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ABSTRACT

A rapidly growing world population and an increasing density of settlements demand ever-larger
and more complex buildings from today’s engineers. These requirements can often be met due
to a continuous development of new building fabrics and construction processes. In comparison
to this technological progress, the development of novel equipment for emergency evacuation
of buildings has been quite stagnant in recent years. Current evacuation support facilities
are mainly limited to stationary exit signage and emergency maps displaying recommended
escape routes. Such emergency maps can be easily overlooked and are often perceived as
confusing and unclear, especially when someone is in panic. However, the main problem with
contemporary building evacuation support equipment is its inability to adapt recommended
escape routes to the ever changing environment during the evacuation process. Neither fire
outbreaks, smoke formation, blocked passages due to debris of collapsed masonry can be
considered, nor can the current distribution of people inside the building be taken into account
when planning potential escape routes. Nevertheless, these factors strongly affect potential
congestion emergence and, hence, the evacuation time.
The increasing propagation of mobile devices designed for wireless communication, such

as smart phones, tablet PCs, or general devices for personal digital assistance, opens up an
opportunity to improve the support of evacuees during an emergency evacuation of a building.
In emergency cases, the mobile device can alert its user via ringing or vibrating and display
an individual escape route on its screen. By pointing out respective directions, the device
can navigate its user to a safe exit. The advantage compared to traditional escape route
signage lies in the possibility to update the recommended escape route according to new
information about the current evacuation situation. Such information can be gathered by
the device via wireless communication between devices and the environment. In this thesis,
the Organic Building Evacuation Support System, or OBESS, is introduced. OBESS is a
concept for an adaptive building evacuation system based on the paradigm of controlled
self-organization from the research area of Organic Computing. To achieve this characteristic
system behavior, an exemplary implementation of the Observer/Controller Architecture is
presented. The Observer/Controller Architecture is a generic system architecture developed in
the context of Organic Computing, designed specifically for the purpose of realizing controlled
self-organization. The support system consists in part of mobile devices, which have the
ability to establish an ad hoc network via local communication with each other. This way,
local communication provides a mean for the dissemination of information about the current
evacuation situation in the network. This information can then be used to find the optimal
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escape route for the user of each device. In OBESS, all computations are meant to be
performed in a decentralized way, directly on the mobile devices in order to avoid having a
single point of failure in the system. This approach increases the robustness of the evacuation
system, which is a crucial characteristic, especially for emergency applications.
There are two algorithmic challenges that have to be mastered in order to realize such a

decentralized evacuation support system based on mobile devices. Firstly, the devices have to
compute escape routes based on uncertain and incomplete information regarding the evacuation
situation. Amongst other reasons, this is partly due to the fact that communication over an ad
hoc network is generally delayed and that the network can get disconnected from time to time
since participating devices move through the building. So far, the task of decentralized escape
route planning based on uncertain information has received little attention from researchers.
Since it is a key prerequisite for a robust evacuation support system based on mobile devices,
a large part of this thesis is dedicated to developing solutions for this problem. The second
crucial requirement for the realization of the building evacuation support system proposed is
the ability to determine the locations of mobile devices in the building. Since signals of the
most commonly used localization technique, the Global Positioning System (GPS), are usually
not available indoors, this task alone can be a challenge. For static sensor networks, which
have similar characteristics to mobile ad hoc networks, many localization techniques which are
independent from GPS-signals have been proposed over time. Since an important difference
between sensor and ad hoc networks is the mobility of the devices in the network, this thesis
investigates the effect this mobility has on various distance estimation techniques, which
ultimately form the basis for localization algorithms in OBESS. It is shown that mobility of
devices has a significant impact on the accuracy of computed locations and, therefore, has
to be dealt with explicitly. For this, several solutions are suggested and evaluated in this
thesis. In addition, this thesis presents an optimization approach to improve the localization
infrastructure for mobile devices in specific buildings and discusses the potential of the
Observer/Controller Architecture for improving the accuracy of indoor localization.
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CHAPTER 1
INTRODUCTION

A continuously increasing global population and settlement density combined with huge
progress in the building and construction industry led to the emergence of ever-larger and
more complex buildings. Recently, the world’s tallest construction, the Burj al Khalifa in
Dubai, was brought to completion in October 2009. This imposing structure consists of
900 apartments, which are distributed over about 190 floors. Although probably being the
most prominent example of today’s engineering skills, there are many more to name. The
Ghery Buildings in Düsseldorf, Germany, clearly illustrate the ability and willingness to
construct buildings which diverge from simple geometric forms. Another illustrative example
of complex architectural design is the Habitat 67, a model community and housing complex
in Montreal, Canada, where houses are assembled in an irregular structure. In contrast to
such developments, most buildings’ precautions for emergency evacuation are comparatively
underdeveloped. Hence, they fail to profit from technological progress, which has found its way
into most other areas of everyday life. The fact that an infrastructure whose main purpose it
is to save human life does not keep up with technological achievements is surprising, at best, if
not worrying. Therefore, it is an urgent matter to investigate how new scientific insights and
findings, for example in the area of computer science, can be exploited in order to improve
emergency management in modern buildings.

1.1 Motivation and Problem Statement

Today’s approach to prevent disasters and support a well-ordered evacuation of buildings is
to install safety devices, such as sprinkler systems, fire or smoke alarms, fire extinguishers,
exit signs, and emergency maps. In general, such emergency maps display the current floor,
recommendations for escape routes, and the locations of first-aid kits or fire extinguishers.
Apart from that, there are usually stationary signs installed throughout the building, which
are meant to direct people to nearby exits or safe areas. Figure 1.1 displays some examples of
such signage. A major drawback of such kind of emergency facilities is the fact that they are
usually developed when the building is constructed and are permanent without provision for
frequent changes. The route guidance which is provided by exit signs and emergency maps is
designed based on expectations regarding the evacuation process, which are obtained from
statistical data and expert knowledge. However, the resulting escape routes can be suboptimal
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Chapter 1 Introduction

in case the situation in the building differs from the expected scenario, for example in terms
of the number of evacuees or their distribution across the rooms, et cetera. Furthermore, the
escape routes are not necessarily optimal for people with special needs due to disabilities
or other handicaps. Fahy and Proulx [62] published reports from survivors of the attacks
of September 11th, 2001, which indicate that the main obstacles during their escape were
congestions in bottleneck-areas and closed or blocked passages due to smoke formation or
damaged building fabrics. Conventional evacuation signs are unable to adapt to the specific
evacuation situation in the building, to changes in the environment during an emergency
situation, or to personal needs of specific evacuees. Another serious problem is that navigation
signs are stationary and sometimes easily overlooked in panic situations (cf. Morishita and
Shiraishi [165]). Smoke formation and lack of illumination can further aggravate this situation.
Even people who are familiar with the building’s layout can have difficulties to find their way
to the exit under such circumstances (cf. Fahy and Proulx [62]). Furthermore, conventional
emergency maps are often hard to apprehend, especially when in panic. Since they are fixed
to the wall, they cannot be rotated, which is common practice for some people in order to
orient themselves on a map.
For all these reasons, today’s evacuation support equipment in buildings should be re-

considered and replaced with more innovative solutions, which can overcome the identified
deficiencies. A modern evacuation system should have digital illuminated screens, which show
navigation instructions towards safe areas or exits of the building. Ideally, some of these
screens are portable devices, which can be carried by evacuees. This way, frequent searches for
new signs during the evacuation process can be avoided. Evacuation devices should provide
the possibility to assess the current evacuation situation, detect changes in the environment,
and adapt the navigation instructions accordingly. Furthermore, it is desirable to integrate
personal information about the devices’ users in the process of finding suitable escape routes.

EXIT

Figure 1.1: Standard navigation signs for building evacuation.

1.2 Objectives and Approach

The widespread distribution of mobile devices, such as smart phones or tablet PCs, provides
a chance to achieve a changeover in evacuation support for buildings. These devices are
portable and equipped with digital illuminated screens, which can display a building’s layout
and navigation instructions to guide their users. Mobile devices typically possess means
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for wireless communication via short-range communication modules, which could provide
information about the current situation in the building. Moreover, the devices are able to
form a so-called Mobile Ad Hoc Network (MANET), or ad hoc network for short, i.e., a
network which consists of dynamically built-up connections between devices which are located
within sufficiently close proximity. Each device in such a network forwards messages that
it receives to all other devices in its communication range. This allows for dissemination of
information in the network, which increases the knowledge each device can obtain about the
environment. In addition, mobile devices possess computing capacities, which are needed in
order to determine navigation instructions and to dynamically adapt them according to newly
available information. There is no need for a central computing unit in the building, which
makes the evacuation support system scalable and robust against a single point of failure. The
fact that each evacuee can have his own mobile evacuation device provides the potential to
personalize evacuation route planning. Individual preferences and needs, such as for disabled
or elderly people, can be taken into account.

However, the scalability and robustness a system gains from decentralized computation and
information acquisition via local communication have their price. The lack of global knowledge
poses a special challenge for evacuation route planning. Firstly, the available information basis
can be incomplete in case the ad hoc network is disconnected, or if there are no devices located
in a certain area of the building which can report about its state. Secondly, messages received
from nearby devices can be obsolete or outdated because of the delays which arise during the
forwarding process. Furthermore, information exchanged between the devices could, from the
outset, be incorrect either as a result of error-prone computations or when human users report
false information to their devices, be it accidentally or even on purpose. Although these are
considerable shortcomings, the above described advantages justify a thorough investigation of
the potential that mobile devices hold for the improvement of evacuation support in future
buildings. Since the task of evacuation route planning on mobile devices differs from standard
path-finding problems which require global and certain knowledge, the first objective of this
thesis is:

1. Proposing and evaluating methods to determine optimal evacuation routes on mobile
devices which regard user preferences, take into account uncertain information gathered
via local communication, and are adaptable to detected changes in the environment.

In order to be able to navigate their users, the devices have to be able to determine their
current locations in the building. Since there is usually no GPS-signal available indoors, the
localization alone becomes an ambitious task. To tackle this problem, the devices’ ability to
organize into ad hoc networks and exchange messages with other devices in this network comes
in handy. While localization of mobile devices in an ad hoc network has not yet received much
attention, there are a vast number of localization techniques proposed for a Static Sensor
Network (SSN) in the literature. SSNs have similar characteristics to MANETs but differ in
the fact that the devices are stationary. Mobility of the devices, however, can fundamentally
affect the applicability of localization algorithms designed for SSNs to MANETs, which leads
to the second objective of this thesis:

2. Investigating the applicability of localization algorithms designed for SSNs to MANETs
and developing reasonable adjustments.

Due to the mobility of the devices, their surroundings change constantly. This is why the
evacuation route planning, as well as the localization process, have to be able to adapt to new

3



Chapter 1 Introduction

and unforeseen situations. Such a requirement calls for self-organization amongst the involved
devices. Self-organization enables a system to autonomously operate in unpredictable and
interchanging environments. If predicting all potential system states at design time poses
a problem, it is advisable to embrace self-organization as a design principle. At the same
time, self-organization always bears the risk of undesired system behavior emerging from local
interactions between the system’s components due to the lack of global coordination and
supervision. This can be disastrous, especially when it happens in a life-threatening situation,
such as a building evacuation. As a consequence, it is desirable to allow for a certain amount
of control in an otherwise autonomous evacuation support system. Organic Computing (cf.
Müller-Schloer and Schmeck [169], Müller-Schloer et al. [170], Schmeck [213], VDE/ITG/GI
[235]) deals with the design of self-organized technical systems in order to make them flexible
in their reaction to changes in the environment or the system’s objectives. At the same time
the system remains trustworthy and robust with respect to failures and disturbances. The
Observer/Controller Architecture (O/C Architecture) (cf. Branke et al. [23], Müller-Schloer
[168], Richter [193], Richter et al. [195]) is a generic design framework developed to build such
organic systems in a way that they exhibit the previously described life-like characteristics.
Pursuing the goal of a controllable and self-organizing Organic Building Evacuation Support
System (OBESS), the third objective of this thesis is:

3. Developing a concept for a controllable, self-organizing evacuation support system by
applying the generic O/C Architecture to the mobile evacuation devices in the system.

The aforementioned objectives lead directly to the major contributions this thesis provides
for the research areas of evacuation route planning, localization in MANETs, and Organic
Computing.

1.3 Major Contributions
The first major contribution relates to the research area of evacuation management. A concept
for an evacuation support system in buildings is presented, which consists of a MANET, an
SSN, and a Central Control Unit (CCU). The presented system emphasizes decentralized
computations and local communications between its components, which makes it scalable and
robust against a single point of failure. In addition, two algorithms for decentralized evacuation
route planning on mobile devices are presented, which are designed to integrate uncertain
information about other evacuees’ locations in the building. This information is gathered
via local communication and subsequent dissemination over ad hoc network connections
to other mobile devices in the building. It is shown that the evacuation process can be
accelerated compared to a situation without communication between the devices, even though
the information can be incomplete, outdated, and error-prone due to the characteristics of
the scenario. Both algorithms are designed in a way that they can adapt to changes in their
environment and one method regards user preferences in the optimization of escape routes.
Since the strongly expanded use of mobile devices is a rather recent phenomenon, the idea
to use mobile devices to support the evacuation of a building has not yet been subject to
extensive investigations. The proposed methods for distributed and adaptive escape route
planning on mobile devices advance the research in this area.
The second set of contributions relates to the task of localization, more precisely, to

determine the locations of mobile devices in an ad hoc network without the use of GPS-
receivers. While this challenge has received much attention for static devices in SSNs, mobility
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is rarely addressed. The usual proposition to account for mobility is to constantly repeat the
respective algorithm in order to find the devices’ new locations when they moved. However,
an extensive study about the impact of mobility on localization algorithms presented in this
thesis shows that simple repetition leads to an unpredictably high inaccuracy in the resulting
locations. Experiments reveal details about the effects various mobility models have on the
quality of localization results and identify main influencing factors of these models, such as
speed or direction of movement. A modification of a distance estimation algorithm is suggested,
which is shown to reduce the error produced by mobility of the devices. Additionally, two
indicators are proposed which can characterize the mobility of devices in a network based
on locally available information. As a consequence, localization results could be corrected
in order to account for the distortion brought by the specific mobility pattern. Moreover, a
distributed, nature-inspired procedure to synchronize devices in a MANET is successfully
tested and, based on it, a method is developed for distance estimation, which is shown to
improve the mobility induced localization error. Furthermore, a novel distance estimation
approach is introduced and experiments are presented to demonstrate that by applying this
algorithm the accuracy of localization can be improved for various network topologies and
especially for MANETs. The quality of the results produced by localization algorithms mostly
depends on the placement of specific devices in the network which possess knowledge of their
own positions. This thesis contributes an Evolutionary Algorithm (EA), which can be used to
optimize the locations of such devices. Valuable insights about an optimal device placement
for localization during a building evacuation process are obtained by an experimental study.
These findings contribute to both, the research field of evacuation planning and localization
for MANETs.
Moreover, a contribution is made, which relates to evacuation management, localization,

and Organic Computing as well. Organic Computing is concerned with the design of self-
organizing technical systems in order to make them adaptable and trustworthy at the same
time. A generic O/C Architecture was developed for such systems, which provides for online
and offline learning mechanisms, i.e., learning at runtime and in a simulation, in order to
achieve these goals. In this thesis, a conceptual system architecture is proposed, which applies
the generic O/C Architecture from Organic Computing to the mobile devices in the building
evacuation support system. It is shown how the generic architecture can be implemented
for evacuation route planning and localization. It is further introduced how offline learning
can be used to evaluate the quality of an evacuation instruction with respect to the current
evacuation situation in the building before it is suggested to the user. Apart from that,
the O/C Architecture offers a chance to improve localization. The study of localization
algorithms presented in this thesis reveals that various localization techniques can deliver
high quality results under different environmental circumstances. When determining to use a
specific localization algorithm at design time, there can be circumstances under which another
localization algorithm could deliver better results. Here, a concept is proposed which uses
online and offline learning mechanisms provided by the generic O/C Architecture in order to
switch between various localization algorithms at run time. Learning mechanisms are applied
to improve this decision process over time. This is a novel approach to the task of localization,
which opens up a new perspective for research in this area.
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1.4 Structure
This thesis is structured as follows. Chapter 2 describes the research context of this thesis.
A short introduction of MANETs is given and the main research topics regarding these
networks are discussed. Subsequently, the research area of Organic Computing and the related
O/C Architecture is described. In addition, an overview of the concepts of swarm intelligence
and nature-inspired computing is given and their role in organic systems is discussed. The
chapter proceeds with a description of current research in the area of evacuation management,
including evacuation modeling and optimization approaches, as well as an overview of state-
of-the-art concepts for evacuation management systems with mobile devices. Subsequently,
the task of localization is introduced and various approaches to the problem are described
with focus on localization of devices in MANETs and SSNs. Chapter 2 concludes with an
overview of state-of-the-art localization systems.
A concept for OBESS is presented in Chapter 3 and the main elements of this system,

as well as their functionalities, are described. An examplary application of the generic
O/C Architecture to mobile evacuation devices follows and the potentials this architecture
provides for the improvement of evacuation planning and localization are discussed.

In Chapter 4, two distributed evacuation planning algorithms are developed, which can be
employed by mobile devices to navigate users to an exit while taking into account information
about other evacuees derived from local communication. Simulative experiments show that
this information can be used to improve the overall evacuation time compared to route
planning without communication, even though the devices have only uncertain information
about their environment.

Chapter 5 investigates various methods to locate mobile devices in ad hoc networks without
the use of GPS-receives. A standard localization algorithm, which has been proposed for
static networks, is stressed under various mobility models and important influencing factors of
the mobility pattern on the localization accuracy are identified. Additionally, various methods
to improve the localization results for MANETs are presented and discussed. The approaches
are investigated thoroughly, compared, and evaluated in simulative experiments. Concluding
this chapter, an EA is proposed, which optimizes the placement of specific devices in order to
improve localization accuracy. This approach is tested in a simulative evacuation scenario
and provides valuable insights into the characteristics of an optimal placement and into the
factors which influence such an optimal solution.
Chapter 6 summarizes the research presented in this thesis and subjects it to a critical

evaluation which leads to the prospects for future research in order to advance the vision of
OBESS.
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CHAPTER 2
RESEARCH CONTEXT AND STATE-OF-THE-ART

In this chapter, the research context of the work presented in this thesis is outlined and
fundamental principles are explained. Firstly, a short introduction to MANETs is given. The
chapter proceeds with a description of the concept of Organic Computing and its generic
O/C Architecture, which forms the basis for the software architecture of the mobile devices
in OBESS. Subsequently, the state-of-the-art in evacuation management research is described
in detail. The chapter concludes with an introduction to the task of localization and state-of-
the-art localization methods are described.

2.1 Mobile Ad Hoc Networks
MANETs are networks which consist of a number of mobile devices with the ability to
communicate with other nearby devices using a short-range wireless communication module,
like infrared, Bluetooth [20], or ZigBee [257] technology. Also, the devices forward messages
that they receive to all other devices in their neighborhood. Hence, the devices are able to
spontaneously form networks which make long-distance communication possible (cf. Ghosekar
et al. [75]). In contrast to SSNs, the devices in a MANET are mobile and not necessarily
equipped with sensors. Ad hoc networks have been subject to research since the late 1960s
(cf. Abramson [1]) and have been widely studied in the literature since. There is a working
group founded by the Internet Engineering Task Force (IETF) [107] to investigate MANET
related issues. Apart from being mobile, the devices in MANETs are usually assumed to have
limited resources in terms of memory, processing capabilities, and power supply.
In the work of Nan and Li [172], an overview of the main research areas for SSNs is given.

According to these authors, the main research areas are resource management, optimization
of the devices’ lifetimes and their localization in the network, routing of information in the
network, and optimizing the coverage of the network. It should be noted that the scientific
questions in the area of SSNs can mostly be transferred directly to MANETs due to the
similarity of SSNs and MANETs. Throughout this thesis, the localization task is the main
focus, however lifetime optimization and optimal coverage is also touched upon.
When talking about routing in ad hoc networks, there is a variety of protocols proposed,

which can mostly be categorized into distance vector routing or link state routing protocols (cf.
Ballew [14], Tanenbaum [228]). While in distance vector routing each device communicates
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all distance information it possesses to its neighbors, in link state routing only distance
information about the links to direct neighbors is communicated to the whole network. Many
implementations of these protocol types are suggested and each protocol has its advantages
and disadvantages, such as varying packet sizes or the number of messages needed to establish
and maintain routing information. For the research presented in this thesis, however, there
is no need for direct communication between specific devices because broadcasts are used
to distribute information over the whole network. Thus, routing is paid little attention to.
The communication model assumed for the network throughout this thesis is similar to the
Gossip Protocol (cf. Haas et al. [81]). The Gossip Protocol is an alternative routing method to
Flooding, which is the most basic way to disseminate messages in networks where each device
simply forwards all information available to all neighbors. The idea of the Gossip Protocol,
also called Epidemic Routing, is that each device only forwards the most recent information it
receives and, thus, the communication overhead is reduced.

Another great advantage of decentralized ad hoc networks is that the information exchange
can still function even if certain devices are broken. In contrast to networks which depend
on a central unit for message routing, which is often the case in wireless local area networks,
communication in ad hoc networks remains intact in case of individual failures of devices.
This lack of a single point of failure makes the network’s communication robust, even in
regions where there is no existing communication infrastructure or where the available
infrastructure is damaged. This characteristic makes the operation of such networks attractive
in many application scenarios, such as geographic monitoring, target tracking, or evacuation
management.

2.2 Organic Computing
Another research area touched upon in this thesis is Organic Computing. The Organic
Computing initiative started with a position paper from the German Informatics Society (GI)1

and the Information Technology Society (ITG)2 in 2002 and was established as priority
program 1183 by the German Research Foundation (DFG)3 in 2004 [214]. The fundamental
observation that led to the Organic Computing initiative was that future computing systems
become smaller in size and at the same time increase in performance and quantity. Due to
this development, computing systems become ubiquitous. Sometimes, they form possibly
unlimited dynamic networks via local communication, hence, building complex, variable, and
unpredictable structures. Such computing systems will likely be part of everyday life enhancing
the functionality of our houses (cf. Allerding et al. [6], Bing et al. [19]), offices (cf. Davidsson
and Boman [49]), cars (cf. Corona and De Schutter [45], Srovnal et al. [222]), manufacturing
industry (cf. Liana et al. [135]), health-care facilities (cf. de Ruyter and Pelgrim [51], Soar
et al. [220]), et cetera. Because of the dynamics of the environment such systems are deployed
in, they are required to be flexible and adaptive to unforeseen situations. Since all potential
states of the environment or the system itself cannot be accounted for at the time of design,
some degree of self-organization is necessary to cope with the dynamics, complexity, and
unpredictability of such computing systems. While there are different definitions for self-
organizing systems, “...in the most general way the essence of self-organization is that system
structure appears without explicit pressure or involvement from outside the system” Schmeck

1Gesellschaft für Informatik e.V.
2Informationstechnische Gesellschaft
3Deutsche Forschungsgemeinschaft
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[212]. When external involvement is excluded, the desired behavior has to be established
exclusively by interactions between the system’s components. A system which adapts itself
to a changing environment possesses almost life-like properties, such as self-protection or
self-healing. This is the reason for the choice of name.

When a system acts completely self-organized, the question arises whether it is possible to
trust such a system and how it can be guaranteed that no unexpected and possibly harmful
system behavior arises. Organic Computing addresses the tradeoff between the desire to have
an adaptive, flexible, and self-organized system which is also trustworthy and robust. While
an organic system (in the sense of following Organic Computing principles) is encouraged
to solve tasks in a self-organized way using feedback loops and learning, the possibility for
a user to intervene in the case of an undesired emergent behavior is given to ensure correct
system behavior. Another requirement of future computing systems identified and addressed
by Organic Computing is the need to design computing systems according to human needs.
This postulation refers to the need for user-friendly interfaces. Because of the complexity
such systems exhibit, it is hard for a user to tell the system exactly what it has to do. A
much more convenient and realistic way for users to communicate with such a system is by
formulating objectives or goals instead of precise instructions.
So far, Organic Computing is used for the design of various system types, for example the

control of traffic (cf. Fekete et al. [65]), self-organization of traffic lights (cf. Prothmann et al.
[185]), design of a robot control architecture (cf. Brockmann et al. [25]), artificial vision (cf.
Walther and Würtz [241]), energy management in smart homes (cf. Allerding et al. [6]), and
many more (cf. Müller-Schloer et al. [170]). The application to a building evacuation scenario,
however, is novel.

2.2.1 Organic Observer/Controller Architecture
One outcome of the Organic Computing initiative is a generic O/C Architecture. It allows
for controlled self-organization in distributed technical systems (cf. Branke et al. [23], Müller-
Schloer [168], Richter et al. [195]). The architecture provides means for observing, analyzing,
and characterizing the current state of a System under Observation and Control (SuOC), as
well as the ability to predict its future behavior. This information is subsequently interpreted
by the controller in order to direct the system into a desired system state and prevent unwanted
emergent behavior (cf. Mnif et al. [163], Ribock et al. [192], Richter and Mnif [194]). While
this all happens without external control, the possibility for a human user to control the
system still is provided. User input can be made in terms of objectives and goals. Apart
from the O/C Architecture, similar concepts are presented in other scientific disciplines like
mechanical engineering (cf. Hestermeyer et al. [93]) or autonomic computing (cf. Kephart and
Chess [121]). However, these architectures do not cover all aspects of an organic system. The
main, but not only, difference is that the generic O/C Architecture emphasizes the role of an
external entity to specify system-objectives. In the next section, the generic O/C Architecture
is described, as it serves as a basis for OBESS. For a detailed introduction and distinction
between the generic O/C Architecture and similar concepts, it is referred to the respective
literature by Müller-Schloer [168], Richter et al. [195], and Branke et al. [23].

The generic O/C Architecture consists of four elements, which interact with each other: The
SuOC, the observer, the controller, and a higher level entity specifying the system-objectives,
which are usually provided by a human user but, in theory, could also be provided by another
computing system. Further on, this higher level entity is referred to as “user”. Figure 2.1
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shows the basic elements of the architecture and their relationships. These components and
their interactions are explained in detail in the following.

Figure 2.1: The main elements in the generic O/C Architecture and their interactions.

System under Observation and Control

The SuOC can be a set of interacting entities, as illustrated in Figure 2.1, or a single device.
The behavior of this system is subject to the influence of the controller and is desired to
satisfy the objectives given by the user. Still, it does not depend on the existence of neither
the observer, nor the controller, nor the user. The system gets input from its environment,
i.e., parameters which can influence the behavior of the SuOC but are uncontrollable by the
system. Furthermore, there is output from the SuOC, i.e., changes to those parameters in
the environment that are visible to external entities outside the SuOC. In addition to input
and output, the SuOC has internal parameters, i.e., parameters changeable by the system in
order to influence its own behavior. These parameters are only accessible from the outside if
specified explicitly as configuration parameters of the SuOC. An example of such a system
could be those components of a car which are meant to collaboratively ensure a certain driving
speed. The desired driving speed would be the objective given by the user. Input parameters
could be outside temperature, the incline of the road, et cetera, and the output parameter is
the driving speed. Internal parameters can, for example, be a certain motor configuration,
which is regulated by the software of the car, but cannot be set explicitly by the user.

Observer

The system is observed, analyzed, and its current state is characterized by the observer.
Furthermore, the observer is responsible for predicting the most likely future state of the
system. Figure 2.2 shows the components of the observer and their interdependencies in
the generic O/C Architecture. The observation model is selected by the controller and it
determines how the other components in the observer work depending on the current objectives.
It can, for example, decide which parameters of the SuOC should be monitored or what
their sampling rate is. The monitor collects the specified parameter values from the SuOC
according to the defined sampling rate and stores these values in log files. The pre-processor
takes this data and prepares it for the data analyzer and the predictor module, for example by
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filtering or aggregation. The preparations needed are also specified by the observation model.
In the data analyzer, meaningful attributes that are able to characterize the current system
state, e.g., stochastic values are calculated from the pre-processed data. The observation
model determines which values are computed. The predictor has some prediction methods at
its disposal and selects a suitable one according to the observation model. With the selected
prediction model and data from the pre-processor it forecasts the future system state. This
is an important step because it increases the chance for the controller to prevent undesired
system behavior before it actually arises. The output from pre-processor, data analyzer, and
predictor is collected in the aggregator-module and forwarded to the controller.

Figure 2.2: The observer of the generic O/C Architecture and its components.

Controller

The main purpose of the controller in the O/C Architecture is to select control actions, i.e.,
actions that influence the environment of the SuOC, the communication between its elements,
or the behavior of the elements directly. Figure 2.3 shows the components of the controller
and their relations. The selection of an appropriate action for a certain situation is done
in the action selector. The mapping from system state to appropriate action is subject
to a learning process (cf. Fredivianus et al. [70], Richter [193], Richter and Mnif [194] for
detailed descriptions). This process can be distinguished into online and offline learning. Both
learning mechanisms take place in different parts of the controller. During online learning,
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actions are executed which influence the SuOC. The quality of these actions is deduced
from the system’s response. For this, the controller keeps track of the previously applied
actions and the subsequent system states in two history-stacks, namely action history and
situation history. From this information, the impact of an action is evaluated with respect
to the given objectives and a so-called fitness value is assigned to the situation-action pair.
The result of the evaluation is reported to the adaptation module, which alters the fitness
for the corresponding mapping in the action selector, giving this mapping a higher or lower
chance, respectively, to be selected again for execution. Simultaneously to this online learning
process, the O/C Architecture provides the possibility for offline learning. The offline learning
is realized in a simulative model of the SuOC. The adaptation module creates new mapping
rules, for example by applying mutation and reproduction mechanisms of EAs (cf. Weicker
[246] for details), which can be evaluated in the simulative environment using standard fitness
evaluation and selection mechanisms from EAs. Thus, only rules that perform well in the
simulation are committed to the action selector and available for online learning. Although
simulations are never exact reproductions of the real environment and, therefore, cannot
guarantee the impact an action has, the offline learning still provides certain quality assurance.

Figure 2.3: The controller of the generic O/C Architecture and its components.
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2.2.2 Structure of Organic Systems
The generic O/C Architecture in the previously presented form consists of a central ob-
server and controller which regulate a distributed system, but there are other structures
as well. For example, a completely distributed O/C Architecture, where every element of a
distributed system is an SuOC and has its own observer and controller. Also, a multi-level
O/C Architecture is conceivable, where the distributed O/C Architecture has an additional
central top-level observer and controller layer. Figure 2.4 shows these system structures. For
the organic evacuation support system, each mobile evacuation device is designed according to
the O/C Architecture. In addition, the system could benefit from a centralized O/C unit, such
that the overall system architecture resembles the hierarchical system architecture illustrated
in Figure 2.4(c). It is important to note that the mobile devices in a hierarchical system
are perfectly functioning, even if the superordinate O/C Architecture breaks down. This is
important in the context of emergency situations, in which a single point of failure is to
be avoided. However, an additional central unit allows for users to communicate with the
distributed system via a unique interface, which significantly facilitates the control of such a
distributed system.

(a) (b)

(c)

Figure 2.4: Different structures of O/C Architectures. The architecture of a centralized system
(a), a decentralized system (b), and a hierarchical system (c).
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2.2.3 Swarm Intelligence and Nature Inspired Computing
Although the notion organic in Organic Computing does not imply the use of nature-inspired
algorithms, these methods often fit well into the concept of Organic Computing. Nature-
inspired methods transfer observed behavior in natural social systems, e.g., swarms of insects,
into principles for the design of artificial technical systems. Creatures, especially when living
in swarms, tend to self-organize in order to solve complex tasks. Prominent examples of
swarms in nature who serve as algorithmic models are ant colonies (cf. Dorigo [56], Dorigo
et al. [57]), bee swarms (cf. Karaboga and Akay [116]), or fish schools (Neshat et al. [175]).
The main characteristic of swarm intelligence is that a global behavior of the entire system
arises as an emergent effect from simple local interactions between its components. This
emergent global behavior, however, is unknown to the single entities (cf. Eberhart et al. [58]).
Emergence denotes the phenomenon where local interactions lead to new global properties
or structures which only arise from the interactions between its parts and would not appear
with only few or a single individual. In the words of Aristotle: “The whole is more than the
sum of its parts!”. For OBESS, many nature-inspired algorithms have been investigated and
proposed since they are very suitable for such distributed, decentralized systems. Also, due
to the local communication between the devices, concepts from swarm intelligence can be
transferred to mobile evacuation devices.

2.3 Evacuation Management
When it comes to evacuation management, there are generally two distinct topics which
are addressed by researchers. One research subject is evacuation modeling, which has the
objective to describe an evacuation process. The other research area concerns the optimization
of an evacuation process by systematic intervention. In the following, these two aspects of
evacuation research are described in detail.

2.3.1 Modeling
Figure 2.5 displays an overview of the research in evacuation modeling. According to Hamacher
and Tjandra [82] and Schadschneider et al. [210], evacuation models can be distinguished
into microscopic and macroscopic models. The objective of microscopic models is to describe
an evacuation process as realistically as possible. Hence, the focus lies on modeling the
heterogeneous character of individuals and their interactions. Microscopic models often form
the basis for evacuation simulations. Their main purpose is the assessment of evacuation
processes in order to either identify potential weak points or to evaluate improvement measures.
Macroscopic models, on the other hand, provide the basis for optimization of route choices
for evacuees. These models capture the evacuation situation from a global perspective and
describe aggregated evacuation flows rather than interactions between individual evacuees or
their characteristics.

Microscopic Models

Recorded data or systematic studies about the behavior of people in emergency situations
are rare (cf. Brown [26], Yang et al. [252]). Therefore, microscopic evacuation modeling is
not straightforward and receives much attention from the research community. Microscopic
models describe the behavior of a number of, possibly different, evacuees and their interactions
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Figure 2.5: Overview of current research in the area of evacuation modeling.

during an emergency situation. In such models, each evacuee is treated as a single agent with
special characteristics, e.g., speed, risk aversion, size, et cetera. Microscopic models often
serve as a basis for investigating the behavior of people with different characteristics during
evacuation in a certain environment.

There are various microscopic models, which can be characterized into discrete and continu-
ous models. Examples of discrete models are models which are based on cellular automaton
theory (cf. Burstedde et al. [32], Gipps and Marksjö [76], Minoru Fukui [160], Schadschneider
[209]) or lattice-gas models (cf. Guo and Huang [79], Song et al. [221]). The evacuation
environment is divided into a grid or hexagonal patches and time is modeled in discrete steps,
in which the evacuees move from one patch to another according to the rules defined by the
model. Continuous models comprise models, such as the social force model (cf. Helbing and
Molnar [89], Helbing et al. [90]), in which the movements are determined by forces that act
on the evacuees, or dynamic fluid models or gas-kinetic models (cf. Helbing [88], Henderson
[91, 92]), where movements follow the physical principle which describes the dispersion of
fluids or gas. Additionally, there are so-called agent models (cf. Epstein et al. [59], Xiong et al.
[251]), which allow for a distinct modeling of evacuees, such that two different evacuees can
behave differently in the same situation (cf. Dawei et al. [50], Lo et al. [141]). Moreover, there
are models of evacuee behavior based on game theory (cf. Dawei et al. [50], Lo et al. [141])
or models inspired by nature, such as the model based on particle swarm optimization from
Izquierdo et al. [109]. For an overview refer to Schadschneider et al. [210] and Zheng et al.
[256]. Microscopic models usually form the basis for the simulation of an emergency situation,
which can then be used to evaluate the evacuation process and improvement strategies. Many
evacuation simulations have been developed over time. For an overview it is referred to the
website of the evacuation modelling community [164].
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Macroscopic Models

A macroscopic evacuation model is a graph representation G = (N,E) of the evacuation
environment (cf. Chalmet et al. [36]). The nodes n ∈ N represent regions of the modeled
environment in which people can be located (e.g., rooms, squares in a city, et cetera) and
have certain capacities in terms of available space. An edge e ∈ E between two nodes in the
graph represents a path between the two regions described by these nodes. The edges are
weighted with traveling costs, such as the distance between the connected nodes or similar
properties which are decisive for route choices. The main purpose of macroscopic models is to
find optimal paths for evacuees towards the building’s exits. An example of a building layout
and its corresponding macroscopic evacuation graph model is shown in Figure 2.6.
Some optimization approaches use a time-expansion of such a macroscopic graph as a

basis. A time-expansion of a graph introduces multiple copies of each original node from the
evacuation graph model. Each expanded node represents the state of the original node at a
specific time step. Edges in the time-expanded graph connect nodes which can be reached in
one time step, which implies that the travel time for each edge in the time-expanded graph
has the value 1. Capacities are adopted from the original graph. Figure 2.7 displays the
time-expansion for the macroscopic evacuation graph model shown in Figure 2.6. For better
readability, node capacities, initial allocations, and the travel time for edges are removed from
the graph.

(a) Building layout (b) Evacuation graph

Figure 2.6: Example of a building layout (a), a corresponding macroscopic evacuation graph
model (b).

2.3.2 Optimization
Evacuation optimization refers to approaches which are meant to improve the evacuation
process. Usually, evacuation optimization has the objective to accelerate evacuation, but there
are other objectives which can be considered, for example reducing the number of injuries. In
general, optimization can happen in two ways, either indirectly by influencing the evacuation
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(a) Evacuation graph (b) Time-expanded graph

Figure 2.7: Time-expansion of a macroscopic evacuation graph model.

environment or directly by improving the route choice of evacuees. Figure 2.8 displays an
overview of the research in evacuation optimization presented hereafter.

Figure 2.8: Overview of current research in the area of evacuation optimization.

The optimization of environmental factors ranges from finding an optimal room structure
(cf. Kellenberger and Müller [120], Swenne and Bäck [225]) to defining the optimal number
of doors, the optimal placement of doors, or their optimal width (cf. Alizadeh [5], Muhdi
et al. [167], Varas et al. [234]). Furthermore, the deliberate placement of barriers, such as
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pillars, is subject to investigation in order to improve the evacuation flow (cf. Frank and
Dorso [69], Johansson and Helbing [113]). Indirect optimization is generally evaluated via
evacuation simulations based on microscopic models.

