THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Energy Efficient Task Mapping and Resource
Management on Multi-Core Architectures

JING CHEN

Division of Computer and Network Systems
Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden, 2022

Energy Efficient Task Mapping and Resource Management on Multi-
Core Architectures

JING CHEN

Copyright (©)2022 Jing Chen
except where otherwise stated.
All rights reserved.

Department of Computer Science & Engineering

Division of Computer and Network Systems

Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using IXTEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2022.

ii

“It’s not what happens to you, but how you react to it that matters.”
- Epicurus

iv

Abstract

Reducing energy consumption of parallel applications executing on chip multi-
processors (CMPs) is important for green computing. Hardware vendors
have been developing a variety of system features to support energy efficient
computing, for example, integrating asymmetric core types on a single chip
referred to as static asymmetry and supporting dynamic voltage and frequency
scaling (DVFS) referred to as dynamic asymmetry.

A common parallelization scheme to exploit CMPs is task parallelism, which
can express a wide range of computations in the form of task directed acyclic
graphs (DAGs). Existing studies that target energy efficient task scheduling
have demonstrated the benefits of leveraging DVFS, particularly per-core DVFS.
Their scheduling decisions are mainly based on heuristics, such as task criticality,
task dependencies and workload sizes. To enable energy efficient task scheduling,
we identify multiple crucial factors that influence energy consumption - varying
task characteristics, exploitation of intra-task parallelism (task moldability),
and task granularity - which we collectively refer to as task heterogeneity. Task
heterogeneity and architecture asymmetry features together complicate the task
scheduling problem, since the most energy efficient configuration of resource
allocation and frequency setting varies with each task. Our analysis shows
that leveraging task heterogeneity in conjunction with static and dynamic
asymmetry provides significant opportunities for energy reduction.

This thesis contributes two scheduling techniques - ERASE and STEER -
that target different scenarios. ERASE focuses on fine-grained tasking and in
environments where DVFS is not under user control. It leverages the insights
of task characteristics, task moldability, and instantaneous task parallelism
detection for guiding scheduling decisions. ERASE comprises four modules:
online performance modeling, power profiling, core activity tracing and a
task scheduler. Online performance modeling and power profiling provide
runtime with execution time and power predictions. Core activity tracing
offers the instantaneous task parallelism and the task scheduler combines
these information to enable the energy predictions and dynamically determine
the best resource allocation for each task during runtime. STEER focuses
on environments where DVFS is under user control and where the platform
comprises multiple asymmetric cores grouped into clusters. STEER, explores
how much energy could be potentially saved by leveraging static asymmetry,
dynamic asymmetry and task heterogeneity in conjunction. STEER comprises
two predictive models for performance and power predictions, and a task
scheduler that utilizes models for energy predictions and then identifies the
best resource allocation and frequency settings for tasks. Moreover, it applies
adaptive scheduling techniques based on task granularity to manage DVFS
overheads, and coordinates the cluster frequency settings to reduce interference
from concurrent running tasks on cluster-based architectures.

The evaluation on an NVIDIA Jetson TX2 shows that ERASE achieves
10% energy savings on average compared to the state-of-the-art DVFS-based
schedulers and can adapt to external DVFS changes, and STEER, consumes
38% less energy on average than both the state-of-the-art and ERASE.

Keywords: Energy Consumption, Task Scheduling, Resource Management,
Predictive Models, Dynamic Voltage-Frequency Scaling (DVFS), Runtime

Acknowledgment

First and foremost, I would like to express my deep and sincere gratitude to my
advisor, Associate Professor Miquel Pericas, for giving me the opportunity to
study abroad and providing invaluable guidance and support during my studies.
His great knowledge, vision and motivation have deeply inspired and taught me
the methodology to carry on the research and present research works clearly.

I would also like to thank my co-advisor Dr. Madhavan Manivannan for
his insightful feedback and enthusiasm. His plentiful research experience that
shared with me has encouraged me during my research studies and daily life.
I am also grateful to Dr. Mustafa Abduljabbar and Dr. Bhavishya Goel for
their research collaboration and great ideas.

Thanks to Professor Per Stenstrom who has been my examiner. I would
like to say thanks to my, past and present, colleagues and friends at Chalmers,
Pirah, Soniar, Nadja, Hao, Yuchong, Nufail, Mahmoud, Mehrzad, Waqar,
Alexandra, Albin, Prajith, Pedro, Monica, Arne, Rolf and many others who
created a nice and friendly work environment.

Finally, T would like to give special thanks to my family for their uncon-
ditional support. I am also extremely grateful to my life partner Franz for
accompanying all I ever needed.

This research has been funded by the European Union Horizon 2020 research
and innovation programme under grant agreement No.780681 (https://legato-
project.eu/). This research has also received funding from the European
High-Performance Computing Joint Undertaking (JU) under grant agreement
No0.956702 (https://eprocessor.eu). The JU receives support from the Euro-
pean Union’s Horizon 2020 research and innovation programme and Spain,
Sweden, Greece, Italy, France, Germany. The computations were enabled by re-
sources provided by the Swedish National Infrastructure for Computing (SNIC),
partially funded by the Swedish Research Council through grant agreement
No.2018-05973 (https://www.vr.se/).

vii

List of Publications

Appended publications
This thesis is based on the following publications:

[I] Jing Chen, Madhavan Manivannan, Mustafa Abduljabbar, and Miquel
Pericas
“ERASE: Energy Efficient Task Mapping and Resource Management for
Work Stealing Runtimes”

Published in ACM Transactions on Architecture and Code Optimization
(TACO), 2022.

