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On the role and opportunities in
teamwork design for advanced
multi-robot search systems

Roee M. Francos* and Alfred M. Bruckstein

Multi-Agent Robotic Systems Laboratory, Department of Computer Science, Technion- Israel Institute
of Technology, Haifa, Israel

Intelligent robotic systems are becoming ever more present in our lives across
a multitude of domains such as industry, transportation, agriculture, security,
healthcare and even education. Such systems enable humans to focus on the
interesting and sophisticated tasks while robots accomplish tasks that are either
too tedious, routine or potentially dangerous for humans to do. Recent advances
in perception technologies and accompanying hardware, mainly attributed to
rapid advancements in the deep-learning ecosystem, enable the deployment of
robotic systems equipped with onboard sensors as well as the computational
power to perform autonomous reasoning and decision making online. While
there has been significant progress in expanding the capabilities of single and
multi-robot systems during the last decades across a multitude of domains and
applications, there are still many promising areas for research that can advance
the state of cooperative searching systems that employ multiple robots. In this
article, several prospective avenues of research in teamwork cooperation with
considerable potential for advancement of multi-robot search systems will be
visited and discussed. In previous works we have shown that multi-agent search
tasks can greatly benefit from intelligent cooperation between team members
and can achieve performance close to the theoretical optimum. The techniques
applied can be used in a variety of domains including planning against adversarial
opponents, control of forest fires and coordinating search-and-rescue missions.
The state-of-the-art on methods of multi-robot search across several selected
domains of application is explained, highlighting the pros and cons of each
method, providing an up-to-date view on the current state of the domains and
their future challenges.

KEYWORDS

multiple mobile robot systems, teamwork analysis, motion and path planning for multi
agent systems, aerial robots, robot surveillance and security, collaborative algorithms
for motion planning of autonomous robots

1 Introduction

In this paper, we provide an extensive survey of the current literature and the state-of-
the-art of the field as well as our perspective and our opinion on its most intriguing future
research directions based on a thorough literature survey and our experience in investigating
and developing algorithms for multi-robot systems.

A cooperating team of robots offers several benefits over a single robotic platform such
as reliability and robustness through redundancy, reduced time for completing the task, the
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possibility to operate in a larger environment, task decomposition
and allocation, combined with the ability to use heterogeneous
robots with different capabilities to optimally complete a designated
mission. In intelligent robotics tasks, teamwork can be achieved
with either direct, indirect or without any communication between
the robots comprising the team, which are also referred to as
agents throughout this article. Direct communication relies on
the broadcast of information between agents in order to achieve
the desired team’s goal. There are many forms for indirect
communication such as sensing the environment or observing the
behaviors of other agents in order to plan an agent’s plan. Having no
communication implies that agents are oblivious to the actions of
other agents in the team and operate with a plan that is irrespective
of the plans of other agents in the team.

This paper highlights different challenges and aspects related
to team cooperation in multi-agent search tasks. The chosen topics
were distilled from recent major conferences and journal papers
concerned with multi-agent search tasks. We chose to focus on
specific research topics we believe are the most promising for
future research. We begin with a survey of recent advances in
the area of search and detection of smart and evasive targets
by teams of searching agents. Next, we address topics focusing
on the role of reinforcement learning in multi-agent search tasks
in unknown environments and in adversarial settings, on task
allocation between team members in multi-agent search tasks,
on multi-robot exploration, and on the usage of reconfigurable
team formations for search and surveillance applications. We then
follow with a discussion on the implementation of multi-agent
search tasks where despite imperfect communication between team
members allow the team to reconfigure itself in order to complete
the task. Furthermore, cooperative sensing and robot motion
coordination, multi-agent active perception and multi-agent active
search are addressed as important open problems in multi-agent
search solutions in real-world scenarios.Figure 1presents a diagram
showing a classification of future research directions in multi-agent
search tasks, addressed in this paper.

We hope that results achieved in previous works along with
the outlining of intriguing future research directions regarding
cooperation design in multi-agent search tasks will lead to further
research in these directions.

2 A view on current research trends in
multi-agent search

2.1 Introduction

Multi-agent search tasks aim at developing strategies for
detection of targets in an area of interest. The targets being searched
for can be static or mobile and information regarding the area
in which the search is performed, the number of targets and
their capabilities assumed in various studies ranges from complete
knowledge of the search protocols to problems with targets having
no, or very limited knowledge about the search process. There
are several ways to categorize the approaches to search, however
one major distinction between proposed methods are probabilistic
approaches that aim to develop algorithms that maximizes the
probability of detection and guaranteed detection protocols that aim

to devise strategies that guarantee success of the search mission.
These types of problems were investigated for centuries, and in
modern times are typically considered to be carried out by teams of
autonomous unmanned mobile agents such as UAVs or Unmanned
Underwater Vehicles (UUVs). Among the pioneering works on this
subject are Koopman (1980), Alpern andGal (2006), and Stone et al.
(2016).

Ismail et al. (2018), present a recent survey on current challenges
and future research directions concerning cooperative multi-
agent robot systems. The authors focus on three ingredients
that specify and distinguish between cooperative multi-robot
systems which are the types of agents, the control architecture
and the communications method. Agents can either be identical
(homogenous) or heterogeneous. Control architectures may be
decentralized, centralized or a hybrid combination of the two. The
communication method can be implicit or explicit.

Homogeneous agents allow easier and more efficient
coordination, for some tasks using robots with different capabilities
with having an ability to apply different algorithms may be
more suitable. Communication between robots is a form of
interaction that allows them to cooperate by, sharing and exchanging
information and coordinate their actions to achieve a common goal.
Communication can be done by the robot leaving pheromone traces
in the environment and sensing the traces left by peers, interaction
by explicit signaling by broadcasting messages to one another or
implictly through the agents’ sensors, by reacting to the presence of
other agents detected by a robot’s sensors.

The article surveys the possibilities of using centralized
and distributed approaches to multi-agent systems design
mentioning the tradeoffs between using global information to
plan behaviors in a centralized way compared to having only
local information, in distributed scenarios, which may impact
the effectiveness of achieving the team’s goal. However, as the
number of agents increases and the environment is changing in
time, distributed approaches may be better suited since they require
less communication computations and are faster, flexible and more
adept to respond to changing situations.

In Chung et al. (2011b), a survey on search and pursuit-evasion
in mobile robotics is provided. The review describes algorithms
and results arising from different assumptions on searchers, evaders
and environments and discusses potential field applications for
the presented methods. Several pursuit-evasion games directly
connected to robotics are the focus of the review, in contrast to
the other cited surveys that concentrate on differential games. The
paper concentrates on adversarial pursuit-evasion games on graphs
and in polygonal environments where the objective is to maximize
the worst-case performance on the search or capture time and on
probabilistic search scenarioswhere the objective is the optimization
of the expected value of the search objective, such as the maximal
probability of detection or minimal capture time.

In Cao et al. (2012), an overview on distributed multi-agent
coordination is provided. Among the reviewed topics that are
addressed are consensus, formation control, optimization, and
estimation. In Yan et al. (2013), a survey and analysis of multi-
robot coordination is presented.The review categorizes papers based
on their communication mechanism, planning strategies and their
decision-making structure. In Chen and Barnes (2014), a review
on human factors issues in human-agent teaming for multirobot
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FIGURE 1
Classification of future research directions in multi-agent search tasks.

control is provided. Aspects such as efficient human supervision of
multiple robots, human trust in automated systems, maintenance
of human operator’s situational awareness, human-agent interaction
and retention of human decision authority are investigated. In
Oh et al. (2015), a survey of recent results in multi-agent formation
control is conducted. Existing works are classified according to
position, displacement, and distance-based control.

In Khamis et al. (2015), a review on multi-robot task allocation
is given.The paper describes recent approaches and future direction
on how to optimally assign tasks to the members of a team of
robots in order to optimize the team’s performance while satisfying
to the constraints of the problem. The paper describes methods on
how to model the problem such as discrete fair division, optimal
assignment problem, alliance efficiency problem and the multiple
travelling salesman problem. It further discusses categorization
of task allocation schemes into single versus multi-task which
describes the ability of robots to perform tasks in sequentially
or in parallel. Single-robot versus multi-robot and instantaneous
assignment versus time extended assignment which describes the
planning performed by robots to allocate the tasks are additional
categorization criteria.

In Robin and Lacroix (2016), a taxonomy and survey on
multi-robot target detection and tracking is provided. Among the
investigated topics are coverage, surveillance, search, patrolling,
pursuit-evasion games, target detection and target tracking. Current
approaches are described, and future open problems are discussed.
In Cortés and Egerstedt (2017), a review on coordinated control
of multi-robot systems is provided. Decentralized control and
coordination strategies are investigated specifically in the context
of developing decentralized algorithms that lead robot teams to
be in specific geometric configurations by means of descent-based
algorithms defined with respect to the performance of team. In
Rizk et al. (2019), the current state of research in cooperative
heterogeneous multi-robot systems is investigated. The review
focuses on aspects such as task decomposition, coalition formation,
task allocation, perception, and multi-agent planning and control.
In Verma and Ranga (2021), a recent survey on multi-robot
coordination analysis is provided.

InDrew (2021), a thorough survey on the current status ofmulti-
agent systems for search and rescue applications is presented. The
authors highlight the advancements made through the combination
of machine learning and control techniques in perception driven

autonomy, decentralized multi-robot coordination and human-
robot interaction as the main fronts driving research forward. The
paper further mentions that advancements in ad hoc networks
are approaching the technological readiness level to enable reliable
communication in safety-critical applications such as search and
rescue missions. The survey further suggests that future research
is essential in the context of simulation-to-reality (sim-to-real)
transfer, for the purpose of enabling accurate models trained in
simulation to be applicable in real world search and rescue scenarios
as well. Furthermore, the authors indicate that verification and
real-world evaluations of algorithms, especially ones that rely on
machine-learning based technologies and ones that have some
degrees of autonomy should be more extensively tested in the field
to allow a true understanding of the performance and maturity of
these potentially life-saving technologies.

In Queralta et al. (2020), collaborative multi-robot planning,
coordination, perception and active vision are investigated in the
context of search and rescue applications. The paper provides a
review on heterogeneous search and rescue robots in different
environments and on active perception in multi-robot systems.
The paper discusses the most pressing open problems in these
topics which are shared autonomy, the ability to transfer knowledge
gained in simulation to reality (sim-2-real), coordination and
interoperability in heterogeneous multi-robot systems, and active
perception in a variety of environments such as maritime, urban,
wilderness or disaster zones.