Apart from environmental factors, the optimization of route choices is a well-studied topic.
Route optimization is usually performed on the basis of a macroscopic graph representation
of the environment. Such a graph model can be used to perform either flow optimization or
path planning. Flow optimization calculates optimal evacuation routes for sets of evacuees
located at the same node in the graph. Such sets of evacuees are denoted as flows and the
corresponding optimization problem reflects a network flow optimization problem. If the
optimization objective is to maximize the number of evacuated individuals in a certain time
period, the corresponding network flow problem is called Maximum Dynamic Flow (MDF)
problem (cf. Ford and Fulkerson [68]). Maximizing the number of evacuated individuals in
each time step is denoted as Universal Maximum Flow (UMF) problem (cf. Gale [71], Jarvis
and Ratliff [111]). An optimal solution for a UMF problem corresponds to an optimal solution
for an MDF problem, not only for the time period considered, but also for any smaller time
horizon (cf. Jarvis and Ratliff [111]). Minimizing the time needed for a certain number of
evacuees to reach the exit is referred to as the Quickest Flow (QF) problem (cf. Burkard
et al. [31]). Since capacities of edges in the evacuation graph change during the evacuation
process, these constraints are not properly reflected by a static network model as depicted
in Figure 2.6. Therefore, flow optimization is generally based on a time-expansion of the
evacuation graph model (cf. Section 2.3.1). It should be noted, though, that time-expanded
graphs have several drawbacks. The most obvious one is that they can get very large with
increasing number of time steps. Even more problematic is that the total time of evacuation
has to be estimated beforehand in order to know how many expansions are needed. In the
work of Lu et al. [143], a heuristic approach to solve the QF problem is presented, which does
not require a time-expansion of the evacuation graph model. Instead, capacity reservations
are modeled as a time series for each node in the graph. A routing protocol is adapted to
schedule evacuees on paths towards the exit. The scheduling is performed sequentially starting
with evacuees closest to the building’s exit. The occupied capacities are stored in the time
series and considered when the next flow is scheduled until all evacuees left the building. The
sequential scheduling reduces the necessary computations while still providing evacuation
planning of similar quality as the solutions based on time-expanded graphs (cf. Sangho et al.
[204]).
In contrast to flow optimization, path planning searches for an optimal route choice for a

single evacuee instead of optimizing the flow in a network. Since only one evacuee is regarded in
path planning, capacities can be neglected in the evacuation graph model and the optimization
can be performed on a graph without time-expansion. Similar to flow optimization, path
planning can have various objectives. If travel distance on the route is to be minimized, the
problem is called a shortest path problem. If the optimization objective is to minimize travel
time, the problem is called the quickest path problem. Path planning can be generalized into
a minimum cost path problem, where costs represent any desired optimization objective. In
case multiple objectives are considered at the same time, edge costs can be a weighted sum of
multiple cost-components each representing one objective.

When global information about the costs of all edges in the graph is available, path planning
can be solved deterministically using the algorithm described by Dijkstra [53] or the A*
algorithm of Hart et al. [84]. Dijkstra algorithm computes the lowest cost path between all
nodes in a graph and a target node, whereas the A* algorithm concentrates the search on
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finding the best path starting at a specific node in the graph, which reduces the computational
costs. The problem can also be solved by heuristic approaches. One of the most prominent
heuristic method is the Ant Colony Optimization (ACO) from Dorigo et al. [57], a nature-
inspired method based on the behavior of ants. Another heuristic approach to solve this
problem is to use an EA, which are derived from the concept of natural evolution (cf. Weicker
[246] for details). For path planning in an evacuation scenario, two approaches to find the
lowest cost path according to multiple objectives are introduced and examined by Cheng [39]
and Zong et al. [258]. The edge costs contain risk and travel time and ACO is used to find the
optimal path through the building. A similar scenario is subject to investigation in Garrett
et al. [72] and Saadatseresht et al. [202], where an EA is applied to solve the path finding
problem for multiple evacuation objectives. It should be noted that the quickest path problem
is also known and addressed in the evacuation modeling domain. Here, it is solved to model
pedestrians which take quicker paths in order to avoid crowded areas which results in a more
realistic walking behavior (cf. for example Kretz [126]).
In case of variable edge costs over time, a naive approach would be to compute the

new shortest path from scratch whenever costs have changed. The D* algorithm by Jarvis
and Ratliff [111] avoids recomputation from scratch and reuses information from previous
computations, which reduces the necessary computations significantly compared to total
replanning from the beginning. The D* algorithm is an incremental and heuristic search
approach that performs local consistency checks before edge costs are newly computed. The
process starts at the edge with detected change in costs and continues from there until there
are only unaffected nodes left or the starting node of the search is reached. This limits
necessary computations to nodes which are affected by the changed edge costs. This algorithm
was further developed to result in D* Lite by König and Likhachev [125]. D* Lite is a less
complex version of the D* algorithm in terms of its structure. In addition, the number of
computations which are required to find the new best path are shown to be equal or less
compared to the D* algorithm.

There are scenarios where path planning is performed in a distributed system. In such cases,
each system component has only a limited view on the graph, for example local information
about some edge costs. The complete optimal path is then built incrementally on a next-hop
basis by assembling locally optimal subparts. An application of distributed path planning
based on local information to avoid traffic jams is presented by Prothmann et al. [186].
Here, traffic lights are equipped with means to observe the traffic flow at intersections. This
information is exchanged with other nearby traffic lights and, similar to the distance vector
or the link state routing protocol (cf. Tanenbaum [228]), the accumulated information is
used to send waiting cars to the allegedly next best intersection with respect to the cars’
destinations. A similar approach is presented by Filippoupolitis et al. [66] for evacuation
navigation. Here, sensors observe danger indicators, such as smoke or heat, forward this
message to stationary decision nodes, which exchange and collect information and decide
based on these local observations to which neighboring decision node passing evacuees are
sent. These methods rely on a fixed infrastructure which constantly observes a locally limited,
but fixed part of the building. From these observations, information about arising congestions
or risk values can be derived easily.

When mobile devices have to be used for observation, however, the observable area changes
over time and the estimation of waiting times, as well as the prediction of emerging congestions,
is not straightforward anymore. In the work of Wagoum et al. [237], a method is presented,
which is similar to distributed path planning with mobile observers. It introduces a microscopic
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evacuation model that integrates local path planning with the aim of modeling a more realistic
pedestrian walking behavior. A pedestrian which is slowed down by congestion on its current
path is modeled to observe other pedestrians which are located in the same room and aim for a
different exit. The pedestrian changes his route in case the evacuees which he observes progress
faster and he starts following them. The presented method to model pedestrian behavior
during an evacuation has similarities to route choice optimization approaches. However, this
work belongs to the domain of evacuation modeling, since the goal is to achieve a more realistic
walking behavior of evacuees, not to find the optimal paths. Hence, the chosen escape routes
in this model can differ strongly from paths which result from route choice optimization
approaches. The problem of distributed path planning on the basis of information collected
by mobile observers is, among others, object of this thesis.

2.3.3 Evacuation Systems Using Mobile Devices
There are several projects investigating the usage of mobile devices in outdoor evacuation
scenarios. For example, the project “REPKA: Regional Evacuation: Planning, Control, and
Adaptation” of the German Federal Ministry for Education and Research (BMBF)4 [2]. In
REPKA, mobile devices are used to build a network and guide users to safe areas. Similar
projects about the coordination of rescue forces or evacuees with the help of mobile devices
are described in publications from Jang et al. [110], Lien et al. [138], Schau et al. [211], and
Rodriguez et al. [199]. However, little has been done, so far, to investigate the potential
of mobile devices for supporting building evacuation. An obvious reason for this is the
challenge to localize devices indoors without being able to rely on GPS, which is the preferred
localization technique for outdoor deployment of mobile devices in emergency management.
Nevertheless, first ideas about the application of mobile devices to support people during

an emergency situation in a building are presented by Szwedko et al. [227] and Filippoupolitis
et al. [66]. In the work from Szwedko et al. [227], reducing waiting times that occur due to
overcrowding is addressed. The authors propose an evacuation system, where users carry
mobile devices and scan QR-Codes or RFID chips in order to send their current location
to a central server. This server runs a so-called Scavy algorithm, which computes the next
destination for the mobile device’s user, thereby, trying to achieve a load balancing in the
building. Although this system is shown to prevent overcrowding at specific destinations in
the building, it has several drawbacks. Firstly, it takes time to read a QR-Code or scan an
RFID chip, which is hindering to people leaving the building as quickly as possible in case
of an emergency. Additionally, it requires physical proximity between the user’s device and
the QR-Code or scanner, which is hardly possible for several users at the same time and,
additionally, bares the risk of overlooking the respective terminals or codes. In addition, the
algorithm used for load balancing is executed on a central computing system which collects all
information in order to get a global view. This server poses a potential single point of failure
which can be disastrous in case it breaks down during an emergency.

In terms of its structure, the evacuation system proposed by Filippoupolitis et al. [66] is
similar to OBESS presented in this thesis. It consists of an SSN and a dynamic network
of mobile devices which are carried by people and guide their users to nearby exits. The
static sensors collect information about risk values in the environment, such as smoke or heat.
The sensors are connected to each other and exchange the measured risk values with their
communication neighbors. When evacuees pass by such a sensor, they are sent to the next

4Bundesministerium für Bildung und Forschung
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sensor which is closest to the building’s exit and reports the lowest risk value. In contrast
to OBESS, the system lacks the possibility to incorporate user input such as preferences for
path planning. Secondly, there is no localization method provided that supports navigation.
Thirdly, the evacuation planning does not take into account the current distribution of
evacuees in the building or potential congestions resulting from this distribution. Using
GPS-less localization in MANETs for building evacuation, is suggested in Inoue et al. [106].
The research presented, however, remains on a conceptual level. In contrast to OBESS, the
proposed system architecture is not designed for controlled self-organization and it does not
account for user preferences or input. Furthermore, incorporating information about other
evacuees’ positions in the evacuation planning is not considered in this research.

2.4 Localization
The art of localization and navigation is an inevitable prerequisite for seafaring and, thus,
dates back a long time. Since the ancient days when people have used the positions of stars
in the sky for localization and navigation purposes, a lot of research has been conducted
in this field and many different navigation systems have been proposed since (cf. Fallah
et al. [63], Hightower and Borriello [94]). Localization denotes the process of determining the
location of a certain subject. When talking about a location, physical and symbolic locations
as well as absolute and relative locations can be distinguished (cf. Hightower and Borriello
[94]). While a physical location is described by precise coordinates, e.g., longitude and latitude,
a symbolic location is more an abstract place, such as “in Germany”, “at the University”,
“next to a street lamp”, or the like. Kröller et al. [127], for example, propose to determine
symbolic locations in an SSN using cluster algorithms. A localization system can be used to
provide both kinds of information, nevertheless, it is usually built to determine a physical
location, which can then be mapped into a symbolic location using additional knowledge,
for example a map of the environment. It holds for any type of location that the notion of
location always needs a frame of reference to be meaningful. In other words, “all positions are
relative. [...] assigning a set of coordinates to an object is meaningless without knowledge
of the coordinate system with which those coordinates are associated” Savarese et al. [205].
These considerations lead to the difference between absolute and relative locations. While
absolute locations share a common reference grid, relative locations do not. The relative
location of an object makes a statement about the object’s location with respect to a certain
reference point. Knowing the relative location of an object with respect to a reference point,
however, does not provide any information about the same object’s relative location with
respect to a different reference point. While any absolute location can be transferred to a
relative one, as soon as the absolute location of the reference point is given, it does not work
the other way around. Figure 2.9 illustrates the difference between absolute and relative
locations. On the left-hand side, the absolute locations of five different devices are depicted,
on the right hand side, a sample result of relative localization is shown. While the devices still
have the same distance and orientation with respect to each other, the computed locations
are different from their actual positions, namely mirror-inverted and rotated compared to the
absolute locations. Prominent examples of common reference grids are geographic coordinate
systems, which humans have globally agreed upon in order to exchange location information.
Location information which refers to such a common reference grid is, for example described
in terms of longitude and latitude. Because of the common understanding about the reference
frame, everybody can point to exactly the same place on earth, when given such a coordinate.
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For a localization system to be as flexible as possible, absolute physical locations are the
desired output. These can be mapped to symbolic or relative locations if needed.

Figure 2.9: Comparison of exemplary results after applying absolute and relative localization
methods in ad hoc networks. By using relative localization, the relationships
between the devices stay intact, but the locations can be mirror-inverted or rotated
when compared to the absolute locations.

The ability to determine the locations of devices plays an important role in SSNs. Examples are
the localization of event reporting in a monitoring SSN (cf. Szewczyk et al. [226], Werner-Allen
et al. [248]), location dependent routing (cf. Liao et al. [136], Maihofer [145]) or the assistance
of group querying (cf. Gehrke and Madden [73]) in order to save energy, security enhancements
to prevent wormhole attacks (cf. Hu et al. [98], Karlof and Wagner [117]), and many more.
Therefore, many localization methods for SSNs are proposed in the literature. SSNs differ from
MANETs in the fact that the devices are stationary. However, most algorithms developed for
SSNs are transferable to MANETs by constantly repeating the localization process in order
to account for the devices’ new locations. The simple application of algorithms which are
developed for SSNs to MANETs is a viable approach. Neglecting the mobility aspect of the
network, though, can have a major negative impact on localization results as demonstrated
by a study presented in this thesis (cf. Section 5.1). Despite this drawback, this aspect has
received surprisingly little attention by the research community up to this point.

2.4.1 Algorithms
Localization algorithms can be classified according to the scheme shown in Figure 2.10. On
the highest level, methods can be divided into centralized and decentralized approaches,
depending on whether the location calculations are carried out on a central computing unit or
in a decentralized way directly on the devices to be located. It should be noted, though, that
decentralized algorithms can also be executed in a centralized way by sending all necessary
information from the devices which are object of localization to a central server where all
locations are computed. In this case, the disadvantages of centralized algorithms apply as
well. Centralized algorithms, on the other hand, cannot be executed in a decentralized way
because they require input data from numerous devices in order to compute their locations.

Centralized Algorithms

Two well-studied centralized algorithmic concepts for localization are Semi-definite Program-
ming (SDP) presented by Doherty et al. [55] and Multidimensional Scaling Map (MDS-Map)
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Figure 2.10: Classification of localization algorithms.

from Shang et al. [215]. In SDP, geometric constraints, such as distances or angles between
devices, are estimated by the devices in the network and sent to a central server. On the
central server, the constraints are collected and represented as linear matrix inequalities,
which are then solved in order to find locations for the devices in a way that the constraints
are fulfilled. In MDS-Map, a technique from mathematical psychology is used (cf. Bachrach
and Taylor [12]). The algorithm constructs relative positions based on distance estimates
and applies concepts of linear algebra to calculate the coordinates. The main advantage of
centralized algorithms is that information from all devices in the network can be used to
compute locations which often results in a higher precision compared to approaches which use
only local information. On the other hand, a major drawback is that they primarily stress
devices close to the central station during information collection because these devices have
to forward information from all other devices in the network (cf. Bachrach and Taylor [12]).
Moreover, when central computation is used, the computation is usually a time consuming
process because a lot of information has to be forwarded through the network, processed on
the central server, and possibly be sent back to the devices in case they require the location
information. This can pose problems, especially if the devices to be located are mobile,
since the devices may have already changed their locations by the time the computation is
completed. Apart from that, there is a lot of communication involved in the process since all
devices have to exchange information with the central computing unit. These factors make
centralized algorithms hardly scalable and unsuitable for dynamic networks.
Scene analysis, also called odometry, is a localization approach which requires the device

which is object of localization to be able to perform odometry readings. Odometry readings
are, for example, observations of the environment which can be used to draw conclusions about
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the current location. Such information can be obtained via sensors attached to the device,
such as infrared sensors to measure the distance to nearby walls or barriers, photosensors,
which measure the incidence of light, or even cameras, which record visual data from the
device’s surroundings. A set of odometry readings at a specific location is called fingerprint.
This fingerprint is subsequently matched with entries in a database. This database consists of
locations and corresponding fingerprint entries, which are measured preliminary for different
locations in the application area of the system. A high storage capacity is required for the
database and sufficient computing power has to be available to perform the pattern matching
process, especially when cameras are used for the odometry readings (cf. Hightower and
Borriello [94]). Hence, the database is usually located on a central server and queried via
wireless communication. In theory, it is conceivable to have a copy of the database locally
stored on the device which is object of localization. If this is possible, the approach belongs to
decentralized localization methods. However, this is usually not feasible due to the restrictions
of the devices to be located. Scene analysis requires a high configuration effort when collecting
the database entries. Furthermore, the sensor data has to be different for any of the considered
locations in order to distinguish them. This usually requires more than one type of sensor
reading. For these reasons, this localization approach is rarely applied to SSNs in which the
devices usually have only one sensor at their disposal and are limited in computing power,
memory space, and power supply. Examples of localization using a scene analysis approach
are described in Rajamäki et al. [188], Retscher [191], and Bahl and Padmanabhan [13].

Decentralized Algorithms

There are two types of decentralized localization algorithms depending on whether or not they
rely on the existence of beacons. Beacon-based algorithms are required, whenever resulting
coordinates have to relate to a common reference frame, i.e., when absolute locations are
desired. In contrast, beacon-free or non-beacon-based algorithms can only perform relative
localization, which can result in locations being rotated or mirror-inverted with respect to the
actual coordinate system.

Beacon-free Algorithms There are two different approaches for beacon-free localization
algorithms which compute physical, relative coordinates. The first concept is called relaxation-
based localization which uses a coarse algorithm to roughly determine the devices’ locations
and then iteratively adjusts each device’s position in order to minimize some local error
metric (cf. Bachrach and Taylor [12]). An example of such an algorithm is the spring model
presented by Priyantha et al. [184]. The second procedure is called coordinate system stitching.
For this bottom-up approach, the network is divided into small overlapping subregions. In
each subregion, a local map is created and then adjacent sub-regions merge their local maps
iteratively until a single global map is formed. Examples of such algorithms can be found in
Ji and Zha [112] and Meertens and Fitzpatrick [149]. Relative localization has the advantage
that there is no need for specially equipped devices, i.e., beacons. In OBESS, however, the
resulting coordinates should not be rotated or mirrored with respect to the building map.
Still, such algorithms can be applied for refinement of coordinates produced by an absolute
localization process.

Beacon-based Algorithms Beacons are devices which are equipped with similar or equal
hardware as the devices to be located but possess knowledge of their exact positions a priori
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and can, therefore, support the computation of coordinates for all other devices in the network.
A beacon can have a priori knowledge of its own location either due to manual configuration,
because it possesses a working GPS-receiver, or because it has already computed its own
location. In the latter case, the device is usually not denoted as a beacon, but can be used
as such in any beacon-based algorithm. For precise calculation of two-dimensional absolute
coordinates, the appropriate localization algorithm and at least three beacons are needed,
which are placed in a non-colinear way. For three dimensions, four beacons are needed
respectively. In a fully connected network and in the absence of any distance measurement
errors, these three or four reference points yield a perfect solution and no improvement
is observed from having additional reference points (cf. Savarese et al. [205]). However,
localization hardware produces noisy measurements due to occlusion, collisions, and multipath
effects (cf. Bachrach and Taylor [12]) and as a result, beacon-based localization normally
uses several beacons to improve localization results. It is usually aimed at minimizing the
number of beacons in a system because these devices can be expensive either due to their
additional equipment with GPS-receivers, or in terms of preparation effort, when they have
to be configured with their exact location information. With beacons available, there are
three categories of localization algorithms which can be applied: proximity, angulation, and
distance-based localization. These methods differ in the required hardware, number of beacons,
accuracy of the derived results, and input parameters used for localization.
One group of localization approaches are algorithms which require knowledge about the

proximity of beacons to the device which is to be located. Proximity knowledge means that a
device is able to sort nearby beacons according to their distance from itself. In contrast to
distance-based localization methods, the exact value of the distance, however, is not required.
A method which is often used to decide about the proximity of beacons is to compare the
quality of the communication signal received from different beacons (cf. Bulusu et al. [29]).
The most straightforward proximity based localization approach is the so-called cellular

proximity method, which requires a vast number of beacons to achieve high accuracy results.
In this method, beacons send a signal and their location information to nearby devices. The
device receives these messages and determines its own location to be at the same location like
the beacon which is closest to the device. The accuracy of the location system increases with
the number of beacons in the system. A cellular proximity based localization system is, for
example, proposed by Want et al. [244].
The diffusion method, sometimes also referred to as centroid localization, requires fewer

beacons, but still comparatively more than angulation or distance-based localization techniques.
With this method, a device derives its location at the center of the locations of a fixed number
of beacons, which are closest to the device. In Figure 2.11, the localization of a device (grey
dot) using diffusion and four beacons (black dots) is demonstrated. The center of the four
beacons lies at the intersection of the dashed lines which is where the diffusion algorithm
estimates the device’s position. Exemplary implementations for the diffusion approach can be
found in Almuzaini and Gulliver [7] and Kaseva et al. [118]. Meertens and Fitzpatrick [149]
refine this concept further by determining a device’s location not only in the center of their
nearest beacons, but in the center of all neighboring devices after they have determined their
locations. The appealing advantage of this algorithm is its simplicity since there is no estimate
for the distance or angle information needed. Nevertheless, it is not always guaranteed that
there are enough beacons to achieve the desired accuracy in localization.
A more sophisticated proximity-based approach called Approximated Point-in-Triangle Test
(APIT) is proposed by He et al. [86]. In APIT, each device divides its environment into
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Figure 2.11: Location derived using the diffusion approach. The black dots represent beacons
while the gray dot marks the location determined via diffusion at the center of
the beacons.

different triangles, which are determined by all possible combinations of three nearby beacon
locations. Subsequently, the device uses a point-in-triangle test to determine whether it is
located outside or inside of each defined triangle. The latter triangles are then aggregated
and the device’s location is computed as the center of gravity of the combined triangles. The
basic idea of the point-in-triangle test is the following consideration. If there is a location
next to the current location of a device which is further or closer to all beacons which define
the triangle, the location of the device lies outside this triangle, otherwise it is inside. Since
the devices are not assumed to be able to move in any direction in order to check whether this
changes their proximity to the beacons, the authors propose to check whether the locations
of the device’s communication neighbors fulfill this condition. Figure 2.12 illustrates the
localization process using APIT.

Figure 2.12: Example of localization using the APIT method. The black dots symbolize
beacons and the gray dot represents the determined location. The triangles
defined by the beacons’ locations are indicated by dashed lines. In this example,
the location lies inside all possible triangles, indicated by gray shaded areas, and
is therefore determined to be at the center of gravity of the tetragon resulting
from aggregation of all triangles.

Angulation, as the name suggests, uses knowledge about the angles between the device to be
located and the beacons. Examples of angulation can be found in Nasipuri and Li [173] and
Zhang et al. [255]. To compute the angle between a device and a reference beacon, directed
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antennas or microphones are used which can distinguish the direction of an incoming signal.
In addition, it is possible to derive the Angle of Arrival (AoA) from optical communication
(cf. Bachrach and Taylor [12]). The angles are estimated using the time difference between
the signals’ arrivals at individual microphones, or other receivers. The accuracy lies within
a few degrees (cf. Priyantha et al. [183]). Since this method needs complex installation
and bulky hardware, the procedure is not commonly applied to SSNs. Also, the need for
spatial separation between speakers is difficult with decreasing sensor size (cf. Bachrach and
Taylor [12]). In the work of Coore [44], an algorithm to compute relative angles between
network devices and a beacon without the use of hardware is proposed. The computed angles
are relative, i.e., they start at an arbitrary device with an angle value of zero and estimate
consistent angles from this point on. Niculescu and Nath [178] suggest using AoA information
in combination with distance information to enhance localization results. From at least two
known angles, the unknown location of a device can be computed. Figure 2.13 displays how
angles between four beacons (black dots) and the device to be located (gray dot) are used to
determine the unknown location of that fifth device.

Figure 2.13: Example of localization using angulation. The black dots symbolize beacons,
while the gray dot represents the unknown location. For each beacon the angle
between the x-axis and the unknown location is determined. The unknown
location is then assumed to be at the intersection of the lines radiating from each
beacon at the predetermined angle.

While angulation is based on estimated angles, distance-based localization methods require
an estimate for the distances between beacons and devices in the network. There are two
algorithms which use distance estimates to derive location information: the bounding box
approach and lateration. The bounding box method is, for example, published by Savvides
et al. [206] and Bachrach and Taylor [12]. It assumes the position of a device to be in the
center of the overlap of square boxes which are drawn around the beacons. The inradii of
the square boxes correspond to the distance estimates between the device and the respective
beacons. Figure 2.14 illustrates how the location is determined with the bounding box method
as described. Although the bounding box procedure has the advantage to be computationally
relatively simple, the derived locations can be calculated more precisely using lateration,
which requires the same kind of information as the bounding box procedure and is, therefore,
used more often.
Lateration is the most well-known localization technique (cf. Nagpal et al. [171] and Bachrach
and Taylor [12]). Although it is often referred to as triangulation, the notion of triangulation
actually includes angulation and lateration (cf. Bachrach and Taylor [12]). In contrast to
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Figure 2.14: With the bounding box method, the position estimate (gray dot) is at the center
of the bounding boxes with inradii equal to the respective distance estimates
between the device and the beacons (black dots).

angulation, lateration is based on determining distances to beacons instead of angles. Using
lateration, the position of a device is assumed to be in the overlap of circles around beacons
with radii equal to the estimated distances between the device and the respective beacons (cf.
Figure 2.15).

Figure 2.15: With lateration, the unknown position (gray dot) lies within the overlap of
circles around the beacons (black dots) with radii equal to the respective distance
estimates.

In the work of Nagpal et al. [171], an iterative version of the lateration algorithm is proposed.
The method iteratively improves an initial location estimate, for example random coordinates,
by stepwise minimizing the error between the estimated distances to all beacons and the
distances of the coordinates in the current iteration.

In addition to the previously presented methods for localization, several hybrid approaches
have been suggested over time, for example in Chintalapudi et al. [40], Sun et al. [223], and
Eren [60]. They usually combine some of the localization methods mentioned previously in
order to benefit from their various advantages and to compensate for their drawbacks.

2.4.2 Distance Estimation
As mentioned in the preceding section, the determination of distances between devices and
beacons is a crucial element of distance-based localization algorithms. However, since the
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devices to be located usually have no means to explicitly measure distances, numerous methods
for distance estimation have been proposed over time to overcome this problem. Figure 2.16
gives an overview of these techniques, which can generally be categorized into range-based
and range-free methods. Range-based methods rely on the analysis of physically transmitted
signals. In contrast, range-free methods abstract from the signal and derive information about
the distances of devices from the content of messages which devices exchange in a network.
The following two sections describe these two kinds of distance estimation methods in detail.

Figure 2.16: Classification of distance estimation techniques.

Range-based Distance Estimation

The most common approach to distance estimation is to analyze the strength of a transmitted
radio frequency signal. This method is commonly referred to as Radio Signal Strength
Indication (RSSI) (cf. Kai and Chun [114], Patwari and Hero [180]). The signal strength
p (d) decreases with increasing distance d. Hence, the strength of a communication signal on
receipt provides information about the distance between sender and receiver. Equation 2.1
shows the underlying theoretical model:

p (d) = p (d0)− 10 α log
(
d

d0

)
+X (2.1)

d0 denotes a reference distance, α represents the path-loss exponent, X ∼ N (µ, σ) denotes a
normally distributed random variable with mean (µ) zero and variance σ, which describes the
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shadowing effect. Although widely studied in the literature, there are some drawbacks to this
approach. RSSI ranging measurements contain noise in the order of several meters (cf. Bahl
and Padmanabhan [13]) and radio propagation tends to be highly affected by barriers such as
walls or furniture since they tend to reflect or absorb signals (cf. Bachrach and Taylor [12]).

Another prominent method for distance estimation is called Time of Arrival (ToA), also
often referred to as Time of Flight (ToF) (cf. Girod and Estrin [77], Meghani et al. [150]). In
ToA, the time for a physical signal to be transmitted from one device to another is measured.
ToA can be performed in a one-way or two-way version. In the two-way version, a transceiver
sends a signal to the receiver which, in turn, sends an answer. The sender measures the
time t between sending and receiving the signal and, together with the velocity v of the
signal and the expected delay treply which occurs between receiving a signal and answering,
the distance estimate d̄ between the two devices can be computed using Equation 2.2. For
the one-way version, the system clocks of the transmitting and receiving device have to be
synchronized. This is usually done using radio and ultrasonic signals. The radio signal has
almost zero propagation speed indoors when compared to the ultrasonic signal and is used
for synchronization purpose (cf. Meghani et al. [150]). Every device is equipped with a
speaker and a microphone. The transmitter (beacon) first sends a radio message, waits for
a fixed time period, and then sends a chirp sequence over its speaker. The receiver gets
the radio signal, turns on its microphone and hears the chirp sequence. It notes the time
t of the transmission of the ultrasonic signal and uses this information together with the
transmission speed v of the audio signal to calculate its physical distance from the transmitter
using Equation 2.3. While ToA is impressively accurate for some scenarios, it has the major
drawback to require line-of-sight conditions and extensive hardware. In addition, the speed
of sound in the air varies with air temperature and humidity (cf. Bachrach and Taylor [12]).
Furthermore, relatively fast processing capabilities are required in order to be able to resolve
small time differences. Kwon et al. [131] show that the precision can be improved by checking
for reflexivity and the triangle inequality.

d̄T oA = v ·
(1

2 t− treply

)
(2.2)

d̄T oA = v · t (2.3)

A similar distance estimation technique is called Time Difference of Arrival (TDoA) (cf.
Gustafsson and Gunnarsson [80], Mao et al. [146], Meghani et al. [150]). The device to be
located sends signals to the beacons in the network and these beacons each measure the ToA
of their signal. From each set of differences between ToAs and the known distance between
the respective beacons, unique hyperbolic curves around the respective beacons are defined.
The intersections of these curves determine the unknown location of the device (cf. Bucher
and Misra [27]).
All range-based distance estimation methods have in common that they require special

hardware in order to be able to analyze physical signals. Since such hardware can be large
and expensive, range-based distance estimation is unsuitable for some applications. However,
range-free distance estimation methods are able to overcome this drawback.

Range-free Distance Estimation

Estimating distances in a network without having to rely on the interpretation of the physical
signal is called range-free distance estimation. Instead, range-free distance estimation is based
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on messages which are exchanged between the devices in a network. There are two types of
range-free distance estimation algorithms, hop count based and connectivity-based distance
estimation algorithms.
The hop count based algorithm is the more established approach of the two. A hop count

denotes the minimum number of relay devices a device needs to be able to communicate with
a beacon. The Gradient Algorithm (GA), proposed by Nagpal et al. [171], is an algorithm
for networks used to determine each device’s hop count with respect to a beacon. It is the
basis for all distance estimation algorithms based on hop counts. With GA, each beacon
initiates a so-called gradient wave by sending a message including an integer value of 0 to its
neighbors. Each neighboring device takes the minimum value it receives, increments it by 1,
and propagates it to its neighbors. This process is repeated in fixed intervals, such that the
value can be updated regularly, especially, in dynamic networks. Figure 2.17 illustrates the
concept of hop counts. Devices which are able to communicate with each other are connected
by straight lines. The beacon, displayed as a black dot on the left side, initiates the process by
communicating a value of zero to its neighbors. All devices in the network take the minimum
value they receive and add one to compute their own hop count, which is represented by
the number inside the respective dots. Figure 2.18 shows an example of the result achieved
by the GA when applied to an ad hoc network. All devices with the same hop count value
are colorized in the same shade of Grey. All devices with the same hop counts are located
in symmetrical rings around the beacon and each ring has approximately the width of the
communication range r (cf. Nagpal et al. [171]). Therefore, the most basic idea for hop count
based distance estimation is to use r as an approximation for the length of each hop and r
times the hop count as an estimate for the distance between a device and beacons. However,
this estimate is only valid for perfectly dense networks, which rarely occur in reality.

Figure 2.17: Hop count determination with GA initiated by the beacon (black dot) which
sends a value of zero to its neighbors (connected by dotted lines), which compute
their hop count as minimum value received plus one (numbers inside the dots).

Figure 2.18 displays the perfect gradient rings, i.e., the rings centered at the beacon with
radii of multiples of r, drawn as black circular rings. It is easy to see that the gradient rings
which result from GA differ from these perfect gradient rings. Kleinrock and Silvester [122]
show that the expected length of a hop in uniformly random distributed networks is given
as a function of the local neighborhood density, i.e., the number of communication partners.
A similar, but somewhat simpler principle is used by Wong et al. [249] for networks with
varying density. Here, density dependent reduction rates are chosen manually depending
on the local density and applied to the naive estimate r before multiplying it with the hop
count. A different method to estimate the length of a hop is provided by an approach called
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Figure 2.18: A network situation after application of GA. Devices with the same hop counts
are displayed in the same shade of Grey. Black rings are centered at the beacon
and have radii of multiples of r, with r being the communication range of the
devices.

DV-HOP (cf. Huang and Selvakennedy [102], Niculescu and Nath [177]). DV-Hop uses the
fact that Euclidean distances between beacons are known because their location information
is available. By comparison of the Euclidean distances with the respective hop counts between
beacons, the average length of a hop is calculated as a fraction of Euclidean distance and
hop count. Apart from improving the hop length estimate, various methods are developed to
determine the position of a device within its own gradient ring. For example, in the work
of Nagpal et al. [171], an average of all hop counts in a device’s neighborhood is calculated
before multiplying it by the hop length estimate, following the principle that devices which are
closer to the inner border of their gradient ring have a higher number of neighbors with lower
hop counts. Conversely, a node which is closer to the outer border of its gradient ring has a
higher number of neighbors with higher hop counts. Liu et al. [140] refine this approximation
further by using the exact proportions of neighbors with lower, equal, or higher hop counts
in order to improve the estimate and Wang et al. [242] propose to refine distance estimates
through weighted interpolation.
The second type of range-free distance estimation algorithms is called connectivity-based

distance estimation. It relies on the number of shared communication partners between two
devices with respect to the total number of communication partners. The idea behind this
concept is that devices which are close to each other share more communication neighbors
than distant devices (cf. Figure 2.19). This approach was first presented by Fekete et al. [64]
and Buschmann et al. [33]. Later on, it was refined by Aslam et al. [10], Villafuerte et al.
[236] and Huang et al. [99]. While Fekete et al. [64] and Buschmann et al. [33] use only the
number of shared neighbors for distance estimation, Aslam et al. [10], Villafuerte et al. [236],
and Huang et al. [99] expand the concept by using the ratio of shared to total communication
partners. The mapping between this ratio and the distance estimate is generally designed
as a lookup table derived through an a priori empirical study. However, Huang et al. [99]
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apply a first order Taylor series expansion to approximate the mapping function. The method
is tested on real hardware and is shown to deliver more precise estimates compared to an
RSSI-based distance estimation approach.

Figure 2.19: Two devices and their communication ranges. The distance between the devices
and the number of shared communication partners (gray dots with black border-
line) is correlated.

2.4.3 Mobility
As mentioned before, there is little research about the effects mobility has on the accuracy of
localization algorithms. A common argument for why mobility is not considered explicitly
is that the execution of the respective localization algorithm can be repeated constantly in
order to update location information. However, localization requires input data, such as
distances or angle information, usually derived by various estimation techniques, which are
prone to error under mobile conditions. This is, for example, shown by Bergamo and Mazzini
[17], where the accuracy of distance estimation based on radio signal strength is investigated
in dynamic networks. Experiments reveal that Rayleigh fading due to the motions of the
sensors can introduce significant errors to the estimates. Similar to these findings, mobility
can be expected to have an impact on range-free distance estimation. Range-free distance
estimates are derived from a device’s communication neighborhood which is affected by the
mobility of devices in the network. Potential influences on range-free distance estimation are
not primarily hardware related and have to be examined individually. This is, for example,
done by Lim and Rao [139], who identify the mobility of some devices in the network to have
a positive impact on the accuracy of hop count based localization. However, the underlying
assumption of the performed experiments is that the mobile devices know when they are
moved and, if so, immediately update their hop count values and distance estimates. This
leads to a general improvement of distance estimation within the network as it resembles a
scenario in which new devices are placed in the network at all locations, where the devices
move to. Therefore, the network density is virtually increased. Liu et al. [140] show that
mobility affects the probabilistic density of devices in a communication range which can
influence the computed hop count values. The authors provide a method to account for
mobility when calculating distance estimates based on hop counts. It has to be noted, though,
that for the proposed compensation of mobility-induced density distortions, knowledge about
the underlying mobility model is required. The question how the devices can attain knowledge
about their own mobility pattern stays unanswered though. At least for devices which are
either carried or moved by external forces and do not move actively, the answer to this question
is not straightforward. One solution to this problem is proposed by Kumar and Das [130].
The authors derive the movement pattern from a sequence of previously computed locations.
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However, the assumption that mobility in a network follows a certain pattern is not always
valid.

In contrast to localization techniques, dead-reckoning methods, or deduced reckoning, are
specific methods to locate, or better, track the positions of mobile objects over time. Originally,
dead-reckoning was used by seafarers in the fifteenth century before more accurate celestial
navigation techniques were developed. A ship’s current location was determine using its
previous location and an estimate for the direction and distance it has sailed since (cf. Kumar
and Das [130]). The estimate of an object’s current location using dead-reckoning is based
on previously determined locations, a model which describes the object’s dynamics, and
frequent corrections by odometry readings, for example the object’s speed and direction. For
odometry readings, sensors such as accelometers, magnetometers, compasses, and gyroscopes
are used. Kalman Filters (cf. Bartlett [15]) or Particle Filters (cf. Ristic et al. [197]), which
take into account that sensor values are usually prone to error, can be used to compute
the location estimate. Examples of localization systems that use dead-reckoning can be
found in Fischer et al. [67], Höllerer et al. [96], Koide and Kato [123], and Retscher [191]. If
the mobile device is carried by a human user, information about the user’s specific walking
behavior, such as his average speed, can be used instead of odometry readings in order to
direct the search towards the most likely locations (cf. Wu et al. [250]). Hu and Evans [97]
use the location of newly detected beacons, which come into range when the device moves,
as odometry readings to derive location estimates. A major drawback of dead-reckoning
systems is the necessity for odometry readings and the required model of the object’s dynamics.
Moreover, dead-reckoning is subject to cumulative errors up to the point where it receives
new extrinsic location information, hence this approach is best used in combination with
other localization techniques for error correction. A great advantage is the possibility to
extrapolate locations in case there is not enough information available to apply a localization
algorithm, for example due to a temporary absence of beacons or due to the failure of distance
estimation. Additionally, dead-reckoning allows for the prediction of likely future locations of
mobile devices, which can come in handy for several applications.
Apart from research which deals with the mobility of the devices to be located, some

researchers attend to the potential improvement of localization by employing mobile beacons
(cf. Li et al. [133], Wang et al. [243], You et al. [253], Zhang and Yu [254].

