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ABSTRACT 

Alzheimer’s disease is neuropathologically characterized by extracellular accumulation of 
amyloid ȕ plaques and intracellular aggregation of misfolded tau proteins, which eventually 

lead to neurodegeneration and cognitive impairment. With the recent advances in 

neuroimaging, these two proteinopathies can now be studied in vivo using positron emission 

tomography (PET). Combining this imaging technique with functional magnetic resonance 

imaging has consistently revealed a spatial overlap between amyloid ȕ accumulates and 
functional connectivity networks (Buckner et al., 2009; Grothe et al., 2016), indicating 

functional connectivity as mechanistic pathway in the distribution of neuropathologies. While 

the infiltration of these neuronal networks by amyloid ȕ deposits seems uniform across 

individuals with Alzheimer’s disease, there nevertheless exists inter-individual differences in 

the clinical expression of the disease despite similar pathological burden (Stern, 2012). This 

observation has fuelled the concept of existing resilience mechanisms, which are supported by 

lifetime and –style factors and, which magnitude varies between individuals, contributing to 

the clinical heterogeneity seen in Alzheimer’s disease.  

Even though the spreading and resilience mechanisms in the phase of amyloid ȕ accumulation 
are now better understood, no information on tau pathology in vivo were available in this regard 

until recently. Given the recent introduction of tau PET compounds, this thesis therefore aimed 

to address two questions: 1) whether functional connectivity contributes to the distribution of 

tau pathology across brain networks, and 2) whether the consequence of tau pathology on 

cognitive and neuronal function is mitigated by a resilience proxy, namely education. Using 

[18F]-AV-1451 PET imaging to quantify tau pathology in a group of Alzheimer’s disease 

patients, we observed that tau pathology arises synchronously in independent components of 

the brain, which in turn moderately overlap with known functional connectivity networks. This 

suggest that functional connectivity may act as contributing factor in the stereotypical 

distribution of tau pathology. Moreover, the results of this thesis demonstrate that the 

consequence of regional tau pathology on cognition differs depending on the level of education. 

Despite equal clinical presentation, higher educated patients can tolerate more tau pathology, 

already in regions related to advanced disease stage, than lower educated patients. Furthermore, 

tau pathology is less paralleled by neuronal dysfunction at higher levels of education. Thus, 

higher educated individuals show a relative preservation of neuronal function despite the 

aggregation of misfolded tau proteins. This maintenance of neuronal function may in turn 

explain the relative preservation of cognitive function albeit progressive tau pathology 

aggregation. 

Taken together, the results of this thesis provide novel insights into the spreading mechanisms 

and the role of resilience factors towards tau pathology aggregation, which may not only be 

relevant for Alzheimer’s disease, but other neurodegenerative diseases, in particular, 
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tauopathies. Better understanding of the spreading mechanisms in these diseases will permit a 

more precise prediction of disease progression and will thus be valuable for disease monitoring. 

Concomitantly, the development of sensitive biomarkers for disease monitoring is crucial for 

the evaluation of anti-tau-based therapies. Regarding the development of pharmacological 

strategies, the current results also indicate that proxy measures of resilience, such as education, 

need to be considered when allocating patients to treatment groups. Biased allocation may 

otherwise lead to a misinterpretation of observed effects that are not due to the drug but the 

group characteristics. Aside from this, sensitive tools for the early identification of at-risk 

individuals with high resilience need to be established to allow for a timely intervention. 

Current hypothesis is that an early intervention has the highest chance of success in modifying 

the disease course. However, as demonstrated by this work, individuals with high resilience 

remain undiagnosed until late in the disease course. Further research into resilience mechanisms 

may thus support the development of sensitive diagnostic tools and additionally offer potential 

targets that can be harnessed for novel treatment strategies. Hopefully, one day supporting the 

development of effective disease-modifying treatments. 
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ZUSAMMENFASSUNG  

Die Alzheimer-Erkrankung ist neuropathologisch gekennzeichnet durch die extrazelluläre 

Ansammlung von Amyloid ȕ Plaques und die intrazelluläre Aggregation von fehlgefalteten 
Tau-Proteinen, die schließlich zu Neurodegeneration und charakteristischen kognitiven 

Beeinträchtigungen führen. Mit den neuesten Fortschritten in der Hirnbildgebung können diese 

Proteinopathien in vivo mittels der Positronen-Emissions-Tomographie (PET) untersucht 

werden. Die Kombination dieser Bildgebungstechnik mit der funktionellen 

Magnetresonanztomographie hat dabei konsistent eine räumliche Überlappung zwischen 

