372 research outputs found

    Activity Dependent Degeneration Explains Hub Vulnerability in Alzheimer's Disease

    Get PDF
    <div><p>Brain connectivity studies have revealed that highly connected ‘hub’ regions are particularly vulnerable to Alzheimer pathology: they show marked amyloid-β deposition at an early stage. Recently, excessive local neuronal activity has been shown to increase amyloid deposition. In this study we use a computational model to test the hypothesis that hub regions possess the highest level of activity and that hub vulnerability in Alzheimer's disease is due to this feature. Cortical brain regions were modeled as neural masses, each describing the average activity (spike density and spectral power) of a large number of interconnected excitatory and inhibitory neurons. The large-scale network consisted of 78 neural masses, connected according to a human DTI-based cortical topology. Spike density and spectral power were positively correlated with structural and functional node degrees, confirming the high activity of hub regions, also offering a possible explanation for high resting state Default Mode Network activity. ‘Activity dependent degeneration’ (ADD) was simulated by lowering synaptic strength as a function of the spike density of the main excitatory neurons, and compared to random degeneration. Resulting structural and functional network changes were assessed with graph theoretical analysis. Effects of ADD included oscillatory slowing, loss of spectral power and long-range synchronization, hub vulnerability, and disrupted functional network topology. Observed transient increases in spike density and functional connectivity match reports in Mild Cognitive Impairment (MCI) patients, and may not be compensatory but pathological. In conclusion, the assumption of excessive neuronal activity leading to degeneration provides a possible explanation for hub vulnerability in Alzheimer's disease, supported by the observed relation between connectivity and activity and the reproduction of several neurophysiologic hallmarks. The insight that neuronal activity might play a causal role in Alzheimer's disease can have implications for early detection and interventional strategies.</p> </div

    Functional brain networks and cognitive deficits in Parkinson's disease

    Get PDF
    Abstract: Graph-theoretical analyses of functional networks obtained with resting-state functional mag-netic resonance imaging (fMRI) have recently proven to be a useful approach for the study of the sub-strates underlying cognitive deficits in different diseases. We used this technique to investigate whethercognitive deficits in Parkinson's disease (PD) are associated with changes in global and local networkmeasures. Thirty-six healthy controls (HC) and 66 PD patients matched for age, sex, and education wereclassified as having mild cognitive impairment (MCI) or not based on performance in the three mainlyaffected cognitive domains in PD: attention/executive, visuospatial/visuoperceptual (VS/VP), anddeclarative memory. Resting-state fMRI and graph theory analyses were used to evaluate network meas-ures. We have found that patients with MCI had connectivity reductions predominantly affecting long-range connections as well as increased local interconnectedness manifested as higher measures of cluster-ing, small-worldness, and modularity. The latter measures also tended to correlate negatively with cogni-tive performance in VS/VP and memory functions. Hub structure was also reorganized: normal hubsdisplayed reduced centrality and degree in MCI PD patients. Our study indicates that the topologicalproperties of brain networks are changed in PD patients with cognitive deficits. Our findings providenovel data regarding the functional substrate of cognitive impairment in PD, which may prove to havevalue as a prognostic marker

    Changes in MEG resting-state networks are related to cognitive decline in type 1 diabetes mellitus patients

