70 research outputs found

    Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence

    Get PDF
    No abstract availabl

    Adaptive filters and internal models: Multilevel description of cerebellar function

    Get PDF
    Cerebellar function is increasingly discussed in terms of engineering schemes for motor control and signal processing that involve internal models. To address the relation between the cerebellum and internal models, we adopt the chip metaphor that has been used to represent the combination of a homogeneous cerebellar cortical microcircuit with individual microzones having unique external connections. This metaphor indicates that identifying the function of a particular cerebellar chip requires knowledge of both the general microcircuit algorithm and the chip's individual connections.Here we use a popular candidate algorithm as embodied in the adaptive filter, which learns to decorrelate its inputs from a reference ('teaching', 'error') signal. This algorithm is computationally powerful enough to be used in a very wide variety of engineering applications. However, the crucial issue is whether the external connectivity required by such applications can be implemented biologically.We argue that some applications appear to be in principle biologically implausible: these include the Smith predictor and Kalman filter (for state estimation), and the feedback-error-learning scheme for adaptive inverse control. However, even for plausible schemes, such as forward models for noise cancellation and novelty-detection, and the recurrent architecture for adaptive inverse control, there is unlikely to be a simple mapping between microzone function and internal model structure.This initial analysis suggests that cerebellar involvement in particular behaviours is therefore unlikely to have a neat classification into categories such as 'forward model'. It is more likely that cerebellar microzones learn a task-specific adaptive-filter operation which combines a number of signal-processing roles. © 2012 Elsevier Ltd

    ?????? ?????? ?????? ????????? ????????? ????????? ?????? ??????

    Get PDF
    Department of Computer Science and EngineeringWith the recent development of deep neural networks, the demands and expectations of using deep learning in robotic behavior learning are increasing. Methods for controlling robots based on visual information using deep learning-based models such as deep visuomotor policy have been actively explored. However, these methods do not consider much about a good neural network structure to process robot configuration input. In this paper, we present a novel neural network inspired by human cerebellum which contains 1-dimensional convolution layers. We evaluate our model on various real-world and simulation tasks. It is experimentally demonstrated that our novel neural network has better expressiveness for joint information than previous models.clos

    Active disturbance cancellation in nonlinear dynamical systems using neural networks

    Get PDF
    A proposal for the use of a time delay CMAC neural network for disturbance cancellation in nonlinear dynamical systems is presented. Appropriate modifications to the CMAC training algorithm are derived which allow convergent adaptation for a variety of secondary signal paths. Analytical bounds on the maximum learning gain are presented which guarantee convergence of the algorithm and provide insight into the necessary reduction in learning gain as a function of the system parameters. Effectiveness of the algorithm is evaluated through mathematical analysis, simulation studies, and experimental application of the technique on an acoustic duct laboratory model

    Speech Production as State Feedback Control

    Get PDF
    Spoken language exists because of a remarkable neural process. Inside a speaker's brain, an intended message gives rise to neural signals activating the muscles of the vocal tract. The process is remarkable because these muscles are activated in just the right way that the vocal tract produces sounds a listener understands as the intended message. What is the best approach to understanding the neural substrate of this crucial motor control process? One of the key recent modeling developments in neuroscience has been the use of state feedback control (SFC) theory to explain the role of the CNS in motor control. SFC postulates that the CNS controls motor output by (1) estimating the current dynamic state of the thing (e.g., arm) being controlled, and (2) generating controls based on this estimated state. SFC has successfully predicted a great range of non-speech motor phenomena, but as yet has not received attention in the speech motor control community. Here, we review some of the key characteristics of speech motor control and what they say about the role of the CNS in the process. We then discuss prior efforts to model the role of CNS in speech motor control, and argue that these models have inherent limitations – limitations that are overcome by an SFC model of speech motor control which we describe. We conclude by discussing a plausible neural substrate of our model