The paper interestingly describes challenges and opportunities
for autonomous robots in different types of environments such as
urban, maritime and wilderness search and rescue missions and
discusses the types of heterogeneous autonomous robots that are
used in different search and rescue settings as well as the advantages
of each robot and abilities of each type of robot to complement the
capabilities of different types of robots throughout the mission.

An additional aspect that the paper discusses is shared autonomy
and human-swarm interaction. Shared autonomy refers to the
autonomous control of the majority of degrees of freedom in a
system, while designing a control interface for human operators
to control a reduced number of parameters defining the global
behavior of the system. Furthermore the paper discusses the
important role of communication by using robotic mobile ad
hoc networks for the purpose of coordination and sharing of
information between team members, highlighting that maintaining
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communication connectivity between the robots is essential in
search and rescue missions, a topic that has been extensively studied
in decentralized multi-agent control applications such as Barel et al.
(2019) and Segall and Bruckstein (2022).

The survey continues to describe the main algorithm types
that are essential to multi-robot coordination and planning for
collaborative robotic search and rescue missions. Amongst them are
multi-robot task allocation, path planning and area coverage, area
exploration and centralized and distributed multi-robot planning.

In Williams (2020), a different perspective than the ones
discussed in this paper concerning collaborative multi-robot multi-
human teams in search and rescue applications is investigated.
The paper addresses several goals in this topic which are: a path
planner for multiple UAVs that is adaptable to human behaviour,
behavioural modeling that allows to localize locations of lost people,
a distributed computing prototype that allows UAVs to perform
calculations and communications, as well as an interface allowing
human-robot interaction for various levels of robot autonomous
capabilities. Enabling autonomous robots to perform search and
rescue efforts reduces the cost of these search missions, allows
area to be searched faster and allows robots to explore areas
that are inaccessible to humans. The authors pose interesting
questions regarding the exchange of information between robotic
searchers and the human controller and debate on the balance
between remotely controlling the UAV team and letting them
to autonomously collaborate and explore the area. Therefore, the
solution that is sought seeks to achieve maximal search effectiveness
with minimal cost and computational capabilities by developing a
time-varying policy that allows humans and robots to work together
in order to perform efficient decision making by utilizing both
human and robot resources alike.

In Li et al. (2020), A path planning method for sweep coverage
with multiple UAVs that act as a wireless sensor network is
investigated, discussing an additional future research domain related
to multi-agent surveillance algorithms. The paper considers the
sweep coverage problem, in which several UAVs serve as mobile
sensors and are used to patrol an area in search of targets. The
goal is to allow maximal coverage of targets with the fewest
number of UAVs. Since the battery lifetime of UAVs is constrained,
they do not have the required energy to allow them to visit all
targets before they have to land to recharge. Therefore, targets are
ranked according to their importance and targets are chosen to
be visited accordingly. The coverage rate is defined as the ratio
between the total weights of covered targets and the total weights
of all targets. Since maximizing target coverage and minimizing
search time are opposing objectives, a new weighted targets
sweep coverage algorithm is proposed allowing the construction of
effective flight paths for UAVs to solve the min-time max-coverage
problem.

In Rahman et al. (2021), run-time monitoring of machine
learning algorithms for robotic perception is investigated. Run-
time monitoring determines the performance of a robot in test
scenarios and in environments and conditions it did not previously
encounter in training in order to test its true behaviour in the field
and its generalization capabilities. This is an extremely important
topic regarding the applicability of using on-boardmachine learning
algorithms in real-world tasks, specifically aboard drones. Machine
learning (ML) tasks such as perception tasks are often very

energy consuming (Deng, 2018; García-Martín et al., 2018; García-
Martín et al., 2019), thus they deplete the battery of drones faster,
and limit the time they can be airborne. This occurs since ML
algorithms require heavy computations, resulting in the need to
carry larger batteries with increased energy capacity that in turn
lead to an increased weight of a robot’s payload, to meet its power
demand.

In Castrillo et al. (2022) a review on anti-unmanned aerial
systems technologies for cooperative defensive teams of drones
is provided. The paper discusses the concept of a multi-robot
team that acts as a cooperative defensive system against other
drones. To facilitate the development of such anti-UAV methods,
the recent technological status for sensing,mitigation and command
and control systems for intercepting unmanned aerial systems are
discussed, as well as their applicability for usage in mini drones.
In Barbeau et al. (2022) recent trends on collaborative drones are
explored with an emphasis on surveying threats posed by drones,
target recognition, navigation under uncertainty and risk avoidance
which are relevant topics in the perspective of multi-agent search
tasks.

In Horyna et al. (2022), decentralized swarms of unmanned
aerial vehicles for real-world search and rescue operations
without explicit communication are explored. A self-adaptive
communication strategy is developed to allow an efficient change
of swarm azimuth to a direction with a higher priority in order
to inspect an object of interest based on the real-time on-
board detections. A local visual communication channel allows
neighboring robots without explicit communication to achieve high
reliability and scalability of the system. The developed techniques
can aid in victim verification and close-range inspections and can
also be applied for cooperative environment exploration.

At last we discuss the topic of learning sub-team performance
as an additional future research direction for advancing multi-robot
searching systems. In Banfi et al. (2022), hierarchical planning for
heterogeneous multi-robot routing problems via learned sub-team
performance is examined in a different context than search and
rescue applications however ideas drawn from the paper may be
applied in this context as well.

2.2 Probabilistic search and detection of
opponents

This section highlights works concerned with probabilistic
search and detection of opponents. This family of approaches aims
to develop algorithms thatmaximize the probability to detect a set of
targets being searched.These types of problems are often referred to
as pursuit-evasion games, in which the pursuers’ goal is to detect and
catch the evaders and the evaders goal is to avoid being detected and
caught by the pursuing team. There are several variants of pursuit-
evasion games which include different combinations of single and
multiple evaders and pursuers settings.

In Chung et al. (2011a), optimal detection of an underwater
intruder in a channel using unmanned underwater vehicles is
considered. The objective is to devise a set of periodic trajectories
that are implemented by the patrolling unmanned underwater
vehicles that aim to maximize the probability to detect the intruder.
The problem is solved by using tools from optimal control theory.
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In Gan and Sukkarieh (2011), multi-UAV probabilistic target search
using explicit decentralized gradient-based negotiation is explored.

Developing strategies for multi-agent perimeter patrol in
adversarial settings where an opponent possesses full knowledge of
the patrolling agents’ search strategy are developed in Agmon et al.
(2008) and Agmon et al. (2011). Possessing information about the
agents’ patrol strategy allows the smart opponent to attempt entering
the guarded perimeter at the location with the highest probability
for its success at being undetected. To prevent the opponent
from utilizing its knowledge on the patrol strategy, randomness
is introduced into the robots’ perimeter patrol algorithm, hence
preventing the opponent from having full knowledge of the chosen
patrol strategy and thus increasing the chances of the patrolling team
to detect it.

There is also a large body of literature concerning search for
targets in discrete domains. InCasbeer et al. (2013) aUAV is charged
with the task of estimating the state of an intruder by gathering
information from unattended ground sensors that relay information
when the UAV is in close proximity to them. The transmitted
information includes describing whether an intruder passed in the
vicinity of the sensor, the time at which the intruder was detected as
well as its speed.The intruder’s position and speed are estimated and
the network on which the intruder moves is a discrete occupancy
grid. In Ahmed et al. (2017), an additional work that considers
probabilistic multi-target localization on road networks by using
unattended ground sensors is investigated. In Temple and Frazzoli
(2010) a somewhat related problem to discrete search for smart
targets, the cow path problem is investigated.The cow path problem,
is an on-line search problem where k short-sighted cows search
for a reward on m (k ≤m) paths which diverge from a single
origin and do not intersect each other. The cows goal is to get
the reward at the minimal grazing time. The solution is provided
by minimization of the expected time until a cow reaches the
reward.

In Makkapati and Tsiotras (2019), pursuit–evasion problems
involving multiple pursuers and multiple evaders (MPME) are
investigated. Pursuers and evaders are all assumed to be identical,
and pursuers employ either, constant bearing or pure-pursuit
strategies. The problem is simplified by using a dynamic divide
and conquer approach, where at every time instant each evader is
assigned to a set of pursuers based on the instantaneous positions
of all the players. The original MPME problem is decomposed
to a sequence of simpler multiple pursuers single evader (MPSE)
problems by checking if a pursuer is relevant or redundant
against each evader. Then, only relevant pursuers participate in the
MPSE pursuit of each evader. Recent surveys on pursuit evasion
problems are Chung T. H. et al. (2011), Kumkov et al. (2017), and
Weintraub et al. (2020).

In Kumkov et al. (2017), a survey on pursuit problems with
1 pursuer versus 2 evaders or 2 pursuers versus 1 evader are
formulated as a dynamic game and solved with general methods of
zero-sum differential games. In Weintraub et al. (2020), a survey on
pursuit-evasion differential games that classifies papers according to
the numbers of participating players: single-pursuer single-evader
(SPSE), MPSE, one- pursuer multiple-evaders (SPME) and MPME
is provided.

In Garcia et al. (2019), a two-player differential game where a
pursuer attempts to capture an evader before it escapes a circular

region is explored.The state space, comprised of pursuer and evader
locations, is divided into evader and defender winning regions.
In each region the players try to execute their optimal strategies.
The players’ strategy depends on the state of the system (if it
is in the capture or escape regions), and the proposed approach
guarantees that if the players execute the prescribed optimal moves
they improve their chances to win. The players move at a constant
speed and the pursuer is faster than the evader. The players’
controls are the instantaneous heading angles. The game is a two-
termination set differential game, i.e., the game ends when either
player wins. In Garcia et al. (2020), the problem of a border defense
differential game where M pursuers cooperate to optimally catch
N evaders before they reach the border of the region and escape
is investigated. The pursuer team exchanges information between
its team members in order to determine the discrete assignment of
pursers to evaders in an on-line manner. Furthermore, the game
is a perfect information differential game where both pursuers and
evaders have access to all state variables, which are the locations of
all players, as well all their dynamics and velocities. The pursuers in
this setting are assumed to have greater speeds than the evaders.The
game takes place in a simple half-plane environment, and ends when
all evaders are either caught or reach the border and escape.

Pursuit-evasion games are applied to address defending a region
from the entrance of intruders as well. Such works are Shishika
and Kumar (2018), Shishika et al. (2019), and Shishika et al. (2020)
which investigate perimeter defense games and focus on cooperation
between pursuers to improve the defense tactic.

