data Structure for Dynamic
Sparse Graphs and Matrices

Sparse data computations are ubiquitous in science and engineering. Unlike their
dense data counterparts, sparse data computations have less locality and more
irregularity in their execution, making them significantly more challenging to op-
timize. Even more challenging is their optimization for parallel applications. Most
of the existing formats for sparse data representations on parallel architectures are
restricted to static data sets, while those for dynamic data suffer from inefficiency
both in terms of performance and memory footprint. This work presents Hornet,
a novel data representation that targets dynamic graph analytics and linear alge-
bra based problems. While the data structure API is simple for users, the data
structure includes an optimized memory manager that is responsible for memory
allocation, reclamation, and for ensuring low overhead to represent the data dur-
ing its evolution. Hornet is scalable with the input data, flexible in representing
data set properties, and does not require any data re-allocation or re-initialization
during the data evolution. The Section presents a Hornet implementation for GPU
architectures, and it shows the experimental results obtained on several represen-
tative sparse graphs and matrices. It analyses and compares the proposed solution
with the most important static and dynamic data structures at the state of the
art in terms of memory utilization efficiency, initialization time and update rates.

18.1 Introduction

Dynamic sparse data applications are now ubiquitous and can be found in many
domains. Dynamic refers to the fact that the data is changing at very high rates.
For example, updates might represent the change in the current-flow of a power
network or the road-congestion for a transportation network. The number of ap-
plications is considerably high and many formulations of these problems end up
being either graph-based or linear-algebra based. The sparsity of the data has
led to the development of several data representations, which are common for
both problem formulations: Compressed Sparse Row (CSR), Coordinate (COO),
Compressed Sparse Column (CSC), and ELL (Ellpack). Unlike a dense adjacency
matrix, which may be potentially filled with “0”-values, these formats avoid stor-
ing these trivial values. As such, these data-structures are cost-effective in terms of

250 18 Hornet: An Efficient Data Structure for Dynamic Sparse Graphs and Matrices

memory yet lack the flexibility to support growth. While a linked-list can also offer
similar memory bounds and give the flexibility to change the graph (by adding or
removing nodes from the linked-list), in practice the lists lack of locality and the
irregularity of the accesses limit its scalability and performance.

As real-world networks continue to grow at extremely high-rates, the issue of
whether the problem is presented as a graph formulated problem or in a linear-
algebra formulation becomes of second-order. The main challenge is to ensure that
the data structure for any sparse dataset can be updated at real-world rates. In
this context, even though some attempts have been recently done to design a data
structure that is scalable, high-performing, and flexible enough to support rapid
updates [20,95,238,278], they have shown to be unable to meet all three criteria.

This Section presents Hornet, a data structure for efficient computation on
dynamic sparse graph and matrices. It relies on an internal memory manager
that is responsible for both the memory allocation and memory reclamation. This
allows the data structure to grow to very large sizes (i.e., over 1, 000x the initial
dataset) without requiring any data re-allocation or re-initialization during the
whole dynamic evolution of data.

Due to the internal memory organization it outperforms dynamic graph data
structures on several fronts: Hornet provides better memory utilization than
AIM [278] and cuSTINGER [110], faster initialization (from 3.5x to 26x), and
faster update rates (over 200 million updates per second) than the state of the art
dynamic data structures. It comparison to several widely used and static graph
data structures, Hornet also offers good storage utilization and efficient initializa-
tion. While Hornet may require 5% to 35% additional memory in contrast to CSR,
it also uses 30% less memory than COO. Initializing Hornet is 1.7x to 12.7x slower
that the initialization time of CSR; however, this can be considered negligible for
dynamic graph analytics running for an extended amount of time.

Hornet is also designed to support property graphs, that is, graphs in which
meta-data (i.e., structured data) can be associated to each vertex and edge. This
allows for great flexibility and applicability when the graph properties (number
and type of information per edge/vertex) cannot be know a-priori.

The Section presents the Hornet implementation for GPU architectures, the
experiment analysis, and its comparison with the state of the art dynamic ap-
proaches. On the other hand, it underlines that Hornet does not have any archi-
tecture dependencies that limit its application only to GPUs.

The work is organized as follows.Section 18.2 presents the Hornet data struc-
ture and its implementation for GPUs. Sections 18.3 and 18.4 present the experi-
mental setup and a detailed empirical analysis, respectively. Section 18.5 is devoted
to the concluding remarks.

18.2 Hornet Overview

The Hornet data structure has been designed with both dynamic graphs and
property graphs in mind1. Unlike the state of the art data structures, it efficiently

1 Due to the different terminologies used by these applications, we have the terms used
for graphs.

18.2 Hornet Overview 251

Table 18.1: List of symbols and notations.

Symbol Description

GpV,Eq Input graph.

V,E Vertices/Edges in input graph.

n,m Number of vertices/edges.

B Batch updates (list of edges).

adjpvq Adjacency list of vertex v.

degpvq Degree of vertex v.

degmax Maximum degree of a vertex in a graph.

BAk,id
Block array for vertices s.t. 2k´1 ď degpvq ă 2k

|BA| Number of blocks within a block array.

bsizepvq Number of edges (block) size allocated for v

v.ptr A pointer to the edge list of vertex v

Notations Hornet Data Structure fields - User’s API

v.used Degree of the vertex v

v.pointer A pointer to the edge list of vertex v

5

1

4

0

2

6

3

2
5

4
7

1

2

7

1

6

(a) Initial input
graph.

5

1

4

0

2

6

3

2
5

4
7

1

2

7

1

6
3

1

5

(b) Graph after
changes.

0 1 2 3 4 5 6 7

0 5 2

1 5 7 3

2 2 1 4

3 1 2

4 5 4 1 1

5 7 1

6 2

7

Column/Destination
Index

Ro
w

/V
er

te
x

In
de

x

(c) Matrix representation
of graph.

fig. 18.1: Graph example.

supports evolving graphs by storing additional meta-data per edge. While storing
meta-data per edge is fairly simple for static graphs (i.e., it requires allocating
an array of size |E| edges), it is far more challenging and crucial for dynamic
graphs where |E| is constantly changing as is are the indices of the edges in an
array. Hornet resolves this problem by allowing each to store additional needed
meta-data.

Fig. 18.2 gives an overview of Hornet, which consists of two layers: The user
interface and a memory manager. Such a double-layer structure allows providing a
very simple API to the user; while hidden to the user is an advanced and optimized
memory manager.

From the user’s perspective, each vertex is associated with two main fields: The
number of current neighbors (i.e., Used in the figure) that represents the adjacency
list size, and a pointer to a dedicated adjacency list. Instead of using standard

252 18 Hornet: An Efficient Data Structure for Dynamic Sparse Graphs and Matrices

1 00 1 1 10 0 0 00 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7
2 2 3 2 2 2 1 0

Vertex	Id

Used	(#Neighbors/nnz)

Pointer

1 2

5 2

0 5

5 7

0 3 4

2 1 4

2 6

1 2

2 5

4 1

1 4

7 1

3

2

𝑩𝑨𝟎,𝟏 𝑩𝑨𝟏,𝟏 𝑩𝑨𝟏,𝟐 𝑩𝑨𝟐,𝟏

Bit status available
space

Over-allocated space

USER-INTERFACE

Dest./Col.
Weight

MEMORY MANAGER

bs
ize

=1

bs
ize

=2

bs
ize

=2

bs
ize

=4

Vec-Tree

(a) The initial graph of Fig. ??(a).

Vertex	Id

Used	(#Neighbors/nnz)

Pointer

0 1 1 10 0 0 00 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7
2 3 4 2 4 2 1 0

1 2

5 2

2 6

1 2

1 4

7 1

3

2

USER-INTERFACE

1 1

1 1

2 5 1 6

4 1 5 1

0 3 4

2 1 4

0 5 7

5 7 3

𝑩𝑨𝟐,𝟐

4 4 1

1 6 7

5 1 3

Source

Destination

Value

Update Batch

MEMORY MANAGER

𝑩𝑨𝟎,𝟏 𝑩𝑨𝟏,𝟏 𝑩𝑨𝟏,𝟐 𝑩𝑨𝟐,𝟏

(b) The updated graph of Fig. ??(b).

fig. 18.2: Hornet layout.

memory allocation function calls for each adjacency list, which would be extremely
inefficient2, Hornet implements a dedicated memory manager. It consists of three
main components: Block arrays for storing multiple adjacency lists, a vectorized
bit tree for efficiently finding empty memory blocks for the adjacency lists, and
B`trees to manage the block arrays.

2 On modern systems, memory allocation function calls like malloc or cudaMalloc can
take from a few hundred microseconds to several milliseconds, which would make the
approach infeasible for graphs with millions of vertices.

18.2 Hornet Overview 253

18.2.1 Block arrays

Hornet represents the graph through a hierarchical data structure, which consists
of an adjacency lists, blocks, and block arrays. A block array is an array of equally-
sized memory chunks, called blocks. Each block contains a number of adjacency
lists equal to a power of two (we refer to this number as the bsize). Blocks sizes
are 2bsize. The bsize for each vertex, v is determined as follows:

bsizepvq “ 2rlog2pdegpvqqs (18.1)

Fig. 18.2(a) shows, as an example, the Hornet layout of the initial graph of Fig.
18.1(a), which consists of four block arrays: BA0,1 (bsize=1), which contains one
adjacency list; BA1,1 and BA1,2 (bsize=2), which contain four and one adjacency
list, respectively; BA2,1 (bsize=4), which contains one adjacency list.

Fig. 18.2(b) shows the Hornet layout after the insertion of the three new edges
of Fig. 18.1(b) (the details of the insertion procedure are discussed in Section
18.2.5). The insertion of edge 1 Ñ 7 involves increasing the size of the adjacency
list for vertex 1 as it cannot store additional edges in it’s pre-allocated block in
BA1,1. As a consequence, the memory manager allocates a new block array for
blocks of bsize “ 4 (BA2,2) and moves the whole block containing the adjacency
list in it.

By placing adjacency lists in blocks using the bsize mechanism discussed above,
we can place an upper bound on the amount of space allocated for each adjacency
list. As a consequence, it allows identifying the worst case upper bound of memory
allocated for the entire graph evolution: 2 ¨ |E|. In practice, the average memory
allocated for the graph edges, as shown in Section 18.3, is close to 1.4 ¨ |E|.

Differently from cuSTINGER [110], the memory allocation scheme imple-
mented in Hornet does not allow for a full control over the amount of memory used
since, as experimented in cuSTINGER, such a full control would lead to slower
updates and memory fragmentation.

Finally, the number of blocks in a block array is also a power of two. Section
18.2.3 discusses more in details the trade-off between different sizes of blocks and
block arrays. In Section 18.3 we show the difference in memory utilization as a
function of the block array size.

18.2.2 Vectorized Bit Tree

Sizing the block arrays in a power-of-two number of blocks as well as run-time
deletions of vertices/edges leads to empty blocks (white spaces in Fig. 18.2(a),
(b)). The Hornet memory manager relies on the vectorized bit tree data structure
(Vec-Tree in the following) to efficiently use such empty blocks for new allocations.
The implemented data structure allows the memory manager to fulfill three key
requirements: 1) ensuring that a new block array is not allocated until all block
arrays for a given block size are fully utilized, 2) involving a reduced memory
footprint for the Vec-tree implementation, and 3) finding an empty block in an
efficient manner. Hornet satisfies the first requirement by associating one Vec-Tree
per block array. Each Vec-Tree consists of a tree of boolean values in which each
tree node stores the value of the logic OR of its two children. The leafs of the

254 18 Hornet: An Efficient Data Structure for Dynamic Sparse Graphs and Matrices

1 2

5 2

0 5

5 7

2 6

1 2

2 5

4 1

0 0 0 0

00

0

block

0 0 0 0 0 0

Vect-Tree implementation

Machine word

𝐵𝐴 ,

Vect-Tree
representation

(a)

1 2

5 2

2 6

1 2

0 1 0 1

11

1

1 1 0 1 0 1

Next available
position

𝐵𝐴 ,

Machine word

Vect-Tree implementation

(b)

fig. 18.3: Vectorized Bit Tree of block array BA1,1. The figure shows the data structure
before (a) and after (b) the batch update. The top part of each subplot illustrates the

representation, while the bottom size the actual ”vectorized” implementation.

tree represent the state of the blocks (1 is empty, 0 if used). Fig. 18.2 shows the
Vec-Trees of all block arrays before and after the graph update, while Fig. 18.3
shows in details the representation and actual vectorized implementation of the
Vec-Tree of BA1,1 before and after an update.

In general, starting from the Vec-Tree root, the memory manager checks
whether there is at least one free block within any block array in Op1q steps.
It finds the actual free block within OplogW p|BA|qq steps, where W is the ma-
chine word size (this satisfies the third requirement). The same time is spent for
an empty block reclamation. Assuming block i as the block of interest, the address
of block i is calculated as follows:

addresspiq “ addresspBAk,idq ` i ¨ 2
k (18.2)

where 2k is the size of each block.
Such a reduced complexity of both find operations is particularly important

to guarantee high update rates even in cases of large block arrays. The memory
overhead introduced by the Vec-Trees can be calculated as follows. For a block
array with |BA| blocks, the corresponding Vec-Tree requires: |BA| bits for the
lowest level of the tree, |BA|{2 for the second lowest level, and so forth upto the
root. In total, a Vec-tree requires 2|BA|´1 bits. Overall, the storage requirements
for the Vec-Trees is negligible in comparison to the memory required by the blocks
themselves (i.e., one bit vs. information on 2i edges for storing destination, weights,
and additional meta-data per block).

18.2 Hornet Overview 255

0

1

2

...

Array
𝐵 𝑇𝑟𝑒𝑒 for BlockArray with 1 edge in a block

𝐵 𝑇𝑟𝑒𝑒 for BlockArray with 4 edges in a block

𝐵 𝑇𝑟𝑒𝑒 for BlockArray with 2 edges in a block

Lo
g.

 o
f b

lo
ck

 s
ize

0 3 4

2 1 4

𝐵𝐴 , 1 available blocks

B+ Node

(a) Layout of the initial graph of Fig. 18.1(a).

2 5 1 6

4 1 5 1

0

1

2

...

Array
𝐵 𝑇𝑟𝑒𝑒 for BlockArray with 1 edge in a block

𝐵 𝑇𝑟𝑒𝑒 for BlockArray with 4 edges in a block

𝐵 𝑇𝑟𝑒𝑒 for BlockArray with 2 edges in a block

0 5 7

5 7 3

B+ Node

1 available block𝐵𝐴 ,

0 3 4

2 1 4

𝐵𝐴 , 0 available blocks

B+ Node

Lo
g.

 o
f b

lo
ck

 s
ize

(b) Layout after the update process of Fig. 18.1(b).

fig. 18.4: Block array memory manager with an emphasis on blocks of size 4 edges (also
referred to as BA2,i).

18.2.3 B`Trees of block arrays

Beside the Vec-Tree layer that allows reclaiming empty blocks on a specific block
array, the memory manager uses the B`Tree data structure, which allows finding
empty blocks over different block arrays. Hornet allocates an array of B`Trees,
where each B`Tree (one for each block size) manages all the block arrays of a
given block size. Fig. 18.4 shows the B`Tree array for the example of Fig. 18.2
(initial and after the update), which consists of three B`Tree for blocks of size 1,
2, and 4.

Each node of a B`Tree consists of a couple <data, key>. The data field points
to the block array and the key stores the number of free blocks within that block
array. Searching for empty blocks in a B`Tree takes logarithmic time with respect
to the tree size. Considering that the size of block arrays is generally big (see
Section 18.2.1), the number of block arrays of a given block size is relatively small.
This means that the lookup operations are extremely fast and that, in general,
the overhead of this data structure is relatively low. As a consequence, when a
new block is needed, rather than iterating through all the block arrays and their
corresponding Vec-Trees, the memory manager queries the B`Trees to find a block
array with an empty block. Several B`Trees implementations already exist in
literature and offer this search (e.g., [41, 133]).

18.2.4 Data structure initialization

Hornet allows for graph initialization by starting from an empty data structure
and by adding edges and vertices one at a time. It also supports the initialization

256 18 Hornet: An Efficient Data Structure for Dynamic Sparse Graphs and Matrices

Algorithm 13 Pseudo-code for the Hornet initialization.

Input: GCSR : CSR representation of graph GpV,Eq,
MaxBASize : maximum number of edges in a block array

Output: Hornet graph hgraph

Ñ CopyAdjcencyList(SRC, DEST, SIZE)
Ñ CopyToDevice(SRC, DEST, SIZE)

1: CreateMemManager(Device: GPU, MaxBASize)
2: for all v P GCSR do
3: xhost ptr, dev ptry = MemManager.getEmptyBlock(deg(v))
4: CopyAdjcencyList(v.ptr, host ptr, deg(v))
5: deg array[v] = deg(v)
6: dev prt array[v] = dev ptr
7: end

8: for all BA P MemManager do Ñ BA : Block array
9: CopyToDevice(BA.host ptr, BA.device ptr, MaxBASize)
10: end

11: CopyToDevice(deg array, hgraph.used, |V |)
12: CopyToDevice(dev prt array, hgraph.pointer, |V |)
13: Ñ the actual implem. copies the vertex data in a single operation

by starting from a CSR representation and by converting such a static format
into the dynamic-ready Hornet format. Alg. 13 shows the pseudo code of such
a process and focuses on the memory allocation by using the whole hierarchy of
data structures presented in the previous sections. It is important to note that
the pseudo code is architecture independent and applies to both CPU and GPU
architectures.

The data structure initialization consists of three steps. First, for all vertices
in the graph, the memory manager finds empty blocks for the corresponding adja-
cency lists (lines 2-6). If such blocks are the first of their block sizes or all the
previous block arrays are full, the memory manager allocates a new block array. In
this phase, for performance reasons, all the adjacency lists are temporarily stored
in block arrays and maintained in the host-side (lines 2-6) rather than being
directly copied to the device memory. In lines 7-8, all block arrays are actually
copied to the device. Copying the whole block array instead of single blocks greatly
improves the initialization time, since it avoids many small memory transfers yet
maximizing the PCI-Express bandwidth. Finally, also the vertex data (degree and
adjacency list pointers) are copied to the device (lines 9-10).

18.2.5 Dynamic Updates

Hornet supports different graph updates: (a) insertion and deletion of vertices, (b)
insertion and deletion of edges, and (c) update of values of existing vertices and
edges. The first two types (a, b) change the graph topology, while the last one
only changes the data values of the network. Vertex insertions and deletions are
implemented through series of edge insertions and deletions, respectively.

Hornet supports graph updates through batches [95,110,144,238,239,278], by
which different updates are grouped into a batch to maximize the throughput and
to avoid the latency involved by the sequential updates.

3 The Hornet implementation is based on the binary-search load balancing algorithm
[63].

18.2 Hornet Overview 257

Algorithm 14 Pseudo-code for updating the data-structure after a batch of updates.
The pseudo-code for deletions is almost identical to the insertion code by replacing line
4-5.

1: QÐ empty queue Ñ Q : x old ptr, new ptr, size y

2: B̂ Ð CSR representation of B Ñ require sorting: OpB ¨ logpV qq

3: parallel for v P B̂ do Ñ OpBq
4: new degree Ð hgraphrvs.used + degCSR(v)
5: if (new degree ą Bsize(hgraphrvs.used) then
6: new ptr Ð MemManager.GetEmptyBlockpnew degreeq
7: Enqueue pxhgraphrvs.pointer, new ptr, hgraph.usedrvs y , Qq
8: hgraph.usedrvs Ð new degree
9: hgraph.pointerrvs Ð new ptr
10:

Ñ Load-balancing is required for efficient copies3.
11: parallel for q P Q do Ñ CopyAdjcencyList(SRC, DEST, SIZE)
12: CopyAdjcencyList(q.old ptr, q.new ptr, q.size)

13: for q P Q do Ñ OpBq
14: MemManager.ReclaimOldBlock(q.old ptr)

15: parallel for v P B̂ do Ñ Only for batch insertion Ñ OpBq
16: CopyAdjcencyList(v.ptr, hgraph[v].pointer, degCSR(v))

Deletion:
4: new degree Ð hgraphrvs.used - v.degree
5: if (new degree ă Bsize(hgraphrvs.used) / 2 then
6:

Algorithm 15 Pseudo-code for batch duplicate removing.

Input: hgraph : Hornet graph,
Input: B : Update Batch,
Output: B̃ : batch without cross duplicates

1: parallel for (u,v) P B do Ñ Compute the workload
2: deg array[u] = degG(u)

3: sum = ParallelExclusivePrefixSum(deg array)

4: Parallel for thread id from 0 to sum do Ñ LB: Load Balancing
5: batch pos, offset = BinarySearchLB(deg array, thread id)
6: src = B[batch pos].src Ñ offset P r0, degpsrcqs
7: if (adjhgraph(src)[offset] = B[batch pos].dst) then
8: Mark(flag array, batch pos) Ñ mark duplicate
9:
10: end
11: FlaggedCompact(B, flag array) Ñ Compact the batch by flags

Algorithm 14 shows the pseudo-code for completing an update batch for edge
insertions. The insertion of new elements in the structure consists of several im-
portant yet parallel phases. First, all the single operations in the batch are sorted
to improve locality during the updates and to count the number of appearances
for each row/source (the update batches are converted to CSR format). Then, the
vertices requiring additional storage (e.g., vertices 1 and 4 in Fig. 18.2(b)) are enu-
merated and queued. A new block is allocated for each of them (BA2,1, BA2,2), the
contents of the old blocks are copied into the corresponding new blocks in parallel,
the old block pointers are given back to the memory manager, and the pointers
are updated.

The algorithm for edge deletions is implemented in a similar manner, and can
be obtained by replacing lines 4 and 5 in Algorithm 14 with the lines placed at
the bottom of the pseudo code.

258 18 Hornet: An Efficient Data Structure for Dynamic Sparse Graphs and Matrices

Differently from the state-of-the-art solutions for dynamic updates
(cuSTINGER, DCSR, AIM), Hornet does not rely on expensive atomic opera-
tions to update the vertex degrees (see Algorithm 2: line 8). In addition, im-
plementations in literature lead to sequential and random memory accesses when
the adjacency lists are read; in contrast Hornet involves only coalesced memory
accesses thanks to advanced load-balanced copy operations (see Algorithm 2:

lines 12, 16).
Like other approaches in literature (cuSTINGER and AIM), Hornet supports

cross duplicate removing between a batch and the target graph. The goal is to
ensure that the final graph, after the update process, does not contain edge du-
plicates, which may lead to wrong results in the computation of important graph
algorithms (e.g. triangle counting or betweenness centrality).