    Sleep Stage Classification: A Deep Learning Approach

    Get PDF
    Sleep occupies significant part of human life. The diagnoses of sleep related disorders are of great importance. To record specific physical and electrical activities of the brain and body, a multi-parameter test, called polysomnography (PSG), is normally used. The visual process of sleep stage classification is time consuming, subjective and costly. To improve the accuracy and efficiency of the sleep stage classification, automatic classification algorithms were developed. In this research work, we focused on pre-processing (filtering boundaries and de-noising algorithms) and classification steps of automatic sleep stage classification. The main motivation for this work was to develop a pre-processing and classification framework to clean the input EEG signal without manipulating the original data thus enhancing the learning stage of deep learning classifiers. For pre-processing EEG signals, a lossless adaptive artefact removal method was proposed. Rather than other works that used artificial noise, we used real EEG data contaminated with EOG and EMG for evaluating the proposed method. The proposed adaptive algorithm led to a significant enhancement in the overall classification accuracy. In the classification area, we evaluated the performance of the most common sleep stage classifiers using a comprehensive set of features extracted from PSG signals. Considering the challenges and limitations of conventional methods, we proposed two deep learning-based methods for classification of sleep stages based on Stacked Sparse AutoEncoder (SSAE) and Convolutional Neural Network (CNN). The proposed methods performed more efficiently by eliminating the need for conventional feature selection and feature extraction steps respectively. Moreover, although our systems were trained with lower number of samples compared to the similar studies, they were able to achieve state of art accuracy and higher overall sensitivity

    Neocerebellar Kalman filter linguistic processor: from grammaticalization to transcranial magnetic stimulation

    Get PDF
    The present work introduces a synthesis of neocerebellar state estimation and feedforward control with multi-level language processing. The approach combines insights from clinical, imaging, and modelling work on the cerebellum with psycholinguistic and historical linguistic research. It finally provides the first experimental attempts towards the empirical validation of this synthesis, employing transcranial magnetic stimulation. A neuroanatomical locus traditionally seen as limited to lower sensorimotor functions, the cerebellum has, over the last decades, emerged as a widely accepted foundation of feedforward control and state estimation. Its cytoarchitectural homogeneity and diverse connectivity with virtually all parts of the central nervous system strongly support the idea of a uniform, domain-general cerebellar computation. Its reciprocal connectivity with language-related cortical areas suggests that this uniform cerebellar computation is also applied in language processing. Insight into the latter, however, remains an elusive desideratum; instead, research on cerebellar language functions is predominantly involved in the frontal cortical-like deficits (e.g. aphasias) seldom induced by cerebellar impairment. At the same time, reflections on cerebellar computations in language processing remain at most speculative, given the lack of discourse between cerebellar neuroscientists and psycholinguists. On the other hand, the fortunate contingency of the recent accommodation of these computations in psycholinguistic models provides the foundations for satisfying the desideratum above. The thesis thus formulates a neurolinguistic model whereby multi-level, predictive, associative linguistic operations are acquired and performed in neocerebello-cortical circuits, and are adaptively combined with cortico-cortical categorical processes. A broad range of psycholinguistic phenomena, involving, among others, "pragmatic normalization", "verbal/semantic illusions", associative priming, and phoneme restoration, are discussed in the light of recent findings on neocerebellar cognitive functions, and provide a rich research agenda for the experimental validation of the proposal. The hypothesis is then taken further, examining grammaticalization changes in the light of neocerebellar linguistic contributions. Despite a) the broad acceptance of routinization and automatization processes as the domain-general core of grammaticalization, b) the growing psycholinguistic research on routinized processing, and c) the evidence on neural circuits involved in automatization processes (crucially involving the cerebellum), interdisciplinary discourse remains strikingly poor. Based on the above, a synthesis is developed, whereby grammaticalization changes are introduced in routinized dialogical interaction as the result of maximized involvement of associative neocerebello-cortical processes. The thesis then turns to the first steps taken towards the verification of the hypothesis at hand. In view of the large methodological limitations of clinical research on cerebellar cognitive functions, the transcranial magnetic stimulation apparatus is employed instead, producing the very first linguistic experiments involving cerebellar stimulation. Despite the considerable technical difficulties met, neocerebellar loci are shown to be selectively involved in formal- and semantic-associative computations, with far-reaching consequences for neurolinguistic models of sentence processing. In particular, stimulation of the neocerebellar vermis is found to selectively enhance formal-associative priming in native speakers of English, and to disrupt, rather selectively, semantic-categorical priming in native speakers of Modern Greek, as well as to disrupt the practice-induced facilitation in processing repeatedly associated letter strings. Finally, stimulation of the right neocerebellar Crus I is found to enhance, quite selectively, semantic-associative priming in native speakers of English, while stimulation of the right neocerebellar vermis is shown to disrupt semantic priming altogether. The results are finally discussed in the light of a future research agenda overcoming the technical limitations met here
    corecore