[IT] Jing Chen, Madhavan Manivannan, Bhavishya Goel, Mustafa Abduljab-
bar, and Miquel Pericas

“STEER: Asymmetry-aware Energy Efficient Task Scheduler for Cluster-
based Multicore Architectures”
Under review.

Other publications
The following publications are not included in the thesis.

[a] Jing Chen, Madhavan Manivannan, Mustafa Abduljabbar, and Miquel
Pericas
“Towards an Energy Aware Task Scheduler for Asymmetric Architectures”

Published in 12th Nordic Workshop on Multi-Core Computing (MCC),
2019, Karlskrona, Sweden

[b] Jing Chen, Pirah Noor Soomro, Mustafa Abduljabbar, Madhavan Mani-
vannan, and Miquel Pericas

“Scheduling Task-parallel Applications in Dynamically Asymmetric Envi-
ronments”

Published in 49th International Conference on Parallel Processing - ICPP
Workshops SRMPDS, 2020, Edmonton, AB, Canada

ix

Contents

Abstract

Acknowledgement

List of Publications

1.1 Background
1.2 Related Work oo
1.3 Problem Statements
1.4 Contributions

2.1 PaperI-Summary
2.2 Paper II - Summary

1 Introduction

2 Summary of the Papers

3 Conclusions and Future Work
Bibliography

Paper I

Paper 11

xi

vii

QU Ry

[N

11

13

17

47

xii CONTENTS

Chapter 1

Introduction

1.1 Background

Reducing energy consumption is vital for achieving green computing, as it plays
a key role in reducing the environmental impact of technology and promoting
sustainability. In the context of high performance computing (HPC) systems,
conserving energy is not only crucial to lower electricity bills and cooling cost
for saving environment resources but also a big step forward to the exascale
supercomputing era. In addition, reducing energy in mobile devices translates
to longer battery life for improving system reliability and enhancing friendly
user experiences.

Hardware vendors have been exploring and integrating a variety of energy
efficient features on modern chip multi-processor (CMP) systems. Dynamic
voltage and frequency scaling (DVFS) is a well-known technique that introduces
the dynamic asymmetry and offers great promise to significantly reduce power
consumption by adapting both voltage and frequency of the system to suit
various workloads [1]. In order to provide more opportunities for energy efficient
execution, CMPs are designed by composing of multiple core types (single-
ISA) with different micro-architectures onto a single chip. These architectures
can provide diverse energy-performance capabilities for different workloads.
This is referred to as static asymmetry due to its fixed feature at design time.
Core-clustering paradigm is being adopted for organizing such architectures,
in which cores of the same type are grouped into clusters [2-9]. For power
management, these cluster-based platforms often support per-cluster DVFS,
where cores in the same cluster must operate at the same voltage-frequency
level.

A common parallelization scheme to exploit such platforms is task-parallelism,
which has been implemented in several production runtime systems, e.g. Cilk [10],
TBB [11], StarPU [12], OpenMP’s explicit tasks [13]. With task parallelism,
parallel applications can be expressed as task Directed Acyclic Graphs (DAGs),
where nodes denote tasks and edges denote task dependencies. A DAG implic-
itly reveals the inter-task parallelism, i.e. the independent tasks that can be
executed in parallel. In particular, by exposing fine-grained task parallelism,
it allows programmers to express applications that can scale to larger CMPs.
However, we identify that the intrinsic task heterogeneity feature exhibits mul-

2 CHAPTER 1. INTRODUCTION

tiple contributing factors that can influence the energy consumption of running
a task-based application. These factors include various task characteristics
(i.e. task-aware mapping to appropriate resources), and potential intra-task
parallelism (task moldability) exploitation by running a single task on multiple
resources to reduce resource oversubscription and make use of idle resources,
and task granularity (size) in relation to the DVFS timing overheads.

Overall, static asymmetry, dynamic asymmetry and task heterogeneity
together form a complex task scheduling problem, since the best configurations
for energy savings diverge. Therefore, it is crucial that a scheduling scheme
can be developed to identify the configuration that consumes the least energy
per task. Solving such a multi-dimensional problem is non-trivial and requires
to search for a large space to figure out the best task mapping and resource
management decisions. To improve energy efficiency, runtime schedulers should
consider the impact of task heterogeneity and exploit the available hardware
tuning knobs (core asymmetry and runtime DVFS). Unfortunately, contempo-
rary production runtime systems lack systematic energy-aware task scheduling
methods. Instead they mainly focus on improving performance and scalabil-
ity [14]. Therefore, in this thesis, we propose two scheduling techniques to fulfill
the gap and address the energy efficient task scheduling problem when running
task-based applications on cluster-based platforms with different environment
setting scenarios.