Algorithm 15 shows the pseudo-code of this process, which takes as input the
update batch and the graph, for removing the cross duplicates. Given a single
edge, the basic idea is to span a set of threads (with continuous ids) equal to the
degree of the edge source. Each thread maps to a different element in the adjacency
list of the source vertex (coalesced accesses) and checks if a duplicate is present
(adj(src)[i] “ batch edge.dst). In such a case, the edge is marked to be removed.
The pseudo-code shows the entire parallel procedure for a batch of edges. At the
beginning, the workload is computed for all edge sources in the batch (lines 1-3).
In lines 4-8, all duplicate edges are marked in an external array. Finally (line
9), the batch is in compacted in parallel using parallel prefix operations.

Lastly, unlike the other state of the art solutions, Hornet implements the re-
moval of intra-batch duplicates (i.e., edge duplicates within a batch) by sorting the
edges within a batch. Note, the sorting operation is already applied in Algorithm
14 (line 2) and both procedures expose high parallelism and efficiency.

18.2.6 Handling graphs with extra properties

Property graphs are graphs in which meta-data (i.e., structured data) can be asso-
ciated to each vertex and edge rather than a single value. Implementing the support
for handling such extra properties is fairly simple for static graphs as it requires
duplicating the data structure used for storing edge weights. In contrast, dupli-
cating the data structure in dynamic graphs, while the data is evolving (e.g. edge
insertion timestamps) is far more challenging. Table 17.1, second to last column,
summarizes how the different data structures, in particular for dynamic graphs,
can support property graphs. Unlike dynamic solutions like AIM, STINGER, and
cuSTINGER, which require the additional properties (number and type) to be
known and set statically, Hornet implements a full support and adaptive system
for extra properties. Hornet allows associating an arbitrary number of additional
fields to each edge or vertex. They are implemented as additional rows to the block
data structures, which are allocated and handled by the memory manager.

Given the set of additional fields, Hornet automatically morphs this internal
representation by selecting the best data layout at compile time. For example,
in the context of GPU computing, Hornet adopts an Array-of-Structure (AoS)
if the data types associated with the additional fields of an edge or vertex can
be vectorized (single memory transaction for multiple data), otherwise it uses

18.4 The Hornet data structure 259

Table 18.2: Graphs and matrices used in the experimental results.

Matrix/Graph Source Context (Matrix/Graph) Symm. Rows,
Vertices (M)

NNZ,
Edges (M)

Avg.

dblp-2010 [85] Collaboration (G) Y 0.03 1.6 5.0

Cantilever [276] FEM (M) Y 0.06 4.1 65.2

Protein [276] Protein (M) Y 0.03 4.3 120.3

Spheres [276] FEM (M) Y 0.08 6.1 73.1

Ship [276] FEM (M) Y 0.14 7.6 56.5

Wind [276] Wind tunnel (M) Y 0.21 11.6 54.4

in-2004 [85] Web crawl (G) N 1.38 16.7 12.2

soc-LiveJournal1 [161] Social Network (G) N 4.85 69.0 14.2

cage15 [85] DNA (G) N 5.15 99.2 19.2

europe osm [85] Road (G) Y 50.91 108.1 2.1

kron g500-logn21 [85] Synthetic (G) Y 2.1 182.1 86.8

indochina-2004 [85] Web crawl (G) N 7.41 194.1 26.2

uk-2002 [85] Web crawl (G) N 18.5 298.1 16.1

com-livejournal [161] Ground-truth comm. (G) Y 4.00 69.3 17.3

com-orkut [161] Ground-truth comm. (G) Y 3.07 234.3 76.2

Structure-of-Array (SoA). This guarantees high flexibly and the best performance
while accessing the data.

18.3 Experimental Results

While Hornet, as underlined in the previous sections, is architecture independent,
in this Section we present the experimental results of its implementation for GPU
architectures. The Hornet implementation for multi-core architectures is part of
ongoing work.

We conducted the efficiency analysis and the comparison with the correspond-
ing state of the art data structures for GPUs. We considered different key factors
for the evaluation, which include memory utilization, initialization time, and up-
date rates.

The experimental analysis has been conducted on a NVIDIA Tesla P100 device
(Pascal micro-architecture) with Xeon E5-2650 v4 host processor. The CPU runs
at 2.8GHz with 30MB L3 cache. The P100 consists of 56 SMs with a total of 3,840
CUDA cores and 16GB DRAM memory.

Table 18.2 reports the set of sparse graphs and matrices used in the experi-
ments and their main characteristics. They have been taken from the University
of Florida Sparse Matrix Collection [85], the SNAP dataset [161] and the sparse
matrix problems used by Williams et al. [276].

18.4 The Hornet data structure

18.4.1 Memory utilization efficiency

The Hornet memory utilization has been evaluated and compared with
cuSTINGER, which is the reference dynamic data structure for sparse datasets

260 18 Hornet: An Efficient Data Structure for Dynamic Sparse Graphs and Matrices

0%

20%

40%

60%

80%

100%

.

Ed
ge

 U
til

iz
at

io
n

Edge Utilization

0%

20%

40%

60%

80%

100%

.

Bl
oc

k
U

til
iz

at
io

n

0%

20%

40%

60%

80%

100%

Sp
ac

e
Ef

fic
ie

nc
y

Hornet Hornet Hornet COO cuSTINGER216 222218

fig. 18.5: Upper-side: block-level fragmentation analysis. Middle-side: Fragmentation
analysis at block array level. Bottom-side: Overall memory utilization efficiency.

that does not rely on static user-defined memory allocation scheme (as required
by GraphIn, DCSR, and AIM). Instead, we compare the memory utilization to
two efficient static graph data structures (CSR and COO). This allows us to un-
derstand the total amount of memory overhead involved by the dynamic feature
w.r.t. any format with static allocation.

We first analyzed the block-level fragmentation, that is, the unused edges within
the blocks due to the power-of-two block sizing (Eqn. 18.1). Fig. 18.5 (upper
subplot) reports the results, in which 100% represents no fragmentation, the bar
value represents the total memory utilization in the allocated blocks (e.g., 78% for
dblp-2010), while the difference (22% for dblp-2010) represents the over-allocated
memory. The results are identical for all block array sizes. As formulated by the
analysis of Section 18.2.1, the over-allocated memory never goes beyond twice the
number of edges (i.e., below the 50% utilization). For most cases, the bock-level
fragmentation is less than 30%. It is important to note that such an over-allocated
memory can be used by the memory manager during dynamic operations (i.e.,
edge insertions) or deallocated during any memory reclamation step.

We then analyzed the fragmentation at block array level, that is, the un-
used over-allocated memory within block arrays due to empty blocks (see Section
18.2.2). Fig. 18.5 (middle subplot) reports the results, by considering different
block array sizes: 216, 219, and 222 edges. As expected, the more the block array
size increases, the more the fragmentation increases (storage utilization decreases).
This is especially evident for the smaller graphs. For large graphs, the utilization
of the allocated memory is usually well over 80% as the vertices are well balanced
across the multiple block arrays. On the other hand, as shown in Section 18.4.3,
the more the block array size increases, the better the dynamic update rate.

Finally, Fig. 18.5 (bottom subplots) shows the comparison between Hornet,
CSR, COO, and cuSTINGER in terms of overall memory utilization efficiency.
We chosen, as reference point, the memory utilization of CSR, since it is the

18.4 The Hornet data structure 261

4.3 4.0 3.3
3.7 3.2 2.4

3.8

4.7
8.1

12.7

3.4 3.7
5.7

2.8
1.775.2

22.9
13.0

20.3
26.0 24.7

51.3

48.9 38.9

330.5

17.5
28.8

51.0

41.9 15.0

1

10

100

1,000

10,000

100,000

1,000,000

Ti
m

e
(m

s)

CSR Hornet cuStinger

slowdown vs. CSR

fig. 18.6: Comparison of initialization time, which includes memory allocation on GPU
and CPU-GPU data transfer time (Hornet with block array size=216 edges).

most compact state of the art data structure. CSR is represented by the 100%
utilization in the figure. We also considered COO as it is the second most efficient
data structure in terms of memory utilization with some support (even though
very limited) for graph updates.

The overall comparison of Fig. 18.5 underlines that Hornet strongly improves
(almost twice) the memory utilization efficiency with respect to the best dynamic
counterpart at the state of the art (cuSTINGER). It also shows that, if properly
configured, Hornet provides better memory efficiency then the static COO.

The results also underline that the total memory utilization (bottom subplot) is
proportional to the block-level fragmentation (upper side plot). This is especially
clear with Hornet 216, for which the block array utilization is close to 100%.
Such a correlation underlines that, despite the high utilization of the block arrays,
the overall memory utilization strongly depends on the block utilization (middle
subplot).

18.4.2 Initialization Time

Fig. 18.6 shows the results of the initialization time analysis. The time includes
both the memory allocation on the GPU and the host-to-device data transfer. For
Hornet and cuSTINGER, the time also includes all the overhead involved by the
additional operations for initializing the dynamic data structure. Fig. 18.6 that
Hornet is significantly faster than cuSTINGER - one order of magnitude faster
in numerous instances. Also, the Hornet initialization is on average less than 4x
more expensive than CSR initialization. This overhead can be considered negligible
for many graph analytic applications. In addition, the Hornet initialization is a
one-time penalty that enables the support for dynamic graphs, which can grow,
shrink, and be updated for an indefinite amount of times without requiring any
reset or re-allocation. For the sake of space and clarity, the figure does not include
the initialization time of GraphIn, DCSR, and AIM since, similarly to the static
counterparts, they allocate a static (and user-defined) amount of memory and
requires reset and re-initialization as the graph evolves. Their initialization time
is close (but not faster) to that of CSR. In addition, the AIM allocation strategy,
which relies on allocating the entire available GPU memory is quite restrictive for

262 18 Hornet: An Efficient Data Structure for Dynamic Sparse Graphs and Matrices

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

U
pd

at
e

Ra
te

 (e
dg

es
 p

er
 s

ec
on

d)

in-2004 soc-LiveJournal1 cage15 kron_g500-logn21

103

104

105

106

107

108

109

(a) Update rate for
cuSTINGER [110].

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

U
pd

at
e

Ra
te

 (e
dg

es
 p

er
 s

ec
on

d)

in-2004 soc-LiveJournal1 cage15 kron_g500-logn21

103

104

105

106

107

108

109

(b) Update rate for Hornet.

8.9
5.8 6.0

5.8 2.4
46.4

15.0

46.8

0.1

1

10

100

1000

10000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Speedup over cuSTINGER
(Kron_g500-logn21)

HornetcuSTINGER

(c)
Execution time of Hornet and cuSTINGER [110].

fig. 18.7: Analysis of update rate of Hornet against cuSTINGER. Hornet is configured
in an equivalent manner to cuSTINGER (minimum edges per block = 8, and block

array size = 221).

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

U
pd

at
e

Ra
te

 (e
dg

es
 p

er
 s

ec
on

d)

in-2004 soc-LiveJournal1 cage15 kron_g500-logn21

103

104

105

106

107

108

109

(a) Update rate for
AIM [278].

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

U
pd

at
e

Ra
te

 (e
dg

es
 p

er
 s

ec
on

d)

in-2004 soc-LiveJournal1 cage15 kron_g500-logn21

103

104

105

106

107

108

109

(b) Update rate for Hornet.

0.1 1.0 7.7
26.2 41.5

81.4

64.0

82.3

0.1

1

10

100

1000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Speedup over AIM
(Kron_g500-logn21)

HornetAIM

(c) Execution time of Hornet
and AIM [278].

fig. 18.8: Analysis of update rate of Hornet against AIM. Hornet is configured in an
equivalent manner to AIM to ensure the same interaction with the memory manager
and avoid new memory allocations (minimum edges per block = 256, and block array

size = 222).

almost all applications (e.g., all the applications that require additional storage at
runtime).

18.4.3 Update rates

We evaluated the update rates (expressed as updates per second) the dynamic
data structure can handle for batches from 1 to 107 updates.

Hornet, similar to cuSTINGER, STINGER, and AIM, verifies that all new
edges do not exist in the graph before insertion. Other data structures, including
EvoGraph and GraphIn, do not perform this in their update phase; as such their
update phase is potentially shorter. Secondly, it is worth noting that most of the
execution time of the batch update for Hornet and cuSTINGER is spent in the
memory allocation. This is in contrast to the simpler approaches adopted by AIM,
EvoGraph, and GraphIn which use static and predefined allocation methodologies
making them less flexible.

Fig. 18.7 shows the insertion update rate for four different graphs for both
cuSTINGER (a) and Hornet data structure (b). Fig. 18.7 (c) summarizes the
speedup of the new data structure compared to the cuSTINGER implementation.
For small batches, 104 edges and smaller, cuSTINGER outperforms Hornet by

18.4 The Hornet data structure 263

about 2X. However, for larger batches the cuSTINGER has a performance dip
(up to 61X) due to communication overhead between the CPU and GPU - Hornet
does not. Hornet reduces the communication between the CPU and GPU. This
also includes fewer memory transfers when allocating new blocks on the device.

To perform a fair comparison of Hornet with AIM, we configure Hornet to
use a minimal block size similar to the one found in AIM. In many cases Hornet
is faster than AIM. This is even despite the fact AIM pre-allocates a large and
fixed amount of memory; where Hornet grows based on need. Fig. 18.8 depicts the
update rate of AIM (a) and Hornet (b), and the speedup of Hornet compared to
AIM (c). Also in this case, Hornet shows lower update rates than AIM for small
batches, and in particular for graphs with regular degree distribution (cage15). On
the other hand, Hornet outperforms AIM for larger batches up to 82X thanks to a
faster memory manager and an efficient update algorithm (see Sec. 18.2.5). Note,
for the kron g500-logn21 graph, Hornet is especially faster than AIM as Hornet
stores the entire adjacency array in a single block vs. the multiple blocks used by
AIM. This improves locality for Hornet.

The reduced performance of Hornet for small batches is in part due to a pre-
processing phase that converts the batch to a CSR representation. This is applied
to all batch sizes. While this conversion is relatively costly for small batches, it
greatly improves the performance for large batches.

Using the AIM configuration in Hornet, Hornet can process up to 800 millions
updates per second (Fig. 18.8(b)). This can be further increased to 1 billion updates
per second if the duplicate testing is disable as was done in GraphIn and Evograph.

18.4.4 Dynamic Triangle Counting

18.4.5 Breadth-first search

BFS is a fundamental graph operation and building block for most graph algo-
rithms. We compare the performance of Hornet and CSR data structures for the
BFS graph traversal. In addition, we evaluate the proposed solution with the state-
of-the-art CSR implementation provided by the Gunrock library [275] to better
underlines the efficiency of the approach. As for SpMV, the CSR and Hornet im-
plementations are identical except for the data structures used. Fig. 18.9 shows
the speedup and the performance (millions traversed edges per seconds, MTEPS)
of CSR and Hornet in comparison to the Gunrock implementation4. The proposed
solutions provide performance always higher and up to 5.5X in comparison to Gun-
rock. In contrast to SpMV, Hornet shows slightly higher performance than CSR
(up to 10%) thanks to a better locality of vertices with the similar degree within
the same block array.

18.4.6 SpMV

Sparse matrix-vector multiplication (SpMV) is a core primitive in linear algebra
and widely used in numerous real-world applications. We evaluate the perfor-

4 To perform a fair comparison, we evaluate all implementations by using the
same source vertex and by forcing traversing exactly the same number of edges
(atomicCAS/no idempotent status lookup).

264 18 Hornet: An Efficient Data Structure for Dynamic Sparse Graphs and Matrices

1,067
398

2,048
2,259

1,551
547

55,667

4,631 4,724

74
5,673

80,875

10,003

4,529 5,8892.4
1.7

5.5

3.5

2.0
1.6

2.9

1.2 1.1

1.7
1.4

3.9

0.9
1.4 1.3

0.1

1.0

10.0

Sp
ee

du
p

CSR Hornet Gunrock

speedup vs.
Gunrock

MTEPS

fig. 18.9: Performance comparison of BFS between CSR, Hornet, and Gunrock (CSR).
The figure depicts the speedup over Gunrock and traversal throughput (MTEPS).

1

10

100

Sp
ee

du
p

ve
rs

us
 D

CS
R

CSR Hornet

fig. 18.10: Performance comparison of SpMV between CSR, DCSR, and Hornet. The
figure depicts the normalized speedup over DCSR.

mance of Hornet for SpMV in contrast to CSR and DCSR implementations. Fig.
18.10 compares the performance of SpMV for these three data representations.
For DCSR, we use the implementation provided in [144]. The CSR and Hornet
SpMV implementations are identical except for the data structures used. We are
aware of additional SpMV implementations such as yaSpMV [285] (COO based),
pOSKI [132] (multi-level CSR), and low-level optimizations (such as those found
in CUB, CUSP, and cuSparse). These optimization are orthogonal to the pro-
posed representation. The goal is to show that replacing CSR with Hornet does
not change the performance of a SpMV.

Specifically, Fig. 18.10 depicts the speedup of the CSR and Hornet in compar-
ison to DCSR. First of all, we note that Hornet is at least 10X faster than DCSR
and in some cases as much as 100X faster. Second, the difference in execution time
between static CSR and Hornet is relatively small - less than 10% in most cases.
Note, that there cases where Hornet is faster than CSR, this has to do with the
data placement in the locality of the SpMV computation.

18.5 Conclusions 265

18.5 Conclusions

In this work, we presented a new dynamic data structure, called Hornet, for rep-
resenting sparse dynamic graphs and matrix problems. The proposed data struc-
ture supports both insertion, deletions, and value updates. Unlike past attempts
at designing dynamic graph data structures, the new solution does not require
restarting due to a large number of edge updates. In Sections 18.3 and 18.4 we
discussed a GPU implementation of this data structure. Thought, we note that
the data structure is not limited to only GPU architectures.

Hornet, unlike cuSTINGER, has a memory manager that supports memory
reclamation; thus reducing memory fragmentation. This is in part due to the block
and block array concepts which store adjacencies in arrays of predetermined sizes.
By having a relatively small number of array sizes, blocks that were previously
freed can be reused in the future. We showed that the new data structure can deal
with updates at 4X ´ 40X a higher update rate than cuSTINGER. Further, this
new design enables to put an upper bound on the amount of allocated memory.
In most cases, the storage overhead of the new data structure is only about 30%
higher than the storage requirements of CSR and is usually better than the storage
requirements for COO.

Lastly, to show the efficacy of the data structure, we showed that it performs
well on an important building blocks for linear algebra and graph processing:
SpMV and BFS. By simply replacing CSR in an SpMV implementation, without
any additional code tuning, the new data structure is able to perform at the
same efficiency of CSR. In most cases, both CSR and cuSTINGER offer an SpMV
implementation that is orders of magnitude faster than DCSR.

The experimental results in this Section primarily focused on the analysis of a
GPU based implementation of this data structure. In future work, we will extend
this data structure to work for CPU systems as well, and we will implement all
the necessary functionality to best utilize massively multi-threaded systems.

19

Quickly Finding a Truss in a Haystack

The k-truss of a graph is a subgraph such that each edge is tightly connected
to the remaining elements in the k-truss. The k-truss of a graph can also repre-
sent an important community in the graph. Finding the k-truss of a graph can
be done in a polynomial amount of time, in contrast finding other subgraphs such
as cliques. While there are numerous formulations and algorithms for finding the
maximal k-truss of a graph, many of these tend to be computationally expensive
and do not scale well. Many algorithms are iterative and use static graph triangle
counting in each iteration of the graph. In this work we present a novel algorithm
for finding both the k-truss of the graph (for a given k), as well as the maximal
k-truss using a dynamic graph formulation. The proposed algorithm has two main
benefits. 1) Unlike many algorithms that rerun the static graph triangle counting
after the removal of non-conforming edges, we use a new dynamic graph formula-
tion that only requires updating the edges affected by the removal. As the updates
are local, we only do a fraction of the work compared to the other algorithms.
2) The algorithm is extremely scalable and is able to concurrently detect deleted
triangles in contrast to past sequential approaches. While the algorithm is archi-
tecture independent, we show a CUDA based implementation for NVIDIA GPUs.
In numerous instances, the new algorithm is anywhere from 100X-10000X faster
than the Graph Challenge benchmark. Furthermore, the algorithm shows signifi-
cant speedups, in some cases over 70X, over a recently developed sequential and
highly optimized algorithm.

19.1 Introduction

The subgraph isomorphism problem tries to answer the following question, given
two graphs H and G (where H is the smaller of these graphs): is there a 1 ´ 1
mapping of vertices in H to vertices in G such that each edge in H is also in
G?. For example, H might be a clique of size k, in which case the question is,
“Is there a clique of size k in G?”. The answer to this question is an NP ´
Complete problem. Yet, there are simplifying assumptions on the structure of H
that can help make the problem computationally feasible and tractable - so long
as a simpler subgraph H is defined. The need for subgraph isomorphism presents

268 19 Quickly Finding a Truss in a Haystack

itself in numerous applications, including community detection and social network
analysis, were there is a need to find a subgraph with a given set of properties.
Another way of looking at the subgraph isomorphism problem is pattern finding,
where H represents the pattern. Therefore, it is not overly surprising that in many
cases the pattern will be relatively small in comparison with the initial input -
this is almost like looking for a “needle in a haystack”. For example, a triangle
in a graph can be thought of as a pattern and enumerating all the triangles in
the graph meets the requirements of the subgraph isomorphism problem. While
maximal clique finding is computationally intractable, finding and enumerating
all the triangles in a graph can be done in polynomial time. Thus, the problem of
subgraph isomorphism can be tractable for specific patterns and for a known H.

The HPEC Graph Challenge [244] seeks to find a high performance solution
for a specific subgraph isomorphism problem where the structure of H is a k-truss
within G. A k-truss is subgraph where each edge is part of at least k´ 2 triangles.
The maximal k-truss in a graph, denoted by k “ kmax is the largest k-truss in
the graph where the set of satisfying edges is not empty. The exact k or structure
of the final maximal k-truss is not known apriori and is dependent on the graph.
Finding the maximal k-truss can be done in polynomial time [72,104,130,272].

Contribution

In this Section we show a new algorithm for finding a k-truss subgraph as well
as the maximal k-truss in a graph. While the algorithm focuses on finding trusses
in a static graph, we introduce concepts and principles used in dynamic graph
algorithms. First of all we use a dynamic graph data structure designed for sparse
networks where the edges can be removed efficiently from the graph without need-
ing to rebuild the graph after each change [110]. Second, we show a highly efficient
and scalable dynamic graph triangle counting algorithm for updating the number
of triangles in the graphs without needing to recompute all the triangles in every
iteration. While the algorithm is architecture independent, we show an implemen-
tation of it for the NVIDIA GPU.

