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Abstract

Swarm Robotics:

Cooperative Navigation in Unknown Environments

Swarm Robotics is garnering attention in the robotics field due to its substantial benefits.

It has been proven to outperform most other robotic approaches in many applications such

as military, space exploration and disaster search and rescue missions. It is inspired by the

behavior of swarms of social insects such as ants and bees. It consists of a number of robots

with limited capabilities and restricted local sensing. When deployed, individual robots behave

according to local sensing until the emergence of a global behavior where they, as a swarm,

can accomplish missions individuals cannot. In this research, we propose a novel exploration

and navigation method based on a combination of Probabilistic Finite Sate Machine (PFSM),

Robotic Darwinian Particle Swarm Optimization (RDPSO) and Depth First Search (DFS). We

use V-REP Simulator to test our approach. We are also implementing our own cost effective

swarm robot platform, AntBOT, as a proof of concept for future experimentation. We prove that

our proposed method will yield excellent navigation solution in optimal time when compared to

methods using either PFSM only or RDPSO only. In fact, our method is proved to produce 40%

more success rate along with an exploration speed of 1.4x other methods. After exploration,

robots can navigate the environment forming a Mobile Ad-hoc Network (MANET) and using

the graph of robots as network nodes.

http://www.aucegypt.edu
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Chapter 1

Introduction

In this research, we present a new exploration approach to help heterogeneous robots navigate

safely in unknown and hazardous environments cooperatively using concepts of swarm robotics.

Swarm Robotics is inspired by the biological swarms of social insects such as ants and bees.

In ant colonies for example, hundreds of thousands of ants collaboratively communicate to

bring food to their colony and ensure its survival without any master commander, relying only

on local information. This collective ant behavior results in huge tasks being achieved that

a small number of ants cannot achieve on their own. In Swarm Robotics, behavior emerges

by deployment of small, affordable and heterogeneous robots. Robots rely on their collective

behavior to accomplish the task. A powerful feature of swarm robotics is the absence of a

leader thus eliminating single point of failure problems. This is one of the main reasons for the

popularity of Swarm Robotics.

In Swarm Robotics system design, the behavior of the system heavily depends on the emer-

gent global collective behavior of all robots and not on a single behavior from a single robot.

Studying this global emergent behavior is the main issue of Swarm Robotics because there is

no clear formula that would produce (x) global behavior based on certain (y) local behavior

of a single robot and vice versa. In this research, we survey different methods to evaluate this

global behavior published in the swarm robotics literature. We also propose a new method of

environment exploration and navigation based on Robotic Probabilistic Finite State Machine

(PFSM), Darwinian Particle Swarm Optimization (RDPSO) and Depth First Search (DFS).

An example of swarm robotics application in disaster search and rescue missions is the retrieval

of trapped earthquake survivors where rescuers are not able to safely lift debris. Swarm robots

1
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Robot dependent variables Environment dependent variables

Number of Robots Size Area of the environment
Size of a single robot Density of obstacles in the environment

Robots compatibility (Heterogeneity) Geometry of the environment

Table 1.1: Robot vs. Environment Variables

collaboratively evaluate the situation and report their findings. In our experiment, we focus on

similar search and rescue missions namely, search for a bomb and diffusing it. The swarm of

robots are deployed to explore and navigate an environment while avoiding potential obstacles.

Note that optimum initial deployment of the swarm to explore and make local decisions is still

unknown. Our robots form a moving Mobile Ad-Hoc Network (MANET) to maintain stable

network communication between members of the swarm by addressing the variables summarized

in table 1.1. The table lists the main variables affecting the swarm mission; some are related to

the robots themselves and others are related to the environment they are exploring.

After sufficient environment exploration, robots must be able to navigate the environment avoid-

ing obstacles even in case of robot failures. Since Swarm Robotics research is still in its infancy,

there is no available comparison between different deployment or exploration approaches. This

research aims to provide such comparison. Different from all previous researches which present

optimal exploration results, our approach is designed to produce optimal results with excellent

performance in optimum time. Subsequently, our swarm of robots must be able to guide other

robots through the environment they already explored. Swarm robotics is all about having

small and affordable robots accomplishing big tasks. As such, we decided to design and build

our own swarm robot platform (AntBOT) to avoid purchasing expensive commercial off the

shelf robotic kits. It is based on the Pololu 3pi robot controlled by ARM mbed microcontroller.

More details on the new proposed platform are available in appendix A.2.

The problem we are solving in this work is discussed further in the following section. In-depth

literature review of current approaches to Swarm Robotics is described in chapter 2, while our

proposed solution is explained in chapter 3. Chapter 4 contains details of our experimentation

methodology and how we evaluated the performance of our system followed by the results of our

experimentation in chapter 5. The final chapter 6 lists future work along with the conclusion.

Our swarming platform and all its technical specifications together with the simulator model

are described in detail in appendix A.
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1.1 Problem Definition

Swarm Robotics research has been growing for the past decade exploring many applications and

theories. In this research, we focus on a model of real world applications namely search and

rescue (SaR) models where robots are required to navigate an unknown environment searching

for certain targets. One such example is exploring and searching for potential bombs. Once

found, a bomb diffuser robot navigates the shortest calculated path using other swarm nodes

as network communication nodes.

The main problem with the current available methods in the area of swarm exploration and

navigation is that they discuss the solution on either the individual behavior of a single robot or

the collective behavior of all robots. This actually limits the capabilities of the developer when

designing a swarm robotic system. Prior Swarm Robotics research uses either microscopic or

macroscopic techniques as discussed in section 2.2. The microscopic approach implements the

system on a single robot, then maps its behavior to other swarm robots until the desired behavior

emerges. For macroscopic level design, desired swarm behavior is designed, then it is mapped

to each robot. The current issue with Swarm Robotics design is that researchers approach

the problem either on the microscopic or the macroscopic level. This limits their ability to

verify their system design. A great deal of effort is then expended in trial and error looking for

convergence to the desired behavior. In this work, we discuss a novel solution considering both

individual and collective behaviors at the same time as found in chapter 4.

The advantage of Swarm Robotics is that it can provide good solutions where other traditional

search techniques fall short. In most hazardous scenarios, speed and efficiency are required since

human life may be at stake. Swarm robotics has major advantages in SaR missions:

1. Robust : Execution of the mission is distributed among several nodes where failure of

some would not affect the completeness of the mission. Nevertheless, it might affect the

performance or the time taken to complete the mission.

2. Scalable: Insertion or deletion of swarm nodes are allowed. The swarm can adopt a

variable swarm size without major effects on the performance of the swarm.

3. Simple: Like in most of biological swarm systems: simple, local sensing nodes are able to

collectively accomplish great missions.
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4. Parallelizable: Although the mission can be done using a single complicated huge robot,

a swarm can finish it with the same efficiency in less time due to the parallel nature of

the swarm.

5. Economical : Swarm systems cost much less than conventional huge complicated systems.

Also, losing a few swarm nodes is more cost effective than losing a well equipped expensive

robot.

This work capitalizes on the above advantages to help provide a scalable, robust and a rapid

solution to efficiently explore a hazardous unknown environment using robots. The swarm

would be able to easily navigate the environment guiding other robots without any network

infrastructure.



Chapter 2

Literature Review

In this chapter, previous work done in the field of Swarm Robotics is reviewed. To get a

comprehensive understanding of the current advancements in Swarm Robotics research, we

cover research done in this field including work not directly related to our proposed work. Work

related to our method is discussed in more details than others. Most research in the field of

Swarm Robotics fall into two categories, swarm robotic applications or design methods to build

Robotic Swarm systems. In a similar review, authors analyzed the available swarm approaches

from an engineering perspective where they focused on ideas and concepts that are important

for real-life swarm applications [1]. They defined swarm engineering as “An emerging discipline

that aims at defining systematic and real founded procedure for modeling, designing, realizing,

verifying, validating, operating and maintaining a swarm robotics system”. Following the above

definition of swarm robotics, robots must be: autonomous, able to do local sensing, able to

communicate, suitable for the environment, with no centralized control and able to collaborate

to achieve a certain task. The behavior of a swarm robotics system is inspired by social animals

where they exhibit swarm intelligence where behavior appears to be robust, scalable and flexible.

Robustness comes from the fact that there is no central node and any loss of any individual node

will not affect the systems mission. Scalability means that the performance will not be dramat-

ically affected if the number of robots in the system is decreased or increased. Flexibility is the

ability to adopt different scenarios and environments without a major effect on performance. As

defined, swarm engineering is the mechanism where scientific and technical knowledge is used

to model and design swarm intelligent systems. Swarm engineering was first defined in 2000

as follows “to the swarm engineer, the important points in the design of a swarm are that the

5
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Figure 2.1: Literature Review Tree

swarm will do precisely what it is designed to do and that it will do so reliably and on time”

[2, 3]. It is worth mentioning at this stage that Swarm Robotics is still on its infancy and most

of the currently available research only addresses the design and analysis of a swarm system

while other aspects such as requirements analysis, maintenance and performance measurement

are not adequately explored yet.

In other reviews, researchers adopted different comparison schemes to review and evaluate differ-

ent swarming approaches. One review chose swarm size, communication range, communication

topology, communication bandwidth, swarm reconfigurability and swarm unit processing ability

to evaluate the available literature [4]. Using group architecture, resource conflicts, origins of

cooperation, learning and geometric problems was adopted in another review [5]. In another ap-

proach, authors grouped the available literature into aware versus unaware cooperation between

robots [6]. Some other researchers divided available work into three main parts: mathematical

models, swarm coordination and control, and design approaches [7]. Some other researchers

categorized the literature into five approaches: modeling, behavior design, communication, an-

alytical studies, and problems [8]. A tree view of our literature review is shown in figure 2.1

and is divided into three main categories:

1. Design of Swarm Robotics Systems.

2. Analysis of Swarm Robotics Systems.

3. Swarm Robotics Applications.
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2.1 Design Methods

We discuss design and analysis methods to evaluate the performance of swarm robotics systems

and to assess their real emergent properties against the desired properties. There are two types

of design methods: 1) Behavior based Design Methods, and 2) Automatic Design Methods.

2.1.1 Behavior based Design Methods

In swarm robotics applications, there is no clear formula for designers that will produce a certain

global behavior X based on local behavior Y or vice versa. Hence, design of swarm systems tend

to be a trial and error process. Designers keep tuning their system design on the robots until

the desired emergent behavior is reached. Although most of the available literature rely on this

bottom-up approach, there exists some recent top-down approaches [9]. Most of the Behavior

Based Design methods use either: a) Probabilistic Finite State Machine or b) Virtual-Physics

based design methods.

2.1.1.1 Probabilistic finite state machine (PFSM)

In a robot swarm system, its really hard to predict the future of the swarm and the complete-

ness of the mission because the global behavior of a swarm depends solely on the behavior of

individuals in the swarm. No individual in the swarm can expect its next move because they

act based on dynamic sensory data [10]. Probabilistic finite state machine is one of the design

approaches used in swarm robotics systems to study their behavior and was first introduced by

Minsky in 1967 [11].

There are two different models to PFSMs, one where probability is fixed and is applied all over

the system until convergence to a solution [12]; the other one is a variable probability based

on a mathematical model changing based on input from other robots and the environment.

Convergence to a solution in this case is evaluated using a model for the varying probability

called response threshold [13].

In a study of collective decision making and task allocation, response threshold function shown

in figure 2.2 has been introduced in swarm robotics and was used to analyze the behavior of a

swarm of social insects [14, 15] where the threshold is the likelihood for an agent to perform a
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Figure 2.2: Response Threshold Model

task based on perceived stimuli. PFSMs were used to develop major collective behaviors such

as: Aggregation [12], Chain Formation [16] and Task Allocation [17, 18].

2.1.1.2 Virtual physics-based design

Taking inspiration from the law of physics, virtual physics-based design were developed in a

way where each agent in the swarm is considered as a virtual particle that exerts forces on other

agents in the environment. Artificial potential field concept is adopted by many researchers

where robots are considered as virtual forces, obstacles as virtual repulsive forces that repel

with robots and the goal as a virtual attractive force that attracts other robots towards it

[19, 20]. Physicomimetics which is derived from the words physics and imitation is a framework

which assumes robots are aware of the environment itself and other robots in it and can easily

communicate with all detected robots [21] and is used to model physics-based design approaches.

A virtual force vector is computed using the following formula:

f =

k∑
i=1

fi(di)e
jθi (2.1)

Where θi is the direction and di is the distance to the ith robot or obstacle and the function

fi(di) is derived from an artificial potential function, where the most commonly used one is the

Lennard-Jones potential function shown in figure 2.3. The potential v depends on the current

distance d between two robots. σ is the desired distance between the robots and ϵ corresponds to
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Figure 2.3: Lennard-Jones Potential Function

the depth of the potential function where the deeper the ϵ, the stronger the interaction between

the two particles or robots .