2.4.4 Indoor Localization Systems
In the literature, numerous localization systems specifically developed for indoor applications
can be found. This section aims at providing an overview of the proposed solutions. Apart
from the localization method applied, localization systems can be distinguished with regard
to various criteria (cf. Hightower and Borriello [94]). One criterion is the wireless data
transmission technique in the system, which is usually infrared, radio frequency, or ultrasound.
Data transmission by means of radio frequency signals can further be classified according to the
implemented communication protocols, such as Bluetooth [20], Zigbee [257], or the IEEE 802.11
standards, which are commonly used in Wireless Local Area Network (WLAN) technology
[104]. There are localization systems where the devices to be located perform the necessary
computations locally and systems in which the localization is undertaken by an external,
mostly centralized computing unit. The latter approach is associated with all disadvantages
that characterize centralized localization algorithms (cf. Section 2.4). In addition, these
systems bear the risk of privacy infringement since the location information is computed on an
extrinsic server. Localization systems, in general, can further differ with regard to their costs
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and installation expenditure, the accuracy and precision of obtained locations, or the kind of
locations they deliver, i.e. physical versus symbolic, absolute or relative locations. There are
also some indoor localization systems which use entirely different localization methods than
those presented in Section 2.4.1. Two examples of alternative localization systems are the
Smart Floor introduced by Orr and Abowd [179] and the MotionStar concept presented by
Raab et al. [187]. SmartFloor is a localization system for buildings which derives the locations
of people from embedded pressure sensors in the floor. In MotionStar, devices which generate
axial DC magnetic-field pulses are installed at fixed locations in the building. Magnetic
sensors in the devices to be located are used to determine the orientation of the magnetic
field and derive their locations from this information. Table 2.1 gives an overview of various
indoor localization systems. Except for the SpotOn localization system, none of the proposed
indoor navigation solutions listed in Table 2.1 specifically exploits ad hoc network connections
between the devices to be located. This is probably due to the fact that localization systems
are desired to work even if there is only a single device to be located in the building. In
localization systems based on ad hoc networks, the quality of the locations correlates positively
with the number of devices in the building. However, in an evacuation scenario, a small number
of devices imply a reduced danger of congestions during the evacuation process. Hence, the
importance of the drawback that there are few devices available for localization is dampened
because the reduction in evacuation time which can be achieved by the navigation system
is negligible. Nevertheless, localization systems based on ad hoc networks can significantly
reduce the requirements of the localization infrastructure, which in turn reduces hardware
costs, as well as installation and maintenance expenditure. High costs and effort have, so
far, been a major hindrance in the prevalence of indoor localization systems, a trend which
could be overcome by the use of ad hoc network based localization systems. Since dynamic
evacuation support systems should be available in as many buildings as possible, enhancing
localization support by exploiting ad hoc network connections could advance this vision and
bring it closer to reality. For this reason, this thesis concentrates on the investigation of ad
hoc network based localization methods for mobile devices.
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Table 2.1: Overview of indoor localization systems, their applied localization algorithms, and
the wireless communication technique in use.

Localization Communication System
Scene analysis Computer vision Wearable computers [78]

Indoor navigation for the blind [103]
NAVIO [191]
Easy Living [128]

IEEE 802.11 LaureaPOP [188]
NAVIO [191]
RADAR [13]

Lateration RFID tags Virtual leading blocks [8]
Infrared Navigation aid system [16]
Ultrasound Cricket [182]

Drishti [189]
UHF Navitime [9]
IEEE 802.11 Semantic navigation system [232]

RADAR [13]
3G NAVIO [191]
Magnetic pulse MotionStar [187]

Proximity RFID tags RadioVirgilio/SesamoNet [48]
RG-I [129]
Wearable way-finding computer [201]
Blind navigation system [54]
Space-identifying infrastructure [18]
SpotOn [95]

Infrared Active Badge [244]
Ultrasound ActiveBats [85]

Cricket [182]
Bluetooth Smart navigation environment [101]
Barcode scanning E-scavenger hunt game [227]

Context-aware wayfinding [37]
Metronaut [218]

Dead-
reckoning

RFID tags Human navigation system [123]

3G NAVIO [191]
Ultrasound Ultrasound Indoor Navigation [67]
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CHAPTER 3
ORGANIC BUILDING EVACUATION

Organic Computing deals with the design of complex, self-organizing technical systems in
order to make them flexible and trustworthy at the same time. According to the definition
provided by Muehl et al. [166], a system is self-organizing when it is self-managing, structure-
adaptive, and employing decentralized control. A system is denoted as being self-managing
if it can adapt to changes in its environment without outside control. Structure-adaptive
means that the system has to maintain a certain kind of structure which can be spatial,
temporal, or of other kind. The O/C Architecture developed in Organic Computing supports
self-organization by feedback and learning mechanisms as explained in Section 2.2.1. In
contrast to the previously given definition of self-organization, the O/C Architecture explicitly
allows for external control in order to make the system trustworthy and robust against failure.
Especially for such a dynamic environment as a building evacuation scenario, adaptability
plays an important role since it is impossible to consider all potentially arising situations at
design time of an evacuation system. However, it is even more important to make such an
evacuation system controllable, since relying completely on a technical system in case of a life-
threatening situation is undesirable for most humans. In the following, a concept for OBESS
is introduced, which is designed according to the paradigm of controlled self-organization
from Organic Computing. The main system components and their respective functionalities
are described. Furthermore, it is noted how the O/C Architecture can be used in OBESS in
order to achieve the desired system behavior.

3.1 Concept of an Organic Building Evacuation Support System
OBESS consists of three main components, which are displayed in Figure 3.1. There is a
CCU, i.e., a central server for each building, which is used to configure the sensors in the SSN.
The SSN is the second component of OBESS and consists of numerous sensors distributed
throughout the building. These sensors are able to communicate with each other and the
CCU. The third system component is a MANET, established by wireless communication
between mobile devices carried by potential evacuees. Mobile devices in the MANET can
communicate with sensors of the SSN and vice versa. The functionalities of all three system
components are explained in detail in the following.
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Figure 3.1: Structure of OBESS, its main elements (CCU, SSN, and MANET), and the
communication links between the components.

3.1.1 Central Control Unit
One important aspect of OBESS is its decentralized structure. As emphasized before, the
lack of a single point of failure is crucial, especially in emergency systems. Nevertheless,
there is a CCU in OBESS and it is important to note that this control unit does not play
any part in the evacuation planning process and is, therefore, not fatal for the evacuation
support service in case of failure. The main task of the CCU is to configure the static sensors.
For example, providing the building layout and corresponding information or assigning the
respective location information to each sensor in the building, such that they can be used as
beacons for localization of the mobile devices. In order to accomplish this task, the CCU offers
an interface for the user, which can be used to configure and control OBESS. Apart from that,
the CCU collects information from the mobile devices using the sensors in the SSN in order
to optimize and adjust OBESS to the building’s specifics over time. Such information could
be the average number of mobile devices in the building at specific times and days, the most
frequented rooms and paths, or others. The CCU can learn building-specific characteristics
and adapt the evacuation system over time in order to improve its effectiveness. For this, the
two-level learning mechanism of the generic O/C Architecture can be used which is described
in Section 2.2.1. An example for such a building-specific optimization of OBESS is described
in Section 5.4, where the placement of the sensors is improved in order to achieve better
results during the localization process of the mobile devices.

3.1.2 Static Sensor Network
The most obvious task of the SSN is to monitor indicators for dangerous situations, such
as heat, smoke, or similar properties, perceivable by technical sensors. In case any of the
measured values exceeds a certain threshold, an alarm can be triggered or a human user, who
is responsible for the alarm, can be notified. The SSN, therefore, serves as a monitoring and
alarm system, similar to the ones that can be found in certain buildings today. In Section
4.2, an algorithm is presented which relies partly on such sensor information. The sensors
in the SSN are assumed to have knowledge of their exact locations in the building due to
an a priori configuration via the CCU interface. Hence, the static sensors serve as beacons
to support the localization of the mobile devices in the building as detailed in Section 2.4.
In addition, sensors can provide useful information as a download to the mobile devices, for
example a layout of the building and its representation as an evacuation graph model (cf.
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Section 2.3.1). Normally, sensors in the network communicate wirelessly with each other.
Nevertheless, it is conceivable that the SSN is set up as a so-called small world network. Small
world networks are characterized by having mainly local communication links between nearby
devices but occasionally feature certain devices which are connected over longer distances
by wire. It is shown that, in small world networks, a small number of wired long distance
connections can speed up the spread of information significantly (cf. Watts and Strogatz
[245]). As a consequence, providing some wired connections between the sensors can enhance
the information exchange between distant mobile and static sensor devices. Another task for
the SSN is to collect information from the mobile devices which can be used to evaluate the
current status of the evacuation system in this specific building. Such information could be
available input data for localization or trajectories of the devices’ movements through the
building. Sensors in OBESS are not required to have an extensive computing capacity, and
there is no need to implement a complex O/C Architecture on these devices.

3.1.3 Mobile Ad Hoc Network
The devices in the MANET are assumed to run software enabling their usage for building
evacuation. Whenever such a device enters a building which is equipped with OBESS hardware,
it receives a message from a nearby sensor, including all necessary information about the
current building. In particular a possibility for downloading the building’s layout and the
respective evacuation graph model is provided. In case of an emergency situation, the sensors
inform all nearby mobile devices about this situation. The device then calls the attention of
its user by ringing and vibrating. On the display of the device, the building’s layout and the
current location of the user are shown and the device indicates navigation instructions to an
exit door, for example by pointing out the direction on the screen or via voice instructions.

The mobile devices in OBESS are each assumed to belong to a specific person who carries
the device. This provides the opportunity to collect information about the human user’s
preferences and characteristics. These preferences or characteristics can be used to personalize
the evacuation support service offered by the device. For example, the device can collect
information about the age of its user or whether he has any handicaps in order to adjust
the navigation instructions accordingly. Also, rescue forces can be informed about certain
health conditions to improve the help they can provide. Whether such personal information is
manually entered by the user himself or is even learned by the mobile device from observing
its user’s behavior, i.e., visited websites, social networks, et cetera, is open for discussion and
future research. Of course, an important aspect in this context is the protection of the user’s
privacy.
The main focus of this thesis lies on the mobile devices in OBESS. In order to design the

software for these devices, two main algorithmic challenges have to be mastered. Firstly, the
device has to be able to compute an evacuation path from its current position to an exit
of the building, thereby integrating knowledge about the current evacuation situation. Two
algorithms which can generate navigation instructions are presented in Chapter 4. The second
challenge is that the devices have to be capable of determining their locations inside the
building. Chapter 5 addresses exemplary ways to master this task. An implementation of the
O/C Architecture for the mobile evacuation devices in OBESS is described in the following.
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3.2 Observer/Controller Architecture for Mobile Evacuation
Devices

As described in Section 2.2.1, the O/C Architecture is a design framework for organic tech-
nical systems, i.e., systems which are self-organizing and exhibit life-like properties, such as
being adaptable to unforeseen changes, while at the same time being trustworthy, robust,
and controllable by human users. Hereafter, an exemplary implementation of this generic
architecture for mobile devices used in OBESS is presented.

In OBESS, each mobile device and the CCU is designed according to the O/C Architecture.
However, the resulting system structure is not hierarchical because there are no means for
the CCU to control the mobile devices in the system. Hence, the structure is rather a
decentralized one as depicted in Figure 2.4(b). The SuOC of the mobile devices is different
from the standard structure in the way that the devices cannot only observe themselves, but
also all devices located in their communication ranges. Nevertheless, only the devices’ own
actions are controllable. Figure 3.2 illustrates this structure.

Figure 3.2: Structure of the O/C Architecture for mobile devices in OBESS.

The software of a mobile device in OBESS has three modes of operation. Firstly, it can simply
display the layout of the building on its screen without providing any further functionality.
Secondly, it can run in localization-mode, in which the software determines the device’s
location within the building and shows it on its screen. Thirdly, the device can switch to
evacuation-mode, in which it additionally computes navigation instructions in order to support
the evacuation of its user from the building. Since all devices have limited resources and
constrained energy supply, it is reasonable to turn-off the evacuation functionalities if they are
not needed. To do so, the O/C Architecture provides the concept of observation models which
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determine what kind of data is currently being monitored and processed. The controller can
switch between these observation models depending on the current requirements. For example,
if the device is notified of an emergency situation either by the sensors in its environment or
directly by its user, evacuation-mode can be switched-on; otherwise it is turned off and only
localization or simply the building’s layout is available to the user. Both kinds of operation
modes can have numerous different sub-level observation models, one for each evacuation
or localization algorithm which is available to the mobile device. The main purpose of the
O/C Architecture is to observe and characterize the device’s environment and switch between
different algorithms for evacuation planning and localization in order to select the most suitable
one for the current situation of the mobile device. Furthermore, changes in the environment
are meant to be detected which trigger an update of the evacuation route. In the following, the
O/C Architecture is described for both, the evacuation-mode, as well as the localization-mode.
It should be noted that the evacuation-mode requires location information, which is why the
evacuation-mode constitutes an enhancement of the localization-mode observation model.

3.2.1 Observer
The observer’s task is to provide for a characterization of the current system situation as well
as a prediction of probable future system states to the controller. These characterizations
are used as a basis for making decisions in the controller, i.e. selecting the most suitable
localization and evacuation algorithm. Figure 2.2 illustrates the observer part of the generic
O/C Architecture. The monitor unit is responsible for observing all data specified by the
observation model. In case of the evacuation-mode, all necessary input data to perform
evacuation planning has to be monitored and the same holds for localization. For evacuation
planning, the locations of other evacuees in the building could be of interest, as well as sensor
data about dangerous areas. As mentioned before, there is one observation model for each
available evacuation or localization algorithm. Hence, depending on the selected algorithm,
different input data is monitored. For example, when beacon-based localization is applied
(cf. Section 2.4.1), any beacon location communicated by a nearby device is monitored. In
case of distance-based localization, hop count information from surrounding devices could be
monitored, or other data depending on the selected distance estimation technique (cf. Section
2.4.2). In addition, information about the current environment of the device is observed, such
as indicators about the network topology, for example how many beacons are within reach.
This environmental information can be used in the controller to decide about a necessary
change of the selected algorithm. Section 3.2.2 explains this in detail. The pre-processor
computes derivative data for the algorithms by processing or filtering the monitored data. For
example, if the device receives multiple messages with contradictory content, the pre-processor
decides which message contains the most up-to-date information by comparing age-values
of the messages received. Another example would be to find the minimum hop count value
from a set of hop count messages received by neighbors or to evaluate a potential evacuation
route by summarizing sensor information from rooms along this path. In the data-analyzer,
meaningful attributes which are able to characterize the current system state are derived
from the pre-processed data. Examples for such attributes are the average speed with which
nearby devices are moved and their direction of movement. These parameters could be used to
characterize the mobility in the network. For evacuation planning, the average concentration
of evacuees in the building is an example for a computed value which characterizes the
evacuation situation. The prediction module of the generic O/C Architecture is meant to
forecast the most likely future system state. For evacuation planning, it is conceivable to assess
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the emergence of congestions, for example from an increasing concentration of devices in parts
of the building. In case of an active localization-mode, this is the place where dead-reckoning
methods, as described in Section 2.4.3, could be used in order to predict the next location of
a device. The observer’s aggregator module passes all this information to the controller.

3.2.2 Controller
The controller’s main function in the O/C Architecture is to choose an appropriate action,
given a certain situation assessment and a prediction of a future system state by the observer.
In the presented implementation of the O/C Architecture for mobile evacuation devices
in OBESS, choosing an appropriate action is equivalent to selecting a suitable evacuation
planning and localization algorithm. For evacuation planning, there are two evacuation
planning approaches proposed in this thesis which differ in the information required and
deliver evacuation routes of different quality. Depending on the device’s state-of-charge,
it might be advisable to choose an evacuation planning algorithm which requires fewer
messages to be exchanged, even though the computed navigation instructions are suboptimal.
Furthermore, replanning of an evacuation instruction can become necessary when there is new
information about the situation in the building available to a device. In Section 2.4, the broad
variety of localization methods for ad hoc networks is demonstrated. The sheer quantity of
different approaches to the problem suggests that there is more than one optimal method to
find the location of devices in a network. In fact, each algorithm has its own advantages and
disadvantages and it is not always easy to choose which localization algorithm is preferable
for a given situation. Fortunately, the organic O/C Architecture offers a solution to select
between multiple evacuation and localization algorithms at runtime, respecting the current
network situation and the device’s system conditions. Figure 2.3 illustrates the controller part
of the generic O/C Architecture, its elements, and their interactions.
The controller takes actions in order to achieve desired and prevent unwanted system

behavior. Undesired evacuation behavior occurs when an evacuation instruction is not optimal
anymore with respect to current objectives. One reason for this can be a deviation of the
user from the suggested evacuation path or because a newly available situation characteristic
implies that another escape route is superior in terms of current optimization objectives. In
case of localization, an undesired system behavior appears when locations which are computed
by a chosen localization algorithm deviate too much from real locations of the device and
when there is another localization algorithm which is expected to deliver more accurate results.
The available control actions are to change the applied evacuation or localization algorithm
and to trigger replanning of evacuation instructions. In the O/C Architecture, there are two
types of control mechanisms. An intrinsic control, where the controller chooses an action
depending on the situation characteristics and prediction of the future system state which it
receives from the observer. These characteristics are matched in the action selection module
and the situation-action mapping which has the highest reward is chosen as described in
Section 2.2.1. Alternatively, it is also conceivable that a control action is triggered by the
user of the O/C system. In the generic O/C Architecture, the user is intended to control
the system by setting and adapting the system’s objectives and goals. The most obvious
change in system objectives is a switch between the modes of operation, such as turning the
evacuation procedure on or off. Another conceivable change of system objectives is to set
other optimization objectives for the escape route planning in the evacuation-mode. It could
be desired to search for an escape route with minimum risk exposure instead of travel time.
However, in the O/C Architecture for mobile devices in OBESS, a direct interaction between
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user and mobile device is also allowed. For example, the user can correct computed locations
by tapping on the screen of the device or by choosing a different evacuation route than the
suggested one simply by walking in another direction. In addition, it is conceivable that the
user selects a compulsory localization algorithm, which has to be used by the system, or
inserts a priori available information about the building in order to facilitate the controller’s
selection of an appropriate algorithm. The O/C Architecture is, furthermore, particularly
suited for respecting user preferences and characteristics during operation. The user can
provide personal information which influences the objectives for evacuation planning in the
evacuation-mode. Such information could be the need for accessible paths or the avoidance of
stairs in case the user is handicapped or of high age.

In the generic O/C Architecture the situation to action mapping is intended to be learned
using the two-level learning infrastructure provided. While the first-level learning, also called
online learning, is a feedback mechanism, which evaluates results achieved by control actions
at runtime, the second-level learning, or offline learning, is based on a simulation, in which
potential control actions are tested before they are made available to the system. While
the first-level learning is often based on a Learning Classifier System (LCS), as described
by Richter [193], the second-level learning can be implemented as an EA (cf. Section 2.2.1).
For online learning, the LCS assigns a reward to each mapping. From different matching
situations, it applies the action with the highest reward value. After applying an action, the
system receives positive or negative feedback, evaluates the applied mapping accordingly, and
updates its reward. In OBESS, receiving feedback for evacuation planning or localization
is not straightforward since the mobile devices have no possibility to know whether they
computed the right locations or whether the determined evacuation route is optimal. However,
active interventions of the user can be interpreted as a negative feedback and, hence, used
to evaluate the quality of the current localization and evacuation algorithms. Additionally,
feedback can be derived from situation parameters provided by the observer. If a change in the
environmental situation is detected, for example a recomputation of the evacuation instruction
can be triggered, which integrates this newly available information. A sample situation for
changing the applied evacuation planning algorithm is when the observed state-of-charge of
the device’s battery falls below a certain threshold and an evacuation algorithm which requires
fewer messages to be exchanged is chosen in order to save energy. One way of evaluating a
localization algorithm is to perform consistency checks. Usually, two consecutively computed
locations should not lie far apart from each other. If this is the case, the currently selected
localization algorithm does not deliver high quality results in the current network situation
and the corresponding fitness value is decreased. Moreover, the computed locations of the
device’s neighbors should lie within its communication range, and so forth. Feedback for an
evacuation route is obtained whenever the device receives new information about the current
situation in the building. The device could receive information that there are more evacuees
located in rooms along the currently chosen route than expected, in which case a replanning
of the evacuation instruction is triggered.
Apart from the online learning described above, the O/C Architecture provides for offline

learning. For this, the situation parameters from the observer can be used to configure
a simulation, which reflects the actual network situation and evacuation and localization
algorithms can be tested offline in this simulation before they are made available for usage
during runtime. This mechanism reduces the probability of choosing unsuitable actions, i.e.,
inappropriate localization algorithms, for a given network environment. It is also conceivable
to use the generic O/C Architecture’s capability for offline learning in order to improve
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evacuation planning. The simulation environment can be based on any of the evacuation
models presented in Section 2.3.1 and it is initialized by choosing parameter values that reflect
the situation currently observed in the building. With this simulation, the consequences of
following a specific evacuation instruction derived by an evacuation planning algorithm can
be assessed and evaluated. Evacuation instructions which lead to a slow evacuation time in
the simulation can be substituted by instructions which result in quicker evacuations. This
procedure ensures that evacuation instructions are thoroughly evaluated before they are shown
to the user.

3.3 Summary
In this chapter, a concept for a building evacuation support system using mobile devices
is introduced. This concept is based on the principles of Organic Computing and called
OBESS. OBESS consists of mobile devices carried by potential evacuees, who organize in a
MANET, a stationary SSN installed in the building, and a CCU mainly used for configuration
purpose. The sensors are meant to be able to observe danger indicators in the building and
support the localization of the mobile devices as beacons. The mobile devices guide their
users to safe exits by performing localization and subsequent evacuation planning. This
chapter proceeds with presenting an exemplary application of the generic O/C Architecture
to mobile evacuation devices. The O/C Architecture supports an adaptive behavior of the
mobile devices to changes in their environment by a two-level learning mechanism. Such a
behavior is crucial in an evacuation scenario, which is unpredictable and dynamic. At the
same time, the system becomes trustworthy, robust, and controllable by human users via
intrinsic and direct control mechanisms. This is an important characteristic in order to make
a technical system trustworthy, which humans are supposed to depend on in life-threatening
situations. Apart from that, this generic architecture provides for several further advantages,
such as the possibility to select the data that is currently monitored and to easily integrate
user preferences into evacuation planning. The main objective of the O/C Architecture for
mobile evacuation devices is to select an appropriate localization and evacuation planning
algorithm from a set of available methods or to trigger a new evacuation path planning. The
selected actions are chosen in the controller depending on the currently observed situation in
the building and a prediction of its likely future state. To do so, a two-level learning structure
is used which consists of an online learning mechanism based on feedback from the user and
the device’s environment and a simulation-based offline learning approach. It is discussed what
kind of feedback can be used for online learning and how this information is used to choose an
appropriate localization and evacuation planning algorithm at runtime. Offline learning offers
the possibility for simulative testing of localization algorithms in realistic network scenarios
as well as the evaluation of a specific evacuation instruction before admitting it to productive
utilization. The main advantage compared to standard simulative based approaches, is that
the simulation can be parameterized according to the currently observed situation inside the
building instead of being based on expected values derived from past experiences.
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CHAPTER 4
SWARM EVACUATION PLANNING WITH MOBILE DEVICES

If a building has to be evacuated, the evacuees, ideally, leave the place in the shortest time
possible. According to Daniels et al. [46], the time evacuees need to escape is composed of the
time until the emergency is detected and the alarm is triggered and the time for evacuees to
react and leave the building. Apart from the reaction time of the evacuee, all other components
can be subject to optimization in an evacuation support system. Nevertheless, in the following,
only the time for leaving the building is considered. This time can be influenced directly by
the quality of navigation suggestions provided by mobile devices. The time which an evacuee
needs to find his way out of a building depends on several factors. The knowledge about a
building’s layout and the right choice of directions towards an exit have the highest impact.
In today’s buildings, the layout is usually provided by stationary emergency evacuation maps.
Apart from that, standard evacuation signs as well as markings on the evacuation map point
out the shortest path from a certain location to a nearby exit. Although knowing the shortest
path is helpful, the shortest path does not always correspond to the quickest path leading
outside the building. The main reason for this is that congestions often arise when a huge
crowd tries to leave the building on the shortest path. Other causes can be fire or gas which
block passages that are part of a shortest path. As a consequence, evacuation planning
should concentrate on finding the quickest rather than the shortest path leading outside a
building. Currently, evacuation research tackles this problem by performing simulations and,
subsequently, trying to avoid congestions by either making modifications to the building or to
the recommended exit routes (cf. Section 2.3.2). This procedure, however, does not guarantee
good results for situations which differ strongly from the simulations, for example, if there are
far more or less evacuees inside the building compared to the scenario it has been optimized
for. This is the point at which OBESS begins to develop its full potential. Due to the ability
of the mobile devices to communicate over ad hoc network connections, the opportunity
arises to gain insights into the current situation inside the building at the time of evacuation.
Using communication, knowledge about the number of evacuees inside the building, potential
congestions, or other useful information can be distributed over the ad hoc network. This
allows for the devices to get a view of the evacuation situation, which extends beyond their
own limited range of communication. This knowledge can, subsequently, be integrated into
evacuation path planning, enabling not only the optimization of the distance but also of the
time it takes to reach an exit. Of course, questions arise whether the information gathered via
local communication in a MANET has enough quality to really improve evacuation planning
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since it is potentially incomplete, delayed, or error-prone and how evacuation planning can be
performed in a decentralized way without central coordination. This chapter addresses these
questions and proposes two algorithms, which are evaluated in a simulative evacuation scenario.
In order to be able to realize a decentralized evacuation system like OBESS, the mobile devices
have to be enabled to compute reasonable evacuation routes towards a building’s exit without
central control. Furthermore, it is desirable to integrate available knowledge about the current
situation from localization communication into this process.

Definition 4.1 (Swarm Evacuation Planning). Swarm Evacuation Planning (SEP) denotes
the process of finding an optimal evacuation route for users of mobile devices without the help
of a central computing unit by integrating information about the current evacuation situation
gathered via local communication.

SEP receives its name due to its similarity to the concept of Swarm Intelligence (cf. Section
2.2.3). In Swarm Intelligence, a global behavior, which is not achievable by an individual
alone, arises as an emergent effect from the interactions between the individuals in the swarm.
The same holds for SEP. Only a swarm of mobile devices is able to collect enough information
about the global evacuation situation to be able to assess congestion potentials and guide
evacuees on optimal routes.

For computation of the optimal route, information about the global situation is collected via
local communication. The result of SEP is an evacuation route for the individual user of each
device such that the overall evacuation time is minimized. Another conceivable objective is to
optimize each individual’s evacuation time. This could possibly lead to a higher acceptance of
the evacuation device but certainly could also increase the overall evacuation time. OBESS,
so far, optimizes the overall evacuation time because this objective is more reasonable from a
social perspective. Nevertheless, changing this objective to a more egoistic one could certainly
be up for discussion.
A great advantage of such a decentralized evacuation system is that the information

exchange works, even in case of failure of certain devices. Such a network is robust and lacks
a single point of failure, which makes its deployment attractive, especially for emergency
situations. To avoid that each user fully depends on his mobile device, the system can easily
be complemented by installing some static digital devices inside the building, which can serve
as a fallback in case a user does not have a portable device or if it is broken or run out of
battery. The approaches proposed hereafter and the corresponding experimental results have
been published partially by Merkel et al. [155, 158].

4.1 Macroscopic Swarm Evacuation Planning
As introduced in Section 2.3.2, macroscopic evacuation models are the common basis for
evacuation planning. Macroscopic models regard groups of homogeneous evacuees, i.e.,
evacuees who are equal in terms of speed, size, and behavior. Such a graph model is usually
assumed to be constructed manually by experts and can be provided to the devices beforehand.
The environment is modeled as a graph G = (N,E) with nodes, n ∈ N , representing rooms or
corridors of the building, and edges, e ∈ E, representing doors or similar connections between
the areas represented by nodes. Nodes are typically modeled to have a capacity and a number
of initially allocated evacuees, which corresponds to the number of evacuees currently located
in that room. An edge has two weights, c and l, with c referring to the number of evacuees
who can travel simultaneously on this edge and l representing the length of the edge. The
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edge length can, for example, be measured as the average time needed for one evacuee to
traverse it or as the distance between the centers of the connected rooms. Figure 2.6 shows
an example of a building and its corresponding macroscopic graph model G.

The goal of traditional macroscopic evacuation planning is to determine how many evacuees
(flow size) have to be sent on which path in order to optimize the given objective. This
objective can be to minimize the overall travel time, maximize the flow size in a certain time
period, and so forth (cf. Section 2.3.2 for a detailed description). The problem with such
macroscopic evacuation planning is that it only computes how many evacuees located in a
room have to use a certain path towards the exit. There are no means to decide which evacuee
is sent on which path. Since the different paths have different evacuation times, the allocation
of evacuees to paths is a challenge in SEP. In addition, macroscopic evacuation planning
algorithms require global information about the number of evacuees and their locations in the
building, which is not provided in a scenario without a global observer. Nevertheless, for a
first attempt to develop an SEP algorithm it seems reasonable to take a traditional evacuation
planning approach as a role model. Thus, a macroscopic evacuation planning approach serves
as a basis for the following capacity constrained SEP algorithm. The algorithm is modified in
order to work in a distributed and decentralized way, i.e., to be executable on each device in
the network, and to deliver an optimal evacuation route for each evacuee.

4.1.1 Capacity Constrained Swarm Evacuation Planning
The evacuation scenario considered consists of m mobile devices, which have the evacuation
graph model G of the building at their disposal. For simplicity, each device has perfect
information about its own position in the building. In order to compute an optimal evacuation
route for each individual, the mobile device uses the Capacity Constrained Swarm Evacuation
Planner (CC-SEP), which is shown coarsely in Algorithm 4.1. Firstly, the device collects
information about the position of other evacuees in the network via local communication. This
information is then used to compute a global evacuation plan with an appropriate macroscopic
evacuation algorithm. As a final step, one of the evacuation instructions from the evacuation
plan is selected. This instruction can be used by the device to guide its user, for example by
displaying the respective directions on its screen. In the following, the realization of each step
in this algorithm is described in detail.

Algorithm 4.1 Capacity Constrained Swarm Evacuation Planner
Require: Evacuation graph G = (N,E)
Ensure: Evacuation instruction i

1: G = InformationCollection (G)
2: Evacuation plan I = EvacuationP lanning (G)
3: Evacuation instruction i = InstructionSelection (I)
4: return i

Information Collection

In order to compute the global evacuation plan, initial allocations of evacuees in the evacuation
graph have to be known, i.e., how many evacuees are currently located at each node. This
knowledge is gathered via local communication. Since the optimization is done on the abstract
graph level, the exact position of each evacuee is negligible and only the number of evacuees
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located at a certain node is required. To obtain the initial allocation, each evacuee’s device
periodically sends a message containing its identification number (ID), the information about
the node n where the device is currently located at, and two lists, which are referred to as
local-count and global-count. The global-count list maintains the number of devices located
at each node in the evacuation graph, which is the required information for the evacuation
planning process. In order to compile this data, an auxiliary list called local-count is used. It
contains IDs from all known devices which are located at the same node as the device to which
this list belongs. Each entry in these lists has an age-value assigned to it and all age-values
are increased by 1 before a device sends a message. Due to asynchronous message forwarding
in the network, it can happen that a message which contains more up-to-date information
is transmitted subsequently to a message with outdated information. The age-value ensures
that each device knows which message contains the most recent information. The lower an
age-value is, the more recent the respective information. Each device generates an entry for
its own node in the global-count list by counting the IDs in its local-count list. The exact
procedure is described in the following. The local-count always contains the device’s ID with
an age-value of 0 assigned to it. When a device communicates with another nearby device at
the same node, it adds the ID of its communication partner to the local-count list and assigns
an age-value of 0 to this information as well. In addition, it compares the entries from its
own local-count list with the ones in the local-count list of its communication partner. It adds
all IDs which are unknown to its local-count list and assigns the same age-values which the
entries have in the communication partner’s list. If two different messages contain the same
ID, the device takes the one with the more recent age-value. As a next step, the device counts
all entries in its local-count list and adds an entry to its global-count list which contains the
node information n, the number of entries a (n) and an assigned age-value of 0. Further, the
device compares the entries in the global-count list of its communication partners with its own
and adds the missing entries with the age-values they have in the communication partner’s list.
If the device receives a message with an entry in the global-count list that is already stored
in its own global-count list, it overwrites the information only in case the age-value of the
received information is lower. If the age-value of an entry in the local-count or global-count list
exceeds a predefined threshold tmax, the entry is removed from the list. This expiration date is
necessary because it is impossible to determine whether an evacuee has already left a room or
not. An increase in the age-value for a certain entry in the local-count list between two updates
can have two reasons. Either, the evacuee is not in the room anymore and, therefore, there is
no device which resets this age-value, or the device receiving the information is moving away
from the source of information. In this case, the number of devices it takes to forward the
message increases and, as a consequence, the age-value is higher when the information arrives
at the device. The right choice of the expiration date is crucial. If the value is too small,
it can happen that the information is not passed on to all devices before it is recognized as
obsolete. If an expiration date is set too high, information about other evacuees’ whereabouts
are assumed to be up-to-date, although the devices may have already been moved somewhere
else. In order to determine an appropriate value for the expiration date, the characteristics
of the building’s layout should be taken into account. Using knowledge about the building’s
layout and the communication range r of the devices, the expiration date for information on
the local-count list is set as

maxn∈N
SpEx (n)

r
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where n ∈ N represents each room in the building, i.e. node in the macroscopic graph, and
SpEx (n) refers to the spatial expansion of that room. In case of rectangular rooms this can,
for example, be the diagonal of the room. For values in the global-count list, the expiration
date is computed based on the spatial expansion of the whole building. In case of a building
with multiple floors, the expansion of one floor would be the best reference value to compute
the expiration date.
By using the algorithm described above, the devices are able to collect information about

the number of evacuees in different rooms (nodes) and, with time, build a local view of
the evacuation situation. This view can then be used in a macroscopic evacuation planning
approach, in the same manner as if the device had global information. As soon as the
initial allocation of evacuees is known, the evacuation planning can be initiated. There are
two conceivable implementations for the evacuation planning. It is either performed only
once by using all the information collected up to this point, for example right after the
alarm is triggered, or the evacuation planning is constantly repeated, hence, adapting to new
information which becomes available during the evacuation process. Both versions are tested
in simulative experiments.

Evacuation Planning

In order to compute the global evacuation plan, any macroscopic evacuation planning algorithm
can be used. As detailed in Section 2.3.2, most of these algorithms require a time-expansion of
the evacuation graph, making evacuation planning a time and space consuming task. Lu et al.
[143] introduce a heuristic algorithm called Capacity Constrained Routing Planner (CCRP),
which does not rely on a time-expansion of the evacuation graph and provides solutions of
similar quality (cf. Sangho et al. [204]). However, the algorithm can also be replaced by
other macroscopic planning methods, for example, the multi-objective optimization approach
proposed by Cheng [39], Zong et al. [258], or evacuation planning based on EA as described
in Garrett et al. [72] and Saadatseresht et al. [202].
CCRP returns an evacuation plan I which consists of a set of evacuation instructions i.

Each instruction contains a path p in the evacuation graph, i.e., a sequence of nodes, a flow
size f , i.e., the number of evacuees who are sent on this path, and a sequence of starting
times t. The starting times denote at which time the corresponding node on path p is entered
by evacuees who follow this evacuation instruction. The basic idea of CCRP is to model the
used capacities of each node and each edge as a time series. This time series can then be
used to derive waiting times at certain nodes and edges in order to find an optimal path
with respect to traveling time, while taking into account all previously scheduled evacuees
and the capacity constraints of the graph. The algorithm used for optimization is taken
from network routing theory and assumes a homogeneous speed of the evacuees involved.
CCRP is an iterative method, which computes evacuation paths for all evacuees located at
one node before processing the next node. The priority with which the nodes are processed
decreases with their increasing distance to an exit. In other words, firstly, all evacuees located
on the node which is closest to an exit are scheduled for evacuation, after which the next
node is processed and so forth. For each node, path p is determined as the path closest to
an exit with minimum travel time. The travel time includes the time needed to cover the
distance as well as the waiting times for released capacities which are occupied by previously
scheduled evacuees. After the quickest path is found, the number of evacuees f which can
be sent simultaneously on this path is computed. In the next step, the time series for all
nodes on this path are updated and respective capacities are reserved for the evacuees at
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Table 4.1: Evacuation instructions obtained by applying CCRP to the example graph in
Figure 2.6.

