22 research outputs found

    The blockchain: a new framework for robotic swarm systems

    Get PDF
    Swarms of robots will revolutionize many industrial applications, from targeted material delivery to precision farming. However, several of the heterogeneous characteristics that make them ideal for certain future applications --- robot autonomy, decentralized control, collective emergent behavior, etc. --- hinder the evolution of the technology from academic institutions to real-world problems. Blockchain, an emerging technology originated in the Bitcoin field, demonstrates that by combining peer-to-peer networks with cryptographic algorithms a group of agents can reach an agreement on a particular state of affairs and record that agreement without the need for a controlling authority. The combination of blockchain with other distributed systems, such as robotic swarm systems, can provide the necessary capabilities to make robotic swarm operations more secure, autonomous, flexible and even profitable. This work explains how blockchain technology can provide innovative solutions to four emergent issues in the swarm robotics research field. New security, decision making, behavior differentiation and business models for swarm robotic systems are described by providing case scenarios and examples. Finally, limitations and possible future problems that arise from the combination of these two technologies are described

    Swarm robotics: Cooperative navigation in unknown environments

    Get PDF
    Swarm Robotics is garnering attention in the robotics field due to its substantial benefits. It has been proven to outperform most other robotic approaches in many applications such as military, space exploration and disaster search and rescue missions. It is inspired by the behavior of swarms of social insects such as ants and bees. It consists of a number of robots with limited capabilities and restricted local sensing. When deployed, individual robots behave according to local sensing until the emergence of a global behavior where they, as a swarm, can accomplish missions individuals cannot. In this research, we propose a novel exploration and navigation method based on a combination of Probabilistic Finite Sate Machine (PFSM), Robotic Darwinian Particle Swarm Optimization (RDPSO) and Depth First Search (DFS). We use V-REP Simulator to test our approach. We are also implementing our own cost effective swarm robot platform, AntBOT, as a proof of concept for future experimentation. We prove that our proposed method will yield excellent navigation solution in optimal time when compared to methods using either PFSM only or RDPSO only. In fact, our method is proved to produce 40% more success rate along with an exploration speed of 1.4x other methods. After exploration, robots can navigate the environment forming a Mobile Ad-hoc Network (MANET) and using the graph of robots as network nodes

    Parametric Analysis of BFOA for Minimization Problems Using a Benchmark Function

    Get PDF
    This paper presents the social foraging behavior of Escherichia coli (E. Coli) bacteria based on Bacteria Foraging Optimization algorithms (BFOA) to find optimization and distributed control values. The search strategy for E. coli is very complex to express and the dynamics of the simulated chemotaxis stage in BFOA is analyzed with the help of a simple mathematical model. The methodology starts from a detailed analysis of the parameters of bacterial swimming and tumbling (C) and the probability of elimination and dispersion (Ped), then an adaptive variant of BFOA is proposed, in which the size of the chemotherapeutic step is adjusted according to the current suitability of a virtual bacterium. To evaluate the performance of the algorithm in obtaining optimal values, the resolution was applied to one of the benchmark functions, in this case the Ackley minimization function, a comparative analysis of the BFOA is then performed. The simulation results have shown the validity of the optimal values (minimum or maximum) obtained on a specific function for real world problems, with a function belonging to the benchmark group of optimization functions

    Energy Efficient Routing Algorithms for Wireless Sensor Networks and Performance Evaluation of Quality of Service for IEEE 802.15.4 Networks