Amyloid ȕ Akkumulationen und funktionellen Konnektivitätsnetzwerken bei Patienten/Innen 
mit einer Alzheimer-Erkrankung ergeben (Buckner et al., 2009; Grothe et al., 2016). Diese 

räumliche Überlappung weist darauf hin, dass die funktionelle Konnektivität zur Verteilung 

von Neuropathologien beiträgt. Während die Infiltration dieser neuronalen Netzwerke durch 

Amyloid ȕ Plaques bei Individuen mit einer Alzheimer-Krankheit konsistent erscheint, gibt es 

dennoch interindividuelle Unterschiede zwischen der pathologischen Belastung und dem 

klinischen Ausdruck der Erkrankung (Stern, 2012). Diese Beobachtung deutet auf 

Resilienzmechanismen hin, die durch Lebensstilfaktoren unterstützt werden, und deren 

Ausmaß individuell variiert und dadurch zur klinischen Heterogenität der Alzheimer-

Erkrankung beiträgt.  

Auch wenn die Ausbreitungs- und Resilienzmechanismen der Amyloid ȕ Pathologie 
inzwischen besser erforscht sind, lagen diesbezüglich bis vor Kurzem keine Informationen über 

die in vivo Tau-Pathologie vor. Angesichts der jüngsten Verfügbarkeit von Tau-PET-

Substanzen in klinischen und Forschungseinrichtungen war daher das Ziel dieser Dissertation 

folgende Fragestellungen zu untersuchen: 1. ‚Trägt die funktionelle Konnektivität zur 
Verteilung der Tau-Pathologie entlang bestimmter Gehirnnetzwerke bei?‘; β. ‚Wird die 

Konsequenz der Tau-Pathologie in Bezug auf die kognitive und neuronale Funktion durch ein 

Resilienzmaß, nämlich Bildungsniveau, gemildert?‘. Die Analyse von [18F]-AV-1451 PET-

Bildgebungsdaten zur Quantifizierung der Tau-Pathologie bei einer Gruppe von Alzheimer-

Patienten/Innen ergab, dass die Tau-Pathologie synchron in unabhängigen Komponenten des 

Gehirns auftritt, die wiederum moderat räumlich mit bekannten funktionellen 

Konnektivitätsnetzwerken überlappen. Dies deutet darauf hin, dass die funktionelle 

Konnektivität als beitragender Faktor für die stereotype Verteilung der Tau-Pathologie fungiert. 

Darüber hinaus zeigen die Ergebnisse dieser Arbeit, dass die Konsequenzen der regionalen Tau-

Pathologie für die Kognition abhängig vom Bildungsniveau sind. Trotz gleicher klinischer 

Schwere können hoch gebildete Patienten/Innen eine schwerwiegendere Tau-Pathologie 

tolerieren als niedrig gebildete Patienten/Innen. Zusätzlich scheint der neurotoxische Effekt der 

Tau-Pathologie bei einem höheren Bildungsniveau weniger stark ausgeprägt zu sein. So zeigen 

hochgebildete Patienten/Innen eine relative Erhaltung der neuronalen Funktion trotz der 

Aggregation der Tau-Pathologie. Diese Präservation der neuronalen Funktion ermöglicht 
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vermutlich wiederum die relative Erhaltung der kognitiven Funktion trotz erhöhter Tau-

Pathologie-Last. 

Insgesamt dienen die Ergebnisse dieser Arbeit einem besseren Verständnis des 

Ausbreitungsmechanismus der Tau Pathologie und dem Beitrag von Resilienzfaktoren zur 

Aggregation der Tau-Pathologie, die nicht nur für die Alzheimer-Erkrankung, sondern auch für 

andere neurodegenerative Erkrankungen, insbesondere Tauopathien, relevant sein können. Ein 

erweitertes Verständnis der Ausbreitungsmechanismen dieser Krankheiten wird eine genauere 

Vorhersage des Krankheitsverlaufs ermöglichen und somit für das Krankheitsmonitoring 

wertvoll sein. Gleichzeitig ist die Entwicklung sensitiver Biomarker für das 

Krankheitsmonitoring entscheidend für die Auswertung von anti-Tau-basierten Therapien. Im 

Hinblick auf die Entwicklung von pharmakologischen Strategien deuten die aktuellen 

Ergebnisse darauf hin, dass bei der Zuordnung von Patienten/Innen zu Behandlungsgruppen 

Annäherungsmaße der Resilienz, wie z.B. Bildung, berücksichtigt werden müssen. Eine 

einseitig vorgenommene Zuordnung kann ansonsten zu einer Fehlinterpretation der 

beobachteten Effekte führen, die nicht auf das Medikament, sondern auf die 

Gruppeneigenschaften zurückzuführen sind. Darüber hinaus müssen sensitive Instrumente für 

die frühzeitige Identifizierung von Risikopersonen mit hoher Resilienz entwickelt werden, um 

eine rechtzeitige Intervention zu ermöglichen. Die aktuelle Hypothese ist, dass eine frühzeitige 

Intervention die höchste Erfolgschance in der Modifikation des Krankheitsverlaufes besitzt. 