Virtual physics-based design models are frequently used in applications that require robot for-

mation due to the following advantages:

• The entire sensory input space is translated easily to the actuators output space using a

mathematical rule.

• Vectorial operations can be used to combine obtained behaviors.

• Theoretical rules from physics and control logic can be used to prove system properties

such as stability and reliability.

2.1.2 Automatic Design Methods

Automatic design methods formally consists of two main sections; a) Reinforcement Learning

and b) Evolutionary Robotics.

2.1.2.1 Reinforcement Learning (RL)

Reinforcement learning in the field of swarm robotics was introduced in 1996 [22, 23]. It was

first applied to single robot systems and then helped in the design of swarm robotics systems. A
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review about reinforcement learning applied in swarm robotics is available [24]. To begin with,

RL is usually defined as a learning mechanism for the agent through trial and error. The agent

is rewarded upon behaving in the right way and punished otherwise. Reaching the optimal

model is the goal of the robots where they get maximum rewards. The issue with RL being

applied with Swarm Robotics is that designers tend to tackle the problem on the collective level

although the award system works only on the individual level; designers cant reward the whole

team together.

So, translating collective level behaviors into individual level learning or rewarding is the main

problem associated with RL when applied to robotic swarms and is called spatial credit assign-

ment; more on this area can be found in [25–27] where authors used communication between

robots to share the reward between all robots. Other problems with RL being used to design

swarm systems are the huge size of the state space, incomplete environment awareness and non-

stationary environment. Neural networks [28] and fast-learning algorithms [29] were used to

reduce the huge size of the state space. Research proved that incomplete awareness of the sur-

rounding environment will only make the problem harder [30]. Unfortunately, no one addressed

the issue of non-stationary environment in swarm robotics using RL design methods.

2.1.2.2 Evolutionary Robotics (ER)

Evolutionary Robotics takes its inspiration from the Darwinian principle of evolution (survival

of the fittest). It was first introduced in 2000 by Nolfi and Floreano as “an automatic design

method that applies evolutionary computation techniques [31, 32] to single or multi-robot sys-

tems” [33]. ER has been used in the study of swarm robotics systems in two scenarios; to test

the effectiveness of design methods [34–36] and to provide scientific proofs [37–40].

ER algorithms in Swarm Robotics are executed in five main steps:

1. Generation of random population.

2. Experimentation to generate individual behaviors that are used across all the robots within

the system.

3. Evaluation of the collective emergent behavior based on the individual behaviors using

the fitness function.

4. Selection of the fittest; i.e. the best scoring individual behavior.
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5. Execution of genetic operations such as cross-over and mutation on the selected individ-

uals.

This algorithm is repeated several times until convergence; i.e. the performance is constant

through different trials. Although there are applications where systems are heterogeneous and

ER mechanisms are used, most of the available works with ER applied in the area of Swarm

Robotics are addressing homogeneous systems where all the robots are the same to be able to

apply the same fitness function throughout the whole system. Usually, ER algorithms in Swarm

Robotics are classified into two categories; the first is based on the composition of the system

“homogeneous vs. heterogeneous” while the second is based on fitness computation method

“individual level vs. swarm level” [41]. Different ways to represent individual behavior in ER

were proposed such as virtual force functions, finite state machines and neural networks [42].

Several neural network types can be found in the literature such as feed-forward NN [43] and

recurrent NN [44, 45]. In applications where individuals do not need memory, feed-forward

NN is used while in other applications, recurrent NN is used [37]. It is important to note that

evolution is a process that does not guarantee convergence to a solution. Most results acquired

by evolution are pretty simple and can be designed by hand.

Calculation of adaptive coordination behavior within a swarm of robots was designed to calculate

its cost over time [46]. Authors proposed a method to compare different coordination costs and

expect future estimated results. Particle Swarm Optimization (PSO) Algorithms were used

and compared against Evolutionary Robotics Algorithms for automatic generation of collective

global behavior from local behavior [47]. Authors used a swarm of robots to avoid obstacles

and they concluded that PSO was able to achieve better results when compared to ER.

Virtual physics-based design methods were combined with ER to learn the parameters of the

artificial potential functions for robots trying to avoid obstacles [42]. Furthermore, a solution

was proposed for the stick pulling task using a tool of on-line learning trying to achieve diversity

and specialization in a swarm of robots [48]. Others conducted research on a branch from the

virtual physics-based design methods called Learning Momentum where the behavior of robots

is learned according to the current situation in the environment [49].
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2.2 Analysis Methods

In the previous section, we analyzed different design methods available in the literature for

the design of a swarm system. In this section we focus more on analysis of these methods in

Swarm Robotics systems. We believe that this is one of the most important phases in the design

process. In this phase, the system designer should be able to validate specific properties of the

system that hold true when applied to real systems involving real world scenarios. To study

their behaviors, swarm systems are categorized into two different levels; the individual level,

microscopic, where the behavior of a single robot is studied. Another level is the collective level,

macroscopic, where the collective emergent behavior is studied. As mentioned before, due to the

fact that swarm robotics research is still in its infancy, there is no clear formula that produces a

certain behavior on one level based on a designed behavior on the other level. Thus, it is hardly

found in swarm systems that an engineer approaches the system from both sides at the same

time; either the individual level behavior or the collective level behavior. Swarm systems are

based on self-organization [50] which makes it very difficult to model both levels at the same

time. Though, we provide a solution based on a combination of both levels at the same time as

shown in chapter 4. This section is divided as follows: 1) Behavioral Analysis, 2) Real Physical

Robot Analysis.

2.2.1 Behavioral Analysis

Behavioral analysis is divided into a) microscopic models in which the individual behavior of a

single robot is studied and b) macroscopic models in which the collective behavior of all robots

is studied.

2.2.1.1 Microscopic Models

Studying the individual behavior of a single robot in a swarm of robots is called the micro-

scopic model. There are two types of interactions in that model; robot-to-robot and robot-to-

environment. Different levels of abstraction have been proposed [51] and the simplest of which

is the one which models the environment in 2D the robots as points of mass in it. Mapping

the robots with the environment to a 3D model is a more complex approach although it adds

flexibility to accurately map properties of sensors and actuators. Individual behavior models

are mainly used to help in initial phases of system design. The most frequently used tools in
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swarm robotics systems are the simulators. Most of the work available on swarm robotics, if

not all, include results from simulations. Typically, Swarm Robotics systems are based on a big

number of robots performing a mission where a small number of them can not perform, thus,

the need for simulators. They are mainly used to validate the behavior of the design on the

collective level before moving to real robots. In our design, we use V-REP simulator described

in appendix A to validate our approach. While researching different design models of swarm

robotics; its not always affordable to test on such a huge number of real robots. The biggest

number of robots known in a swarm application was done at Harvard University where they

used 1024 very small and basic robots to do pattern formation [52]. There are many simulators

available in the market for the development of swarm systems [53] such as: Virtual Robot Ex-

perimentation Platform (V-REP) and Webots. In our research, we conduct all experimentations

on V-REP as it provides more flexibility in design. Its also open source; more on our simulation

can be found in section A.1.

Different simulators have different characteristics when it comes to design complexity, robot

modeling and environment modeling. Unfortunately, most of the available simulators do not

fully support scalability when it comes to number of robots. Several benchmarks for studying

scalability have been proposed [54]. Another important work in that field is the development

of a simulator that can simulate up to 100,000 robots in real time was also studied [55].

2.2.1.2 Macroscopic Models

Macroscopic models study the swarm system on the collective level; i.e. the emergent behavior

of all robots together. Works focusing on the macroscopic level in swarm robotics can be

classified into two main categories: a) Rate and Differential Equations and b) Classical Control

and Stability Theory.

Rate and Differential Equations Rate equations model is defined as “the time taken by

some of the robots to be in a particular state over the total number of robots” [56]. The

collective behavior can be described from the individual behavior using Rate equations through

two steps:

1. Defining the variables for each individual state.

2. Defining the rate equation for each variable which contains all input and output parame-

ters.
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There are many works in the literature that use rate equations method to design swarm robotics

systems. For example, an experiment was conducted for a clustering task where robots need

to gather objects from the environment collaboratively [56]. Rate equations were also used

to model the behavior of stick pulling where two robots have to collaborate to pull a stick

[48, 57]. They were also used to model the individual behavior of foraging using each other’s

inference [57]. Authors found that the quality of individual behavior is a decreasing function

of group size. Moreover, modeling aggregation and chain formation behavior was done using

Probabilistic Finite State Machine (PFSM) as discussed in section 2.1. The behavior of foraging

where robots are looking for multiple food sources within the same task was studied to test

multi-goal applications [58]. Rate equations were also used to model the behavior where robots

are asked to keep intact in hazardous environments [59]. These robots must be able to avoid

collisions while navigating in the environment. Researchers also modeled the behavior of the

collecting energy units using rate equations [60]. Their use was extended to model the behavior

of aggregation where a flying robot is responsible for managing the number of robots doing the

aggregation on the ground [61]. Another group provided a swarm task assignment capability

to Takayama’s enclosure model to achieve a highly scalable target enclosure model about the

number of target to enclose [62].

Although rate equations have been used in many applications due to the huge advantage that it

provides a way to generate collective behavior from single robot behavior, they still have some

limitations such as the inability to model current location or time. Both of these are either

assumed or estimated because each robot can easily change its location abruptly in the envi-

ronment. There are some advancements to using rate equations to overcome these limitations.

For example, adding location awareness to improve the performance of rate equations [63]. Fur-

thermore, Langevin equation and the Fokker-Plank equation were used along rate equations

approach to increase the performance [64]. They took their inspiration from statistical physics

and differential equations.

The Langevin equation was originally used to describe the motion of particles in a fluid. This

is neither a microscopic nor a macroscopic level, instead it is called ”mesoscopic model” where

particles motion is divided into two parts; deterministic to describe the microscopic aspect

and stochastic to describe the macroscopic aspect. Mapping those two parts to robots, the

deterministic part is the robot action depending solely on its individual behavior while the

stochastic part is the action based on other robots in the environment. Furthermore, Fokker-

Plank equation was used to model the evolution of the swarm with time as a probability density
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function describing the location of each robot at a given time. Analyzing different applications

of swarm robotics such as coordinated motion, aggregation and foraging was also done through

applying Fokker-Plank equation [64]. Authors also compared their aggregation approach against

another model called Stock & Flow [65]. Although Fokker-Plank equation has the advantage

of modeling most of the swarm robotics collective behaviors, it also has some disadvantages

such as difficulty to model communication between robots. Also, derivation of the equation is

analytically difficult.

In a similar experiment, modeling the behavior of a swarm performing task allocation, authors

used partial differential equations to derive the individual behavior of robots [66]. Same was

used for area coverage problem [67] and was later on compared with simulation results [68].

Fokker-Plank equation was used to model the behavior of a swarm performing area coverage

[69]. They tried to compare different models and note their behavior based on two aspects;

”microscopic vs. macroscopic” and ”spatial vs. non-spatial”. They proved that accuracy of the

spatial model is higher given short periods of time.

Classical Control and Stability Theory Most researchers consider classical control and

stability theory models as the best available method to model the behavior of the swarm of robots

because they are based on strong mathematical equations. Unfortunately, in swarm robotics,

some of the variables within these models are really hard to assume due to the absence of global

information. Discrete-time discrete-event dynamical systems were used to model swarms of

robots in 1D [70, 71]. Lyapunov stability theory was used to demonstrate that the presence

of noise in a swarm environment will not hinder coherent foraging tasks [72, 73]. Additionally,

a linear discrete system was used to model the behavior of a swarm [74]. In addition, task

allocation was modeled using delay differential equations which are a type of differential equation

in which the derivative of the unknown function at a certain time is given in terms of the values

of the function at previous times [75].

2.2.2 Real-Robot Analysis

In the swarm robotics field, two platform approaches are used for experimentation, real robots

and simulation. While the usage of simulation might look more attractive due to the fact that

it supports extendibility, the use of real robots is equally important. In fact, sometimes it is

even more important than simulation due to the following facts:
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1. Some aspects of reality are just impossible to be simulated.

2. Testing the robustness of the system with enough noise in the environment.

3. Differentiating between realistic and unrealistic collective behaviors.

The problem with real robot experiments is that some researchers use it to validate their proto-

type. However, this is not always accurate due to the fact that experiments are run in research

environments and may differ from actual environments where robots are deployed. In most of

the available literature on swarm robotics, more than 50% depend solely on the use of simulators

because they are safer and faster.