Altogether, the new algorithm is significantly faster than the HPEC Graph
Challenge [244] benchmarks. While the algorithm always completed in a reason-
able amount of time, there are numerous instances in which one or more of the
benchmarks did not complete. In most cases we saw that the new algorithm is eas-
ily 100X faster than the best performing Graph Challenge benchmark and upto
10000X faster than the other remaining benchmarks. The new algorithm also out-
performed the recent work of Wang & Cheng [272]. While the algorithm in [272] is
highly efficient, it is also inherently sequential as it is unable to update the trian-
gle count concurrently when removing multiple edges. The algorithm is concurrent
and extremely scalable.

19.2 KTruss Algorithm Using Dynamic Graphs

In this section we present a new algorithm for finding the maximal k-truss (or a
specific k-truss) in a graph. The algorithm in [72] suggests recomputing the trian-
gles in every iteration - this is computationally expensive. The algorithm in [272]

19.3 Proposed Algorithm 269

avoids recomputing triangles for effect edges, yet is sequential. The new algorithm
is both scalable and avoids unnecessary computations. The new algorithm extends
the algorithm from [175] and updates the number of triangles per edge rather than
per vertex.

Both the algorithms in [72] and [272] require removing edges from the graph
once the edges no longer support the necessary number of triangles. This edge dele-
tion process is exactly where the algorithm in [175] excels by avoiding unnecessary
computations. Part of the edge deletion process also includes removing the edge
from the graph. For sparse graphs, this has proven to be challenging, yet several
recent data structures have been created that take care of the graph update at
high rates, these include STINGER [95] and cuSTINGER [110] for the GPUs. We
use cuSTINGER as it supports sorted updates [175] and its data layout is great
for both static graph and dynamic graph triangle counting.

19.2.1 Problem Definition

Given a graph, G “ pV,Eq, the vertices are denoted as V and the edges are denoted
by E. The maximal k-truss of the graph, H “ pV̂ , Êq meets the following criteria:
1) V̂ Ď V , 2) Ê Ď E, 3) H Ď G, and 4) @e P Ê, tripeq ą“ k ´ 2. For the maximal
k-truss problem, k needs to be the maximal value before E “ H and V “ H. In
many papers, the term support of edge can be used to replace the term tripeq. We
use both throughout this Section.

19.3 Proposed Algorithm

Algorithm 16 presents the pseudo code for the new algorithm. While the various
functions in the algorithm do not highlight the parallelism in the algorithm, the
function calls are all inherently parallel. For example, finding all the vertices with
a support smaller than k ´ 2 can be done by accessing all the edges in the graph
concurrently. Deleting the edges that lack support can also be done in parallel.
Lastly, updating the triangle counting of the edges can also be done in parallel.

19.3.1 Triangle Subtraction

Consider a triangle in a graph consisting of three vertices u, v, w. The different and
ordered triangles consisting of vertices are : xu, v, wy, xu,w, vy, xv, w, uy, xv, u, wy,
xw, u, vy, and xw, v, uy. As the graph is undirected, there is a certain amount of
symmetry: suppu, vq “ suppv, uq. This also means that if pu, vq is deleted, then
pv, uq is also deleted. We denote a set of two edges pu, vq and pv, uq as an edge-
pair.

Thus, given a triangle in the graph prior to the removal of a subset of edge-
pairs, the following scenarios can arise from the removal: 1) a single edge-pair is
removed, 2) two edge-pairs are removed, and 3) all three edge pairs are removed. If
a single edge-pair is removed, then the remaining two edge-pairs need their support
to be modified. If two edge-pairs are removed, then the remaining edge-pair needs
to be updated. When all three edge-pairs are deleted, then no modifications are

270 19 Quickly Finding a Truss in a Haystack

Algorithm 16 New algorithm for finding k-truss

Input: G “ pV,Eq, K

UpdateTriangle(Ĝ, Erem)
1: Construct Grem “ pVrem, Eremq

2: Ñ Update triangles where 1 edge-pair is deleted
3: parallel for xu, vy P Erem do

4: IntersectpĜu, Ĝvq

5: end parallel for
6: Ñ Update triangles where 2 edge-pairs is deleted
7: parallel for xu, vy P Erem do

8: IntersectpĜu, Grem,vq

9: end parallel for

OneK(G,K)
10: Ñ Par-for on all edges in graph looking for suppeq ă k ´ 2
11: Erem Ð FindUnderKm2pG,Kq
12: while p|Erem| ‰ 0q do
13: RemovepG,Eremq

14: if pG “ Hq then
15: return
16:
17: UpdateTrianglepG,Eremq

18: Ñ Par-for on all edges in graph looking for suppeq ă k ´ 2
19: Erem Ð FindUnderKm2pG,Kq
20: end
21: return

NewKTruss(G,K)
22: while True do
23: OneKpG,Kq
24: if pG “ Hq then
25: return k ´ 1;
26:
27: k Ð k ` 1
28: end

Table 19.1: GPU and CPU system used in experiments.

Architecture Processor Micro-architecture SM SP (per SM) Total SPs DRAM Size DRAM Type

GPU-CUDA P100 Pascall 56 64 3854 16GB HBM2

Architecture Micro-architecture Processor Frequency Cores LL-Cache DRAM Size DRAM Type

CPU x86-64 Broadwell 2ˆ Intel Xeon E5-2695 v4 2.1 GHz 2ˆ 16 2ˆ 45 MB 1024GB DDR4-2400

required as all the edges are no longer in the graph. Note, that 1) a single deleted
edge-pair can affect multiple triangles and 2) these three scenarios capture all the
possible changes caused by a deletion of a given edge-pair.

19.3.2 Triangle Detection For Single Edge-Pair Deletions

Assuming that the deleted edge-pair consists of vertices u and v, we are required
to find all the affected triangles. This requires intersecting the adjacency arrays
of u and v in Ĝ (where Ĝ “ pV̂ , Êqq is the graph after the removal of the edges).
By intersecting pu, vq and pv, uq, the common neighbors are found. For each of
these common neighbors a triangle is decremented from its edge count. This is the
simpler of the two cases.

19.4 Experimental Results 271

Table 19.2: Networks used in the experiments. |E| refers to directed edges.
Networks are sorted based on the number of EDGES. Execution time is for

cuSTINGER-Delta.

Name |V | |E| kmax Timepsq

p2p-Gnutella08 6.3K 21K 5 0.007

ca-HepTh 9.8K 26K 32 0.005

ca-HepPh 12K 119K 239 0.009

email-Enron 37K 184K 22 0.026

soc-Epinions1 76K 406K 33 0.09

cit-HepPh 35K 421K 25 0.24

soc-Slashdot0902 82K 504K 36 0.085

roadNet-PA 1M 1.5M 4 0.078

flickrEdges 106K 2.3M 574 0.26

amazon0601 400K 2.4M 11 0.12

graph500-scale18 262K 4.2M 159 0.74

graph500-scale19 524K 8.4M 213 6.8

graph500-scale20 640K 16M 284 17.3

cit-Patents 3.8M 16.5M 36 45.3

graph500-scale21 2.1M 34M 373 117

graph500-scale22 4.2M 67M 485 291

graph500-scale23 8.4M 134M 625 780

Name (Wang & Chang [272]) |V | |E| kmax Timepsq

wiki-Talk 2.4M 4.7M 53 9.07

as-skitter 1.7M 11M 68 57.1

soc-LiveJournal1 4.8M 43M 362 258

19.3.3 Triangle Detection For Dual Edge-Pair Deletions

The process for detecting and updating the number of triangles when deleting two
edge pairs is a bit more complex (the reader is referred to [175] for additional de-
tails) and we provide only a sketch of the process. For simplicity, assume that these
edges are pu, vq, pv, uq, pu,wq, pw, uq. Thus, we are required to update the edge pair
pv, wq and pw, vq. Given the set of deleted edges Erem, a graph of the deleted edges
is created, we call this graph Grem “ pVrem, Eremq. Given Grem and Ĝ, to find
the common neighbors pv, wq and pw, vq, we do the following intersections between
the vertex pairs: xurem, v̂y, xvrem, ûy, xurem, ŵy, xwrem, ûy where the adjacencies
arrays of v̂, û, v̂ are in Ĝ and the adjacencies arrays of urem, vrem, wrem are in
Grem. Note, all four of these intersections are required due to the asymmetry of
the adjacency arrays in the two different graphs.

19.4 Experimental Results

The experiments are conducted on an NVIDIA P100 GPU connected to an Intel
Xeon E5-2695 with 32 cores (details in Table 19.1. The P100 is a Pascal based
GPU with 56 SMs and 64 SPs per SM, for a total of 3584 SPs. The P100 has a
total of 16GB of HBM2 memory. The Intel Xeon E5-2695 is a Broadwell based

272 19 Quickly Finding a Truss in a Haystack

processor running at 2.1 GHz with 45MB L3 cache. The server consists of two such
processors with a total of 1TB of memory. While the new algorithm is architecture
independent, the final implementation targets the GPU. Thus, while the GPU is
connected to a high-end Intel processor, in practice we only utilize a single CPU
thread.

19.4.1 Dynamic Graphs

The cuSTINGER data structure is the first fully dynamic graph data structure
for the GPU [110]. cuSTINGER uses dynamically growing arrays. This allows
for improved locality and increased parallel scalability for the GPU’s warp based
execution model. Specifically, the use of arrays cuSTINGER allows for inserting
and deleting edges from the graph while ensuring that the edge lists are sorted
after the update with relatively low computational effort [175].

19.4.2 Benchmarks

We compare the performance of the proposed algorithms with several different
implementations, including the baseline benchmarks defined by the HPEC Graph
Challenge [244]. The baseline benchmarks are formulated in a linear algebra based
formulation in several different programming languages: Matlab/Octave, Julia, and
Python. While these programming languages are high-level, they utilize several
optimized libraries for the sparse matrix representation as well as for the SpMV
operations. We also compare the new algorithm to Graphulo [104] and Wang and
Chen [272]. Of these, only [272] and the proposed algorithm use a non linear
algebra formulation.

We evaluate the benchmarks on two related but distinct challenges: 1) finding
k-truss for a specific value of k and 2) finding all k-trusses up to and including the
maximal. We treat these as distinct because there are algorithmic optimizations
that are available to the former that aren’t to the latter, and vice versa. The results
of Wang and Cheng [272] are only for the latter problem. On the other hand, the
Graph Challenge benchmarks find trusses of a single k by default. We extended
these implementations to iteratively find the maximal k-truss, as suggested in [104].

Proposed implementations - in the performance analysis we compare two
different implementations: 1) cuSTINGER-Iterative - a näive algorithm that enu-
merates the triangles for all the edges in the graph for each iteration of the al-
gorithm using a static graph formulation and 2) cuSTINGER-Delta - an imple-
mentation of the new algorithm discussed in 19.2. While both these algorithms
utilized the cuSTINGER data structure for deleting edges not meeting the sup-
port requirements of the k-truss, only cuSTINGER-Delta utilizes the smart update
process.

Python - we found the Python implementation to typically be the most stable
of the Graph Challenge benchmarks. Whereas the other benchmarks did not always
complete, the Python benchmark always did. The Python implementation utilizes
SciPy [136] library for its sparse operations. This benchmark is sequential.

Matlab/Octave - this sequential benchmark supports both Matlab and Oc-
tave syntax. We used the Octave framework for the execution. We ran into
memory-related errors (exceeding memory, seg faults) on some inputs.

19.4 Experimental Results 273

Table 19.3: Execution time comparison for finding the maximal k-truss with
those found in [272] and k “ 3 with those found in [131].

P2P HEP Amazon Wiki Skitter LJ

Time (Wang & Cheng [272]) ă 1 ă 1 31 121 281 664

Time (cuSTINGER-Delta) 0.014 0.038 0.43 9.07 57.1 258

Speedup ă 70 ă 26 72 13 5 2.57

S10 S11 S12 S13 S14 S15 S16

Time (Graphulo [131] 1.63 3.93 12.1 37.2 110 3290 8770

Time (cuSTINGER-Delta) 0.003 0.007 0.016 0.042 0.106 0.352 1.18

Speedup 518 595 741 883 1041 9330 7847

Julia - we found that the sequential Julia implementation had several prob-
lems, including memory leakage and bad parsing of the input files. Further, there
were several cases that the execution was so slow that the benchmarks were
stopped.

Wang and Cheng [272] - this benchmark is highly optimized, yet sequential
algorithm for finding the k-truss. The code for this algorithm is not open-source,
as such we compare the performance of the algorithm directly to the numbers
reported in their paper. Details of the system used for these experiments can be
found in [272].

Graphulo [104] - while the Graphulo framework has an open-source k-truss
implementation, we were unable to collect execution times due to errors. As
such, we use the execution times reported in [131], and ran the same inputs on
cuSTINGER for comparison. This benchmark is parallel - details of the system
used for these experiments can be found in [131].

19.4.3 Dataset

The HPEC Graph Challenge [244] has a pre-determined set of networks that are
to be used for evaluating the performance of the new algorithm. This consists of
graphs from the SNAP dataset [161] and synthetic graphs which are also used for
the Graph500 benchmark. Details of the Graph Challenge Graphs can be found
in the upper part of Table 19.2. For the sake of brevity we do not present all the
graphs in the Graph Challenge list, rather we highlight only a subset of them. We
used adjacency files as provided by the Graph Challenge dataset for cuSTINGER,
and convert them into their incidence forms for linear-algebra-based benchmarks.
The graphs used in [272] also consist of SNAP graphs and can be found in the
bottom part Table 19.2, though they are not in the original Graph Challenge List.
As such, we preprocessed these graph from their original SNAP [161] format to the
one required by the benchmarks. For comparison with the results of Graphulo [131],
we generated scale-free graphs (scales 10-16) using their generator script and seed.
We then converted these graphs to be run on cuSTINGER.

Fig. 19.1 (a) and (c) depict the execution of the various algorithms for finding
the maximal k-truss and for finding the k-truss for k “ 4, respectively. The abscissa
denotes the number of edges in the input graph and the ordinate depicts the

274 19 Quickly Finding a Truss in a Haystack

105 106 107 108

|E|

10 2

10 1

100

101

102

103

104

Ru
nt

im
e

(s
)

Python
Octave
Julia
cuSTINGER-Iterative
cuSTINGER-Delta

(a) Maximal k-truss

105 106 107 108

|E|

101

102

103

104

105

106

107

To
ta

l E
ne

rg
y

(J
)

Python
Octave
Julia
cuSTINGER-Iterative
cuSTINGER-Delta

(b) Maximal k-truss Energy Consumption

105 106 107 108

|E|

10 2

10 1

100

101

102

103

104

Ru
nt

im
e

(s
)

Python
Octave
Julia
cuSTINGER-Iterative
cuSTINGER-Delta

(c) k “ 4

5 10 15 20 25 30 35
k-iter

10 2

10 1

100

101

102

103

Ru
nt

im
e

(s
)

Python
Octave
Julia
cuSTINGER-Iterative
cuSTINGER-Delta

(d) Maximal k-truss , per iteration

fig. 19.1: (a),(b), (c): execution times and energy consumption for finding the trusses
as a function of the graph size (number of edges in the input graph): (a) maximal

k-truss of the graph, (b) the energy consumption for find the maximal k-truss , and (c)
for trusses of k “ 4. These are log-log plots. (d) Execution time of the various

algorithms for finding the maximal k-truss ,for the soc-Slashdot, as a function of the
iteration (k). Note, that while kmax “ 36, the algorithms terminate for k “ 37 when the

graph becomes empty. The Y-axis is log-scale.

execution time. Note, both the abscissa and the ordinate are log based. Missing
data points imply either the benchmark did not finish in a reasonable amount
of time (the upper-bound on execution time was approximately 8 hours) or the
benchmark did not complete for some reason (exceed memory, crashed in the
graph loading phase). The motivation for separately getting execution times for
the maximal k-truss versus finding trusses of a predefined k stems from the way
that edges are removed from the graph. Consider the case where k is selected to
be kmax. Even though the output of both these test cases will be the same, the
execution time for k “ kmax will be faster than the execution time when needing
to look for kmax due to more aggressive edge filtering.

19.4 Experimental Results 275

For both these approaches, it can be distinguished from Fig. 19.1 that both
the new implementations, cuSTINGER-Iterative and cuSTINGER-Delta, signifi-
cantly outperform the remaining benchmarks by orders of magnitude (from 100X
and upto 10000X). While it is not fair to compare a GPU implementation with a
sequential implementation, we note that the speedup of the proposed algorithms
is not just from the use of a NVIDIA GPU, but is due to several additional fac-
tors: 1) problem formulation, 2) algorithmic optimizations, and 3) data structure
support. It is also worth noting the work of Lee et al. [155] compares the perfor-
mance of CPUs to GPUs and narrowed down the relative speedup of a GPU over
a CPU to a significantly smaller value than the achieved speedups of the proposed
implementation. Problem formulation - based on the findings of Schank & Wag-
ner [258], it has been established that the time complexity for the linear algebra
formulation is higher than the vertex-centric formulation (which we use). Algo-
rithmic optimizations - the new algorithm has several important algorithmic
optimizations that reduce the total amount of work required for re-enumerating
the number of triangles per edge. Data structure support - given the usage of
cuSTINGER [110] and its support of dynamic graphs, we don’t need to recreate
the sparse graph after each iteration of the graph. This saves a lot of time on
memory allocations.

While we are unable to measure the magnitude of each of the aforementioned
optimizations and their contribution to the overall speedup, we do know that
the new algorithm, cuSTINGER-Delta, is several times faster than cuSTINGER-
Iterative (we saw an up to 30X difference between the two algorithms). This is
directly attributed to the algorithmic optimizations. Also, it is worth noting that
due to these optimizations, the implementations scale to significantly larger graphs
(well over 100M edges) compared to the remaining benchmarks.

Fig. 19.1 (b) depicts the projected energy (J) consumption for maximal k-
truss run-times and power measurements while running benchmarks on the CPU
and GPU respectively. We used the ipmitool tool for measuring power. The power
measured for the CPU is (286J

s). The power measured for the GPU also includes

the CPU power and is only slightly higher at (350J
s). Based on measurement, the

GPU is not using its peak power. This probably has to do with the fact that the
GPU is executing relatively small kernels and for a short period of time. However,
the power-performance plot of Fig. 19.1 (b) does not look significantly different
than Fig. 19.1 (a) - this is due to the new algorithm being extremely power efficient
due to its short execution time.

Fig. 19.1 (d). depicts the runtime of the various implementations as a function
of the k, in the process of searching for the maximal k-truss . The soc-Slashdot0902
graph was selected as it successfully completed on all benchmarks. As expected,
generally the time per iteration decays over time as the number of active edges
(edges under consideration) tends to monotonically decrease with the increase of
k 1. The only exception is the Python benchmark, where the time per iteration
remains in a constant range for this input. The new algorithms are orders of
magnitude faster than the Graph Challenge Benchmark [244].

1 Note, the execution time for a given k is dependent on the number of sub-iterations
for that given k - this can also explain the increase in execution time from k “ 3 to
k “ 4

276 19 Quickly Finding a Truss in a Haystack

Comparison with Wang and Cheng [272] Table 19.3 (upper) compares
the new algorithms with the algorithm by Wang & Cheng [272]. We picked six
inputs of varying sizes from their list of tested graphs (all from the SNAP graph
repository). While [272] had numerous implementations, we compare against their
bottom-up approach as it is the most similar to the proposed algorithm. We show
speedups of the proposed algorithm over theirs. In all cases the cuSTINGER-Delta
implementation outperforms [272].

Comparison with Graphulo [131] Lastly, we compare the new algorithm,
Table 19.3 (lower), with the Graphulo framework which has a linear algebra based
implementation for finding a k-truss of a given size, using inputs from their paper.
The Graphulo framework is intended to process larger graphs. Similar to the other
linear algebra based formulations, the new algorithm is orders of magnitude faster.

19.5 Conclusions

In this Section we showed a new algorithm for finding k-truss subgraphs. The new
algorithm uses a dynamic graph formulation and exploits two important features:
1) it utilizes a dynamic graph data structure that can insert and remove edges
without creating a new data structure after each update and 2) it avoids recom-
puting the number of triangles per edge in each iteration of the algorithm after the
edge removals. The latter of these properties means that the new algorithm does
a fraction of the work that static graph algorithms do - this leads to significant
speedups. In addition to this, the new algorithm is also extremely scalable and can
concurrently detect when a deleted edge is part of multiple triangles and it can
update all the affected edges (in parallel).

While the algorithm is architecture independent, the CUDA based implementa-
tion showed massive speedups over the Graph Challenge benchmarks. There were
numerous instances where the Graph Challenge benchmarks did not complete in
reasonable amount of time (8 hours) whereas the proposed algorithm finished in
a few minutes. The new algorithm was often over a hundred times faster than the
best performing Graph Challenge Benchmarks and thousands of times faster than
the remaining benchmarks. The proposed algorithm also scaled to much larger
graphs than in the benchmarks. While part of speedup can be attributed to the
usage of an NVIDIA GPU, the bigger part of the speedup is due to the new algo-
rithmic optimizations we showed. Further, the new algorithm is in some case over
70X faster than a recently developed and optimized algorithm that is inherently
sequential.

Part V

Applications

Introduction

In this part of the thesis, many concepts and methodologies deriving from previous
works concerning GPU applications have been applied to an important problem
arising from an external context as well as several graph analytic results have been
combined to accelerate environments not strictly related to high-performance com-
puting. This part first presents an efficient dynamic invariant miner to accelerate
extraction of logic formulas from an execution trace of a system under verifica-
tion (Section 20). Such formulas express stable conditions in the behavior of the
system and they are selected among a very large set of runtime states. Secondly,
the part introduces cuRnet, an R package that provides a parallel implementation
of the most important graph algorithms in the literature (Section 21). The pack-
age allows offloading computing intensive applications to GPU device and allows
to perform such analysis which would be highly time-consuming on a standard
sequential computation.

20

Invariant Mining

Dynamic mining of invariants is a class of approaches to extract logic formulas
from the execution traces of a system under verification (SUV), with the purpose
of expressing stable conditions in the behaviour of the SUV. The mined formulas
represent likely invariants for the SUV, which certainly hold on the considered
traces, but there is no guarantee that they are true in general. A large set of repre-
sentative execution traces must be analysed to increase the probability that mined
invariants are generally true. However, this becomes extremely time-consuming
for current sequential approaches when long execution traces and large set of SUV
variables are considered. To overcome this limitation, the Section presents a par-
allel approach for invariant mining that exploits GPU architectures for processing
an execution trace composed of millions of clock cycles in few seconds.