Wie diese Arbeit jedoch zeigt, werden Personen mit einer hohen Resilienz erst zu einem späten 

Zeitpunkt im Krankheitsverlauf diagnostiziert. Insgesamt kann die Erforschung von 

Resilienzmechanismen zur Entwicklung von sensitiven Diagnoseinstrumenten beitragen. 

Zusätzlich bieten identifizierte Resilienzmechanismen potenzielle Ansätze, die für neue 

Behandlungsstrategien genutzt werden können. Die Ergebnisse werden hoffentlich eines Tages 

auch die Entwicklung effektiver krankheits-modifzierender Behandlungsstrategien 

unterstützen. 
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INTRODUCTION 

“Where are you right now?” 
 

„Here and everywhere. Here and now. You must not think badly of me." 
 

        Alois Alzheimer & Auguste D. 
 

It has been more than a century since Alois Alzheimer first reported on the case of Auguste D., 

who showed a progressive loss of memory and speech as well as agitation. The brain autopsy 

of Auguste D. revealed an accumulation of senile plaques, neurofibrils, and general atrophy, 

which Alois Alzheimer concluded to cause the clinical symptoms. Several years later, Emil 

Kraepelin introduced the term “Alzheimer’s disease”, which was initially considered a rare 

disease, but has become the most common neurodegenerative disease world-wide, currently 

affecting around 50 million people above the age of 65 (Gaugler et al., 2019). With the 

demographic change in Western societies, it is anticipated that the prevalence will triple by 

2050, increasing the societal and economic burden tremendously. Despite all efforts, there is 

still no disease-modifying treatment available. Consensus is that only an early diagnosis and 

intervention has the highest chance of success in modifying this devastating disease. 

The incremental growth in scientific knowledge about Alzheimer’s disease over the past 

decades has revealed that the neuropathological hallmarks of Alzheimer’s disease, namely 

amyloid ȕ plaques and neurofibrillary tangles (composed of misfolded tau proteins), begin to 

accumulate more than 20 years before initial clinical symptoms occur. Importantly, these 

neuropathological characteristics can nowadays be visualized and studied in vivo using positron 

emission tomography (PET). Especially the recent introduction of tau PET compounds has 

opened new possibilities in research and clinical settings. By means of tau PET imaging, 

information on the molecular mechanisms and distribution patterns of tau pathology in 

Alzheimer’s disease and its interaction with other pathophysiological processes can now be 

gathered in vivo. This is further important for the identification of underlying resilience 

mechanisms against the spatial evolution of tau pathology and its neurotoxic effects given the 

heterogeneity in clinical expressions seen in Alzheimer’s disease. Some individuals can tolerate 
more neuropathology albeit similar clinical severity than others and some never even develop 

clinical symptoms despite showing the neuropathological hallmarks of Alzheimer’s disease 

(Stern, 2012). Understanding the mechanisms driving this resilience against brain pathology is 

crucial for the development of sensitive diagnostic and prognostic biomarkers as well as novel 

treatment strategies. 

This dissertation is intended to examine the role of functional connectivity as potential 

spreading mechanism of tau pathology employing tau PET imaging ([18F]-AV-1451) in 

combination with resting-state functional magnetic resonance imaging (MRI). Moreover, this 

thesis work elucidates the contribution of a resilience surrogate, namely education, concerning 

the impact of tau pathology aggregation on cognition and neuronal function. This investigation 



  

5 

 

is important on the one hand regarding the understanding of the mechanistic pathways of the 

pathophysiological processes in Alzheimer’s disease, and on the other hand concerning the 

interpretation of potential resilience mechanisms modifying the clinical expression of 

Alzheimer’s disease.  