It is important to note that within the available work using real robots, there are two different

categories; basic and extensive experiments. Most of the available work on swarm robotics

using real robots only present basic experimentation [76]. Their main goal is to show the

feasibility of the system applied in real world experiments. The rest of the works provide

extensive experimentation where multiple runs are done and the average is studied to truly

validate properties of the system [77, 78].

2.3 Swarm Robotics Applications

To this point, we only listed available methods and approaches to design and analyze swarm

robotic systems. In this section, we discuss some of the available swarm robotic applications

and provide a brief explanation of each. It is divided into three application categories:

1. Environment Exploration and Navigation.

2. Spatial Organization of Robots in Space.

3. Collective Decision Making.

After each section, we discuss its relation to our work.

2.3.1 Exploration & Navigation Applications

In swarm applications, robots must explore and discover the environment before starting the

mission. In this section, we focus on applications involving unknown environments where robots

have no prior knowledge of the surroundings. In critical search and rescue mission applications
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such as ours, environments are not usually known to robots beforehand. Environment explo-

ration must be done before the navigation. In fact, it needs to be fast, accurate and efficient

to minimize losses and maximize system performance. To understand these kinds of applica-

tions, we study two joint behaviors: area coverage and swarm-guided navigation. Area coverage

studies the efficiency of deployment and how scattered robots are in the environment. Swarm-

guided navigation studies how robots navigate towards their goal and the efficiency of their

navigation. Both behaviors are inspired by ants where they navigate in the environment while

sensing pheromone trails placed by others ants in the environment. Similarly, bees guide other

bees in the environment with dancing where each dance means a different piece of information

[79]. In this research, we propose a new model to help better explore the environment before

navigation as well as a model to increase the efficiency of the navigation. Our model is based on

Probabilistic Finite State Machine (PFSM), Robotic Darwinian Particle Swarm Optimization

(RDPSO) and Depth First Search (DFS) and is further discussed in chapter 4. Three categories

of Swarm Exploration and Navigation are discussed:

1. Collective Exploration.

2. Coordinated Motion.

3. Collaborative Transport.

2.3.1.1 Collective Exploration

Most of the available applications in the area of exploration and navigation use virtual-physics

based design methods mentioned in section 2.1 to maximize environment coverage while main-

taining connection with other robots. Other works focus on communication between robots and

use probabilistic finite state machines (PFSM) models mentioned in the same section. The main

issue with navigation applications is how to model pheromone trails used by ants to navigate

on real physical robots. Most of the researchers use a portion of the population as “virtual

pheromones” to guide other nearby robots in the environment [76]. Connection between robots

in the environment has to be maintained in order for the swarm to succeed. Robots should be

connected together, to the source and to the destination. Once this network is established, other

robots in the population use it for navigation purposes. Following the model of virtual physics-

based design, a behavior where robots are attracted to the goal and repelled by obstacles and

other robots in the environment was developed to map the visible space of the environment as

shown in figure 2.4. This helps forming a reliable network between all nodes while maintaining
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Figure 2.4: Occupancy grid; visible space is marked in black (occupied) or white (free); unseen
space is marked in gray [80].

maximum area coverage [80]. Researchers conducted a survey on movement strategies to main-

tain area coverage using wireless sensor networks [81]. Another group of researchers developed

two localization algorithms based on Particle Swarm Optimization (PSO) and Backtracking

Search Algorithm (BSA) [82]. They used existing reference nodes in the swarm to eliminate the

use of a external reference such as Global Positioning System (GPS).

Moreover, foraging behavior was studied using a distributed Bellman-Ford algorithm along

with sensors deployed in a changing environment to search a specific route to the goal for

robots to follow [83]. Chain formation was used for robot navigation where they broadcast the

direction of movement for other robots to follow [16]. Different from static robots used as virtual

pheromones, researchers developed a method where robots are called “passive robots” which

means they can be used as a point of reference for navigation purposes although they are actually

busy doing other behaviors in the environment [84]. In our model, robots are used for navigation

while moving in the environment forming a dynamic moving connected Mobile Ad-hoc Network

(MANET). In a recent study on swarm robotics systems, researchers developed a method that

mimics the behavior of ants from many perspectives where they claim that their system can be

easily scaled to a complex real-world environment [85] due to the following solutions presented

in their system:

1. Increased communication when sensed information is reliable and resources to be col-

lected are highly clustered.

2. Less communication and more individual memory when cluster sizes are variable.

3. Greater dispersal with increasing swarm size.

A swarm of flying robots called Swarmanoid were used and deployed where they navigate the

environment and attach to ceiling [86]. They determine their location based on other robots
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Figure 2.5: Foot-bots are deployed in the start location at the top right of the arena. The target
location is at the bottom left. The eye-bots take positions against the ceiling in the
area between source and target [88].

in the swarm ensuring maximum area coverage. They are divided into two main categories;

robots responsible for communication in the swarm, these are attached to the ceiling and robots

responsible for exploring the environment, these are continuously flying. The advantage of

this system is the ability to cover large areas of the environment using a small number of

exploration robots moving freely within the environment. A continuously connected network

is maintained through fixed robots [87]. Static robots attached to the ceiling are responsible

for ensuring network reliability and maintainability. Another approach to maintaining the

network connection in a moving swarm is to handle communication in the network similar to

communication in real world by means of packet routing. Robots navigate the environment using

a table containing the distance between other robots and the target location. Furthermore, in

an interesting work, authors studied an indoor navigation problem where a heterogeneous set of

robots as shown in figure 2.5 in the top-right are required to keep navigating between the source

and the target [88]. Guidance in the navigation is done through information retrieved from

flying robots marked in green in the same figure responsible for covering the environment and

broadcasting this information to the network. This system was developed using probabilistic

finite state machine model discussed in section 2.1.

Another study proposed a decentralized control algorithm for swarm robots for target search

and trapping inspired by bacteria chemotaxis [89]. Robots initially start performing target

search and trapping tasks driven by their bacteria chemotaxis algorithm until they locate their

target. The study proved that their results are less vulnerable to local optimum in which most
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Figure 2.6: Robots performing foraging using real pheromone of Alcohol

other commonly used approaches fail to deliver. Another study of cooperative navigation based

on general event-servicing was conducted [90]. Authors focused on how robots should inform

each other about the current event and proposed a solution based on delay-tolerant wireless

communications. Another study provided a task abstraction module for swarm robotics in

navigation called TAM [91]. Their approach is based on a physical device called TAM which

abstracts tasks for a single robot to be performed by an e-puck. These single behaviors can be

mapped to more complex tasks using a group of TAMs. In a recent study, a group of researchers

used pheromone trails from an actual chemical substance such as alcohol as shown in the heat

map in figure 2.6 to guide robots doing group foraging behavior [92]. Their results showed that

communication through pheromone trails can increase the system performance in a non-linear

way depending on the size of the robot swarm.

2.3.1.2 Coordinated Motion

Coordinated motion applications are studied in the literature where robots move together in

the same direction forming a swarm. This behavior is called flocking and is inspired by the

movement of flocks of birds and schools of fish [93]. It is essential when robots are required

to navigate in the environment keeping minimal distance between each other while avoiding

obstacles [94]. There are many advantages to coordinated motion [95] such as:

1. Higher survival rate.

2. Precise navigation.

3. Less energy consumption.
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Figure 2.7: a) steer to avoid local mates, b) steer towards the average of local mates, c) steer
to move toward the average position of local mates, d) simulated flock avoiding
cylindrical obstacles [96]

Most of the works studying coordinated motion depends on virtual physics-based design ap-

proaches where robots are required to keep minimal distance between each other using uniform

alignment. Other researchers use means of artificial evolution to design coordinated motion

within swarm systems. A swarm of virtual birds were used in computer graphics where robots

are supposed to measure the velocity and distance of their neighbors and perform different be-

haviors as shown in figure 2.7. They follow some basic rules including velocity matching and

collision avoidance [96]. Both techniques ensure that the swarm is moving together while mini-

mizing collisions. Another research based on social potentials was conducted where each robot

is aware of other robots in its range and using information stored on each robot such as distance

and orientation to other robots, the swarm is able to calculate the best route to the destination.

Authors also created a swarm which is able to do pattern formation while navigating in the

environment such as lines, circles and squares [97].

Artificial Evolution techniques were used to tune the parameters of neural networks to coordinate

the motion of robots [98]. Authors were able to generate this behavior through three different

models; a) robots rotating around the center of the swarm, b) robots moving in a constant

speed and c) robots following one moving robot. In another research, robots were able to

measure the direction of movement of other robots through a sensor called heading sensor while

an infrared sensor was used to measure the distance. Given information retrieved from the

two sensors, robots were able to develop a coordinated motion behavior with no mutual goal

between all robots. Another work divided robots into two main categories: a) informed robots

and b) non-informed robots. Informed robots are aware of the direction of the target and are

using it to inform other non-informed robots in the environment [77, 99]. Tuning the ratio of

informed to non-informed robots in the environment results in varying performance of the whole

swarm system. Another research developed a similar approach but with only a portion of robots

reporting their current direction to other robots [100]. In another work, authors developed a

model of coordinated motion where robots are not required to be aware of the orientation of
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Figure 2.8: 20 e-pucks transporting a rectangular object to the goal

other robots in the environment. They depend on virtual physics-based design where robots

attract and repel each other in the environment. Authors used established repulsion or attraction

forces to measure the desired movement of robots [101]. In this work, authors showed that a

swarm can successfully develop a coordinated motion without the use of informed robots that

are aware of the desired direction [102].

2.3.1.3 Collaborative Transport

In this section, we focus on exploration and navigation tasks where robots are required to

transfer an object between two points. The object is relatively heavy and cannot be transferred

using only a small set of the robots. To do this, first, they have to inform each other about the

object to be transferred and to where it should be transferred, then, they all agree on a common

direction of movement so that they can collaboratively move together. This behavior is inspired

by ants collaboratively moving food to their nest [103]. Ants look for food and when they find

a food source, they evaluate the weight of each prey by pulling and pushing the prey until they

agree on a common direction. In case of failure to agree on a common direction, they de-attach

and re-attach again in different positions until they successfully start moving towards the nest.

Another research developed a mathematical model measuring the magnitude of collaboration

between ants [67]. They tested their model by observing ants collaborating to move fabricated

elastic structures. In most of the collaborative transport applications, collaboration is done by

means of one of two models: a) direct communication where robots inform each other of the

desired direction or b) indirect communication where robots measure the force applied on the

object by other robots. Another group of researchers proposed a strategy for transporting large

objects to a mobile goal where robots have to keep evaluating the location of the goal [104].

They tested their approach using a group of 20 e-pucks [105] as shown in figure 2.8 where they

were successfully able to transport the object 43 times out of 45.
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Figure 2.9: a) S-bot displaying a direction using a triangular LED pattern. b) Star-like forma-
tion of four s-bots around the prey [106].

In one of the early works on collaborative transport, authors studied the movement of objects

using three different kinds of sensing: position sensing, orientation sensing and force sensing.

Another research proposed a method where robots agree on a common direction based on colored

LEDs as shown in figure 2.9 and start broadcasting it until all of them are moving in the same

direction [106]. Similar to their other work, authors developed a method to tune the parameters

of a neural network responsible for collective transport [107]. In their experimentations, they

tried different weights and sizes of objects to be transferred. They also tried varying the swarm

size while adopting three different techniques to move objects; a) robots are directly attached

to the object, b) robots are attached to each other and then to the object and c) robots are

surrounding the object. Artificial evolution along with neural networks were used to move

objects in a space where robots use sensors to measure the applied force on the object and move

accordingly while avoiding obstacles [98]. In another work, a different collective behavior was

developed using information from each robot [86]. Each robot has its desired direction where

the final direction is the average of all desired directions from all the robots.

2.3.2 Spatial Navigation Applications

Organization of robots in a swarm plays a vital role to the swarm success. Efficient organization

increase the performance of the system as well as the efficiency of resource usage within the

swarm. This section lists four different ways to organize a swarm in space:

1. Aggregation.

2. Pattern Formation.

3. Chain Formation.

4. Self-assembly.
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Figure 2.10: A sketch of the environment. The square frame represents the arena. The gray
circles represent the robots and dashed circles represent the part of environment
where the robot aggregate can be perceived by another robot [113]

2.3.2.1 Aggregation

Aggregation is a simple behavior where robots are required to form aggregates in a certain area

of the environment. This behavior is mainly used in applications where robots are to navigate

keeping small distances between each other. Many examples of aggregation in natural swarms

are found in the literature such as schools of fish and flocks of bees [79, 108–111]. Similar to

most navigation applications, aggregation applications use approaches such as probabilistic finite

state machine (PFSM) and artificial evolution. In the first approach, robots are not aware of any

aggregates in the environment and they start exploration. Once they locate an aggregate, robots

calculate the probability of joining the aggregate or not while ensuring that only one aggregate

exists in the system at any given time. For the second approach, tuning the parameters of

neural networks is used to develop this behavior. Inspired by the behavior of cockroaches,

researchers developed a similar system where robots form aggregates in a circular environment

similar to those of cockroaches [111, 112]. In another work, authors used probabilistic finite

state machines to develop a similar aggregation behavior as shown in figure 2.10. Robots are

either waiting for other robots to join the aggregate or moving around looking for the aggregate

in the environment [12, 113].