In Khaluf et al. (2018), the authors investigate exploration of
unknown environments by an autonomous team of robots that
perform a collective Lévy walk to efficiently explore the area.
The motivation to perform Lévy walks for exploration tasks in
environments where no prior knowledge exists on the location of
the targets being searched is that it maximizes the search efficiency,
implying that for a given time interval the number of detected
targets is maximal compared to other types of random walks and
exploration strategies such as Brownian motion. In a Lévy walk
step the orientation is sampled from a uniform distribution and the
length of the step from a heavy-tailed distribution.

The main contribution of this paper is to preserve the Lévy
properties of the walk for a large swarm of searching robots, which
tend to disappear as the number of robots in the swarm increases
due to the intersecting paths of the robots.The developed algorithm
strives to perform a Collective Lévy Walk for the entire swarm by
considering local communication between searching robots, thus
improving the efficiency of the search compared to an algorithm in
which each robot performs an explorative Lévy walk independently
without coordinating its actions with the other members of the
searching swarm. This is achieved by using an artificial potential
field that repels spatially close robots from each other in order to
increase the length of the walk they perform. Increasing the length
of thewalks enables the robots to exploremore areas in less time, and
prevents them from visiting targets it already found, thus resulting
in more detected targets.

The results of the experiments conducted in the paper, indeed
show that the resulting distribution of robot walk lengths for large
robot swarms implementing the Collective Lévy Walk is closer to a
heavy-tailed distribution compared to an exponential distribution.
This is in contrast to swarms that execute independent Lévy walks in
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which the distribution of walk lengths does not follow a heavy-tailed
distribution for increasing numbers of searching robots.

In Nauta et al. (2020), the authors investigate a similar problem
of searching for a set of targets in an unknown environment
by utilizing a team of searching robots. The robots perform a
collective Lévy walk that preserves the desired properties of
the Lévy walk for large swarm sizes of several hundreds of
searching robots. The authors investigate search of targets that are
homogeneously dispersed in the explored environments as well
as scenarios in which the targets are dispersed heterogeneously
and are located in separated robot clusters across the
environment.

In addition to maximizing the efficiency of the search, another
metric that is calculated to determine the quality of the search
is the fraction of targets detected compared to the total number
of targets that are present in the environment. For heterogeneous
environments patch search efficiency is also explored in order to
measure the quality of detections within each target patch. The
computed metrics aim to capture both the diffusiveness of the
searching swarm in the area and its collective efficiency in detecting
targets.

The investigated protocols are the individual Lévy walk, the
Collective Lévy walk and the Adaptive Lévy walk that extends
the collective Lévy walk algorithm to heterogeneous environments
and increases its efficiency. The Adaptive Lévy walk achieves this
performance increase by adapting the Lévy parameterα that controls
the length of the walk step, based on a local density estimation
performed by each robot. Once a target is detected, the robot infers
that it is likely next to a cluster of robots and hence assumes the
density of targets in its vicinity is high.

Therefore, by changing α and setting α = 2, which implies the
robot is performing Brownian motion, improves the detection
capability since Browning motion is known to be optimal in
environments with high target density, as proved in Bartumeus et al.
(2002). Therefore, by adapting its walk length based on the sensed
target density distribution the Adaptive Collective Lévy walk
achieves better results compared to the compared protocols while
preserving the desired properties of the Lévy walk for swarms with
a large number of searching robots.

2.3 Guaranteed detection of smart
opponents

A smart target is an opponent that can perform optimal
evasive maneuvers meant to avoid its interception. The works
discussed in this section aim to provide an extensive and complete
theoretical, analytical and experimental framework for search
tasks involving unknown numbers of smart targets. Planning
against an unknown number of opponents relates to problems
of planning under uncertainty and planning without complete
state information and is a scenario that is seldom investigated
in the context of adversarial search tasks as most works assume
some prior knowledge on the number of opponents and their
locations.

The searching agents which are referred to as sweepers
are equipped with sensors whose purpose is to detect the
targets/opponents. Throughout this section the terms searchers

and sweepers are the same and both refer to the searching team
of agents that attempts to catch all evaders. In recent years,
swarming technologies are attracting attention as a means of
successfully accomplishing complex goals by relying on redundancy
and robustness to failures by employing a large number of simple
robots with limited capabilities instead of using a small number of
sophisticated and expensive robots. The design and implemented
protocols of the robot teams discussed in this part draw inspiration
from such robots.

In Vincent and Rubin (2004), investigate guaranteed detection
of smart targets in a channel environment using a team of
detecting sweeping agents and Altshuler et al. (2008) provides
optimal strategies to the same problem. In McGee and Hedrick
(2006), investigate search patterns for the purpose of detecting all
smart evaders in a given planar circular region.The intruders do not
have anymaneuverability restrictions besides an upper limit on their
speed. The searchers are equipped with sensors that detect evaders
that are inside a disk shaped region around them. The considered
search pattern is composed of spiral and linear sections.

In Tang and Ozguner (2006), propose a non-escape search
procedure for evaders. Evaders are originally located in a convex
region of the plane and may move out of it. Tang et al. propose a
cooperative progressing spiral-in algorithm performed by several
agents with disk shaped sensors in a leader-follower formation. The
authors establish a sufficient condition for the number of searching
agents required to guarantee that no evader can escape the region
undetected.

In Guerrero-Bonilla et al. (2021a), the authors investigate area
defense and surveillance on rectangular regions using control
barrier functions to develop a guaranteed defense strategy in
which a defending robot ensures that an intruder cannot enter
the defended region by applying appropriate reactive control laws.
In Guerrero-Bonilla et al. (2021b), a control law based on control
barrier functions is applied for robust perimeter defense. In this
work a team of robots move around the perimeter of the region
in order to guarantee detection of an intruder that attempts to
enter the defended region. In Guerrero-Bonilla and Dimarogonas
(2020), a solution to the perimeter surveillance problem for one
intruder and several defending robots based in set-invariance is
provided.

First, several search challenges for detection of smart evaders
are presented. In all these problems the aim is to develop a “must-
win” strategy that does not allow any evaders to escape the scanned
area without being detected by the sweepers. The team of sweepers
attempts to achieve this goal by sweeping around and inside a region
in which the smart evaders are known to be initially located. In the
considered problems this region is chosen to be a circular region of
radius R0 as depicted in Figure 2, that does not have any physical
boundaries, implying that evaders may attempt to move out of the
region in order to escape the team of searchers. Hence, as the search
protocol progresses, the region that might contain potential evaders
increases.

There can be two goals for the sweeping agents. The first is
the confinement task. The confinement task is a task in which
sweepers ensure that the “evader region” (the region where evaders
may possibly be located) does not increase by sweeping around the
region. The second task is the cleaning or detection/coverage task.
In this task, after each sweep, the sweepers move into the evader
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FIGURE 2
(A)—Initial placement of two agents employing the same-direction circular sweep process. (B)—Initial placement of 2 agents employing the
same-direction spiral sweep process. (C)—Initial placement of 2 agents employing the circular pincer sweep process. (D)—Initial placement of 2 agents
employing the spiral pincer sweep process. The sweepers sensors are shown in green. The angle ϕ is the angle between the tip of a sweeper’s sensor
and the normal of the evader region. ϕ is an angle that depends on the ratio between the sweeper and evader velocities.

region while also sweeping around it, thus ensuring the eventual
detection of all evaders initially residing in the region. We consider
teams of agents that sweep several different search patterns. In our
recent works, we analyzed several different search strategies based
on circular sweeps, spiral sweeps andmost importantly pincer-based
sweeps that thoroughly investigate the topic of guaranteed detection
of smart opponents by multi-robot teams. The sections below
discuss the main results and insights that were gained in our latest
research.

Evaders attempt to escape the searching team and move out of
the initial region, at a maximal speed of VT . All sweepers move at
a speed Vs > VT and detect evaders with linear sensors of length
2r. A linear sensor of length 2r is a rectangular shaped sensor with
practically zero width and a length of 2r and may be considered
as a one-dimensional linear sensor array with a length of 2r. This
array structure is highly common in many sensing and scanning
applications, fromoptical to radar and sonar.We chose to analyze the
performance of the system when the sensor is a linear array as this
type of sensor is highly common as indicated above and moreover it
presents the simplest case of a standard rectangular sensor found in
any camera.

Every evader that intersects a sweeper’s field of view is
immediately detected.There can be any number of evaders inside the
region, and this number as well as the evaders’ locations is unknown
to the sweepers. Every “must-win” strategy requires aminimal speed

that depends on the trajectory of the sweepers. We evaluate the
different strategies by using two metrics, total search time until all
evaders are detected, and the minimal critical speed required for a
successful search.

The critical speeds developed for each type of sweeping strategy
are compared to a lower bound on the sweepers’ speed that
is independent of the particular choice of search method and
depends only on the geometric properties of the region, the
evaders’ speed, the number of sweepers in the search team and
the geometry of the sweepers’ sensors. We use this lower bound
to compare between the different search methods and evaluate
how close they are to an optimal solution. This lower bound is
derived in Francos and Bruckstein (2021a) and the considerations
that lead to the established results are outlined in the next
paragraph. For a full proof see Section 3 of Francos and Bruckstein
(2021a).

The maximal cleaning rate occurs when the footprint of the
sensor over the evader region is maximal. For a line shaped sensor
of length 2r this happens when the entire length of the sensor
fully overlaps the evader region and it moves perpendicular to its
orientation.The rate of sweeping when this happens has to be higher
than the minimal expansion rate of the evader region (given its total
area) otherwise no sweeping protocol can ensure detection of all
evaders. We analyze the search process when the sweeping team
consists of n identical agents. The lowest sweeper speed satisfying
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FIGURE 3
Swept areas and evader region status for different times in a scenario where 6 agents employ the circular pincer sweep process. (A)—Beginning of first
cycle. (B)—Toward the completion of the first cycle. (C)—Beginning of the second cycle. (D)—Beginning of the one before last cycle. Green areas are
locations that are free from evaders and red areas indicate locations where potential evaders may still be located.