Instruction
Index Flow Size Path and Timing
1 f = 2 p = < n3, n4 >

t = < 0, 1 >
2 f = 1 p = < n3, n4 >

t = < 1, 2 >
3 f = 1 p = < n1, n3, n4 >

t = < 0, 1, 2 >
4 f = 3 p = < n2, n4 >

t = < 0, 2 >
5 f = 2 p = < n1, n3, n4 >

t = < 1, 2, 3 >
6 f = 1 p = < n2, n4 >

t = < 1, 3 >

times t when they pass the respective node or edge. The reserved capacities are then taken
into account in the next iteration when waiting times are computed. The set of p, f , and
t form one evacuation instruction i and are added to the global evacuation plan I. The
evacuation planning terminates when all evacuees are scheduled. Algorithm 4.2 describes the
operating principle of CCRP (a fully detailed description can be found in Lu et al. [143]).
As explained before, nodes n ∈ N have an initial allocation a (n) and a maximum capacity
c (n). The capacity of an edge e = (ni, nj) is denoted by c (e). Each edge in an evacuation
graph represents the connection between the center of two rooms. An edge, therefore, has a
length l (e) which is comprised of the two parts ls (e) and le (e), with ls (e) representing the
travel distance inside the starting room and le (e) the travel distance which corresponds to the
target node of the edge. It holds that ls (e) + le (e) = l (e). This is important for computing
the reserved capacities in each room at the time evacuees are assumed to enter them. The
evacuation graph G contains a set of exit nodes D ⊂ N , which represent the exits of the
building. In order to find evacuation instructions with CCRP, an additional super source node
suSo and an additional super sink node suSi are added to the evacuation graph, both with
infinite capacities. The super source node suSo is connected via edges with infinite capacities
and zero lengths to all nodes in the graph, except for the super sink node. Similarly, all exit
nodes are connected to the super sink node via edges with infinite capacities and zero lengths.
This is an auxiliary construction, which ensures that there is only one source and only one
sink node in the graph and, hence, simplifies the wayfinding procedure. Table 4.1 shows an
example of a list of evacuation instructions produced by the CCRP given the example graph
shown in Figure 2.6 as input. It should be noted that the evacuation instructions returned
by CCRP are sorted in ascending order with respect to their evacuation time and that it is
possible to have more than one evacuation instruction for a specific starting node n.
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Algorithm 4.2 Capacity Constrained Routing Planner [143]
Require: Evacuation graph G = (N,E)
Ensure: Evacuation plan I (set of evacuation instructions i)

// Initialize capacity time series for all nodes and edges:
1: ∀n ∈ N : freeCap (n, ∗)← c (n), freeCap (n, 0)← c (n)− a (n)
2: ∀e ∈ E: freeCap (e, ∗)← c (e)
3: while ∃n : freeCap (n, 0) < c (n) do
4: prev (n)← null, minT (n)←∞
5: ∀n ∈ N , minT (suSo)← 0, Q← {suSo}

// Find next best path:
6: while Q 6= ∅ do
7: Node u← minn∈Q (minT (n))
8: for Node v ∈ neighbors (u) do
9: if (u 6= suSo) ∨ (freeCap (v, 0) < c (v)) then

10: arriveT ← minT (u), waitT ← 0
11: Edge e← (u, v)
12: nCap← freeCap (v, arriveT + waitT + ls (e))
13: eCap← freeCap (e, arriveT )
14: while eCap = 0 ∨ nCap = 0 do
15: waitT ← waitT + 1
16: eCap← freeCap (e, arriveT + waitT )
17: nCap← freeCap (v, arriveT + waitT + ls (e))
18: end while
19: if (arriveT + waitT + l (e)) < minT (v) then
20: minT (v)← arriveT + waitT + l (e)
21: prev (v)← u
22: end if
23: end if
24: end for
25: end while

// Create path p time schedule t and flow size f :
26: Node n← prev (suSi)
27: while n 6= suSo do
28: p.add (n), t.add (minT (n)− l (e))
29: Edge e← (prev (n) , n)
30: f ← min (f, freeCap (e,minT (n)− l (e)))
31: n← prev (n)
32: end while
33: reverse (p), reverse (t)
34: Source node s← p.getF irstNode ()
35: f ← min (f, c (s)− freeCap (s, 0))
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// Allocate capacities on path:
36: freeCap (s, 0)← freeCap (s, 0) + f
37: Node n← prev (suSi)
38: while prev (n) 6= suSo do
39: Edge e← (prev (n) , n)
40: schedT ← minT (n)− l (e)
41: waitT ← minT (n)−minT (prev (n))− l (e)
42: freeCap (e, schedT )← freeCap (e, schedT )− f
43: for minT (n) ≥ time > minT (prev (n)) + waitT + ls (e) do
44: freeCap (n, time)← freeCap (n, time)− f
45: end for
46: for minT (prev (n)) + waitT + ls (e) ≥ time > minT (prev (n)) do
47: freeCap (prev (n) , time)← freeCap (prev (n) , time)− f
48: end for
49: n← prev (n)
50: end while
51: Evacuation instruction i← (p, t, f)
52: Add instruction i to plan I
53: end while
54: return Evacuation plan I

Instruction Selection

The third step in CC-SEP is to select an appropriate evacuation instruction for the device’s
user from the global evacuation plan I. Valid candidates are all instructions with a path p that
starts at the node where the device is located. The objective of the instruction selection is for
the number of devices which select a specific instruction to approximately correspond to the
instruction’s associated flow size f . This is necessary in order get a close match between the
real waiting times which occur during evacuation and the waiting times used for evacuation
planning. To meet this challenge, each evacuee’s device sorts the IDs in its local-count list
in an ascending order and maps the instructions returned by CCRP successively to the IDs
in the list. Thereby, the flow-size of each instruction determines how many successive IDs
are mapped to that specific instruction before advancing to the next one in the evacuation
plan. The mapping process can be stopped as soon as the device’s own ID is mapped to
an evacuation instruction which the device then uses to guide its user. In CC-SEP each
device has its own local view of the evacuation situation, as a result, the computed evacuation
plan I can also differ from one device to another. Nevertheless, it is safe to assume that
devices which are located in the same room have a very similar information base and, thus,
their evacuation plans are similar as well. Although sorting according to device identification
numbers seems to be a very naive approach to assign evacuation instructions, there is a
high chance for the selection process to result in a distribution of evacuation instructions
amongst the devices which is proportional to the flow-sizes of the respective instructions
without explicit coordination between the devices. Nonetheless, this selection process is a
naive procedure, which is prone to manipulation. Because the instructions in the evacuation
plan are in increasing order of evacuation time, there is a high incentive for the mobile device
user to manipulate the device’s ID in order to receive a faster evacuation path. For a first
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Table 4.2: Main configuration parameters for the Swarm Simulation.

Parameter Description
Behavior Software program run on the mobile devices.
PopSize Number of agents in the simulation.
SignalRange Communication range as percentage of the side-length of the square

environment.
SimCycles Number of simulation cycles run before the simulation is terminated.
Torus Whether the environment is a torus world.
NumInit Number of beacons in the environment.
Positioning Initial distribution of agents in the environment.
Seed Random seed used in this simulation run.
Scheduling Order in which the agents are executed.
Environment Design of the simultion environment.
Colliding Whether agents are colliding with each other.
Movement The type of mobility model executed.

assessment on how distributed and decentralized evacuation planning in a MANET can be
performed, however, this approach is sufficient.

4.1.2 Evaluation
For the experimental evaluations presented in this thesis, a Java-based simulation called Swarm
Simulation is developed, which incorporates both, an evacuation simulation and a mobile
ad hoc network simulation. The evacuation simulation is based on a simple time-discrete
evacuation model similar to the two-dimensional cellular automaton described in Burstedde
et al. [32]. For the mobile ad hoc network communication, the communication neighborhood
of a device corresponds to its physical neighborhood on the plane within a fixed Euclidean
distance r. This model corresponds to the so-called unit disc model which is described by
Clark et al. [43]. Agents in the simulation are equivalent to evacuees and the mobile devices
they carry around. The simulation runs in cycles and in each cycle, all agents are executed
once sequentially in a specified order, which is also called scheduling. For the evaluations
in this thesis, a random scheduling is selected. One execution denotes the process of first
updating the list of neighbor’s a device currently has, i.e. can communicate with. As a next
step, the behavior of the agent is executed; this can, for example, be the computation of
an evacuation instruction or the current location of the device. For such computations, the
device can access any information from its neighbors as it is available at that point of time.
After the behavior is finished, the configured movement of the agent is executed. Table 4.2
shows the main configuration parameters of the simulation. In addition to these parameters,
there are several more configuration options depending on the selected behavior or movement.
The simulation is built in a modular way, such that it can be easily extended to define new
behaviors, movements, environments, agents, or scheduling-schemes.
For evacuation, a layout of the building is read from an XML-file, which is required to

follow a specified standard. The building’s layout has to be in form of a grid with variable
dimensions and each patch in this grid can be marked to be accessible to the evacuees or to
be part of a wall or barrier. Additionally, each patch of the discretized layout is assigned
to a node in the macroscopic evacuation graph, which is also specified in the XML input
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file. Edges between nodes in the macroscopic evacuation graph are required to be specified
manually in the input file. The capacity of a node c (n) is computed as the number of patches
in a room. The length of an edge l (e) is calculated as the Manhattan distance between the
two patches at the center of each room. The edge capacity c (e) corresponds to the width of
the connecting door, measured in the number of patches. If there is no passage, i.e. sequence
of accessible patches, between two nodes which are connected via an edge in the graph, the
simulation responds with an error. The same holds for an initial distribution of agents in
rooms where there is not enough space.

Experiment Settings

In order to evaluate the results achieved with CC-SEP, a simple evacuation scenario is
simulated and the impact of several parameters, such as the number of evacuees or their
distribution inside the building are investigated. The objective of this experiment is to examine
the effectiveness of the proposed CC-SEP approach and to investigate whether evacuation
planning can be improved by integrating information about other evacuees in the building, even
though this information is potentially faulty, delayed, and incomplete. For this, the overall
evacuation time is compared with the time needed in an uncoordinated panic-like situation
and a situation in which all evacuees escape using the shortest path leading outside the
building. Although one of the main motivations for OBESS is the construction of increasingly
complex buildings, the investigated scenarios in this study are comparatively simple. It should
be noted, though, that any building layout can be divided into small two-dimensional sections,
which, for example, represent one floor. Therefore, the insights gained in this study can be
directly transferred to more complex scenarios. Due to the general absence of central control,
all algorithms presented in this thesis, including the CC-SEP, scale well to complex scenarios.

For the experimental study, an evacuation scenario is simulated in a simple building, which
is shown in Figure 4.3. The environment is a square field, which is divided into 25 times 25
patches. One agent can occupy exactly one patch. Patches which are occupied by an agent or
which are a-priori marked to be part of a wall or barrier are not accessible for the agents during
the evacuation simulation. The simulation terminates when all agents have reached the exit.
The devices start computing their evacuation instructions after a warm up time of 30 cycles,
in which they are allowed to gather information through communication. When an evacuation
instruction is available, the agent consequently follows this instruction by walking on the
shortest path between its current patch and the closest patch belonging to the next room
of the instruction. The shortest path in Manhattan distance metric between these patches
is computed with the A* Algorithm presented in Hart et al. [83]. Agents are only allowed
to move to an accessible adjacent patch in their von-Neumann neighborhood (cf. Figure
4.1(a)), i.e. all adjacent patches without diagonal patches. This restriction ensures a constant
traveling speed of the agent because the Euclidean distance traveled in each movement is
constant. However, if there is no free patch in the von-Neumann neighborhood but in the
Moore-neighborhood (cf. Figure 4.1(b)), i.e. all adjacent patches including the diagonal
patches, and this patch is closer in Euclidean distance to the target patch than the patch
where the agent is currently located, the individual moves in two time steps to this closer
patch in the Moore neighborhood. This has the effect that agents cluster in front of doors in
an arc-like shape instead of lining-up in front of it.
Two scenarios with different initial distribution of evacuees across two rooms are considered.
In Scenario A agents are initially located at nodes 1 and 3 in the sample building shown
in Figure 4.3. In Scenario B, evacuees are initially located in rooms 1 and 2. Simulations
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(a) von-Neumann
neighborhood

(b) Moore neigh-
borhood

Figure 4.1: Different neighborhood models for movements in the evacuation simulation.

(a) Continuous view (b) Rectilinear view

Figure 4.2: Different communication ranges for the experiments.

are run with 50 and 100 evacuees. In order to test the impact of evacuees’ distributions in
the building, different experiments are performed in which the percentage of agents located
in room 1 is decreased from 100% to 0% and the remaining evacuees start in the second
room of the considered scneario, respectively. Node 6 indicates the exit of the building and
the communication range is set to 5%, 10%, and 15%. It is defined as a fraction of the
side length of the square plane. With a communication range of 5% the agent’s own patch
and its von-Neumann-neighborhood is covered. Setting r to 10% and 15% increases the
communication range by one patch each. Figure 4.2 illustrates the examined communication
ranges. The communication range r is assumed to be equal for all devices. The influence of
walls on the communication range is neglected in the simulation. Panic behavior is simulated
by letting agents randomly select their next room, omitting doors which they have already
passed through unless there is no other option. All experiments are repeated 40 times with
different initial random agent placement according to the constraints and the results are
averaged.

Scenario A

The first scenario serves as a basis for investigating the effectiveness of CC-SEP. The main
focus lies on whether local communication can deliver enough information in order to improve
the overall evacuation time when compared to a shortest path approach or panic behavior. In
addition, the effects of different communication ranges, the total number of evacuees, and
their distribution across the building are examined. In Scenario A, agents are distributed
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Figure 4.3: Building plan and corresponding macroscopic representation used in the experi-
mental study.

equally across the two rooms which belong to node 1 and 3 of the macroscopic graph. This
way, each agent has two possibilities to reach the building’s exit, with the shortest path being:
node 1, node 3, node 5, and node 6. The alternative route is node 1, node 2, node 4, node 5,
and node 6, or node 3, node 4, node 5, and node 6 respectively. In this experiment setting,
CC-SEP is expected to deliver good results because the agents can switch to a slightly longer
but less crowded evacuation route.
Figure 4.4(a) shows the average total time for evacuation in Scenario A using 50 agents

and varying the occupation of the two rooms. For a communication range of 5%, the overall
evacuation time is only slightly improved by CC-SEP compared to the shortest path behavior.
This can be explained by the restrictive communication abilities and, as a consequence, the
lack of information which can be used for CC-SEP. Due to the lack of information, most
evacuees assume room 1 and 3 to be empty and, thus, choose the shortest path towards the
exit. By increasing the communication range, however, the total time for evacuation decreases
and CC-SEP starts to deliver significantly better results because evacuees now switch to
the longer but less crowded paths. By setting the communication range to 15% the total
time for evacuation can be reduced by up to 30% if all agents are located in either room 1
or 2, which are the scenarios with highest congestion potential. However, the reduction in
evacuation time when increasing the communication range from 10% to 15% is not significant
anymore, which implies that a communication range of 10% is already sufficient to gather
most information about the evacuation situation. In this scenario, the panic behavior exhibits
the worst evacuation time.
Figure 4.4(b) displays the results for 100 agents. From this experiment, it can be observed
that the shortest path behavior produces similar overall evacuation times when compared
to the panic-like behavior. In the case of agents being quite equally distributed across both
rooms at the beginning of the evacuation, a panic-like behavior can yield even lower total
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(a) 50 agents. (b) 100 agents.

Figure 4.4: Comparison of the total time for evacuation with only 50 (a) and 100 agents (b)
in Scenario A applying CC-SEP, shortest path, and panic behavior.

evacuation times. The reason for this effect is that with 100 agents in the building, the
congestion on the shortest path has become so large that randomly searching for an exit
results in a faster evacuation process when compared to enduring the waiting time in the
congestion. With CC-SEP and a communication range of 15% the evacuation process is
up to 40% faster than in the shortest path and the panic-like behavior, which is a higher
improvement when compared to the same scenario with 50 agents inside the building. Here,
the difference between shortest and quickest path, which is emphasized at the beginning of
this section, becomes clearly apparent. So far, it can be concluded that providing information
about the shortest path to the exit is better for most investigated situations when compared
to evacuees blindly searching for their way out. Nevertheless, leading all evacuees on the
shortest path can lead to congestions, which can result in an evacuation performance which is
even worse than the one in a panic situation. It is shown that CC-SEP, on the other hand,
is able to collect and use information about other evacuees’ locations in the building and,
thus, reduce the overall evacuation time, even though this information has to be collected over
uncertain links of an ad hoc network. Similar to the scenario with 50 agents, the difference
between evacuation times produced by CC-SEP with 10% communication range and a 15%
range is not significant, however, the results for a 5% communication range are noticeably
different. With 5% and a high concentration of agents in one of the two initial rooms, the
performance of CC-SEP is similar to the results with 10% and 15%, but the more equally
the agents are distributed, the worse the results get. When agents are distributed across
both rooms, 50 agents are located in each room. Hence, the scenario is similar to the first
experiment where all agents are concentrated in room number 1, except for the fact that
now additional 50 agents are located in room 3. Due to the small communication range, the
devices, again, assume that the shortest path is occupied by only a few other evacuees and
choose this path for evacuation. The overall evacuation time is now even higher than for the
scenario with 50 agents because of the additional 50 evacuees in room 3, who are the reason
for the increase in the time it takes for evacuees in room 1 to reach the exit on the shortest
path.
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Scenario B

In Scenario B, the path options for some evacuees are reduced. When following the shortest
path, agents in room 1 leave the building over node 1, node 3, node 5, and node 6, while
agents on node 2 pass by node 4, node 5, and node 6. Agents from the room corresponding to
node 2 have only one path leading to the exit, while agents in room 1 can still select between
two choices. As a consequence, it depends on the amount of agents in room 2 whether or not
it is advisable for agents of room 1 to switch to the route with a longer distance to the exit.
With this scenario, it is examined whether CC-SEP is capable of recognizing the right choice
for agents in room 1.

In Figure 4.5(a), the results for 50 agents are displayed, which basically confirm the obser-
vations from Scenario A. The shortest path behavior causes a slightly higher evacuation time
compared to CC-SEP with a communication range of 5%. When using a wider communication
range of 10% or 15%, the evacuation time is further reduced by up to 30%. When more than
half of all evacuees are initially located in room 2, CC-SEP does not yield any additional
performance improvement when compared to the shortest path. The reason for this is that
due to the accumulation of agents in room 2, the escape route node 2, node 4, node 5, and
node 6 does not present an attractive path choice for agents in room 1. The shortest path
route node 3, node 5, and node 6 is more attractive for agents in room 1. Since the design
of the evacuation graph does not provide any other choice of route for evacuees in room 2
than the path over node 4, node 5, and node 6, CC-SEP does not bring any additional benefit
compared to the shortest path behavior in case of such a distribution. This example shows
how important the choice of the macroscopic building model is for the evacuation performance
with CC-SEP.

(a) 50 agents. (b) 100 agents.

Figure 4.5: Comparison of the total time for evacuation with 50 (a) and 100 agents (b) in
Scenario B applying CC-SEP, shortest path, and panic behavior.

In Figure 4.5(b), the experimental results with 100 evacuees are depicted. When 100 evacuees
are distributed equally across the two starting rooms, CC-SEP becomes slightly worse than
the shortest path behavior for a 5% communication range. To understand the reason for this
effect, it has to be noted that any deviation from the shortest path increases the evacuation
time in a scenario with precisely as many evacuees in room 1 and room 2. This is because
any evacuee which deviates from the respective shortest path would block evacuees on the
alternative path due to the symmetrical layout of the graph. With a 5% communication
range, the chance for evacuees in room 1 to receive no information about evacuees in room

58



4.1 Macroscopic Swarm Evacuation Planning

2 is higher when compared to a situation with a 10% or 15% communication range. Hence,
evacuees are more likely to choose route node 2, node 4, node 5, and node 6 than with a larger
communication range. In contrast to Scenario A, where the panic behavior received better
results compared to the shortest path behavior, this is not the case in Scenario B. The reason
for this is that in Scenario A, the shortest path always contains node 3 where the agents meet,
while in Scenario B this happens the earliest in the room associated to node 5, where the
capacity is higher.

Initialization Time and Repetition

So far, CC-SEP is computed after an initialization time of 30 cycles, in which the agents
are allowed to collect information. Although this is a sound presupposition, there could be
scenarios in which such a time is not given, thus, it is interesting to investigate the influence of
initialization time on the algorithm’s performance. All following experiments are carried out
with 100 agents and a communication range of 15%. The results for panic-like behavior are
omitted since it has been shown that, on average, they are significantly worse than evacuation
times achieved with CC-SEP or the shortest path following behavior. Figures 4.6(a) and
4.6(b) display the results with and without initialization time. If CC-SEP starts immediately,
it means that information can only be gained from devices which are one hop away before the
computation of evacuation instructions begins. The results confirm the intuitive expectation
that providing for a time period to initialize and, thus, collect information, improves the
overall evacuation time. Of course, this is not the case if there is no possibility to choose
between paths, such as in Scenario B when most agents start at node 2. In addition, when
agents are concentrated in one room, initialization time does not improve the evacuation time
significantly because most information can be exchanged in few rounds.

(a) Scenario A. (b) Scenario B.

Figure 4.6: Results for evacuation time with (I) and without (nI) initialization time of 30
cycles.

When aiming at building an adaptive evacuation system, one has to allow for the computation
of new evacuation instructions in order to include recent information. Such adaptive route
planning is achievable when CC-SEP is computed repeatedly. Figures 4.7(a) and 4.7(b) show
the results for experiments where CC-SEP starts without initialization time and is repeated
in every simulation cycle, while taking the most current information into account.
Figures 4.8(a) and 4.8(b) illustrate the experimental results when CC-SEP is repeatedly
executed after an initialization time of 30 cycles. It can be observed that, when there is
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(a) Scenario A. (b) Scenario B.

Figure 4.7: Results for evacuation time with (R) and without (nR) repetition of computing
evacuation instructions when allowing for an initialization time (I).

little time to collect information before the instruction is computed, repetitions can help to
reduce the evacuation time in certain cases. However, when many agents are located at node
1, repeating CC-SEP prolongs the evacuation process, especially, when time for information
collection is given to the agents before the evacuation starts. There are two reasons why
repeated execution of CC-SEP can worsen the results. Firstly, agents often change between
evacuation instructions and lose time in doing so. The second reason lies within the design
of the information exchange procedure. In CC-SEP, only the number of evacuees in each
room of the building is exchanged over the network and not the IDs of the respective evacuees.
Hence, information about other rooms in the building is only available in an aggregated and
anonymized manner. Because of this design decision, it can occur that evacuees which change
rooms are counted multiple times in different rooms before the age-value of the obsolete
information expires and the number of known evacuees in the respective previous rooms is
reduced. Although this is an undesired effect, repetition of evacuation planning is necessary for
an evacuation management system to be adaptive. Consequently, it is a positive observation
that the evacuation time is still well below the evacuation time needed when all agents take
the shortest path.

(a) Scenario A. (b) Scenario B.

Figure 4.8: Results for evacuation time with (R) and without (nR) repetition of computing
the evacuation instructions without allowing for initialization time (nI).
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Approaches for Reducing Frequent Decision Switching

While the problem of obsolete information is hard to deal with, a high frequency of target
changes caused by repeated execution of CC-SEP can be counteracted. To do so, two
variations of CC-SEP are being tested subsequently. Agents are, now, only allowed to
recompute instructions after a certain patience period after a target change or if they are
more than a maximum distance away from their current target. The patience period prevents
agents from changing targets too frequently and the maximum distance avoids target changes
shortly before the current target is reached. The results for a set-up in which 100 agents
start in the room belonging to node 1 are depicted in Figure 4.9(a) and 4.9(b). As previously
defined, distances are denoted as a fraction of the side length of the square test environment.
The patience period does not have a significant impact on the overall evacuation time, which
indicates that frequently switching targets is not the main problem when executing CC-SEP
repeatedly. Nevertheless, it might be helpful to introduce a certain patience period before
rule changing is allowed not only to reduce total evacuation time, but also to avoid creating
mistrust and frustration with the system amongst the users due to a high frequency of decision
changes. It is shown that prohibiting changes in evacuation instructions for agents which
are close to their next target leads to an improvement of evacuation time if the maximum
distance is sufficiently large. However, if the maximum distance is chosen too large, this
can lead to a situation where agents do not change instructions anymore. As a consequence,
the adaptability of the system is lost. It can be concluded from these results that the slight
performance decrease when computing CC-SEP repeatedly is likely to be caused by the design
of the information exchange as aggregated, anonymized numbers.

(a) (b)

Figure 4.9: Total evacuation time when repeating CC-SEP after a certain patience period
after changing targets (a) and when limiting repetitions to agents which are a
maximum distance away from their target (b).

To conclude the experimental study, the robustness of CC-SEP is tested. For this, 100 agents
are located in room 1 and the amount of rule following agents is reduced gradually. Evacuees
who do not follow the instructions provided by CC-SEP are assumed to be taking the shortest
path to the exit instead. In addition to this robustness test, the evacuation behavior with
CC-SEP is investigated in a more complex environment. Figure 4.10 depicts the more complex
and realistic Scenario C, in which 100 evacuees are distributed according to a uniform random
distribution across all rooms of the building. Node 16 represents the exit of the building.
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Robustness

Figure 4.11(a) shows the results of the robustness test in the simple scenario. Without
repeating the computation of evacuation instructions, evacuation time increases linearly with
a decreasing number of rule-following agents until it is reduced to the performance of the
shortest path behavior. For repeated computations, the evacuation time even decreases
slightly with a higher percentage of non-followers and there is a tolerance for up to only 40%
of rule-following agents before the overall evacuation time is worse than the scenario in which
all agents follow the instructions provided by CC-SEP. Unfortunately, a similar behavior
cannot be observed in Scenario C, which indicates that this result is most likely due to the
concentration of agents in one room or due to the construction of the macroscopic evacuation
graph. However, the important result is that in both scenarios evacuation time does not
increase over proportionally when the number of rule-followers is reduced by less than 30%.
This shows that CC-SEP is quite robust even when some evacuees deviate from the evacuation
instructions. Furthermore, these results suggest that the deterioration of performance due to
a repeated execution of CC-SEP is limited to few specific cases. With a uniformly random
initial evacuee distribution and the more realistic Scenario C, the deterioration of performance
when CC-SEP is executed repeatedly is negligible compared to the previous test set-up.

Figure 4.10: Building plan of Scenario C and the corresponding macroscopic graph
representation.
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(a) (b)

Figure 4.11: Robustness test of CC-SEP with 100 agents placed in room 1 of Scenario A (a)
and with 100 agents placed randomly inside the building of Scenario C (b).

4.1.3 Conclusion
In this section, an SEP algorithm based on capacity constrained routing is presented, which can
be used to estimate the quickest evacuation path based on uncertain information. Information
about the distribution of evacuees in the building is gained via local communication by using
ad hoc network connections between mobile devices. A modification of the CCRP algorithm
published by Lu et al. [142, 143] is introduced, which estimates waiting times on each path
using a time series model in order to evaluate the different path options for each evacuee.
The main challenge for any SEP algorithm is the lack of certain global knowledge. Hence,
experiments are performed in order to determine whether CC-SEP is able to improve the
total evacuation time when compared to simply offering the shortest path as a navigation
instruction to each evacuee. In experiments, varying communication ranges (5%, 10% and
15%), different numbers of evacuees in the building (50, 100), as well as variations in their
initial distribution over the rooms of the building are investigated. Additionally, two different
building layouts are considered. The first layout is specifically designed to cause congestions
and the second layout is a more realistic and complex building layout with a large number of
different rooms and valid paths towards the exit. The performance of CC-SEP is compared
to a shortest path following behavior of evacuees and a panic model, in which evacuees are
assumed to have no knowledge about the building’s layout. Furthermore, different variations
of CC-SEP are subject to examination, such as the introduction of an initialization time
where mobile devices are allowed to collect information, an iterative repetition of evacuation
planning, as well as a patience period and a maximum target distance which have to be
fulfilled in order to allow for changes in evacuation instructions. Finally, the robustness of
CC-SEP against rule deviating evacuees is considered.
The results confirm that knowledge collected via ad hoc network connections significantly

improves evacuation time in almost all scenarios considered by up to 40% when compared
to the shortest path behavior, even though the local view on the real evacuation situation is
mostly incomplete and sometimes even incorrect. When comparing the results with the panic-
like behavior of evacuees, the improvement is even higher. Increasing the communication range
from 5% to 10% provides significantly more information for CC-SEP and, hence, improves the
evacuation time, while an increase from 10% to 15%, yields only slightly better results. The
positive effect of CC-SEP on the evacuation time is stronger when there are more evacuees in
the building, when they are concentrated in few rooms, and when there are multiple alternative
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paths towards the exit. This is due to an increased congestion potential, which CC-SEP
successfully avoids. Evaluation of Scenario B reveals that the right choice of a macroscopic
evacuation model is crucial for good performance of CC-SEP and that it is important to
provide many alternative paths in order to exploit the full potential of CC-SEP. Especially
the direction of edges in the graph is to be selected carefully. In this context, it can be useful
to provide for the possibility to change directions of edges in the graph model dynamically
depending on the expected distribution of evacuees across the building. In the work of Sangho
et al. [204], an approach for reconfiguring macroscopic graph edges is presented, which could
be applied to this problem. The O/C Architecture of the building’s CCU (cf. Section 3.1.1)
could be used to realize such a dynamic adaptation of the macroscopic graph model.

Providing for some initialization time in order to collect information is shown to improve the
results of CC-SEP. When repeating evacuation planning in each cycle, however, evacuation
time slightly increases. The reason for this is identified to be, most likely, the fact that
information is disseminated over the network in an aggregated form, i.e. the number of
devices in a room is communicated instead of their individual locations and, hence, outdated
information is used in the evacuation planning process. However, the performance still exceeds
the shortest path behavior in a vast majority of the considered scenarios. It is further shown
to yield even better results compared to the scenario without repetition when there is no
initialization time given to the evacuees. While introduction of a patience period does not
lead to significant improvements, limiting the allowed route changes to situations in which
evacuees are a certain distance away from their current target is shown to overcome slightly
deteriorated results with planning repetitions. Furthermore, performance reductions resulting
from a repeated execution of the evacuation planning are negligible in the more realistic
scenario. Finally, CC-SEP is shown to be robust against up to 30% of rule deviators and the
induced performance decrease does not increase overproportionally with the number of rule
deviating evacuees. A possibility to further improve results of CC-SEP could be to distinguish
between having no information about a path and having the information that the path is
empty. The latter case could be deduced from knowing that there are many evacuees close to
the respective path which do not report about anybody using it. Additionally, introducing a
reliability measurement based on message delays, which are encoded in the age-value, could
lead to potential improvements of CC-SEP.

4.2 Dynamic Multi-objective Swarm Evacuation Planning
Distributed and decentralized evacuation planning on mobile devices with CC-SEP, presented
in the previous section, is shown to work effectively in speeding-up the evacuation process
compared to a situation in which the devices do not use a MANET for exchanging information.
However, taking a macroscopic evacuation graph model as a basis for optimization and using
the presented information model has several constraints:

1. Locations of evacuees are abstracted to be at the center of the corresponding room.

2. Edges in the macroscopic graph model are unidirectional, excluding feasible evacuation
routes from planning.

3. Evacuees are assumed to be homogeneous and individual characteristics of the evacuees
are not considered.
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4. Waiting time on a path is assumed to be increasing linearly with an increasing amount
of evacuees using the path.

5. The communication model in CC-SEP does not keep track of the locations of specific
evacuees, but rather operates on aggregated and anonymized data.

These restrictions can lead to amendable path planning due to the high level of abstraction and
loss of information. Due to the abstract nature of the macroscopic graph model, for example,
different locations of evacuees within a single room are neglected by evacuation planning.
Furthermore, unidirectional edges in the graph can lead to path planning which ignores
potential escape routes even if they are short and empty. Additionally, homogeneous evacuees,
as well as linearity of waiting times in congestions are far from reality (cf. Helbing et al. [90]).
Another problem with CC-SEP lies within its communication model. The reduction of the
exchanged information to the number of evacuees per room instead of their exact locations
has the advantage that messages are kept short. However, the drawback of this feature is that
the locations of single evacuees are untraceable. This can lead to multiple counting of the
same evacuee in different rooms and can distort the information input for evacuation planning.
This has shown to have a slightly negative effect when CC-SEP is executed repeatedly. This
is not desirable since evacuation planning is supposed to be adaptive to new situations, such
as blocked passages or the emergence of congestions for which repeated computations of paths
are essential. For these reasons, it is worth looking into alternative possibilities to perform
SEP on mobile devices.

Inspiration for an alternative approach to the evacuation planning presented in the previous
section can be found in the area of robotics, where path planning, or motion planning as it is
often referred to, is a well-studied task (cf. for example Choset [41] or LaValle [132]). Motion
planning is often performed on the basis of a grid-like, discretized map of the environment,
which is made available to the robot. The patches of this grid correspond to the size of the
robot and represent nodes in a graph and neighboring patches are connected via edges. The
resulting graph model is more detailed when compared to the macroscopic graph evacuation
model used in CC-SEP. In addition, locations and distances are represented more realistically.
This graph model is used for motion planning by applying a shortest path algorithm. In the
work of König and Likhachev [125], for example, an algorithm for robot motion planning is
presented, which can be used to compute lowest cost paths based on such a discretized map.
This approach is especially interesting for evacuation path planning, since it is specifically
designed for dynamic environments, where changes in traveling costs become available to the
robot while it moves towards its target. Evacuation planning on the basis of information
from communication in an ad hoc network has similar characteristics. The mobile devices
constantly receive new information during the evacuation process. This newly available
knowledge should, ideally, be integrated in the path planning process in order to adjust the
evacuation instructions if reasonable. Only under these circumstances can the evacuation
planning be adaptable to changes in the environment, such as blocked passages or emerging
congestions.
Apart from the constraints mentioned previously, another limitation of CC-SEP has to be

addressed. Since the path planning is based on the CCRP algorithm (cf. Lu et al. [143]),
it only optimizes for evacuation time and is inflexible to integrate other objectives. While
the circumvention of potential congestions is an obvious goal when choosing an evacuation
route, there are other criteria that should be considered. For example, the avoidance of
risky areas can be crucial for the safety of evacuees. Moreover, the personal preference for
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such evaluation criteria can be different for each evacuee. For example, people with physical
disabilities would probably prefer to take a shorter path or may be willing to take a longer
path if it is better accessible. Evacuation planning should, ideally, be capable of respecting
individual characteristics and preferences, as well as multiple objectives. The Dynamic Multi-
objective Swarm Evacuation Planner (DMO-SEP) introduced hereafter overcomes some of the
aforementioned limitations of CC-SEP and respects user preferences during path planning. It
is designed to optimize for multiple criteria simultaneously when searching for an optimal
escape route for a specific evacuee. DMO-SEP is based on the previously described dynamic
robot motion planning algorithm, called D* Lite, which is introduced by König and Likhachev
[125]. The algorithm is described briefly in the next section, before DMO-SEP is presented in
detail and tested in an experimental study.

4.2.1 D* Lite
D* Lite is based on a graph representation G = (N,E) of the environment which differs
from the macroscopic evacuation graph model. The environment is divided into square
patches in a grid-like fashion, such that each patch corresponds to the expansion of an average
person, and each patch represents a node n ∈ N of graph G. Neighboring patches in the
von-Neumann neighborhood (cf. Figure 4.1(a)) are connected via edges E : (N ×N) in the
graph representation and each edge has traveling costs c (n,m) assigned to it, representing
the costs for traveling from patch n ∈ N to m ∈ N . D* Lite computes the path with minimal
total costs from a specific starting patch ns ∈ N to a target patch nt ∈ N . The starting patch
corresponds to the current location of the robot. The algorithm starts at the target patch
and from there looks for surrounding patches with minimal traveling costs to the target patch
similar to the well-known Dijkstra algorithm. The search is directed towards the starting
patch by means of a heuristic value h (n), which denotes the Euclidean distance between each
patch n and the robot’s current position. Patches with a lower value for h (n) are preferred
in the search for the lowest cost path, which can reduce computational costs due to a faster
termination of the search. This approach was first proposed by Hart et al. [84] in form of the
A* algorithm designed for static path finding.

Let Adj (n) return all adjacent nodes of a node n ∈ N with respect to its von-Neumann
neighborhood and d (n) denote the minimal traveling costs from n to nt, d̄ (n) is an auxiliary
variable. In D* Lite, patches which have to be processed in order to find the lowest cost path
are added to a sorted set U . All nodes in this set are sorted in ascending order with respect
to key1 (n) = min

(
d (n) , d̄ (n)

)
+ h (n) and, subsequently, key2 (n) = min

(
d (n) , d̄ (n)

)
. Let

first (U) denote the first element in the set U , i.e., the element with the smallest key value.
The complete procedure of D* Lite is described in Algorithm 4.3.

If a change in traveling costs is detected for an edge e (n,m), for example because one of the
corresponding patches is blocked, the update procedure is called for nodes n and m and for all
nodes which are subsequently added to U , recursively, until U is empty or the starting patch
is updated and consistent. Consistent means that the values for d (n) and d̄ (n) are equal.
The consistency check in line 5 of the update procedure limits the propagation of cost changes
to affected nodes and reduces the computational costs of the algorithm when compared to
replanning from scratch. Figure 4.12 illustrates the update process with a simple example.
The top row displays the discretized environment consisting of 9 patches; the start patch of
the robot is marked with a circle and the target with a cross. The bottom row shows the
corresponding graph representations using nodes (dots) and connecting edges. The traveling
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Algorithm 4.3 D* Lite
Require: graph G = (N,E), start node ns, target node nt, heuristic h (n) ∀n ∈ N , costs

c (e) ∀e ∈ E
1: d (n)←∞,∀n ∈ N
2: d̄ (n)←∞,∀n ∈ N , d̄ (nt)← 0
3: U.add (nt)

4: procedure computePath
5: while (key (first (U)) < key (ns)) ∨

(
d̄ (ns) 6= d (ns)

)
do

6: Define u← first (U)
7: if d (u) > d̄ (u) then
8: d (u)← d̄ (u)
9: update (u)

10: end if
11: for p ∈ Adj (u) do
12: update (p)
13: end for
14: end while
15: end procedure

16: procedure update(n)
17: if n 6= nt then
18: d̄ (n)← min∀s∈Adj(n) (c (n, s) + d (s))
19: U.add (n)
20: if d (n) = d̄ (n) then
21: U.remove (n)
22: end if
23: end if
24: end procedure
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costs are assumed to be 1 for all edges in the graph and the numbers in the nodes denote
the minimum travel costs d (n) from that node to the target node. In the second state of the
environment, the center patch is discovered to be blocked, therefore, the connected nodes are
updated according to the procedure described in Algorithm 4.3. The gray nodes are found to
be consistent, i.e., their distance costs are not affected by the change, whereas the shaded, red
node is inconsistent and requires an update. Since the red node is the starting node and it is
consistent after the update, the process terminates and the new cost minimal path is found by
following the nodes which have the lowest costs assigned. In this example, there are two valid
lowest cost paths, of which one is selected at random and depicted. From this example, the
advantage of D* Lite becomes apparent. In contrast to updating all nodes in the graph after
a change in the environment is detected, only the nodes which are affected require an update.

Figure 4.12: Update process of D* Lite when a patch is discovered to be blocked.