1.2 Related Work

Existing studies have demonstrated the benefits of exploiting dynamic asymme-
try (DVFS) for energy reduction. Prior works [15-17] propose to use per-core
DVEFS throttling on symmetric architectures for improving energy efficiency.
The work in [18] explores both static asymmetry (i.e. different core micro-
architectures) and dynamic asymmetry (i.e. per-core DVFS) on multi-core
processors. The methodologies presented in [19-21] address the scheduling
problem on symmetric cluster-based platforms, while others [22,23] further
explore the techniques applied on the combination of cluster-based static
asymmetry and dynamic asymmetry of cluster-level DVFS.

However, these proposals have several limitations. Firstly, they overlook
the negative impact of DVFS reconfiguration overheads from fine-grained
tasking. With fine-grained tasks that execute in the order of microseconds,
DVEFS reconfiguration overheads are quite large and can offset the energy
benefits obtained from frequency throttling. Secondly, in a multi-user system
it is common that DVFS control is restricted to the kernel [24], the system
administrator [25], or power management frameworks such as GEOPM [26].
Therefore, the reliance on DVFS for energy efficient execution precludes their
applicability in environment settings where the DVFS is not under the control
of the application (i.e. externally controlled). Thirdly, with DVFS enabled
from user space, deploying per-core DVFS schedulers on platforms with cluster-
based DVFS is inefficient, since the scaling action of a single core may result
in destructive interference on other cores in the same cluster and offset the
energy benefits. Finally, some works address frequency throttling in cluster-
based architectures without considering the impact on energy when leveraging

1.3. PROBLEM STATEMENTS 3

static asymmetry in conjunction with DVFS. Moreover, the majority of prior
works [15,16,18,19,22,23] rely on heuristics, such as workload size, task criticality
assignation and task dependencies to guide scheduling decisions. However, they
lack the consideration of the holistic impacts of task heterogeneity on energy
consumption. Overall, none of them fully explores the potential energy impacts
when leveraging static asymmetry, dynamic asymmetry and task heterogeneity
in conjunction.

1.3 Problem Statements

Context 1: Applications often expose fine-grained task parallelism for achiev-
ing better scalability and load balancing in multi-core and many-core archi-
tectures [27,28]. With fine-grained tasking, the execution time of tasks are in
the order of microseconds, which makes the DVFS reconfiguration overheads
non-negligible. Therefore, leveraging per-task DVFS is impractical in this case.
Moreover, it is common that in a multi-user OS, many processes share a subset
of cores, and DVFS control is commonly not under control of the application
but restricted to the kernel, the system administrator, or power management
frameworks like GEOPM. Consequently, it is crucial to design an adaptive
energy efficient task scheduling technique that applies to fine-grained tasking
with low overheads and can be reactive to externally controlled DVFS.

Problem 1: How can we reduce energy consumption of running fine-grained
tasking parallel applications on multi-core platforms with externally controlled
DVFS?

Challenges: To answer the question, there are two major challenges that
need to be addressed in this context: (1) In order to make the energy efficient
task mapping decisions under given environment settings, identifying the best
resource assignment per task, i.e. (cluster, number of cores), requires the
accurate predictions of task execution time and power consumption; (2) The
proposed technique needs to quickly detect and adapt to external DVFS changes
and is able to recompute the best resource allocation with low overheads.

Context 2: With DVFS enabled from user space, in conjunction with static
symmetry and task heterogeneity, a larger design space needs to be searched
for identifying the best configurations. Furthermore, managing DVFS on
fine-grained task schedules while minimizing the negative impacts from DVFS
reconfiguration is a challenge. In addition, on platforms with cluster-level DVFS,
it is possible that multiple tasks are scheduled to run on the same cluster and
different frequencies are selected to achieve energy savings. Consequently,
coordinating cluster frequency tuning is crucial since it can otherwise lead to
destructive DVFS tuning interference and DVFS reconfiguration serialization,
thereby becoming a performance bottleneck and offsetting the energy benefits.

Problem 2: How to reduce energy consumption by leveraging static asymmetry,
dynamic asymmetry, task heterogeneity in conjunction when running task-based
applications on multi-core platforms that feature cluster-level DVFS?

Challenges: To answer the question, there are three major challenges that
need to be addressed in this context: (1) Predicting the best resource allocation
and frequency setting for a task involves exploring a three-dimensional search

4 CHAPTER 1. INTRODUCTION

space, i.e. (cluster, number of cores, frequency). Additionally, the complexity
is exacerbated by the need to estimate energy consumption with low runtime
overhead and with reasonable accuracy; (2) The design of adaptive scheduling
techniques for various task granularities to manage DVFS negative overheads;
(3) The necessary frequency coordination method to mitigate the detrimental
interference impacts on energy consumption from concurrent running tasks.

1.4 Contributions

This thesis is based on two papers. Paper I addresses the first problem and
the main contributions are:

e We propose ERASE: an energy efficient task scheduler that combines
power profiling, performance modeling and core activity tracing for energy
efficient mapping (i.e. choosing the cluster) and resource management
(i.e. selecting the number of cores per task). The proposal exploits the
insights of task moldability, task-type awareness and instantaneous task
parallelism detection for guiding scheduling decisions to reduce the total
energy consumption of parallel applications.

e We describe how to integrate ERASE on top of work stealing runtimes,
using the XiTAO [29] runtime for the prototype implementation.

e We compare ERASE to state-of-the-art scheduling techniques on top of
the runtime and the evaluation shows that ERASE achieves up to 31%
energy savings and outperforms the state-of-the-art by 44% on average.