FIGURE 4
Total search times until complete cleaning of the evader region for the
circular and spiral sweep processes. We simulated sweep processes
with an even number of agents, ranging from 2 to 24 agents, that
employ the multi-agent circular and spiral sweep processes. We show
results obtained for different values of speeds above the circular
critical speed of 2 sweepers. The chosen values of the parameters are
r = 10, VT = 1 and R0 = 100.

this requirement is defined as the critical speed and is denoted by
VLB, Hence:

Theorem 1: No sweeping protocol may successfully accomplish the
confinement task if its speed, Vs, is less than,

VLB =
πR0VT

nr
(1)

The complete search time until all evaders are detected depends
on the search protocol performed by the team of sweepers. Two
types of search patterns are investigated, circular and spiral, for
any even number of sweepers. The desired outcome is that after
each sweep around the region, the radius of the circle bounding the
evader region (for a circular sweep) or the actual radius of the evader
region (for a spiral sweep) is reduced by a strictly positive value.
This guarantees complete detection of all evaders, by decreasing in
finite time the potential area where evaders may be located to zero.
At the start of the circular search protocol only half the footprint of
the sweepers’ sensors is inside the evader region, i.e., a footprint of
length r, while the other half is outside the region with the intention
of detecting evaders that attempt to escape outside of the region.
At the start of the spiral search protocol the entire length of the
sweepers’ sensors is inside the evader region, i.e., a footprint of
length 2r.
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FIGURE 5
Critical speeds as a function of sweepers’ numbers.

In Francos and Bruckstein (2021b), we proved that a smart
evader may escape from point P = (0,R0) (shown in Figure 2A),
when basing a single sweeper’s speed only on a single traversal
around the evader region. Hence, we had to increase the sweeper’s
critical speed to cope with such a potential adversarial escape plan.
Point P is considered as the “most dangerous point,” meaning that
it has the maximum time to spread during sweeper movement,
hence if evaders spreading from this point are detected, evaders
that attempt to escape from all other points will also be detected.
If we choose to distribute a multi-agent search team equally along
the boundary of the initial evader region, we would have the same
problem of possible escape from the points adjacent to the starting
locations of every sweeper.

In Francos and Bruckstein (2021a) we proposed an alternative
method for multi-agent search strategies in which pairs of sweepers
move out in opposite directions along the boundary of the evader
region and sweep in pincer-movements instead of deploying
sweepers at equally spaced intervals along the boundary and
requiring them to move in the same-direction.The proposed search
protocol can be employed by a search team with any even number
of sweepers.

At the start of each sweep, sweepers are positioned in pairs back-
to-back. In each pair, one sweeper moves counter-clockwise while
the other moves clockwise. Every time sweepers meet, implying
that their sensors are back-to-back again, they exchange their
movements directions. The search region is partitioned into a
number of non-overlapping sections that depend on the number
of sweepers in the search team, such that every sweeper sweeps a
particular angular sector of the evader region.

It is worth emphasizing that once a sweeper leaves a location that
was cleared from evaders, other evaders may attempt to reach this

location again. Therefore, considered sweep protocols must ensure
that there is no evaders strategy that enables any evader to escape
even if evaders wait at the edge of a cleared location and start their
escape instantly after a sweeper leaves this location.

Sweeping with pincer-based search protocols removes the need
to sweep additional areas to detect evaders from these additional
“most dangerous points” since in pincer-based protocols the “most
dangerous points” are now located at the tips of their sensors closest
to the evader region’s center and not on the boundary of the evader
region as occurs in same-direction sweep protocols.

The described search protocols can be either 2 dimensional
where sweepers travel on a plane or 3 dimensional implying that
sweepers are drone-like agents that fly over the evader region. In
case the search is planar, exchanging of movement directions takes
place after the completion of each sweep when a sweeper “bumps”
into a sweeper that scans the adjacent section. If the search is 3
dimensional, sweepers fly at different altitudes above the evader
region, and every time a sweeper is directly above another, they
exchange the angular section they are responsible to sweep between
them, and continue the search. The analysis of 2 and 3 dimensional
search protocols is similar.

In Francos and Bruckstein (2021a) we presented an extensive
theoretical evaluation of pincer sweep methods for detection of
smart evaders and provided analytical results for sweep times and
critical speeds of the different proposed search strategies. We list the
main theorems and results to enable a more complete discussion on
the established results.

Here, we shall address a quantitative and qualitative comparison
analysis between the total search time of same-direction sweep
processes and pincer-movement search strategies. We shall evaluate
the different strategies by using two metrics, total search time and
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FIGURE 6
Swept areas and protected region status for different times in a scenario where 4 defenders perform the spiral defense pincer sweep protocol.
(A)—Beginning of first sweep. (B)—End of the first sweep. (C)—End of the second sweep. (D)—Toward the end of the third sweep. Green areas show
locations that were searched and hence do not contain invaders and red areas indicate locations where potential invaders may be present. Blue areas
represent locations that belong to the initial protected region that does not contain invaders.

the minimal critical velocity required for a successful search. We
compare two types of pincer-movement search processes, circular
and spiral, with their same-direction counterparts, for any even
number of sweeping agents.

Figure 2 shows the initial placements of sweepers employing
circular and spiral search tasks for same-direction and pincer-based
search strategies.

Figure 3 presents the swept areas and evader region’s status
that results from a dynamical NetLogo Tisue and Wilensky (2004)
simulation of a circular pincer sweep process performed by 6
sweepers. Green areas are locations that were detected by the
sweeping team and do not contain evaders at the current time
instance. Red areas indicate location in which potential evaders can
still be present.

In order to make a fair comparison between the total sweep
times of sweeper teams that can perform both the circular and spiral
sweep processes, the number of sweepers and sweepers’ speed must
be the same in each of the tested spiral and circular teams. As proven
in Francos and Bruckstein (2021a), the critical speed required for
sweepers performing the circular sweep process is higher than the
minimal critical speed required for sweepers performing the spiral

sweep process. Therefore, in Figure 4 we show the spiral sweep
process’s sweep times that are obtained for different values of speeds
above the circular critical speed. This means that the values of ΔV
that are mentioned in the plots correspond to sweeper speeds that
are almost twice the spiral critical speeds.

Figure 4 compares the cleaning times of circular sweeping teams
and spiral sweeping teams consisting of 2–24 sweepers. The results
are computed with the same sweepers speed for both the circular
and spiral multi-agent sweep protocols. The reduction in complete
sweeping times that are achieved when sweepers employ the spiral
search process are clearly observable. This result is independent of
the number of the sweepers that perform the search or the speed in
which they move.

Figure 5 provides a comparison between critical speeds of
same-direction and pincer-based search protocols for guaranteed
detection of smart evaders. Results show the superiority of using
pincer-based approaches since they result in lower critical speeds
compared to their same-direction counterparts. Furthermore, the
results show that for an increasing number of sweepers, circular
pincer-based protocols require a smaller critical speed even when
compared to spiral same-direction protocols that can only be
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implemented with sweepers that have more advanced capabilities
that allow them to accurately track the expanding wavefront of the
evader region instead of performing a simple circular pincer-based
movements. The top plot shows the critical speeds of each protocol
as a function of the number of participating sweepers. The bottom
plot presents the ratio between the critical speeds of the different
guaranteed detection investigated protocols and lower bound on the
critical speed presented in Theorem 1. It can be observed from the
figure that the ratio between the spiral pincer critical speed and the
lower bound is almost 1 emphasizing that it is nearly optimal.

In Francos and Bruckstein (2022a), we look at a somewhat
dual problem to the previously considered problem. This work
examines the problem of defending a region from the entrance
of smart intruders or invaders. Sweepers may perform outwards
expansion from the initial “safe” area until the sweepers reach the
maximal radius of a circular area that they can protect given their
predetermined speed. This extension investigates both multi-agent
circular and spiral defense protocols.

It focuses on developing a guaranteed defense protocol of an
initial region from the entrance of an unknown number of smart
invaders. The region is protected by employing a multi-agent team
of identical cooperating defenders that sweep around the protected
region and detect invaders that attempt to enter it. The defenders
possess a linear sensor of length 2r, similar to the one described in
the previous section, with which they detect invaders that intersect
their field-of-view. The only information the defenders have is that
invaders may be located at any point outside of an initial circular
region of radius R0, referred to as the initial protected region at the
beginning of the defense protocol.

There are two objectives for a defense strategy, defending the
initial protected region and, if possible, expanding the protected
region by performing an iterative expansion strategy until the region
reaches the maximal defendable area.

Successfully completing the defense and maximal expansion
taskswith the lowest possible critical speed is one of the performance
metrics used as a benchmark for having an efficient defense
strategy. Pincer-based defense procedures result in lower critical
speeds compared to their same-direction counterparts, and hence
are chosen in the developed defense protocols. The discussed
pincer-based strategies can be performed with any even number
of defenders. Based on the numbers of defenders performing the
defense task, the protected region is portioned into equal angular
sectors, where each sector is searched by a different defender.

Figure 6 shows the evolution of the defense protocol during
the expansion of the protected region carried out by 4 defenders
implementing the spiral defense pincer sweep protocol. Green areas
indicate locations that defenders already cleared from invaders.
Hence, these areas do not contain invaders at the current time
instance. Green areasmay become red again due to the advancement
of invaders from the exterior region, once defenders continue to
sweep different areas and their sensors detect invaders elsewhere.
Red areas indicate locations where potential invadersmay be present
while blue areas represent locations that belong to the initial
protected region that does not contain invaders.

Note that in the considered problems, the search is continued
until the expansion of the protected region reaches the maximal
attainable radius, and afterwards the defenders continuously patrol
around this radius.

Figure 7 presents critical speeds as a function of the number of
defenders.The number of defenders is even, and ranges from 2 to 24
defenders, that perform the spiral and circular defense pincer sweep
protocols as well as the spiral and circular defense same-direction
sweep protocols. The optimal lower bound on the critical speeds
is presented for comparison as well. Development of better defense
strategies enables the defending team to expand the protected region
to a larger area and to achieve this expansion in minimal time.

In Francos and Bruckstein (2022b), the guaranteed detection
problem is formulated as a resource allocation problem from the
perspective of the designer of the sweeping team.

When designing a robotic system composed of one or more
robots the designermust consider themost cost-effective solution to
the problem. In this context we choose to focus on one such aspect
in the design, namely, the sensing capability, or the visibility range of
the searchers. This criterion translates into solving the surveillance
problemwith a large number of simple and relatively low-cost agents
equippedwith basic sensing capabilities or alternatively, with a small
number of sophisticated and expensive agents equipped with more
advanced and accurate sensors. Taking this approach to the extreme
can be seen as choosing to survey a region with a satellite equipped
with a high-resolution camera or surveying the same region with
multiple UAVs that fly at lower altitudes, carrying lower resolution
cameras, in order to achieve effectively the same spatial coverage.

