235,033 research outputs found

    Timeslack-based techniques for generating robust projectschedules subject to resource uncertainty.

    Get PDF
    The classical, deterministic resource-constrained project scheduling problem has been the subject of a great deal of research during the previous decades. This is not surprising given the high practical relevance of this scheduling problem. Nevertheless, extensions are needed to be better able to cope with situations arising in practice such as multiple activity execution modes, activity duration changes and resource breakdowns. In this paper we analytically determine the impact of unexpected resource breakdowns on activity durations. Furthermore, using this information we develop an approach for inserting explicit idle time into the project schedule in order to protect it as well as possible from disruptions caused by resource unavailabilities. This strategy will be compared to a traditional simulation-based procedure and to a heuristic developed for the case of stochastic activity durations.Uncertainty; Project scheduling; Scheduling; Research; Impact; Information; Time; Order; IT; Strategy; Heuristic;

    Scheduling in the dynamic job shop under auxiliary resource constraints: A simulation study

    Get PDF
    Traditionally, job shop research has only considered constraints related to machine and labour availability. With the advent of flexible manufacturing systems and just-in-time manufacturing, practitioners have recognized the importance of auxiliary resources (e.g. tooling) in production activity control and shop scheduling. In recent years, it has been recognized that theory and practice based on labour-constrained job shops cannot be generalized to auxiliary resource-constrained job shops. This paper presents a study of scheduling in the dynamic job shop under auxiliary resource constraints. Local and lookahead dispatching and resource assignment rules, and a global Contingency Based Scheduling (CBS) approach are developed and evaluated in a dynamic job shop constrained by auxiliary resources. Several traditional measures of performance are employed, including root mean square of tardiness, average system time and percentage of auxiliary resource changes. As shop utilization increases, the study reveals that the CBS algorithm is the only scheduling mechanism that consistently provides high performance on all three measures

    PENJADWALAN PROYEK INSTALASI DESALINATION PLANT PADA PLTGU BEKASI JAWA BARAT DENGAN PRECEDENCE DIAGRAM METHOD

    Get PDF
    Abstract - In a project activity, various kinds of problems can occur that interfere with the project activities. It can changes in the duration and completion a project being hampered and not in accordance with the planned schedule. In this study, the object to be analyzed is a company engaged in the EPC (Engineering, Proucerment, and Construction) sector which is currently developing a Desalination Plant sistem project. This project is located in Bekasi, West Java. the project experienced delays in the installation process, so to minimize the delays that occur it is necessary to do a time acceleration analysis. With the PDM project planning and scheduling method (Precedence Diagram Method). The results of the analysis, it can be explained that the acceleration of scheduling using the Precedence Diagram Method (PDM) obtained a critical path starting from the support installation work on the A312GRTP316L material to the hydrotest work. Based on the results of scheduling at normal duration, the total duration is 287 days and the project reaches 100% work progress in October 2021. While the actual duration scheduling for the project reaches progress, the total duration is 378 days and the project reaches 100% progress in February 2022

    Crew Autonomy Scheduling: Scheduling Performance Pilot Study

    Get PDF
    The purpose of this pilot study is to quantify crew performance in self-scheduling through Playbook, a mobile-based scheduling and planning tool. By investigating human performance within the task of self-scheduling, we can further develop countermeasures that can mitigate deficient scheduling performance, and evaluate changes as a result of these countermeasures. Moreover, this research can advise the development of standards and guidelines for autonomous crews in future missions. In human spaceflight today, the task of planning crew members schedules falls to Ops Planners. It takes many weeks to plan due to the complex impact each day-to-day activity can have on other activities, crew members, and resources. These impacts are measured as constraints, and these constraints can result in temporal, ordering, or resource requirements. As future spaceflight missions span longer distances and the latency of communication between the crew and Mission Control Center (MCC) increases, the need for crew members to work independently from MCC will also increase. This results in a need for crew members to be able to autonomously plan and adjust their own schedules

    Four payment models for the multi-mode resource constrained project scheduling problem with discounted cash flows

    Get PDF
    In this paper, the multi-mode resource constrained project scheduling problem with discounted cash flows is considered. The objective is the maximization of the net present value of all cash flows. Time value of money is taken into consideration, and cash in- and outflows are associated with activities and/or events. The resources can be of renewable, nonrenewable, and doubly constrained resource types. Four payment models are considered: Lump sum payment at the terminal event, payments at prespecified event nodes, payments at prespecified time points and progress payments. For finding solutions to problems proposed, a genetic algorithm (GA) approach is employed, which uses a special crossover operator that can exploit the multi-component nature of the problem. The models are investigated at the hand of an example problem. Sensitivity analyses are performed over the mark up and the discount rate. A set of 93 problems from literature are solved under the four different payment models and resource type combinations with the GA approach employed resulting in satisfactory computation times. The GA approach is compared with a domain specific heuristic for the lump sum payment case with renewable resources and is shown to outperform it

    Client-contractor bargaining on net present value in project scheduling with limited resources

    Get PDF
    The client-contractor bargaining problem addressed here is in the context of a multi-mode resource constrained project scheduling problem with discounted cash flows, which is formulated as a progress payments model. In this model, the contractor receives payments from the client at predetermined regular time intervals. The last payment is paid at the first predetermined payment point right after project completion. The second payment model considered in this paper is the one with payments at activity completions. The project is represented on an Activity-on-Node (AON) project network. Activity durations are assumed to be deterministic. The project duration is bounded from above by a deadline imposed by the client, which constitutes a hard constraint. The bargaining objective is to maximize the bargaining objective function comprised of the objectives of both the client and the contractor. The bargaining objective function is expected to reflect the two-party nature of the problem environment and seeks a compromise between the client and the contractor. The bargaining power concept is introduced into the problem by the bargaining power weights used in the bargaining objective function. Simulated annealing algorithm and genetic algorithm approaches are proposed as solution procedures. The proposed solution methods are tested with respect to solution quality and solution times. Sensitivity analyses are conducted among different parameters used in the model, namely the profit margin, the discount rate, and the bargaining power weights