    Get PDF
    The popularity of Wireless Sensor Networks (WSN) have increased tremendously in recent time due to growth in Micro-Electro-Mechanical Systems (MEMS) technology. WSN has the potentiality to connect the physical world with the virtual world by forming a network of sensor nodes. Here, sensor nodes are usually battery-operated devices, and hence energy saving of sensor nodes is a major design issue. To prolong the network‘s lifetime, minimization of energy consumption should be implemented at all layers of the network protocol stack starting from the physical to the application layer including cross-layer optimization. In this thesis, clustering based routing protocols for WSNs have been discussed. In cluster-based routing, special nodes called cluster heads form a wireless backbone to the sink. Each cluster heads collects data from the sensors belonging to its cluster and forwards it to the sink. In heterogeneous networks, cluster heads have powerful energy devices in contrast to homogeneous networks where all nodes have uniform and limited resource energy. So, it is essential to avoid quick depletion of cluster heads. Hence, the cluster head role rotates, i.e., each node works as a cluster head for a limited period of time. Energy saving in these approaches can be obtained by cluster formation, cluster-head election, data aggregation at the cluster-head nodes to reduce data redundancy and thus save energy. The first part of this thesis discusses methods for clustering to improve energy efficiency of homogeneous WSN. It also proposes Bacterial Foraging Optimization (BFO) as an algorithm for cluster head selection for WSN. The simulation results show improved performance of BFO based optimization in terms of total energy dissipation and no of alive nodes of the network system over LEACH, K-Means and direct methods. IEEE 802.15.4 is the emerging next generation standard designed for low-rate wireless personal area networks (LR-WPAN). The second part of the work reported here in provides performance evaluation of quality of service parameters for WSN based on IEEE 802.15.4 star and mesh topology. The performance studies have been evaluated for varying traffic loads using MANET routing protocol in QualNet 4.5. The data packet delivery ratio, average end-to-end delay, total energy consumption, network lifetime and percentage of time in sleep mode have been used as performance metrics. Simulation results show that DSR (Dynamic Source Routing) performs better than DYMO (Dynamic MANET On-demand) and AODV (Ad–hoc On demand Distance Vector) routing protocol for varying traffic loads rates

    Engineering Self-Adaptive Collective Processes for Cyber-Physical Ecosystems

    Get PDF
    The pervasiveness of computing and networking is creating significant opportunities for building valuable socio-technical systems. However, the scale, density, heterogeneity, interdependence, and QoS constraints of many target systems pose severe operational and engineering challenges. Beyond individual smart devices, cyber-physical collectives can provide services or solve complex problems by leveraging a “system effect” while coordinating and adapting to context or environment change. Understanding and building systems exhibiting collective intelligence and autonomic capabilities represent a prominent research goal, partly covered, e.g., by the field of collective adaptive systems. Therefore, drawing inspiration from and building on the long-time research activity on coordination, multi-agent systems, autonomic/self-* systems, spatial computing, and especially on the recent aggregate computing paradigm, this thesis investigates concepts, methods, and tools for the engineering of possibly large-scale, heterogeneous ensembles of situated components that should be able to operate, adapt and self-organise in a decentralised fashion. The primary contribution of this thesis consists of four main parts. First, we define and implement an aggregate programming language (ScaFi), internal to the mainstream Scala programming language, for describing collective adaptive behaviour, based on field calculi. Second, we conceive of a “dynamic collective computation” abstraction, also called aggregate process, formalised by an extension to the field calculus, and implemented in ScaFi. Third, we characterise and provide a proof-of-concept implementation of a middleware for aggregate computing that enables the development of aggregate systems according to multiple architectural styles. Fourth, we apply and evaluate aggregate computing techniques to edge computing scenarios, and characterise a design pattern, called Self-organising Coordination Regions (SCR), that supports adjustable, decentralised decision-making and activity in dynamic environments.Con lo sviluppo di informatica e intelligenza artificiale, la diffusione pervasiva di device computazionali e la crescente interconnessione tra elementi fisici e digitali, emergono innumerevoli opportunità per la costruzione di sistemi socio-tecnici di nuova generazione. Tuttavia, l'ingegneria di tali sistemi presenta notevoli sfide, data la loro complessità—si pensi ai livelli, scale, eterogeneità, e interdipendenze coinvolti. Oltre a dispositivi smart individuali, collettivi cyber-fisici possono fornire servizi o risolvere problemi complessi con un “effetto sistema” che emerge dalla coordinazione e l'adattamento di componenti fra loro, l'ambiente e il contesto. Comprendere e costruire sistemi in grado di esibire intelligenza collettiva e capacità autonomiche è un importante problema di ricerca studiato, ad esempio, nel campo dei sistemi collettivi adattativi. Perciò, traendo ispirazione e partendo dall'attività di ricerca su coordinazione, sistemi multiagente e self-*, modelli di computazione spazio-temporali e, specialmente, sul recente paradigma di programmazione aggregata, questa tesi tratta concetti, metodi, e strumenti per l'ingegneria di ensemble di elementi situati eterogenei che devono essere in grado di lavorare, adattarsi, e auto-organizzarsi in modo decentralizzato. Il contributo di questa tesi consiste in quattro parti principali. In primo luogo, viene definito e implementato un linguaggio di programmazione aggregata (ScaFi), interno al linguaggio Scala, per descrivere comportamenti collettivi e adattativi secondo l'approccio dei campi computazionali. In secondo luogo, si propone e caratterizza l'astrazione di processo aggregato per rappresentare computazioni collettive dinamiche concorrenti, formalizzata come estensione al field calculus e implementata in ScaFi. Inoltre, si analizza e implementa un prototipo di middleware per sistemi aggregati, in grado di supportare più stili architetturali. Infine, si applicano e valutano tecniche di programmazione aggregata in scenari di edge computing, e si propone un pattern, Self-Organising Coordination Regions, per supportare, in modo decentralizzato, attività decisionali e di regolazione in ambienti dinamici