4.2.2 Dynamic Multi-objective Swarm Evacuation Planning
For DMO-SEP, each device is assumed to possess knowledge of its current location and
of the building’s layout, e.g., by downloading it upon entering the building. Similar to
CC-SEP, DMO-SEP relies on an exchange of information between mobile devices via ad hoc
network links and performs decentralized path computations on each device. It, therefore,
belongs to the family of SEP algorithms as defined in Section 4.1. The information from local
communication is used to assign costs to the edges of the graph model before applying the
dynamic path planning algorithm D* Lite (cf. Section 4.2.1) to find an optimal path towards
the exit. Since route planning with D* Lite is solely based on costs instead of an estimation of
traveling and waiting times, the approach is flexible to incorporate multiple objectives. This
can be achieved by using a complex cost function which consists of multiple components o ∈ O,
such as risk, distance, or waiting time, each representing a different optimization objective.
These components are weighted and summarized in order to derive the total traveling costs
for evacuee a, which can then be used for D* Lite:

ca (e) =
∑
o∈O

(wa
o · ca

o (e)) (4.1)

with weights wa
o ∈ [0, 1] and

∑
O w

a
o = 1. The weights can be defined according to the

characteristics and preferences of each evacuee. After the costs for all edges in the discretized
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layout have been computed, D* Lite finds the minimum cost path, which is a sequence of
patches < ns, ..., nt >. From this path, a sequence of rooms is generated, by analogy with the
evacuation instructions in CC-SEP, and a navigation path can be displayed to the user on
the screen of the mobile device. The transformation from patches to a room-based path is not
necessary, but it ensures that the displayed path is easily conceived by the user in contrast to
a path which assembles a winding sequence of patches.
To illustrate and test the functionality of DMO-SEP, three optimization criteria are con-

sidered. Since a straightforward objective for evacuation planning is to reduce the traveling
distance, the distance traveled constitutes one of the cost components. These costs cdistance (e)
arise for each edge e ∈ E in the graph model G and represent the distance between the patches
which are connected by the respective edge. They can be made available to the mobile devices
along with the download of the building’s layout. Although they are initially equal for all
devices, it is conceivable that an evacuee detects a blocked passage during his escape, reports
this to his mobile evacuation device, and this information is then spread to other mobile
devices using the ad hoc network communication. In such a case it is possible that, due to
the delays and potential network link breakages, distance costs for the patches in the graph
model diverge between mobile devices. Apart from traveling distance, two other objectives are
considered when choosing evacuation routes, the minimization of risk and the minimization of
waiting time on the paths. Since jamming queues in front of narrow passages or doors are the
main reason for waiting time, the minimization of waiting time is considered equivalent to
congestion avoidance.

Risk Minimization

In order to be able to avoid risky paths, the devices need to know which areas are dangerous. It
is reasonable to assume that there are sensors installed inside the building which can measure
potential danger indicators, such as gas or heat, and forward this information to mobile devices
nearby. Such a scenario is, for example, examined by Filippoupolitis et al. [66]. For simplicity
reasons, it is assumed that the sensors communicate a certain risk level risk (R) ∈ [0, 1]
for room R instead of empirical measurement data which would require a certain degree of
interpretation. The corresponding costs are assigned to all edges e (n,m) , n ∈ R connecting
nodes in the respective room:

crisk (e (n,m)) = risk (R) : n ∈ R (4.2)

By assigning a risk value to each patch in a room, it becomes comparatively more expensive
to cross a larger room with the same risk level. The information about the risk level of a
room is shared with other devices using ad hoc network connections. To do so, each message
contains an age-value which is set to zero at the moment at which a risk level is reported
from a sensor to a mobile device. Then, the age-value is increased according to the system
clock of the mobile devices. When the information is forwarded to other mobile devices, the
age-value is included in the message. Whenever a device receives contradictory information
about the risk level of a room from two different sources, it can identify and adopt the most
recent information.

Congestion Avoidance

Congestion avoidance is a well-known task in the research area of traffic optimization. However,
there is a major difference between traffic and evacuation scenarios. While traffic jams are
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usually rather well-organized situations, in which cars are lined up behind red traffic lights
or other barriers, evacuation is often accompanied by panic. In panic situations, however,
the time needed for evacuees to traverse a narrow passage is not easy to estimate. Firstly, it
does not increase linearly with the number of waiting evacuees or the size of the door, but
is rather dependent on many other factors which affect the forces that act on the evacuees
and, hence, determine the time needed for a congestion to dissolve (cf. Helbing et al. [90]).
This kind of situation is further aggravated when information about the locations of all
evacuees is uncertain. Similar to CC-SEP, the mobile devices in DMO-SEP are assumed to
communicate their own location to other nearby devices and spread such information in the
ad hoc network. However, the main difference is that now all known locations of other devices
are reported as opposed to solely reporting the total number of observed devices in each room.
Analogously to the exchange of risk messages, each message concerning location information
has an age-value assigned to it, which is zero if the device’s own location is being reported
and which is increased in accordance with the device’s system clock in any other case. Due to
the delays and link breakages, which are likely to occur in the communication network, the
knowledge about other evacuees’ positions is uncertain. As a consequence, predicting waiting
times on this basis is prone to error. Fortunately, it is sufficient for evacuation planning to be
able to compare two routes with respect to their potential for congestion emergence, which is
why a precise prediction of waiting times for each path is not necessarily required. In order to
measure a route’s potential for congestion emergence, two indicators are proposed. These can
be computed from the locations of evacuees in the building, and are intuitively suitable to
evaluate congestion potentials on evacuation paths. Both indicators are introduced hereafter
and tested for their effectiveness in a subsequent experimental evaluation.

Load The first congestion indicator is based on the idea that jamming queues are more likely
to occur when a large number of evacuees are located in a relatively small room. The potential
for such a situation to occur is measured by a parameter called load, which is constituted of
the number of devices d ∈ D in relation to the size of the room R in which their location is
determined. The associated costs for each edge e (n,m) between nodes n and m in room R
are computed as:

cload (e (n,m)) = |{d ∈ D : n (d) ∈ R}|
|{n ∈ R}|

(4.3)

with n (d) denoting the node on which device d is located. One could argue that using the
number of devices in relation to the size of the room’s doors as an indicator would be more
effective, but a room can have multiple doors and yet usually only one of them determines
the room’s flow rate. Since it is hard to tell which doors will be used by how many evacuees,
load as defined above seems the more general indicator for congestions.

Entropy Congestions are so-called emergent phenomena, i.e., formations of order from
disorder based on self-organization. Emergence can be measured by applying the concept
of entropy, a metric to measure the amount of order in a system, as suggested by Mnif and
Müller-Schloer [162]. A system with high order corresponds to a low entropy value and vice
versa. When congestions arise in an evacuation situation, it is usually because evacuees jam
up in front of doors or narrow exits. As a consequence, the distribution of the locations
of mobile devices in the affected room is concentrated in front of the cause for congestion.
Entropy can be used to describe this degree of concentration as explained in the following.
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Patches in a room can be organized in rows and columns reflecting their horizontal and
vertical order respectively. Let a room R contain x× y patches, i.e., x columns and y rows.
Let further num (i), num (j) denote the number of devices d ∈ D located on column i or row
j respectively. The entropy of a room R is computed as shown in Equation 4.4 and 4.5, with
x (n), y (n) denoting the row and column of a patch n, respectively. The value p (n) denotes
the relative frequency of evacuees on patch n of room R.

e (R) = −
∑
n∈R

p (n) ld p (n) (4.4)

p (n) = num (x (n)) + num (y (n))∑x
i=1

∑y
j=1 num (i) + num (j) (4.5)

Figure 4.13 shows an example of the calculation of a room’s entropy. The locations of devices
are marked with four rings inside the respective patches. Firstly, the devices in each row
and column are counted. Then, the sum of the corresponding values is assigned to each
patch. In the second step, the relative frequencies p (n) are computed for each patch and the
entropy value e (R) of room R is derived. The entropy value can vary significantly for different
room sizes. To make rooms comparable, the entropy is normalized as follows. The maximum
entropy emax (R) = ld (x · y) for a room R is reached when each patch is occupied by one
evacuee since the size of each patch corresponds to the expansion of an average person (cf.
Section 4.2.1). The minimum entropy value emin (R) = ld (x+ y)− 2

x+y is achieved when only
one single evacuee is located somewhere in the room. Since entropy decreases with increasing
concentration of devices, the entropy based cost component for edge e (n,m) with n ∈ R is
computed as:

centropy (e (n,m)) = 1−
(

e (R)− emin (R)
emax (R)− emin (R)

)
, n ∈ R (4.6)

(a) Counting devices. (b) Computing entropy.

Figure 4.13: Example of computing the entropy of a room with sixteen patches and four
evacuees (patches with rings).
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4.2.3 Evaluation
In order to assess whether DMO-SEP can accelerate the evacuation process, a simulative
experimental study is performed. By analogy with the evaluation of CC-SEP, agents corre-
spond to evacuees and their mobile devices. The first aim is to verify whether the reduced
abstraction of the underlying evacuation model helps to improve evacuation time compared to
the macroscopic graph based CC-SEP. Furthermore, the proposed risk avoidance mechanism
is to be tested and it is subject to investigation whether the presented congestion indica-
tors are suited to compare routes with respect to their congestion potential and, hence, to
avoid jamming queues and to facilitate a faster evacuation of the building. The simulation
environment used in the experimental study is the same as described in Section 4.1.2. The
investigated building layout is the same as Scenario C used for evaluation of CC-SEP, which
is the more complex building layout shown in Figure 4.10. The rooms with number 4, 6, and
10 connect the other rooms behind to the room with number 12, which leads directly to the
building’s exit. Hence, agents initially located in rooms behind these potential bottlenecks
are likely to get caught up in congestions. Due to this characteristic and because there are
various valid escape routes, this layout is suitable to test the effectiveness of the congestion
indicators. Unless stated otherwise, all experiments are performed with 60 agents and are
repeated 40 times, randomly varying the initial distribution of agents in the building. The
initial locations are chosen randomly according to a uniform distribution. The communication
range is set to r = 15%, which covers the agent’s current patch plus three patches in horizontal
and vertical direction respectively (cf. Figure 4.2). Walls or barriers do not interfere with
the communication range. For evaluation, total and average evacuation time is measured as
well as the average time spent in risky areas or without movement. The latter is denoted as
waiting time. Naturally, a significant difference between total and average evacuation time is
to be expected in most scenarios because total evacuation time reflects the maximum time any
agent needs to leave the building. Hence, one outliner can significantly influence this result.

Evaluation of Reduced Abstraction

Firstly, the performance of DMO-SEP is compared to CC-SEP in a sample scenario where
agents are distributed over the building according to a uniform random distribution. In this
scenario, congestions are expected to be minimal, since there are only few agents located
initially in each room. Hence, the impact of the reduced abstractions in DMO-SEP compared
to CC-SEP becomes clearly visible. Figure 4.14 displays the results. It becomes apparent
that the differences between DMO-SEP and CC-SEP are only marginal when there is no
congestion avoidance necessary. Nevertheless, a slight improvement in the total evacuation
time by one round on average is achieved by DMO-SEP when compared to CC-SEP. Since
congestions are unlikely in the considered scenario, the reason for this can be found in the
reduced abstraction of the evacuation graph model. While the macroscopic graph measures
all distances from the center of the rooms, DMO-SEP takes into account the agents’ actual
locations. In addition, DMO-SEP allows for bidirectional edges which increases the number
of available evacuation routes for planning. The results of this first experiment indicate that
DMO-SEP computes slightly faster evacuation instructions for situations in which congestions
are unlikely due to several reduced abstractions in the planning process. Subsequently, the
integration of different objectives in DMO-SEP is investigated, starting with risk avoidance.
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Figure 4.14: Comparison of the two proposed SEP approaches without congestion indicators.

Evaluation of Risk Minimization

The next experiment is performed in order to evaluate the impact of risk avoidance on the
total evacuation time and the average evacuation time per agent, as well as on the time agents
spend waiting in congestions or are exposed to risk. To accomplish this, two classes of evacuees
are defined, one class consisting of risk aversive agents, and another class which consists
of agents who prefer short ways even if they lead through risky areas. In this experiment,
rooms 4 and 10 are assumed to have a risk level of 1 and agents which enter these rooms are
informed about their current risk exposure. Risk aversive agents optimize path costs with
weights wrisk = 0.9, wdistance = 0.1 and less careful agents assign weights wrisk = 0.8 and
wdistance = 0.2 to the respective costs. Figure 4.15 shows a sample situation which occurred
during an experiment run. Here, the different reactions to the detection of higher risk levels
for both agent classes can be observed. A risk aversive agent, depicted as a blue square,
chooses a path with a longer traveling distance in order to avoid the risky area in room 4.
Agents with a higher tolerance for risk, on the other hand, refrain from taking a detour and
pass through rooms with higher risk levels. This exemplary situation also demonstrates how
ad hoc network communication is employed in order to reduce the time needed for evacuation.
The risk aversive device does not enter room 4 in order to realize that it is an area of high risk,
but, instead, is informed about it by other agents via communication over the ad hoc network.
Therefore, the agent starts walking directly on the alternative path instead of wasting time
checking the condition of room 4 by himself.
In Figure 4.16, findings about the impact of risk avoidance on evacuation time are presented.
In this experiment, there are only risk-aversive agents in the environment. The numerical
results of the experiment described previously reveal a quite intuitive effect. The reduced
average time an agent spends in risky areas comes at the cost of an increased evacuation time.
Additionally, the average waiting time per agent is increased because more evacuees take the
less risky routes and, thereby, the congestion potential is increased on these paths.

Evaluation of Congestion Avoidance

The third experiment aims at testing the effectiveness of the proposed congestion indicators.
Figure 4.17 displays a sample situation in which 40 agents are initially located in rooms
number 3 and 4. This setting provokes congestions in both rooms when minimizing traveling
distance is the only optimization objective. The integration of load, as well as entropy based
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Figure 4.15: Risk avoidance for two different agent classes. More risk aversive agents are
depicted in black, rooms 4 and 10 represent areas of high risk.

Figure 4.16: Experimental evaluation of risk avoidance.
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costs, is expected to dissolve these jamming queues. Scenario (a) shows the situation in which
only traveling distance is being optimized, while scenario (b) optimizes distance and load costs
and scenario (c) distance and entropy costs. The weights for scenarios (b) and (c) are chosen
as wload = wentropy = 0.8 and wdistance = 0.2. The depicted experimental results confirm the
initial expectations. For both congestion indicators, the jamming queues in rooms 3 and 4 are
reduced. The snapshots also show the different effect both congestion indicators have on the
evacuation situation. When agents optimize entropy-based costs, they spread over various
alternative paths, which reduces the concentration of agents in the building significantly. This
effect is much less pronounced when load costs are being optimized. Figure 4.18 quantifies the
evaluation of the three depicted scenarios which, generally confirms the previous observations.
The integration of entropy and load costs reduces the overall evacuation time by 23% for the
scenario with entropy costs and 19% for additional load costs respectively, when compared to
evacuation planning where minimizing traveling distance is the only objective. A comparison
with CC-SEP yields an even higher reduction in total evacuation time of 32% considering
DMO-SEP with load costs and 26% when compared to DMO-SEP including entropy costs.
This is a significant improvement when compared to the first experiment in which agents
were distributed randomly over the building. This is due to the higher congestion potential.
Furthermore, the average evacuation time per evacuee and the average waiting time, i.e., cycles
without movements per agent, are reduced significantly with DMO-SEP when compared to
CC-SEP. Achieving lower waiting times is an important criterion for the evaluation of an
evacuation navigation support system. It seems natural that people in a panic situation are
less patient and, if they are expected to wait often, are more likely to lose their trust in the
navigation support system. CC-SEP navigation instructions obviously expect evacuees to wait
more often at jammed doors compared to DMO-SEP. Even when the total evacuation time
is similar for both approaches, it is more likely that evacuees follow navigation instructions
which keep them moving during a panic situation in contrast to a system which expects
them to wait either too frequently or for extended periods of time. It can be concluded that
DMO-SEP is superior to CC-SEP in all considered criteria.

(a) Distance costs (b) Load costs (c) Entropy costs

Figure 4.17: Evacuation situation after 24 cycles when optimizing for distance costs only (a),
distance and load costs (b), and distance and entropy costs (c).
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Figure 4.18: Experimental evaluation of congestion avoidance with DMO-SEP and comparison
to the performance of CC-SEP.

4.2.4 Conclusion
In this section, DMO-SEP is presented. DMO-SEP is an alternative SEP approach for mobile
devices which overcomes some of the drawbacks of CC-SEP. DMO-SEP is based on a less
abstract environment model and collects precise location information from other mobile
devices over the ad hoc network. Furthermore, DMO-SEP computes optimal evacuation paths
with respect to several objectives at the same time and can take into account individual
preferences and characteristics of the mobile device’s user. The application of an incremental,
heuristic search algorithm to find optimal paths allows for dynamic replanning of navigation
instructions and reduces the necessary computations compared to a search from scratch. This
is especially useful for SEP, where knowledge collected by devices via local communication
changes constantly over time. Fast replanning and integration of newly available information
makes the evacuation planning approach adaptable to detected changes in the environment,
such as the emergence of congestions. DMO-SEP is able to evaluate paths with respect to
multiple objectives by assigning a weighted sum of cost components to a path, such that each
cost component reflects one optimization objective. Four cost components are proposed and
evaluated in experiments. Two of these components are meant to capture the congestion
potential on a path. One congestion indicator is based on the load of a path, i.e. the number
of evacuees in relation to the size of the rooms on a path, the other is an entropy-based
indicator, which assesses the concentration of evacuees within rooms along the considered
path. Additionally, travel distance and danger indicators are proposed as cost components for
optimization.
Experiments are performed in order to evaluate DMO-SEP. For this, a realistic scenario

with various rooms in the building is taken as a basis, which is also used in the CC-SEP
experiments. The performance of DMO-SEP is assessed by regarding the resulting total
evacuation time, the average evacuation time per evacuee, the average time an evacuee spends
in risky areas, and the average waiting time of each evacuee, i.e. the time it spends without
moving. Firstly, DMO-SEP and CC-SEP are compared in a scenario with low congestion
potential. It is shown that DMO-SEP produces better results in terms of total and average
evacuation time, as well as waiting time than CC-SEP in this scenario, which is most likely due
to the reduced abstractions in the evacuation model used as a basis for evacuation planning.
The evaluation of DMO-SEP proceeds with testing the risk minimization objective and the
integration of different preferences of evacuees. To do so, a sample scenario is analyzed in which
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two classes of evacuees are simulated, each of which representing different risk preferences. One
class of agents is risk-aversive, the other is risk-friendly. The evacuation instructions produced
by DMO-SEP are shown to respect these preferences and it is observable that evacuees are
informed early about risky paths, such that they do not have to go near dangerous areas
before they switch to alternative routes. Additionally, experiments with only risk-aversive
agents reveal that risk-aversion comes at the cost of evacuation time, which is intuitively
understandable. Furthermore, the impact of both congestion indicators is examined and it
is shown that they reduce the overall evacuation time effectively, even in an uncertain and
incomplete information situation. In a specific scenario, which provokes congestions, the total
evacuation time is reduced with DMO-SEP and load-based congestion avoidance by up to
32% and with entropy-based congestion avoidance by only slightly less when compared to
CC-SEP. Furthermore, DMO-SEP is shown to improve average evacuation time and waiting
timer per agent significantly when compared to CC-SEP. It can be concluded from the
presented evaluation that DMO-SEP is superior to CC-SEP in terms of evacuation as well
as waiting time and that DMO-SEP is, therefore, the better choice for evacuation planning
than CC-SEP when the number of exchanged messages is not important. One remaining
open question in context of DMO-SEP is the determination of optimal weights for the cost
components. However, the O/C Architecture offers a solution to this problem. The online
and offline learning mechanisms could be applied in order to learn the best weights for each
optimization criteria depending on the current evacuation scenario in a building.

4.3 Summary
This chapter defines the process of SEP, which describes distributed and decentralized
evacuation planning based on information which is collected via local communication in order
to improve evacuation performance. The approach has its name from the characteristic that
local communication and decision making is used to improve overall evacuation time for a
swarm of mobile devices within a building. The main challenge for SEP is an uncertain
information situation for each device, which arises from delays and link breakages in ad hoc
network communication. This makes it hard to estimate waiting times on specific escape
routes. Two specific SEP algorithms are introduced. The first approach is called CC-SEP and
optimizes only total evacuation time. To achieve this goal, a routing algorithm is adapted,
which uses capacity reserving strategies in order to find time-optimal routes for all evacuees
in a building. Routing is based on an abstract graph model of the building, which is created
from locally available information about other evacuees’ locations. A suitable route for each
specific mobile device is selected from the optimization result. An experimental study reveals
that CC-SEP is able to improve total evacuation time significantly when compared to a
situation where evacuees follow the shortest path towards the exit. Furthermore, results are
shown to be robust even when some evacuees deviate from the evacuation routes suggested by
CC-SEP. Slight drawbacks are identified when evacuation planning is executed repeatedly in
order to adapt to new evacuation situations. However, the performance is still significantly
better when compared to a simple shortest path following behavior and several methods are
proposed and evaluated which can help to reduce this limitation. The second SEP approach,
called DMO-SEP results in even faster evacuation times. The reason for this is partly due to
a more detailed environmental model taken as a basis for path planning and an improved
communication model. Apart from its improved performance, DMO-SEP has the advantage
that it is based on a path planning approach instead of flow optimization in order to find
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escape routes. As a consequence, multiple objectives can be regarded for optimization and
can be weighted according to evacuee-specific preferences. Apart from minimizing traveling
distances, two other objectives are investigated, namely risk minimization and congestion
avoidance. In order to avoid congestions, indicators based on the distribution of evacuees in the
building are proposed, which evaluate routes according to their congestion potential instead of
estimating waiting times, as it is done in CC-SEP. These congestion indicators improve the
results of DMO-SEP even further and are shown to accelerate the evacuation of buildings by
up to 32% when compared to CC-SEP in a scenario with high likelihood for congestions. This
makes DMO-SEP more suitable for the computation of evacuation instructions. However,
CC-SEP requires fewer configurations from the device’s user since preferences do not have to
be specified. This simplicity can be an advantage, for example, if the user is not willing to
provide detailed information to the evacuation system. Moreover, exchanging the location
information of each evacuee in the building increases the communication overhead when
compared to exchanging only the observed number of evacuees in each room, as it is proposed
for CC-SEP. Hence, CC-SEP could be the first choice for evacuation planning in case reducing
energy consumption is an objective.
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CHAPTER 5
LOCALIZATION IN MOBILE AD HOC NETWORKS

In OBESS, mobile devices in combination with a permanently installed SSN are intended
to be used as navigation support for building evacuation. While the devices in the static
network are assumed to possess knowledge of their positions in the building due to a priori
configuration, the mobile devices have to be located first in order to be able to find suitable
navigation instructions leading evacuees from their current positions to an exit. Since GPS is
not available indoors, it cannot be used to localize mobile devices in OBESS. Furthermore,
a single point of failure is to be avoided in the localization process in order to make it
more robust against failure. As a consequence, decentralized computation methods for the
mobile devices’ locations are required. Because the static sensors are assumed to know
their locations, beacon-based localization algorithms, which derive unknown locations of
devices from several known locations, are applicable. Section 2.4.1 gives an overview of
beacon-based localization algorithms which can be used for this purpose. Beacon-based
algorithms allow for the computation of absolute locations with respect to a common reference
grid, which corresponds to the building’s layout in the scenario considered here. From the
presented beacon-based localization algorithms, methods which require information about the
angle between mobile and static devices are not suitable for usage in OBESS. As detailed
before, the estimation of angles requires complex preparation and bulky hardware, which
portable devices are usually not equipped with. This leaves the proximity and distance-based
algorithms. While proximity-based algorithms are less complex in terms of computational
effort, high quality localization results require numerous beacons in the network. Because
the installation of sensors is costly, one objective in OBESS is to minimize the number of
beacons in order to make its installation more attractive for building owners. Therefore,
distance-based localization algorithms are generally the better choice. Nevertheless, proximity-
based localization algorithms are a good fallback for the devices in case there are not enough
beacon nodes for distance-based localization in certain areas of a building. Furthermore,
proximity-based localization approaches are rather simple and, therefore, do not require
complex computations to be performed on the devices. Hence, they could be the better choice
when quality of localization results has to be traded for reducing energy consumption in case
the mobile device runs out of battery. Although localization algorithms are studied widely in
the literature, the impact of mobility has not yet been emphasized. As explained in Section
2.4.3, the focus of current research about the effects of mobility on localization either lies on
examining the impairment of the physical signal or the mobility is assumed to be actively

79



Chapter 5 Localization in Mobile Ad Hoc Networks

controllable by the device itself. In contrast to this assumption, mobile devices in OBESS
are portable and do not autonomously move like robots, i.e. their mobility has a passive
character.

Definition 5.1 (Passive mobility). Passive mobility describes a state in which devices are
carried by people, animals, or nature and in which the carrier, not the device, decides where
and when to move.

Distance-based algorithms use distance estimates between beacons and the devices to be located.
These estimates can be derived by range-based or range-free distance estimation techniques (cf.
Section 2.4.2). While range-based distance estimation requires specific hardware to analyze
the physical communication signal, range-free methods use messages which are exchanged
between the devices in a network. Since avoiding additional hardware for the mobile devices
in OBESS is to be desired for making the devices more lightweight and less costly, range-free
methods are the obvious choice for distance estimation in OBESS. Most range-free distance
estimation techniques require a somewhat dense and uniform distribution of communication
neighbors over a device’s communication range. Since mobility of the devices influences the
composition and structure of the network topology, it can be expected to have a significant
impact on localization results. So far, there is little known about the influence of mobility on
the results of range-free distance-based localization algorithms, hence, this investigation is
subject to Sections 5.1, 5.2, and 5.3 of this chapter. In Section 5.1 localization algorithms
based on hop counts are investigated while various mobility models are applied to the devices.
The potential of synchronization for improving distance estimation based on hop counts in
dynamic networks is examined in Section 5.2. Section 5.3 presents an alternative approach
to distance estimation based on hop counts, which delivers promising results, especially in
dynamic networks. As stated before, minimizing the number of beacons is an objective that
has to be considered in OBESS as they are costly and need to be installed, configured, and
maintained. On the other hand, the number and positions of beacons influence the quality of
localization results. To address this trade-off, a method which optimizes the placement of
beacons for localization of mobile devices, specifically during building evacuation, is presented
in Section 5.4 of this chapter. Section 5.5 summarizes the findings of this chapter. Parts of the
research presented hereafter are also published by Merkel et al. [152, 153, 154, 156, 157, 159].

5.1 Effects of Mobility on Hop Count Based Distance Estimation
A well-studied approach to estimate distances in ad hoc networks is based on so-called hop
counts. A hop count denotes the minimum number of relay devices which two devices need
to exchange messages with each other (cf. Ghosekar et al. [75]). Although this metric is
mainly used in the context of routing (cf. Boukerche et al. [22], Chatterjee and Das [38], Chou
et al. [42]), it can also be used to estimate distances. These distance estimates then form the
basis for localization. In Section 2.4, some methods which transform hop counts into distance
information are presented. This section, however, focuses on investigating the impact of
mobility on hop counts and, consequently, on the quality of derived distance estimates. When
investigating the influence of mobility, it is intuitively comprehensible that the characteristics
of mobility play an important role. For example, distances between the devices do not change
if all devices are moved with the same speed and in the same direction, whereas random
mobility has a great impact on the distances. Furthermore, the number of moving devices,
their speed, and direction of movement are important variables when it comes to examining
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the impact of mobility. As a consequence, a large spectrum of mobility models is examined
in order to derive general statements about the influence of mobility on distance estimation
based on hop counts.

5.1.1 Mobility Models
The mobility pattern in a dynamic network highly depends on its application and the
environment it is deployed in. Therefore, in order to be able to make general statements about
the impact of mobility on hop count based distance estimation, a variation of mobility models
is analyzed. In the work of Camp et al. [34], some models for describing different kinds of
mobility in networks are suggested and their impact on network connectivity and routing is
investigated. These patterns are used hereafter as a basis for studying the effect of mobility
on distance estimation based on hop counts. In addition, new mobility models, which are not
considered by Camp et al. [34], are introduced.

Individual Mobility Models

Individual mobility models describe movements where the next position of a device is deter-
mined independently from any other device in the network. The Random Walk (RW) mobility
model is one of the most widely studied mobility patterns in the literature, e.g., by Zonoozi
and Dassanayake [259]. In RW, a random direction and speed are selected from predefined
ranges and the device moves accordingly until a fixed distance is traveled or a specific time has
passed. Chaos Move (CM) denotes an RW mobility model where a new speed and direction
are selected at each step, i.e., the mobile device is kept in a small area around its starting
position. The Random Direction Walk (RD) model defines a random target at the border of
the environment and a speed value within a certain range and the device is moved accordingly
until the target is reached. Once the device is there, it pauses for some time before a new
target is selected. When using this model, there is a high likelihood that devices spend most
of their time somewhere in the middle of the environment. Bounded Random Walk (BR)
is similar to CM, but speed and direction are not varied completely at random but within
a small range around the preceding values. Similar to this, the Gauss Markov Move (GM)
selects the next direction and speed according to the following equations:

st = α · st−1 + (1− α) · µs +
√

(1− α2) · sgr (5.1)

dt = α · dt−1 + (1− α) · µd +
√

(1− α2) · dgr (5.2)

with st and dt denoting the new values for speed and direction respectively, α being a random
parameter (0 ≤ α ≤ 1) and sgr and dgr being chosen from a Gaussian random distribution
with zero mean and a standard deviation of one. µs and µd are constants. In Probabilistic
Random Walk (PR), the movement is defined by a finite state machine with fixed probabilities
for state transits. The allowed states are backward, forward or stop, and turn left or right.
The probabilities are chosen in a way that they emphasize continuous moves in the same
direction (cf. Camp et al. [34]). Figure 5.1 shows trajectories of all individual mobility models
considered above.
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Figure 5.1: Trajectories. From top left to bottom right: CM, RD, BR, RW, GM, PR.

Coupled Mobility Models

Coupled mobility models are characterized by mutual influences between the mobile devices.
The Column Mobility (ColM) model simulates children walking in a line behind their parents.
Here, all devices move randomly (according to CM) except for some groups consisting of a
leader and followers. All followers move approximately in a row behind the leading device.
Furthermore, the Nomadic Move (NomM) model is defined in which all devices move according
to CM except for some leaders that collect followers. Whenever a non-leader device comes
within communication range of a leader, it starts following the leader while moving randomly
within its communication range. When a leader has more than a maximum number of followers,
a random follower leaves the group. In the Reference Point Mobility (RefM) model, each
device is assumed to have a virtual reference point around which it moves randomly while
never exceeding a maximum distance. The reference points are assembled in a grid and move
according to CM, but share the same speed and direction as if they were connected to each
other. The Stream Mobility (StrM) model simulates devices which are moved by regular forces
such as wind or water. Each device remembers the direction of nearby devices and chooses its
own moving direction within a certain range around the angle of the most recently moved
neighbor, which is why the devices exhibit a stream-like movement. This mobility model was
developed specifically for this study and does not belong to the models published by Camp
et al. [34].

Beacon Mobility Models

Since the results of distance estimation based on hop counts depend on the position of the
beacons in the network (cf. Bachrach and Taylor [12], Nagpal et al. [171]), beacon mobility
models are defined additionally. Beacon mobility models define moves with a certain angle
and speed around a beacon. Beacon mobility models can be further distinguished depending
on whether individual or coupled movements are regarded. With individual beacon mobility
models, a device moves with a predefined speed in the direction of α with respect to a beacon
(cf. Figure 5.2(a)).

The coupled beacon mobility model is similar, except for the fact that the device is moved
together with a fixed number of its neighbors in a specified direction with respect to the
beacon (cf. Figure 5.2(b)). The same angle α is defined for all devices belonging to the
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α

(a)

α

(b)

Figure 5.2: Illustration of the individual (a) and coupled (b) beacon mobility model.

coupled group. An angle of α = 0◦ indicates a movement leading away from the beacon,
α = 180◦ directs the mobile devices towards the beacon. A movement at an angle of α = 90◦
means that the devices move along circular rings around the beacon. Figure 5.3(a) illustrates
sample trajectories of the individual beacon mobility model and Figure 5.3(b) of the coupled
beacon mobility model for various directions of movements. From these trajectories, it can be
observed that the density of devices in the environment is more regular for individual mobility
than for the coupled mobility models. Table 5.1 summarizes the mobility models described
before.

Table 5.1: Overview of mobility models investigated in this experimental study.

Type Model Short description
Individual RW Movement according to randomly chosen direction and speed

until a fixed distance or time is traveled.
CM Similar to RW, but direction and speed are changed in each

step.
RD Devices move towards randomly chosen target point at the

environment’s border.
BR Similar to CM but speed and directions are varied within a

range around preceding values.
GM Speed and direction are selected according to Equations 5.1 and

5.2.
PR Next movements are defined by a finite state machine with fixed

probabilities for state transits.
Beacon Mo-
bility

Movements with fixed speed and direction with respect to a
beacon.
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Coupled ColM Groups of followers which move approximately in a line behind
a leading device.

NomM Groups of followers which move according to CM but stay within
a leading device’s communication range.

RefM Devices move around fixed reference points which are assembled
like a grid and additionally moved according to CM.

StrM Directions of movements are chosen randomly within a range
around the last observed directions of the most recently moved
neighbor.

Beacon Mo-
bility

Leading devices and all devices in their communication ranges
move with the same fixed speed and direction with respect to a
beacon.

(a)

(b)

Figure 5.3: Trajectories of devices moved according to the individual (a) and coupled (b)
beacon mobility model at an angle of α = 0◦, 45◦, 90◦, 135◦, 180◦ with respect to
the beacon (left to right).

5.1.2 Hop Count Error Model
Hop counts relative to a beacon can be assigned to all devices in the network using the GA
presented by Nagpal et al. [171]. As detailed in Section 2.4.2, there are various methods
to derive distance estimates from hop counts. The basic idea is to multiply the hop count
value by the communication range r in order to get an estimate for the distance. However,
because networks are usually not perfectly dense, this method generally overestimates the
distances. As a consequence, refinements are proposed which adjust the estimates to the
network density using statistical techniques. Such algorithms include the idea of applying a
reduction rate depending on the local network density (cf. Kleinrock and Silvester [122], Wong
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et al. [249]), integrating information about the hop count distribution in the neighborhood (cf.
Liu et al. [140], Nagpal et al. [171]), or computing the average hop length using knowledge
about the distances between beacons (cf. Huang and Selvakennedy [102], Niculescu and Nath
[176, 177], Savvides et al. [208]). It is notable that the distance estimation error is minimal
for all estimation techniques in case the network is perfectly dense. This consideration offers
the possibility of evaluating the impact of mobility on hop count based distance estimation
independently from the specific estimation method. To achieve such an independent evaluation,
the hop count of a device in the actual network is compared to the hop count a device at the
same location would have if the network was perfectly dense. In order to do so, the concept
of ideal hop counts is introduced, which denotes the hop count each device would have in a
perfectly dense network.

Definition 5.2 (Ideal Hop Count Value). Let hideal
b (n) denote the ideal hop count value of a

device n with respect to a beacon b. The ideal hop count corresponds to the smallest integer
value which, multiplied by the communication range r, is not smaller than the distance between
device n and beacon b. The ideal hop count is computed as shown in Equation 5.3, with d (n, b)
representing the Euclidean distance between device n and beacon b.

hideal
b (n) := dd (n, b)

r
e (5.3)

Considering a perfectly dense and evenly distributed ad hoc network, each device n ∈ N , with
N being the set of all devices in the network, would be assigned a hop count value by the GA
which corresponds to its ideal hop count. An area A in which hideal

b (n) has the same value
for all n ∈ A represents one of the perfect gradient rings shown in Figure 2.17. Such a ring is
called a gradient ring gi, with i being the common value for hideal

b (n) for all devices n ∈ N
which are located in gi. The value i also corresponds to the ordinal number of the gradient
ring when counting begins at the beacon. As explained, the deviation between the hop count
values assigned to devices by the GA and the ideal hop count values is directly related to the
quality of any hop count based distance estimation algorithm. Therefore, the hop count error
is defined as follows.

Definition 5.3 (Hop Count Error). The hop count error Eb (n) of a device n is defined as
the difference between the hop count value which a GA assigns to the device hb (n) and its
ideal hop count (hideal

b (n)) with respect to a beacon b:

Eb (n) = hb (n)− hideal
b (n) (5.4)

The average hop count error in a gradient ring gi (b) with respect to a beacon b can be
computed as described in Equation 5.5 with J = {j ∈ N | dd(j,b)

r e = i} referring to all the
devices which are physically located in the gradient ring gi (b) with respect to beacon b.

Ei (b) = 1
|J |

∑
j∈J

(i− hb (j)) (5.5)

Positive Hop Count Error

A positive hop count error means that hb (n) is larger than hideal
b (n), i.e., the GA leads to an

overestimation of the hop count. Overestimation occurs, for example due to low density, when
the neighbor which is closest to the beacon is not located exactly at the border of a gradient
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ring (cf. Figure 5.4). Hop count overestimation is additive, since an overestimated hop
count can serve as a basis for the hop count determination of subsequent devices. Figure 5.5
illustrates a simple example of a positive hop count error. The beacon is located at the top
left corner and each device is labeled with its assigned hop count value h (n)1. The error
occurs in the gradient ring g2 due to the gap in g1. The device which is physically located in
g2 (marked in red) does not have any neighbor located in g1 and, thus, its hop count has a
value of 3. The hop count error in gradient ring g2, hence, results in E2 = 1

4 . A positive hop
count error is common in static networks because they rarely are perfectly dense. This usually
leads to overestimated distances, which the refinement techniques, described in Section 2.4.2,
intend to compensate.

Figure 5.4: Shift of the gradient border to-
wards the beacon due to low den-
sity in the network.

Figure 5.5: Illustration of the emergence of
positive hop count error due to
low density in the network.