In the introduction of this dissertation, a brief overview on the current knowledge about the 

neuropathological hallmarks of Alzheimer’s disease, their temporo-spatial evolution and a 

description of potential mechanisms supporting resilience against these pathologies is provided, 

with an emphasis on PET imaging studies. The introduction is followed by three publications, 

which focus on the role of functional connectivity and education regarding the spread and 

neuronal consequences of tau pathology. Finally, the papers will be discussed in a larger 

context. 
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CLINICAL PRESENTATIO N AND DIAGNOSIS 
OF ALZHEIMER’S DISEA SE 

Sporadic late-onset Alzheimer’s disease usually occurs in individuals older than 65 years and 

accounts for more than 95% of all cases with Alzheimer’s disease (Gaugler et al., 2019). The 

remaining cases relate to familial and early-onset forms of Alzheimer’s disease with an age of 

onset ranging from 30 to 65 years. Within the realm of this dissertation, the term Alzheimer’s 
disease will refer to sporadic late-onset Alzheimer’s disease.  

The cardinal symptom of Alzheimer’s disease is a progressive loss of memory, with subsequent 

appearance of executive, visual-spatial, language and neuropsychiatric impairments. At 

advanced stages of the disease, motor symptoms such as difficulties with swallowing and 

walking may also occur. Despite the typical presentation of Alzheimer’s disease, also atypical 

forms exist. These atypical forms present the same neuropathological characteristics, namely 

amyloid ȕ plaques and misfolded tau proteins, but are characterized by different clinical 

phenotypes. These variants have been associated with an earlier disease onset (Snowden et al., 

2007; Koedam et al., 2010) and encompass posterior cortical atrophy (PCA), the logopenic 

variant and the dysexecutive/ behavioural variant of Alzheimer’s disease. PCA is characterized 

by predominant visual-spatial deficits, the logopenic variant by language difficulties and the 

behavioural variant by deficits in executive function. Independent of the typical or atypical 

phenotype of Alzheimer’s disease, the clinical symptoms eventually interfere with activities of 

daily living, rendering the individual with Alzheimer’s disease dependent on others. The 

average life-expectancy after the diagnosis of Alzheimer’s disease is about 8-10 years, but 

significantly depends on how impaired the individual already is at the point of diagnosis (Larson 

et al., 2004; Helzner et al., 2008). 

At present, the clinical diagnosis of Alzheimer’s disease is based on the recommended 

diagnostic National Institute on Aging and Alzheimer's Association (NIA-AA) guidelines from 

2011 (Albert et al., 2011; Jack Jr et al., 2011; McKhann et al., 2011; Sperling et al., 2011) and 

the international working group criteria on Alzheimer’s disease (Cummings et al., 2013; Dubois 

et al., 2014). According to the NIA-AA guidelines, Alzheimer’s disease is a continuum, which 
can be categorized into three stages: preclinical, mild cognitive impairment (MCI), and 

Alzheimer’s dementia. In the preclinical stage, molecular changes are detected including 

amyloid ȕ build-up, but no significant cognitive deficits are yet observable (Sperling et al., 

2011). In the MCI stage, initial memory impairments occur that are greater than of an age-

matched person, but which do not yet interfere with daily living (Albert et al., 2011). In addition 

to the accumulation of amyloid ȕ, a marker of neuronal injury including tau becomes abnormal, 

which can be assessed using PET or cerebrospinal fluid (CSF) markers (Albert et al., 2011). In 

the final stage, Alzheimer’s dementia, cognitive deficits interfere with the person’s ability to 
function independently and both biomarkers are abnormal (McKhann et al., 2011). Importantly, 
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the guidelines for the symptomatic stages were intended to support the clinical diagnosis, 

whereas the preclinical definition was meant to offer researchers a common definition for the 

identification of participants, who show abnormal Alzheimer’s disease biomarkers in absence 

of clinical symptoms. Moreover, the integration of Alzheimer’s disease biomarkers in form of 

PET imaging or CSF analysis is considered as aid for the clinical setting, but the recommended 

guidelines are primarily based on clinical criteria. 

The current diagnostic guidelines have therefore shifted from a syndromal to a biological 

construct, which have recently been outlined in a new research framework (Jack Jr et al., 

2018a). In this framework, the presence or absence of abnormal Alzheimer’s disease biomarker 

profiles are the building blocks used to describe the Alzheimer’s disease spectrum, while 

considering cognitive impairment as the result of the disease rather than its definition. The 

workgroup suggested the so-called A-T-N classification scheme, which is based on brain 

imaging (i.e., PET or MRI) and CSF biomarkers. “A” refers to amyloid pathology, “T” to tau 
pathology, and “N” to neurodegeneration. In addition to the presence or absence of these three 

markers, a fourth factor namely the cognitive continuum can be included. Importantly, in 

contrast to the NIA-AA guidelines, a clear distinction is set between tau pathology and 

neurodegeneration/neuronal injury. The A-T-N classification states that abnormal amyloid and 

tau levels are a necessary condition for Alzheimer’s disease, whereas neurodegeneration is not 
specific to Alzheimer’s disease. As it is currently only a research framework, it still needs to be 

validated in clinical settings. However, so far, it appears to be a well-suited tool for the 

biological diagnosis of Alzheimer’s disease by taking advantage of the currently available 

biomarkers for the quantification of the neuropathological hallmarks of Alzheimer’s disease. 