Such considerations are present across multiple domains of
surveillance and monitoring applications such as security, search
and rescue, crop monitoring, wildlife tracking, fire control and
many more. When searching an area for evaders, this manifests in
choosing to scan the area with fewer agents equipped with higher
resolution sensors, compared to scanning the area with more agents

FIGURE 7
Critical speeds as a function of the number of defenders. The number
of defenders is even, and ranges from 2 to 24 defenders, that perform
the spiral and circular defense pincer sweep protocols as well as the
spiral and circular defense same-direction sweep protocols. The
optimal lower bound on the critical speeds is presented for
comparison as well. The chosen values of the parameters are r = 10,
VT = 1 and R0 = 100.
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having lower sensing capabilities.Thementioned research addresses
such questions both from a theoretical and a practical perspective.

2.4 Reconfigurable team formations for
search and surveillance applications

Multi-Agent formation control refers to the ability to control
and coordinate a multi-robot team to preserve a specific structure
or configuration throughout its movement. Moving in a specific
structure that allows to preserve relative distances and orientation
between agents or allowing a multi-robot team to reconfigure itself
and change its configuration into a more suitable one for the task
it wishes to accomplish is a very useful property for multi-agent
search applications. Possible use cases are the ability of the team to
pass through narrow corridors, which is essential in underground
search operations or in scenarios where a specific distance must be
maintained between agents to avoid losing connectivity between the
team’s members.

The main challenges that appear when trying to control the
formation of a multi-robot team are its stability, controllability of
different formations, reconfiguration of formations, assignment of
roles inside the formation as well as safety and uncertainty concerns
Ismail et al. (2018). Formation control algorithms can be considered
as part of multi-agent path planning algorithms that adhere to a
specific structure the team’smember followwhile theymove towards
their goal. Formation control algorithms are generally divided based
in the control variables that are measured and used to steer and
control the formation. These are position-based, displacement-
based control and distance or bearing only based control.

According to the survey in Ismail et al. (2018) there are three
main strategies for formation control used in multi-agent robotic
settings. These are behavior-based, virtual structure and leader
follower settings. Behavior-based approach refers to several desired
behaviors of the agents such as goal seeking, obstacles avoidance,
collision avoidance, etc. The advantage of this approach is it can be
used to guide the multi-agent robots in the unknown or dynamic
environment by using only local information available to robots.The
drawback of using such solutions is that there are no theoretical
guarantees or optimality of the solution since it relies on average
behavior of the agents.

Virtual structure refers to a formation control paradigm that
views the entire formation as a rigid body.This allows easier control
of the formation at the expense of its flexibility. Leader- follower
formation control allows leaders to advance toward their goal while
the objective of the followers is to keep the structure of the formation
by orienting themselves accordingly throughout the movement.
The drawback for using this approach is that the entire formation
depends on the movements of the leader and if it malfunctions then
so does the rest of the formation.

Formation control algorithms designed for outdoor
environments usually rely on the precise global positions of agents
often use a centralized control architecture and collaborative
decision making that leverages the availability of such rich
information. This however, comes at the expanse of less flexibility
and with a greater computational burden. Distributed and
decentralized approaches that control the displacement between
agents, distance or bearing-based control, on the other hand, enable

more distributed implementations with only local interactions
among the different agents.

Formation control algorithms are used in search and rescue
missions to enable usage of multi-robot ad hoc networks, see
Lin et al. (2014) and to multi-robot surveillance and monitoring
tasks such as the approach presented in Borkar et al. (2020),
where reconfigurable formations of quadrotors on Lissajous curves
for surveillance applications are investigated. In an earlier work
Borkar et al. (2016), the authors proposed using a multi-agent
formation with constant parametric speed to achieve repeated
collision-free surveillance and guaranteed area coverage in order
to detect and entrap targets. In their recent work Borkar et al.
(2020), local cooperation between agents allows to achieve collision
free reconfiguration between different Lissajous curves allowing to
handle scenarios such as agent addition, agents removal and agent
replacement which are essential in surveillance applications.

In Xu et al. (2022), event-triggered surrounding formation
control of multi-agent systems for multiple dynamic targets is
investigated from a control perspective. Surrounding formation
control scenarios aims to provide an algorithm in which agents
encircle single or multiple targets that can either be idle or dynamic.
Theproposed control algorithmaims to achieve diverse surrounding
patterns with both monolayer and multilayer configurations
which have distinct benefits to various application scenarios
such as escorting, patrolling, search and rescue and surveillance.
Since previous surrounding control protocols rely on continuous
information exchange between agents, they do not scale well to
increasing number of agents and become more challenging due to
communication burden in dynamic and unknown environments
where continuous information needs to be shared between the
formation’s agents. Hence using event-triggered control paradigms
allows to reduce the communication overload between agents and to
only periodically send information that allows the agents to update
positions.

2.5 Reinforcement learning in multi-agent
search tasks

Reinforcement learning is a branch of machine learning that
is concerned with enabling a set of agents to learn to take actions
by interacting with a dynamic environment. The agents’ goal is
to maximize a cumulative reward that is received based on the
actions the agents perform. The feedback to the agent’s actions is
obtained through the reward signal, and the exploitation concept
is applied to choose the next action. Agents can also choose to
explore the environment in order to discover additional or better
action candidates. This is known as the exploration concept. Many
reinforcement learning approaches use a dynamic programming
technique. Hence, one of the main objectives in developing an
efficient policy is the ability of agents to estimate the importance of
transitioning to a specific state.

A reinforcement learning model consists of 5 elements. The set
of states, S, the set of actions A, the policy or mechanism that allows
transition between the states, P: A× S→ [0,1], usually given by the
probability of taking an action a while at state s; a scalar reward
of that is received by making a transition to a different state, and
a method for observing the agents. The purpose of the policy is to
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define how the agent maps and reacts to its observed environmental
conditions by performing actions. The rewards are instantaneous
numerical values the agent receives for performing a specific action
when it is in a given state. The value function serves as the long
time version of the reward function and its aim is to compute the
discounted return from the current state to a terminal state that
resulted from a specific policy choice. For a recent comprehensive
review and introduction to reinforcement learning see Sutton and
Barto (2018).

Deep reinforcement learning is a machine learning technique
that combines deep learning and reinforcement learning concepts
in order to learn an optimal agent’s behaviour based on its
past experiences and actions, by iteratively evaluating the agent’s
accumulated reward. Deep reinforcement learning is divided into
three main categories which are value-based, policy-based and
model-based approaches. Other reinforcement learning techniques
include Monte Carlo, temporal difference and on-policy and off-
policy methods. The objective of value-based methods is to allow
an agent to learn a policy that maximizes its value function over a
long sequence of actions. In policy-based approaches which can be
either deterministic or stochastic, the goal of the agent is to learn
a policy that results in the optimal value of the objective function.
Model-based approaches require that a model of the environment is
given to the agent or that the agent learns such a model in order to
allow it to learn how to optimally perform tasks in that environment.

Q-Learning is a reinforcement learning method applied to solve
path planning problems, but that does not require a model for an
environment.Moreover, it is able to handle problems with stochastic
transitions and rewards. The basic idea of Q-Learning is to find
the optimal control policy by maximizing the expected total reward
over all future steps. If a robot’s action a yields a real return r, then
the objective is to obtain a strategy Q: S→ A that maximizes these
returns. Denote by γ ∈ [0,1] a discount factor that weighs earlier
rewards heavier then those obtained later, and by δ a map between
the current state-action pair and the next state. The training is
carried out based on the immediate return and the long term return
of the action given by,

Q (s,a) = r (s,a) + γmax
a′

Q(δ (s,a) ,a′) (2)

The robot repeatedly observes the current state s, selects and executes
a certain action a, observes the returned result r = r(s,a) and the new
state s′ = δ(s,a). Any action a can be found then by solving,

a = argmax
a′
[r (s,a) +Q(δ (s,a) ,a′)] (3)

Deep reinforcement learning can assist in training robots to
search unknown environments Li et al. (2019), Hu et al. (2020),
and Peake et al. (2020) and allow it to learn to develop strategies
that will be used to search and detect smart evaders without
following carefully designed pre-planned trajectories or to assist
searching robots to detect survivors in search and rescue missions.
In Azar et al. (2021), a review on the usage of deep reinforcement
learning techniques for drone applications is provided. In
Zhang et al. (2021), a selective overview of theories and algorithms
on multi-agent reinforcement learning is presented. In Oroojlooy
and Hajinezhad (2022), a review on cooperative multi-agent deep
reinforcement learning is given.

Since robots used for search and rescue missions are often
used in environments that are at the very least partially unknown,
perhaps due to an earthquake, an area devastated by a storm or
a collapsing underground cavern, they need to have the ability
to operate in changing environments for which they do not have
a fully defined mathematically accurate model. This is also the
case for UAVs participating in pursuit-evasion problems that take
place in adversarial environments, for which complete information
on the environment model and the opponent team is generally
unknown. Hence, allowing autonomous agents to learn their path
planning strategies by using reinforcement learning and deep
learning techniques enables agents to iteratively learn how to operate
in dynamically changing and partially known environments by
exploring the best strategies that achieve their goal throughout the
training process, leading to the application of these learned strategies
in the field afterwards.

In Sun et al. (2021) multi-agent reinforcement learning for
distributed cooperative targets search is considered. The authors
develop a decentralized reinforcement learning method performed
by UAVs in an area of interest. In the investigated scenario a team
of UAVs cooperatively searches a partially known area with the
objective of detecting an unknown number of targets. The team
of searchers has access to an inaccurate prior distribution on the
targets’ locations and it is assumed that both searchers and targets
have limited kinematics and sensing capabilities, and that searchers
have disk-shaped sensors. The paper leverages on advancements in
reinforcement learning techniques and casts the problem of multi-
agent cooperative search into a decentralized partially observable
Markov decision process, showing its advantages over monotonic
value function factorization (QMIX) Rashid et al. (2018) and
random-basedmethods.The aim of the developed protocol is to find
all targets in minimum time.

Multi-agent learning problems are usually solved by
decomposing a complex multi-agent problem into a set of simple
single-agent problems. In each of the single agent problems the
environment is shared with that of the other agents. This method
is referred to as independent Q-learning. Independent Q-learning
achieves decentralization, a solution that is sought after in multi-
agent problems since it allows to increase the number of agents
without having to increase the computational burden, however it
may result in agents that are unstable and continuously change their
search policy. To lead the team to learn to decentrally coordinate
their actions the authors propose to learn local Q-value functions
for each agent. These functions are combined by using a mixing
function and result in a joint action Q-value function. The selected
mixing function represents the consistency between local and global
chosen actions in the joint action value function of the searching
team and in the individual value functions of the agents, which
depend only the observations and situations the agent encountered.