Paper II addresses the second problem and the main contributions are:

e We show that considerable energy savings can be achieved by leveraging
static asymmetry, dynamic asymmetry and task heterogeneity in conjunc-
tion. Accordingly, we propose STEER, a task scheduling framework that
exploits these features to predict the best energy-saving configuration for
each task.

e We propose a performance model and a power model to predict the
impact of varying the core type, the number of cores and the frequency,
that are not limited by the availability of performance counters.

e We develop heuristics to (1) manage DVFS overheads by applying adap-
tive scheduling techniques for varying task granularities, and (2) mitigate
DVFS interference from concurrent task execution on cluster-based multi-
core architectures.

The rest of the thesis is organized as follows. In Chapter 2, a summary of
each paper is presented. Finally, Chapter 3 concludes the thesis, and discusses
some possible future research directions.

Chapter 2

Summary of the Papers

2.1 Paper I - Summary

Parallel applications often rely on work stealing schedulers in combination with
fine-grained tasking to achieve high performance and scalability. Random work
stealing is a well-known approach for scheduling task-parallel applications [30,
31] that has been implemented in several production runtimes, such as Cilk [10],
TBB [11] and OpenMP’s explicit tasks [13]. However, reducing the total
energy consumption in the context of work stealing runtimes is still challenging,
particularly when using asymmetric architectures with different types of CPU
cores. This is because the two principles on which random work stealing is
based, namely the work-first principle and random victim selection, are neither
aware of task characteristics nor of the cores’ performance and energy profiles.

A common approach for energy savings in work stealing runtimes in prior
works [15,16,18,19] involves leveraging DVFS, wherein the throttling is carried
out based on factors like task parallelism, stealing relations, task criticality and
workload sizes. However, the reliance on DVFS limits their applicability due to
several reasons. First, studies have shown that DVFS transition delay is around
100 microseconds [16, 18,32, 33], thereby the DVFS switching overheads are
non-negligible for fine-grained tasks that execute in the order of microseconds.
Second, per-core DVFS control utilized in [15,16, 18] precludes their techniques
applicability on cluster-based architectures. With cluster-level DVFS, multiple
tasks attempting frequency changes within the same cluster will result in
destructive interference, since the decision taken to reduce energy consumption
of a task mapped to a specific core can affect concurrently running tasks on the
same cluster. More importantly, it is common that in a multiuser OS, DVFS is
most often not under the control of the application, but is externally controlled
by the Linux kernel [24], the system administrator [25], or power management
frameworks such as GEOPM [26]. Consequently, an energy efficient runtime
designed to be reactive to both given static frequency settings and externally
controlled DVFS has the potential to be a more general solution in this case.

In Paper I, we present ERASE - an energy efficient task scheduler to
address the problem of reducing the total energy consumption when running
task-based applications on multi-core platforms wherein the frequency throttling
is externally controlled.

6 CHAPTER 2. SUMMARY OF THE PAPERS

Online Performance Modeling Power Profiling ERASE
Kernel 1 Kernel2 ... Number |(Core Core v q
wi \niz wi v&z Types|Froquency| 20" g
Stews 1[0[1 1[..10

cluster O cluster 0
cluster 1 cluster 1 Idle Power
""""""" RuntimelRoned TaSk/CoriParallelism

A Execution Timt Prediction Power|Estimates

Task Mapping Algorithm
Energy = (idle power + runtime power) * predicted execution time
Best Executiorl Places for Each Task

Execution \/ Core Status
@@ @ —

Figure 2.1: An overview of ERASE comprising four modules. C, denotes the
core id, W, denotes the possible resource widths. In status, “1” denotes that
C, is in active state while “0” denotes the core is in sleep state.

The total energy consumption of running a DAG on a multi-core platform
consists of two components: the energy consumed for running each task and
the energy consumed in the idle periods due to the dependencies between tasks.
To reduce the energy consumed by each task, runtime needs to evaluate the
energy consumption of all different resource configurations (cluster, number
of cores) and identify the one that consumes the least energy for the task.
Hence, it is crucial that the runtime can predict the execution time and the
power consumption and thereby the energy consumption to facilitate the
configuration selection. In work stealing runtimes, idle cores that continuously
attempt stealing without success lead to energy waste. The problem of reducing
energy consumption during idle periods requires the runtime to be able to detect
the cores’ instantaneous utilization and dynamically put idle cores to sleep.
The challenge is to determine the sleep duration such that energy consumption
during the period is minimized with minimal performance impact.

In a nutshell, ERASE reduces energy consumption of executing a task DAG
by attempting to execute each task with the lowest possible energy consumption.
It leverages the insights of task moldability (i.e. intra-task parallelism) and task-
type awareness to figure out the appropriate resource allocation, i.e. choosing
the cluster and selecting the number of cores (resource width), for each task.
Meanwhile, it adaptively puts idle cores to sleep state by applying an exponential
back-off sleeping strategy. Figure 2.1 provides an overview of ERASE, which
comprises four essential modules: online performance modeling, power profiling,
core activity tracing and a task mapping algorithm.