    Get PDF
    OBJECTIVE: Integrity of resting-state functional brain networks (RSNs) is important for proper cognitive functioning. In type 1 diabetes mellitus (T1DM) cognitive decrements are commonly observed, possibly due to alterations in RSNs, which may vary according to microvascular complication status. Thus, we tested the hypothesis that functional connectivity in RSNs differs according to clinical status and correlates with cognition in T1DM patients, using an unbiased approach with high spatio-temporal resolution functional network.; METHODS: Resting-state magnetoencephalographic (MEG) data for T1DM patients with (n=42) and without (n=41) microvascular complications and 33 healthy participants were recorded. MEG time-series at source level were reconstructed using a recently developed atlas-based beamformer. Functional connectivity within classical frequency bands, estimated by the phase lag index (PLI), was calculated within eight commonly found RSNs. Neuropsychological tests were used to assess cognitive performance, and the relation with RSNs was evaluated.; RESULTS: Significant differences in terms of RSN functional connectivity between the three groups were observed in the lower alpha band, in the default-mode (DMN), executive control (ECN) and sensorimotor (SMN) RSNs. T1DM patients with microvascular complications showed the weakest functional connectivity in these networks relative to the other groups. For DMN, functional connectivity was higher in patients without microangiopathy relative to controls (all p<0.05). General cognitive performance for both patient groups was worse compared with healthy controls. Lower DMN alpha band functional connectivity correlated with poorer general cognitive ability in patients with microvascular complications.; DISCUSSION: Altered RSN functional connectivity was found in T1DM patients depending on clinical status. Lower DMN functional connectivity was related to poorer cognitive functioning. These results indicate that functional connectivity may play a key role in T1DM-related cognitive dysfunction

    Patients with Alzheimer's disease dementia show partially preserved parietal 'hubs' modeled from resting-state alpha electroencephalographic rhythms

    Get PDF
    IntroductionGraph theory models a network by its nodes (the fundamental unit by which graphs are formed) and connections. 'Degree' hubs reflect node centrality (the connection rate), while 'connector' hubs are those linked to several clusters of nodes (mainly long-range connections). MethodsHere, we compared hubs modeled from measures of interdependencies of between-electrode resting-state eyes-closed electroencephalography (rsEEG) rhythms in normal elderly (Nold) and Alzheimer's disease dementia (ADD) participants. At least 5 min of rsEEG was recorded and analyzed. As ADD is considered a 'network disease' and is typically associated with abnormal rsEEG delta (<4 Hz) and alpha rhythms (8-12 Hz) over associative posterior areas, we tested the hypothesis of abnormal posterior hubs from measures of interdependencies of rsEEG rhythms from delta to gamma bands (2-40 Hz) using eLORETA bivariate and multivariate-directional techniques in ADD participants versus Nold participants. Three different definitions of 'connector' hub were used. ResultsConvergent results showed that in both the Nold and ADD groups there were significant parietal 'degree' and 'connector' hubs derived from alpha rhythms. These hubs had a prominent outward 'directionality' in the two groups, but that 'directionality' was lower in ADD participants than in Nold participants. DiscussionIn conclusion, independent methodologies and hub definitions suggest that ADD patients may be characterized by low outward 'directionality' of partially preserved parietal 'degree' and 'connector' hubs derived from rsEEG alpha rhythms

    Patients with Alzheimer’s disease dementia show partially preserved parietal ‘hubs’ modeled from resting-state alpha electroencephalographic rhythms

    Get PDF
    Introduction: Graph theory models a network by its nodes (the fundamental unit by which graphs are formed) and connections. ‘Degree’ hubs reflect node centrality (the connection rate), while ‘connector’ hubs are those linked to several clusters of nodes (mainly long-range connections). Methods: Here, we compared hubs modeled from measures of interdependencies of between-electrode resting-state eyes-closed electroencephalography (rsEEG) rhythms in normal elderly (Nold) and Alzheimer’s disease dementia (ADD) participants. At least 5 min of rsEEG was recorded and analyzed. As ADD is considered a ‘network disease’ and is typically associated with abnormal rsEEG delta (<4 Hz) and alpha rhythms (8–12 Hz) over associative posterior areas, we tested the hypothesis of abnormal posterior hubs from measures of interdependencies of rsEEG rhythms from delta to gamma bands (2–40 Hz) using eLORETA bivariate and multivariate-directional techniques in ADD participants versus Nold participants. Three different definitions of ‘connector’ hub were used. Results: Convergent results showed that in both the Nold and ADD groups there were significant parietal ‘degree’ and ‘connector’ hubs derived from alpha rhythms. These hubs had a prominent outward ‘directionality’ in the two groups, but that ‘directionality’ was lower in ADD participants than in Nold participants. Discussion: In conclusion, independent methodologies and hub definitions suggest that ADD patients may be characterized by low outward ‘directionality’ of partially preserved parietal ‘degree’ and ‘connector’ hubs derived from rsEEG alpha rhythms