Artificial evolution was used to develop aggregation behavior where authors were able to main-

tain both static and moving aggregates through tuning of neural network parameters [114].
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Figure 2.11: Thousand Kilobots

Comparison between probabilistic finite state machine approaches and artificial evolution ap-

proaches is also available in the literature [12, 113, 115].

2.3.2.2 Pattern Formation

Pattern formation involves applications where robots are deployed in a certain way while keeping

a distance between each other, thus, the formation of a new pattern or shape. Inspiration to

such kinds of applications came from biological forms of bacteria where different shapes result in

different behaviors [116]. Similar patterns are found in physical molecules and crystals [117, 118].

Most applications doing pattern formation depend on the use of virtual physics-based design

where robots use repulsion and attraction forces to form different patterns.

There are two reviews in the area of pattern formation where authors discussed related ap-

plications from different perspectives; a) regular vs. irregular shapes and b) centralized vs

decentralized models [119, 120]. One of the most famous applications in the literature in the

pattern formation area is the self-organizing thousand robot swarm Kilo-Bots shown in figure

2.11 developed at Harvard University [52]. A shape is broad-casted between all robots when

they start moving around the biggest formed aggregate until this shape is formed as shown in

figure 2.12 where the thousand robots formed an English letter and a star.

Another example of pattern formation was developed using virtual physics-based design where

robots use repulsion and attraction forces to measure the distance between each other and form

patterns [21, 121]. Another group of researchers developed a method where robots as shown

in figure 2.13 are connected via virtual medium where they form a fully connected network

to be used to exchange information about the mission such as desired pattern and progress
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Figure 2.12: a) Kilobots forming the letter K after being broad-casted between them and b)
Kilobots forming a star

Figure 2.13: Robots are tracking their target while keeping a fully connected network between
the source and the destination [21]

of the mission [122, 123]. Another group of researchers proved theoretically that a group of

asynchronous robots can’t form all possible patterns. Some patterns are only achieved in case

of availability of a global knowledge between robots in the swarm such as a single global direction

reference [124].

2.3.2.3 Chain Formation

Chain formation is similar to that of pattern formation except that robots are required to form

a chain between two points in the environment. A possible scenario could be robots forming

a chain between the source and the destination to be used for navigation purposes. It takes

inspiration from ants going back and forth between the nest and the food source. A study was

done on how ants keep a formed chain between these two points in a foraging application [125].

Similar to previous applications, robots use methods from probabilistic finite state machine

models, virtual physics-based design models and artificial evolution models. One of the famous

works on chain formation was developed where robots have one of two labels; chain robot or

explorer robot and are forming chains between the nest and the prey as shown in figure 2.14
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Figure 2.14: a) snapshot from the initial positions and b) typical outcome when employing the
chain formation models [16]

[16, 126]. The chain robot is responsible for ensuring the chain is fully connected and a reliable

link between the two points exists. The explorer robot uses the chain to navigate between the

two points. At the beginning, all robots are explorers and trying to form a chain, new explorers

introduced to the system look for existing chains and connect to them. Once connected to a

chain, title is changed to chain robot.

Another work using approaches from virtual physics-based design to model the behavior of

pattern formation was developed where authors used repulsion and attraction forces to inform

robots about their target location in the chain [127]. In this work, results showed that using

this model will result in chains that are similar in shape to the environment due to the effect

of virtual forces from the environment. Moreover, work involving chains of moving robots was

introduced using means of artificial evolution such as cross-over and mutation [36]. In fact,

robots use colored LEDs for communication and exchanging of information. In their work,

they managed to form a double chain of moving robots as shown in figure 2.15. Another work

on chain formation was proposed using probabilistic finite state machines and network routing

which obtained another chain of moving robots [87].

2.3.2.4 Self-assembly

Self-assembly applications are found in the literature where robots are required to physically

attach to each other. This can be useful in many scenarios where a single robot is not able to

successfully navigate in the environment. For example, forming chain of physically connected

robots will allow them to navigate in rough terrains. This behavior can be seen in nature where

ants physically connect together when there are winds or in the water [129]. Thus, self-assembly
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Figure 2.15: a) robots are scattered in the environment and distance between the two points is
1.5m, b) the final configuration where robots were able to form a double moving
chain between the two points [128]

Figure 2.16: Swarm-bots robots [130] attaching to each other and navigating in the environment
using methods described in [131]

can increase robot stability as well as the robots pulling force. There are many challenges when

it comes to self-assembly in a swarm of robots such as a) how robots are going to attach to

each other and b) how to coordinate navigation after attachment to maximize the performance.

Most of the works discussing the first issue is developed using probabilistic finite state machine

while works discussing the second issue is either using artificial evolution or probabilistic finite

state machines. A self-assembly behavior was proposed through the usage of colored LEDs [61].

Robots having the same LED color on will attach to each other forming a predefined shape

[130]. This shape is defined through defining the attachment points on the robots [131]. So

every robot knows where to attach on the other robot until they form aggregates that can move

together as shown in figure 2.16. A scripting language was developed to ease the development

of similar behaviors [132].
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Figure 2.17: S-bots passing a gap in swarm-bot configuration while attached together [133]

Figure 2.18: Sequence of actions a swarm of three s-bots must execute to pass a step of 10 cm
[133]

Some other methods discuss movement coordination issue and how robots should move together

while attached. Researchers concluded that this behavior depends heavily on the mission of

the swarm. They also stated that its much easier for robots to navigate in rough terrains

while connected than to navigate separately [78]. In their work, robots will start exploring the

environment first measuring the slopes of the terrain and they only initiate attachment process

if environment is steeper than a certain threshold based on robots’ capabilities. In our research

environment, we developed a proof of concept swarming platform called AntBOTs described in

appendix A, which are able to navigate easily so we do not consider rough terrains in our work.

Another work proposed a method for robots to pass over a channel that is too large for a single

robot to pass as shown in figure 2.17 using mechanical stability [133]. Another usage is when

robots are going up the stairs as shown in figure 2.18.

Another work showed that attached robots are able to increase the performance of the system

as in the case of pulling a heavy object such as the kid shown in figure 2.19. Eighteen s-bots

were successfully able to pull her to the door [134]. This figure shows another example of

robots connecting based on colored LEDs and are able to collaboratively move an object that a
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Figure 2.19: Eighteen s-bots self-assemble into four swarm-bots to pull a kid on the ground
[134]

small set of them can’t move. Another model where robots forming 3D structures was studied

from the self-assembly and control aspect where robots are able to share their resources once

attached together [135]. Another solution based on artificial evolution was proposed where

robots assemble together without pre-knowledge of which robot will initiate the attachment

process [37]. In another work, authors developed a self-assembly behavior where flying robots are

commanding ground robots on how to attach together and is guiding their collective movement

afterwards [136]. For a deeper review of available works related to self-assembly behavior, we

suggest further reading of the work done by Gross and Dorigo [35]. Another group of researchers

in thesis work used Brooks’ Subsumption Architecture to achieve self-assembly to enhance robots

performance [137, 138]. This architecture shown in figure 2.20 consists of a stack of parallel

behavior where the higher levels don’t need the lower ones to complete the mission. Lower

layers are responsible for the survival of the swarm while the higher ones are responsible for

goal achieving behaviors.



Chapter 2. Literature Review 31

Figure 2.20: Brooks subsumption architecture

2.3.3 Collective Decision-Making Applications

In a swarm robotics system, its important for robots to agree to the same decision. Otherwise,

they might waste their resources being busy with different goals. The main advantage of swarm

robotics is that all robots focus on the same goal and go for it. In this section, we study the

influence of robots on each other and how they make decisions collectively. It is divided into

two main parts:

1. Consensus Achievement : where robots eventually agree on one decision.

2. Task Allocation: where tasks are fairly distributed among the robots based on their capa-

bilities.

2.3.3.1 Consensus Achievement

In swarm robotics applications, it is often the case when robots are required to choose between

different options. They have to collaboratively decide on which path they will follow. This

decision should be the one maximizing systems performance. Although, achieving consensus

between robots is not an easy task, this behavior can be seen in most of the swarm robotics

applications. The dynamic environment along with the lack of memory in most of the swarm

robotics applications are the reasons why a consensus is not always easy to achieve. Applications

involving the consensus achievement are inspired by social insects such as ants for example when

they reach a consensus overtime on which path they should be following using pheromone trails

of other ants [79]. Achieving a consensus can be found in other social insects such as bees when

deciding nest location [108, 139]. Works available on consensus achievement can be divided

into two main parts: a) direct communication where robots communicate their decisions until
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Figure 2.21: Robots are choosing between two shelters both in simulation and real robots [112]

a decision is made and b) indirect communication where robots dont broadcast their decisions,

instead they depend on other measurements such as number of robots in the environment. One

interesting application to this behavior was conducted where robots are chasing two targets and

they have to decide on which one to chase first [140]. Two approaches were presented: a) robots

are either achieving consensus based on their location distribution in the environment where

they choose the target with closer robots or b) they vote and the majority wins. Researchers

showed that a consensus can be achieved via indirect communication such as in the case of

cockroaches choosing between two different shelters [112, 141]. An experiment was conducted

where robots had to choose between two circular spots (shelters) in the environment as shown

in figure 2.21.

A similar experiment was conducted where robots are required to look for the smallest shel-

ter that can hold all robots in the swarm [142]. Another work using evolutionary robotics

was proposed and was then compared against results from previous experiments where robots

used indirect communication to reach a consensus [143]. Another experiment based on direct

communication was proposed where a swarm of robots is looking for the nearest nest to the

food source [144]. They keep exchanging information on the distance between the food source

and the current explored nests until they reach a consensus on which of the nests they will

choose. Most of the time, it tends to be the closest one to the food source. Another algorithm

was proposed using probabilistic finite state machines and based on how social insects such as

bees choose their nest location [139, 145]. Robots keep exploring the environment and once

a potential nest location is found, they exchange information as recruiting messages for other

robots to come and evaluate their findings until they agree on the best location for the nest.

Researchers developed a mathematical model for robots trying to choose between two paths
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Figure 2.22: a) a swarm of robots in the process of transporting objects from source to desti-
nation. At this stage, the swarm has not reached consensus yet and thus robots
still use both branches of the environment, b) shows the state of the environment
when the swarm of robots has reached consensus. The path selected by the swarm
of robots is the shortest one [146]

where they adopted both direct and indirect communication models [146]. Robots usually pre-

fer the shorter path as shown in figure 2.22. At the beginning, each robot has a preferred nest

and they keep moving until a certain number of robots in one of the nests is exceeded, this nest

is chosen as the preferred one for all robots. Of course, the shorter path will result in having

more robots in the corresponding nest faster than the other path. This results in the shorter

one being chosen by all robots [147].

2.3.3.2 Task Allocation

In most swarm robotics applications, robots are assigned different tasks. Although the mecha-

nism of task allocation differs from one application to another, all applications aim at maximiz-

ing system performance through decent task allocation behavior where each robot is allocated

a task matching its capabilities. Behaviors like these are observed between social insects such

as in ant colonies where ants are divided into three main roles: a) queen ant responsible for

laying eggs, b) soldier ants responsible for guarding the colony and c) worker ants responsible

for bringing food and housekeeping of the nest [14, 148]. Most of the available work in the

literature discussing task allocation are foraging applications and are mainly using probabilistic

finite state machines. Researchers developed an early study on task allocation using a simple

threshold based mechanism where they have to maintain a certain energy level [149]. They

consume energy while in the environment and they regain this energy from an energy bank

located at the nest. They decide whether to stay in the nest or leave according to a stochastic

component that is a function of the energy of the nest. If it is above a certain threshold, robots
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can leave. Otherwise they have to stay. A similar study was conducted where robots take the

same decision but on an individual basis [150]. The decision is a function of the success of the

last foraging task. Authors developed a mathematical model for this stochastic component [18].