    Energy Efficient Task Mapping and Resource Management on Multi-core Architectures

    Get PDF
    Reducing energy consumption of parallel applications executing on chip multi- processors (CMPs) is important for green computing. Hardware vendors have been developing a variety of system features to support energy efficient computing, for example, integrating asymmetric core types on a single chip referred to as static asymmetry and supporting dynamic voltage and frequency scaling (DVFS) referred to as dynamic asymmetry.A common parallelization scheme to exploit CMPs is task parallelism, which can express a wide range of computations in the form of task directed acyclic graphs (DAGs). Existing studies that target energy efficient task scheduling have demonstrated the benefits of leveraging DVFS, particularly per-core DVFS. Their scheduling decisions are mainly based on heuristics, such as task criticality, task dependencies and workload sizes. To enable energy efficient task scheduling, we identify multiple crucial factors that influence energy consumption - varying task characteristics, exploitation of intra-task parallelism (task moldability), and task granularity - which we collectively refer to as task heterogeneity. Task heterogeneity and architecture asymmetry features together complicate the task scheduling problem, since the most energy efficient configuration of resource allocation and frequency setting varies with each task. Our analysis shows that leveraging task heterogeneity in conjunction with static and dynamic asymmetry provides significant opportunities for energy reduction.This thesis contributes two scheduling techniques - ERASE and STEER - that target different scenarios. ERASE focuses on fine-grained tasking and in environments where DVFS is not under user control. It leverages the insights of task characteristics, task moldability, and instantaneous task parallelism detection for guiding scheduling decisions. ERASE comprises four modules: online performance modeling, power profiling, core activity tracing and a task scheduler. Online performance modeling and power profiling provide runtime with execution time and power predictions. Core activity tracing offers the instantaneous task parallelism and the task scheduler combines these information to enable the energy predictions and dynamically determine the best resource allocation for each task during runtime. STEER focuses on environments where DVFS is under user control and where the platform comprises multiple asymmetric cores grouped into clusters. STEER explores how much energy could be potentially saved by leveraging static asymmetry, dynamic asymmetry and task heterogeneity in conjunction. STEER comprises two predictive models for performance and power predictions, and a task scheduler that utilizes models for energy predictions and then identifies the best resource allocation and frequency settings for tasks. Moreover, it applies adaptive scheduling techniques based on task granularity to manage DVFS overheads, and coordinates the cluster frequency settings to reduce interference from concurrent running tasks on cluster-based architectures.The evaluation on an NVIDIA Jetson TX2 shows that ERASE achieves 10% energy savings on average compared to the state-of-the-art DVFS-based schedulers and can adapt to external DVFS changes, and STEER consumes 38% less energy on average than both the state-of-the-art and ERASE

    Client-contractor bargaining on net present value in project scheduling with limited resources

    Get PDF
    The client-contractor bargaining problem addressed here is in the context of a multi-mode resource constrained project scheduling problem with discounted cash flows, which is formulated as a progress payments model. In this model, the contractor receives payments from the client at predetermined regular time intervals. The last payment is paid at the first predetermined payment point right after project completion. The second payment model considered in this paper is the one with payments at activity completions. The project is represented on an Activity-on-Node (AON) project network. Activity durations are assumed to be deterministic. The project duration is bounded from above by a deadline imposed by the client, which constitutes a hard constraint. The bargaining objective is to maximize the bargaining objective function comprised of the objectives of both the client and the contractor. The bargaining objective function is expected to reflect the two-party nature of the problem environment and seeks a compromise between the client and the contractor. The bargaining power concept is introduced into the problem by the bargaining power weights used in the bargaining objective function. Simulated annealing algorithm and genetic algorithm approaches are proposed as solution procedures. The proposed solution methods are tested with respect to solution quality and solution times. Sensitivity analyses are conducted among different parameters used in the model, namely the profit margin, the discount rate, and the bargaining power weights

    Dynamic resource constrained multi-project scheduling problem with weighted earliness/tardiness costs

    Get PDF
    In this study, a conceptual framework is given for the dynamic multi-project scheduling problem with weighted earliness/tardiness costs (DRCMPSPWET) and a mathematical programming formulation of the problem is provided. In DRCMPSPWET, a project arrives on top of an existing project portfolio and a due date has to be quoted for the new project while minimizing the costs of schedule changes. The objective function consists of the weighted earliness tardiness costs of the activities of the existing projects in the current baseline schedule plus a term that increases linearly with the anticipated completion time of the new project. An iterated local search based approach is developed for large instances of this problem. In order to analyze the performance and behavior of the proposed method, a new multi-project data set is created by controlling the total number of activities, the due date tightness, the due date range, the number of resource types, and the completion time factor in an instance. A series of computational experiments are carried out to test the performance of the local search approach. Exact solutions are provided for the small instances. The results indicate that the local search heuristic performs well in terms of both solution quality and solution time

    A generic coordination approach applied to a manufacturing environment

    Get PDF
    This paper describes a generic coordination approach applied to the field of manufacturing engineering. The objective of the coordination mechanism with respect to this application is twofold. Firstly, it is shown that utilising the developed system can result in the efficient organisation of processes leading to a near optimum time taken to manufacture a number of artefacts. Secondly, successful operation of the system in this environment will demonstrate that the approach is generic in nature. The results already achieved using this system within a computational analysis environment supports this hypothesis
    • 

    corecore