Online performance modeling adopts a history-based model, it continuously
monitors task execution during runtime and updates look-up tables. Thus,
the module can not only provide performance predictions for incoming tasks
by referring to corresponding look-up table entries but also quickly detect
the external frequency changes by comparing to previous table entry records.
Power profiling provides the power estimates with respect to different resource
configurations (i.e. number/type of cores) for given core frequencies. The
module groups tasks into three representative types: compute-bound, memory-
bound and cache-intensive. By profiling a set of microbenchmarks, we compute
the arithmetic intensity (AI) values and employ the k-NN algorithm to cluster
them into the three groups. During runtime, we compute AI of a task and
map the task to one of the groups where the average power consumption of

2.2. PAPER II - SUMMARY 7

the group is utilized as the reference. Core activity tracing continuously tracks
the activities (i.e. work stealing attempts) and status (i.e. active or sleep) of
each core and infers the instantaneous task parallelism, which gives the task
mapping algorithm a hint for attributing power consumption to concurrently
running tasks accurately. Finally, the task mapping algorithm integrates the
aforementioned information and guides scheduling decision for each task based
on the energy estimates of running the task on different resource configurations.

We evaluate the effectiveness of ERASE by comparing against several state-
of-the-art scheduling techniques on an asymmetric platform (NVIDIA Jetson
TX2) and a symmetric platform (a dual-socket 16-core per socket Intel Xeon
Gold 6130 node). The results indicate that ERASE provides significant energy
savings in comparison, across a range of benchmarks and different system
environment settings. More importantly, ERASE is capable of quickly adapting
to the external frequency changes with low overheads.

2.2 Paper Il - Summary

In order to improve energy efficiency, hardware vendors have been integrating
a variety of system features on multi-core platforms. DVFS is a well-known
technique that represents the dynamic asymmetry feature and offers great
promise to significantly reduce power consumption by adapting both voltage
and frequency of the system with respect to various workloads [1]. In addition,
CPUs that are being composed of multiple core types with different micro-
architectures onto a single chip, provide diverse energy-performance capabilities
for different workloads, which is a demonstration of static asymmetry due to
its fixed feature at design time.

Core-clustering paradigm [2] is adopted for organizing such architectures to
reduce the hardware design complexity [3-9]. In such designs, cores of the same
type are clustered together to share common resources like last level cache
and memory controller. For power management, these cluster-based platforms
often support per-cluster DVFS, where cores in the same cluster must operate
at the same voltage-frequency level.

Besides static and dynamic asymmetry, energy efficient scheduling can
benefit from considering task characteristics, which motivates us to understand
the contributing factors to energy consumption in order to make energy efficient
task schedules on such platforms. These factors include task placement (i.e. task
mapping to appropriate resources), and potential intra-task parallelism (task
moldability) exploitation by running a single task on multiple resources to
reduce resource oversubscription and make use of idle resources, and task
granularity (size) in relation to the DVFS timing overheads. Collectively, we
refer to these three aspects, namely task characteristics, task moldability and
task granularity, as task heterogeneity.

Existing studies [15-23] either explore the energy benefits of levering dy-
namic asymmetry in isolation or the combination of static asymmetry and
dynamic asymmetry without considering the impact of task heterogeneity.
Moreover, the proposals that use per-core DVFS [15-18] have limited applica-
bility on cluster-based architectures. In Paper II, we show that leveraging task
heterogeneity in conjunction with static asymmetry and dynamic asymmetry

8 CHAPTER 2. SUMMARY OF THE PAPERS

Clusterids Performance N STEER
Resource Model Task —»Execution Place
widths Scheduler -
Frequencies Power Model — —> Frequency
Challenge #1 Challenges #2 and #3

Figure 2.2: An Overview of STEER framework.

can provide significant opportunities for energy reduction and accordingly
propose a task scheduling framework STEER.

In a nutshell, STEER reduces the energy consumption of the entire DAG
by running each task with the lowest energy consumption possible through
identifying the best execution place and frequency setting. However, there
are three major challenges that need to be addressed to enable the energy
efficient schedules on platforms with cluster-level DVFS. First, predicting the
best execution place and frequency setting for a task involves exploring a
three-dimensional search space, i.e. (cluster, resource width, frequency). The
complexity is exacerbated by the need to estimate energy consumption with
low runtime overhead and with reasonable accuracy. Second, it is necessary to
design adaptive scheduling techniques for various task granularity, particularly
for fine-grained tasks to exploit DVFS and reduce DVFS negative impacts
simultaneously. Finally, with concurrent running tasks, it is possible that
different frequencies are selected for energy reduction. This fact makes frequency
coordination crucial for mitigating the detrimental energy impacts on the
concurrent running tasks and reducing the overall energy consumption.

To address these aforementioned challenges, STEER, leverages two predictive
models to help the runtime accurately predict the impact of different execution
place and frequency settings on the execution time and power consumption.
Then a task scheduler is developed to leverage the models to predict the energy
consumption, determine the best execution place and frequency setting that
consumes the least modeled energy and schedule tasks for execution. Figure 2.2
provides an overview of the essential components in STEER.