Another task allocation approach was discussed where robots are sent to a construction site and

tasks are allocated equally between all of them. This is done through broadcasting the current

load of each robot and maintaining the same load until the mission is done [151]. Another

approach was discussed in the context of foraging where robots are to move between three

different areas in the environment: a) the nest, b) the food source and c) exchanging area where

robots coming from food source hand the food to robots going to the nest [152]. After several

iterations, robots were successfully able to divide tasks between them and bring food to the nest.

An additional study on task allocation was conducted where robots collaborate to pull a stick

from the ground [153]. In this application, each robot holds the stick from one side so it must be

done collaboratively and efficiently or else, the stick will fall. One of the most interesting works

on task allocation is the research conducted on a swarm of heterogeneous robots retrieving a

missing book. In this mission, each robot evaluates its capabilities and its need for other robots.

Once each robot is allocated a task, they start collaborating until the book is retrieved [134].

This is part of the swarm-bot research and is one of the perfect examples for task allocation.

Other researchers used Elisa-III robot to test the distributed algorithm called Local Dynamic

Task Allocation (LDTA) for dynamic task assignment [154].

2.4 Literature Review Conclusion

To conclude, this chapter listed most of the available literature on Swarm Robotics. We divided

the literature into three categories as shown in figure 2.1:

1. Design of Swarm Robotics Systems.

2. Analysis of Swarm Robotics Systems.

3. Swarm Robotics Applications.

In the first part, we discussed methods to design and analyze Swarm Robotics Systems including

ones we are using in this work such as Robotic Darwinian Particle Swarm Optimization and

Probabilistic Finite State Machine. In the second part, we listed many examples to applications

using Swarm Robotics techniques. We focused on similar applications to ours in the area of

Environment Exploration and Navigation.
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Proposed Solution

In this chapter, we discuss our solution for exploration and navigation problems. Prior Swarm

Robotics research uses either microscopic or macroscopic techniques as discussed in section 2.2.

The microscopic approach implements the system on a single robot, then maps its behavior to

other swarm robots until the desired behavior emerges. For macroscopic level design, desired

swarm behavior is designed, then it is mapped to each robot. The current issue with Swarm

Robotics design is that researchers approach the problem either on the microscopic or the

macroscopic level. This limits their ability to verify their system design. A great deal of effort

is then expended in trial and error looking for convergence to the desired behavior.

One of the most famous techniques used when designing a swarm system from the microscopic

level is the Probabilistic Finite State Machine (PFSM) while Robotic Darwinian Particle Swarm

Optimization (RDPSO) is the most used when modeling systems on the macroscopic level. The

solution proposed in this work for exploration and navigation problems uses a combination of

both microscopic as well as macroscopic techniques and is based on both PFSM which was first

introduced by Minsky in 1967 [11] & RDPSO which was first introduced by Couceiro in 2011

[155]. We believe this approach is novel and used for the first time in Swarm Robotics.

PSO showed success in many applications due to implementation simplicity and reduced com-

putational and memory consumption of its design. A key problem with PSO is the possibility

that it might get stuck at local optima and robots will never be aware that other solutions

might exist. Therefore, we decided to use a modified version of PSO called RDPSO. It has been

proven to outperform traditional PSO along with other variants from PSO such as Extended

Particle Swarm Optimization (EPSO), Area Extension Particle Swarm Optimization (AEPSO)

35
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and Physically-embedded Particle Swarm Optimization (PPSO) [156]. It’s important to note

that distribution of robots in the environment highly depends on the deployment of the robots

which is in our case random. Detailed explanation of RDPSO can be found in section 4.1.1.

PFSM will be used to implement the microscopic design level while RDPSO will be used for

macroscopic design. RDPSO divides the swarm in a set of a smaller swarms where each swarm

is looking for a solution and all solutions are then compared together. Different swarms are

then allowed to change their best solution based on comparison with each other until all robots

converge to the best solution found in the environment.

Additionally, PFSM is used to model our solution on the microscopic level. We use Probabilistic

Finite State Machine technique rather than Traditional Finite State machines for reasons that

are explained in section 4.1.2. Depth First Search (DFS) is used to ensure all nodes in the

swarm form a dynamic semi-connected graph as shown in figure 3.1. This allows graph traver-

sal which aids in robot navigation once our swarm reached an adequate level of environment

exploration. This adequate level of environment exploration is usually set to exploring 90% or

more of the environment although in some work, this value might be changed. Robots navigate

the environment forming a moving Mobile Ad-hoc Network (MANET) to maintain connection

between all robots in the swarm.

We decided to build our own swarming platform (AntBOT) as a much lower cost platform. A

single AntBOT costs around $250 while a single robot from other famous platforms such as

e-puck costs around $1000. The complete physical model for the AntBOT will be prepared

as a proof of concept for future experimentation. A limited number of AntBOTs - below 50 -

will not produce accurate results and will be limited in testing. Thus, for the purpose of this

research, we will build a virtual model for the AntBOT on the V-REP Simulator to be used for

our testing purposes.

3.1 Testing Metrics

Single robot behavior is modeled using Probabilistic Finite State Machine (PFSM). We believe

integration of Robotic Darwinian Particle Swarm Optimization (RDPSO) to model the global

behavior of the swarm should yield faster exploration and enhanced stable navigation. We

prove that our method provides higher success rate by around 40% than methods using a single

method. We test our approach in two ways:
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Figure 3.1: AntBOTs forming a connected graph

1. Using PFSM only.

2. Using RDPSO along with PFSM and compare against one.

We will then compare both results to test the efficiency of our proposed approach both in terms

of accuracy and performance, specifically speed of discovery of best solution.

From each experiment, we intend to collect the following:

• Experiment Runtime

• Environment Area

• Swarm Size

• Path Size

• Success or failure

The path size is the number of lead robots contributing to the optimal path between the start

and the target location. Success or failure is decided based on the propagation of solution in

the swarm network. If a big portion of robots are aware of the solution but there is no path

between the start and the target location, this is considered failure. With all experiments, we

will vary the size of the environment between 25m2, 100m2 & 400m2 area for reasons mentioned

below. Further, we found that most of the literature starts with a small number of robots and
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increments that number gradually so we decided to increment the number of robots used for

each environment area as follows:

• 25m2 Area: 10, 20, 30, 40, 50 robots

• 100m2 Area: 20, 40, 60, 80, 100 robots

• 400m2 Area: 40, 80, 120, 160, 200 robots

The choice of the above three environment areas is to provide meaningful data for realistic

scenarios where robots are required to explore different area sizes. We aim to conclude the rela-

tionship between the number of robots and the size of the environment. For each environment

size, we start with a relatively small number barely sufficient to cover the environment and end

with a larger number where the environment is fully covered. Furthermore, we will be using

different environment layouts; one with walls and one with obstacle. This will help us verify

our approach under different environment designs.
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Experimental Methodology

As seen in the literature review chapter, there is no clear formula that would produce (x) global

behavior based on certain (y) local behavior of a single robot and vice versa. The current issue

with Swarm Robotics design is that researchers approach the problem either on the microscopic

or the macroscopic level. This limits their ability to verify their system design. A great deal of

effort is then expended in trial and error looking for convergence to the desired behavior.

We use a combination of both microscopic as well as macroscopic techniques to solve the problem

of exploring and navigating unknown environments. It is based on Probabilistic Finite State

Machine (PFSM), Robotic Darwinian Particle Swarm Optimization (RDPSO) and Depth First

Search (DFS). A robot is in one of several possible states (i.e. Random Movement, Obstacle

Avoidance, Reporting Target Location, Path Calculation towards a received target location,

etc). While in one of these states, RDPSO guides the formation of the swarm where it is divided

into smaller ones where each one is aware of its own location. Location in our experiments is

given by the x and the y coordinates of our environment simulation. In real scenarios, a location

can be defined by the starting position of the robot along with its starting orientation. Taking

these into consideration and saving the movement with the angle of the robot. The current

location of the robot can be given relative to the starting location. Further details on the

implementation of each algorithm and its usage is discussed later in this chapter.

We use RDPSO to model our solution on the macroscopic level. Additionally, PFSM is used

to model our solution on the microscopic level. Depth First Search is used to keep all nodes in

the swarm forming a dynamic semi-connected graph. This allows graph traversal using Depth

First Search algorithm which aids in robot navigation once our swarm reached an adequate

39
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level of environment exploration. Robots navigate the environment forming a moving Mobile

Ad-hoc Network (MANET) to maintain connection between all robots in the swarm. We test

our solution by simulation using V-REP simulator later explained is section A.1. A physical

robot model of the AntBOT is provided as a proof of concept for future experimentation.

4.1 Techniques Used

In this section, we will discuss each technique and present its implementation details along with

its usage. This should give further understanding of the application as a whole consisting of

three main techniques:

• Robotic Darwinian Particle Swarm Optimization

• Probabilistic Finite State Machine

• Depth First Search Graph Theory

4.1.1 Robotic Darwinian Particle Swarm Optimization

In this section, we will focus on the Particle Swarm Optimization (PSO) Technique used. PSO

showed success in many applications due to implementation simplicity and reduced computa-

tional and memory consumption of its design. A key problem with PSO is the possibility that it

might get stuck at local optima and robots will never be aware that other solutions might exist.

Therefore, RDPSO is used where it divides the swarm in a set of a smaller swarms where each

swarm is looking for a solution and all solutions are then compared together [155]. Different

swarms are then allowed to change their best solution based on comparison with each other

until all robots converge to the best solution found in the environment. It’s important to note

that distribution of robots in the environment highly depends on the deployment of the robots

which is random in our case.

In our case, we use RDPSO to guide the evolution of the smaller swarms. Our robots move

around the environment in groups (i.e. smaller swarms) and whenever a member of the group

either finds or receives a solution from a nearby swarm, it broadcasts this solution to all other

members of its own swarm where they update their solution accordingly. Due to the random

movement behavior of robots while in the exploration phase, we expect to see robots moving
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alone in the environment looking for a solution. If a robot arrives at a solution on its own, other

members of the swarm will not be able to know about this finding unless both their wireless

signals overlap. If the numbers of robots in the environment is low for the whole environment

coverage, most of the swarm might be aware of the solution and they still fail to accomplish

the mission due failure in linking between the start and the target locations. A pseudo code of

RDPSO algorithm is shown in Algorithm 1.

Algorithm 1 RDPSO Algorithm

1: procedure explore environment
2: num of swarms← deploy robots() // Deploy all robots in the environment
3: for i← 1,num of swarms do // Loop over all swarms i
4: for j ← 1,num of robots do // Loop over all robots j in swarm i
5: S← current solution()
6: if S > Sbest then
7: Sbest ← S
8: end if
9: build array X for all Sbest for swarm i

10: Xmax ← max(X)
11: end for
12: build array B for all Xmax

13: end for

14: for i← 1,num of swarms do
15: if Bi ≥ threshold then
16: reward swarm() // call new robot or create new swarm
17: else
18: punish swarm() // exclude robot or exclude swarm
19: end if
20: end for
21: end procedure

As seen in algorithm 1, and using the Darwinian evolutionary theory which states that survival is

to the fittest, swarms arriving at better solutions are rewarded with more robots which will allow

the increase of knowledge of target locations in the environment among deployed robots. On

the other hand, swarms having local optima solutions are punished by excluding one robot from

the swarm. Robots that do not belong to a swarm are by nature dangling in the environment

looking for solutions.

Once a target location is found and confirmed with the majority of robots, robots are divided

into two main categories:

• Lead robot

• Helper robot
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Lead Robots are the ones forming the path between the start location and the target location.

Robots which don’t contribute to the main path are called helper robots. One of the main

goals of this work is to guarantee network connectivity even in the case of robotic failure.

Therefore, helper robots start aligning themselves with lead robots to assure continuous network

connectivity in case of any failure within the lead robots.

To conclude, RDPSO is used in this work to define the macroscopic behavior of our system

where distribution of robots follow the Darwinian evolutionary theory to guarantee arriving at

the best solution while maintaining network connectivity.

4.1.2 Probabilistic Finite State Machine

In this section, we will discuss in details a Finite State Machine technique which is used to aid

the movement of robots in the environment. A finite state machine is a mathematical model

of computation where robots are in one of many possible states. Transitions between different

states happen frequently based on inputs from either:

• The robot itself

• Other robots

• The environment

Key inputs to robots while in a specific state triggers a transition to another state. Robots can

be in one of two state sets:

• Prior to agreement on solution

– Searching state

– Obstacle avoiding state

– Stopping state

– Broadcasting state

– Receiving state

– Path finding state

• Post agreement on solution
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– Reporting state

– Helping state

In traditional FSM, transitions between different states are binary. That is, based on inputs,

robots either stay in the current state or make a transition to the next state. Usually, there are

two types of FSM:

• Deterministic FSM

• Non-deterministic FSM

This model is limited if applied directly to our system as robots can go only from a state to a

specific state based on a certain input. Considering the situation where a robot is in a state

where it received a signal from the environment about an obstacle and at the same time step, it

received another signal from a nearby robot containing a broadcast for a target location. Since

a robot cannot be in two states at the same time, the robot will choose the next state discarding

one of the received signals which can be dangerous especially if it hits the obstacle. So, for the

purpose of our system, we will be using an advanced version of FSM called Probabilistic Finite

State Machine (PFSM).