NEUROPATHOLOGICAL HA LLMARKS  

OF ALZHEIMER’S DISEA SE 

Alzheimer’s disease is a dual proteinopathy characterized by the extracellular deposition of 
amyloid ȕ in senile plaques and the intracellular aggregation of neurofibrillary tangles (NFTs). 

According to the prominent amyloid cascade hypothesis (Hardy and Higgins, 1992), amyloid ȕ 

deposition is the initial event, which triggers the formation of senile plaques and NFTs. This in 

turn leads to neuronal death and ultimately to dementia. Much support has been provided for 

this hypothesis. Nonetheless, there remain objections against it – one being that no phase 3 

clinical trial targeting amyloid ȕ plaques has yet been successful in modifying the disease course 

(Gilman et al., 2005; Doody et al., 2014; Salloway et al., 2014; Siemers et al., 2016; Honig et 

al., 2018) and another one being that these two proteinopathies may actually act independently 

with tau pathology preceding amyloid ȕ deposition, as recently suggested by autopsy data (Jack 

Jr et al., 2013). Despite the uncertainties regarding the temporal trajectory of the pathogenesis 

of Alzheimer’s disease, there is no doubt that the two neuropathological hallmarks take on a 

key role in the pathogenic cascade of Alzheimer’s disease, as elucidated in the following. 
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Amyloid ȕ 

The extracellular accumulation of amyloid ȕ peptides was first discovered as main constituents 

of senile plaques in Alzheimer’s disease and Down’s Syndrome (Glenner and Wong, 1984; 

Masters et al., 1985a; Masters et al., 1985b). A while later, genetic studies on familial 

Alzheimer’s disease found that mutations in genes encoding the amyloid precursor protein 

(APP) (Goate et al., 1991), preselin-1 and preselin-2 (Levy-Lahad et al., 1995; Sherrington et 

al., 1995) were associated with elevated levels of amyloid ȕ. It is now known that preselin-1 

and -2 are involved in the APP processing pathway. Although the functional role of APP itself 

remains unresolved, much knowledge has been gathered about the formation of amyloid ȕ 
deposits: 

The amyloid ȕ peptide is derived from APP, a transmembrane protein which can undergo two 

proteolytic pathways, the α-pathway or ȕ-pathway. The former represents the non-

amyloidogenic and the latter the amyloidogenic pathway (see Figure 1). In the non-

amyloidogenic process, APP is sequentially cleaved close to the membrane by α-secretase, 

liberating sAPPα and generating an alpha-C-terminal fragment (CTFα). Cleavage of CTFα by 
Ȗ-secretase generates a small p3 fragment and a cytosolic element, the APP intracellular domain 

(AICD), which remains bound to the membrane and carries a role in signal transduction (Chen 

et al., 2017). The catalytic subunit of Ȗ-secretase is encoded by either presilin-1 or presilin-2. 

In the amyloidogenic pathway, APP is cleaved by ȕ-secretase, which results in a large 

derivative, sAPPȕ, and a beta-C-terminal fragment (CTFȕ) that remains bound to the membrane 

(Selkoe, 1994; Olsson et al., 2014). CTFȕ is then cleaved by Ȗ-secretase, which results in the 

soluble amyloid ȕ peptide and the membrane-bound AICD. 

 

 
Figure 1– Proteolytic pathways of the transmembrane amyloid precursor protein (APP). In the non-amyloidogenic 

pathway, APP is cleaved by α-secretase generating sAPPα and CTFα followed by cleavage of Ȗ-secretase, 

liberating pγ and producing AICD. In the amyloidogenic pathway, ȕ -secretase cleavage results in sAPPȕ and a 
larger CTFȕ fragment followed by Ȗ-secretase producing amyloid ȕ and AICD. CTF = C-terminal fragment; 

AICD= APP intracellular domain. Adapted from Cheignon et al., 2018. 
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As the cleavage process in the amyloidogenic pathway is somewhat imprecise, numerous 

species of amyloid ȕ exist (Takami et al., 2009). The most common species are amyloid ȕ40 

and amyloid ȕ42, which are more hydrophobic and fibrillogenic than shorter forms of amyloid 

ȕ (Takami et al., 2009). It is assumed that the deposition of amyloid ȕ is likely a consequence 
of impaired clearance and degradation mechanisms, which promote the assembly of amyloid ȕ 

monomers to oligomers, protofibrils and eventually to amyloid plaques in the brain parenchyma 

(Mawuenyega et al., 2010). Importantly, it was recently reported that the soluble forms of 

amyloid ȕ are more toxic to neuronal cells than senile plaques (Bao et al., 2012; Esparza et al., 

2013). Given their solubility, these forms can spread throughout the brain (Chen et al., 2017), 

disrupt synaptic function and trigger downstream toxic pathways (Mucke and Selkoe, 2012). 