    Building Evacuation with Mobile Devices

    Get PDF
    In der Dissertation wird ein Konzept für ein Gebäudeevakuierungssystem vorgestellt, das es ermöglicht, Personen mit Hilfe mobiler Endgeräte im Evakuierungsfall aus einem Gebäude zu führen. Die Dissertation gliedert sich in drei thematische Bereiche, in denen zunächst ein Konzept für die Systemarchitektur vorgestellt wird und anschließend verschiedene Algorithmen zur Routenplanung sowie zur Lokalisierung der Geräte vorgestellt und evaluiert werden

    On the role and opportunities in teamwork design for advanced multi-robot search systems

    Get PDF
    Intelligent robotic systems are becoming ever more present in our lives across a multitude of domains such as industry, transportation, agriculture, security, healthcare and even education. Such systems enable humans to focus on the interesting and sophisticated tasks while robots accomplish tasks that are either too tedious, routine or potentially dangerous for humans to do. Recent advances in perception technologies and accompanying hardware, mainly attributed to rapid advancements in the deep-learning ecosystem, enable the deployment of robotic systems equipped with onboard sensors as well as the computational power to perform autonomous reasoning and decision making online. While there has been significant progress in expanding the capabilities of single and multi-robot systems during the last decades across a multitude of domains and applications, there are still many promising areas for research that can advance the state of cooperative searching systems that employ multiple robots. In this article, several prospective avenues of research in teamwork cooperation with considerable potential for advancement of multi-robot search systems will be visited and discussed. In previous works we have shown that multi-agent search tasks can greatly benefit from intelligent cooperation between team members and can achieve performance close to the theoretical optimum. The techniques applied can be used in a variety of domains including planning against adversarial opponents, control of forest fires and coordinating search-and-rescue missions. The state-of-the-art on methods of multi-robot search across several selected domains of application is explained, highlighting the pros and cons of each method, providing an up-to-date view on the current state of the domains and their future challenges

    Odor Localization using Gas Sensor for Mobile Robot

    Get PDF
    This paper discusses the odor localization using Fuzzy logic algorithm. The concentrations of the source that is sensed by the gas sensors are used as the inputs of the fuzzy. The output of the Fuzzy logic is used to determine the PWM (Pulse Width Modulation) of driver motors of the robot. The path that the robot should track depends on the PWM of the right and left motors of the robot. When the concentration in the right side of the robot is higher than the middle and the left side, the fuzzy logic will give decision to the robot to move to the right. In that condition, the left motor is in the high speed condition and the right motor is in slow speed condition. Therefore, the robot will move to the right. The experiment was done in a conditioned room using a robot that is equipped with 3 gas sensors. Although the robot is still needed some improvements in accomplishing its task, the result shows that fuzzy algorithms are effective enough in performing odor localization task in mobile robot
    corecore