20.1 Introduction

Invariant mining is a technique to extract logic formulas that hold between a
couple (or several couples) of points in an implementation. Such formulas express
stable conditions in the behaviour of the system under verification (SUV) for all
its executions, which can be used to analyse several aspects in verification of SW
programs and HW designs, at different abstraction levels. For example, invariant
mining has been applied for analysis of dynamic memory consumption [53], static
checking [200], detection of race conditions [234], identification of memory access
violations [123], test generation [77], mining of temporal assertions [79] and bug
catching in general [253].

Both static and dynamic approaches exist for mining invariants. The first ex-
haustively and formally explore the state space of the SUV [100, 265], but they
work well for relatively small/medium size implementations. Moreover, they re-
quire the source code of the SUV is available. When larger designs are considered,
dynamic techniques represent a not exhaustive but more scalable solution, since
they rely on simulation rather than formal methods [97, 116, 178, 253]. Moreover,
these approaches are the unique alternative when the source code of the SUV is
non available. In fact, they generally work by analysing a set of execution traces
of the SUV and searching for counterexamples of the logic formulas that represent

282 20 Invariant Mining

the desired invariant candidates. However, at the end of the analysis, survived
candidates are likely invariants, i.e., formulas that are only statistically true on
the SUV, because they have been proved to hold only on the analysed traces. For
this reason, to increase the degree of confidence on likely invariants, a large and
representative set of execution traces must be analysed by dynamic approaches.
Unfortunately, for complex HW designs this could require to elaborate thousands
of execution traces, including millions of clock cycles, and predicating over hun-
dreds of variables, which becomes an unmanageable time-consuming activity for
existing approaches.

The solution we propose to speed-up the mining process is to move from a
sequential to a parallel implementation of likely invariant miners, such that general-
purpose computing on graphics processing units (GPGPU) can be exploited to
significantly reduce the time required for processing a large number of execution
traces composed of millions of clock cycles. A first parallel approach for invariant
mining has been presented in [80] showing sensible improvements with respect to
Daikon [97], one of the most popular sequential miners. In this Section, we propose
an alternative parallel algorithm that greatly benefits from advanced graphics
processing unit (GPU) programming techniques, such that the memory throughput
of the GPU is significantly improved. In this way, as reported in the experimental
results, the overall performance of the mining algorithm are increased up to three
orders of magnitude with respect to [80].

The rest of the work is organized as follows. Section 20.2 defines some prelimi-
nary concepts. Section 20.3 describes the proposed parallel approach for dynamic
invariant mining. Finally, Section 20.4 and Section 20.5 are devoted, respectively,
to experimental results and concluding remarks.

20.2 Preliminary definitions

The following definitions concerning execution traces and likely invariants are nec-
essary to describe how the mining approach presented in Section 20.3 works.

Definition 1. Given a finite sequence of simulation instants xt1, ...tny and a set
of variables V of a model M, an execution trace of M is a finite sequence of pairs
τ “ xpV1, t1q, ...pVn, tnqy, where Vi “ evalpV, tiq is the value of variables in V at
simulation instant ti.

Definition 2. Given a model M and the corresponding sets of variables V and
execution traces T , a likely invariant for M is a logic formula over V that holds
throughout each τ P T .

20.3 Invariant mining

The main mining function, in its sequential form, is reported in Algorithm 17.
The inputs of the function are represented by an execution trace τ of the SUV,
an invariant template set I, and a variable dictionary D. The dictionary contains
tuples of different arity composed by all the possible combinations of the variables
V of the SUV. Such tuples represent the actual parameters to be substituted inside
the formal parameters of the invariant templates during the mining phase.

20.3 Invariant mining 283

The algorithm extracts all likely invariants for τ that correspond to logic formu-
las included in I, by substituting in the elements of I all the possible tuples of V be-
longing to D, according to the respective arity. More precisely, the check invariant
function (line 5) checks if a specific template inv, instantiated with the current tu-
ple of variables tuple, holds at simulation time instant. When a counterexample
is found for inv, it is removed from the template set (line 6) for the current tuple
of variables. If all elements of the template set are falsified (line 8), the algorithm
restarts by considering the next tuple in the dictionary, by skipping the remaining
simulation instants of τ . At the end, the algorithm collects all the pairs composed
by the the survived templates and the corresponding tuples of the variable dictio-
nary (line 11). The instantiation of the tuples in the survived templates represent
the final set of likely invariants for τ . The current implementation supports the
invariant template sets reported in Table 20.1.

The proposed algorithm has a worst-case time complexity equal to Op|V|K ¨ |τ | ¨
|I|q, where V is the number of considered variables, K is the arity of the invariant
template belonging to I with the highest arity, |τ | is the number of simulation
instants in the execution trace τ , and |I| is the number of invariant templates
included in I.

20.3.1 The parallel implementation for GPUs

The mining approach reported in Algorithm 17 is well suited for parallel compu-
tation. In fact, the problem can be easily decomposed in many independent tasks,
each one having regular structure and fairly balanced workload. For this reason we
implemented a parallel version of the mining algorithm, called Mangrove. It imple-
ments the mining algorithm with the aim of exploiting the massive parallelism of
GPUs and, at the same time, an inference strategy to reduce redundant checking
of invariants, as explained in Section 20.3.2.

Algorithm 17 The invariant mining algorithm.

sequential mining(D, I, τ) return result

1: for all tuple P D do

2: template set = I
3: for all instant P τ do

4: for all inv P template set do

5: if check invariant(inv,tuple,instant) then

6: template set = template set z inv

7: end

8: if template set = H then

9: break

10: end

11: result = result Y xtuple, template sety

12: end

284 20 Invariant Mining

BOOLEAN NUMERIC

Unary Binary Ternary Unary Binary Ternary

Template Set I true, false
“, ‰, ă, ą, ď,
ě

Template Set II true, false “, ‰
Var1 “ Var2andVar3
Var1 “ Var2or Var3
Var1 “ Var2xorVar3

Var “ 7
Var ‰ 0
Var ă 10
Var ď 10

Var1 “ Var2
Var1 ď Var2
Var1 ă

?
Var2

Var1 “ log Var2
Var1 ă Var2 ` 1
Var1 “ Var2 ˚ 2

Var1 “ Var2
Var3

Var1 “ minpVar2,Var3q
Var1 “ maxpVar2,Var3q
Var1 ă Var2 ˚ Var3
Var1 ď Var2 ` Var3

Table 20.1: Template sets considered by the miner.

fig. 20.1: Overview of block mapping and vectorized accesses for the parallel algorithm
on GPU.

In an initialization phase, the Boolean and numeric variables included in the
variable dictionary are organized over bit and float arrays in row-major order.
This allows the full coalescing of memory accesses by the GPU threads in the
mining phase. Furthermore, all accesses are vectorized [169], namely, each thread
loads four consecutive 32-bit words instead of a single word. This technique allows
improving the memory bandwidth between DRAM and thread registers.

Mangrove computes the mining process by elaborating, in sequence, the unary
templates, the binary templates, and, finally, the ternary templates reported in Ta-
ble 20.1. The tool takes advantage of the massive parallelism of GPUs by mapping
each thread block on a different entry of the variable dictionary (Fig. 20.1).

In each block, the threads communicate and synchronize through shared mem-
ory. As for the standard characteristics of the GPU architectures, such hardware-
implemented operations are extremely fast and their overhead is negligible. Com-
munication and synchronization among block threads allow avoiding redundant
checking of already falsified invariants and stopping the computation of the whole
block as soon as all invariants for a particular set of variables have been falsified.

20.3 Invariant mining 285

In the GPU implementation the variable dictionary consists of a simple data
structure that stores in each entry a subset of variables involved in a specific
template. Mangrove initializes the variable dictionary through the host CPU and
strongly exploits it in the mining phase through the GPU threads, as detailed in
the following sections.

20.3.2 Generation of the variable dictionary

In the generation of the variable dictionary, the goal is to avoid redundant storing
and elaboration of variables during the mining phase. Such a redundancy is due to
the fact that the GPU threads, during the mining phase, cannot have information
about any already discovered invariant among variables in the whole execution
trace. Thus, to increase the efficiency of the parallel computation, Mangrove im-
plements different optimizations during the generation of the variable dictionary.
The idea behind such optimizations consists of avoiding wasting of time to check
if an invariant template is satisfied, when the same answer can be inferred from
the result of previous mining steps, as explained in the next paragraphs:

• The result of the mining over unary templates is exploited during the mining
of binary templates. As a simple example, Mangrove searches for any Boolean
variable, vara, whose value is always equal (or always different) to any other
Boolean variable, varb. If such a condition occurs, the generation of the entry
ă vara, varb ą in the dictionary can be avoided since it is redundant.

• The result of the mining over unary and binary templates is used during the
mining of ternary templates. For example, by considering the ternary mining
phase on Boolean variables, the goal is to figure out which operator op P {and,
or, xor} can be validated over three different variables (e.g., vara, varb, and
varc). Through the already extracted unary and binary invariants, Mangrove
automatically infers some ternary invariants without applying the checking
procedure throughout the execution traces. For instance, the ternary invariant
pvara “ varb and varcq reduces to check whether the binary invariant pvara “
varbq occurs when pvarb “ varcq holds. Similarly pvara “ varb xor varcq
reduces to check pvara ‰ varcq when varb is constantly set to true.

20.3.3 Data transfer and overlapping of the mining phase

The invariant mining process on the GPU consists of three main steps showed in
Fig. 20.2(a): (i) reading of the execution trace from the mass storage (disk) and
data storing in the host DRAM memory; (ii) data transfer from the host to the
memory of the GPU; (ii) elaboration in the GPU device. The three steps work first
on the numeric variables and then they are repeated for the Boolean variables.

Mangrove implements such a process by overlapping the three steps as shown
in Fig. 20.2(b). This allows totally hiding the cost of host-device data transfers
and partially hiding the cost of the mining elaboration. Moreover, Mangrove imple-
ments the data transfer overlapping through asynchronous kernel invocations and
memory copies (i.e., cudaMemcpyAsync in CUDA). Finally, a specific optimization
has been implemented for Boolean variables: Mangrove stores the values of Boolean

286 20 Invariant Mining

Trace	 file	 reading	
(Disk	 –	 host	 DRAM):	
Boolean	 Variables	

Trace	 file	 reading	
(Disk	 –	 host	 DRAM):	
Numeric	 Variables	

H
os

t-d
ev

ic
e

m
em

or
y

tra
ns

fe
r

TIME

Mining	 Mining	

Trace	 file	 reading	
(Disk	 –	 host	 DRAM):	
Boolean	 Variables	

Trace	 file	 reading	
(Disk	 –	 host	 DRAM):	
Numeric	 Variables	

Host-device
memory
transfer

TIME

Mining	

H
os

t-d
ev

ic
e

m
em

or
y

tra
ns

fe
r

Mining	

(a)

(b)

fig. 20.2: The invariant mining phases (a), and the overlapped implementation of
Mangrove for GPUs (b).

variables in arrays of bits to reduce the memory occupation (e.g., 5,000,000 values
of a Boolean variable are stored in 600 KB). In addition, this array-based rep-
resentation allows using bitwise operations to concurrently elaborate 32 Boolean
values in a single chunk, thus speeding up the mining phase.

20.4 Experimental results

Experimental results have been run on a NVIDIA Kepler GeForce GTX 780 de-
vice with 5 GHz PCI Express 2.0 x16, CUDA Toolkit 7.0, AMD Phenom II X6
1055T 3GHz host processor, and the Debian 7 Operating System. To evaluate
the efficiency of Mangrove experiments have been conducted on different kind of
execution traces, whose characteristics are summarized in Table 20.2. The consid-
ered execution traces differ in terms of number of variables and number of likely
invariants that it is possible to extract by considering the template sets reported
in Table 20.1. These are the two parameters that most influence, together with
the length of the trace, the execution time of the mining algorithm. On the op-
posite, information about the complexity of the SUV from which execution traces
have been generated are irrelevant when the SUV model is not explored. Indeed,
higher is the number of likely invariants exposed by the execution traces, higher
is the time spent for their extraction, even if the SUV is very simple from the
computational point of view.

The efficiency of Mangrove has been compared against the sequential mining
approaches implemented, respectively, in [97] and in [80], and the parallel im-
plementation proposed in [80]. Table 20.3 shows the execution time required to
extract the likely invariants according the first and second template sets on the
traces reported in Table 20.1. For the parallel approaches, the times include the
overhead introduced for data transfer between host and device. Mangrove provides
the best results in all datasets by executing up to four orders of magnitude faster
than the sequential state-of-the-art tool Daikon1. Compared to the more recent

1 For a fair comparison, Daikon has been configured to search only for the invariants
specified in the first and second template sets.

20.5 Concluding remarks 287

Length
Boolean
Vars

Numeric
Vars

Invariants
(Temp. set

I)

Invariants
(Temp. set

II)

TRACE 1 5,000,000 15 15 0 0

TRACE 2 5,000,000 15 15 142 964

TRACE 3 5,000,000 50 50 0 0

TRACE 4 5,000,000 50 50 1,788 42,371

Table 20.2: Characteristics of execution traces.

T
e
m

p
la

t
e

S
e
t

I $

’

’

&

’

’

%

T
e
m

p
la

t
e

S
e
t

I
I

$

’

’

&

’

’

%

Daikon [97] Sequential [80]
Parallel

[80]
Mangrove

TRACE 1 103 s ă 1 ms 116 ms ă 1 ms

TRACE 2 170 s 4,629 ms 116 ms 17 ms

TRACE 3 287 s 2 ms 369 ms ă 1 ms

TRACE 4 1366 s 52,160 ms 457 ms 182 ms

TRACE 1 2 m 34 s 22 ms 352 ms ă 1 ms

TRACE 2 5 m 47 s 11 m 0 s 1,751 ms 140 ms

TRACE 3 8 m 23 s 119 ms 3,145 ms ă 1 ms

TRACE 4 32 m 54 s 7 h 45 m 71,314 ms 4,577 ms

Table 20.3: Comparison of the execution times with respect to
state-of-the-art approaches.

approach for GPUs described in [80], Mangrove executes up to three orders of
magnitude faster2. The improvements achieved in Mangrove with respect to the
parallel approach implemented in [80] are due to the implementation of a more
efficient strategy for mapping thread blocks to entries of the variable dictionary,
and to the vectorized accesses that best exploit the memory coalescence and the
high memory throughput. These aspects are critical to improve the performance,
since the memory bandwidth may limit the concurrent memory accesses. Table
20.3 shows that Mangrove is efficient also when no invariant can be mined (Traces
1 and 3) thanks to the capability of early terminating the search on a trace as soon
as all templates have been falsified. On the contrary, the parallel implementation
proposed in [80] always requires to analyse the whole trace to identify the absence
of likely invariants, thus wasting time.

20.5 Concluding remarks

The Section presented Mangrove, a parallel approach for mining likely invariants
by exploiting GPU architectures. Advanced GPU-oriented optimizations and in-

2 The approach in [80] has been extended in order to support also the template set II.

288 20 Invariant Mining

ference techniques have been implemented in Mangrove such that execution traces
composed of millions of clock cycles can be generally analysed in less than one sec-
ond searching for thousands of likely invariants. Experimental results have been
conducted on execution traces with different characteristics, and the proposed ap-
proach has been compared with sequential and parallel implementations of the
most promising state-of-the-art invariant miners. Analysis of the results showed
that Mangrove outperforms existing tools.

21

cuRnet: an R package for graph traversing on
GPU

R has become the de-facto reference analysis environment in Bioinformatics. Plenty
of tools are available as packages that extend the R functionality, and many of them
target the analysis of biological networks. Several algorithms for graphs, which
are the most adopted mathematical representation of networks, are well-known
examples of applications that require high-performance computing, and for which
classical sequential implementations are becoming inappropriate. In this context,
parallel approaches targeting GPU architectures are becoming pervasive to deal
with the execution time constraints. Although R packages for parallel execution
on GPUs are already available, none of them provides graph algorithms.

This work presents cuRnet, a R package that provides a parallel implementation
for GPUs of the breath-first search (BFS), the single-source shortest paths (SSSP),
and the strongly connected components (SCC) algorithms. The package allows
offloading computing intensive applications to GPU devices for massively parallel
computation and to speed up the runtime up to one order of magnitude with
respect to the standard sequential computations on CPU. We have tested cuRnet
on a benchmark of large protein interaction networks and for the interpretation of
high-throughput omics data thought network analysis.

cuRnet is a R package to speed up graph traversal and analysis through parallel
computation on GPUs. We show the efficiency of cuRnet applied both to biological
network analysis, which requires basic graph algorithms, and to complex existing
procedures built upon such algorithms.

21.1 Background

Biological networks are seen as graphs, where vertices represent elements and
edges are the relationships among them. Analyzing biological networks mostly
means applying basic graph traversal algorithms to find, for instance, how two
vertices are connected, which vertices can be reached by a source, and which
part of the network is highly interconnected, i.e., every vertex is reachable from
every other vertex. These tasks are commonly embedded in more crucial sophis-
ticated analyses [224, 235] to predict, for example, protein functions [241] or to
study complex diseases by relating protein interaction networks to specific con-

290 21 cuRnet: an R package for graph traversing on GPU

ditions [16, 17, 197, 248]. Due to the constantly increasing data set complexity,
such applications require high-performance algorithms, for which classical sequen-
tial implementations are become inappropriate. Alternative solutions are given by
parallel approaches, and in particular by those based on GPU architectures, which
allow sensibly reducing the algorithm execution time.

In the context of biological network analysis and, more in general, for statis-
tical computing in Bioinformatics, R is becoming one of the most widely used
programming environment. It provides easy-to-use packages to programmers and
analysts for efficient and flexible data modeling and analysis [108]. In this context,
even though some R packages based on GPU kernels have been proposed (e.g.,
gpuR for algebraic operations https://cran.r-project.org/package=gpuR), none of
them provides parallel implementations of algorithms for network analysis.

This work presents cuRnet, an R package that provides a wrap of parallel
graph algorithms to the R environment. As an initial proof of concept, cuRnet
includes basic data structures for representing graphs, a parallel implementation
of Breadth-First Search (BFS) [59], Single Source Shortest Paths (SSSP) [62], and
Strongly Connected Components (SCC) [18]. The package makes available GPU
solutions to R end-users in a transparent way, such that GPU modules are invoked
by R functions.

cuRnet has been compared with the BFS, SSSP, and SCC implementation of
the iGraph R package (http://igraph.org/r/). Tests were run over on annotated
undirected protein interaction networks and on directed homology networks pro-
vided by the STRINGdb [103].

cuRnet outperformed the iGraph sequential algorithms especially on the largest
networks. An average speed-up of 3x have been observed, with a maximum of 30x.

cuRnet SCC and SSSP were used to underscore their ability in helping re-
searchers in providing clues on putative functional context of ncRNA molecules,
and guide the selection of a relevant functional readout [267]. For this aim, we used
available RNA sequencing dataset of 21 prostate cancer cell lines (GEO accession
number GSE25183) to predict coexpression networks. We also show how enabling
the GPU implementation of graph traversal algorithms in R has a potential to
speed up existing complex procedures whose implementation mainly depends on
such calculations. The PCSF package for R [15] is an example, which solves the
Prize-collecting Steiner Forest problem by making a massive use of SSSP. It per-
forms user-friendly analysis of high-throughput data using the interaction networks
(protein-protein, protein-metabolite or any other type of correlation-based interac-
tion networks) as a template. It interprets the biological landscape of interactome
with respect to the data, i.e., to detect high-scoring neighbourhoods to identify
functional modules. A real case application of intensive PCSF computation is re-
ported on the analysis of Diffuse large B-cell lymphoma gene expression data.

cuRnet and the PCSF application accelerated with cuRnet are freely available
on https://bitbucket.org/curnet/curnet.

21.2 Methods

Figure 21.2 shows an overview of the full cuRnet stack, by which R data is passed,
as input data, to the GPU environment for parallel computation. The input net-

21.2 Methods 291

fig. 21.1: Performance of the GP-GPU aided PCSF package versus its serial
counterpart. Charts show running time and related speed-ups of the original PCSF R
package and the modified version where the SSSP primitive of the Boost library has been
replaced with the GP-GPU based approach, named cuPCSF. Tests were performed on the
human direct label PPI network by applying three score thresholds. Right-side charts show
performances for a single PCSF run, while charts on the right side show executions of
randomized selections. The GP-PGU based PCSF reaches speed-ups up to 9x. The paral-
lelized version outperforms better on increasing the network size as well as the amount of
terminal vertices. Randomization procedures introduce additional non-parallelized steps
performed by the methodology, thus speed-ups reach a maximum of 5x.

work is represented, in R, through a standard R data frame, where every edge
between two vertices is stored with the corresponding weight. By exploiting the
Rcpp library of R, an R-C++ wrapper has been developed to automatically trans-
late the network from the standard R representation to a C++ data structure,
and to link the algorithm invocation from the R to the C++ environment.

The network representation in the C++ environment relies on the coordinate
list (COO) data structure, which is a mandatory step to generate the compressed
sparse raw (CSR) data structure for the GPU computation. CSR is a well-known
storage format to efficiently represent graphs, and it allows reaching high perfor-
mance during the graph traversal on the GPU.

The C++ interface allows handling the interaction with the GPU device. It
generates the host (CPU) representation of the graph starting from the rows in the
data frame, it initializes the GPU kernel, it handles the host (CPU)-device (GPU)
data exchanging, and, finally, it runs the kernel for the parallel computation. The
computation result is retrieved from the device and passed back to R through the
Rcpp/C++ layers.

292 21 cuRnet: an R package for graph traversing on GPU

fig. 21.2: cuRnet stack overview.

In what follows we briefly describe the parallel graph traversal algorithms im-
plemented in cuRnet. Given a graph GpV,Eq, with a set V of vertices, a set E
of edges, and a weight function w : E Ñ R, cuRnet takes G in a dataframe x
having three columns listing the network edges and their weights. The dataframe
can be built from an iGraph object or from a textual file (.csv). The following lines
invoke the loading of the cuRnet package and the construction of the graph data
structure:

library(cuRnet)

cuRnet_graph(x)

21.2 Methods 293

We refer the reader to (https://bitbucket.org/curnet/curnet) for a complete
manual of the cuRnet usage.