Performance Model: To predict the execution time and reduce the
modeling overheads, STEER adopts a hybrid approach by first sampling a
limited number of possible settings and utilizing a model to predict performance
for the rest of settings. The performance model utilizes memory-boundness
(MB) as a measure of the fraction of execution time that does not scale with
core frequency. Therefore, when changing frequency, the computation fraction
(1-MB) will scale proportionally with frequency, while the memory bound
fraction (MB) will remain independent of the frequency. Consequently, the
equation for predicting execution time based on MB at a different frequency
(f0) can be expressed as below:

Timeygo = Times X (MB + (1 — M B) x %) (2.1)
The performance model relies on knowing Time; and MB at frequency f to
predict the execution time for the task when running at other frequencies.
Times can be obtained by timing task execution inside the runtime. We obtain
a second sample at a different frequency (f0) and derive MB as follows:
Timeyo f
f

f0

MB = (2.2)

2.2. PAPER II - SUMMARY 9

Task execution at f for all »| Task execution at 0 for all Sampling
(clusterid, resource width) (clusterid, resource width) and
Memor! t;r:dness for each i e
y-bou
(clusterid, resource W|dth) FECED proflles Phase
i
Execution time predictions Power predictions for all
for other frequencies available frequencies
Scheduling
; . . NO Ph
Time(high, Nr_high) < TH? 3 ase
[Ee====n=sseear
o | | Energy predictions: (clusterid,| |
[T =" @ | resource width, frequency) | |
Energy predictions: T o) |
(clusterid, resource width) S5 _ _ |
I 0,9 | Get best configuration | |
> ok I
| Getbestconfiguration |1 4P & | I
gQ & | Insert task to work queue | |
X0 I
»n 5 L J
)
o

Search work queues of the
cluster

|
|
|
|
|
|
|
| Insert task to work queue ||
|
|
|
|
|
|
|

Any running tasks in
cluster?

Num of the kernel tasks X
Time > TH?

|

|

|
Search for best frequency _L
for current configuration [| ' — _ _¢ _______________

> Execute task <
Figure 2.3: The work flow of STEER scheduler.

Once MB is estimated by sampling at two different frequencies, the execution
time predictions for all other frequencies are obtained using equation 2.1.

Power Model: The power model adopts an offline characterization ap-
proach, where look-up tables are constructed for power references during
runtime. We profile a set of training benchmarks (NAS parallel benchmark
suite in this work) to record the power consumption and execution time on
different execution place and frequency settings. We then calculate the MB
values and cluster these benchmarks into groups according to their MB values.
Estimating the power consumption for a task at runtime involves mapping the
task into one of the groups given its MB value and accessing the corresponding
table entry.

Task Scheduler: The task scheduler in STEER essentially comprises
two phases as shown in Figure 2.3. In sampling and prediction phase, the
scheduler performs execution time sampling of tasks to compute MB values
and enable performance and power prediction at different execution place and
frequency settings. In scheduling phase, the scheduler utilizes the performance
and power consumption prediction information to enable energy efficient task
scheduling. For coarse-grained tasks, the scheduler iterates all possible settings
and identifies the one that consumes the least modeled energy and then performs
the task mapping and frequency throttling accordingly. In the case of fine-
grained tasks, DVFS throttling overheads are large enough to offset any benefit.
Therefore, STEER adaptively adjusts scheduling policy once fine-grained tasks
are detected. Specifically, fine-grained tasks are composed together with other

10 CHAPTER 2. SUMMARY OF THE PAPERS

tasks that are instances of the same kernel and can be viewed as a single
coarse-grain task, such that DVFS throttling can be performed for this entire
group of tasks for further energy savings. To address the challenge of frequency
coordination in cluster-based platforms, STEER develops a heuristic to mitigate
the problem by tuning the frequency of the cluster to the arithmetic average
predicted frequency of each of the individual tasks running on the cluster.
We evaluate the effectiveness of STEER by comparing it to multiple state-
of-the-art schedulers on an asymmetric cluster-based platform NVIDIA Jetson
TX2. The evaluation across a range of benchmarks shows that STEER, achieves
53% energy reduction on average compared to the baseline scheduler greedy
random work stealing and 38% energy reduction on average than both the
state-of-the-art approach and ERASE. Furthermore, the proposed performance
model and power model are not limited by the availability of performance
counters and achieve 95% and 90% prediction accuracy, respectively.

Chapter 3

Conclusions and Future
Work

The growing impact of energy on operational cost and reliability becomes a
strong motivation for reducing energy consumption in parallel computing. Multi-
core platforms are equipped with features to enable energy efficient computing,
such as DVFS and core-clustering paradigm of integrating asymmetric cores
into clusters on a single chip. To exploit the capability of such multi-core
platforms, one of the most generalized programming models is to employ task
parallelism and represent parallel applications as task DAGs. This leads to
the investigation of task scheduling and resource management techniques for
reducing energy consumption.