PFSM is somewhere between the Deterministic FSM and the non-deterministic FSM. In PFSM,

robots can go from one state to another state based on a certain probability. This probability

is calculated based on the current situation and importance of the signal received. Figure 4.1

shows a simple PFSM where robots can go from one state to another based on a probability. S is

the searching state where a robot is randomly dangling in the environment looking for potential

targets. R is the receiving state where a robot is listening to broadcasts from surrounding

robots. B is the broadcasting state where a robot either arrived at the target or received a

target location from a neighbor robot. O is the obstacle avoiding state where the proximity

sensor of the robot signals a nearby obstacle. F is the finding state where a robot has already

received a target and is calculating the path towards the sender robot.
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Figure 4.1: A probabilistic finite state machine example

4.1.3 Depth First Search

Once the majority of robots are aware of the target location and in case of success scenario,

a semi connected graph is created and then traversed for the shortest path between the start

and the target locations. The graph is traversed using Depth First Search (DFS) algorithm to

retrieve all links between the start point and the target location. The resultant subgraph is then

passed to the diffuser robot which will use it for direct navigation to the target. Note that due

to the distributed nature of the swarm, the graph is traversed on board of all robots. Then, each

robot evaluate its contribution to the optimal path if any. This introduces repetitions in the

calculation but it insures redundancy and it eliminates single point of failure scenarios. Figure

4.2 shows the resultant path between the start point and the target location in all environment

areas.

For graph traversal, the use of Depth First Search (DFS) vs Breadth First Search (BFS) depends

merely on the structure of the search tree. If the solution is not far from the root of the tree, a

breadth first search (BFS) might be better. If the tree is very wide, a BFS might need too much

memory, so it might be completely impractical. If a solution is located deep in the tree, BFS

could be impractical. In our experiments, it’s most probable that the solution resides deep in

the graph and the structure of the tree is not wide because we placed the solution at the farthest

point from the start location. Thus, we decided to use DFS to obtain faster graph traversal. A

pseudo code for the DFS we used is shown in algorithm 2.

In conclusion, we list a detailed description of each component used in our approach from the

Robotic Darwinian Particle Swarm Optimization to the Probabilistic Finite State Machine and

the depth first search graph algorithm.
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(a) Small Environment Area: 25m2

(b) Big Environment Area: 100m2

(c) Big Environment Area: 400m2

Figure 4.2: A graph connecting start and target location for all environment areas
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Algorithm 2 DFS Algorithm

1: procedure DFS(G, v)
2: Stack S← {} // Start with an empty stack
3: for u← each graph vertex do
4: visited[u]← false
5: end for
6: push S, v // v is the vertex where the search starts
7: while S is not empty do
8: u← pop S
9: if u is not visited then

10: visited[u]← true
11: for w ← unvisited neighbour of u do
12: push S, w
13: end for
14: end if
15: end while
16: end procedure

Our approach is tested using the V-REP simulator where from each experiment we collect the

following data:

• Experiment Runtime

• Environment Area

• Swarm Size

• Path Size

• Success or failure

A pseudo code for our swarming platform model AntBOT further discussed in appendix A is

shown in Algorithm 3.

4.2 Experimentation Strategy

In this section, we present the rationale behind our experimental choices:

• Environment Area

• Swarm Size
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Algorithm 3 AntBOT Main Code

1: procedure AntbotMain
2: while simulation is running do
3: if targetRecieved ̸= true and targetFound ̸= true then
4: randMove() // Random Movement looking for target
5: wixelReceive() // Listening to any broadcasts
6: else
7: stopRobot()
8: wixelSend() // broadcast received or found target location
9: if targetRecieved← true then

10: findPath() // Path between sender & reciever robot
11: end if
12: end if
13: end while
14: end procedure

4.2.1 Environment Area

In our experiments, we use three different environment areas: 25m2, 100m2 & 400m2. We

chose these environment areas to explore a wide range of environments where our robots can be

deployed. We also use two different layouts: Walls and Obstacles layouts. Different environment

areas shown in figures 4.3a and 4.3b and 4.3c can be explained as follows:

1. Small Environment Area of 25m2: A square environment of 5m x 5m that presents a map

for a small apartment with different rooms and corridors.

2. Medium Environment Area of 100m2: The same environment layout but of 10m x 10m

that presents a map for a bigger apartment.

3. Big Environment Area of 400m2: The same layout but of 20m x 20m that presents a map

for a very big apartment.

As shown in figures 4.4a and 4.4b, we use two different environment layouts for the environment

area of 100m2:

1. Walls (Apartment): In this environment, we model an apartment or a university building

consisting of different walls and corridors.

2. Obstacles (Factory): In this layout, we model a factory where there are multiple poles

and machines. We model these with randomly deployed obstacles of different sizes, shapes

and orientations.

It is worth mentioning that most of the research in the field of swarm robotics use either ran-

domly deployed obstacles or no obstacles at all. Although we understand that the introduction
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(a) Small Environment Area: 25m2

(b) Medium Environment Area: 100m2

(c) Big Environment Area: 400m2

Figure 4.3: Different Environment Areas used for experimentation
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(a) Environment Area 100m2 with Walls

(b) Environment of Area 100m2 with Obstacles

Figure 4.4: Different Environment layouts used for experimentation

of walls in our experiment design will increase the time, we need to make sure of the validity of

our proposed system in different environment layouts.

4.2.2 Swarm Size

We vary the swarm size in each experiment between two values:

• The size that is barely enough to explore the whole environment.

• The size that is enough to explore the whole environment.
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We ran multiple experiments with increasing swarm size from a single robot. From the collected

results and given that each robot can only communicate within a radius of 1m, we concluded

the following number of robots per environment area:

• 25m2 Area: 10, 20, 30, 40, 50 robots

• 100m2 Area: 20, 40, 60, 80, 100 robots

• 400m2 Area: 40, 80, 120, 160, 200 robots

For the small environment, 10 robots are barely enough to cover the optimal path between

the start and the target locations in the best case scenario while 50 robots are enough for full

environment coverage. For the medium environment, 20 robots are also barely enough for start

and target connection while 100 robots are enough for full environment coverage. Same goes

for the big environment with robots between 40 and 200.

In our experiments, we use random deployment for robots in the start area. The randomness

ensures various start positions and orientations for robots and thus various results. Furthermore,

our target is located in the farthest place from the start location to ensure the mission is not

finished before the whole environment is explored.

4.3 Limitations

During the course of our work, there were some unfortunate obstructions that led to many

decision being made. In this section, we will discuss many of the challenges we faced and how

we overcame them. We will discuss these challenges on the development of both the simulator

and physical robots.

4.3.1 Simulation (V-REP)

As for the V-REP simulator, a complete model of the AntBOT has been built into the V-

REP simulator discussed in section A.1. In this thesis, we provide a novel technique for robot

exploration and navigation using Robotic Darwinian Particle Swarm Optimization (RDPSO),

Probabilistic Finite State Machine (PFSM) and Depth First Search (DFS). A complete algo-

rithm combining normal navigation behavior with RDPSO algorithm has been developed in
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Static Non-Static

Non-Respondable

Respondable

Table 4.1: Dynamic simulation main shape types

simulation. Also, the remote API supported with V-REP has been used for environment setup

and the random robot deployment. Therefore, building the AntBOT model on the simulator

has gone through two stages:

• Robot Design

• Robot Code Development

4.3.1.1 Robot Design

As for the robot design, several versions of the model have been developed to ensure close to

100% similarity between the simulator and the physical AntBOTs in the future. This should

guarantee similar results to physical AntBOTs in the future. Building the AntBOT model itself

was an extremely challenging task because while building a model from scratch, there were

many aspects other than technical which needed attention such as the following:

Robot Dimensions Mapping the dimensions of the robot includes accurate translation of

robot parts such as body, motors, sensors, wheels and communication modules.

Robot Weights The weights of each of the components mentioned above is critical to the

stability of the movement of the robot. There has to be an accurate center of mass which is

exactly located at at the center point of the robot. If for example, a sensor is added at the front

of the robot with major weight, this will move the center mass of the robot a bit to the front

which will result in instability of the robot’s movements.

Robot Material The material of each component has to be correctly mapped. This con-

tributes a lot to the friction of the robot with the environment. The choice of shapes used when

building the robots is extremely important. According to V-REP, shapes can be classified into

4 main groups as shown in table 4.1.
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Figure 4.5: Static/non-static, respondable/non-respondable shape behaviors and interactions

During dynamic simulation, static shapes will not be affected (i.e. their position relative to

their parent object is fixed), whereas non-static shapes will be directly influenced by gravity or

other constraints. Respondable shapes influence each other during dynamic collision (i.e. they

produce a mutual collision reaction, they will bounce off each other). Figure 4.5 illustrates the

static/non-static, respondable/non-respondable behaviors.

Two respondable shapes will always produce a collision reaction unless their respective collision

masks don’t overlap. V-REP uses triangular meshes to describe and display shapes. While the

creation of the shapes used in our model, we had to be careful of the number of triangles in

each component especially those who will be dynamically enabled - those which will be moving

while simulation is running - (i.e the wheels of robot rotating most of the time).

Robot Movement After arriving at the final appearance of the robot, we had to worry about

its static and kinetic control which is responsible for how the robot should react to forces applied

to it such as the rotation of the motor. Moreover, we had to set variant moments of inertia to

guide the movement of the robot from the resting state till the full momentum state.

Robot interactions AntBOTs are designed to be part of a swarming platform. Therefore,

there should be some kind of interaction with the environment and other robots. AntBOTs

interact with obstacles in the environment using its 120◦ proximity sensor and interact with

other AntBOTs using its Wixel Wireless module simulated using signal sender-receiver module

within V-REP. Adjustments to the range and the direction of these sensors had to be done to

insure accurate readings and accordingly accurate behavior based on external inputs.
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Thus, the design of the robot itself on simulation was not an easy task. V-REP offers a variant set

of physics engines which are responsible for all interaction between shapes in the environment.

Our challenge was to select the one that closely simulate a real world scenario.

4.3.1.2 Robot Code Development

The main language of the V-REP Simulator for internal development is Lua. V-REP also

supports remote communication via a very well established remote-API supporting many other

development languages such as Python, C/C++ and many others. Authors decided to use the

Python remote API for robot control. V-REP communicates with remote-API over a TCP

channel, so as the swarm size increases, and considering the number of signals per a single

robot, the communication is dramatically affected. Thus, the movement of the robots along

with path planning algorithms were highly lowered in speed. So, we added the main code for

the AntBOT movement to a child script of each robot in the simulator written in Lua. This

child script contains all the logic for a single robot to be able to survive in the environment.

Moving the main robot code from the python remote API to a child script within the simulator

itself reduced the amount of data transmitted between the simulator and the remote-API and

increased the speed of our system.

Remote-API written in Python is responsible for the following:

• Environment Setup

• Number of robots

• Robot Deployment

– Location

– Algorithm (i.e. random, exponential, etc)

• Simulation start

• Shortest Path retrieval

• Results collection

• Simulation end
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Figure 4.6: AntBOT model in V-REP Simulator

4.3.2 Real Robots

Inspiration for building our swarming platform came from the fact that the cheapest option

for a swarming robot is the e-puck [105] which costs around $1000 at the time of writing this

document. Authors used the Pololu 3pi robot [157] in other experiments and decided to take it

from a line following robot to be part of a complete swarming platform. For this, we had to add

a better processor along with a wireless communication module. More on this can be found in

section A.2.

The performance of the communication module Wixel Wireless still needs some further improve-

ments as it was built to work as a one-to-one communication channel. We used a library called

multiradio available for the wixel module and developed by Geoff [158] to make communication

possible between all robots simultaneously. The library is still at early stages so we had to fix

many bugs while merging it with our code. It was stated by the author that some packets might

reach its destination successfully but never get acknowledged (ACK’d). This might affect our

communication channel credibility.

Thus, some work to ensure message delivery has to be done as the current version of the library

does not provide a 100% reliable communication channel. We also worked on improving the

parts responsible for message acknowledgments especially the module radioMultiTxDataBlock-

ing. This module seems to have problems with message IDs and this might be the root cause

why some packets are not acknowledged.
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Experimental Results

In this chapter, all of the experimentation results acquired from the V-REP simulator are listed.