21.2.1 Parallel implementation of Breadth-First Search for GPUs

The parallel graph traversal through BFS [59], which is listed in Section 1 - Algo-
rithm 1 in the supplementary materials, explores the reachable vertices, level-by-
level, starting from a source s. cuRnet implements the concept of frontier [74] to
achieve work efficiency. A frontier holds all and only the vertices visited at each
level. The algorithm checks every neighbour of a frontier vertex to see whether
it has been already visited. If not, the neighbour is added into a new frontier.
cuRnet implements a frontier propagation step through two data structures, F1

and F2. F1 represents the actual frontier, which is read by the parallel threads to
start the propagation step. F2 is written by the threads to generate the frontier
for the next BFS step. At each step, F2 is filtered and swapped into F1 for the
next iteration. When a thread visits an already visited neighbour, that neighbour
is eliminated from the frontier. When more threads visit the same neighbour in
the same propagation step, they generate duplicate vertices in the frontier. cuRnet
implements efficient duplicate detection and correction strategies based on hash
tables, advanced strategies for coalesced memory accesses, and warp shuffle in-
structions. Moreover, it implements different strategies to deal with the potential
workload imbalance and thread divergence caused by any actual biological network
non-homogeneity. These include prefix-sum procedures to efficiently handle fron-
tiers, dynamic virtual warps, dynamic parallelism, multiple CUDA kernels, and
techniques for coalesced memory accesses.

The BFS result is a matrix s ˆ |V |, where s is the number of vertex sources
from which the BFS is run. Each entry in the matrix is the depth of the BFS
from a source to a graph vertex. The matrix is retrieved from the GPU device to
R through the Rcpp/C++ layers. BFS is ran by invoking the following cuRnet
function in the R environment:

depths <- cuRnet_bfs(g, c(sources))

Parallel implementation of Single-Source-Shortest-Path for GPU

The cuRnet CUDA implementation of the SSSP algorithm is based on the
Bellman-Ford’s approach [62]. The parallel algorithm is reported in Section 1 of
the supplementary materials. cuRnet SSSP visits the graph and finds the shortest
path d to reach every vertex of V from source s. Also in this case, cuRnet exploits
the concept of frontier to deal with the most expensive step of the algorithm (i.e.,
the relax procedure). At each iteration i, the algorithm extracts, in parallel, the
vertices from one frontier and inserts the active neighbours in the second frontier
for the next iteration step. Each iteration concludes by swapping the contents of
the second frontier (which will be the actual frontier at the next iteration) into
the first one. Indeed, the frontiers allow working only on active vertices, i.e., all
and only vertices whose tentative distance has been modified and, thus, that must
be considered for the relax procedure at the next iteration.

294 21 cuRnet: an R package for graph traversing on GPU

The result is a double numeric matrix (i.e., distances and predecessors), which
are retrieved from the GPU device to R through the Rcpp/C++ layer. They are
obtained by invoking the cuRnet functions cuRnet sssp and cuRnet sssp dists
for the matrix of shortest paths (returned as lists of predecessor vertices) and the
corresponding source-destination distances:

ret <- cuRnet_sssp(g, c(sources))

dists = ret[["distances"]]

preds = ret[["predecessors"]]

Parallel implementation of Strongly-Connected Components for GPU

cuRnet implements a multi-step approach that applies different GPU-accelerated
algorithms for SCC decomposition [18]. The algorithm is reported in Section 1 of
the supplemental materials. The multi-step approach consists of 3 phases. In the
first phase it iterates a trimming procedure to identify and delete vertices of G
that form trivial SCCs (i.e., vertices with no active successors or predecessors).
In the second phase it iterates a forward-backward algorithm to identify the main
components. The first step is related to the choice of the pivot for each set, where
heuristics can be applied to maximize vertices coverage within a single iteration.
Forward and backward closure is then computed from this vertex, and up to four
subgraphs are generated. The first one is the component which the pivot belongs
to, and it is calculated as the intersection of the forward and backward closure.
The other three sets are SCC-closed subgraphs that can be processed in parallel at
the next iteration. They correspond to the non-visited vertices in the current set,
to the forward closure but not to the backward one, and to the backward-reachable
vertices, respectively. In the third phase the approach runs a coloring algorithm
to decompose the rest of the graph. A unique color is firstly assigned to each
vertex. The max color is then propagated to the successor non-eliminated vertices
until no more updates are possible. Pivots are chosen as the vertices which color is
unchanged. Running the backward closure from these vertices on the corresponding
set, cuRnet detects the components labelled with that color.

The cuRnet SCC computation results in a vector of associations between ver-
tices and strongly component IDs. It is retrieved from the GPU device to R through
the Rcpp/C++ layer and obtained by invoking the following cuRnet function:

scc_ids <- cuRnet_scc(g)

21.3 Results and discussion

We evaluated the cuRnet performance by comparing its execution time with
the corresponding sequential implementations provided in the iGraph R pack-
age (http://igraph.org/r/). cuRnet has been tested on an Ubuntu 16.04 OS with
CUDA v8.0. The cuRnet software requires a GPU device with compute capabilities
at least 3.0.

21.3 Results and discussion 295

21.3.1 Data

We used the STRING dataset [103], which mainly contains Protein-Protein Inter-
action (PPI) networks of several organisms, varying from microbes to eukaryotes.
We used the R package STRINGdb to download the data. We refer the reader to
Section 2 of the supplementary materials for details on the data.

We retrieved the undirected unlabeled networks related to Homo sapiens, Danio
rerio and Zea mais (see Figure 1 in the supplementary materials for a description
of the network characteristics). Those species were chosen among the organisms
having the largest networks stored in STRING, to cover the biological diversity
that can be encountered in performing analysis of biological networks. For each
network, we varied the threshold on the assigned edge scores to obtain sparse as
well as dense networks.

We created a banchmark of undirected label networks by using the pvalues of
differential expression values regarding the treatment of A549 lung cancer cells by
means of Resveratrol, a natural phytoestrogen found in red wine and a variety of
plants shown to have protective effects against the disease [103] (see Figure 2 in
the supplementary materials). We used such values to label the above networks.

We also created a set of directed unlabelled networks (see Figure 3 of the supple-
mentary materials) as follows. We used the complete set of 115 archaea species to
create homology networks having incremental amount of involved organisms. The
homology information between proteins is measured by sequence BLAST align-
ments. For each protein, STRING reports the best BLAST hits [262] , w.r.t. the
given species. Horizontal gene transfer is a frequent phenomenon in microbes [251],
and homology networks are used to search for gene families shared by several or-
ganisms [149].

The running time to create graph data structures in cuRnet and iGraph from
the above datasets is reported in Figures 4 and 5 of the supplemental materials.
In general, cuRnet requires half the time of iGraph to perform such a task.

21.3.2 cuRnet performance

We tested cuRnet BFS on undirected unlabeled networks and SSSP on undirected
labeled networks related to Homo sapiens, Danio rerio and Zea mais by varying
the number of sources ranging from just to few vertices to a 20% of vertices.
Figures 21.3 and 21.4 show the execution time of the BFS and SSSP, as well as
the corresponding speedup w.r.t. the sequential counterpart.

Figures 6 and 7 of the supplemental materials show the total running time
including the call to the function primitives, plus the time required for building
the graph data structures. Highly functional networks have small sizes and the
execution time of the two implementations is in terms of few seconds, obtaining
however speedups up to 5x. The time of both packages highly depends on the
number of source vertices, but the slope of cuRnet is sensibly lower than iGraph.
On average, iGraph shows similar performance up to a small percentage of sources
(0.5%). Above that, cuRnet shows up to 15x speedup w.r.t. the sequential coun-
terpart. The time requirements and the general speedup are similar for the three
species.

296 21 cuRnet: an R package for graph traversing on GPU

fig. 21.3: cuRnet performance vs iGraph on computing breath first search.
Three different score thresholds, 0, 200 and 900, were applied, and different amounts of

source vertices were selected.

fig. 21.4: cuRnet performance vs iGraph on computing shortest paths
distances. Three different score thresholds, 0, 200 and 900, were applied, and different
amounts of source vertices were selected. The underlying charts show running times of
cuRnet and iGraph in calculating distance of shortest paths within the PPI of the three
selected species for every combination of score threshold and amount of selected sources.

We tested cuRnet SCC performance on directed unlabelled networks repre-
senting inter-species proteins homology. Figure 21.5 shows the running time and
corresponding speedups by increasing the size of the extracted homology networks,
up to the final one of 114 species. Figure 8 in the supplemental materials reports the
total running time including the graph data structure generation. cuRnet shows
an extremely low slope w.r.t. iGraph, and the speedup increases by increasing the
network size up to a maximum of 14x.

We also show how cuRnet allows users to quickly retrieve ncRNA-pathway asso-
ciations and individual genes contributing to them. To evaluate the cuRnet perfor-
mance in making highly confident ncRNA function predictions, we analysed a case

21.3 Results and discussion 297

fig. 21.5: cuRnet performance vs iGraph on computing strongly connected
components. Running times, and corresponding speed-ups, of cuRnet and iGraph on

increasing the size of the extracted homology network, up to the final one of 114 species.
Left-side charts show total running, includes the call to the SCC primitive, plus the time
required for construction of graph data structures. Right-size charts show comparisons

performed by timing only the execution of the SCC algorithm.

study with the well-known lncRNA involved in cancer called MALAT1. Noncoding
RNAs (ncRNAs) are emerging as key molecules in human cancer but only a small
number of them has been functionally annotated. Using the guilt-by-association

298 21 cuRnet: an R package for graph traversing on GPU

principle is possible to infer functions of lncRNAs on a genome-wide scale [191].
This approach identifies protein coding genes significantly correlated with a given
lncRNA using gene-expression analysis. In combination with enrichment strate-
gies, it projects functional protein coding gene sets onto mRNAs correlated with
the lncRNA of interest, generating hypotheses for functions and potential regula-
tors of the candidate lncRNA. We used a public RNA sequencing dataset of 21
prostate cancer cell lines sequenced on the Illumina Genome Analyzer and GAII
(GEO accession number GSE25183) and built up a large-scale gene association
network using cuRnet SCC (Pearson method as pairwise correlations). We ex-
tracted the sub-networks where MALAT1 is present and calculated single-source
shortest paths, mean distance of shortest paths within this subnetwork, and mean
distance of shortest paths over the whole big graph. Gene Set Enrichment Analysis
(GSEA) was carried out to identify associated biological processes and signalling
pathways [163]. We computed overlaps of genes in the MALAT1 sub-networks with
gene sets in MSigDB C2 CP (Canonical pathways) and hallmark gene sets [163].
Several cancer related pathways such as epithelial mesenchymal transition (EMT)
and DNA replication were enriched, which implies that MALAT1 sub-networks
might be involved in the metastasis related pathways. In addition, we identified
an over-representation of gene sets that corresponds to the validated MALAT1
functionality reported in the literature: cell cycle, e2f-targets, proliferation, B-
MYB-related, and G2M checkpoint [13,267].

Finally, we tested a modified version of PCSF R package [15] where the original
sequential SSSP implementation has been replaced by the parallel SSSP implemen-
tation of cuRnet. PCSF, taken an input network, may give prizes to vertices ac-
cording to the measurements of differential expression, copy number, or number of
gene mutations. After scoring the interactome, the PCSF identifies high-confidence
subnetworks, the neighborhoods in interaction networks potentially belonging to
the key pathways that are altered in a disease. It also interactively visualizes the
resulting subnetworks with functional enrichment analysis. The running time of
the PCSF module is highly dominated by SSSP computations and the application
of the cuRnet SSSP provided up to 9x speedup for the total execution times of
the PCSF (see Figure 21.1). This allows for even more rigorous computations on
larger networks.

We applied the PCSF to analyze Diffuse large B-cell lymphoma (DLBCL),
which is the most common form of human lymphoma. Based on gene expression
profiling studies DLBCL can be divided into two subgroups, the germinal center
B-cell (GCB) and the activated B-cell like (ABC), with different clinical outcome
and response to therapies [78, 263]. Therefore, it is important to understand un-
derlying molecular mechanism of two subtypes. A public gene expression datasets
GSE10846 from Gene Expression Omnibus online repository1 has been used in the
analysis. The dataset is composed of 350 patients being 167 ABC and 183 GCB.
We run the PCSF separately for ABC and GCB patients providing top 100 dif-
ferentially expressed genes as terminals and their absolute fold changes as prizes.
The STRING database (version 13) [257] is provided as a template network by
applying some filtering steps described in [16], which afterwards had 15405 nodes
and 175821 genes.

1 https://www.ncbi.nlm.nih.gov/geo

21.4 Conclusion 299

fig. 21.6: The PCSF subnetworks for ABC patients. The node sizes and edge
widths are proportional to the number of appearance in multiple PCSF runs. Circular
nodes are terminals and algorithm uses triangular nodes to connect terminals. Nodes
are colored according to subnetwork membership. The resulting subnetwork for ABC
patents was significantly enriched in NFKB pathway (cluster in purple located at top

right of the figure) and composed of up-regulated ABC genes including IRF4, FOXP1,
IL6, BATF and PIM2.

An interactive visualization of the subnetwork for ABC patients is shown in
Figure 21.6. PCSF also performs enrichment analysis on subnetworks by employ-
ing either EnrichR [66] API or topGO [19] that can be specified by the user. For
the resulting subnetwork of ABC patients, the hallmark of ABC-DLBCL, as con-
stitutive activation of nuclear factor kappa-B (NFKB) signalling, was confirmed
by the enrichment of NFKB pathway (cluster in purple) and up-regulation of well
defined ABC genes including IRF4, FOXP1, IL6, BATF and PIM2 among oth-
ers [225]. In parallel, PCSF subnetwork for GCB patients (see Figure 9 in the
supplementary materials) showed activation of the PI3K/Akt/mTOR signalling
pathway (cluster in red) and over-expression of germinal center markers such as
BCL6, LMO2, MME (CD10) and MYBL1 [221,225].

21.4 Conclusion

cuRnet has been developed to be easy to use both as a stand-alone analysis ap-
plication and as a core primitive to be incorporated in more complex algorithmic
frameworks. cuRnet has been structured to modularly include, as current and
future work, a wide collection of algorithms for biological network analysis.

22

Conclusions

Graph analytics and applications are pervasive in sciences and real-world problems
as they provide a powerful and expressive representation to model relationships
between objects. As computational data complexity and size is consistently
growing over the years they will become more and more a primary tool to deal
with sophisticated tasks in the future.

The thesis first presented a library of main graph algorithms in the literature
that have wide applications in real-world problems. In particular, it introduced
an accurate analysis of the load balancing techniques which is a fundamental as-
pect arising from irregular applications such as graphs. It presented an advanced
dynamic technique, called Multi-phase Mapping, which addresses the workload un-
balancing problem and whose complexity is sensibly reduced with respect to the
other techniques in the literature.

Then, it described two high-performance implementations for efficient traverse
a graph. The first, called BFS-4K, proposes different techniques focusing Kepler
GPU architectures to deal with the potential workload imbalance and thread di-
vergence. Thanks to its specialized implementation, BFS-4K is one most efficient
BFS implementations for GPUs at the state of the art. BFS-4K has been further
improved with Helix, a fully configurable BFS for GPUs which thanks to a flexible
and expressive programming model, allows selecting the most efficient combination
of features and their implementation strategy for a graph traversal. Helix provides
high-performance and customized BFSs with speedups ranging from 1.2x to 18.5x
with regard to the best parallel BFS solutions for GPUs at state of the art.

Later, the thesis described efficient implementations of three relevant graph
problems, single-source shortest path, strongly connected components, and
approximate sub-graph isomorphism. More in details, it presented H-BF, a
fast implementation of the Bellman-Ford algorithm which thanks to different
algorithm and architecture optimizations allows to improve the performance and,
at the same time, to optimize the work inefficiency typical of the Bellman-Ford
algorithm. For SCC decomposition, it introduced a novel parametric multi-step
scheme allows defining a new set of algorithms for SCC graph decomposition as
well as a type of the parallelization for individual graph operations. Finally, in
this context, it is presented APPAGATO, a stochastic and parallel algorithm to

302 22 Conclusions

find approximate occurrences of a query network in biological networks. Thanks
to its random and parallel nature, it applies to large networks and, compared to
existing tools, it provides higher performance as well as statistically significant
more accurate results.

The thesis proposed, as second aims, a study of advanced profiling models
to analyze performance, energy and power consumption of algorithm implemen-
tations. It first introduces Pro++, profiling framework for GPU primitives that
allows measuring the implementation quality of a given primitive which allows dis-
tinguishing the impact of each optimization on the overall quality of the primitive
implementation. Then, it presented a fine-grained performance model for GPU
architectures which relies on microbenchmarks to characterize the GPU device,
measure the implementation quality, and to accurately calculate the potential
performance of a given application. The initial set of microbenchmarks have been
enriched to form MIPP, a suite of microbenchmarks that aims at characterizing
a GPU device in terms of performance, power, and energy consumption. MIPP
aims at understanding how application bottlenecks involving selected functional
components or underutilization of them can affect code characteristics on a given
device. Finally, the microbenchmark suite has been extended to show how such
specialized procedures can be combined with the standard profiler information to
efficiently tune any parallel application for a given GPU device and for a given
design constraint. In addition, performance, power, and energy consumption have
been evaluated on a wide range of load balancing techniques and dataset to
provide a comprehensive analysis of this important problem for GPU architectures.

The thesis also focused on extending sparse data structure to handle dynamic
graphs and linear algebra problems. In this context, it has been proposed Hornet,
a new fast dynamic data structure which supports both insertions, deletions, and
value updates without sacrifice efficiency as it shows performance comparable,
and in some cases even better, than CSR. Thanks to a unique data structure
and an advanced memory manager, Hornet provides performance up to one order
of magnitude compared to state-of-the-art solutions and only about 30% higher
than the storage requirements of CSR. Then, the Hornet data structure has been
applied to implement a new algorithm for efficiently finding k-truss subgraphs.
The new algorithm, thanks to the dynamic graph data structure, allows avoiding
redundant computation and providing significant speedups compared to static
solutions in the literature.

Finally, many techniques previously developed in the thesis have been applied
in two other contexts, mining likely invariants of a system and an R package
targeting graph primitives. The thesis presented Mangrove, a fast parallel ap-
proach for mining likely invariants on GPUs which allows dealing with execution
traces composed of millions of clock cycles in less than one second searching for
thousands of likely invariants. Secondly, it introduced cuRnet, an R package that
provides a parallel implementation for GPUs of breadth-first search, single-source
shortest paths, and strongly connected components algorithms. The package
allows offloading computing intensive applications to GPU devices to speed up

the runtime with respect to the standard sequential computations on CPU.

Future Work

The future work and effort will be spent to provide a comprehensive graph frame-
work, called HornetsNest for static and dynamic analytics which allows to easily
express any graph algorithm in few lines of code similarly to pseudocode. The
programming model will abstract all the complexity of common graph operations
data structures such as load balancing, parallel queues, data layouts, etc. allow-
ing the user to focus on the algorithm design rather than implementation details.
Despite the simple and flexible programming model it will provide the fastest im-
plementations of a wide range of graph algorithms for parallel architecture, not
only restricted to GPUs. The performance of framework primitives will strongly
rely on the techniques and methodologies developed during the thesis. The frame-
work capability to deal with evolving graphs will be clearly based on the Hornet
data structure, while special cases of static computation will be handled by relying
on CSR and COO formats. HornetsNest will be a significant step forward towards
a unified and comprehensive tool for analytical graph processing compared to the
vast universe of graph frameworks currently available in the literature in terms of
performance, flexibility, and programmability.

Part VI

Ph.D. Candidate’s Bibliografy

306

• Green, Oded; Fox, James; Kim Euna; Busato, Federico; Bombieri, Nicola;
Lakhotia, Kartik; Zhou, Shijie; Singapura, Shreyas; Zeng, Hanqing; Kannan,
Rajgopal; Prasanna, Viktor; Bader, David, ”Quickly Finding a Truss in a
Haystack”, In Proc. of IEEE High Performance Extreme Computing Con-
ference (HPEC), IEEE/Amazon/DARPA Graph Challenge, Waltham, USA,
September, 12-14, 2017, *Innovation Award*

• Busato, Federico; Green, Oded; Bombieri, Nicola; Bader, David, Hornet: An
Efficient Data Structure for Dynamic Sparse Graphs and Matrices”, Submitted
to IEEE International Conference on Supercomputing (ICS), Beijing, China,
June 13-15, 2018.

• Bonnici Vincenzo; Busato, Federico; Aldegheri, Stefano; Akhmed, Murodzhon;
Cascione, Luciano; Arribas Carmena, Alberto; Bertoni, Francesco; Bombieri,
Nicola; Kwee, Ivo; Giugno, Rosalba,”cuRnet: an R package for graph traversing
on GPU”, In Proc. of Bioinformatics Italian Society (BITS2017), Cagliari,
Italy, July 5-7, 2017.

• Busato, Federico; Bombieri, Nicola, ”A performance, power, and energy ef-
ficiency analysis of load balancing techniques for GPUs”, In Proc. of IEEE
International Symposium on Industrial Embedded Systems (SIES), Toulouse,
France, 14-16 June, 2017, pp. 1-10.

• Busato, Federico; Bombieri, Nicola, ”Helix: A Fully Configurable Breadth-first
Search for GPUs”, Submitted to IEEE Transactions on Computers (TC).

• Bombieri, Nicola; Busato, Federico; Fummi, Franco; ”Power-aware Perfor-
mance Tuning of GPU Applications Through Microbenchmarking”, In Proc.
of ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, Texas,
USA, June 18-22, 2016, pp. 1-6, HiPEAC Award.

• Busato, Federico; Danese, Alessandro; Piccolboni, Luca; Pravadelli, Graziano;
Bombieri, Nicola, ”Mangrove: Efficient dynamic invariant mining on GPU
architectures”, Submitted to IEEE Transactions of Parallel and Distributed
Systems (TPDS), 2018, pp. 1-14.

• Aldegheri, Stefano; Barnat, Jiri; Bombieri, Nicola; Busato, Federico; Ceska,
Milan, ”Parametric Multi-Step Scheme for GPU-Accelerated Graph Decompo-
sition into Strongly Connected Components”, to International European Con-
ference on Parallel and Distributed Computing (Europar), Workshop on Per-
formance Engineering for Large Scale Graph Analytics (PELGA), Grenoble,
France, August 24-26, 2016, pp. 1-12.

• Bombieri, Nicola; Busato, Federico; Fummi, Franco; Scala, Michele, ”MIPP:
A Microbenchmark Suite for Performance, Power, and Energy Consumption
Characterization of GPU architectures”, In Proc. of IEEE International Sym-
posium on Industrial Embedded Systems (SIES), Krakow, Poland, May 23-25,
2016, pp. 1-8.