    In vivo tau pathology is associated with synaptic loss and altered synaptic function

    Get PDF
    BACKGROUND: The mechanism of synaptic loss in Alzheimer’s disease is poorly understood and may be associated with tau pathology. In this combined positron emission tomography (PET) and magnetoencephalography (MEG) study, we aimed to investigate spatial associations between regional tau pathology ([{18}^F]flortaucipir PET), synaptic density (synaptic vesicle 2A [11C]UCB-J PET) and synaptic function (MEG) in Alzheimer’s disease. METHODS: Seven amyloid-positive Alzheimer’s disease subjects from the Amsterdam Dementia Cohort underwent dynamic 130-minV [{18}^F]flortaucipir PET, dynamic 60-min [{11}^C]UCB-J PET with arterial sampling and 2 × 5-min resting-state MEG measurement. [{18^}F]flortaucipir- and [{11}^C]UCB-J-specific binding (binding potential, BPND) and MEG spectral measures (relative delta, theta and alpha power; broadband power; and peak frequency) were assessed in cortical brain regions of interest. Associations between regional [{18}^F]flortaucipir BPND, [{11}^C]UCB-J BP_{ND} and MEG spectral measures were assessed using Spearman correlations and generalized estimating equation models. RESULTS: Across subjects, higher regional [{18}^F]flortaucipir uptake was associated with lower [{11}^C]UCB-J uptake. Within subjects, the association between [{11}^C]UCB-J and [{18}^F]flortaucipir depended on within-subject neocortical tau load; negative associations were observed when neocortical tau load was high, gradually changing into opposite patterns with decreasing neocortical tau burden. Both higher [{18}^F]flortaucipir and lower [{11}^C]UCB-J uptake were associated with altered synaptic function, indicative of slowing of oscillatory activity, most pronounced in the occipital lobe. CONCLUSIONS: These results indicate that in Alzheimer’s disease, tau pathology is closely associated with reduced synaptic density and synaptic dysfunction

    The Spatial Evolution of Tau Pathology in Alzheimer’s Disease: Influence of Functional Connectivity and Education