From each experiment, we collected the following:

• Experiment runtime

• Environment Area

• Swarm Size

• Path Size

• Success or failure

Discussion of each metric in details can be found in section 3.1. In our experiments, we prove

that combining the RDPSO and PFSM algorithms results in a much faster exploration and

a much more stable navigation in unknown environments. We also guarantee solid network

connectivity if the swarm size is suitable for the size of the environment being explored.

All experiments were run twice with initial random deployment:

1. PFSM only is used.

2. RDPSO is used along with PFSM.

After running multiple simulation experiments with big swarm sizes, we concluded that the

limited number of real physical robots would not give us much of a meaningful data as we were

expecting. Thus, we decided to present the real model of the AntBOT as a proof of concept for

55
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future experimentation. In the future, more real robots should be added to be able to collect

more meaningful data from varying the swarm size in each experiment.

5.1 Metrics Comparison

In this section, we study the effect of varying the metrics mentioned above along with a discussion

on each one. The comparison is presented as follows:

1. Experiment Runtime vs Swarm Size

2. Experiment Runtime vs Environment Area

3. Experiment Runtime vs Environment Layout

4. Swarm Size vs Reporting Time

5. Swarm Size vs Path Size

6. Swarm Size vs Success Rate

In each section, we discuss the above comparisons using two different techniques:

• Using PFSM only

• Using RDPSO along with PFSM

5.1.1 Experiment Runtime vs Swarm Size

This section demonstrates the relationship between the swarm size used in an environment

and the amount of time needed to fully explore and navigate this environment and arrive at

the target location. As shown in figure 5.1, the time required to explore and navigate an

environment decreases as we deploy more robots in the environment. The same happened for

the three environment areas as shown in figures 5.1a and 5.1b and 5.1c with the only difference

in range of time needed to explore and navigate the environment for each different area. Figure

5.2 shows that the gap between the minimum and the maximum exploration time has decreased

with the increase in the swarm size in all environment areas.

Table 5.1 shows the different minimum and maximum times required for each swarm size for

the three environment areas. We conclude that as the swarm size increases, the amount of

time required to explore and navigate the environment decreases. We also noted that as the
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environment area increases, the swarm size required to explore has to increase to cover more

area. For the small environment, we ran 500 experiments in total while we ran 200 for the

medium environment and 50 for the big environment.

We also notice that the gap between the time needed to explore the small environment with

40 & 50 robots is not negligible while the success rate further explained in section 5.1.6 is not

highly affected. This concludes that 40 robots should be enough for the small environment size.

For the medium environment area with 80 & 100 robots and the big one with 160 & 200 robots,

they all produced similar results for exploration which leads to the same conclusion.

As for the big environment of 400m2 area, for 160 & 200 robots, the time difference is a bit

more significant due to the large area being explored. Though, the success rate significantly

increased in this environment area when using RDPSO along with PFSM. We can also conclude

that using both RDPSO & PFSM has helped the robots navigate the environment in a more

organized manner and at a lesser time. We notice that the performance increase starts to be

significant as we increase the swarm size required to explore the environment.

5.1.2 Experiment Runtime vs Environment Area

In this section, we present the relationship between the amount of time taken to fully explore an

environment and the area of this environment. We present three different areas: 25m2, 100m2

& 100m2 with the same design as shown in figures 4.3a, 4.3a and 4.3c. We use the same design

so the only variable we have is the environment size and not the obstacles inside.

A comparison of different environment layouts is given in section 5.1.3. We conduct our exper-

iments on three different environment sizes while varying the swarm size as follows:

• 25m2 Area: 10, 20, 30, 40 & 50 robots

• 100m2 Area: 20, 40, 60, 80 & 100 robots

• 400m2 Area: 40, 80, 120, 160 & 200 robots

For the sake of the size comparison, we compare results of deploying only 20 & 40 robots in the

small and medium environment areas. We also compare results for 40 & 80 robots in the medium

and big environment areas. Fixing the swarm size ensures that results will only represent the

size difference.
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(a) Small Environment of area 25m2

(b) Medium Environment of area 100m2

(c) Big Environment of area 400m2

Figure 5.1: The relation between the swarm size and the amount of time taken by a swarm of
AntBOTs to explore and navigate all environment areas: 25m2, 100m2, 400m2
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(a) Small Environment Area: 25m2

(b) Medium Environment Area: 100m2

(c) Big Environment Area: 400m2

Figure 5.2: The minimum and maximum time taken by a swarm of AntBOTs to fully navigate
all environment areas: 25m2, 100m2 and 400m2.
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Number of Robots
Maximum Time (s) Minimum Time (s)

PFSM Only RDPSO & PFSM PFSM Only RDPSO & PFSM

10 2510.075 1684.355 233.252 150.501
20 1579.565 878.788 141.401 101.181
30 950.459 700.204 135.501 99.788
40 663.456 515.377 144.551 96.625
50 544.905 390.256 140.251 78.522

(a) Small Environment of 25m2 Area.

Number of Robots
Maximum Time (s) Minimum Time (s)

PFSM Only RDPSO & PFSM PFSM Only RDPSO & PFSM

20 3651.186 3120.517 613.906 490.419
40 1841.178 1710.866 405.204 339.771
60 1194.062 1044.713 316.456 253.169
80 729.007 701.008 185.901 178.275
100 537.105 514.942 185.301 174.511

(b) Medium Environment Area: 100m2

Number of Robots
Maximum Time (s) Minimum Time (s)

PFSM Only RDPSO & PFSM PFSM Only RDPSO & PFSM

40 21268.964 17001.259 18165.963 15669.485
80 17339.353 9125.362 15748.615 7999.385
120 9486.183 7336.613 8659.756 6403.943
160 6839.193 4965.112 6456.853 4355.493
200 4002.169 2931.634 3649.843 2722.158

(c) Big Environment Area: 400m2

Table 5.1: The minimum and maximum time taken by a swarm of AntBOTs to fully navigate
all environment areas: 25m2, 100m2 and 400m2

As can be seen in figure 5.3a, increasing the size of the environment from 25m2 in figure 4.3a

to 100m2 in figure 4.3b increases the amount of time required for robots to allocate the target

location and find the optimal path between the start and target location. Also as shown in figure

5.3b, increasing the size of the environment from 100m2 in figure 4.3b to 400m2 in figure 4.3c

had a significant effect on the time needed for exploration and navigation. We also notice that

combining RPDSO with PFSM always helps with decreasing the time required for exploration

and navigation. Thus, we conclude that as the environment area increases, the time required

for a mission increases at a higher rate in the case of using PFSM on its own. Although there

is a proportional relation between the time and the area in Swarm Robotics, exploring such a

big environment area with 200 robots will definitely be much faster than using only 1 or 2 big

complex robots. This is one of the strongest points to using swarm of simple robots vs a single

complex robot.
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(a) Area change from 25m2 to 100m2

(b) Area change from 100m2 to 400m2

Figure 5.3: The effect of changing the environment area from 25m2 to 100m2 and from 100m2

to 400m2 on the simulation runtime

5.1.3 Experiment Runtime vs Environment Layout

In this section, we present a comparison between two different environment designs shown in

figures 4.4a and 4.4b using both RDPSO and PFSM for such comparison. Both environments

are 100m2 in area.

As shown in figure 5.4, the amount of time required to fully explore and navigate the environ-

ment in figure 4.4b with randomly deployed obstacles decreased dramatically compared to the

environment of the same size in figure 4.4a. This proves that different designs can significantly

affect the amount of time required to explore and navigate an environment.

As shown in figure 5.5, with 60 robots, the maximum time required to explore and navigate

the environment with obstacles is even less than the minimum time required to explore and
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Figure 5.4: The relation between the swarm size and the amount of time taken by a swarm of
AntBOTs using both RDPSO & PFSM to explore and navigate the same environ-
ment size but with different designs; Walls & Obstacles

Figure 5.5: The minimum and maximum time taken by a swarm of AntBOTs to fully navigate
the same environment size but with different designs; Walls & Obstacles

navigate the environment with walls. This further confirms our ”walled” environment design as

a more challenging and meaningful environment to use.

5.1.4 Swarm Size vs Reporting Time

The reporting time is the time taken by the whole swarm to communicate their locations and

agree on the optimal path between the start and the target location. This starts right after the

environment is reasonably explored and the majority of robots are aware of the target location.

At this time, robots decide to stop at their locations and start broadcasting help messages to

aid the movement of any robot from the start to the target location. It is worth mentioning
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that for both techniques, robots took a maximum time of 1560ms as can be seen in figure 5.6

to agree on the optimal path in the big environment.

This shows the strength of Swarm Robotics where communication is super fast due the mobile

ad-hoc network formed between robots. Although the time taken for the target location prop-

agation in the network almost doubled in the case of big environment. It is still not a major

increase. Thus, we conclude that time is not significantly affected by the environment area.

Although there is a difference between the reporting time in the case of PFSM only and the

reporting time for both RDPSO and PFSM, this difference only ranges from 100ms to 200ms

which is negligible given the speed of processing on the board of each AntBOT.

In the case of RDPSO and PFSM, for all environment areas, the reporting time increased due

to the fact that robots are navigating the environment in groups. Whenever a member of the

group locates or receives a target location, the rest of its swarm will also receive this signal. This

guarantees continuous network connectivity because each part of the environment is covered not

only with a single robot but with a number of robots forming a smaller swarm.

5.1.5 Swarm Size vs Path Size

This section describes the relationship between the number of lead robots contributing to the

optimal path between the start and the target locations and the swarm size. We notice that

the increase in the swarm size in all environment areas has the following effect:

• PFSM Only: Path size was not significantly affected.

• RPDSO & PFSM: Path size increased significantly.

The nature of the RDPSO algorithm where it guides robots to navigate the environment in

groups is the main reason for this. Figures 5.7, 5.8 and 5.9 further explain the relationship

between both and prove that, in the case of RDPSO & PFSM, robots navigate the environment

in groups regardless of the environment area which results in a more stable connection between

robots in different places of the environment. Note that the zero points in path size indicates a

failure scenario.
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(a) Small Environment Area: 25m2

(b) Medium Environment Area: 100m2

(c) Big Environment Area: 400m2

Figure 5.6: The relationship between the swarm size in all environment areas: 25m2, 100m2 &
400m2 and the time taken to agree on the optimal path between the start and the
target locations
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(a) PFSM only

(b) RDPSO & PFSM

Figure 5.7: The relationship between the swarm size in the small environment of 25m2 area and
path size

5.1.6 Swarm Size vs Success Rate

With respect to all the environment areas, we describe the relationship between the swarm size

and the success rate. It’s important to note that an experiment is marked as success only if

robots were able to locate the target location. Tables 5.2a, 5.2b and 5.2c which illustrates the

success rate comparisons in the small, medium and big environment areas respectively show

that the increase in the swarm size increases the success rate in all environment areas. We also

notice that while using RDPSO with PFSM, the success rate increases significantly due to the

organization of the robots movement in the environment especially with bigger environment

areas. Only at low swarm sizes (i.e. not enough for environment coverage), combining RDPSO

with PFSM decreases the success rate. This is due to the fact that robots are not scattered in
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(a) PFSM only

(b) RDPSO & PFSM

Figure 5.8: The relationship between the swarm size in the medium environment of 100m2 area
and path size

the environment individually. On the contrary, they move in groups which results in smaller

areas of the environment being densely covered.

Table 5.2a which illustrates the success rate comparisons in the small environment area can be

explained as follows:

• 10 & 20 Robots: In the case of using RDPSO & PFSM, the success rate decreased due

to the fact that robots are moving in groups and if the number is not sufficient to cover

the whole environment area, it will be harder for the swarm to locate the target.

• 30 & 40 Robots: The success rate increased because the swarm size is sufficient for the

environment.
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(a) PFSM only

(b) RDPSO & PFSM

Figure 5.9: The relationship between the swarm size in the big environment of 400m2 area and
path size

• 50 Robots: In the area of 25m2, 50 robots are enough to explore the environment. Thus,

with or without RDPSO, robots were able to locate the target. The issue in this case is

that when the swarm size is big and robots are scattered in the environment, they might

hinder the movement of the main robot guided by the swarm.

while table 5.2b which illustrates the success rate comparisons in the medium environment area

can be explained as follows:

• 20 Robots: The success rate decreased due to the fact that robots are moving in groups

and if the number is not sufficient to cover the whole environment area, it will be harder

for the swarm to locate the target.
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• 40, 60 & 80 Robots: The success rate increased because the swarm size is sufficient for

the environment.