In Wenhong et al. (2022), multi-target cooperative tracking
guidance for UAV swarms using multi-agent reinforcement
learning is investigated. The authors argue that current multi-agent
reinforcement learning based methods rely on global information
and are too computationally demanding to be used in large scale
robotic swarms and hence propose a decentralized multi-agent
reinforcement learning based method to address these limitations.
The proposed method allows UAVs to learn cooperative tracking
policies by using the maximal reciprocal reward of the swarm.
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In Yue et al. (2019), a searching method for multiple dynamic
targets using reinforcement learning scheme for multi-UAVs in
unknown sea areas is proposed. The method creates a multi-UAV
area search map is which includes models of the environment, UAV
dynamics, target dynamics, and sensor detections. The constructed
searchmap is updated and extended with a concept the authors refer
to as territory awareness information map. Based on the created
map and the constructed search efficiency function, a reinforcement
learning method outputs a multi-UAV cooperative search path
online.

In Vlahov et al. (2018), a UAV pursuit-evasion policy using
reinforcement learning presents an approach to learn reactive
maneuver policies for aerial engagement scenarios. The authors rely
on deep A3C Mnih et al. (2016) algorithm which uses actor-critic
networks. The actor-critic concept is based on using two separate
networks. The actor-network estimates the optimal behavior, while
the critic network estimates the reward of the behavior and
uses rewards to train the actor. A3C or asynchronous advantage
actor-critic is a model-free and on-policy algorithm operating in
continuous action and state spaces. A3C uses one global actor-critic
network together with multiple local actor-critic networks. Local
networks rely on information obtained from the global network
for initialization purposes, and reciprocally feed the global network
by their continuously updated gradients. The authors learn using
A3C an aerial combat behaviour learned in simulation and show its
results on real-world flight tests highlighting the promise of using
such techniques. An interesting extension to this work is to apply it
in a multi-agent team against team setting.

In Niroui et al. (2019), a robot using deep reinforcement
learning for search and rescue exploration in unknown cluttered
environments is presented. The advantage of using reinforcement
learning techniques in search and rescue missions is their ability
to operate in challenging and dynamic environments containing
obstacles.Thework is the first one to apply deep learning based robot
exploration in urban search and rescue environments and does so
by combining frontier-based exploration with deep reinforcement
learning that allows the robot to have obstacle avoidance capabilities
and the ability to operate in unknown environments. In Frontier
based exploration a robot is directed to explore the boundaries of
an area that was already explored, hence it extends the frontiers and
boundaries of the explored region.

In Hu et al. (2020), Voronoi-based multi-robot autonomous
exploration in unknown environments via deep reinforcement
learning is suggested. Autonomous exploration is a task in which
a team of coordinated robots collaboratively explores an unknown
area, and can be used in scenarios such as search and rescue and
mapping and localization of unknown environments. The proposed
approach reduces task completion time and energy consumption by
designing a hierarchical control architecture that contains a high-
level decision making layer together with a low-level target tracking
layer. Cooperative exploration is achieved by using dynamicVoronoi
partitions, which allows to reduce overlapping exploration sections
through the partition of explored area between the exploring agents.
A deep learning obstacle avoidance algorithm is used for collision
avoidance with dynamic and previously unknown obstacles. The
algorithm learns a control policy based on exploration of unknown
areas by a human that guides and controls the robot team during the
task, resulting in improved performance.

In Liu et al. (2021), cooperative exploration for multi-agent
deep reinforcement learning is investigated. The authors identify
an existing challenge in current multi-agent exploration methods
which arises from the inability of agents to identify states worth
exploring and the inability to coordinate exploration efforts that will
lead agents to these states. In order to address this limitation, the
authors propose that agents will share information about the goal
between themselves in order to reach this goal in a coordinated
manner by selecting the goal from multiple projected state spaces.
The authors argue that previous multi-agent reinforcement learning
approaches obtain good performance since they address the non-
stationary issue of multi-agent reinforcement learning by using a
centralized critic, however recent works prove the sub-optimality
of these methods since they rely in classical exploration methods
which use noise-based exploration which is a noisy version of the
exploration policy implemented by the actor.

2.6 Task allocation in multi-agent search
tasks

Multi-robot task allocation is concerned with distribution of
tasks and goals between the members of the multi-robot team.
Examples of tasks in multi-agent search tasks includes division and
allocation of different areas to be searched, requiring robots to
position themselves in certain locations in order to serve as a relay
network to ensure communication connectivity between the team’s
robots and division of tasks between heterogeneous robots of a team
such as division of tasks between a ground and an aerial robot.
Search and rescue tasks performed with multi-agent teams include
collaborative mapping of unknown areas, situational assessment of
affected areas, cooperative search of a designated area as well as
cooperative area coverage.

After allocation of tasks to the individual robots is performed,
each robot is responsible to implement its allocated task to the best
of its ability. However, from the team’s perspective, some method
of verification should be enforced to check if all robots performed
their intended duties adequately and that no robot failed during the
execution of the task. If a certain robot fails to complete its task,
then the team must compensate for its member’s failure by sending
additional robots to cover for the malfunctioned one by allocating
tasks again or by updating the mission’s objective accordingly.

Generally, for search and rescue operations that often take
place in harsh and challenging environments or for other search
problems that take place in adversarial environments, implementing
distributed algorithms for the robot team, provides some resiliency
and robustness to malfunctioning agents.

InGerkey andMatarić (2004), a formal analysis and taxonomyof
task allocation in multi-robot systems is given.The study formulizes
multi-robot task allocation problems using tools from optimization
theory and operations research and specifically concentrates on
methods for intentional robot cooperation through task-related
communication and negotiation and a formal analysis of such
methods.

In Mosteo and Montano (2010), a survey on multi-robot task
allocation that focuses on service and field robotics is conducted
highlighting the advantages and limitations of discussed approaches.
The paper describes properties that are desirable in multi-agent
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task allocation which are decentralization scalability, fault tolerance,
flexibility and responsiveness. The paper describes several solution
models to the multi-robot task allocation problem which are
categorized into centralized, stochastic, auction and behavioral
models. The paper further identifies core aspects of task allocation
strategies which are task decomposition, cost models, task models,
execution models and task constraints.

In Korsah et al. (2013), a comprehensive taxonomy for multi-
robot task allocation is provided. The survey specifically focuses
on issues of interrelated utilities and constraints which were not
addresses by previous surveys that focused more on independent
tasks. The survey investigates and classifies multi-robot task
allocation problems using tools and models from combinatorial
optimization and operations research.

In Liu and Nejat (2016), multi-robot cooperative learning for
semi-autonomous control in urban search and rescue applications is
explored. In urban search and rescue tasks it is essential for robots to
coordinate task allocation and execution in order tominimize search
time andmaximize the number of detected survivors. Amulti-robot
cooperative learning approach for a hierarchical reinforcement
learning based semi-autonomous control architecture is developed
to allow a team of robots to cooperatively learn how to explore
and how to detect survivors in challenged urban search and
rescue settings. Effective task allocation between the team of
searchers is learned alongside efficient execution of the allocated
tasks. Furthermore, the developed approach allows human-robot
interaction by enabling a human operator to intervene when robots
request to hand over the task to humans since they determine that
they cannot perform it in a satisfactory manner by themselves.
Therefore, robots take cooperative decisions on task allocation
between the team members and between robots and humans by
assessing their performance on their designated tasks.

In Nunes et al. (2017), a taxonomy for task allocation problems
that focuses on temporal and ordering constraints is provided. In
Ferri et al. (2017), an overview on cooperative robotic networks
for underwater surveillance is provided, with a specific focus on
multi-robot task allocation for underwater multi-robot surveillance
settings.

In Sung et al. (2020), distributed assignment with limited
communication for multi-robot multi-target tracking is
investigated. Tracking of moving targets is performed by employing
a team of mobile robots that can choose to execute their actions
based on a set of motion primitives with an objective of maximizing
the total number of tracked targets by the team or its tracking
quality. Emphasis is put on limited communication setting and
short broadcast time. Hence, these considerations naturally fit a
distributed setting and algorithms that achieve the team’s goals
in finite time and adhere to the communications constraints are
developed. Two algorithms are proposed. The first is a greedy
algorithm that achieves twice the optimal centralized performance
and requires a number of communication rounds between robots
that is equal to at most the number of robots. The second algorithm
allows the designer of the tracking team to trade off tracking quality
and communication time by selecting the value of two tuning
parameters.

In Rodríguez et al. (2020), wilderness search and rescue with
heterogeneous ground and aerial multi-robot systems is explored.
In this work the authors argue that using a team of heterogeneous

robots improves the robustness and efficiency of the team compared
to using a team of homogenous agents. A multi-robot task
allocation algorithm deployed on ground and aerial vehicles that
uses themarket-based approach to optimize themission resources is
proposed. The algorithm considers the availability of vehicles, task’s
characteristics and payload requirements and in turn generates a
plan of tasks ans charging commands for each vehicle.

In Carrillo et al. (2021), communication-aware multi-agent
metareasoning for decentralized task allocation is considered.Multi-
agent metareasoning refers to the ability of agents to reason about
their decision-making. The presented algorithm develops a policy
that allows a multi-agent team to choose between several task
allocation possibilities depending on the communication quality.
Due to the decentralized nature of the algorithm and because all
agents run the same selection policy, some or all of the team‘s
agents jointly switch between task allocation algorithms based on the
quality of the communication level they sense. Reactive synthesis is
used to generate the policy based on high-level specificationswritten
in Linear Temporal Logic that enable to encode the agents’ switching
behavior based on communication level they observe.

In Amir et al. (2022), multi-agent distributed and decentralized
geometric task allocation is explored for swarms of agents. The
agents are assumed to be very simple and are oblivious, identical,
have a limited sensing range and cannot explicitly communicatewith
each other. The assumptions in this work is that time is discrete
and that tasks are represented by an a-priori unknown demand
profile that dictates how many agents are required to be in each
location in order to complete their allocated task.The paper assumes
a stricter limited visibility and purely-local information setting
compared to previous works that considered target assignment and
task allocation for a decentralized swarm of agents that aims to
configure itself in the explored environment for the purpose of
achieving a desired spatial distribution, such as the works by Cortes
et al. (2004), Schwager et al. (2009), and Schwager et al. (2011).