This thesis proposes two task scheduling techniques for addressing the energy
reduction problem in different contexts. Paper I targets energy reduction when
running fine-grained tasking applications on multi-core platforms wherein the
DVFS is externally controlled. The scheduler leverages the insights of task
moldability and task-type awareness to figure out the appropriate resource
allocation for each task. Moreover, it can quickly detect external frequency
changes and adaptively schedule tasks with low overheads. Paper II aims to
design an integrated scheduling strategy that can effectively manage multiple
forms of asymmetry (incl. static asymmetry, dynamic asymmetry and task
heterogeneity), while targeting cluster-based multi-core architectures. The
proposed framework leverages two predictive models for predicting the execution
time and power consumption and a task scheduler for determining the execution
place and frequency settings that consume the least energy and schedule tasks
for execution. Furthermore, it applies adaptive scheduling techniques on
various task granularity to manage the DVFS overheads’ impact on energy, and
coordinates the frequency settings to reduce frequency throttling interference
within clusters.

There are several interesting research directions for future research. Firstly,
one direction would be to evaluate the adaptivity of the proposed scheduler
when targeting other crucial metrics, such as exploring performance-energy
trade-offs (best performance given an energy budget and least energy given
a performance constraint). It is still a challenging question in the context of
work stealing runtimes. For example, when targeting EDP, performance has a

11

12 CHAPTER 3. CONCLUSIONS AND FUTURE WORK

larger emphasis therefore it is important to tune the work stealing attempts
across clusters for improving performance while still keeping lowest energy
possible. Secondly, another interesting direction would be to explore the overall
energy reduction problem by taking the memory usage and the workload
distributions among CPU and accelerators into account. For example, compute-
intensive tasks require higher core frequency with lower memory frequency,
while memory-intensive tasks observe the opposite trend. Thus, tuning the
CPU and memory frequencies according to task characteristics would be helpful
in reducing the overall energy consumption. In addition, managing the task
allocation for utilizing CPU and accelerators computing resources efficiently is
vital for reducing the total energy consumption. More research is necessary
towards using task allocation algorithms and other asymmetry features provided
by platforms together to determine the execution place for a task (i.e. CPU
- core types, number of resources or accelerators - number of resources or
both) and the suitable voltage or frequency for CPU and accelerators. Finally,
energy efficient task schedules involve energy consumption estimates thereby
requiring accurate predictive models. However, it may not be necessary to
pursue the development of complicated performance and power models, since
it can introduce overheads. Thus, it would be interesting to explore the model
accuracy and cost-performance trade-off, i.e. how accurate the predictive models
need to be to figure out the best configurations with low overhead.

Bibliography

[1]

T. Simunic, L. Benini, A. Acquaviva, P. Glynn, and G. De Micheli,
“Dynamic voltage scaling and power management for portable systems,” in
Proceedings of the 88th annual Design Automation Conference, 2001, pp.
524-529.

T. Odajima, Y. Kodama, M. Tsuji, M. Matsuda, Y. Maruyama, and
M. Sato, “Preliminary performance evaluation of the fujitsu a64fx using
hpc applications,” in 2020 IEEE International Conference on Cluster
Computing (CLUSTER), 2020, pp. 523-530.

B. Jeff, “Advances in big.little technology for power and energy savings
improving energy efficiency in high-performance mobile platforms,” 2012.

“ODROID XU3,” https://developer.arm.com/solutions/
graphics-and-gaming/development-platforms/odroid-xu3.

“Nvidia jetson,” https://developer.nvidia.com/buy-jetson.

“Mediatek x20 development board,” https://www.96boards.org/product/
mediatek-x20/.

E. Rotem, Y. Mandelblat, V. Basin, E. Weissmann, A. Gihon, R. Chabuk-
swar, R. Fenger, and M. Gupta, “Alder lake architecture,” in 2021 IEFEE
Hot Chips 33 Symposium (HCS), 2021, pp. 1-23.

S. Shankland, “iphone XS al2 bionic chip is
industry-first 7nm cpu,” https://www.cnet.com/news/
iphone-xs-al2-bionic-chip-is-industry-first-Tnm-cpu/, September
2018.

R. Ritchie, “Apple al4 bionic explained — from ipad air to iphone 12,”

https://www.imore.com/apple-al4-bionic-explained-ipad-air-iphone-12,
September 2020.

M. Frigo, C. E. Leiserson, and K. H. Randall, “The Implementation of
the Cilk-5 Multithreaded Language,” in Proceedings of SIGPLAN 1998,
Jun. 1998.

G. Contreras and M. Martonosi, “Characterizing and improving the per-
formance of intel threading building blocks,” in 2008 IEEE International
Symposium on Workload Characterization. IEEE, 2008, pp. 57—66.

13

https://developer.arm.com/solutions/graphics-and-gaming/development-platforms/odroid-xu3
https://developer.arm.com/solutions/graphics-and-gaming/development-platforms/odroid-xu3
https://developer.nvidia.com/buy-jetson
https://www.96boards.org/product/mediatek-x20/
https://www.96boards.org/product/mediatek-x20/
https://www.cnet.com/news/iphone-xs-a12-bionic-chip-is-industry-first-7nm-cpu/
https://www.cnet.com/news/iphone-xs-a12-bionic-chip-is-industry-first-7nm-cpu/
https://www.imore.com/apple-a14-bionic-explained-ipad-air-iphone-12

14

BIBLIOGRAPHY

[12]
[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

“Documentation of starpu,” https://files.inria.fr/starpu/doc/starpu.pdf.