• Busato Federico; Bombieri, Nicola, ”A dynamic approach for workload par-
titioning on GPU architectures”, In IEEE Transactions of Parallel and Dis-
tributed Systems (TPDS), DOI: 10.1109/TPDS.2016.2631166, 2016, pp. 1-14

307

• Bombieri, Nicola; Busato, Federico; Fummi, Franco, ”A Fine-grained Perfor-
mance Model for GPU Architectures”, In Proc. of ACM/IEEE International
Conference on Design, Automation and Test in Europe (DATE), Dresden,
Germany, March 14-18, 2016, pp. 1-8.

• Bombieri, Nicola; Busato, Federico; Danese Alessandro; Piccolboni, Luca;
Pravadelli, Graziano, ”Exploiting GPU Architectures for Dynamic Invariant
Mining”, In Proc. of IEEE International Conference on Computer Design
(ICCD), New York City, NY-USA, October 18-21, 2015, pp. 192-195.

• Busato, Federico; Bombieri, Nicola, ”On the Load Balancing Techniques for
GPU Applications Based on Prefix-scan”, In Proc. of IEEE International Sym-
posium on Embedded Multicore/Many-core System-on-Chip (MCSoC), Turin,
Italy, September 23-25, 2015, pp. 88-95.

• Bombieri, Nicola; Busato, Federico; Fummi, Franco, ”An enhanced Profil-
ing Framework for the Analysis and Development of Parallel Primitives
for GPUs”, In Proc. of IEEE International Symposium on Embedded
Multicore/Many-core System-on-Chip (MCSoC), Turin, Italy, September 23-
25, 2015, pp. 1-8.

• Busato, Federico; Bombieri, Nicola, ”Graph Algorithms on GPUs”, in ”Ad-
vanced in GPU Research and Practice” Elsevier, in printing 2016.

• Bonnici, Vincenzo; Busato, Federico; Micale, Giovanni; Giugno, Rosalba; Pul-
virenti, Alfredo; Bombieri, Nicola, ”APPAGATO: APproximate PArallel and
stochastic GrAph searching TOol for biological graphs”, (10.1093/bioinformat-
ics/btw223) In Bioinformatics, pp. 1-7, 2015.

• Bombieri, Nicola; Busato, Federico; Fummi, Franco, ”Pro++: A Profiling
Framework for Primitive-based GPU Programming”, In IEEE Transactions
on Emerging Topics in Computing (TECT), pp 1-12, 2015.

• Busato, Federico; Bombieri, Nicola ”An efficient implementation of the
Bellman-Ford algorithm for Kepler GPU architectures”, In IEEE Transactions
of Parallel and Distributed Systems (TPDS), Vol. 27, no. 8, pp. 2222-2233,
2016.

• Busato, Federico; Bombieri, Nicola, ”BFS-4K: an Efficient Implementation of
BFS for Kepler GPU Architectures”, In IEEE Transactions of Parallel and
Distributed Systems (TPDS), Vol. 26, no. 7, pp. 1826-1838, 2015.

References

[1] 10th DIMACS Implementation Challenge. http://www.cc.gatech.edu/

dimacs10/index.shtml.

[2] CLPP - OpenCL Parallel Primitives Library. http://gpgpu.org/2011/06/
03/opencl-parallel-primitives-library.

[3] GTgraph: A suite of synthetic random graph generators. http://www.cse.
psu.edu/~madduri/software/GTgraph/.

[4] Hybrid System Architecture - HSA Foundation. http://www.

hsafoundation.com.
[5] Matlab: Statistics and machine learning toolbox.
[6] NVIDIA CUDA ZONE - GPU-accelerated libraries. https://developer.

nvidia.com/gpu-accelerated-libraries.
[7] NVIDIA GEFORCE GTX 780. http://www.nvidia.com/

gtx-700-graphics-cards/gtx-780/.
[8] NVIDIA Tegra X1. http://www.nvidia.com/object/tegra.html.
[9] NVidia Tesla V100 GPU Architecture.

[10] OpenACC - Directives for Accelerators. http://www.openacc-standard.

org/.
[11] Qualcomm Snapdragon. http://www.qualcomm.com/products/

snapdragon.
[12] Spiral - Software/Hardware Generation for DSP Algorithms. http://www.

spiral.net/bench.html.
[13] The noncoding rna malat1 is a critical regulator of the metastasis phenotype

of lung cancer cells. Cancer Research, 73(3):1180–1189, 2013.
[14] Virat Agarwal, Fabrizio Petrini, Davide Pasetto, and David A. Bader. Scal-

able graph exploration on multicore processors. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1–11, 2010.

[15] M Akhmedov, A Kedaigle, RE Chong, R Montemanni, F Bertoni, Fraenkel
E, and Ivo Kwee. Pcsf: An r-package for network-based interpretation of
high-throughput data. PLoS Comput Biol, 13(7), 2017.

[16] Murodzhon Akhmedov et al. ”A Fast Prize-Collecting Steiner Forest Al-
gorithm for Functional Analyses in Biological Networks”. In International

http://www.cc.gatech.edu/dimacs10/index.shtml.
http://www.cc.gatech.edu/dimacs10/index.shtml.
http://gpgpu.org/2011/06/03/opencl-parallel-primitives-library
http://gpgpu.org/2011/06/03/opencl-parallel-primitives-library
http://www.cse.psu.edu/~madduri/software/GTgraph/
http://www.cse.psu.edu/~madduri/software/GTgraph/
http://www.hsafoundation.com
http://www.hsafoundation.com
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
http://www.nvidia.com/gtx-700-graphics-cards/gtx-780/
http://www.nvidia.com/gtx-700-graphics-cards/gtx-780/
http://www.nvidia.com/object/tegra.html
http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.qualcomm.com/products/snapdragon
http://www.qualcomm.com/products/snapdragon
http://www.spiral.net/bench.html
http://www.spiral.net/bench.html

310 REFERENCES

Conference on AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, pages 263–276. Springer, 2017.

[17] Salvatore Alaimo et al. ”DT-Web: a web-based application for drug-target
interaction and drug combination prediction through domain-tuned network-
based inference”. BMC systems biology, 9(3):S4, 2015.

[18] Stefano Aldegheri, Jiri Barnat, Nicola Bombieri, Federico Busato, and Mi-
lan Ceska. Parametric multi-step scheme for gpu-accelerated graph decom-
position into strongly connected components. In Euro-Par 2016: Parallel
Processing Workshops - Euro-Par 2016 International Workshops, Grenoble,
France, August 24-26, 2016, Revised Selected Papers, pages 519–531, 2016.

[19] Adrian Alexa and Jorg Rahnenfuhrer. topgo: enrichment analysis for gene
ontology. R package version, 2(0), 2010.

[20] David A Bader, Jonathan Berry, Adam Amos-Binks, Daniel Chavarŕıa-
Miranda, Charles Hastings, Kamesh Madduri, and Steven C Poulos. Stinger:
Spatio-Temporal Interaction Networks and Graphs (STING) Extensible
Representation. Georgia Institute of Technology, Tech. Rep, 2009.

[21] David A Bader and Kamesh Madduri. Gtgraph: A synthetic graph generator
suite. For the 9th DIMACS Implementation Challenge, 2006.

[22] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wag-
ner. 10th dimacs implementation challenge: Graph partitioning and graph
clustering, 2011.

[23] David A Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wag-
ner. Graph partitioning and graph clustering, 10th DIMACS implementation
challenge workshop. Contemporary Mathematics, 588, 2013.

[24] J. Barnat, P. Bauch, L. Brim, and M. Češka. Computing Strongly Con-
nected Components in Parallel on CUDA. In IPDPS’11, pages 541–552.
IEEE Computer Society, 2011.

[25] J. Barnat and P. Moravec. Parallel Algorithms for Finding SCCs in Implicitly
Given Graphs. In PDMC’06, volume 4346 of LNCS, pages 316–330. Springer,
2006.

[26] T. Barrett, S.E. Wilhite, P. Ledoux, and C. et al. Evangelista. Ncbi geo:
archive for functional genomics data sets update. Nucleic Acids Research,
41(D1):D991–D995, 2013.

[27] R. Barshir, O. Shwartz, I.Y. Smoly, and E. Yeger-Lotem. Comparative anal-
ysis of human tissue interactomes reveals factors leading to tissue-specific
manifestation of hereditary diseases. PLoS Computational Biology, 10(6),
2014.

[28] Omer Basha, Dvir Flom, Ruth Barshir, Ilan Smoly, Shoval Tirman, and
Esti Yeger-Lotem. Myproteinnet: Build up-to-date protein interaction net-
works for organisms, tissues and user-defined contexts. Nucl. Acids Res.,
43(W!):W258–W263, 1 July 2015.

[29] Michael Bauer, Henry Cook, and Brucek Khailany. CudaDMA: Optimiz-
ing GPU Memory Bandwidth via Warp Specialization. In Proceedings of
ACM international conference for high performance computing, networking,
storage and analysis, page Art. n. 12, 2011.

[30] Sean Baxter. Modern GPU, 2013.
[31] Sean Baxter. Modern gpu, 2013.

REFERENCES 311

[32] Sean Baxter. Modern gpu, 2014.
[33] Scott Beamer, Krste Asanović, and David Patterson. Direction-optimizing

breadth-first search. In Proc of IEEE SC, pages 1–10, 2012.
[34] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient

Semi-streaming Algorithms for Local Triangle Counting in Massive Graphs.
In 14th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Min-
ing, pages 16–24, 2008.

[35] Daniel Bedard, Min Yeol Lim, Robert Fowler, and Allan Porterfield. Power-
mon: Fine-grained and integrated power monitoring for commodity computer
systems. In Proc. of IEEE SoutheastCon, pages 479–484, 2010.

[36] Nathan Bell and Michael Garland. Efficient sparse matrix-vector multi-
plication on CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA
Corporation, December 2008.

[37] Nathan Bell and Michael Garland. Implementing Sparse Matrix-Vector Mul-
tiplication on Throughput-Oriented Processors. In Proceedings of the ACM
Conference on High Performance Computing Networking, Storage and Anal-
ysis, page Art. n.18, 2009.

[38] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics,
16(1):87–90, 1958.

[39] V. Bertacco, D. Chatterjee, N. Bombieri, F. Fummi, S. Vinco, A.M. Kaushik,
and H.D. Patel. On the use of gp-gpus for accelerating compute-intensive
eda applications. In Proceedings -Design, Automation and Test in Europe,
DATE, pages 1357–1366, 2013.

[40] Markus Billeter, Ola Olsson, and Ulf Assarsson. Efficient stream compaction
on wide simd many-core architectures. In Proceedings of the Conference on
High Performance Graphics 2009, pages 159–166, 2009.

[41] Timo Bingmann. STX B+ Tree C++ Template Classes.
[42] Mauro Bisson, Massimo Bernaschi, and Enrico Mastrostefano. Parallel dis-

tributed breadth first search on the Kepler architecture. IEEE Transactions
on Parallel and Distributed Systems, 27(7):2091–2102, 2015.

[43] F. Bistaffa, A. Farinelli, and N. Bombieri. Optimising memory management
for belief propagation in junction trees using gpgpus. In Proceedings of the
International Conference on Parallel and Distributed Systems - ICPADS,
volume 2015-April, pages 526–533, 2014.

[44] Guy E. Blelloch. Scans as primitive parallel operations. IEEE Transactions
on Computers, 38(11):1526–1538, 1989.

[45] Guy E Blelloch. Prefix sums and their applications. 1990.
[46] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press,

Cambridge, MA, USA, 1990.
[47] Vincent Bloemen, Alfons Laarman, and Jaco van de Pol. Multi-core on-the-

fly SCC decomposition. In PPoPP’16, pages 8:1–8:12. ACM, 2016.
[48] Sergey Bochkanov and Vladimir Bystritsky. Alglib-a cross-platform numeri-

cal analysis and data processing library. ALGLIB Project. Novgorod, Russia,
2011.

[49] N. Bombieri, F. Fummi, and S. Vinco. On the automatic generation of gpu-
oriented software applications from rtl ips. In 2013 International Conference

312 REFERENCES

on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2013,
2013.

[50] RM Bonelli and JL Cummings. Cfrontal-subcortical circuitry and behavior.
ialogues Clin Neurosci., 9(2):141–151, 2007.

[51] Vincenzo Bonnici, Rosalba Giugno, Alfredo Pulvirenti, Dennis Shasha, and
Alfredo Ferro. A subgraph isomorphism algorithm and its application to
biochemical data. BMC bioinformatics, 14(Suppl 7):S13, 2013.

[52] Elizabeth I. et al. Boyle. Go::termfinder–open source software for accessing
gene ontology information and finding significantly enriched gene ontology
terms associated with a list of genes. Bioinformatics, 20(10):3710–3715,
2004.

[53] Victor Braberman, Diego Garbervetsky, and Sergio Yovine. A static analysis
for synthesizing parametric specifications of dynamic memory consumption.
J. of Object Technology, 5(5):31–58, 2006.

[54] Aydın Buluç, John R Gilbert, and Ceren Budak. Solving path problems on
the gpu. Parallel Computing, 36(5):241–253, 2010.

[55] Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Christian Sohler. Counting Triangles in Data Streams. In
25th ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database
Systems, pages 253–262, 2006.

[56] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A quantitative study
of irregular programs on gpus. In Workload Characterization (IISWC), 2012
IEEE International Symposium on, pages 141–151. IEEE, 2012.

[57] F. Busato and N. Bombieri. BFS-4K: An efficient implementation of BFS for
kepler GPU architectures. IEEE Transactions on Parallel and Distributed
Systems, 26(7):1826–1838, July 2015.

[58] F. Busato and N. Bombieri. On the load balancing techniques for GPU
applications based on prefix-scan. In Proc. of IEEE MCSoC, pages 88–95,
2015.

[59] Federico Busato and Nicola Bombieri. BFS-4K: an efficient implementa-
tion of BFS for kepler GPU architectures. IEEE Transactions on Parallel
Distributed Systems, 26(7):1826 – 1838, 2015.

[60] Federico Busato and Nicola Bombieri. BFS-4K: an efficient implementation
of BFS for kepler GPU architectures. IEEE Transactions on Parallel and
Distributed Systems, 26(7):1826–1838, 2015.

[61] Federico Busato and Nicola Bombieri. A dynamic approach for workload
partitioning on GPU architectures. IEEE Trans. on Parallel Distributed
Systems, preprint(99):1–15, 2016.

[62] Federico Busato and Nicola Bombieri. An Efficient Implementation of the
Bellman-Ford Algorithm for Kepler GPU Architectures. IEEE Transactions
on Parallel Distributed Systems, 27(8):2222–2233, 2016.

[63] Federico Busato and Nicola Bombieri. A dynamic approach for workload
partitioning on gpu architectures. IEEE Transactions on Parallel and Dis-
tributed Systems, 28(6):1535–1549, 2017.

[64] V.T. Chakaravarthy, F. Checconi, F. Petrini, and Y. Sabharwal. Scalable
single source shortest path algorithms for massively parallel systems. pages
889–901, 2014.

REFERENCES 313

[65] Siddhartha Chatterjee, Guy E. Blelloch, and Marco Zagha. Scan primitives
for vector computers. In Proceedings of the 1990 ACM/IEEE Conference on
Supercomputing, pages 666–675, 1990.

[66] Edward Y Chen, Christopher M Tan, Yan Kou, Qiaonan Duan, Zichen Wang,
Gabriela Vaz Meirelles, Neil R Clark, and Avi Maayan. Enrichr: interactive
and collaborative html5 gene list enrichment analysis tool. BMC bioinfor-
matics, 14(1):128, 2013.

[67] L. Chen, O. Villa, S. Krishnamoorthy, and G.R. Gao. Dynamic load balanc-
ing on single- and multi-gpu systems. pages 1–12, 2010.

[68] John Cheng, Max Grossman, and Ty McKercher. Professional CUDA C
Programming. John Wiley & Sons, 2014.

[69] John Cheng, Max Grossman, and Ty McKercher. Professional Cuda C Pro-
gramming. John Wiley & Sons, 2014.

[70] Boris V Cherkassky, Andrew V Goldberg, and Tomasz Radzik. Shortest
paths algorithms: Theory and experimental evaluation. Mathematical pro-
gramming, 73(2):129–174, 1996.

[71] Jun-Dong Cho, Salil Raje, and Majid Sarrafzadeh. Fast approximation al-
gorithms on maxcut, k-coloring, and k-color ordering for vlsi applications.
IEEE Trans. Comput., 47(11):1253–1266, November 1998.

[72] Jonathan Cohen. Trusses: Cohesive Subgraphs for Social Network Analysis.
National Security Agency Technical Report, page 16, 2008.

[73] Jonathan Cohen. Graph Twiddling in a Map-Reduce World. Computing in
Science & Engineering, 11(4):29–41, 2009.

[74] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
MIT press, 2009.

[75] B. Coutinho, D. Sampaio, F.M.Q. Pereira, and W. Meira Jr. Profiling di-
vergences in gpu applications. Concurrency Computation Practice and Ex-
perience, 25(6):775–789, 2013.

[76] Joseph R Crobak, Jonathan W Berry, Kamesh Madduri, and David A Bader.
Advanced shortest paths algorithms on a massively-multithreaded architec-
ture. In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, pages 1–8. IEEE, 2007.

[77] Christoph Csallner and Yannis Smaragdakis. Check ’n’ crash: Combining
static checking and testing. In Proc. of ACM/IEEE ICSE, pages 422–431,
2005.

[78] Riccardo Dalla-Favera. Molecular genetics of aggressive b-cell lymphoma.
Hematological Oncology, 35(S1):76–79, 2017.

[79] Alessandro Danese, Tara Ghasempouri, and Graziano Pravadelli. Automatic
extraction of assertions from execution traces of behavioural models. In Proc.
of ACM/IEEE DATE, pages 1–6, 2015.

[80] Alessandro Danese, Luca Piccolboni, and Graziano Pravadelli. A paral-
lelizable approach for mining likely invariants. In Proc. of ACM/IEEE
CODES+ISSS, 2015.

[81] Hoang-Vu Dang and Bertil Schmidt. The sliced coo format for sparse matrix-
vector multiplication on cuda-enabled gpus. Procedia Computer Science,
9:57–66, 2012.

314 REFERENCES

[82] A. Davidson, S. Baxter, M. Garland, and J.D. Owens. Work-efficient parallel
gpu methods for single-source shortest paths. pages 349–359, 2014.

[83] Andrew Davidson, Sean Baxter, Michael Garland, and John D Owens. Work-
efficient parallel GPU methods for single-source shortest paths. In Proc. of
IEEE IPDPS, pages 349–359, 2014.

[84] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[85] Timothy A Davis and Yifan Hu. The university of florida sparse matrix
collection. ACM Transactions on Mathematical Software (TOMS), 38(1):1,
2011.

[86] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John Good,
et al. Pegasus: A framework for mapping complex scientific workflows onto
distributed systems. Scientific Programming, 13(3):219–237, 2005.

[87] Camil Demetrescu, Andrew Goldberg, and David Johnson. 9th dimacs imple-
mentation challenge–shortest paths. American Mathematical Society, 2006.

[88] Camil Demetrescu, Andrew V Goldberg, and David S Johnson. The Short-
est Path Problem: Ninth DIMACS Implementation Challenge, volume 74.
American Mathematical Soc., 2009.

[89] Shrinivas Devshatwar, Madhur Amilkanthwar, and Rupesh Nasre. GPU
centric extensions for parallel strongly connected components computation.
In GPGPU’16, pages 2–11. ACM, 2016.

[90] Robert Dietrich, Felix Schmitt, Rene Widera, and Michael Bussmann. Phase-
based profiling in gpgpu kernels. In Proc. IEEE ICPPW, pages 414–423,
2012.

[91] E. W. Dijkstra. A note on two problems in connexion with graphs. NU-
MERISCHE MATHEMATIK, 1(1):269–271, 1959.

[92] Hristo Djidjev, Sunil Thulasidasan, Guillaume Chapuis, Rumen Andonov,
and Dominique Lavenier. Efficient multi-gpu computation of all-pairs short-
est paths. In Parallel and Distributed Processing Symposium, 2014 IEEE
28th International, pages 360–369. IEEE, 2014.

[93] Yuri Dotsenko, Naga K. Govindaraju, Peter-Pike Sloan, Charles Boyd, and
John Manferdelli. Fast scan algorithms on graphics processors. In Proceed-
ings of the 22Nd Annual International Conference on Supercomputing, ICS
’08, pages 205–213, 2008.

[94] D. Ediger., K. Jiang, J. Riedy, and D. Bader. Massive Streaming Data
Analytics: A Case Study with Clustering Coefficients. In IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), pages 1–8, 2010.

[95] D. Ediger, R. McColl, J. Riedy, and D.A. Bader. STINGER: High Perfor-
mance Data Structure for Streaming Graphs. In IEEE High Performance
Embedded Computing Workshop (HPEC 2012), pages 1–5, Waltham, MA,
2012.

[96] Nick Edmonds, Alex Breuer, Douglas Gregor, and Andrew Lumsdaine.
Single-source shortest paths with the parallel boost graph library. The Ninth
DIMACS Implementation Challenge: The Shortest Path Problem, Piscat-
away, NJ, pages 219–248, 2006.

REFERENCES 315

[97] Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant, Carlos
Pacheco, Matthew S Tschantz, and Chen Xiao. The Daikon system for
dynamic detection of likely invariants. Science of Computer Programming,
69(1):35–45, 2007.

[98] Z. Fang, S. Mehta, P.-C. Yew, A. Zhai, J. Greensky, G. Beeraka, and B. Zang.
Measuring microarchitectural details of multi- and many-core memory sys-
tems through microbenchmarking. ACM Transactions on Architecture and
Code Optimization, 11(4):art. n.5, 2015.

[99] Wu-chun Feng and Kirk Cameron. The green500 list: Encouraging sustain-
able supercomputing. Computer, 40(12):50–55, 2007.

[100] Cormac Flanagan, Rajeev Joshi, and K. Rustan M. Leino. Annotation in-
ference for modular checkers. Inf. Process. Lett., 77(2-4):97–108, 2001.

[101] L. K. Fleischer, B. Hendrickson, and A. Pinar. On Identifying Strongly
Connected Components in Parallel. In IPDPS’00, volume 1800 of LNCS,
pages 505–511. Springer, 2000.