    Get PDF
    Alzheimer’s disease is neuropathologically characterized by extracellular accumulation of amyloid beta plaques and intracellular aggregation of misfolded tau proteins, which eventually lead to neurodegeneration and cognitive impairment. With the recent advances in neuroimaging, these two proteinopathies can now be studied in vivo using positron emission tomography (PET). Combining this imaging technique with functional magnetic resonance imaging has consistently revealed a spatial overlap between amyloid beta accumulates and functional connectivity networks (Buckner et al., 2009; Grothe et al., 2016), indicating functional connectivity as mechanistic pathway in the distribution of neuropathologies. While the infiltration of these neuronal networks by amyloid beta deposits seems uniform across individuals with Alzheimer’s disease, there nevertheless exists inter-individual differences in the clinical expression of the disease despite similar pathological burden (Stern, 2012). This observation has fuelled the concept of existing resilience mechanisms, which are supported by lifetime and –style factors and, which magnitude varies between individuals, contributing to the clinical heterogeneity seen in Alzheimer’s disease. Even though the spreading and resilience mechanisms in the phase of amyloid beta accumulation are now better understood, no information on tau pathology in vivo were available in this regard until recently. Given the recent introduction of tau PET compounds, this thesis therefore aimed to address two questions: 1) whether functional connectivity contributes to the distribution of tau pathology across brain networks, and 2) whether the consequence of tau pathology on cognitive and neuronal function is mitigated by a resilience proxy, namely education. Using [18F]-AV-1451 PET imaging to quantify tau pathology in a group of Alzheimer’s disease patients, we observed that tau pathology arises synchronously in independent components of the brain, which in turn moderately overlap with known functional connectivity networks. This suggest that functional connectivity may act as contributing factor in the stereotypical distribution of tau pathology. Moreover, the results of this thesis demonstrate that the consequence of regional tau pathology on cognition differs depending on the level of education. Despite equal clinical presentation, higher educated patients can tolerate more tau pathology, already in regions related to advanced disease stage, than lower educated patients. Furthermore, tau pathology is less paralleled by neuronal dysfunction at higher levels of education. Thus, higher educated individuals show a relative preservation of neuronal function despite the aggregation of misfolded tau proteins. This maintenance of neuronal function may in turn explain the relative preservation of cognitive function albeit progressive tau pathology aggregation. Taken together, the results of this thesis provide novel insights into the spreading mechanisms and the role of resilience factors towards tau pathology aggregation, which may not only be relevant for Alzheimer’s disease, but other neurodegenerative diseases, in particular,tauopathies. Better understanding of the spreading mechanisms in these diseases will permit a more precise prediction of disease progression and will thus be valuable for disease monitoring. Concomitantly, the development of sensitive biomarkers for disease monitoring is crucial for the evaluation of anti-tau-based therapies. Regarding the development of pharmacological strategies, the current results also indicate that proxy measures of resilience, such as education, need to be considered when allocating patients to treatment groups. Biased allocation may otherwise lead to a misinterpretation of observed effects that are not due to the drug but the group characteristics. Aside from this, sensitive tools for the early identification of at-risk individuals with high resilience need to be established to allow for a timely intervention. Current hypothesis is that an early intervention has the highest chance of success in modifying the disease course. However, as demonstrated by this work, individuals with high resilience remain undiagnosed until late in the disease course. Further research into resilience mechanisms may thus support the development of sensitive diagnostic tools and additionally offer potential targets that can be harnessed for novel treatment strategies. Hopefully, one day supporting the development of effective disease-modifying treatments

    The Effects of Disruption of Synaptic Signaling on Neuronal Networks

    Full text link
    The brain is an organ that acts as the conductor of an orchestra – it governs all vital body functions and assures that all organs operate in harmony. Moreover, it plays a crucial role in various tasks such as memory formation, sensory processing and movement control. The performance of the brain in these tasks requires spatiotemporal patterns formed by the activity of different parts of the brain. The formation of the spatiotemporal patterns in the brain is facilitated by the connections between neurons, also known as synapses. Therefore, transmission failure in synapses may lead to disruption in these patterns and may impair the proper functioning of the brain. The aim of this dissertation is to explore the outcomes when synaptic transmission is disrupted. First, we investigated the universal effect of synaptic failure in neuronal networks having heterogeneous connectivity. Even though human studies on anesthetics claimed that failure in signal transmission in the brain results in loss of coherence in brain activity, we provided evidence that this may not always be true. On the contrary, synaptic failure may facilitate the emergence of coherent neuronal network activity due to more balanced input levels across the neuronal network. The second part of this dissertation focuses on a specific case which arises from disruption in synaptic signaling in the peripheral auditory system, namely hidden hearing loss (HHL). We built a computational model to simulate two mechanisms that give rise to HHL: 1) loss of synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) and 2) myelin defects at the peripheral SGN axons. We concluded that both mechanisms decrease the cumulative SGN activity, whereas only myelin defects desynchronize it, confirming the experimental observations. Finally, we investigated the effect of SGN myelin defects on sound localization, as patients with HHL were shown to have binaural processing deficits. We provided evidence that the activity of the neurons in the downstream cochlear nucleus circuit that is responsible for sound localization is severely impaired as a result of myelin defects in SGN fibers. This result possibly elucidates the mechanism that gives rise to sound localization deficiencies in HHL patients.PHDBiophysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163002/1/mbudak_1.pd
    corecore