Two task allocation problems are investigated: signal coverage
and target assignment. Signal coverage seeks to distribute robots in
the environment so that they sufficiently cover an a-priori unknown
location dependent and potentially time-varying profile function
with signals the agents emit. The goal of the agents performing this
task is that their combined emitted signals approximate the desired
demand profile function. Target assignment aims to allocate the
swarm’s agents in order to detect targets that are placed in discrete
and unknown locations by having the searching agents move to the
targets’ locations. This is achieved by setting highly concentrated
environmental signals at the location of each target, resulting in
the organization of the swarm based on the needs of the tasks.
Interestingly, in the investigated target assignment scheme, different
targets require different numbers of agents in their vicinity in order
to be detected, simulating the fact that based on the complexity of
different tasks, they require a different number of agents to complete
them successfully.

The autonomous swarm agents’ goal is to configure themselves
according to the demand function by using only local information
available to them through the demand function, and by considering
only the locations of other agents they sense in their local
neighborhood. The task allocation problem is solved by using an
optimization-based approach resulting in attraction and repulsion
forces applied to the exploring agents, repelling them from each
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other in order to explore more of the area and drawing them near
targets they need to detect. The results of the paper demonstrate
that despite the strict assumptions about the individual agent’s
capabilities, a large variety of challenging tasks can be solved by
equipping a sufficiently large swarm of simple agents with the
proposed local attraction and repulsion dynamics.

2.7 Cooperative sensing in multi-agent
search tasks

Cooperative sensing for a team of robots, enables robots
to share and obtain vital information from peers or from the
infrastructure. This allows to treat the searching multi-robot team
as a connected team with extensive knowledge and understanding
of its environment. Better informed decisions could be made, as
autonomous robot cooperation is expected to improve individual
local sensing capabilities. This in turn can lead to more accurate
perception, detection and tracking capabilities of the robot team,
thus allowing it to perfect its search plan and its ability to succeed in
its plannedmission. In order to enable cooperative sensing and allow
connected robot teams to realize their full potential, advancements
need to be performed both in the communication, perception and
planning domains. We list below several tasks that could benefit
from cooperative multi-agent sensing.

An additional important aspect worth considering in multi-
robot perception is the reliance of state-of-the-art perception
algorithms, especially in the computer-vision domain, on deep
learning based approaches. While state-of-the-art results are
achieved using such methods across essentially all visual perception
domains, such as object detection, segmentation, tracking,
classification and many more, these methods require high
computational power and dedicated hardware such as graphical
processing units (GPUs) which consume a significant amount of a
robot’s battery and increase the weight of its payload considerably
Howard et al. (2017), Hadidi et al. (2018), and Kumar et al. (2020).
Therefore, there is a need to perform both hardware and software
optimizations and adaptions for deep learning based algorithms
such as developingmore computationally light models to allow their
specific usage for mobile robotic applications, especially for their
usage in drones which are limited the most by these constraints.

In Queralta et al. (2020) several challenges regarding fusion
between different data sources in multi-agent perception are listed.
These challenges occur since the agents are located at different
locations, different lighting conditions, can have different sensors
and move with respect to one another. Among the challenges that
need to be addressed are where to perform data fusion, how to
determine if agents are observing the same landmarks and how to
decide which observations provide more information and are more
beneficial to the knowledge of the robot team.

The paper further describes a classification to 4 categories
present in multi-agent target tracking which are cooperative
tracking, cooperative multi-robot observation of multiple moving
targets, cooperative search, acquisition, and tracking where the last
category is multi-agent pursuit evasion. Cooperative tracking seeks
to track moving objects using several robots that share information.
Cooperative multi-robot observation of multiple moving targets
seeks to increase the total time in which all targets are observed.

Cooperative search, acquisition, and tracking constantly switches
between searching and tracking of moving targets. For a detailed
review on the perception aspect of multi-agent pursuit evasion
observation and tracking of multiple targets and on how it relates to
control techniques for cooperative mobile robots that need to solve
such challenges see Khan et al. (2016).

In Song et al. (2008), a method for multi-robot cooperative
sensing and localization is developed. Cooperative localization is
achieved by fusing sensory data obtained through each robot’s visual
detections that aim at identifying other robots and localization
itself. In Banfi et al. (2015), investigates multi-target tracking
in cooperative multi-robot systems. In this work, a team of
autonomous robots with limited range sensors must observe a set
of mobile targets. The team cooperatively plans its motions to
maximize the time that each target will be inside the sensing range
of at least a single robot.

In Zhou and Tokekar (2018), an algorithm for active target
tracking with self-triggered communications in multi-robot teams
is proposed. The team of robots moves on the boundary of the
environment and seeks to be in a formation that enables the
robots to optimally track a target that moves in the interior of the
environment. The robots can measure distances to the target. The
objective is to reduce the amount of shared information throughout
the process of converging to the optimal configuration, and this
is achieved by developing a communication protocol that informs
robotswhen to exchange informationwith their neighbors andwhen
it is safe to operate with possibly outdated information.

In Scherer and Rinner (2020), an algorithm for multi-UAV
surveillance with minimum information idleness and latency
constraints is developed. There are two goals for the UAV team,
which it attempts to achieve by using cooperative data transport.
The first is to minimize the information idleness, defined as the lag
between the start of the mission and the time at which data captured
at a sensing location arrives at the base station.The second goal is to
minimize the latency which is defined as the lag between capturing
data at a sensing location and its arrival at the base station.

2.7.1 Cooperative localization
Cooperative localization of robots may open the door to

deployment of multi-robot teams in GPS or GNSS denied areas.
These scenarios may occur in the context of multi-agent search
tasks in pursuit-evasion domains where navigation signals are
deliberately blocked, jammed or spoofed or in environments where
the signal received from satellites is seriously degraded and poor,
thus requiring robots to localize themselves without relying on such
technologies. These scenarios occur in search and rescue operations
in mediums such as underwater, underground and even in indoor
settings, important domains that must be addressed differently than
open-air scenarios.

In order to generate a more accurate representation of a robot’s
surroundings, sensory information from robots in the vicinity
and information from sensors that may be embedded in the
infrastructure should be combined. Since measurements always
contain some degree of noise, algorithms that fuse measurements
from different sources mitigate this effect and reduce perception
uncertainty. Likewise, access to information that is not available to
a certain robot and could be acquired from its neighbors, improves
the individual robot’s performance.
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Works on this topic appears in a different context in literature as
part of the vision for a connected vehicle environment envisioned
for the deployment of autonomous vehicles. We believe that
similar concepts may be used in other robotic tasks where sharing
of information between team members can improve results. A
map merging approach that aligns multiple local sensing maps
to make observations consistent with each other, is proposed in
Kim et al. (2014). Frequent transmissions of a local sensing map are
computationally inefficient and bandwidth consuming. Hence, the
authors choose to explore a more efficient approach by automatic
alignment which is gained once a vehicle is localized on the
global map. Cooperative localization is also possible through the
exploitation of correlations in joint and relative observations, such
as relative range and relative bearing which are also applicable in
multi-robot search tasks carried out by drones which often use these
types of measurements in their algorithms.

In Gao et al. (2019) a detailed review on theory, research, and
practice of cooperative localization and navigation is provided.
In Zhu and Kia (2019), cooperative localization under limited
connectivity is investigated. The authors present 2 decentralized
multi-agent cooperative localization algorithms where inter-agent
state estimate correlations are accounted for implicitly for the
purpose of reducing the communication cost. Individual agents
localize themselves in a global coordinate frame with a local
filter, by using sporadically absolute measurements and through
the correction of their pose estimate when they receive a relative
measurement to another agent. Since agents correct their pose only
when they obtain a relative measurement from another agent, no
global connectivity preservation between robots is required.

In Paull et al. (2013), a review on Autonomous Underwater
Vehicle (AUV) navigation and localization is provided. The
underwater medium is a challenging one to navigate through
since GPS signals cannot penetrate to the depths of body of
water due to their attenuation. While traditional approaches used
inertial sensors or underwater beacons the accuracy of these
approaches is limited. In recent years, due to the advancement
of simultaneous localization and mapping (SLAM) techniques
underwater localization accuracy improved dramatically, and the
paper investigates these advancements. In Ebadi et al. (2022) a
recent survey that investigates the current state and future research
directions of SLAM in challenging underground and subterranean
environments is provided.

2.7.1.1 Minimal sensor configuration
The problem of multi-robot cooperative localization where each

robot is equipped with a designated sensor that is sufficient for
it to complete its intended task had been previously investigated.
However, if robots were to operate in a connected environment
under a shared sensory information paradigm, the individual
sensing capabilities of each robot may be reduced. In the context
of multi-agent search tasks this translates to the ability of a robot
to carry a lighter payload, consume less energy and thus allow it
to increase the duration of the mission it executes. This in turn
may lead that a certain mission can be executed faster and with less
and simpler robots. This research question was investigated in the
context of cooperative and connected vehicles in Shen et al. (2016),
in a work that set qualitative and quantitative sensor requirements
that allow vehicles to cooperatively localize themselves up to an

acceptable error. The work tackles the cooperative localization of
a distributed set of vehicles. The authors design a minimal and
scalable sensor configuration which allows cooperative localization
of a vehicle fleet on an urban road. Drawing inspiration from such
works may be beneficial to the advancement of multi-robot search
tasks as well.

2.7.2 Multi-agent active perception
Multi-agent active perception methods aim to adapt the

behaviours of agents for the purpose of receiving more beneficial
perception inputs from the agents’ sensors. This implies that the
robot team understands the goal of its mission and knows what
it means to obtain more beneficial inputs and how it can plan its
movements and use its available resources to achieve it.

In search and rescue operation active perception is used in
various tasks such as search for victims, path finding in challenging
environments, obstacle avoidance and target detection and tracking.
Using active perception in these tasks enables the robot team to have
much needed flexibility in adapting its behaviour to the changing
conditions of its mission Queralta et al. (2020).