Negative Hop Count Error

In dynamic networks, density varies due to the mobility of the devices. In general, when a
device is moved, the density of the network is decreased at its former position and increased
at its new location. Consequently, at first sight such a movement does not seem to have any
effect on the average hop count error in a network. At a closer look, however, it becomes
apparent that movements towards the beacon increase the density in gradient rings which are
closer to the beacon. Since hop count error is additive, the network’s overall hop count error
actually can be reduced by mobility. Figure 5.6 shows an example of a decreased hop count
error due to density enhancement close to the beacon. This effect can reduce the positive hop
count error.
Movements leading away from the beacon have the opposite effect. However, this is not

the only effect they have. In MANETs, computations are usually assumed to be made
asynchronously because the devices do not necessarily have synchronized system clocks. This
fact, together with the assumption that the device does not know whether it is moved, can
lead to a scenario where mobility is accompanied by a negative hop count error. When a
device is moved to a gradient ring with a higher ordinal number, i.e., away from the beacon, it
is possible that the device’s new neighbors wrongfully adapt their hop count values according
to the newly arrived device’s hop count before that device itself updates its hop count. Since
the newcomer has a lower hop count value, which serves as a basis for hop count computations
of its new neighbors, the new neighbors are likely to underestimate their hop count and a

1In case of a single beacon in the network, the reference to the beacon is removed from the notations for
better readability.
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Figure 5.6: Illustration of hop count error correction due to mobility in the network.

negative hop count error can occur. Additionally, the negative error is additive to subsequent
devices, similar to the positive hop count error. Figure 5.7 illustrates the emergence of a
negative hop count error in gradient ring g3 with E3 = −2

5 .

Figure 5.7: Illustration of the emergence of a negative hop count error due to mobility in the
network.

Assessment of Hop Count Errors

In general, overestimation and underestimation of distances are undesired for localization
algorithms, which is why, ideally, one should simply let both effects (density and mobility)
compensate each other. But passive mobility cannot be controlled by the devices and,
thus, the height of the negative error is not amenable to influence. As a consequence,
natural overestimation of distances can turn into an unpredictably high underestimation
and a balancing effect between mobility and density induced errors cannot be guaranteed.
Furthermore, the density-induced overestimation can be counteracted with the statistical
techniques for dealing with density-induced overestimation, described in Section 2.4.2, which
are not valid anymore in dynamic networks. Due to its unpredictable character, mobility-
induced underestimation is the more aggravating type of estimation error and should, therefore,
be eliminated. In order to tackle this problem, a device has to be able to recognize whether
and how it is moved. It has to be able to analyze the effect which the movement has on its
hop count value and to be able to eliminate this effect by an appropriate adjustment of its
hop count value. Since with passive mobility devices do not know whether they are moved,
this objective is quite challenging.
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Approaches to Reduce Hop Count Error in Dynamic Networks

To avoid the emergence of negative hop count errors, a modified version of the GA is proposed.
The underlying assumption is that when a device moves towards a new neighborhood, it is
more likely that, both, the minimum and the maximum hop count values in its neighborhood
change. In contrast, a device which has not moved but detects a change in its neighbors’ hop
count values due to a newly arriving device, is likely to find either a new maximum or a new
minimum hop count value instead of both. As a result, it could be achievable to avoid that
devices adapt their hop counts to newly arrived devices in their neighborhood which have not
yet updated their hop counts and, thus, avoiding the emergence of negative hop count error.

Definition 5.4 (Maximum-oriented Gradient Algorithm). The Maximum-oriented Gradient
Algorithm (MoGA) is defined as an algorithm which is equal to the GA with the additional
condition that a device updates its hop count only when the maximum hop count in its
neighborhood has changed as well as the minimum hop count value.

A second proposal to tackle the problem is that each device recognizes mobility and its
characteristics by observing and analyzing certain changes in its neighborhood. Based on
this analysis, the device subsequently makes reasonable adjustments to its hop count value.
Since communication overhead is always an issue in mobile ad hoc networks, it is reasonable
to aim at deriving information about movements from messages which are exchanged in
the GA instead of defining additional messages required. In order to do so, two indicators
ID-change and HC-change are proposed, which describe changes in a device’s environment,
i.e. its communication neighborhood, during certain time intervals.

Definition 5.5 (ID-change). ID-change is defined as the percentage of changed IDs in a
device’s neighborhood in the time interval [t-1, t], with IDt denoting the set of IDs in the
device’s neighborhood at time t:

ID-changet = |IDt \ IDt−1|+ |IDt−1 \ IDt|
|IDt−1 ∪ IDt|

(5.6)

Definition 5.6 (HC-change). HC-change is defined as the percentage change of the average
hop count in a device’s neighborhood in the time interval [t-1, t], with HCt denoting the
average hop count in the device’s neighborhood at time t:

HC-changet = HCt −HCt−1

HCt−1
(5.7)

Ideally, these change-indicators have conclusiveness about mobility characteristics in a device’s
neighborhood. In order to verify, whether this expectation is met, both indicators are examined
in an experimental study in Section 5.1.3.

5.1.3 Evaluation
In order to quantify the impact of various passive mobility models on the average hop count
error in a network and to evaluate the proposed containment techniques, a simulative model is
used. In the first set of experiments, the impact of various mobility models on the hop count
error is investigated. The second set of experiments evaluates the effectiveness of MoGA to
avoid negative hop count errors and the ability of the two indicators ID-change and HC-change
to capture mobility and its characteristics.
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Experiment Settings

The ad hoc network model contains 1000 mobile devices, which are distributed according to a
uniform random distribution on a two-dimensional, barrier-free plane. The communication
neighborhood of a device corresponds to its physical neighborhood on the plane within a fixed
Euclidean distance r. The communication range r is assumed to be equal for all devices and
its default value is set to 7% of the square plane’s side-length. This value corresponds to an
average neighborhood size of 14 devices, which is close to the critical minimum size identified
by Nagpal et al. [171] needed to achieve good localization results. A static beacon, which
initiates the GA, is located at the top-left corner of the environment (cf. Figure 2.17). With
this setting, there are 21 gradient rings (

⌈√
2/0.07

⌉
= 21).

A simulation cycle is defined as n = 1000 randomly selected devices sequentially computing
their hop counts. The hop counts are determined on the basis of available information from
neighbors at the time of computation. This setting imitates the asynchronous environment in
ad hoc networks. After computation of its hop count, the device is moved according to the
mobility model examined. Collisions between devices, as well as communication deficiencies,
such as interferences, shadowing, fading, or multipath effects, are not being considered. All
experiments are repeated 50 times with different randomly chosen uniform distributions
of the devices across the environment and the results are averaged for each gradient ring
separately. Devices which are not able to compute a hop count because they are disconnected
from the network are not taken into account. Since, due to the nature of the scenario, each
of the gradient rings contains a different number of devices, only the middle hops (10-15)
are considered because they contain a relatively high and similar number of devices. The
simulation environment is a torus world, meaning that devices can leave the environment
and enter again at the opposite side. When a device leaves the environment, its hop count
is set to unknown, simulating a new device entering the environment on the other side.
The speed range for each move is selected randomly between 3.4% and 3.6% of the plane’s
side-length traveled per cycle. This way, a device requires at least two cycles to leave its
own communication range. For RW, the maximum moving distance is selected as 60%. In
RD a move is paused for 10 cycles. For GM, α is set to 75% of the plane’s side-length and
an average angle of 0 degree measured from the x-Axis of the environment (bottom border)
is selected. Angle tolerance for BR and StrM is set to 30 degrees, ColM and NomM are
initialized with 10 leaders and 10 followers per leading device.

Average Hop Count Error for Various Mobility Models

In the first set of experiments, the error is calculated for 100 cycles starting with cycle 30,
which is the minimum time required to elapse until hop count values are stable in a static
network. A device is moved with a probability of pm = 0.5 after each hop count update.
At first, the hop count errors are calculated for a static network. The results are shown in
table 5.2. Only positive hop count error values are obtained. These error values intensify as
the index of the gradient ring increases, demonstrating the additive nature of the positive hop
count error, which grows larger with increasing distance from the beacon.
Figure 5.8 displays the average error for gradient rings from g10 to g15 when individual
mobility models are applied. All individual mobility models overcome the positive error of
a static network. PR shows a noticeably higher underestimation than the other mobility
models. This can be explained by the nature of this model as all devices are moved almost
into the same direction leading away from the beacon. As an underestimation can only occur
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Table 5.2: Error Ei for distance estimation based on hop counts in gradient rings g1 to g10 in
a static ad hoc network.

gi g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
Ei 0.0 0.4 0.6 0.9 1.1 1.4 1.7 1.8 2.1 2.3
g11 g12 g13 g14 g15 g16 g17 g18 g19 g20 g21
2.5 2.8 3.0 3.2 3.3 3.5 3.7 3.8 4.0 4.1 3.6

when movements are directed away from the beacon, the negative error induced by this
mobility model is higher when compared to the other models. BR, GM, CM, RD, and RW
show very similar tendencies in terms of error values. RD exhibits a slightly more positive
behavior, which can be explained by the reduced mobility due to the pauses of devices. So
far, underestimation does not become dominant for all individual mobility models under the
selected settings, unless the movements are mainly directed away from the beacon.

Figure 5.8: Hop count error with various in-
dividual mobility models.

Figure 5.9: Hop count error with various cou-
pled mobility models.

Figure 5.9 shows the hop count error values for group mobility models. For StrM, as well
as for NomM, the underestimation is less pronounced when compared to other coupled
mobility models. One reason for this could be that similar movements in neighborhoods have
a moderating effect on the mobility induced underestimation since both models generate
different groups of devices, which move together through the network. As already shown
for PR, another important factor for the development of negative hop count error is the
direction of a move relative to the beacon. Both mobility models, StrM and NomM, cause
random movements while ColM leads to movements in a more constant direction which are
accompanied by higher negative error values. Apart from ColM, RefM also shows high negative
error. This can be explained by the additional movement of the dynamic reference-point
network supplementary to the individual movements of each device, which causes devices
to move further in one time step when compared to other mobility models. This indicates
that speed, i.e. distance traveled per unit time, is another influencing factor for the level of
negative hop count error that arises with mobility. The experiment further confirms that
mobility in the network can turn the inherent overestimation of hop counts in a static network
into underestimation. Furthermore, the impact of mobility on the estimation error is strongly
dependent on the characteristics of the specific mobility model. So far, the experiments
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indicate that there are three main characteristics of mobility which influence the hop count
error:

• Direction of movements with respect to the beacon

• Speed of movements in terms of traveled distance between hop count updates

• Similarity of movements in a neighborhood

In order to be able to investigate these factors independently, the beacon mobility model is
applied to 50 random devices in the network. For the coupled mobility model, 5 leaders are
selected with 10 followers each. Figure 5.10(a) shows the average error in the gradient rings
g10 to g15 for the individual beacon mobility model with varying values for angle α and speed.
It is observable that both direction and speed are indeed relevant factors for the mobility
induced hop count underestimation. Additionally, the results show that both parameters are
interrelated and vary in the intensity of their impact. While speed is negatively correlated
with the error value for an angle between 0 and 90 degrees as well as between 270 and 360
degrees, it has almost no impact when devices move at an angle between 135 and 225 degrees.
In fact, movements towards the beacon hardly influence the hop count error at all and the hop
count distribution in the network is almost the same as in a static network. Similar results
can be observed for coupled mobility models as shown in Figure 5.10(b). A considerable
difference between coupled and individual mobility models can be observed around an angle
of 180 degrees, where errors seem to decrease for coupled movements when compared with
individual movements. This can be explained by the simultaneous increase in density close
to the beacon as described before. The reason why this effect does not occur for individual
movements is that the density does not increase significantly at a specific point in time, i.e.,
the additive effect is minor.

(a) Individual beacon mobility. (b) Coupled beacon mobility.

Figure 5.10: Hop count errors for individual (5.10(a)) and coupled (5.10(b)) mobility models
with different movement speeds and angles with respect to the beacon.

Subsequently, the individual and coupled mobility models are compared for angles between
0 and 180 degrees only, due to symmetries of error values. Figure 5.11 illustrates the hop count
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error averaged over experiments with different angles (Figure 5.11(a)) and speeds (Figure
5.11(b)) respectively. In both experiments, with individual and coupled beacon mobility, the
same total number of devices is moving in the same direction with the same speed respectively.
The only difference is that in experiments with coupled beacon mobility, devices move in
clusters. The results show that with coupled mobility, the negative hop count error is lower
when compared to individual mobility models. This confirms the previously made observation
that similar movements in a neighborhood mitigate the effect mobility has on the hop count
error. For coupled mobility models and directions between 0 and 90 degrees, the effect of
simultaneous density increase near the beacon becomes visible once more. The reason for the
high dispersion of values lies in the fact that experiments with varying speeds and angles,
respectively, are averaged.

(a) Average hop count errors for varying speed.(b) Average hop count errors for varying direc-
tions.

Figure 5.11: Hop count errors for individual and coupled beacon mobility models with different
movement speeds (5.11(a)) and angles (5.11(b)) with respect to the beacon.

Eliminating Mobility Induced Underestimation

While the previous section examines the influence of mobility on hop count estimation, this
section investigates different solutions proposed for dealing with the problem of mobility
induced underestimation. At first, the effectiveness of MoGA is being tested in the same
experimental setup as described previously. Results are shown in Figure 5.12. A decrease in
mobility induced underestimation when compared to GA can be identified in all examined
cases. Nevertheless, negative error is not successfully eliminated and the reduction is almost
constant relative to the error level. It can be concluded that MoGA has a mitigating effect on
the negative error but does not solve the problem entirely.

In the next experiment, ID-change and HC-change (cf. Equations 5.6 and 5.7) are examined.
These indicators’ ability to recognize whether the device itself is moving or whether changing
hop count values are originated in movements of neighbors is subject to investigation. Also, it
is desirable to characterize mobility and its impact on the hop count error values. If this can
be achieved, it could be achievable to find an appropriate adaptation of the hop count values
in order to reduce negative hop count errors in dynamic networks. Figure 5.13 shows the
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Figure 5.12: Hop count errors with and without the MoGA applied to networks with individual
and coupled beacon mobility models.

average values for both metrics for static and dynamic devices separately and averaged over all
considered speed and angle values. It becomes apparent that ID-change is a strong indicator
for whether a device has been moved or not. Although HC-change does not seem to be a good
indicator to detect mobility, it is useful for its characterization. When considering Figure
5.14, where the average HC-change values are depicted for different angles and speeds, it
becomes apparent that HC-change values display a similar pattern as the error values depicted
in Figure 5.10(a). This suggests that there is a distinctive relationship between mobility
parameters, such as speed and direction of movements, and HC-change values. Furthermore,
it indicates that by applying an appropriate mapping method, HC-change can be used to
characterize these parameters and to adapt the hop count values accordingly in order to avoid
underestimation.

Figure 5.13: ID-change (5.13) for static and dynamic devices using the individual beacon
mobility model.
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Figure 5.14: HC-change (5.14) for the individual beacon mobility model (the speed of the
movement is increased from 3.5% until 28% for each angle).

5.1.4 Conclusion
This section investigates the impact of mobility on hop count based distance estimation. In
order to do so, a hop count error model is introduced, which is capable of assessing the
deviation of hop counts from an ideal hop count distribution. This avoids examining the
different hop count based distance estimation algorithms individually and facilitates the
evaluation of mobility induced effects on hop count based distance estimation algorithms
in general. A thorough experimental study is performed, in which hop count errors are
determined for networks where devices move according to different mobility models. The
mobility models include some models proposed in the literature, as well as a set of mobility
models designed specifically for this study.

From the experiments performed, it is revealed that mobility has the effect to turn a natural
overestimation of hop counts and, thus, distances into an unpredictably high underestimation.
Experiments indicate that mobility of a certain speed and direction with respect to beacons can
compensate naturally positive hop count errors in a network. Nevertheless, for situations in
which mobility in a network cannot be controlled, the overcompensation can negatively affect
the accuracy of distance estimates. Furthermore, traditional heuristics to mitigate natural
overestimation are not applicable to dynamic networks without further ado. Hence, it is
concluded that the negative impact of mobility has to be contained. First experimental results
with various mobility patterns suggest that direction, speed, and similarity of movements in
neighboring regions not only affect the hop count error in different ways, but also display
significant interdependencies, making their impact hard to predict. Each impact factor is
investigated separately in further experiments and an increase in speed as well as movements
leading away from beacon nodes are found to increase the negative hop count error, while
movements directed towards beacons and a similarity of movements between nearby devices
are found to have a positive impact on the hop count error.
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Additionally, the concept of MoGA, an adapted version of the standard GA, is introduced
and its performance is evaluated in an experimental study. The study shows that MoGA
reduces negative hop count errors in dynamic networks. MoGA is demonstrated to reduce
negative hop count error but does not eliminate it entirely. Moreover, the reduction is constant
relative to the error level, such that a change in speed or direction still leads to a difference in
hop count error values. Two indicators are proposed, which are able to assess characteristics
of mobility in a network. Both indicators can be computed in a decentralized way using only
information which is available locally from the messages exchanged in order to determine hop
counts. These mobility indicators are shown to be able to help discovering and characterizing
mobility in a network. Hence, they could be used in order to improve distance estimates by
adapting hop counts accordingly. Such an adaptation could, for example, be implemented
using learning mechanisms of the O/C Architecture in order to derive a mapping between
these indicator values and the resulting hop count error in a network by training over time.
This further emphasizes the need to integrate learning mechanisms in the localization process
for MANETs.

5.2 Synchronized Hop Counting in Mobile Ad Hoc Networks
The previous section revealed that the accuracy of hop count based distance estimation and,
hence, the accuracy of distance-based localization is influenced by passive mobility in the
network such that underestimation of distances can occur. As discussed in Section 5.1.2,
a negative hop count error is more aggravating than a positive error for the following two
reasons: Firstly, it is hard to predict to what extent mobility causes a negative error, which
makes it difficult to counteract it, for example by adjusting the hop count value. Secondly,
most refinement techniques proposed in the literature deal with eliminating the positive hop
count error due to low density and are not applicable to a network with mobility induced
underestimation without further ado. As a result, a negative hop count error is undesired and
should be eliminated if possible.
In the previous section, asynchronous computation of hop counts is identified to be the

main reason for the occurrence of a negative hop count error. The logical consequence of this
finding is to investigate whether a MANET can be synchronized and if this reduces negative
hop count errors. These questions are addressed in the following. Furthermore, a procedure is
introduced in order to encode hop count information in the timing at which a signal is sent
instead of transmitting it as content of a message. This method assumes that the network is
synchronized and that the mobile devices are able to send signals at any time. The proposed
algorithm allows for the performance of distance estimation on devices which have only basic
communication abilities. Additionally, the resource consumption while determining hop counts
in MANETs can be reduced significantly.

Since MANETs lack a CCU, a decentralized synchronization technique has to be applied. As
discussed in Section 2.2.3, nature is a good source of inspiration when looking for algorithms
which can be applied to a distributed network without central control. For the task of
synchronization, a natural role model can be found as well. In Southeast Asia, fireflies provide
an impressive natural spectacle. Fireflies are also called “lightning bugs” due to their usage of
bioluminescence. At dusk, thousands of these insects gather in trees and emit light-flashes to
attract mates or prey, reaching almost perfect synchrony after some time (cf. Buck [28]). This
phenomenon gives name to a class of algorithms called “firefly-algorithms”, which can model
the emergence of synchrony in distributed systems. Charles S. Peskin was the first person to

95



Chapter 5 Localization in Mobile Ad Hoc Networks

mathematically describe this phenomenon of pulse-coupled oscillators in [181]. In his model,
each oscillator emits a signal at the end of a fixed time period. This process is referred to as
firing. When another oscillator observes such a firing signal, it reduces the remaining time
until its next own firing. Figure 5.15 illustrates this mechanism. The gray and the black dots
are two oscillators and the circle represents the fixed time period between the firings. The
time period is equal for both oscillators but before synchronization, they start at different
points in this time period. As time passes, the oscillators move along the circle and whenever
they reach the point at the top of the circle, marked with a small line, they fire. Such firing
causes the other oscillator to advance its phase by a certain value which is dependent on
its current phase value. After two firings of the black oscillator and one firing of the gray
oscillator, both oscillators are synchronized. Other examples of synchronization processes in
nature following the same principle are heart pace-maker cells (cf. Peskin [181], Torre [231]),
crickets chirping in synchrony (cf. Walker [240]), organized bursting in pancreatic beta-cells
(cf. Sherman et al. [216]), and even female menstrual cycles, which tend to synchronize (cf.
McClintock [148], Russell et al. [200]).

Figure 5.15: Illustration of the synchronization of two oscillators depicted as black and gray
dots. The circle represents the time between two firings (point at the top of the
circle). As time passes, the oscillators move along the circle and the firing of one
oscillator reduces the time remaining until the firing of the other oscillator as a
function of its current phase value (indicated by arrows). Both oscillators are
synchronized after three firings.

To transfer this concept to technical devices, it has to be noted that a device’s system clock is
usually equipped with an oscillator (cf. Sivrikaya and Yener [217]). This oscillator determines
the clock’s frequency by creating almost harmonic oscillations with period T . The state of
an oscillator is described by its phase ϕ. When the phase is normalized between 0 and 1, it
denotes the elapsed percentage of the oscillator’s period and can, thus, be expressed in terms
of time t (cf. Figure 5.16). Oscillators are said to be identical if their periods T have the
same length. When, additionally, both periods start at the same time, i.e., their phase ϕ is
identical for any point in time, the oscillators are called synchronous.
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Time t

Figure 5.16: Relation between a normalized phase ϕ of an oscillator and time t.

5.2.1 Pulse-coupled Oscillators
Firefly-algorithms can be used to synchronize clocks and have already been used successfully
in MANETs to implement energy-efficient communication mechanisms by Taniguchi et al.
[229], Wakamiya et al. [239], and Wakamiya and Murata [238]. The basic algorithmic model
for firefly-inspired synchronization was defined by Mirollo and Strogatz [161], in which each
oscillator is described by a state variable x ∈ [0, 1]. The phase of an oscillator is mapped to
the oscillator’s state by a function f : ϕ→ x, which is required to be increasing and strictly
concave. The mapping from phase to state is introduced in order to be able to describe the
sensitivity of the phase adjustment as a function of the oscillator’s phase at the time of an
observed firing. This function is further on referred to as state-function. When the state x
reaches the value 1, the oscillator fires and x is reset to 0. In the work of Mirollo and Strogatz
[161], the state-function is defined as:

x (i) = 1⇒ x (j)← min (1, x (j) + ε) , ∀j 6= i (5.8)

When an oscillator i fires, all other oscillators increase their state by the value of ε, which
is denoted as impulse intensity, until they reach a maximum value of 1 (cf. Equation 5.8).
The corresponding phase-shift is determined by the state-function. With this simple rule, any
two oscillators can be synchronized and for n > 2 oscillators, there are few combinations of
initial phase values which do not result in synchrony if the impulse intensity is non-negative
and non-zero for all oscillators (cf. Mirollo and Strogatz [161]). In the work of Mathar and
Mattfeldt [147], convergence is also shown for a state-function f which is non-differentiable.
Further, the concavity of the state-function is abandoned and a linear state-function is shown
to be sufficient for nearly all systems to converge if multiple synchronous firings are accounted
for by an increased impulse intensity ε and ε ≥ 1/n holds (cf. Bottani [21]). Lucarelli and
Wang [144] demonstrate that neighborhood-coupling, where only firing of neighbors induces a
phase shift of the device, is enough for the convergence of a system. For this, they use a linear
state-function f (ϕ) = ϕ and a new update model where the state advancement is sensitive to
the current state of the affected device by assigning a higher weight to flashes received when
the device itself is close to firing:

x (i) = 1⇒ x (j)← min (1, x (j) + ε · x (j)) , ∀j 6= i (5.9)

Due to the characteristics of the state-function f , state x and phase ϕ are the same and
Equation 5.9 can also be written as:
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ϕ (i) = 1⇒ ϕ (j)← min (1, ϕ (j) + ε · ϕ (j)) ,∀j 6= i (5.10)

With this setting, it has been shown experimentally that synchronization can also be achieved
in dynamic networks even if connectivity is temporarily lost. In publications of Tyrrell et al.
[233] and Werner-Allen et al. [247], delays in firing perception are examined and two algorithms
are proposed which can provide synchronization under these circumstances. Although message
delays are an issue in MANETs, the following study is based on the algorithm published by
Lucarelli and Wang [144] as a simple synchronization algorithm is sufficient to investigate the
effect which synchronization has on distance estimates.

5.2.2 Firefly-inspired Hop Counting
In distributed computing systems, message exchange is a time and resource consuming process,
which decreases the lifetime of the devices involved (cf. Akyildiz et al. [4], Dietrich and
Dressler [52]). Since hop counting is an essential technique for both, routing (cf. Boukerche
et al. [22], Chatterjee and Das [38], Chou et al. [42]) and distance estimation (cf. Section
2.4.2), it is desirable to reduce the number and length of messages exchanged. Firefly-inspired
Hop Counting (FIHC) is an approach to encode hop count information in the timing of a
binary signal which has only two states, on and off, instead of exchanging messages with the
hop count value as it is done in GA (cf. Section 2.4.2). In addition to the resource saving
potential, this approach enables devices which only possess simple communication capabilities
to determine hop counts, which could be useful in scenarios where devices are only equipped
with rudimentary hardware, such as in smart dust applications (cf. Ilyas and Mahgoub [105]).

FIHC requires the network to be synchronous. For FIHC, the devices are assumed to have
identical oscillators, i.e., the period of their timers is equal. This assumption is reasonable, since
ad hoc networks are often described as containing only identical devices. As detailed before,
the firefly-algorithm described by Lucarelli and Wang [144] can be used for synchronization
of such a network. For FIHC, a second signal is used, which is sent by the device with a
specific delay to a synchronized signal in order communicate the device’s encoded hop count
information. When the network is synchronized, the delay of the second signal with respect
to the synchronized signal represents the hop count of the device. Hence, all devices with the
same hop count emit this signal at the same time, devices with a lower hop count emit the
signal beforehand and devices with higher hop counts emit the signal afterwards. Further on,
the signal used for synchronization is called sync-signal and the delayed signal used to encode
hop count information is called HC-signal. In order to be able to use the timing of a signal to
transport information, a method for encoding and decoding has to be provided.

Encoding

A device i with a hop count value of h (i) sends its HC-signal, when the phase of the sync-signal
has the value

ϕsync = h (i)
h (i) + 1 . (5.11)

For example, a device which is two hops away from the beacon emits its HC-signal when
the phase of its sync-signal has the value of 2

2+1 = 2
3 . Devices with different hop counts

are required to emit their HC-signal at different times, which holds for this encoding. Let
h (i) ≥ 0, h (j) ≥ 0 be the hop counts of device i and j, and h (i) 6= h (j). It then holds that:
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h (i) 6= h (j)
⇒ h (i) + (h (i) · h (j)) 6= h (j) + (h (i) · h (j))
⇒ h (i) · (1 + h (j)) 6= h (j) · (1 + h (i))

⇒ h (i)
h (i) + 1 6=

h (j)
h (j) + 1

Decoding

For decoding, the following equation is used. Let 0 ≤ ϕsync < 1 be the value of the common
sync-signal’s phase when device j receives the first HC-signal from its neighbor i. From this
information, device j can compute its own hop count as:

h (j) = ϕsync

1− ϕsync
+ 1 (5.12)

Because of ϕsync = h(i)
h(i)+1 , it holds that:

h (j)⇔ ϕsync

1− ϕsync
+ 1⇔

h(i)
h(i)+1

1− h(i)
h(i)+1

+ 1⇔ h (i) + 1

Figure 5.17 shows an example of four devices determining their hop counts, assuming that they
are already synchronized. The beacon starts by sending an HC-signal when the sync-signal
phase has the value ϕsync = 0. When the next device receives this signal its sync-signal phase
is also at a value of 0 (since they are synchronous) and the device, therefore, has a hop count
value of 1 and emits its HC-signal at sync-phase ϕsync = 1

2 . The next device calculates its
own hop count to have a value of 2 and emits its signal at ϕsync = 2

3 . Analogously, the fourth
device will send its HC-signal at sync-phase value ϕsync = 3

4 .
One benefit of using timed signals to encode hop counts is that the order in which the signals
are sent corresponds to the ascending order of hop counts. Assuming that there is no delay
or message-loss, each device can determine its hop count value within one period. The
asynchronous exchange of messages in the GA, on the other hand, can take many periods
(depending on the network size) until all devices in the network have determined their hop
counts. Additionally, each device knows its hop count immediately after the first reception of
an HC-signal from its neighbors and can ignore all other signals for the rest of the period.
During this time, listening to signals is no longer required and energy can be saved. In contrast,
the GA requires all devices to be permanently receptive to new messages sent by neighbors.
The FIHC algorithm can be designed in two variants, FIHC or Firefly-inspired Hop Counting
with Delay (FIHCd). With FIHC each device emits an HC-signal when the phase of its timer
corresponds to the device’s encoded hop count. The firing is conducted whether or not the
device has already received a signal from a neighbor in its current period. In case it receives a
signal after its own firing, the hop count is adapted and the device fires again. With FIHCd,
a device only fires after having received a signal from another device, except for the beacon,
which always fires at phase 0. In the delayed version, the firing frequency is limited to one
HC-signal per device per period, which reduces the communication overhead even further.
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Figure 5.17: Example of the FIHC over three hops via intentional phase shifting of a signal
with respect to a synchronized reference signal.

5.2.3 Evaluation
The first set of experiments investigates the synchronization success and duration using the
model proposed by Lucarelli and Wang [144] in a neighborhood-coupling setting. In a second
set of experiments the distance estimates in a synchronized network using FIHC are compared
to results using the asynchronous, message-based GA.

Scenario and Settings

The experiment setting is the same as described in Section 5.2.3, except for the placement of
the static beacon, which is now placed in the center of the environment. 1000 devices are
randomly placed in the environment and the impulse intensity ε is tested for values ε = 0.05,
0.10, and 0.15. The communication range r is varied from 5% to 20%. One simulation cycle
is equivalent to the period T , which is divided into 100 time slots. Devices listen to signals
and messages during the whole period and for the GA they send their hop count messages at
the end of their timers’ periods. Figure 5.18 shows the simulated scenario. Non-beacons in
the network move according to the CM mobility model described in Section 5.1.1, where each
device moves with a probability of pm = 0.01 in each time slot. Movements which would lead
outside of the plane are not executed.

Synchronization Success

In this section, the effectiveness of the synchronization algorithm is investigated in terms of
its ability to successfully synchronize the entire network. For this purpose, an experiment
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Figure 5.18: Network model for the simulative experimental study. The beacon is placed in
the center of the square environment. Devices with the same color have the same
hop count value.

is classified as unsuccessful if complete network synchrony is not achieved within 300 cycles.
Each experiment is repeated 40 times and the results are averaged.
Figure 5.19(a) and 5.19(b) show the percentage of successfully synchronized experiments

for static and dynamic networks respectively. Figure 5.20 displays the time elapsed until the
networks are in synchrony for both, static and dynamic networks.
It is noticeable that the impulse intensity has a strong impact on the synchronization success
in both cases. For a value of ε = 0.1, the highest success rates are achieved with up to 100%
for communication ranges larger than 9% in static networks and 16% in dynamic networks.
The experiments indicate that the performance decrease for ε = 0.15 when compared to
ε = 0.1 could be caused by an increase in synchronization time. This is not the case for
ε = 0.05, however. In addition, synchronization time has a high dispersion for ε = 0.15, which
confirms that this impulse intensity is not suitable to synchronize the regarded network. It
seems that ε = 0.1 is the best choice in both scenarios because it guarantees a high success
rate and simultaneously low synchronization time, which is why this setting is used for the
experiments investigating FIHC. An increase in the communication range r improves the
time until successful synchronization for all impulse intensities considered. Mobility in the
network makes the synchronization less likely. Nevertheless, with the right choice for impulse
intensity and a sufficiently large communication range the network can be synchronized.

When comparing the results of static and dynamic networks, it becomes apparent that the
percentage of successfully synchronized experiments in dynamic networks is lower than in
static networks when considering smaller communication ranges. The explanation for this
is straight-forward. Synchronization is achieved by mutual influences between neighbors. In

101



Chapter 5 Localization in Mobile Ad Hoc Networks

(a) Static networks. (b) Dynamic networks.

Figure 5.19: Percentage of successful experiments in static (a) and dynamic (b) networks with
1000 devices and a varying communication range r. An experiment is classified
as successful if all devices are synchronized at the end of the experiment

(a) Static networks. (b) Dynamic networks.

Figure 5.20: Average time until successful synchronization of static (a) and dynamic (b)
networks with 1000 devices and a varying communication range r.
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dynamic networks, devices sometimes move before this process is finished and then engage in
a synchronization process which is possibly at a different state as the previous one. This can
have the effect that the signal of the moved device interferes with this new synchronization
process and causes delays. On the other hand, the absence of the moved device in its old
neighborhood can also be the cause for a slowdown in the previous synchronization process.
When the communication range increases, a newly added or removed device in a neighborhood
has comparatively less impact since more devices are involved in each synchronization process.

Comparison of Firefly-inspired Hop Counting and Asynchronous Gradient Algorithm

The aim of the next experiment is to evaluate the performance of the FIHC and FIHCd
algorithms and to compare the resulting distance estimates with the asynchronous GA. For
this, the average hop count error is computed over 40 cycles starting after 10 cycles in order to
exclude the phase in which hop count values are propagated through the network for the first
time. The devices are simulated with a communication range of r = 7%, which corresponds
to the settings in the experiments conducted in Section 5.1.3. Results are presented in Figure
5.21. FIHC has the lowest hop count error, followed by GA, and the highest error occurs
when using FIHCd. Although this result creates the impression that FIHC should be the
algorithm of choice for hop count based distance estimation in MANETs, this is true only to
a certain extent.
In order to get a better insight into the deviations in performance, Figure 5.22 shows

the average percentage of devices with which a negative or positive hop count error occurs.
It becomes apparent that the performance of the algorithms is reflected by the amount of
underestimation in the network. The higher the underestimation is, the lower is the overall hop
count error. This is due to the fact that underestimation compensates for the natural density
induced overestimation in networks. However, as discussed in Section 5.1.2, underestimation
is the more aggravating type of error for localization since it cannot be predicted and prevents
the application of traditional refinement methods without adjustment, which are proposed to
encounter low density issues. As a consequence, FIHCd is the best option in dynamic networks
because it results in the lowest amount of negative hop count error. As the experiments in
Section 5.1.3 show, movements leading away from the beacon into higher gradient rings create
high negative hop count error due to the distortion the moved devices create in their new
neighborhoods. FIHCd counteracts this effect because hop count signals are emitted only
after a signal was received first. Thus, a device which moves away from the beacon does not
affect the new neighborhood since it does not communicate its underestimated hop count
before updating. The remaining underestimation can be explained by the fact that a device
which has moved to a higher gradient ring underestimates its own distance before updating.
Nevertheless, with FIHCd the negative hop count error can be reduced significantly, which
has the advantage of being able to treat a dynamic network just like a static one.

5.2.4 Conclusion
In this section, FIHC and FIHCd are proposed, two algorithms for hop counting in MANETs,
which are based on synchronized timers and, based on that, timed sending of signals. The basic
idea of FIHC is to use an intentional phase shift with respect to a synchronous base signal
in order to encode information about the device’s hop count with respect to a beacon. To
realize this idea, the nature-inspired firefly algorithm by Lucarelli and Wang [144] is used for
synchronization. Experiments are performed, which investigate the success rate and duration
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Figure 5.21: Comparison of hop count errors in distance estimation using FIHC, FIHCd, and
asynchronous GA (async GA).

Figure 5.22: Percentage of the devices in the network which overestimate and underestimate
their distance to the beacon for FIHC, FIHCd, and asynchronous GA (async
GA).
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of synchronization of this method under the constraint of neighborhood-coupling, i.e., only the
firing of direct communication partners has an impact on a device’s synchronization process.
The communication range is varied in order to determine its impact on synchronization
performance and three different impulse intensities are testes. Subsequently, both variants
of the proposed signal-based hop counting approach, FIHC and FIHCd, are evaluated and
compared to results achieved by the standard GA. The difference between FIHC and FIHCd
is that in the latter variant devices have to wait before sending an own signal until after
having received a signal from any nearby device, whereas with FIHC, the device simply sends
its signal at the determined phase shift.
Synchronization success is shown to be 100% on average when impulse intensity is set to

ε = 0.1 and the communication range is at least 9% in static and 16% in dynamic networks.
In general, an increase in the communication range positively influences the synchronization
success and the time it takes for the network to be in synchrony. Although mobility in
the network slightly hinders synchronization, the produced synchronization delay, can be
compensated by an increase of the communication range. Experiments further demonstrate
that FIHCd decreases the emergence of negative hop count error in dynamic networks. As
discussed in the previous section, this is essential for an improved accuracy of localization
based on hop counts in dynamic networks since underestimation cannot be handled as well as
the natural occurrence of overestimated distances. FIHCd, thus, provides an alternative for
the previously presented MoGA algorithm in order to eliminate underestimation in dynamic
networks if synchronization can be achieved.

5.3 Geometric Distance Estimation for Mobile Ad Hoc Networks
In the previous two sections, the behavior of distance estimation algorithms based on hop
counts in mobile networks is subject to investigation. It is found that mobility has a negative
impact on the quality of the derived distance estimates and that the height of this negative
impact is hard to predict. In this section, an alternative distance estimation approach
is presented which refrains from hop counts as a basis. The approach is called Geometric
Distance Estimation (GeoDE) and belongs to the second type of range-free distance estimation
algorithms addressed in Section 2.4.2, the connectivity-based distance estimation techniques.

5.3.1 Connectivity-based Distance Estimation
In order to understand the concept of connectivity-based distance estimation, the notions of
shared and individual neighbors have to be introduced, which are graphically illustrated in
Figure 5.23.