[102] L. R. Ford. Network flow theory. Santa Monica, Calif. : Rand Corp., 1956.
[103] Andrea Franceschini et al. ”string v9. 1: protein-protein interaction net-

works, with increased coverage and integration”. Nucleic acids research,
41(D1):D808–D815, 2012.

[104] Vijay Gadepally, Jake Bolewski, Dan Hook, Dylan Hutchison, Ben Miller,
and Jeremy Kepner. Graphulo: Linear Algebra Graph Kernels for NoSQL
Databases. In Parallel and Distributed Processing Symposium Workshop
(IPDPSW), 2015 IEEE International, pages 822–830. IEEE, 2015.

[105] Harold N Garbow. Scaling algorithms for network problems. Journal of
Computer and System Sciences, 31(2):148–168, 1985.

[106] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov. Parallel computing experiences with
cuda. IEEE Micro, 28(4):13–27, 2008.

[107] Michael Garland. Sparse Matrix Computations on Manycore GPU’s. In
Proceedings of the 45th annual conference on Design automation (DAC’08),
pages 2–6. ACM, 2008.

[108] Robert C Gentleman et al. ”Bioconductor: open software development for
computational biology and bioinformatics”. Genome biology, 5(10):R80,
2004.

[109] O. Green and D. Bader. Faster Clustering Coefficients Using Vertex Covers.
In 5th ASE/IEEE International Conference on Social Computing, Social-
Com, 2013.

[110] O. Green and D.A. Bader. cuSTINGER: Supporting Dynamic Graph Algo-
rithms for GPUS. In IEEE Proc. High Performance Embedded Computing
Workshop (HPEC), Waltham, MA, 2016.

[111] O. Green, L.M. Munguia, and D. Bader. Load Balanced Clustering Coeffi-
cients. In ACM Workshop on Parallel Programming for Analytics Applica-
tions (PPAA), Feb. 2014.

[112] O. Green, P. Yalamanchili, and L.M. Mungúıa. Fast Triangle Counting on
the GPU. In IEEE Fourth Workshop on Irregular Applications: Architectures
and Algorithms, pages 1–8, 2014.

316 REFERENCES

[113] Oded Green, Robert McColl, and David A Bader. GPU merge path: a GPU
merging algorithm. In Proc. of ACM SC, pages 331–340, 2012.

[114] CS Greene, A Krishnan, AK Wong, E Ricciotti, RA Zelaya, DS Himmel-
stein, R Zhang, BM Hartmann, E Zaslavsky, SC Sealfon, DI Chasman,
GA FitzGerald, K Dolinski, T Grosser, and OG Troyanskaya. Understand-
ing multicellular function and disease with human tissue-specific networks.
Nature Genetics, 47:569–576, 27 April 2015.

[115] P. Guo and L. Wang. Accurate cross-architecture performance modeling for
sparse matrix-vector multiplication (spmv) on gpus. Concurrency Compu-
tation, 27(13):3281–3294, 2015.

[116] Sudheendra Hangal, Sridhar Narayanan, Naveen Chandra, and Sandeep
Chakravorty. IODINE: a tool to automatically infer dynamic invariants for
hardware designs. In Proc. of ACM/IEEE DAC, pages 775–778, 2005.

[117] Pawan Harish and P. J. Narayanan. Accelerating large graph algorithms on
the gpu using cuda. In Proceedings of the 14th International Conference on
High Performance Computing, HiPC’07, pages 197–208, 2007.

[118] Pawan Harish and PJ Narayanan. Accelerating large graph algorithms on
the gpu using cuda. In High performance computing–HiPC 2007, pages 197–
208. Springer, 2007.

[119] Mark Harris et al. Optimizing parallel reduction in cuda. NVIDIA Developer
Technology, 2(4), 2007.

[120] Mark Harris and Michael Garland. GPU Computing Gems Emerald Edition:
Optimizing Parallel Prefix Operations for the Fermi Architecture, chapter 3.
Addison Wesley Professional, 2008.

[121] Mark Harris and Michael Garland. Optimizing parallel prefix operations for
the Fermi architecture. GPU Computing Gems Jade Edition, pages 29–38,
2011.

[122] Mark Harris, John Owens, Shubho Sengupta, Yao Zhang, and Andrew
Davidson. Cudpp: Cuda data parallel primitives library, 2014.

[123] R. Hastings and B. Joyce. Joyce. purify: Fast detection of memory leaks and
access errors. In Proc. of the Winter USENIX Conference, 1991.

[124] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2014.
[125] Sungpack Hong, Sang Kyun Kim, Tayo Oguntebi, and Kunle Olukotun. Ac-

celerating cuda graph algorithms at maximum warp. In Proceedings of the
16th ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 267–276, 2011.

[126] Sungpack Hong, Nicole C. Rodia, and Kunle Olukotun. On fast parallel
detection of strongly connected components (scc) in small-world graphs. In
SC’13, pages 92:1–92:11. ACM, 2013.

[127] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpu architec-
ture with memory-level and thread-level parallelism awareness. SIGARCH
Comput. Archit. News, 37(3):152–163, June 2009.

[128] Sunpyo Hong and Hyesoon Kim. An integrated gpu power and performance
model. In Proceedings of the 37th Annual International Symposium on Com-
puter Architecture, ISCA ’10, pages 280–289, 2010.

REFERENCES 317

[129] DW Huang, R Lempicki, and BT Sherman. Systematic and integrative anal-
ysis of large gene lists using david bioinformatics resources. Nat Protoc,
4(1):44–57, 2009.

[130] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. Querying
K-Truss Community in Large and Dynamic Graphs. In Proceedings of the
2014 ACM SIGMOD international conference on Management of data, pages
1311–1322. ACM, 2014.

[131] Dylan Hutchison, Jeremy Kepner, Vijay Gadepally, and Bill Howe. From
nosql accumulo to newsql graphulo: Design and utility of graph algorithms
inside a bigtable database. In High Performance Extreme Computing Con-
ference (HPEC), 2016 IEEE, pages 1–9. IEEE, 2016.

[132] Ankit Jain. pOSKI: An Extensible Autotuning Framework to Perform Opti-
mized SpMVs on Multicore Architectures. PhD thesis, Department of Electri-
cal Engineering and Computer Sciences, University of California at Berkeley.

[133] Jan Jannink. Implementing deletion in B+-trees. ACM Sigmod Record,
24(1):33–38, 1995.

[134] Yuntao Jia, Victor Lu, Jared Hoberock, Michael Garland, and John C.Hart.
GPU Computing Gems Jade Edition: Chapter 2. Edge v. Node Parallelism
for Graph Centrality Metrics, chapter 11. Morgan Kaufmann Publishers,
2011.

[135] Yuntao Jia, Victor Lu, Jared Hoberock, Michael Garland, and John C Hart.
Edge v. node parallelism for graph centrality metrics. GPU Computing
Gems, 2:15–30, 2011.

[136] Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open Source Sci-
entific Tools for Python. 2014.

[137] Humayun Kabir and Kamesh Madduri. Shared-memory graph truss decom-
position. arXiv preprint arXiv:1707.02000, 2017.

[138] Y Kanai and MA Hediger. The glutamate/neutral amino acid transporter
family slc1: Molecular, physiological and pharmacological aspects. Pflugers
Arch Eur J Physiol., 447(5):469–479, 2004.

[139] Gary J Katz and Joseph T Kider Jr. All-pairs shortest-paths for large graphs
on the gpu. In Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS
symposium on Graphics hardware, pages 47–55. Eurographics Association,
2008.

[140] Kevin Kelley and Tao B Schardl. Parallel single-source shortest paths. 2010.
[141] Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. Modeling gpu-

cpu workloads and systems. In Proc. of GPGPU, pages 31–42, 2010.
[142] Arijit Khan, Yinghui Wu, Charu C. Aggarwal, and Xifeng Yan. Nema: fast

graph search with label similarity. In Proceedings of the 39th international
conference on Very Large Data Bases, PVLDB’13, pages 181–192. VLDB
Endowment, 2013.

[143] D Khananshvili. The slc8 gene family of sodium-calcium exchangers (ncx) -
structure, function, and regulation in health and disease. Mol Aspects Med.,
34(2-3):220–235, 2013.

[144] James King, Thomas Gilray, Robert M Kirby, and Matthew Might. Dynamic
Sparse-Matrix Allocation on GPUs. In International Conference on High
Performance Computing, pages 61–80. Springer, 2016.

318 REFERENCES

[145] David B Kirk and W Hwu Wen-mei. Programming massively parallel pro-
cessors: a hands-on approach. Newnes, 2012.

[146] Steffen Klamt and Axel von Kamp. Computing paths and cycles in biological
interaction graphs. BMC Bioinformatics, 10(6):1–11, 2014.

[147] T. Komoda, S. Hayashi, S. Miwa, and H. Nakamura. Power capping of CPU-
GPU heterogeneous systems through coordinating DVFS and task mapping.
In Proc. of IEEE ICCD, pages 349–356, 2013.

[148] K. Kothapalli, R. Mukherjee, M. Suhail Rehman, S. Patidar, P.J. Narayanan,
and K. Srinathan. A performance prediction model for the cuda gpgpu
platform. In Proc. of IEEE HiPC, pages 463–472, 2009.

[149] David M Kristensen, Lavanya Kannan, Michael K Coleman, Yuri I Wolf,
Alexander Sorokin, Eugene V Koonin, and Arcady Mushegian. A low-
polynomial algorithm for assembling clusters of orthologous groups from
intergenomic symmetric best matches. Bioinformatics, 26(12):1481–1487,
2010.

[150] Jérôme Kunegis. Konect: the koblenz network collection. In WWW’13, pages
1343–1350. ACM, 2013.

[151] Jérôme Kunegis and Julia Preusse. Fairness on the web: Alternatives to the
power law. In Proc. of ACM WebSci, pages 175–184, 2012.

[152] Konstantin Kutzkov and Rasmus Pagh. Triangle counting in dynamic graph
streams. In Scandinavian Workshop on Algorithm Theory, pages 306–318.
Springer, 2014.

[153] Daniel Langr and Pavel Tvrdik. Evaluation Criteria for Sparse Matrix Stor-
age Formats. IEEE Transactions on Parallel Distributed Systems, 27(2):428–
440, 2016.

[154] CE Lawrence, SF Altschul, MS Boguski, JS Liu, AF Neuwald, and JC Woot-
ton. Detecting subtle sequence signals: a gibbs sampling strategy for multiple
alignment. Science, 262(5131):208–214, 1993.

[155] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun
Kim, Anthony D Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas
Chennupaty, Per Hammarlund, et al. Debunking the 100x gpu vs. cpu myth:
an evaluation of throughput computing on cpu and gpu. ACM SIGARCH
computer architecture news, 38(3):451–460, 2010.

[156] Charles E. Leiserson and Tao B. Schardl. A work-efficient parallel breadth-
first search algorithm (or how to cope with the nondeterminism of reducers).
In Proceedings of the 22Nd ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’10, pages 303–314, 2010.

[157] A Leist, KA Hawick, DP Playne, and North Shore Albany. GPGPU and
Multi-Core Architectures for Computing Clustering Coefficients of Irregular
Graphs. In Int’l Conf. on Scientific Computing (CSC’11), 2011.

[158] Jan Lemeire, Jan G Cornelis, and Laurent Segers. Microbenchmarks for gpu
characteristics: The occupancy roofline and the pipeline model. In Euromicro
PDP, pages 456–463, 2016.

[159] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Trans. Program. Lang. Syst., 1(1):121–141,
January 1979.

[160] Jure Leskovec et al. Stanford network analysis project. 2010.

REFERENCES 319

[161] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network
Dataset Collection. http://snap.stanford.edu/data, June 2014.

[162] Guohui Li, Zhe Zhu, Zhang Cong, and Fumin Yang. Efficient decomposition
of strongly connected components on GPUs. Journal of Systems Architec-
ture, 60(1):1 – 10, 2014.

[163] Arthur Liberzon, Aravind Subramanian, Reid Pinchback, Helga Thor-
valdsdóttir, Pablo Tamayo, and Jill P. Mesirov. Molecular signatures
database (msigdb) 3.0. Bioinformatics, 27(12):1739–1740, 2011.

[164] Hang Liu and H Howie Huang. Enterprise: Breadth-first graph traversal on
gpus. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 68. ACM, 2015.

[165] Xiaodong Liu, Mo Li, Shanshan Li, Shaoliang Peng, Xiangke Liao, and Xi-
aopei Lu. Imgpu: Gpu accelerated influence maximization in large-scale
social networks. IEEE Transactions on Parallel and Distributed Systems,
25(1):136–145, 2014.

[166] U. Lopez-Novoa, A. Mendiburu, and J. Miguel-Alonso. A survey of per-
formance modeling and simulation techniques for accelerator-based comput-
ing. IEEE Transactions on Parallel and Distributed Systems, 26(1):272–281,
2015.

[167] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Ky-
rola, and Joseph M Hellerstein. Distributed graphlab: a framework for ma-
chine learning and data mining in the cloud. Proc. of the VLDB Endowment,
5(8):716–727.

[168] Shaofeng Lu, P. Weston, S. Hillmansen, H.B. Gooi, and C. Roberts. Increas-
ing the regenerative braking energy for railway vehicles. IEEE Transactions
on Intelligent Transportation Systems, 15(181):2506–2515, 2009.

[169] Justin Luitjens. CUDA pro tip: Increase performance with vector-
ized memory access. http://devblogs.nvidia.com/parallelforall/

cuda-pro-tip-increase-performance-with-vectorized-memory-access/,
December 2013.

[170] Justin Luitjens. Faster Parallel Reductions on Kepler,
2014. https://devblogs.nvidia.com/parallelforall/

faster-parallel-reductions-kepler/.
[171] Ben Lund and Justin W Smith. A multi-stage cuda kernel for floyd-warshall.

arXiv preprint arXiv:1001.4108, 2010.
[172] Lijuan Luo, Martin Wong, and Wen-mei Hwu. An effective gpu implemen-

tation of breadth-first search. In Proceedings of the 47th Design Automation
Conference, DAC ’10, pages 52–55, 2010.

[173] K. Ma, X. Li, W. Chen, C. Zhang, and X. Wang. GreenGPU: A holistic
approach to energy efficiency in GPU-CPU heterogeneous architectures. In
Proc. of IEEE ICPP, pages 48–57, 2012.

[174] O. Magger, Y.Y. Waldman, E. Ruppin, and R. Sharan. Enhancing the prior-
itization of disease-causing genes through tissue specific protein interaction
networks. PLoS Computational Biology, 8(9), 2012.

[175] D. Makkar, D.A. Bader, and O. Green. Exact and Parallel Triangle Counting
in Streaming Graphs. Submitted.

http://snap.stanford.edu/data
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-increase-performance-with-vectorized-memory-access/
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
https://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

320 REFERENCES

[176] James Malcolm, Pavan Yalamanchili, Chris McClanahan, Vishwanath Venu-
gopalakrishnan, Krunal Patel, and John Melonakos. Arrayfire: a gpu accel-
eration platform, 2014.

[177] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD In-
ternational Conference on Management of data, pages 135–146. ACM, 2010.

[178] Roongko Doong Marat Boshernitsan and Alberto Savoia. From daikon to
agitator: lessons and challenges in building a commercial tool for developer
testing. In Proc. of ISSTA, pages 169–180, 2006.

[179] John D. Owens Mark Harris, Shubhabrata Sengupta. GPU Gems 3: Parallel
Prefix Sum (Scan) with CUDA, chapter 3. Addison Wesley Professional,
2008.

[180] Pedro J. Martin, Roberto Torres, and Antonio Gavilanes. Cuda solutions
for the sssp problem. In Proceedings of the 9th International Conference on
Computational Science: Part I, ICCS ’09, pages 904–913, 2009.

[181] Kazuya Matsumoto, Naohito Nakasato, and Stanislav G Sedukhin. Blocked
all-pairs shortest paths algorithm for hybrid cpu-gpu system. In High Per-
formance Computing and Communications (HPCC), 2011 IEEE 13th Inter-
national Conference on, pages 145–152. IEEE, 2011.

[182] R. McColl, D. Ediger, J. Poovey, D. Campbell, and D. Bader. A Performance
Evaluation of Open Source Graph Databases. In ACM Workshop on Parallel
Programming for Analytics Applications (PPAA), pages 11–18, 2014.

[183] A. McLaughlin and D. Bader. Revisiting Edge and Node Parallelism for Dy-
namic GPU Graph Analytics. In IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 1396–1406, 2014.

[184] W. McLendon III, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger.
Finding Strongly Connected Components in Distributed Graphs. Journal of
Parallel and Distributed Computing, 65(8):901–910, 2005.

[185] X. Mei, K. Zhao, C. Liu, and X. Chu. Benchmarking the memory hierarchy
of modern GPUs. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
8707 LNCS:144–156, 2014.

[186] D. Merril and A. Grimshaw. Parallel scan for stream architectures. Technical
Report CS-200914, Department of Computer Science, University of Virginia,
2009.

[187] D Merrill. Cub v1.6.4: Cuda unbound, a library of warp-wide, block-wide,
and device-wide gpu parallel primitives, 2015.

[188] Duane Merrill. Cub, 2015.
[189] Duane Merrill and Michael Garland. Merge-based parallel sparse matrix-

vector multiplication. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, page 58.
IEEE Press, 2016.

[190] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable gpu graph
traversal. In Proceedings of the 17th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPoPP ’12, pages 117–128,
2012.

REFERENCES 321

[191] P Mestdagh, E Fredlund, F Pattyn, A Rihani, T Van Maerken, J Vermeulen,
C Kumps, B Menten, K De Preter, A Schramm, J Schulte, R Noguera,
G Schleiermacher, I Janoueix-Lerosey, G Laureys, R Powel, D Nittner, J-
C Marine, M Ringnér, F Speleman, and J Vandesompele. An integrative
genomics screen uncovers ncrna t-ucr functions in neuroblastoma tumours.
Oncogene, 29, 2010.

[192] Ulrich Meyer and Peter Sanders. ∆-stepping: a parallelizable shortest path
algorithm. Journal of Algorithms, 49(1):114–152, 2003.

[193] Giovanni Micale, Alfredo Ferro, Alfredo Pulvirenti, and Rosalba Giugno.
Spectra: an integrated knowledge base for comparing tissue and tumor spe-
cific ppi networks in human. Frontiers in Bioengineering and Biotechnology,
3(58), 8 May 2015.

[194] Giovanni Micale, Alfredo Pulvirenti, Rosalba Giugno, and Alfredo Ferro.
Gasoline: a greedy and stochastic algorithm for optimal local multiple align-
ment of interaction networks. PLoS ONE, 9(6):e98750, 06 2014.

[195] P Mironowicz, A Dziekonski, and M Mrozowski. A Task-Scheduling Ap-
proach for Efficient Sparse Symmetric Matrix-Vector Multiplication on a
GPU. SIAM Journal on Scientific Computing, 37(6):C643–C666, 2015.

[196] Sparsh Mittal and Jeffrey S. Vetter. A survey of methods for analyzing and
improving GPU energy efficiency. ACM Comput. Surv., 47(2):19:1–19:23,
August 2014.

[197] Ji Moon et al. ”PINTnet: construction of condition-specific pathway interac-
tion network by computing shortest paths on weighted PPI”. BMC systems
biology, 11(2):15, 2017.

[198] YM Mudunuri U, Che A and RM Stephens. biodbnet: the biological database
network. Bioinformatics, 25(4):555–556, 2009.

[199] John Nickolls and William J. Dally. The gpu computing era. IEEE Micro,
30(2):56–69, March 2010.

[200] Jeremy W. Nimmer and Michael D. Ernst. Invariant inference for static
checking: An empirical evaluation. In Proc. of ACM FSE, pages 11–20,
2002.

[201] N. Nishikawa, K. Iwai, H. Tanaka, and T. Kurokawa. Throughput and power
efficiency evaluation of block ciphers on kepler and GCN GPUs using micro-
benchmark analysis. IEICE Transactions on Information and Systems, E97-
D(6):1506–1515, 2014.

[202] NVIDIA. Kepler gk110. www.nvidia.com/content/PDF/kepler/NV_DS_

Tesla_KCompute_Arch_May_2012_LR.pdf.
[203] NVIDIA. Parallel thread execution isa version 4.1. http: // docs. nvidia.

com/ cuda/ parallel-thread-execution/ , 1, 2014.
[204] NVIDIA. Maxwell architecture. http://international.download.

nvidia.com/geforce.com/international/pdfs/GeForce_GTX_980_

Whitepaper_FINAL.PDF, 2015.
[205] NVIDIA. PTX: Parallel Thread Execution ISA, 2015. http://docs.

nvidia.com/cuda/parallel-thread-execution/.
[206] CUDA NVidia. C best practices guide. NVIDIA, Santa Clara, CA, 2012.
[207] CUDA NVIDIA. Cuda api reference manual, 2015.
[208] CUDA Nvidia. Nvidia cuda c programming guide. 2015.

www.nvidia.com/content/PDF/kepler/ NV_DS_Tesla_KCompute_Arch_May_2012_LR.pdf
www.nvidia.com/content/PDF/kepler/ NV_DS_Tesla_KCompute_Arch_May_2012_LR.pdf
http://docs.nvidia.com/cuda/parallel-thread-execution/
http://docs.nvidia.com/cuda/parallel-thread-execution/
http://international.download.nvidia.com/geforce.com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce.com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce.com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://docs.nvidia.com/cuda/parallel-thread-execution/
http://docs.nvidia.com/cuda/parallel-thread-execution/

322 REFERENCES

[209] NVIDIA Corporation. Kepler Tuning Guide.
[210] NVidia Corporation. NVIDIA Kepler GK110 Architecture Whitepaper,

2012. http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-780.
[211] NVidia Corporation. NVIDIA Maxwell GeForce GTX 980 Whitepaper, 2014.

http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-980.
[212] NVidia Corporation. NVIDIA Pascal GeForce GTX 1080 Whitepaper, 2016.

http://www.geforce.com/hardware/10series/geforce-gtx-1080.
[213] Nvidia CUDA. Programming guide, 2015. http://docs.nvidia.com/cuda/

cuda-c-programming-guide.
[214] Saher Odeh, Oded Green, Zahi Mwassi, Oz Shmueli, and Yitzhak Birk.

Merge path-parallel merging made simple. In Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th
International, pages 1611–1618. IEEE, 2012.

[215] H. Ortega-Arranz, Y. Torres, D.R. Llanos, and A. Gonzalez-Escribano. A
new gpu-based approach to the shortest path problem. pages 505–511, 2013.

[216] S. Orzan. On Distributed Verification and Verified Distribution. PhD thesis,
Free University of Amsterdam, 2004.