• 100 Robots: In the area of 100m2, 100 robots are enough to explore the environment.

Thus robots were able to locate the target using both techniques.

while table 5.2c which illustrates the success rate comparisons in the big environment area can

be explained as follows:

• 40 Robots: This swarm size is not enough to explore the big environment area and thus

there were no success using both approaches.

• 80, 120 & 160 Robots: For these swarms sizes, usage of RPDSO along with PFSM

helped increasing the success rate.

• 200 Robots: In the area of 400m2, 200 robots are enough to explore the environment.

Thus robots were able to locate the target using both techniques.

Figure 5.10 shows the relation between the increase in the swarm size and the success rate in

all environment areas.

5.2 Simulation Environment & Hardware

For all the collected results, we used two DELL Alienware Aurora Desktops with the following

configurations:

• Intel Core i7-6700K Processor (8MB Cache, Overclocked up to 4.2GHz)

• NVIDIA GeForce GTX 1080 Founders Edition with 8GB GDDR5X

• 16GB 2133MHz DDR4 Ram Memory

• 850W PSU Chassis Liquid Cooled

As for the software setup, we used the following:

• V-REP Simulator
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(a) Small Environment Area: 252

(b) Medium Environment Area: 1002

(c) Big Environment Area: 4002

Figure 5.10: Swarm Size vs the success rate given all environment areas
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Number of Robots
Success Rate

PFSM Only RDPSO & PFSM

10 10.00% 4.00%
20 54.00% 40.00%
30 56.00% 70.00%
40 62.00% 74.00%
50 100.00% 100.00%

(a) Small Environment Area: 25m2

Number of Robots
Success Rate

PFSM Only RDPSO & PFSM

20 10.00% 0.00%
40 30.00% 35.00%
60 55.00% 70.00%
80 80.00% 90.00%
100 100.00% 100.00%

(b) Medium Environment Area: 100m2

Number of Robots
Success Rate

PFSM Only RDPSO & PFSM

40 0.00% 0.00%
80 0.00% 33.33%
120 33.33% 66.67%
160 50.00% 100.00%
200 100.00% 100.00%

(c) Big Environment Area: 400m2

Table 5.2: Swarm Size and the corresponding Success Rate in all environment areas

• For remote API, we used Python(x,y) which is a free scientific and engineering development

software.

Although the above setup performed reasonably good on moderate swarm sizes, as the swarm

size increased beyond 100 robots, a significant lag in the simulation clock was noticed when

compared to the wall clock. For example, while using 200 robots in the big environment, one

second in simulation took exactly 15 minutes, 17 seconds and 23 milliseconds with dt=50ms of

wall clock time. This limited us from trying even bigger environment areas with bigger swarm

sizes.

5.3 Results conclusion

In conclusion, we present our approach of combining two different design levels (i.e. Microscopic

and Macroscopic). The microscopic level is designed using Probabilistic Finite State Machine
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(PFSM) while the macroscopic level is designed using Robotic Darwinian Particle Swarm Opti-

mization (RDPSO). Our novel approach is proved to decrease the amount of time required by a

swarm of AntBOTs to explore and navigate an environment regardless of its area. This is only

guaranteed if the swarm size used in the environment is adequate for its area.

We note that increasing the swarm size above certain levels causes the effect of RDPSO algorithm

to saturate. Thus, an average convenient swarm size should be used for each environment area

to optimize the time and cost per a single mission. We used three different environment areas

and two layouts to verify our approach on the V-REP simulator. We also present the physical

model of the AntBOT presented in appendix A as a proof of concept for future experimentation.



Chapter 6

Conclusion

Swarm Robotics research has received major attention in the last decade. Swarm systems are

proved to be robust, scalable, simple, parallelizable and economical. In this thesis, we proposed

a novel approach discussing exploration and navigation problem on both the individual and the

collective behavior. Our approach is based on Robotic Darwinian Particle Swarm Optimization

(RDPSO), Probabilistic Finite State Machine (PFSM) and Depth First Search (DFS). We also

provide a new cheaper swarming platform called AntBOT modeled in V-REP Simulator.

Our solution provides an innovative method to help our robots efficiently explore unknown en-

vironments in hazardous scenarios. Robots navigate the environment while maintaining swarm

robot communication in the absence of a network infrastructure. Results show that combin-

ing RDPSO & PFSM increases the speed of exploration by at least 1.4x the speed on a single

algorithm. Furthermore, it improves the robots movements in the environment as well as the

mission success rate by a value not less than 40%. This allows the use of smaller swarm sizes for

exploration and rescue. Using small swarm sizes reduces the cost per a single mission. Thus,

combination of RDPSO & PFSM also helps with cost reduction.

We collected our results from different simulated environment layouts as well as different en-

vironment areas (25m2, 100m2 & 400m2). We also increased the swarm size based on each

environment area. The real physical model of the AntBOT is also provided as a proof of con-

cept for future experimentation.
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6.1 Future Work

Although Swarm Robotics research is garnering attention in the Multi-Robot Community, there

is still a significant gap between research environments and real-world environments. As a future

work, authors believe that researchers should give more attention to real-world scenarios and

try to minimize the aforementioned gap by using prototypes that are closer to real models. We

also believe that experiments should be conducted outside research labs to test applicability

to real world applications. Also, further improvements to the real model of the AntBOT has

to be conducted to start introducing an even cheaper swarming solution for those who are

interested in testing their approaches in real world scenarios. As for the simulator, we believe

that collecting data from an even bigger environment areas such as: 1000m2 and 2000m2 will

add more credibility to the approach of combining microscopic and macroscopic system designs.
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Experimental Platform Design

In this research, we test our exploration and navigation approach on a simulator called Virtual

Robotic Experimentation Platform (V-REP). We also started the development of the actual

model of the AntBOT using the Pololu m3pi robot but it’s still under development. Further

work on this should be done as future work. Researchers conducting Swarm Robotics research

can be divided in three categories: 1) researchers who depend on simulation only and they

form around 60% of research, 2) researchers who depend on real robots only and they form a

minority of research and 3) researchers who experiment on both real-robots and simulation and

they form the rest of the available work.

A.1 Simulation - V-REP

In most of the robotics research, simulation plays a vital role in testing different approaches. For

this, we decided to run our exploration and navigation approach on one of the most powerful

simulators V-REP. Many surveys on different available robotic simulators were conducted [159].

At the beginning, we narrowed down all available simulators to only two of them; Webots

from CYBERBOTICS Ltd. [160] and Virtual Robot Experimentation Platform from Coppelia

Robotics [161]. Although Webots simulator is more frequently used in multi-robot research, we

choose V-REP because its available open-source for free while the cheapest version of Webots

that has enough tools and robot models costs around $3400 at the time of writing this document.

Virtual Robot Experimentation Platform (V-REP) is the Swiss army knife among robot simu-

lators: you won’t find a simulator with more functions, features, or more elaborate APIs. [161].
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Robot controllers can be written in many languages such as Python, C/C++, Java and others.

In our experiments, we use Python as the main development language because of its simplicity,

ease of use and integration with many available complex python libraries.

A.2 Proposed Swarming Platform (AntBOTs)

In this research, we found that commercial off-the-shelf (COTS) swarming robots like e-puck

[105] are quite expensive for a swarm as one piece costs around $1K at the time of writing this

document. After some extensive research, we decided to design and build our own swarming

platform AntBOT. The robot is a low cost platform and based on the Pololu m3pi robot [157]

and Mbed Controller [162]. The cost of single AntBOT is around $250 as discussed in A.2.7. A

top view of AntBOT is shown in figure A.1 and a bottom view is shown in figure A.2. In this

section, we discuss full specifications and description of the platform.

Figure A.1: AntBot Top view annotated with core features
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Figure A.2: AntBot Bottom view annotated with core features

We discuss several aspects of AntBOT design and some design decisions we took and why. We

divide our discussion in six parts as follows: 1) mechanical design, 2) electronic design, 3) IR

reflectance sensors, 4) accelerometer, 5) communication and 6) charging.

A.2.1 Mechanical Design

AntBOTs consist of two main parts:

1. Pololu 3pi robot which has a 9.5 cm diameter and weigh 83 grams without batteries.

Schematics for the 3pi is shown in figure B.2.

2. The expansion kit which is the layer on top of the 3pi robot. It has the same diameter.

The 3pi works as the base of the robot with wheels. The expansion kit on top is used to upgrade

the power and functionality of the robot.

A.2.2 Electronic Design

Technical specifications of Pololu 3pi robot [157] are found in table A.1.
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Processor ATmega328P

Motor driver TB6612FNG

Motor channels 2

User I/O lines 2

Minimum operating voltage 3V

Maximum operating voltage 7V

Maximum PWM frequency 80 kHz

Reverse voltage protection Y

External programmer required Y

Table A.1: Pololu 3pi Robot Specifications

In Antbot, we use the ATmega328P microcontroller in slave mode to control the five IR re-

flectance sensors, two motors and other components on the 3pi robot. ARM mbed microcon-

troller shown in figure A.3 is used the main controller of the AntBOT. Pinouts and simplified

block diagram of ARM mbed micro-controller can be found in Appendix B.

ARM mbed technical details [162]:

• NXP LPC1768 MCU

– High performance ARM Cortex-M3 Core

– 96MHz, 32KB RAM, 512KB FLASH

– Ethernet, USB Host/Device, 2xSPI, 2xI2C, 3xUART, CAN, 6xPWM, 6xADC, GPIO

• Prototyping form-factor

– 40-pin 0.1” pitch DIP package, 54x26mm

– 5V USB or 4.5-9V supply

– Built-in USB drag ’n’ drop FLASH programmer

A.2.3 IR reflectance sensors

The 3pi was originally developed for line following applications. Thus, its equipped with 5

QTR-RC reflectance sensors. They are 5 IR emitter and receiver (phototransistor) pairs which

are facing the ground as shown in figure A.2.
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Figure A.3: ARM Mbed NXP LPC1768

Figure A.4: MMA7455 3-AXIS Accelerometer

A.2.4 Accelerometer

In our design, to be able to do collision detection, we use the MMA7455 3-AXIS Accelerometer

shown in figure A.4 to detect collision detection. We only use one of the axes because AntBots

move forward and backward only. We use the MMA7455 because of current availability and it

can be replaced with any of the available single axis accelerometers.

A.2.5 Communication

For communication between AntBOTs or between AntBOTs and the PC, we use the Wixel Pro-

grammable USB Wireless Module shown in figure A.5 which is a general-purpose programmable

module featuring a 2.4 GHz radio and USB [163]. General specifications of the Wixel Pro-

grammable USB Wireless Module are found in table A.2.

A.2.6 Charging

AntBOT is equipped with 4 AAA Ni-MH rechargeable batteries. Note that any regular alkaline

cells can be used although rechargeable batteries are recommended to avoid the hassle of dis-

sembling and reassembling the robot to change the batteries. Any NiMH off-the-shelf chargers
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Processor CC2511F32 @ 24 MHz

RAM size 4096 bytes

Program memory size 29 Kbytes

User I/O lines 15

Minimum operating voltage 2.7 V

Maximum operating voltage 6.5 V

Reverse voltage protection Y

External programmer required N

Table A.2: Wixel Programmable USB Wireless Module Technical Specifications

Figure A.5: Pololu Wixel Programmable USB Wireless Module

Figure A.6: iMAX B6AC Balance Charger

can be used although its recommended to use the iMAX B6AC Balance Charger shown in figure

A.6.
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A.2.7 Cost

The cost of a single AntBOT is around $250 and can be further optimized if the quantity

increased. More details on the cost can be found in table A.3. The cost of a single charger

which can be used to charge the whole swarm sequentially is around $55.

# Item Description Unit Pr. Qt. Total Pr.

1 Pololu m3pi Robot with mbed Socket $ 149 1 $ 149

2 ARM mbed NXP LPC1768 Development Board $ 49 1 $ 49

3 Wixel Programmable USB Wireless Module $ 19 1 $ 19

4 Rechargeable NiMH AAA Battery: 1.2 V, 900 mAh $ 1.59 4 $ 6.36

5 Single Axis Accelerometer $ 25 1 $ 25

Total $ 248.36

Table A.3: Single AntBOT Cost List
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AntBOT Schematics

A pinout for the ARM mbed LPC1768 is shown in figure B.1. Schematics of the Pololu 3pi

robot is shown in figure B.2. A simplified block diagram for LPC1768 is shown in figure B.3

with detailed features listed in table B.1.

Figure B.1: ARM mbed LPC1768 Pinout

81
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Figure B.2: Pololu 3pi Schematics
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Figure B.3: LPC1768 simplified block diagram
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