Moreover, in accordance with the amyloid cascade hypothesis, transgenic experiments 

demonstrated that soluble amyloid ȕ forms increase tau phosphorylation (Seino et al., 2010) 

and induce tau aggregation and seeding (De Felice et al., 2008; Seino et al., 2010; Vergara et 

al., 2019), which represents the second neuropathological hallmark of Alzheimer’s disease. 

Neurofibrillary tangles 

Neurofibrillary tangles (NFTs) are intracellular aggregates, which are composed of the 

hyperphosphorylated tau protein. The tau protein in its native form is abundant in the axons of 

neurons and carries an important role in the stabilization of the microtubules and axonal 

transport (Morris et al., 2011). It is encoded by the microtubule-associated tau protein (MAPT) 

gene (Weingarten et al., 1975; Grundke-Iqbal et al., 1986) and contains four areas: an N-

terminal region, a proline-rich domain, a microtubule-binding domain, and a C-terminal 

projection region (Mandelkow et al., 1996). In the adult human brain six isoforms of tau are 

present, which are produced by alternative splicing of exon 2, 3, and 10 (see Figure 2). These 

isoforms can further be separated based on the length of their repeat binding domain, namely 

three or four carboxy repeat domains (3R and 4R). In the adult human brain, the 3R and 4R 

forms of tau are equally expressed, but this ratio changes in neurodegenerative diseases (Gao 

et al., 2018). Tau aggregation is not only a characteristic hallmark of Alzheimer’s disease, but 
also other neurodegenerative diseases known as tauopathies (e.g., progressive supranuclear 

palsy (PSP) or corticobasal degeneration (CBD)). These tauopathies can be classified based on 

the overexpression of the tau isoforms, namely: 3R-tauopathies (e.g., Pick’s disease), 4R-

tauopathies (e.g., PSP or CBD), and 3R/4R tauopathies, to which Alzheimer’s disease belongs. 
Albeit the differences in tau isoform expression, the pathological tau lesions are highly 

phosphorylated across tauopathies, whereby in Alzheimer’s disease both forms of tau (γR and 
4R) undergo hyperphosphorylation (Buée et al., 2000). The exact mechanism leading to this 

hyperphosphorylation remains elusive. But given that various kinases and phosphatases 

regulate tau phosphorylation in the normal state, it has been suggested that an imbalance 

between these enzymes causes hyperphosphorylation of tau (Noble et al., 2013). 

Importantly, the hyperphosphorylation of tau appears to precede the aggregation of misfolded 

tau proteins into paired helical filaments and then into insoluble NFTs (Alonso et al., 2001; 



  

10 

 

Chohan et al., 2005). The aggregation process, in turn, is facilitated through mechanisms such 

as impaired degradation, truncation, or missorting of tau (Guillozet‐Bongaarts et al., 2006; 

Dickey et al., 2007). Regarding the truncation of tau, it was shown that it suppresses the 

formation of the so called paperclip structure, which usually hinders tau to aggregate 

(Jeganathan et al., 2006). Notably, tau in its native form is unfolded and does not tend to 

aggregate (Mukrasch et al., 2009). However, through the truncation process, tau loses the 

paperclip formation, which in turn promotes the aggregation of tau proteins. Moreover, recent 

studies showed that the hyperphosphorylation of tau can lead to missorting of tau from the axon 

to the somato-dendritic compartment (Thies and Mandelkow, 2007; Hoover et al., 2010; 

Zempel et al., 2010; Zempel et al., 2017), which can cause synaptic dysfunction (Thies and 

Mandelkow, 2007; Hoover et al., 2010). 

Overall, a multitude of processes involved in the hyperphosphorylation and aggregation of 

misfolded tau proteins have been identified so far (for a detailed review see Morris et al., 2011; 

Wang and Mandelkow, 2016). Nevertheless, the exact trigger of tau pathology in Alzheimer’s 
disease remains unknown as the MAPT gene is not genetically linked to Alzheimer’s disease. 
This lack of genetic association to Alzheimer’s disease suggests that tau pathology is a 

downstream process of the amyloid ȕ- induced neurodegenerative cascade – a cascade, which 

is further characterized by pathophysiological alterations including the loss of synapses, initial 

hippocampal and later general atrophy, neuroinflammation in form of reactive astrocytes and 

activated microglia, and depletion of distinct neurotransmitter systems (Luca et al., 2018). 