[217] U Pape. Implementation and efficiency of moore-algorithms for the shortest
route problem. Mathematical Programming, 7(1):212–222, 1974.

[218] DL Pauls, A Abramovitch, SL Rauch, and DA Geller. Obsessive-compulsive
disorder: an integrative genetic and neurobiological perspective. Nat Rev
Neurosci., 15(6):410–424, 2014.

[219] Yehoshua Perl, Alon Itai, and Haim Avni. Interpolation Search—a log log
N Search. Communications of the ACM, 21(7):550–553, 1978.

[220] Adam Polak. Counting triangles in large graphs on GPU. arXiv preprint
arXiv:1503.00576, 2015.

[221] Julia R Pon and Marco A Marra. Clinical impact of molecular features in
diffuse large b-cell lymphoma and follicular lymphoma. Blood, 127(2):181–
186, 2016.

[222] AP Privitera, R Distefano, HA Wefer, A Ferro, A Pulvirenti, and R Giugno.
Ocdb: a database collecting genes, mirnas and drugs for obsessive-compulsive
disorder. DATABASE (The OXFORD Journal of Biological Databases and
Curation), Jul 30;2015:bav069, 2015.

[223] Dolbeau R., Bihan S., and Bodin F. Hmpp: A hybrid multicore parallel
programming environment. 2007.

[224] Fabio Rinnone et al. Netmatchstar: an enhanced cytoscape network querying
app. F1000Research, 4, 2015.

[225] Mark Roschewski, Louis M Staudt, and Wyndham H Wilson. Diffuse large
b-cell lymphoma [mdash] treatment approaches in the molecular era. Nature
reviews Clinical oncology, 11(1):12–23, 2014.

[226] Andreas Ruepp, Brigitte Waegele, Martin Lechner, Barbara Brauner, Irm-
traud Dunger-Kaltenbach, Gisela Fobo, Goar Frishman, Corinna Montrone,
and H.-Werner Mewes. Corum: the comprehensive resource of mammalian
protein complexes. Nucleic Acids Research, 38(suppl 1):D497–D501, 2010.

[227] Greg Ruetsch and Paulius Micikevicius. Optimizing matrix transpose in
cuda. Nvidia CUDA SDK Application Note, 28, 2009.

http://docs.nvidia.com/cuda/cuda-c-programming-guide
http://docs.nvidia.com/cuda/cuda-c-programming-guide

REFERENCES 323

[228] G. Rustici, N. Kolesnikov, M. Brandizi, and T. et al. Burdett. Arrayexpress
updatetrends in database growth and links to data analysis tools. Nucleic
Acids Research, 41(D1):D987–D990, 2013.

[229] M. Saad. Joint optimal routing and power allocation for spectral efficiency
in multihop wireless networks. IEEE Transactions on Wireless Communi-
cations, 13(5):2530– 2539, 2014.

[230] Yousef Saad. Iterative methods for sparse linear systems. Siam, 2003.
[231] Sayed Mohammad Ebrahim Sahraeian and Byung-Jun Yoon. Resque: Net-

work reduction using semi-markov random walk scores for efficient querying
of biological networks. Bioinformatics, 28(16):2129–2136, 2012.

[232] Ahmet Erdem Sariyuce, C. Seshadhri, Ali Pinar, and Umit V. Catalyurek.
Finding the hierarchy of dense subgraphs using nucleus decompositions.
In Proceedings of the 24th International Conference on World Wide Web,
WWW ’15, pages 927–937, 2015.

[233] K. Sato, K. Komatsu, H. Takizawa, and H. Kobayashi. A history-based
performance prediction model with profile data classification for automatic
task allocation in heterogeneous computing systems. In Proc. of IEEE ISPA,
pages 135–142, 2011.

[234] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser:
A dynamic data race detector for multithreaded programs. In ACM Trans.
on Computer Systems, pages 391–411, 1997.

[235] Giovanni Scardoni et al. Biological network analysis with centiscape: cen-
tralities and experimental dataset integration. F1000Research, 3, 2014.

[236] Daniele Paolo Scarpazza, Oreste Villa, and Fabrizio Petrini. Efficient
breadth-first search on the cell/be processor. IEEE Transactions on Parallel
Distributed Systems, 19(10):1381–1395, 2008.

[237] R. Sedgewick and K. Wayne. Algorithms. Pearson Education, 2011.
[238] Dipanjan Sengupta and Shuaiwen Leon Song. Evograph: On-the-fly efficient

mining of evolving graphs on gpu. In International Supercomputing Confer-
ence, pages 97–119. Springer, 2017.

[239] Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L Willke,
Jeffrey Young, Matthew Wolf, and Karsten Schwan. GraphIn: An Online
High Performance Incremental Graph Processing Framework. In European
Conference on Parallel Processing, pages 319–333. Springer, 2016.

[240] Shubhabrata Sengupta, Mark Harris, and Michael Garland. Efficient parallel
scan algorithms for gpus. Technical report, NVIDIA, 2009.

[241] Roded Sharan, Igor Ulitsky, and Ron Shamir. Network-based prediction of
protein function. Molecular systems biology, 3(1):88, 2007.

[242] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing
framework for shared memory. In ACM SIGPLAN Notices, volume 48, pages
135–146. ACM, 2013.

[243] Julian Shun and Kanat Tangwongsan. Multicore Triangle Computations
Without Tuning. In IEEE Int’l Conf. on Data Engineering (ICDE), 2015.

[244] S. Siddharth, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner.
Static graph challenge: Subgraph isomorphism, 2017.

324 REFERENCES

[245] Jacob Siegel, Juergen Ributzka, and Xiaoming Li. Cuda memory optimiza-
tions for large data-structures in the gravit simulator. Journal of Algorithms
& Computational Technology, 5(2):341–362, 2011.

[246] Jeremy G Siek, Lie-Quan Lee, and Andrew Lumsdaine. Boost Graph Library:
User Guide and Reference Manual, The. Pearson Education, 2001.

[247] Jaewoong Sim, Aniruddha Dasgupta, Hyesoon Kim, and Richard Vuduc. A
performance analysis framework for identifying potential benefits in gpgpu
applications. In Proc. of ACM SIGPLAN PPoPP, pages 11–22, 2012.

[248] Sérgio Nery Simões et al. ”Shortest paths ranking methodology to identify
alterations in PPI networks of complex diseases”. In Proceedings of the ACM
Conference on Bioinformatics, Computational Biology and Biomedicine,
pages 561–563. ACM, 2012.

[249] Gunjan Singla, Amrita Tiwari, and Dhirendra Pratap Singh. New approach
for graph algorithms on gpu using cuda. International Journal of Computer
Applications, 2013.

[250] George M. Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. Bfs
and coloring-based parallel algorithms for strongly connected components
and related problems. In IPDPS ’14, pages 550–559. IEEE Computer Soci-
ety, 2014.

[251] Shannon M Soucy, Jinling Huang, and Johann Peter Gogarten. Horizontal
gene transfer: building the web of life. Nature Reviews Genetics, 16(8):472–
482, 2015.

[252] Stanford Network Analysis Platform. Stanford university, 2013.
[253] Monica S. Lam Sudheendra Hangal. Tracking down software bugs using

automatic anomaly detection. In Proc. of ACM/IEEE ICSE, pages 291–
301, 2002.

[254] Makoto Sugawara, Shoichi Hirasawa, Kazuhiko Komatsu, Hiroyuki Tak-
izawa, and Hiroaki Kobayashi. A comparison of performance tunabilities
between opencl and openacc. In Proc. of the 2013 IEEE 7th Interna-
tional Symposium on Embedded Multicore/Manycore System-on-Chip (MC-
SOC’13), pages 147–152, 2013.

[255] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. Delite: A compiler architecture
for performance-oriented embedded domain-specific languages. ACM Trans.
Embed. Comput. Syst., 13(4s):134:1–134:25, 2014.

[256] D Szklarczyk, A Franceschini, M Kuhn, M Simonovic, A Roth, P Minguez,
T Doerks, M Stark, J Muller, P Bork, LJ Jensen, and C von Mering. The
string database in 2011: functional interaction networks of proteins, globally
integrated and scored. Nucleic Acids Res., 39(Database issue):D561–8, 2011.

[257] Damian Szklarczyk, Andrea Franceschini, Michael Kuhn, Milan Simonovic,
Alexander Roth, Pablo Minguez, Tobias Doerks, Manuel Stark, Jean Muller,
Peer Bork, et al. The string database in 2011: functional interaction net-
works of proteins, globally integrated and scored. Nucleic acids research,
39(suppl 1):D561–D568, 2010.

[258] T. Schank and D. Wagner. Finding, Counting and Listing All Triangles in
Large Graphs, an Experimental Study. In Experimental & Efficient Algo-
rithms, pages 606–609. Springer, 2005.

REFERENCES 325

[259] W. Tan, W. Tang, R. Goh, S. Turner, and W. Wong. A code generation
framework for targeting optimized library calls for multiple platforms. IEEE
Transactions on Parallel and Distributed Systems, PP(99):1–12, 2014.

[260] David Tarjan, Kevin Skadron, and Paulius Micikevicius. The art of per-
formance tuning for cuda and manycore architectures. Birds-of-a-feather
session at SC, 9, 2009.

[261] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal
on computing, 1(2):146–160, 1972.

[262] Roman L Tatusov, Eugene V Koonin, and David J Lipman. A genomic
perspective on protein families. Science, 278(5338):631–637, 1997.

[263] M Testoni, E Zucca, KH Young, and F Bertoni. Genetic lesions in diffuse
large b-cell lymphomas. Annals of Oncology, 26(6):1069–1080, 2015.

[264] Peter Thoman, Klaus Kofler, Heiko Studt, John Thomson, and Thomas
Fahringer. Automatic opencl device characterization: guiding optimized
kernel design. In European Conf. on Parallel Processing, pages 438–452.
Springer, 2011.

[265] Nikolai Tillmann, Feng Chen, and Wolfram Schulte. Discovering likely
method specifications. In Zhiming Liu and Jifeng He, editors, Formal
Methods and Software Engineering, volume 4260 of LNCS, pages 717–736.
Springer, 2006.

[266] Quoc-Nam Tran. Designing efficient many-core parallel algorithms for all-
pairs shortest-paths using cuda. In Information Technology: New Genera-
tions (ITNG), 2010 Seventh International Conference on, pages 7–12. IEEE,
2010.

[267] Vidisha Tripathi, Zhen Shen, Arindam Chakraborty, Sumanprava Giri, Su-
san M. Freier, Xiaolin Wu, Yongqing Zhang, Myriam Gorospe, Supriya G.
Prasanth, Ashish Lal, and Kannanganattu V. Prasanth. Long noncoding
rna malat1 controls cell cycle progression by regulating the expression of
oncogenic transcription factor b-myb. PLOS Genetics, 9(3):1–18, 03 2013.

[268] M. Uhlen, P. Oksvold, L. Fagerberg, and E. et al. Lundberg. Towards a
knowledge-based human protein atlas. Nature Biotechnology, 28:1248–1250,
2010.

[269] Gayathri Venkataraman, Sartaj Sahni, and Srabani Mukhopadhyaya. A
blocked all-pairs shortest-paths algorithm. Journal of Experimental Algo-
rithmics (JEA), 8:2–2, 2003.

[270] S. Vinco, D. Chatterjee, V. Bertacco, and F. Fummi. Saga: Systemc acceler-
ation on gpu architectures. In Proceedings - Design Automation Conference,
pages 115–120, 2012.

[271] Vasily Volkov. Better Performance at Lower Occupancy. In Proceedings of
the GPU Technology Conference, GTC, volume 10, page 16, 2010.

[272] Jia Wang and James Cheng. Truss Decomposition in Massive Networks.
Proceedings of the VLDB Endowment, 5(9):812–823, 2012.

[273] Leyuan Wang, Yangzihao Wang, Carl Yang, and John D Owens. A compar-
ative study on exact triangle counting algorithms on the gpu. In Proceedings
of the ACM Workshop on High Performance Graph Processing, pages 1–8.
ACM, 2016.

326 REFERENCES

[274] Y. Wang, S. Roy, and N. Ranganathan. Run-time power-gating in caches
of gpus for leakage energy savings. In Proc. of ACM/IEEE DATE, pages
300–303, 2012.

[275] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel,
and John D Owens. Gunrock: A high-performance graph processing library
on the GPU. In Proc. ACM PPoPP, pages 265–266, 2016.

[276] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine
Yelick, and James Demmel. Optimization of Sparse Matrix–Vector Multipli-
cation on Emerging Multicore Platforms. Parallel Computing, 35(3):178–194,
2009.

[277] Nicholas Wilt. The cuda handbook: A comprehensive guide to gpu program-
ming. Pearson Education, 2013.

[278] Martin Winter, Rhaleb Zayer, and Markus Steinberger. Autonomous, inde-
pendent management of dynamic graphs on gpus. In International Super-
computing Conference, pages 97–119. Springer, 2017.

[279] Wolfram Mathematica 9. Pseudo diameter, 2012.
[280] Yinglong Xia and Viktor K. Prasanna. Topologically adaptive parallel

breadth-first search on multicore processors. In Proceedings of the 21st In-
ternational Conference on Parallel and Distributed Computing and Systems,
PDCS09, 2009.

[281] Shucai Xiao and Wu chun Feng. Inter-block gpu communication via fast bar-
rier synchronization. Technical report, Dept. of Computer Science Virginia
Tech, 2009.

[282] X. Xiao, A. Moreno-Moral, M. Rotival, L. Bottolo, and E. Petretto. Multi-
tissue analysis of co-expression networks by higher-order generalized singular
value decomposition identifies functionally coherent transcriptional modules.
PLoS Genetics, 10(1), 2014.

[283] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica.
Graphx: A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems, page 2.
ACM, 2013.

[284] Kai Xu, Yiwen Wang, Fang Wang, Yuxi Liao, Qiaosheng Zhang, Hongbao
Li, and Xiaoxiang Zheng. Neural decoding using a parallel sequential Monte
Carlo method on point processes with ensemble effect. BioMed research
international, 2014.

[285] Shengen Yan, Chao Li, Yunquan Zhang, and Huiyang Zhou. yaSpMV: yet
another SpMV framework on GPUs. In Acm Sigplan Notices, volume 49,
pages 107–118. ACM, 2014.

[286] X. Yan, X. Shi, L. Wang, and H. Yang. An OpenCL micro-benchmark suite
for GPUs and CPUs. Journal of Supercomputing, 69(2):693–713, 2014.

[287] Carl Yang, Yangzihao Wang, and John D Owens. Fast Sparse Matrix and
Sparse Vector Multiplication Algorithm on the GPU. Proceedings of IEEE
Parallel and Distributed Processing Symposium Workshop (IPDPSW), pages
841–847, 2015.

[288] Y. Yang, P. Xiang, M. Mantor, and H. Zhou. Fixing performance bugs: An
empirical study of open-source GPGPU programs. In Proc. of IEEE ICPP,
pages 329–339, 2012.

REFERENCES 327

[289] Shuai Mu Yangdong Deng, Bo D. Wang. Taming irregular eda applications
on gpus. In Proc. of the IEEE International Conference on Computer-Aided
Design (ICCAD’09), pages 539–546, 2009.

[290] F Benjamin Zhan and Charles E Noon. Shortest path algorithms: an evalu-
ation using real road networks. Transportation Science, 32(1):65–73, 1998.

[291] X. Zhang, F. Yan, L. Tao, and D.K. Sung. Optimal candidate set for op-
portunistic routing in asynchronous wireless sensor networks. pages 1– 8,
2014.

[292] M. Zheng, V.T. Ravi, W. Ma, F. Qin, and G. Agrawal. Gmprof: A low-
overhead, fine-grained profiling approach for gpu programs. In Proc. of IEEE
HiPC, 2012.

	Thesis Abstract
	Part I Background
	Graphic Processing Unit (GPU)
	Computed Unified Device Architecture (CUDA)
	Modern GPU architectures

	Static Graph Representation
	Adjacency Matrices
	Adjacency Lists
	Edges List

	Part II Performance-Oriented Implementations of Graph Algorithms for GPU
	Related Work
	The workload partitioning problem in GPUs
	Static mapping techniques
	Semi-dynamic mapping techniques
	Dynamic mapping techniques

	Graph Traversal and Breadth-First Search
	Single-Source Shortest Path
	Strongly Connected Components
	Forward-Backward algorithm
	Coloring algorithm
	Other algorithms

	Load Balancing - Multi-Phase Search Algorithm
	Introduction
	The proposed Multi-phase Mapping
	Hybrid partitioning
	Iterative Coalesced Expansion
	Optimizing the Multi-Phase implementation

	Comprehensive comparison of complexity and limiting factors of the approaches
	Experimental results
	Multi-phase Mapping Analisys

	Conclusions

	Breadth-First Search - BFS-4K
	Introduction
	Breadth First Search (BFS)

	BFS-4K Overview
	Implementation Features in Details
	Exclusive Prefix-Sum
	Dynamic Virtual Warps
	Dynamic Parallelism
	Edge-discover
	Single-block vs. Multi-block Kernel
	Coalesced Read/Write Memory Accesses

	Duplicate Detection and Correction
	Experimental results
	Concluding remarks

	Breadth-First Search - Helix
	Introduction
	Parallel graph traversal through BFS
	The Helix framework
	Load balancing
	Load balancing support techniques
	Frontier queue types
	Synchronization between BFS iterations
	Frontier updating
	Duplicate removing
	Bitmask status lookup
	Programming model
	Modified Graph Representation
	Optimized Prefix-sum

	Experimental Results
	Graph dataset and system setup
	The configurability analysis
	Performance evaluation

	Conclusions
	Appendix

	Single-Source Shortest Path - H-BF
	Introduction
	The Bellman-Ford's algorithm
	The frontier-based algorithm and its optimizations
	The edge classification optimization
	99993em.5Duplicate removal with Kepler 64-bit atomic instructions

	Architecture-oriented Optimizations
	Memory coalescing, cache modifiers, and texture memory
	Dynamic virtual warps
	Dynamic parallelism

	Experimental Results
	Experimental setup
	Execution time analysis and comparison

	Concluding Remarks

	Strongly Connected Components - Multi-Step Algorithm
	Introduction
	Multi-step Parametric Scheme for SCC Decomposition
	Parallelization strategy for graph traversal

	Experimental results
	Conclusions

	Approximate Subgraph Isomorphism - APPAGATO
	Materials and methods
	Definitions and notations
	The APPAGATO algorithm
	The APPAGATO parallel implementation for GPUs
	Datasets

	Results and discussion
	Performance
	Quality measurements of matches
	Querying protein complexes among different species.
	Datasets and query details

	APPAGATO Implementation
	APPAGATO performance

	Functional coherence measurement in querying protein complexes among different species.
	Querying disease modules

	Conclusions

	Part III Profiling and Analysis Framework
	Related Work
	Performance models
	GPU Microbenchmarking

	Parallel Primitives Profiling
	Introduction
	Profiler Metrics
	Optimization Criteria
	Occupancy (OCC)
	Host Synchronization (HSync)
	Device Synchronization (DSync)
	Thread Divergence (TDiv)
	Warp Load Balancing (LBW)
	Streaming Multiprocessor Load Balancing (LBSM)
	L1/L2 Granularity (GranL1/GranL2)
	Shared Memory Efficiency (SMemeff)
	Computation Intensity (CI)
	Data Transfer (DT)
	Overall Quality Metrics (QM)

	Weighing of Optimization Criteria on the Overall Quality Metrics
	Parallel Primitives
	Evaluation

	Case Studies
	The Load Balancing Search Primitive
	The Matrix Transpose

	Conclusion

	A Fine-grained Performance Model
	Introduction
	Microbenchmarks
	Microbenchmark Development
	GPU Device Characterization through Microbenchmarks

	Optimization Criteria
	Host Synchronization
	Device Synchronization
	Thread Divergence
	Warp Load Balancing
	Streaming Multiprocessor (SM) Load Balancing
	L1/L2 Granularity
	Shared Memory Efficiency
	Throughput/Occupancy

	Performance Prediction
	Experimental Results
	Case study 1: Parallel Reduction
	Case study 2: BFS
	Case study 3: Matrix Transpose

	Remarks

	Power/Performance/Energy Microbenchmarking
	Introduction
	The Microbenchmark Suite
	Arithmetic processing benchmarks
	Memory benchmarks

	Experimental Results
	Conclusions

	Power-aware Performance Tuning of GPU Applications Through Microbenchmarking
	Introduction
	The Microbenchmark Suite
	GPU static characteristics
	GPU dynamic characteristics

	Experimental Results
	GPU Device Characterization
	Vector Reduction
	Matrix Transpose

	Conclusions

	A Performance, Power, and Energy Efficiency Analysis of Load Balancing Techniques for GPUs
	Introduction
	The Multi-phase technique

	Load balancing analysis
	Characteristics of datasets, GPU devices, and equipment for performance, power, energy efficiency measurement
	Performance, power, energy efficiency analysis

	Conclusion

	Part IV Dynamic Graph Processing
	Related Work
	Dynamic Sparse Formats
	K-Truss
	Triangle Counting
	GPU Triangle Counting
	Streaming and Dynamic Triangle Counting

	Hornet: An Efficient Data Structure for Dynamic Sparse Graphs and Matrices
	Introduction
	Hornet Overview
	Block arrays
	Vectorized Bit Tree
	B+Trees of block arrays
	Data structure initialization
	Dynamic Updates
	Handling graphs with extra properties

	Experimental Results
	The Hornet data structure
	Memory utilization efficiency
	Initialization Time
	Update rates
	Dynamic Triangle Counting
	Breadth-first search
	SpMV

	Conclusions

	Quickly Finding a Truss in a Haystack
	Introduction
	KTruss Algorithm Using Dynamic Graphs
	Problem Definition

	Proposed Algorithm
	Triangle Subtraction
	Triangle Detection For Single Edge-Pair Deletions
	Triangle Detection For Dual Edge-Pair Deletions

	Experimental Results
	Dynamic Graphs
	Benchmarks
	Dataset

	Conclusions

	Part V Applications
	Invariant Mining
	Introduction
	Preliminary definitions
	Invariant mining
	The parallel implementation for GPUs
	Generation of the variable dictionary
	Data transfer and overlapping of the mining phase

	Experimental results
	Concluding remarks

	cuRnet: an R package for graph traversing on GPU
	Background
	Methods
	Parallel implementation of Breadth-First Search for GPUs

	Results and discussion
	Data
	cuRnet performance

	Conclusion

	Conclusions

	Part VI Ph.D. Candidate's Bibliografy
	References