Multi-agent teams that use active perception algorithmsperform
alongside their main objectives specific movements and apply
reasoning that allows them to improve their performance by
acquiring better data through the selection of the next set of actions
that need to be performed by the team to improve the results of
its main task. This consideration presents a challenge in training
data acquisition since there is a large number of possible agents’
movements to be performed and how to choose this set of actions
in the data collection phase is not a trivial question. Additionally,
there is need to define the notion of a good action and tie it
to the observation received after performing the action, which is
challenging. Usage of simulation in both data collection and training
phases calls for sim-2-real techniques to be applied since there is
a large pool of potential actions agents can choose from and this
complicates the data collection of such methods with real robots.
Currently, the most active research direction in active perception is
reinforcement learning which inherently has the notions of rewards
received when an agent takes a specific action and therefore it is very
suitable for active perception tasks.

Active perception is a useful tool that is naturally applicable
for multi-agent search and rescue missions. In Acevedo et al.
(2020), a cooperative multi-robot search algorithm that combines
usage of a particle filter and active perception is presented.
Collaborative search performance is optimized by actively
maximizing information collected by robots throughout their
search. The algorithms assumes a certain degree of uncertainty
in the data, and hence uses the particle filter for active collaborative
perception, yielding dynamic distribution of robots in the explored
area.

In Ahmad et al. (2013), cooperative multi-agent tracking and
active perception formation control techniques are combined in
order to maximize the tracking performance of a target by using a
non-linear model predictive control algorithm. In Tallamraju et al.
(2019), an additional work that uses active perception techniques,
model predictive control and formation control for multi-agent
tracking is presented. Define the tracking error as the distance
between the robots and the target and the formation error as
the difference between the bearing angels of the robots and the
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tracked target. Model predictive control is obtained through the
decoupling of the tracking and formation errors and enables real-
time computations of safe UAV trajectories throughout the tracking
process while surrounding the target with a desired UAV formation.
The estimation errors are reduced by optimizing the locations of
searchers to be in a relative position to the target which will be as
close as possible to the center of the field-of-view of each robot, thus
allowing for better collaborative detection and tracking capabilities
of the team.

2.7.3 Motion coordination
Sharing information on a planned robot’s trajectory should help

cooperative robots that perform search tasks in challenging dynamic
domains to predict dynamic changes in the environment more
accurately. If trajectories overlap or violate safety requirements,
conflict detection and resolution algorithms must be applied. One
type of distributed conflict resolution mechanism is introduced in
Lin et al. (2017) in the context of connected vehicles. The conflict
resolution algorithm for each vehicle is decoupled temporally and
allows connected vehicles to navigate safely and efficiently through
intersections. A vehicle computes the desired time slots to pass
the conflict zone by solving a conflict graph locally based on the
information that was broadcast from other vehicles. In the motion
planner part, a vehicle computes the desired speed profile by solving
a constrained optimization problem.The paper provides theoretical
guarantees, that the combination of local vehicle decisions solves the
conflicts globally. Such solutions are applicable also in the context
of general multi-robotic tasks where a team of robots operates in a
challenging, unknown and dynamic environment and may assist in
providing solutions for the particular case of challenging pursuit-
evader search tasks.

2.7.4 Multi-agent active search
Multi-agent active search is an active learning problem whose

goal is to locate a set of targets in an unknown environment by
allowing a searching team of robots to actively perform sensing
actions that depend on all past observations of the team by
coordinating the movements of searchers to actively make informed
data-collection decisions. Active learning is a branch of machine
learning focused on learning algorithms that can interactively query
an information source to label new data points with desired outputs.
The practical need of developing an ability for teams of UAVs to
collaborate safely in search tasks in a shared environment is one
of the major driving forces for advancements in multi-agent active
search.

In Igoe et al. (2021) multi-agent active search is investigated
from the perspective of reinforcement learning. The authors argue
that the main reasons that recent approaches are limited are since
they aremyopic in a sense that they do not optimize the information
gain throughout thewhole trajectory of search, but rather for limited
time horizons, or that they introduce strong biases that degrades
the performance. An additional limitation that is highlighted is the
computational burden of current approaches, that are not scalable to
largemulti-agent teamswithout prior optimization for a pre-defined
team configuration, and thus makes their application infeasible
in real-world missions. Additionally, it is mentioned that since
most prevailing multi-agent active search approaches are based on
rather general strategies to obtain a wide dispersal of agents, and

not on algorithms that incorporate information on the particular
investigated search scenario this leads to sub-optimal decisions. By
using a deep reinforcement learning based approach, the authors are
able to both reduce computation time and optimise for non-myopic
objectives by rewarding behaviour that results in good performance
for the entire trajectory of the searching team.

2.8 Open research questions

In this section we list several interesting research questions
regarding the topics concerning multi agent search systems
discussed which should result in promising results that will enable
their advancement and application in real-world settings.

Future work on guaranteed smart opponent detection can be
performed on several fronts. The first is developing guaranteed
detection strategies for agents having a sensor model that models
actual visual sensors. Such an analysis provides a generalization to
the sensors used in previous works. Usage of such sensors with a
carefully designed search protocol that utilizes team cooperation by
using pairs of sweepers implementing pincer sweeps and equipped
should provide results that are both theoretically optimal and
applicable in real-world scenarios.

Another promising research direction should consider discrete
search for smart targets using pincer strategies. Contrary to the
topics discussed in previous chapters, in this topic, the environment
over which the search is performed will be discrete (e.g., a regular
grid environment or a general planar graph), and the mission of the
searching team of robots will be to locate the smart opponents. In
such environments, preliminary work indicated that dealing with
obstacles is quite straight forward. Extension of the established
results andmethods from the continuous to the discrete domain will
enable the usage of the results in many other applications.

An additional extension is application of pincer-based search
protocols in challenging environments containing dynamic
obstacles. This shall be achieved by combining pincer-based
methods performed by sub-teams of sweepers together with
multi-agent deep reinforcement learning techniques that enable
agents to operate in unknown environments. Furthermore, another
important topic to consider is online formation of sweeping sub-
teams and their application in search tasks for smart evaders and
invaders. This will allow usage of the established results in more
general environments and enable the multi-agent searching team
to handle cases where the team needs to reconfigure itself in
order to detect all evaders or when other agents need to replace
a malfunctioning searcher.

Deep reinforcement learning can greatly benefit multi-agent
search applications since it allows agents to operate in unknown
environments and environments that do not have a defined
mathematical model and cope with uncertainties in the mission
Azar et al. (2021). Topics such as operation of large numbers
of searching robots in a shared environment, especially drones,
can be improved by developing collaborative obstacle avoidance
algorithms that rely on local communication between robots and
are verified to be safe. Additionally, since many of the existing
works rely on data from simulation it is important to advance sim-
2-real techniques Queralta et al. (2020) that will enable to apply
theoretical and stimulative work in the field as well. Furthermore,
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decentralized online reinforcement learning based path-planning
algorithms that rely only on the agent’s sensory inputs and on inputs
of its local neighbors will allow to alleviate the heavy need to rely
on GPS, thus allowing application of search and rescue robotic
teams in areas with low or no GPS signal, in indoor environments
or environments in which GPS signal is blocked. Furthermore,
such methods will also provide resiliency to the robotic team
against cyber attacks Gil et al. (2017), Zhou and Tokekar (2021),
and Cavorsi and Gil (2022). Additionally, robust deep multi-agent
reinforcement learning techniques should be developed to enable
handling adversarial opponents that may wish to degrade the
team’s performance, especially in surveillance and pursuit-evasion
scenarios. Developing algorithms for generation of energy efficient
trajectories is also an interesting research direction that will promote
drone based search systems García-Martín et al. (2019).

In the topics of run time and optimization of machine learning
based perception algorithms for robotic applications, more effort
should be put on developing computationally light algorithms
that are more suitable for deployment on robots with critical
energy limitations such as drones Bouguettaya et al. (2019). Future
research on collaborative multi-robot multi-human teams Chen
and Barnes (2014) should consider building trust between human
operators and semi-autonomous robotic search teams. A possible
path to achieve such trust is by providing theoretical guarantees
on the performance of robotic systems in real-world tasks and
by developing suitable verification methods for the safety of their
operation in performing rescue missions Rahman et al. (2021). An
additional interesting research direction is to develop online risk
bounded motion planning algorithms for multi-agent robotic teams
that operate in a shared environment with human search and rescue
personnel.

Future research in reconfigurable team formations for search
and surveillance applications Cao et al. (2012) and Cortés and
Egerstedt (2017) should consider developing more decentralized
approaches that are suitable for robotic teams with a large number
of searchers that do not rely on extensive sharing of information
between the team’s members. Furthermore, work on connectivity
preserving formations in exploration of unknown areas such
as underwater Ferri et al. (2017) or underground environments
Rouček et al. (2020) andOhradzansky et al. (2021) will surely enable
deployment of such forms in real-world search missions. Research
on reconfigurable team formations can also assist in situations
where a robot malfunctions Oh et al. (2015) and other robots need
to determine how they should reconfigure themselves in order
to compensate for the robot’s failure and achieve the best team
performance. Additionally, development of algorithms that enable
adaptive behaviour and reconfigurable formations of robotic teams
can assist in multi-agent pursuit-evasion problems, especially in
unknown and dynamically changing environments.

In the topics of cooperative sensing for multi-agent search tasks,
further research should be conducted in the topics of minimal
sensor configuration that allows the robot team to perform its task.
Advancing research in this topic will enable drone teams to execute
longer missions, an essential need in search and rescue missions, by
carrying only the necessary sensor suit needed for themission, based
on the knowledge that it can utilize information obtained from other
agents as well. Similarly, cooperative localization can also benefit
from sharing of sensory inputs from other members of the team

allowing to reduce computational power and sensor requirements
as well Paull et al. (2013) and Zhu and Kia (2019).

In the topic of task assignment formulti-agent searching systems
further research should be performed in online task assignment
and on task assignment for heterogeneous robot teams Rizk et al.
(2019). It is also worth to investigate decentralized dynamic task
allocation algorithms Nunes et al. (2017) that allow to perform the
task assignment on the local level or on sub-teams. This will open
the door to the deployment of multi-agent robotic teams with
larger numbers of participating robots by allowing computationally
feasible calculations that do not require heavy optimization to be
solved.

3 Conclusion

In this work we provide a current view on the multiple
topics related to multi-agent search. We describe recent works in
probabilistic and guaranteed search protocols for smart opponent
detection. Afterwards, we investigate additional research trends
that are relevant to multi-agent search including reconfiguration
of multi agent teams, usage of reinforcement learning for multi
agent search applications, multi-agent active search, task assignment
for multi-agent search problems, cooperative sensing for multi-
agent search and practical considerations in the design of multi-
agent search systems. We later provide future research directions
that we deem are important for further investigation in order to
promote the advancement of the multi robot search systems of the
future.
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