Importantly, with the developments in PET imaging, several processes of this 

pathophysiological cascade can nowadays be visualized and studied in vivo. The principle of 

PET imaging and the main PET compounds used in Alzheimer’s disease research and diagnosis 
will therefore be discussed in the next section. 

 

 
Figure 2 - The human microtubule-associated tau protein (MAPT) gene and its isoforms. Representation of the 

six isoforms of the tau protein produced by alternative splicing of exon 2 ,γ, and 10 is illustrated. In Alzheimer’s 
disease, 3R and 4R isoforms are equally hyperphosphorylated. N= N-terminal; R = microtubule-binding repeat 

domain. Adapted from Wang and Mandelkow, 2016. 
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POSITRON EMISSION TOMOGRAPHY  
IN ALZHEIMER’S DISEASE  

Positron emission tomography (PET) is an imaging technique permitting the visualization of 

molecular changes and protein aggregations in vivo by injection of radioactively labelled tracers 

into the blood, which bind to the biomolecules of interest. Briefly, PET imaging is based on the 

following technique: The radioactively labelled tracers contain short-lived positron-emitting 

radionuclides such as fluorine-18 or carbon-11. The beta decay of these radionuclides (e.g., 18F) 

attached to the target biomolecule (e.g., glucose) results in the emission of a positron that 

annihilates with an electron after travelling less than 1mm in the tissue. The annihilation process 

results in two gamma-photons being emitted in opposite directions. These gamma-rays are then 

detected by scintillation detectors, which register the annihilation photons in coincidence and 

store the events. Finally, using computer analysis, the PET activity distributions are 

reconstructed as three-dimensional images based on the coincidence events. The final images 

are then used for diagnostic or research purposes. 

Up to now, several PET tracers have been developed, which can cross the blood brain barrier 

and visualize Alzheimer’s disease-related pathophysiological changes. The most commonly 

used tracers, which will be discussed in the following, can visualize amyloid pathology, tau 

pathology and changes in glucose metabolism (see Figure 3).  

Amyloid PET 

The most widely studied amyloid tracer is [11C]-Pittsburgh Compound B ([11C]-PiB), which 

was developed by Chet Mathis and William Klunk in 2002 (Mathis et al., 2002). This tracer 

shows high affinity and selectivity to fibrillar amyloid in senile plaques (Mathis et al., 2002; 

Cohen et al., 2012). However, given the short half-life of [11C]-PiB of only 20 minutes, its use 

is limited to centres that have a cyclotron and a department of radiochemistry on-site. Due to 

this limitation, F18-labelled tracers with similar affinity profiles, but a half-life of around 120 

minutes, were developed, among them: [18F]Florbetapir (Wong et al., 2010), [18F]Florbetaben 

(Rowe et al., 2008), and [18F]Flutemetamol (Rinne et al., 2012). Ever since these amyloid 

tracers have been available, a large body of evidence has been gathered supporting the utility 

of these tracers as diagnostic tool for dementia due to Alzheimer’s disease. In addition, these 

tracers have been useful for patient selection and the evaluation of drug efficacy in clinical trials 

(Fleisher et al., 2011). However, the drawback of the currently available amyloid tracers is that 

they only bind to insoluble plaques and not to the more toxic and soluble forms of amyloid ȕ 

(Haass and Selkoe, 2007). Moreover, albeit its major role in defining Alzheimer’s disease, 
amyloid PET imaging appears not to be suitable for the short-term prediction of individuals 

converting from prodromal stages or MCI to Alzheimer’s dementia (Iaccarino et al., 2017). 

Furthermore, amyloid PET shows relatively low correlation with clinical and cognitive 

parameters (Brier et al., 2016), indicating that this PET modality is less well-suited for staging 
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of the disease. Thus, for better information regarding the progression and staging of the disease, 

[18F]-Fluorodeoxyglucose ([18F]-FDG) PET and more recently tau PET compounds have been 

considered. 