OpenMP Architecture Review Board, OpenMP Application Program In-
terface. Version 5.0, OpenMP Architecture Review Board Std., Nov 2018.

M. A. H. Monil, “Dynamic adaptation techniques and opportunities to
improve hpc runtimes,” 2021.

H. Ribic and Y. D. Liu, “Energy-efficient work-stealing language runtimes,”
in Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser. ASPLOS
"14. New York, NY, USA: Association for Computing Machinery, 2014, p.
513-528. [Online|. Available: https://doi.org/10.1145/2541940.2541971

E. Castillo, M. Moreto, M. Casas, L. Alvarez, E. Vallejo, K. Chronaki,
R. Badia, J. L. Bosque, R. Beivide, E. Ayguade, J. Labarta, and M. Valero,
“Cata: Criticality aware task acceleration for multicore processors,” in
2016 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), May 2016, pp. 413-422.

B. Acun, K. Chandrasekar, and L. V. Kale, “Fine-grained energy efficiency
using per-core dvfs with an adaptive runtime system,” in 2019 Tenth
International Green and Sustainable Computing Conference (IGSC), 2019,

pp- 1-8.

C. Torng, M. Wang, and C. Batten, “Asymmetry-aware work-stealing
runtimes,” in 2016 ACM/IEEE }3rd Annual International Symposium on
Computer Architecture (ISCA), 2016, pp. 40-52.

H. Ribic and Y. Liu, “Aequitas: Coordinated energy management across
parallel applications,” 06 2016, pp. 1-12.

R. A. Shafik, A. Das, S. Yang, G. Merrett, and B. M. Al-Hashimi,
“Adaptive energy minimization of openmp parallel applications on
many-core systems,” in Proceedings of the 6th Workshop on Parallel
Programming and Run-Time Management Techniques for Many-Core
Architectures, ser. PARMA-DITAM ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 19-24. [Online|. Available:
https://doi.org/10.1145/2701310.2701311

Q. Chen, Y. Chen, Z. Huang, and M. Guo, “Wats: Workload-aware task
scheduling in asymmetric multi-core architectures,” in 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, 2012, pp.
249-260.

L. Costero, F. D. Igual, K. Olcoz, and F. Tirado, “Energy efficiency
optimization of task-parallel codes on asymmetric architectures,” in 2017
International Conference on High Performance Computing Simulation
(HPCS), July 2017, pp. 402—-409.

M. Han, J. Park, and W. Baek, “Design and implementation of a criticality-
and heterogeneity-aware runtime system for task-parallel applications,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp.
1117-1132, 2021.

https://files.inria.fr/starpu/doc/starpu.pdf
https://doi.org/10.1145/2541940.2541971
https://doi.org/10.1145/2701310.2701311

BIBLIOGRAPHY 15

[24]

[25]

[26]

[27]

[28]

[32]

T. kernel development community, “Energy aware scheduling.”

[Online]. Available: https://www.kernel.org/doc/html/latest/scheduler/
sched-energy.html

D. Brodowski, “Cpu frequency and voltage scaling code in the linux(tm)
kernel.” [Online]. Available: https://www.kernel.org/doc/Documentation/
cpu-freq/governors.txt

J. Eastep, S. Sylvester, C. Cantalupo, B. Geltz, F. Ardanaz, A. Al-Rawi,
K. Livingston, F. Keceli, M. Maiterth, and S. Jana, “Global extensible
open power manager: A vehicle for hpc community collaboration on co-
designed energy management solutions,” in High Performance Computing,
2017.

K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An api for
programming with millions of lightweight threads,” in 2008 IEEE In-
ternational Symposium on Parallel and Distributed Processing, 2008, pp.
1-8.

S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural support
for fine-grained parallelism on chip multiprocessors,” in Proceedings of the
84th Annual International Symposium on Computer Architecture, ser. ISCA
'07. New York, NY, USA: Association for Computing Machinery, 2007, p.
162-173. [Online]. Available: https://doi.org/10.1145/1250662.1250683

T. C. Team, “XiTAO runtime,” https://github.com/CHART-Team/xitao.
git.

R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computa-
tions by work stealing,” Journal of the ACM, vol. 46, no. 5, pp. 720-748,
Sep. 1999.

Q. Chen, Y. Chen, Z. Huang, and M. Guo, “WATS: Workload-aware
task scheduling in asymmetric multi-core architectures,” Proceedings of
the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, IPDPS 2012, 05 2012.

S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang,
“Accurate modeling of the delay and energy overhead of dynamic voltage
and frequency scaling in modern microprocessors,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 5,
pp. 695-708, 2013.

R. Schoéne, T. Ilsche, M. Bielert, M. Velten, M. Schmidl, and
D. Hackenberg, ¢“Energy efficiency aspects of the AMD zen 2
architecture,” CoRR, vol. abs/2108.00808, 2021. [Online]. Available:
https://arxiv.org/abs/2108.00808

https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://doi.org/10.1145/1250662.1250683
https://github.com/CHART-Team/xitao.git
https://github.com/CHART-Team/xitao.git
https://arxiv.org/abs/2108.00808

16

BIBLIOGRAPHY