Definition 5.7 (Classification of Neighbors). Let i, j be two adjacent devices and N (i), N (j)
the sets of devices situated in the neighborhood of i and j respectively. The neighbors of i can
be categorized with respect to j as:

shared neighbors: S (i, j) := N (i) ∩N (j)

individual neighbors: Ij (i) = N (i) \S (i, j)

In connectivity-based distance estimation, the number of shared neighbors between two
devices is used to approximate the intersection area A of the two circles which represent
the communication ranges of both devices. Figure 5.24 displays the geometric conditions
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Figure 5.23: An example of the communication range of two adjacent devices i, j. Devices
with dotted lines are communication partners of device i and belong to the
neighborhood N (i). Gray filled devices are communication partners of device j
and, consequently, belong to the neighborhood N (j). Devices in the shaded area
are shared neighbors and belong to the set of shared neighbors S (i, j).

of intersecting circles. In reality, the communication range is not exactly circular, but this
assumption is a commonly used simplification in the modeling of ad hoc networks, which
is called the unit-disc-graph model (cf. Aspnes et al. [11], Breu and Kirkpatrick [24]). The
approximation of the intersection area follows the principle of a Monte Carlo integration.
Monte Carlo integration approximates the size of a shape’s surface by randomly choosing
points and determining the proportion of these random points which lie inside the shape
relative to the points outside the shape (cf. Evans and Swartz [61]). The standard Circle-Circle
Intersection Equation 5.13 establishes a relation between the distance d of the two circles’
centers and the intersection area A. Solving Equation 5.13 for d would allow to derive an
estimate for the distance d from a given approximation of the intersection surface A and the
range r. GeoDE provides a method for deriving such a mapping between an approximation
of A and an estimate for the distance d. It should be noted that similar connectivity-based
distance estimation approaches have been pursued by Aslam et al. [10], Buschmann et al.
[33], Fekete et al. [64], Villafuerte et al. [236], and Huang et al. [99]. However, they differ
in the way how the mapping function is derived and do not consider multi-hop distance
estimation which is required in the context of beacon-based localization.

A = 2r2 arccos
(
d

2r

)
− d

√
r2 − d2

4 (5.13)

5.3.2 Geometric Distance Estimation
In order to be able to approximate a mapping between the intersection area A and the distance
d which is independent of the communication range r, the following considerations are made.
The distance d between the centers of two overlapping circles can be described as a ratio θ of
the circles’ diameters according to Equation 5.14. The intersection area A can be described
as a ratio ∆ of the circle’s surface as shown in Equation 5.15.

θ = 1− d

2r (5.14)
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Figure 5.24: Geometric characteristics of two overlapping circles. The intersection area A
corresponds to the shaded area, the two black dots represent the circles’ centers.

∆ = A

πr2 (5.15)

Standard equations (5.16) and (5.17) are alternative descriptions of A and d which express
both values using the communication range r and the segment angle α (cf. Figure 5.24).
Substituting A and d in Equations 5.14 and 5.15 by the expressions from Equation 5.17
and 5.16, it becomes apparent that ∆ and θ only depend on the segment angle α, which is
independent of the communication range r.

d = 2r cos
(
α

2

)
(5.16)

A = r2 (α− sin (α)) (5.17)

As a consequence, the relation between θ and ∆ is independent of the value r and can be
approximated as a third-degree polynomial function using linear regression. Figure 5.25 shows
the approximation of the mapping function f : ∆→ θ (dotted line). Putting it all together,
the distance d can be calculated from ∆ according to Equation 5.18 and ∆ is estimated for
device i as shown in Equation 5.19. This results in the final Equation 5.20, which device i
uses in order to compute an estimate for its distance to device j.

d = 2r (1− f (∆)) (5.18)

∆ ≈ |S (i, j) |
|N (i) | (5.19)

d̄GeoDE (i, j) = r ·
(
a ·
( |S (i, j) |
|N (i) |

)3
+ b ·

( |S (i, j) |
|N (i) |

)2
+ c ·

( |S (i, j) |
|N (i) |

)
+ e

)
(5.20)

The corresponding coefficients are: a = 3.90 b = −4.16 c = 3.04 e = 0.04.

Approximation Error

There are two approximations in GeoDE which influence the accuracy of the computed distance
estimates. Firstly, the approximation of ∆ as the ratio of shared to total communication
partners and, secondly, the approximation of the function f through polynomial regression.
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Figure 5.25: Relation of θ to ∆ and the approximated third-degree polynomial function f ,
which maps ∆ to θ.

Considering the first approximation, there are two sources of error in this approximation.
Monte Carlo algorithms base their concept on random numbers that are selected uniformly.
Networks, however, do not necessarily have an even distribution of devices. A shift in the
positions of the neighbors into a certain direction, shown exemplarily in Figure 5.26, can distort
the approximation results. The influence of various device distributions on the estimation
accuracy is, therefore, examined in experiments in Section 5.3.3. A second problem is the
sampling rate. For |N (i) | neighbors, there are only |N (i) | + 1 different values for ∆. As
a consequence, the absolute error for the estimation of ∆, assuming the ratio of neighbors
indeed reflects the overlap size, lies within the interval of [0, 1

|N(i)|).

Figure 5.26: Example of an irregular distribution of neighboring devices over the communica-
tion range.

The second approximation is that of function f . Figure 5.27 shows the deviation between f (∆)
and θ. The approximation error with a first order Taylor series expansion, as it is used by
Huang et al. [99], is depicted for comparison. For θ < 0.9 the error using polynomial regression
is smaller compared to the first order Taylor series approximation. The approximation error is
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at most 0.04, which leads to a maximum absolute distance estimation error of 0.16r. The error
value depends on the exact value of θ, which in turn depends on r. It follows that GeoDE
estimates the same distance with slight variations in accuracy when the communication range
r changes.

Figure 5.27: The approximation error for function f , which maps ∆ to θ, derived by a third-
degree polynomial regression compared to the approximation error when f is
derived by a first order Taylor series expansion.

Geometric Distance Estimation over Multiple Hops

Although GeoDE could be applied directly to two-hop neighbors, as well as one-hop neighbors,
this is not pursued here due to the additional communication overhead. The two devices
which need to estimate their distance would exchange all the necessary information via a
common communication partner, which burdens that device’s resources. Nevertheless, two-hop
estimation can be performed analogously and could be useful in situations in which accuracy
of distance estimates is prior to resource saving. So far, distance estimates d̄ (i, j) can range
between 0 and 2r. The first refinement technique used in GeoDE is to limit calculated
estimates to a maximum value of r. The second refinement results from the consideration
that the number of neighbors |N (i) | and |N (j) | of the two devices i and j can differ, even in
uniform-randomly distributed networks (cf. Figure 5.23 for an example). As a result, device i
and device j can compute different estimates of their distance using Equation 5.20. Hence,
device i and j exchange their estimates via communication and compute the average value of
the estimates d̄ (i, j) and d̄ (j, i).

Algorithm 5.1 shows how a device i estimates its distance to a neighbor j using the GeoDE
approach (note that because of i and j being neighbors it holds that |N (i) | > 0).
As stated earlier, the distance between neighboring devices is not enough for the computation
of coordinates with beacon-based localization algorithms. Instead, the distance to beacons has
to be known, which can be multiple hops away. Algorithm 5.2 shows how GeoDE is expanded
to allow for distance estimations between devices in a network and beacons. The algorithm
can be executed repeatedly and the necessary iterations for all devices in the network to derive
a distance estimate are subject to the neighborhood size and the total number of devices in
the network. GeoDE is similar to the distance estimation approach based on hop counts. The
difference is that each device computes its own distance estimate to a beacon on the basis
of the minimum value any of its neighbors has computed for its distance to the beacon. In

109



Chapter 5 Localization in Mobile Ad Hoc Networks

Algorithm 5.1 Geometric Distance Estimation to Neighbors
Require: N (i), neighbors from device i, a neighbor j, and communication range r
Ensure: Estimated distance d̄ (i, j)

1: Ask list of neighbors N (j) from device j.
2: S (i, j)← N (i) ∩N (j)
3: x← |S(i,j)|

|N(i)|
4: d̄ (i, j)← r ·

(
3.90 · x3 − 4.16 · x2 + 3.04 · x+ 0.04

)
//Limitation:

5: if
(
d̄ (i, j) > r

)
then

6: d̄ (i, j)← r
7: end if

//Averaging:
8: Ask j for its non-averaged distance estimate d̄ (j, i)
9: d̄ (i, j)← 1

2 ·
(
d̄ (i, j) + d̄ (j, i)

)
10: return d̄ (i, j)

contrast to hop count based distance estimation, where the distance estimate is computed on
the basis of the minimum hop count value in the neighborhood.

Algorithm 5.2 Geometric Distance Estimation to Beacons
Require: N (i) neighbors of device i, beacon b, communication range r
Ensure: estimated distance d̄ (i, b)

1: if (b ∈ N (i)) then
2: d̄ (i, b)← compute d̄ (i, b) using Algorithm 5.1
3: else

//search for neighbor k closest to b:
4: D̄ ← { }
5: for j ∈ N (i) do
6: ask j for d̄ (j, b)
7: if d̄ (j, b) 6= null then
8: add d̄ (j, b) to D̄
9: end if

10: end for
11: if (D̄ ← { }) then
12: return null
13: else
14: Select neighbor m: d̄ (m, b)← min

(
D̄
)
closest to b

15: d̄ (i,m)← compute d̄ (i,m) using Algorithm 5.1
16: d̄ (i, b)← d̄ (i,m) + d̄ (m, b)
17: end if
18: end if
19: return d̄ (i, b)
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5.3.3 Evaluation
The objective of the following experiments is to evaluate GeoDE in comparison with distance
estimation based on hop counts. Firstly, the sensitivity of GeoDE to variations in the
communication range r and the network’s distribution is examined in static networks. In
this first experiment, the results of GeoDE are compared to a simple distance estimation
approach based on hop counts proposed by Nagpal et al. [171]. The equation to derive distance
estimates with this approach is shown in Equation 5.21, with hb (i) denoting the hop count of
device i with respect to beacon b.

d̄SGM (i, b) = r

(∑
j∈N(i) hb (j) + hb (i)
|N (i) |+ 1 − 0.5

)
(5.21)

In the second set of experiments, the performance of GeoDE is investigated in dynamic
networks and compared to a state-of-the-art distance estimation method based on hop counts,
which is more complex than the one presented by Nagpal et al. [171]. This method is
called Gradient-based Distance Estimation (GDE) and is published by Liu et al. [140]. The
computations include additional statistical considerations, which are based on the work from
Nagpal et al. [171] and Kleinrock and Silvester [122]. The necessary calculations to derive a
distance estimate d̄GDE (i, b) between beacon b and device i according to Liu et al. [140] are
shown in Equation 5.22.

d̄GDE (i, b) = r ·
(
Gout

b (i) ·Rout (i) +Gin
b (i) ·Rin (i) + (hb (i)− 1) · dhop (i) ·∆ (R)

)
(5.22)

with:

Gout
b (i) = 1

r
d̄SMG (i, b)− (hb (i)− 1) · (1− dhop (i))− 0.5 · (1− dhop (i))

Rout (i) = 1−Rin (i)

Gin
b (i) = 1

r
d̄SMG (i, b)− (hb (i)− 1) · (1− dhop (i))− 0.5 · (1− dhop (i)) + 1

Rin (i) = 1− dhop (i)

∆R (i) =
∫ 1

0
x

(
|N (i) | − 2x2 + 4x− 1

e(x−1)
√

2x−x2+|N(i)| arccos(1−x)
√

2x− x2

)
dx

dhop (i) = 1 + e|N(i)| −
∫ 1

−1
e−

|N(i)|
π (arccos t−t

√
1−t2)dt

In the work of Liu et al. [140], a method is proposed to account for mobility when computing
distance estimates. However, for this method the expected mobility pattern has to be known,
which is not the case in the scenario of passive mobility considered here. Hence, this method
is not applied in the experiments. GDE relies on the computation of numerical integrations.
Different methods have been proposed for approximation of numerical integration in the
literature (cf. Isaacson and Keller [108]). Here, Riemann integration (cf. Riemann [196]) is
used, where the surface area is approximated by the sum of the surfaces of multiple boxes.
For the experiments, the numerical integration is approximated using 1000 integration steps
(boxes).
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Geometric Distance Estimation in Static Networks

For the experiments, the settings described in Section 5.1.3 are used with the difference that
a beacon is randomly chosen from the set of devices in each repetition of an experiment. This
modification is necessary, in order to increase the chance of creating a connected network,
especially for distorted device distributions. Since communication range, neighborhood size,
and the distribution of devices are identified to influence the quality of GeoDE, three static
network scenarios are considered. In Scenario 1, the devices are distributed according to a
uniform random distribution. In Scenario 2, the devices are distributed using a Gaussian
random distribution and in Scenario 3, all devices are placed like in a grid (cf. Figure 5.28).
In addition, the communication range r is varied to show the influence of the neighborhood
size on the estimation error (cf. Section 5.3.2). Mobility is not considered yet. To evaluate the
quality of the estimates, Mean absolute percentage error (MAPE) is computed as described in
Equation 5.23.

MAPE
(
d̄ (i, j)

)
= |d (i, j)− d̄ (i, j) |

d (i, j) (5.23)

where d (i, j) denotes the Euclidean distance between a device i and its neighbor j and d̄ (i, j)
the estimate of that distance. MAPE gives information about the relative deviation of the
estimate with respect to the real distance.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 5.28: Different network structures used for the experimental study. Devices are placed
in the environment according to a uniform random distribution (a), a Gaussian
random distribution (b), and are evenly distributed in a grid-like fashion (c).

Figure 5.29(a) shows the MAPE for Scenario 1, Figure 5.29(b) shows the results for Scenario
2, and Figure 5.29(c) for Scenario 3. It can be observed that GeoDE leads to less error-
prone estimates than the estimation based on hop counts for all considered distributions and
communication ranges. Furthermore, it can be noted that even the sample standard deviation
is less or equal to the MAPE of estimates based on hop counts. This confirms that the GeoDE
approach is a consistent improvement for distance estimation in static networks compared to
distance estimation based on the approach from Nagpal et al. [171].

Despite the imbalanced distribution of devices, GeoDE performs slightly better in Gaussian
networks compared to networks which are distributed according to uniform random distribu-
tions. This can be explained by two observations. Firstly, the averaging of estimates from both
involved devices could help to overcome the bias introduced by distorted device distributions.
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(a) Uniform distribution. (b) Gaussian distribution.

(c) Even distribution.

Figure 5.29: MAPE for GeoDE compared to distance estimation based on hop counts on
long distance estimation including standard sample deviation in Scenario 1 (a),
Scenario 2 (b), and Scenario 3 (c).
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An unbalanced distribution of devices leads to an overestimation in one device and an under-
estimation in the other device, which can provide a good estimate on average. Another factor
is the larger average neighborhood size for most devices due to the concentration of devices in
the center of the environment. As discussed above, this increases the number of values for ∆
and, as a result, improves the estimates. Furthermore, it can be observed that the behavior of
the estimation error is different from Scenario 2 for increasing communication range. After
an initial decline, the error starts increasing again. This characteristic can be explained by a
higher shift-sensitivity with larger communication range. A small communication range only
covers a small area of the network in which the distribution of devices is not as distorted as
when looking at a larger area. Nevertheless, the proposed averaging technique seems to be
able to keep the overall error to a similar level compared to uniform-randomly distributed
networks.

For the grid-like distribution shown in Figure 5.29(c), one would expect a similar behavior
as in Scenario 1, because the distribution of devices is even in both networks. The trend
of the error behavior with increasing communication range indeed is similar to the error
behavior in uniform-randomly distributed networks. The oscillation can be explained by the
step-like increase of the neighborhood size. Due to the grid-like distribution, increasing the
communication range does not change the neighborhood density until suddenly several new
neighbors are included. As a consequence, the error of GeoDE, as well as the hop count based
distance estimation, changes erratically.

Geometric Distance Estimation in Mobile Networks

In order to compare localization results on the basis of hop counts with results based on
GeoDE, lateration is used to determine locations from the distance estimates to beacons as
described in Section 2.4.2. Algorithm 5.3 shows the procedure of lateration. Let i be the
device which is to located and B (i) the set of known beacons, C (i) = {c (b)},∀b ∈ B (i), with
c (b) = (x (b) , y (b)) denotes the set of all known two-dimensional beacon coordinates, and
D̄ (i) = {d̄ (i, b)},∀b ∈ B (i) is the set of all corresponding distance estimates. Algorithm 5.3
shows how the coordinates c (i) for device i are computed.
The iterations are stopped, when the error of the next coordinate-candidate is not a significant
reduction to the previous candidate. The significance is determined by a parameter ε. α
controls the step size of the search for good coordinates, i.e., a smaller α makes coordination
more precise but increases the number of necessary iterations. In the experiment, one beacon
is placed in each corner of the plane. This corresponds to a beacon placement in a convex
hull around the network, which is the optimal beacon placement for localization according
to Bachrach and Taylor [12]. The coordinates of the beacons are initialized with (0,0), (0,1),
(1,0) and (1,1) and the communication range is set to 15% of the environment’s side-length.
The devices are assumed to be asynchronous. One cycle is defined as the random execution of
1000 devices. When selected for execution, a device performs the following steps:

1. Ask all neighbors for known beacon coordinates

2. Ask all neighbors for the necessary information to estimate distances (list of neighbors
for GeoDE and hop counts for GDE respectively)

3. Calculate distance estimates to all known beacons

4. If at least three beacon locations are known, calculate coordinates with lateration
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Algorithm 5.3 Lateration
Require: beacon coordinates C (i), distance estimates D̄ (i)
Ensure: coordinates of device i: c (i)← (x (i) , y (i))

//Select closest beacon m: d̄ (i,m)← min
(
D̄ (i)

)
//Initialize:

1: c̄ (i)← c (m) ∈ C (i)
2: ∆ (E)←∞
3: while ∆ (E) > ε do
4: c (i)← c̄ (i)
5: ∆x (i)← 0
6: ∆y (i)← 0
7: for c (b) ∈ C (i) do
8: d (i, b)← EuclideanDistance (c (i) , c (b))
9: E ← E +

(
d (i, b)− d̄ (i, b)

)2

10: ∆x (i)← ∆x (i) + (x (i)− x (b))
(
1−

(
d (i, b) /d̄ (i, b)

))
11: ∆y (i)← ∆x (i) + (y (i)− y (b))

(
1−

(
d (i, b) /d̄ (i, b)

))
12: end for

//Calculate new coordinates:
13: c̄ (i)← (x (i)− α ∆x (i) , y (i)− α ∆y (i))
14: Ē ←

∑
C(i)

(
EuclideanDistance (c̄ (i) , c (b))− d̂ (i, b)

)
15: ∆ (E)← Ē − E
16: end while
17: return coordinates c (i)
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5. Move according to the applied movement pattern

The examined mobility models are CM, RW, and StrM, which are described in Section
5.1.1. RW is chosen because it is one of the most widely researched mobility models in
the literature, e.g., in Zonoozi and Dassanayake [259]. CM is chosen as a contrast to RW,
since the trajectories of these two movements differ significantly in range and step size. As a
representative for coupled mobility, StrM is selected because it is designed to model stream-like
movements, such as caused by natural forces like wind or water. Moreover, movements of
evacuees are often modeled as liquid or gas dispersal (cf. Section 2.3.1), which is why the
investigation of the StrM model is especially interesting considering the context of this thesis.

For evaluation of the experiments, the average location error E is calculated using Equation
5.24. With N denoting the set of devices in the network, c̄ (i) are the estimated coordinates of
device i and c (i) are its real coordinates. The function d (·, ·) refers to the Euclidean distance.

E (c̄ (i) , c (i)) =
∑

i∈N d (c̄ (i) , c (i))
|N |

(5.24)

Figure 5.30 shows the results for localization using GeoDE and GDE in static and dynamic
networks. The experiment reveals that GDE delivers better results for static networks but is
significantly worse in dynamic environments, which confirms the findings from Section 5.3.3.
GDE is also based on hop counts and, as a consequence, suffers from the same weakness of
underestimated hop counts under mobility described thoroughly in Section 5.1.

Figure 5.30: Localization error with GeoDE and GDE for static and dynamic networks.

The quality of GDE depends on the approximation of the numerical integration, which
influences the computational costs to derive estimates. Since computational resources are
limited in MANETs, it is interesting to know how many integration steps (or boxes in
case of the Riemann integration method) are necessary to achieve a better performance of
GDE compared to GeoDE. Figure 5.31 shows the results for varying approximation steps.
Apparently, more than 50 approximation steps are required for GDE to outperform GeoDE.

5.3.4 Conclusion
GeoDE is a range-free distance estimation approach, which does not rely on hop counts but
the ratio of shared to total communication partners in order to compute distances. GeoDE
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Figure 5.31: Localization error for the GDE for increasingly fine-grained approximation of the
necessary integration computations.

offers the possibility to estimate multi-hop distances in a network. It is shown that using
a third-degree polynomial regression in order to approximate the mapping from neighbors
to distances is less error-prone when compared to an approximation via a first-order Taylor
series expansion. Furthermore, experiments are performed in order to compare the distance
estimation using GeoDE with two hop count based distance estimation methods proposed in
the literature. The first method is presented in 2003 by Nagpal et al. [171] and the second
choice is a more recently published approach from Liu et al. in 2011 [140], which is called
GDE. Three different static network distributions are used for the comparison of GeoDE
with the first hop count based method: a uniformly random distribution, a Gaussian random
distribution, and a grid-like distribution of devices. The communication range is varied from
5% to 20% and the MAPE of distance estimates is used for evaluation. The more recent
hop count based approach is tested in a uniform-randomly distributed static network and in
dynamic networks with three different mobility patterns from the study presented in Section
5.1.1. The investigated mobility models are CM and RW, which belong to the group of
individual movements, and StrM, which is a coupled mobility model. For evaluation, the
derived distance estimates are used to compute locations with an iterative lateration algorithm
and the localization error, i.e. the deviation between real and computed coordinates, is
calculated for evaluation.
The experiments reveal that GeoDE significantly outperforms the first hop count based

distance estimation approach in all considered static networks. Even the standard deviation
of the error with GeoDE is mostly lower than the error produced with the hop count based
distance estimation approach. Surprisingly, the performance in a Gaussian-randomly dis-
tributed network is even better when compared to a uniform-randomly distributed network
for certain communication ranges. This indicates that averaging the computed estimates
from both involved devices is successful in mitigating the negative effect of distorted neigh-
borhoods. Additionally, the distance estimation approach profits from the higher average
number of neighbors in Gaussian-randomly distributed networks, which is another reason why
the error is well below that of uniformly random networks. In Gaussian networks, similar to
uniform-randomly or evenly distributed networks, the error decreases first with increasing
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communication range. At a communication range of about 10%, a low point is reached and the
error starts increasing again. This can be ascribed to the increased distortion of devices within
a neighborhood with higher communication ranges. In evenly distributed networks, GeoDE
performs similar to uniform-randomly distributed networks, except for some oscillations in
the error behavior for increased communication ranges due to the step-wise increase in the
neighborhood size.
Although GeoDE is found to be slightly outperformed by GDE in static networks, it is

notably superior in all considered dynamic networks. This is due to the negative effect of
mobility identified in Section 5.1, which all hop count based approaches suffer from. The
GDE algorithm relies on the computation of numerical integrations which can be computed
by different approximation methods. It is shown that with an approximation method for
numerical integration from Riemann [196], at least 50 integration steps are required for GDE
in order to outperform GeoDE.

A slight change in computing the average estimate of two neighboring devices could be useful
in order to prevent an increase in error for higher communication ranges in Gaussian-randomly
distributed networks. The higher the distortions of device locations in the neighborhood are,
the greater the difference between the total number of neighbors of both involved devices.
Since the device with higher number of neighbors has better input data for distance estimation,
its resulting estimate is likely to be more precise than the one from its counterpart. This
difference could be regarded by weighting both estimates according to the respective number
of total neighbors before computing the average distance estimate.

5.4 Optimization of Beacon Placement in Buildings
As discussed before, beacon-based localization algorithms are the only reasonable choice to
localize mobile evacuation devices in OBESS because absolute coordinates of devices with
respect to a common reference grid, e.g., the building map, are required. Beacons, i.e., devices
which know their own locations, for example due to a-priori configuration, are used to derive
the locations of all other devices in the network. The placement of beacons is essential to the
accuracy of the derived locations (cf. Bachrach and Taylor [12], Nagpal et al. [171]), hence, it
is important to think about where optimal locations for beacons are. So far, this problem
is considered mainly for SSNs. In static networks, an optimal beacon placement is mostly
handled as an optimal coverage problem where beacons are placed in such a way that their
communication ranges cover the largest possible area. However, new challenges arise when
considering mobile devices because the network’s topology is changing constantly and often
substantially over time, compared to SSNs where devices only occasionally fail or are newly
added. Considering an evacuation scenario makes the problem even more specific. During
evacuation, the devices move simultaneously towards certain targets (exits) in the building.
As a result, not only the network’s topology is changing, but its intrinsic structure changes
from a more or less evenly distributed network to a concentrated and fragmented network.
Consequently, the ability to communicate with certain static beacons varies strongly over
time. Intuitively, a concentration of beacons in higher frequented areas of the building seems
advisable. However, in such regions, the density of the MANET is also increased, which makes
it more likely to establish connections to beacons over multiple hops, even if there are few
of them. This tradeoff has to be taken into account when searching for an optimal solution.
In addition, for lateration at least three beacons have to be known to a device in order to
compute its position (cf. Nagpal et al. [171]). This further distinguishes the problem from a
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simple optimal coverage problem. Little is known about the characteristics of a good solution
and with operating in a two- or even three-dimensional environment, the search space is large.
These are criteria which point to a heuristic optimization approach as a valid strategy for
problem solving (cf. Gerdes et al. [74]). In the following, an EA, i.e., a heuristic optimization
and search method based on the principles of natural evolution, is introduced to tackle the
problem. The EA is used to optimize the placement of static beacons for localization of
devices in a MANET during evacuation. A multi-agent evacuation simulation serves as a tool
to evaluate the fitness of a specific placement.

5.4.1 Optimization of Network Distributions
As mentioned before, optimal device placement has received attention mainly in the context
of SSNs. Also, the research often focuses on achieving an optimal coverage of a specific
area with a minimal number of devices (cf. for example Cardei and Wu [35], Heidari and
Movaghar [87], Kaplan et al. [115], Katz and Morgenstern [119], So and Ye [219]). In general,
this problem is referred to as minimum disc coverage problem and can be solved in time
O (n log n) with n denoting the number of devices in the network (cf. Sun et al. [224]).
Research which concerns the optimal placement of beacons for localization in static networks
can be found in Akl et al. [3], Savvides et al. [207], and Tatham and Kunz [230]. In the
work of Savvides et al. [207], placing beacons at the perimeter of an SSN is recommended.
Akl et al. [3] and Tatham and Kunz [230] propose guidelines for beacon placements in the
context of specific localization algorithms. Moreover, Bulusu et al. [30] introduce an approach
for adaptive beacon placement in order to encounter failure of devices in the network by
reorganization. A lower bound for localization accuracy is shown by Salman et al. [203] and
the impact of beacon placement on this boundary is examined. Another research area is the
improvement of localization results by using mobile beacons, which is, for example, discussed
in Liao et al. [137] and Li et al. [134].

Evolutionary Algorithms

Before describing the proposed solution to the problem treated here, some basic information
about an EA has to be introduced. EAs describe heuristic optimization algorithms which
follow the principles of natural evolution based on Darwin’s theory (cf. Darwin [47]). An EA
is composed of genetic operators, which are known as reproduction, mutation, and selection.
The repeated execution of these operators represents the search process for good solutions to
a given problem. Figure 5.32 illustrates the process.
At the beginning, a set of so-called individuals, which represent valid solutions to a given
problem, is chosen. This set of individuals is called a population. The initial population can
be selected randomly or by choice if certain prior knowledge about the solution is available.
The core of an EA is the fitness evaluation. Here, a given solution, or individual, is evaluated
with respect to the optimization objective and a fitness value is assigned to it. The choice of
appropriate fitness evaluation criteria is crucial and not always very intuitive. Especially in
the research field of Evolutionary Robotics (cf. for example König et al. [124], Merkel et al.
[151], Nelson et al. [174]), which is concerned with the evolution of controllers for robots, the
performance evaluation of an evolved controller is not straightforward. The scenario of beacon
placement optimization faces similar challenges because the criteria which distinct a good
beacon placement from a bad one are not obvious. Therefore, some thought has to be put
into the design of the fitness evaluation.
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Figure 5.32: Illustration of the general procedure of an EA.

After evaluating each individual, some of them are chosen to be recombined. During
recombination, their genome is merged to form new individuals, which are called children.
The children are then slightly altered; this process is commonly described as mutation. The
iteration is concluded by forming a new population before the procedure starts from the
beginning. Various configurations of the genetic operators are conceivable, which have a
different impact on the progression of the EA. The termination criteria for an EA can either
be a predefined number of repetitions (cycles) or the achievement of a specified fitness level in
the population. For more details about EAs, it is referred to Weicker [246] and Gerdes et al.
[74].
In the following section, an algorithm proposed by Huang and Tseng [100] is introduced,

which can be used to optimize coverage in SSNs. Later, this algorithm is, amongst other
methods, used for fitness evaluation in the EA to optimize beacon placements.

Perimeter Coverage Approach

Huang and Tseng [100] propose an approach to compute the so-called coverage-degree of an
area which is occupied by static devices. Basically, the algorithm decides if and how often the
perimeter of a device’s communication range is intersected by other devices’ communication
ranges. If the perimeter of a device is completely contained in the communication range of
other devices, it is denoted as covered. Figure 5.33(a) illustrates an example of a first-degree
covered beacon perimeter (the middle device).
In order to use this concept for fitness evaluation, some changes are made as follows. An

area which is not contained in the communication range of any beacon is denoted as uncovered
or zero-degree-covered. An area which is contained in the communication range of a beacon is
denoted first-degree covered and an area which is inside the communication range of a beacon,
which, in turn, is covered n times by other beacons is denoted as (n+ 1)-degree covered. For
example, the area covered by the middle beacon in Figure 5.33(a) is a two-degree covered
area, while the region which is only covered by the surrounding beacons is one-degree covered
and the rest is defined as uncovered. If two beacons cover the same slice of the perimeter of a
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third beacon, the overlapping part is counted for the next coverage degree. Figure 5.33(b)
illustrates this procedure.

(a) The central beacon 2nd-degree-
covers an area.

(b) Treatment of overlapping perimeter covers.

Figure 5.33: Illustration of the process to determine the perimeter coverage-degree of an area.

5.4.2 Evolutionary Algorithm for Optimal Beacon Placement
To find a good placement of beacons for the localization of mobile devices in a MANET, an
EA is designed as follows. Firstly, the genome representation of a solution is defined. Here, a
solution is represented by a set of two-dimensional coordinates, each denoting the position of
a respective beacon. The coordinates of one beacon in a genome is called a gene. In Figure
5.34, an example individual and its genetic representation are illustrated.

Selection

The selection process describes the procedure of selecting a certain number nparents of individ-
uals for recombination. Here, the binary tournament selection is used, which is a standard
method where two individuals are randomly chosen and then compared in terms of their fitness
value. The one with the higher fitness value is selected for recombination. Both solutions stay
available for further selections. Figure 5.35 describes the tournament-selection graphically.
By changing the size of a tournament, the tournament-selection allows for an easy control

of the selection pressure, i.e., the pressure towards keeping good solutions in the population
and disposing bad ones. When selection pressure is too high, the algorithm can get stuck in
a local optimum because it does not explore solutions with low fitness well enough. On the
other hand, when the selection pressure is too low, the algorithm could be prevented from
converging to an optimal solution. A binary tournament-selection corresponds to a relatively
low selection pressure (cf. Weicker [246]).

Crossover

All selected individuals belong to a mating pool. From this pool, two random individuals
are selected and recombined such that they produce two new individuals. For this process
two standard methods are implemented and tested in the experiments. Firstly, the uniform
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Figure 5.34: An example solution for the placement of beacons inside a building and its
corresponding genetic representation.

Figure 5.35: Illustration of the tournament selection operator, which is used to select individ-
uals for recombination.
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crossover method is used, in which it is decided randomly for each gene in the genome whether
it is part of the first or the second child. The remaining empty genes are taken from the
second parent. Figure 5.36(a) illustrates the method.
The second standard method is called one-point crossover. Both parents are cut in half

at a random position in the genome. The first child is composed by the first half of the first
parent and the second half of the second parent. The second child is created analogously.
Figure 5.36(b) shows an example of one-point crossover.

(a) Uniform crossover. (b) One-point Crossover.

Figure 5.36: Illustration of the two recombination operators used in the experimental study:
uniform crossing and one-point crossover.

Mutation

After recombination, nmut random genes from the newly created individuals are slightly
altered by mutation. For each gene, it is decided with a probability of pmut whether the
mutation is actually performed. The mutated genes, i.e., the altered coordinates of a beacon,
are computed according to equation 5.25.

c = (N (x, σ) ,N (y, σ)) (5.25)

with c denoting the new coordinates of the mutated beacon, x and y represent the two-
dimensional coordinates of the gene before mutation and N (m,σ) is a normally distributed
random value with mean m and standard deviation σ. With this mutation method, the new
coordinates are selected within a certain range around the old ones. The standard deviation of
the normal distribution can be used to adjust the amount of change caused by the mutation.

New Population

The new population is created using the standard (µ+ λ)-approach, with µ denoting the size
of the old population and λ describing the number of children. To build the next generation’s
population, µ individuals with the highest fitness are selected from the combined set of old
population and children (cf. Weicker [246]).
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Fitness Evaluation

As mentioned before, selecting a good fitness evaluation method is not trivial but has an
important impact on the quality of the derived solutions. Hence, various fitness evaluation
criteria are proposed in the following, which are then compared in experiments. To evaluate the
fitness of a given solution, a multi agent simulation is used, in which the agents, i.e., evacuees
who carry a mobile device, compute their locations while performing an evacuation. For this,
lateration is chosen as a localization algorithm (cf. Section 2.4.2) and distance estimation
based on hop counts according to Nagpal et al. [171], as well as GeoDE (cf. Algorithm 5.3)
are applied. The localization technique based on hop counts is further denoted as HC. The
average deviation between real and estimated positions of the mobile devices throughout the
simulation period T is computed. For this, the simulation duration T is divided into time
steps t, in which localization is performed and the agents move towards the designated exit.
The fitness is defined as shown in Equation 5.26. It is the reciprocal term of the average
deviation between real and estimated coordinates in one simulation run, with N being the
set of all devices, ct (n) denoting the real position of device n at time step t, and c̄t (n) its
estimated position. In order to navigate people to a safe exit during evacuation, the devices
have to know the right room which they are located in rather than their exact locations.
This consideration leads to the next suggested fitness criteria shown in Equation 5.27. The
percentage of devices which estimate their positions to be in the correct room of the considered
building is computed on the basis of hop count based distance estimation and lateration.

FP os (HC/GeoDE) = |T | · |N |∑
t∈T

∑
n∈N

|ct (n)− c̄t (n) |
(5.26)

FRoom = 1
|T |

∑
t∈T

1− |{n ∈ N : room (ct (n)) = room (c̄t (n))}|
|N |

(5.27)

Apart from the simulative approach, the perimeter coverage algorithm introduced in Section
5.4.1 is used as fitness criteria. For this, the environment is partitioned into a set of squares S.
Then, the coverage-degree of each square s ∈ S is computed and the fitness value is derived
by Equation 5.28, with i-cover (s) = 1 if square s is i-th-degree covered. The reason for
computing a maximum of third-degree coverage lies in the nature of the localization algorithm.
As stated before, lateration requires information from at least three beacons. As a consequence,
a third-degree covered area seems to be most valuable and is, therefore, weighted more.

FP C =
3∑

i=1
i ·
∑

s∈S i-cover (s)
|S|

(5.28)

5.4.3 Evaluation
To test the effectiveness of the presented algorithm and the various fitness criteria, a simulative
experiment is performed. For this, the building evacuation described in Section 4.1.2 is repeated
with 100 agents, which are distributed randomly across a building (cf. Figure 5.37). The
communication range is fixed at 10%. The parameter values for the EA are listed in table 5.3.
To be able to assess how much two individuals differ from each other, the Hausdorff-distance
(cf. Rockafellar and Wets [198]) is used as shown in Equation 5.29. The two individuals
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Figure 5.37: Example evacuation scenario used for the experimental study. The mobile devices
are depicted as gray circles with arrows pointing to the building’s exit. The
beacons are depicted as black circles.

Table 5.3: Parameter settings for the simulative experiments to test the EA for beacon
placement.

Parameter Name Value
Population size (µ) 10
Probability for mutation 0.3
Standard deviation for mutation 0.05
Mating pool size (nparents) 10
Number of agents 100
Evolutionary iterations 1000

are denoted as i and j, B (i) refers to the set of beacons from individual i. The Hausdorff-
distance reflects the maximum distance there is between any two closest pairs of beacons
from both individuals, thus, a Hausdorff-distance of value zero indicates identical individuals.
Since hd (i, j) and hd (j, i) are not necessarily the same, the mean value is computed as
hdij = 1

2 (hd (i, j) + hd (j, i)), d (·, ·) refers to the Euclidean distance.

hd (i, j) = max∀bi∈B(i)
(
minbj∈B(j)d (bi, bj)

)
(5.29)

The first experiment compares the progress of the average fitness value in the population
over the course of evolution for all four fitness criteria. Figure 5.38 shows the results for
both recombination operators described in Section 5.4.2 and a mutation rate of 1 and 5 genes
per iteration. The corresponding standard deviations are depicted in Figure 5.39. It can be
observed that the fitness increases steadily over time for all considered evaluation criteria.
This indicates that the beacon placements are continuously optimized with respect to the
given criteria. The uniform crossover with a mutation rate of 5 genomes yields the best results
followed by uniform crossover with a mutation rate of 1 gene per iteration, one-point crossover
with a mutation rate of 5 genes per iteration, and one-point crossover with a mutation rate of
1 gene per interation. Except for FP C where one-point crossover with a mutation rate of 5
overtakes the uniform crossover with a mutation rate of 1 after about 200 iterations. Figure

125



Chapter 5 Localization in Mobile Ad Hoc Networks

5.39 shows that the standard deviation of fitness values become relatively stable towards
the end of the experiments for almost all considered settings, except for FP os (GeoDE) with
uniform crossover and a mutation rate of 5, FP os (HC) with uniform crossover and a mutation
rate of 1, and FRoom for all considered settings except uniform crossover and a mutation rate
of 1. It should be noted that only the fitness value levels FP os (GeoDE) and FP os (HC) are
directly comparable.

(a) (b)

(c) (d)

Figure 5.38: Progress of the fitness value during the evolution for perimeter coverage, GeoDE,
HC, and the room mapping fitness criteria.

The most unexpected observation one can make from these results is the exceeding per-
formance of FP os (HC) when compared to FP os (GeoDE). As shown in Section 5.3.3, the
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(a) (b)

(c) (d)

Figure 5.39: Standard deviation of the fitness values during the evolution for perimeter
coverage, GeoDE, HC, and the room mapping fitness criteria.
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(a) (b)

Figure 5.40: Solutions with highest fitness value evolved using the simulative GeoDE based
localization (a) and localization based on hop counts (b) fitness criteria.

approach based on hop counts usually delivers localization results with lower quality than
GeoDE. Hence, the superior fitness of solutions which are produced by the hop count based
fitness criterion is a surprising discovery. One possible reason for this could be that finding
an optimal beacon placement is more difficult for GeoDE compared to the approach based
on hop counts. This seems reasonable when considering that GeoDE depends much more
on the distribution of a device’s neighbors compared to the approach based on hop counts.
Figure 5.40 displays the individuals from the final population with the highest fitness values
FP os (HC) and FP os (GeoDE), which are simultaneously the individuals with lowest localiza-
tion error. It becomes obvious that a good beacon placement for localization based on GeoDE
looks differently from a good beacon placement for localization based on hop counts. The
corresponding average Hausdorff-distance is hdHC,GeoDE = 0.25. From these observations, it
can be concluded that the applied localization method has a strong impact on the result of
the EA. Consequently, it can be assumed that different localization algorithms have different
requirements on the beacon placement in a network.

As mentioned before, the results in terms of fitness cannot be compared directly to each other.
To overcome this issue, the final beacon placements from all four experiments are evaluated in
one run of the multi-agent evacuation simulation, computing the average localization error as

1
FPos(HC) . Figure 5.41 shows these results. The beacon placements evolved with the simulative
localization approach based on hop counts are best in terms of localization error followed by
the beacon placements evolved with the Perimeter Coverage fitness criteria, and the results
produced by GeoDE-based fitness evaluation. The fact that a beacon placement evolved
with a hop count based fitness criterion yields the lowest localization error when hop count
based localization is applied for evaluation is not surprising. Also, it is understandable that a
beacon placement which was optimized for room mapping performs worst in terms of average
localization error. However, it is unexpected that the Perimeter Coverage fitness criterion
delivers similarly low localization error when compared to hop count based fitness criterion.
This does not necessarily mean that an optimal beacon placement for localization is the
same as a beacon placement with optimal coverage. The fact that a third-degree perimeter
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coverage was weighted more heavily than a first-degree coverage could play an important
role in the high performance of this approach. This is confirmed by comparing the two best
individuals evolved with the perimeter coverage approach in terms of fitness and localization
error shown in Figure 5.42. While the fitter individual has a wider area covered by beacons,
the individual with lower localization error has a denser beacon placement leaving more
squares uncovered. From this it can be concluded that the emphasis on a third-degree covered
area in the fitness function is likely to be the reason for the good performance of the perimeter
coverage evolution. Nevertheless, it should be noted that the results are in fact similar, while
the Perimeter Coverage approach is much less computationally complex since it does not
require an evacuation simulation.

Another important discovery is that the room mapping objective obviously delivers different
results compared to the criteria which consider localization errors. It becomes apparent that
a low localization error is not necessarily the same objective than a good room mapping
of coordinates and it has to be thought about which goal priority has before starting the
optimization. When looking at the best individual in terms of localization error evolved using
FP os (HC) in Figure 5.40(b), it becomes obvious that placing beacons along a path to the
exit seems advisable. When comparing this beacon placement with the best one evolved with
perimeter coverage in terms of fitness, which is displayed in Figure 5.42 (b), they look rather
different. In fact, their average Hausdorff distance hdP C,HC is 0.25. However, the average
localization error for both individuals is very similar with 0.11 for perimeter coverage and
0.10 for the hop count based approach. This indicates that an even better placement could be
found when beacons are located close to the path leading towards an exit and, at the same
time, provide good third-degree coverage.

Figure 5.41: Comparison of the last populations evolved with various fitness criteria in terms
of localization error.

The importance of a dense beacon placement is reinforced when looking at the best individual
in terms of fitness evolved with the room mapping fitness criteria illustrated in Figure 5.43(b).
Obviously, the computed coordinates map well to their corresponding room, when beacons
are placed densely, even though the localization error is comparatively high in this case (cf.
Figure 5.41).
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(a) (b)

Figure 5.42: Solutions with highest fitness value (a) and lowest localization error (b) evolved
using the perimeter coverage fitness criteria.

(a) (b)

Figure 5.43: Solutions with lowest localization error evolved using simulative localization
based on hop counts (a) and correct room mapping (b) fitness criteria.
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5.4.4 Conclusion
In this section, an EA is introduced with the objective to optimize beacon placements for
localization of mobile devices in an ad hoc network during building evacuation. Since mobility
of the devices and the evacuation scenario affect the network topology strongly, it is argued
that simply increasing the area which is covered by beacons is not the optimal strategy to
find good beacon placements. To evaluate the EA, experiments are performed with uniform
and one-point crossover as recombination methods and a mutation rate of 1 or 5 genomes
per iteration of the algorithm. Four different fitness evaluation criteria are proposed, three
of them evaluate a beacon placement by simulating an evacuation scenario in which the
devices perform localization. Two of these simulative fitness evaluations measure the average
localization error during the simulation by applying lateration to distance estimates produced
by a simple hop count based approach and by the GeoDE method proposed in Section 5.3.
The third simulative fitness evaluation measures how often locations derived by lateration
and hop count based distance estimation lie within the correct room of the building since
this is especially important for computing evacuation instructions. In order to make the
results comparable, the final populations are evaluated in terms of localization error in one
simulation run using lateration and hop count based distance estimation. Additionally, the
beacon placements with highest fitness and lowest localization error are compared and their
difference is evaluated by applying the Hausdorff distance metric introduced by Rockafellar
and Wets [198].
Surprisingly, the distance estimation approach based on hop counts performed best in

terms of fitness and localization error closely followed by the Perimeter Coverage method.
Subsequently there are GeoDE and room mapping evolution results. Unexpectedly, GeoDE is
outperformed in terms of localization error by hop count based localization, even though it is
found to be superior in previously investigated network scenarios (cf. Section 5.3.3). A likely
reason for this is that it is more difficult to optimize beacon placements for GeoDE based
localization compared to hop count based localization. In any case, the selected localization
error clearly affects the optimal beacon placement in a network. It is further shown that
minimizing the localization error leads to different results when compared to the objective
of finding a good room mapping of calculated coordinates. In summary, beacon placements
alongside a path which leads towards an exit, as well as a high third-degree coverage, are
identified to be essential criteria for low localization error.
It is favorable to have a beacon placement which serves as a basis for a constantly low

localization error in contrast to a low average error which is highly volatile. Hence, a further
improvement of the presented approach could be to integrate the standard deviation of
localization errors in the fitness evaluation.

5.5 Summary
In this chapter, range-free distance estimation, which can be used as a basis to localize devices
in ad hoc networks via lateration, is subject to investigation. The focus lies on the influence
which mobility of the involved devices has on the accuracy of distance estimation, whether
adjustments have to be made in order to account for this impact, and which adjustments
could be reasonable. Firstly, a study is presented which examines hop count based distance
estimation in MANETs. A so-called hop count error measurement is introduced. It measures
the deviation between actual hop counts in a network and an ideal hop count distribution,
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which would be obtained if the network was perfectly dense and the devices were stationary.
This allows deriving general statements about the influence of mobility on any hop count based
distance estimation method. Various mobility models from the literature and some novel
models, which have been specifically designed for this study, are described and their impact
on hop count errors is tested. Experiments reveal that mobility turns naturally positive hop
count errors into unpredictably high negative hop count errors, which leads to underestimation
of distances. This effect is explained by devices which move and then communicate their hop
count values before updating them according to their new locations. This can affect devices at
their new locations, which in turn underestimate their distances as well. An increased speed,
directions leading away from beacons, and increased heterogeneity in the movements of nearby
devices are found to be reinforcing factors for underestimation. MoGA is presented, which is
a variant of the standard GA used to determine hop counts, in order to reduce negative hop
count errors. Experiments show that this is successfully done; however, a complete elimination
is not achieved. As a next step, two indicators are presented called HC-change and ID-change,
which are able to identify and characterize mobility of devices in a network. Additionally,
they are computable in a decentralized manner solely based on local information. The aim is
to use these indicators in context of learning mechanisms provided by the O/C Architecture
in order to reduce hop count errors by adapting the hop count values according to the current
network dynamics.
Asynchronous communication and updates of hop counts are identified to be the main

reasons for the emergence of negative hop count errors in dynamic networks. Hence, it
is subsequently proposed to synchronize the devices in the network by applying a nature-
inspired synchronization algorithm. Before investigating the benefit of synchronization
for the determination of hop counts in dynamic networks, an assessment of the proposed
synchronization algorithm is performed. In order to evaluate its effectiveness in MANETs, it is
tested under different parameter constellations. Synchronization duration and synchronization
success are measured. It is demonstrated that reliable synchronization success can be achieved
for both, static and dynamic networks if the algorithm is initialized with a suitable parameter
configuration. Furthermore, increasing the communication ranges of the devices is proven to
increase the synchronization success while simultaneously reducing the time duration. An
algorithm called FIHC is presented, which can be used to encode hop count information in
the time difference between two signals in a synchronized network. Due to the synchrony
in the network, now a device can wait until it receives a signal from its neighbors, which
confirms its own hop count value, before it reports this value to other nearby devices. Waiting
for confirmation before hop count communication aims at reducing negative hop count errors.
Experiments confirm that this simple mechanism indeed eliminates negative hop count errors
almost entirely.

Apart from hop count based distance estimation, GeoDE is presented in this chapter. This
method derives distance estimates between neighboring devices from the ratio of shared to
total communication partners. An algorithm is presented which extends this method in
order to estimate distances over multiple hops between devices in the network and beacons.
The mapping from communication partners to distances is approximated with a third-degree
polynomial function, which is shown to be less error-prone when compared to an approximation
with a first-order Taylor series expansion. Additionally, a short discussion about potential
sources of error in GeoDE is given. The proposed algorithm is evaluated in an experimental
study and compared to the results achieved by two different hop count based distance
estimation approaches. GeoDE significantly outperforms the more established hop count
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based distance estimation technique for all considered communication ranges. This result is
consistent for all three regarded stationary network distributions, namely a uniformly random
network, a Gaussian random network and a network with grid-like distributed devices. Even
the standard deviation of the MAPE with GeoDE lies below the error of the hop count
based approach. However, when compared with a more sophisticated recently published hop
count based approach called GDE, GeoDE produces estimation results of similar, marginally
worse, quality in static networks. Nevertheless, in four different dynamic networks, the
superiority of GeoDE over GDE is shown to be significant. The main reason for this can
be assumed to lie in the previously mentioned sensitivity to negative hop count error under
mobile conditions, which hop count based distance estimation methods suffer from. GDE is
based on numerical integration and an additional experiment shows that it requires at least
50 steps of the Riemann integration approximation method in order to deliver more accurate
distance estimates than GeoDE in static networks.
Because the placement of beacons affects the quality of localization results, an EA is

presented to optimize such placements, specifically for localization during an evacuation
scenario. Various fitness criteria are proposed in order to evaluate a certain beacon placement.
Two fitness criteria are based on the average localization error produced with lateration during
a simulated evacuation scenario. One determines locations on the basis of hop counts, the
other uses GeoDE. A third fitness evaluation method measures the average percentage of
devices which locate themselves in the correct room using lateration and hop count based
distance estimation. The last proposed fitness evaluation is based on a method proposed in
the literature in order to determine the perimeter coverage-degree of a beacon placement.
According to this method, the perimeter of a beacon is denoted as one-degree covered when it’s
perimeter is completely covered by other beacons’ perimeters. The fitness value is computed
in a way that third-degree covered beacons are valued the most since at least three beacons
are required to compute two-dimensional locations using lateration. An experimental study
is conducted to evaluate the proposed EA. It is shown that beacon placements are indeed
optimized over time with respect to the individual fitness functions. Two recombination
methods, namely uniform and one-point crossing, and a mutation rate of 1 and 5 genes
per genome are tested. Uniform crossing with a mutation rate of 5 delivers best results,
independently of the underlying fitness evaluation method. While lowest localization errors
are produced by beacon placements evolved according to hop count based fitness, perimeter
coverage fitness evaluation follows closely behind. Subsequently, there are beacon placements
produced by GeoDE based evolution and placements evolved based on the room mapping
fitness criterion. Comparison of some evolved beacon placements from final populations reveal
that an optimal placement for hop count based distance estimation is rather different from
one evolved to be used with GeoDE. Moreover, minimizing localization error yields different
beacon placements when compared to optimizing the room mapping of derived locations.
Furthermore, the experiments indicated that finding an optimal beacon placement is more
challenging for GeoDE than hop count based methods. In general, a beacon placement with
a high third-degree coverage and where beacons are located alongside paths towards the
building’s exit seem to be desirable.
As a summary, it can be concluded from the research presented in this chapter that

localization algorithms have huge performance deviations depending on the characteristics
of the network, the mobility of the devices in the network, and the placement of beacons.
This confirms that learning mechanisms should be applied in order to improve localization
in OBESS. Firstly, to the mobile devices such that they learn how to select appropriate
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localization algorithms at runtime depending on the current environmental state and, secondly,
to the CCU in order to optimize beacon placements for localization in that specific building.
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CHAPTER 6
CONCLUSION

Increasingly large and complex buildings are the main motivation for a long overdue overhaul
of today’s building evacuation support. In order to achieve this goal, OBESS has been
proposed in this thesis, a system consisting of partly mobile devices used to navigate potential
evacuees during an emergency evacuation. This chapter concludes the presented work by
summarizing the major contributions in Section 6.1 and describing aspects which remain open
for future research in Section 6.2. Section 6.3 gives some final remarks on the work presented.

6.1 Summary
This thesis has made three major contributions to advance the evacuation support equipment
in buildings. Firstly, main problems of current emergency equipment have been identified and
a concept for an evacuation support system has been presented in order to overcome these
limitations. Section 6.1.1 summarizes these findings. Secondly, the concept of decentralized
and distributed evacuation route planning with mobile devices has been investigated. The
developments regarding this topic are described in Section 6.1.2. Thirdly, localization of
mobile devices in ad hoc networks has been addressed. Section 6.1.3 concludes this summary
by presenting the research performed in this domain.

6.1.1 Organic Building Evacuation Support System
The preparations of today’s buildings for an emergency evacuation mainly consist of stationary,
analogous emergency evacuation maps and exit signs installed for the purpose of guiding
evacuees towards safe areas or exits. This route guidance system is designed by experts
at the time of construction. The objective is to provide for a well-ordered evacuation in
case of an emergency situation as it is most likely to occur in that specific building. This
includes the estimation of the average number of people located inside that building and
their most probable distribution across the rooms. However, this evaluation can be far from
reality of an actual evacuation scenario. Furthermore, potential blockages of passages due
to collapsed masonry or congestions of evacuees in front of narrow passages or doors can
change the optimal route completely. Another problem with today’s evacuation support is
its stationary nature. Exit signs and evacuation maps are likely to be overlooked, especially
when in panic. Consequently, an ideal evacuation support system is desired to react in an
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adaptive manner to changes in its environment while also being portable. In addition, an ideal
evacuation support system should be designed in a way such that the optimal escape route
can be personalized according to the specific needs of a particular evacuee. Such individual
needs can result, for example from high age or a physical disability of the evacuee, which could
make it necessary to avoid narrow passages or stairs. In order to achieve the aforementioned
objectives, this thesis has proposed to use mobile devices, such as smart phones or tablet
PCs, for evacuation support in buildings. Mobile devices possess computing capacities and
digital screens which enable adaptive route guidance. Furthermore, they are usually equipped
with means for wireless communication, which allow for the collection of information about
the current evacuation situation inside a building. This knowledge can then be incorporated
in the escape route planning process. Furthermore, mobile devices are portable and belong
to specific users, thereby, fulfilling all previously mentioned desired characteristics for an
emergency navigation device.

In this thesis, OBESS has been proposed as an evacuation support system that consists of
three main components, a CCU, an SSN, and mobile devices which are capable of establishing
ad hoc network connections via local communication. The CCU is used for the configuration
of the static sensors which are distributed across the building. The CCU communicates the
layout of the building to the sensors, as well as all other information required to support
the evacuation route planning and localization process of the mobile devices. This can, for
example, be a graph model of the building’s layout or information about the sensors’ own
locations inside the building in order to serve as beacons for the localization of mobile devices.
Moreover, the CCU is intended to collect information about the performance of OBESS which
can then be used for building-specific optimization. An example of such an optimization is
given in Section 5.4 of this thesis, where the placement of sensors in the building is optimized in
order to improve localization accuracy. Sensors are able to communicate with each other and
with mobile devices whenever they are within reach as well as to provide necessary input for
evacuation route planning and localization. Evacuation route planning is performed directly
on the mobile devices, which use their ad hoc network connections in order to exchange
information about the current evacuation situation and use it to improve evacuation route
planning. The computed evacuation paths are then displayed on the devices’ screens or
provided as voice instructions to the user.

Although there is a CCU in this system architecture, OBESS is designed as a decentralized
system in order to avoid having a single point of failure. Therefore, in case the CCU fails
to work, the evacuation system still continues to function. In addition, occasional sensors
can be defective without rendering the entire evacuation support system useless. It is even
conceivable to install some navigation devices inside the building in order to provide guidance
for evacuees without or with broken mobile devices. Consequently, due to this design, OBESS
is quite robust against failures. This is of special importance as building evacuation is usually
a life-threatening situation where a support system is expected to work robustly.
Another crucial virtue of OBESS is the concept of self-organization between the mobile

devices in order to employ adaptive evacuation route planning and localization, such that the
ability to react to unforeseen changes in the environment is provided for. Self-organization,
however, can lead to undesired emergent system behavior, which can be avoided by using the
generic O/C Architecture from Organic Computing. This architecture provides means for
controlled self-organization and, hence, allows a system to be flexible as well as robust and
trustworthy at the same time. This thesis has shown how the generic O/C Architecture can
be applied to mobile evacuation devices in order to allow for controllable self-organization in
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evacuation route planning, as well as in the localization procedure. For evacuation planning,
the online learning mechanism can be used to decide if an evacuation instruction has to be
updated due to changes in the environment. Additionally, offline-learning allows for validating
an evacuation instruction in a simulative environment before it is made available to the evacuee.
This quality management is meant to improve evacuation instructions and, thus, the resulting
evacuation process. Moreover, it has been described how the two-level learning mechanism of
the O/C Architecture can be used for the selection of an appropriate localization algorithm
from a set of different algorithms available to the device. The choice is made by taking into
account the current topology of the MANET or other criteria, such as the state-of-charge of
the mobile device’s battery. The intrinsic control mechanism of the O/C Architecture uses
feedback mechanisms such as consistency checks and dead-reckoning methods for evaluating
the performance of the selected algorithm and decides about an appropriate control action,
which can be a change of the applied localization algorithm. Furthermore, a simulation of
the current network topology can be set-up and algorithms can be tested in this simulative
environment before they are applied during runtime. In addition to these intrinsic control
mechanisms, possibilities for direct user control have been presented, such as correcting
computed locations by tapping on the device’s screen or triggering an update of the evacuation
instruction by simply walking in another direction than the one suggested by the current
navigation instruction.

6.1.2 Swarm Evacuation Planning
After having introduced the architecture for a self-organizing and robust evacuation support
system, this thesis has addressed the task of decentralized evacuation route planning with
mobile devices. In contrast to standard path planning approaches, which use global knowledge
of the evacuation situation in order to optimize escape routes, the main challenge for OBESS is
the uncertainty of the information basis available to each mobile device for finding an optimal
evacuation route for its user. Due to the decentralized system architecture, the mobile devices
can only rely on local communication with devices within their proximity and information
dissemination over ad hoc network connections for generating and updating their knowledge
base. SEP refers to such decentralized evacuation planning methods which use only local
information as a basis. Two SEP algorithms have been developed and evaluated in this thesis.
Both algorithms are adaptive to changes in this knowledge base and are shown to accelerate
the evacuation process when compared to a situation in which evacuees’ choose the shortest
path towards an exit of the building.
The first method is called CC-SEP. It uses a macroscopic graph model of the building

and a flow optimization approach to find optimal evacuation routes for each evacuee. This is
done by scheduling all evacuees such that the overall evacuation time is minimized and by
subsequently selecting an appropriate path for the device’s specific user. This approach has
been subject to thorough investigation. Varying numbers of evacuees, distributions inside the
building, communication ranges of the mobile devices, and several configuration parameters
of CC-SEP have been investigated. Moreover, different building layouts have been used for
evaluation in order to confirm the generality of the results. Additionally, a robustness test
has been performed, in which the number of evacuees who follow the provided navigation
instructions have been varied. In summary, it has been shown that CC-SEP leads to a lower
overall evacuation time in almost all considered scenarios when compared to a situation in
which all evacuees follow the shortest path. Furthermore, the approach has been proven to
be robust in scenarios with up to 30% of evacuees which deviate from suggested evacuation
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routes. Although the evacuation time has been shown to increase slightly when the evacuation
planning is performed repeatedly in order to adapt to changes in the knowledge base, it is
still faster than in the scenario where evacuees simply follow the shortest paths.
DMO-SEP is the second SEP algorithm, which has been proposed in this thesis. This

algorithm uses a discretized version of the building layout instead of a macroscopic graph
model as a basis for route planning, a complex cost function to evaluate different routes,
and a dynamic path finding algorithm. This dynamic algorithm adapts evacuation paths to
newly available information, which reduces the necessary computations when compared to
methods which compute the optimal path from scratch. Moreover, DMO-SEP is suited to
take into account user specific objectives in the evacuation route optimization process, such
as an individual level of risk aversion or others. For the evaluation of different evacuation
paths with regard to their potential for congestions, two congestion indicators have been
proposed. The first one is called load and it is based on the number of evacuees with respect
to the size of the room in which they are located in. The second indicator focuses on the
entropy of evacuees’ locations in rooms, i.e., their concentration. An experimental study has
been performed in which DMO-SEP is compared to CC-SEP and the different optimization
objectives are investigated. It has been shown that DMO-SEP can further improve the overall
evacuation time when compared to CC-SEP. Additionally, DMO-SEP is demonstrated to
be able to consider different objectives when optimizing the evacuation path, such as risk
aversion or congestion avoidance. Moreover, both congestion indicators have been compared
and it is revealed that load is an indicator better suited to improve the overall evacuation time
than entropy, although both indicators lead to an overall faster evacuation when compared to
minimizing travel distance only.

6.1.3 Range-free Distance Estimation in Mobile Ad hoc Networks
Distance-based localization has been identified to be the first choice for localization of mobile
devices in OBESS since such algorithms are decentralized, deliver absolute localization results,
do not necessarily require bulky hardware, and are more accurate than proximity-based
localization approaches. In order to apply distance-based localization, distance estimates
between the devices to be located and beacons, i.e., devices which know their own locations,
have to be determined. For this purpose, many distance estimation techniques have been
proposed in the literature and described in this thesis. Range-free distance estimation is
especially suited for an application in OBESS because it exploits ad hoc network connections
instead of relying on the analysis of a physical communication signal. This way, the hardware
requirements of the mobile devices, as well as the number of required beacons in the system
are reduced, hence, reducing the total installation costs of such an evacuation support system.
However, most range-free distance estimation concepts have not yet been subject to research
when applied to mobile devices instead of static ones. Since the devices in OBESS are mobile,
the application of such algorithms to MANETs has been addressed in this thesis.

In the first instance, an extensive study has been performed to investigate the effect various
mobility models have on distance estimation based on hop counts, i.e., the minimum number
of relay devices between the device to be located and the beacon. This study has revealed
that mobility has a negative impact on the accuracy of hop count based distance estimation
due to asynchronous computation and communication of hop counts. While hop count based
distance overestimation is a common problem in static networks, to which many solutions
have already been proposed in the literature, mobility of devices can turn this overestimation
into an unpredictably high underestimation. It has been argued thoroughly in this thesis that
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it is crucial to avoid such an underestimation in order to improve the accuracy of localization
in mobile networks. In this study, speed and direction of a device’s movement with respect to
beacons have been shown to have a significant impact on the underestimation. Additionally,
similarity in the movements of devices which are close together has been identified to have an
impact on this kind of underestimation. MoGA, a modified version of a standard algorithm for
determining hop counts has been proposed in this thesis and has been shown to reduce mobility
induced underestimation. Furthermore, two indicators have been introduced, which can be
computed based on local information from the hop counting algorithm. These indicators have
been shown to be suited for identifying whether a device moves and which characteristics
its movement has. In the context of O/C Architecture, these indicators could be used for
letting the devices learn how to adjust hop count based distance estimation results in order to
compensate for mobility induced underestimation.
Since asynchronous hop count computation and communication have been identified to

be the main reasons for the negative impact of mobility, this thesis has examined whether
a MANET can be synchronized in order to reduce mobility induced underestimation. A
nature-inspired, decentralized synchronization algorithm has been investigated in static and
dynamic network scenarios with varying communication ranges and configuration parameters.
It has been shown that synchronization can be achieved reliably in both, static and dynamic
networks, when initialized with suitable parameter values. Based on synchronized networks,
FIHC, an algorithm for scheduling the communication of hop count values, has been introduced.
Two variants of this hop counting algorithm have been investigated and compared to the
standard hop count algorithm. Experiments have revealed that this scheduling of hop count
messages in a network can significantly reduce mobility induced underestimation, up to an
almost complete elimination of underestimation in the scenario considered.

Apart from hop count based distance estimation, a connectivity-based distance estimation
approach called GeoDE has been developed in this thesis. This approach utilizes the ratio
of shared to total communication partners between two devices for estimating the distance
between them. It has been shown how this algorithm can be used for the purpose of estimating
distances between beacons and devices in the network. As for the mapping of ratios to distance
estimates, two approximation approaches have been compared, and it has been shown that
the linear regression yields a lower approximation error when compared to a first order Taylor
series expansion. GeoDE has been evaluated for varying communication ranges of the mobile
devices and for different static network topologies. Additionally, dynamic networks using
different mobility models have been investigated. It has been demonstrated that GeoDE
outperforms two different state-of-the-art hop count based distance estimation techniques
in static and dynamic networks for almost all cases considered. Only when compared to
GDE from Liu et al. [140] in a uniformly random distributed static network, GeoDE does not
significantly outperform the hop count based estimation method, but rather delivers quite
similar localization errors. However, an additional experiment has shown that this is only the
case when numerical integration in GDE is approximated with a sufficiently high accuracy. In
any other case, GeoDE is superior to this estimation method as well.
The final contribution of this thesis to the research areas of evacuation management and

localization alike is an EA which optimizes the placement of beacons for the application of
mobile device localization during building evacuation. Building evacuation leads to a change
in the distribution of mobile devices in the building over time, with devices temporarily
concentrating at bottleneck-areas, such as doors or narrow passages, and tending to cluster
around the exits of the building after a certain time. This dynamically changing topology
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poses a special challenge for finding an optimal beacon placement to support localization
during the whole evacuation process. Since only little is known about the characteristics
of a potentially good beacon placement for this specific application scenario and the search
space is quite large, a heuristic optimization approach has been chosen to tackle the problem.
Four different evaluation criteria for the fitness evaluation process have been proposed in
this thesis. Three of these evaluation criteria are based on a simulative building evacuation,
during which the mobile devices determine their locations via distance-based localization. The
first variant uses hop count based distance estimation for localization, the second variant is
based on GeoDE. The average localization error of all devices during the evacuation has been
taken as an evaluation criterion for determining the fitness, i.e., quality, of a specific beacon
distribution. The third simulative evaluation method also uses hop count based distance
estimation for the localization of the devices, but a room mapping criterion, instead of the
average localization error, forms the basis for fitness evaluation. This criterion measures how
often the determined locations match the correct room in which the devices are actually
located in. As a fourth fitness evaluation criterion a so-called perimeter coverage approach has
been examined. A beacon distribution has high perimeter coverage when a large area is covered
by the communication ranges of the beacons and the perimeters of their communication
ranges have many overlaps. The experimental evaluation has delivered some valuable insights
into an optimal beacon placement for localization during a building evacuation scenario.
Beacon placements with a high perimeter coverage placed alongside a path towards the exit
of the building have been found suitable to support localization in the considered scenario.
Furthermore, it has been shown that a beacon placement which results in a low average
localization error is not necessarily optimal when it comes to determining the correct room
in which devices are located in and vice versa. Hence, it is important to determine the
appropriate optimization objective before choosing a beacon placement. In addition, the
study has revealed that GeoDE, although previously proven to be superior to hop count
based distance estimation in mobile networks, can under certain conditions result in a higher
average localization error when applied to an evacuation scenario. This finding indicates that
alternating between localization algorithms during runtime in response to changing conditions
of the environment can improve localization results. This finding confirms the strategy for an
adaptive evacuation and localization approach proposed in this thesis.

6.2 Outlook
With the introduction of the concept of OBESS and the proposal for decentralized path
planning and localization, this thesis has laid the foundation for a long overdue changeover in
building evacuation support. By applying the O/C Architecture from Organic Computing
to the mobile devices used in OBESS, the devices are capable of autonomously computing
their locations in the building and of finding optimal evacuation instructions while at the
same time maintaining their controllability by the user. With the introduction of this concept,
the development of decentralized evacuation planning methods, and the new insights about
range-free localization in dynamic networks, the research objectives of this thesis have been
fulfilled. However, the main ambition of this thesis is to initiate a process, in which researchers
improve and reconsider the presented ideas in order to further develop the vision of building
evacuation support via mobile devices. In the following, some initial thoughts on potential
improvements are presented.
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6.2.1 Organic Building Evacuation Support System
While the focus of this thesis has been laid on the mobile evacuation devices used in OBESS,
the design of the CCU is another important factor. As already mentioned, the CCU could
also be implemented according to the generic O/C Architecture, allowing for the learning of
building-specific characteristics in order to improve the performance of OBESS over time.
Information about the number of people inside the building at specific days or about the
most frequented rooms, et cetera, can be collected from the mobile devices using the SSN
connections, transferred to the CCU and incorporated in the building-specific optimization
process. Using this data, potential bottleneck-passages in the building could be identified and
removed. In Section 2.3.2, several publications are presented which address the optimization
of buildings to enable faster or less dangerous evacuation. Such optimization includes the
deliberate placement of barriers inside the building or additional doors in order to prevent
congestions. This optimization could be performed on the CCU in OBESS, with the great
benefit of being able to use building-specific characteristics as a basis for evaluating measures
before they are applied to the building. Since adaptation of buildings via constructional
measures can be cost intensive, this is a major advantage of OBESS. Additionally, the CCU
can use collected data in order to improve the localization of mobile devices in OBESS. One
example of such an optimization approach has been presented in Section 5.4 of this thesis,
where an EA is used to find appropriate placements of beacons in a building with the aim
of supporting localization during an evacuation scenario. This idea could be expanded even
further by collecting data from multiple CCUs in OBESS-ready buildings on external servers
in order to provide an even broader learning basis.

Apart from developing building-specific optimization concepts, the general design of OBESS
needs to be considered. For example, the user interfaces provided by the CCU or the mobile
devices have to be defined. Questions have to be addressed, such as which data should be
displayed to the user and in which form should the layout of the building be provided to
OBESS, et cetera. When talking about the building layout, it is essential to consider certain
standards for layouts, as well as a way to make them automatically readable by OBESS.
Moreover, further research is required which focuses on the automatic transformation of
building layouts to macroscopic evacuation graphs, which can be used as a basis for CC-SEP.
Additionally, it would be useful to enhance the layout by providing information about the
location of first-aid kits, fire extinguishers, or others. It is also conceivable to add information
about other points-of-interest inside the building. Such information could be anything, from
the locations of paintings in a museum accompanied by additional background information,
over the locations of printers or conference rooms in an office building, up to the location of
restrooms, check-in desks, or gates at an airport. Similar to computing evacuation instructions,
the mobile devices in OBESS could be used for navigating users to such points-of-interest
in non-hazardous situations. Furthermore, OBESS could be used to help users to find each
other by sending a search request via the SSN and waiting for a response from the user that
is searched for.

Another important feature of the CCU in OBESS is the configuration of all sensors in the
SSN as to their respective locations inside the building. The question arises how this can
be done in a way that the manual configuration to be carried out by the user is kept to a
minimum. One approach to reduce this overhead could be to configure only a small amount of
sensors manually and derive the locations of all other sensors by applying any of the proposed
localization algorithms in Section 2.4.1. In order to do so, it has to be investigated which
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sensors in the network require manual configuration and which localization algorithm has to
be applied to determine the locations of the remaining sensors.
So far, it has been argued in this thesis that a central approach to evacuation support is

undesirable due to the high risk of failure. However, it could be reasonable to rely on centralized
evacuation planning, as long as the CCU is unimpaired, and to use decentralized mechanisms
either supplementary or as a fallback. This could reduce the amount of communication and
computation which mobile devices have to perform and, hence, increase the lifetime of their
batteries. When it comes to the development of software running on mobile evacuation devices
in OBESS, a challenge which has to be faced are well-known technical issues which arise with
wireless communication between a multitude of devices, e.g., signal collisions, interferences, et
cetera (cf. Rappaport [190]). However, there are already several proposals to remedy such
problems, for example published by Priyantha et al. [183].

6.2.2 Swarm Evacuation Planning
In the proposed SEP approaches, the age-value of a message is solely used to resolve conflicts,
although it provides additional knowledge about how much time has passed since the location
has been computed. Evacuation planning is likely to deliver even better results, when reported
locations of other evacuees in the building are extrapolated using the age-values of the
respective messages and knowledge about the evacuees’ traveling speeds and directions, which
can be computed using historic location information. Another field of application is to utilize
the age-value for evaluating the reliability of a certain piece of information. When two paths
are only slightly different with respect to their congestion potential, it could be reasonable to
select the path for which the obtained information is more recent and, hence, more reliable.
For DMO-SEP, additional work is to be done in order to answer the question how to determine
the right weights of different objectives. Ideally, the weights are derived automatically from
user preferences. However, since a user cannot be expected to define the degree of its own
risk aversion, learning a user’s preferences and characteristics from its behavior could be
one direction of future research in the area of evacuation management. Smart phones are
often connected to social media platforms, where personal information about the user can be
stored. This could be of help when approaching the task of identifying a user’s preferences.
Nevertheless, this remains an open challenge and, surely, the protection of the user’s privacy
has to be considered when pursuing such an approach.

6.2.3 Range-free Distance Estimation in Mobile Ad Hoc Networks
In the study about the performance of hop count based distance estimation under mobile
conditions, which has been presented in this thesis, two indicators have been proposed in
order to assess the mobility in a network. In a next step, these indicators have to be mapped
to a specific adaptation of the hop count values such that underestimation is compensated
and the accuracy of the hop count values is improved. Such a mapping could, for example,
be derived using a supervised machine learning approach. The multitude of mobility models
described in this thesis forms a rich basis for generating suitable training data. If it were
possible to derive a fixed mapping, this mapping could then be used to improve the results of
any hop count based distance estimation technique when applied to dynamic networks.
Apart from refining the standard GA by using hop count adaptation, a synchronization

based hop counting method called FIHCd has been presented in this thesis. One limitation
of this method is that it assumes devices to be able to send signals at arbitrarily short time
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intervals. There are cases, however, in which this assumption does not hold. Especially in
large networks, the difference between two successive hop count signals becomes very small
with the proposed method. In order to overcome this drawback and preserve the benefit of
negative hop count error reduction, FIHCd can be modified as follows. The network is still
assumed to be synchronous but mobile devices send their hop count information in the form of
a message instead of simple signals at the end of their timers’ periods, similar to standard GA.
However, the devices now alternate between a listening and a sending period and they are only
allowed to send messages during the sending period after having received a message during
the listening period which confirms their hop count value or leads to an update respectively.
In any other case, the sending period turns into a listening period until a message is received.
This method can avoid having devices send messages before they managed to update their
hop counts after having moved away from their current gradient ring similar to FIHCd.

As for GeoDE, a potential improvement could be to use a weighted average of the computed
distance estimates between two neighbors. A device which has a higher number of neighbors
in its communication range can be expected to deliver a more accurate estimate; hence, its
initial estimate should be assigned a higher weight when computing the average value.

Finally, there are several potential improvements of the EA for optimizing beacon placements,
which has been presented in the last section of Chapter 5. Firstly, the evolutions could be
initialized with regular beacon placements, such as grid-like distributions, in order to examine
whether such simple structures leave room for improvements. Another improvement could
be to refine the fitness function of the EA. So far, only the average localization error was
taken as a basis for evaluating a particular beacon placement. Another objective, however,
could be to obtain localization errors which are constant for the time of the entire evacuation
and similar for all evacuees in the building. Furthermore, it could be interesting to look at
a combination of the fitness evaluation criteria proposed. In general, EAs have many more
configuration parameters, which have not yet been examined, such as the population size,
the number of parents or children during recombination, the mutation operator employed,
and many more. Before an EA is used productively in an OBESS system, finding an optimal
configuration should be subject to thorough investigation.

6.3 Final Remarks
While certainly not aiming at providing final solutions to the challenges of modern and adaptive
evacuation management for buildings, this thesis has demonstrated the huge potential that
lies within the usage of mobile devices for navigation support, especially during an emergency.
The ability of the devices to communicate with each other offers the opportunity to collect
relevant and up-to-date information about the evacuation situation, which can be used for
dynamic and adaptive evacuation route planning. Two approaches are provided in this thesis
for accomplishing this goal. Moreover, it has been shown how an evacuation system can be
designed in a decentralized and self-organizing manner by applying concepts from Organic
Computing. This provides for a system which exhibits an almost life-like adaptability and
flexibility towards unforeseen changes in its environment and, at the same time, stays robust,
trustworthy, and controllable. Especially, in an unpredictable and dynamic situation such
as a life-threatening emergency evacuation, these traits are crucial system properties. Apart
from suggesting a concept for future evacuation management, the challenge of localizing
mobile device inside a building, where GPS-signals are not available, has been addressed.
Problems which arise due to the mobility of the devices have been identified and various
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solution approaches have been suggested and successfully evaluated in experiments. It is,
therefore, believed that the insights gained in this thesis have the potential to significantly
improve indoor navigation systems. In conclusion, this thesis has laid the foundation for
a changeover in the evacuation support of modern buildings, meeting the standards of the
technological progress which has already found its way into most other areas of human life.
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