Tau PET  

The complexity of the tau protein given its heterogenous isoforms and its intracellular location 

have been major challenges in the development of selective tau PET tracers. Overcoming these 

challenges, several radioactive substances have recently been developed. The most widely 

studied are: [18F]-THK5117 (Harada et al., 2015), [18F]-THK5351 (Harada et al., 2016), [18F]-

AV-1451 (Chien et al., 2014), and [11C]-PBB3 (Maruyama et al., 2013). Before that time, solely 

CSF measures could provide information on abnormalities in tau phosphorylation in the central 

nervous system, but no information on the regional distribution of tau pathology could be 

obtained. The introduction of tau PET tracers has therefore led to new possibilities for 

diagnostic and research-oriented considerations (van Eimeren et al., 2017). A progressively 

accumulating body of evidence suggests that tau PET is a suitable progression and staging 

marker, because it is more closely associated with neurodegeneration and cognitive decline than 

amyloid PET (Bischof et al., 2016; Brier et al., 2016; Ossenkoppele et al., 2016; Schöll et al., 

2016; Schwarz et al., 2016). Additionally, recent longitudinal tau PET studies have provided 

first insights into the pathogenic cascade of Alzheimer’s disease (Chiotis et al., 2018a; Jack Jr 

et al., 2018b; Southekal et al., 2018). Importantly, in contrast to amyloid PET, tau PET allows 

differentiation between typical and atypical phenotypes of Alzheimer’s disease, and primary 

tauopathies from secondary tauopathies1 (Kikuchi et al., 2016; Ossenkoppele et al., 2016; 

Dronse et al., 2017; Hammes et al., 2017; Passamonti et al., 2017; Whitwell et al., 2017; 

Whitwell et al., 2018b). It is thus a meaningful biomarker for differential diagnosis. However, 

despite the advances of tau PET imaging, an unresolved issue of the first-generation tau PET 

tracers remains the off-target binding to subcortical structures (Marquié et al., 2015; Lowe et 

al., 2016; Ng et al., 2017) and the lower affinity to different tau isoforms (Smith et al., 2017). 

Therefore, second-generation tracers have been developed with improved binding properties 

and lower off-target signal, among them [18F]-PI-2620 (Mueller et al., 2017) and [18F]-MK-

6240 (Walji et al., 2016). These tracers are currently under investigation for their clinical and 

research utility (Hostetler et al., 2016; Villemagne et al., 2018). Aside from this, tau PET 

imaging provides unique information on underlying disease mechanisms, which are not only 

relevant for Alzheimer’s disease but also for other tauopathies. 

FDG PET 

The PET compound with the longest history in the investigation and diagnosis of 

neurodegenerative diseases is FDG PET, which is sensitive to changes in glucose metabolism. 

                                                             

1 Primary tauopathies are considered diseases with misfolded tau proteins being the predominant pathological 
signature such as PSP or CBD. Secondary tauopathies account for diseases such as Alzheimer’s disease, which 
are characterized by tau aggregation in combination with other toxic accumulates such as amyloid ȕ plaques.  
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It has been postulated that FDG PET measures synaptic function rather than overall neuronal 

function (Harris et al., 2012). Thus, a decrease in FDG PET signal (i.e., hypometabolism) 

reflects an index of synaptic failure (Iaccarino et al., 2017). Over the past two decades, FDG 

PET has been demonstrated to provide high diagnostic accuracy. Like tau PET, FDG-PET can 

aid in the differential diagnosis given that it offers information on the underlying pattern of 

neuronal dysfunction (Foster et al., 2007). Accordingly, distinct regional patterns of 

hypometabolism have been observed for the clinical phenotypes of Alzheimer’s disease 

(Ossenkoppele et al., 2016; Dronse et al., 2017). Moreover, a close spatial relationship between 

the tau PET signal and the FDG PET signal has been reported by several studies, whereas this 

is not the case for amyloid PET (Bischof et al., 2016; Brier et al., 2016; Ossenkoppele et al., 

2016). However, in contrast to amyloid and tau PET, FDG imaging does not provide any 

information on the underlying neuropathology. Therefore, an additional marker such as liquor 

measurements or PET imaging is necessary to confirm the diagnosis of Alzheimer’s disease or 
another neurodegenerative disease. Despite this, FDG PET may nevertheless be preferred to 

novel and more expensive PET compounds in the clinical setting given that it comes at 

relatively low costs in comparison to other PET tracers (van Eimeren et al., 2017).  

Collectively, the use of these three PET modalities provide unique information on the evolution 

of the molecular characteristics in Alzheimer’s disease. The additional use of other PET 

compounds in research settings, for example for the visualization of neuroinflammation (e.g., 

[11C]-PBR28) and changes in synaptic density (e.g., [11C]-UCB-J), permits the investigation of 

the temporo-spatial relationship between these markers in the pathogenic cascade of 

Alzheimer’s disease. In addition, combining these PET modalities with neuroimaging 

techniques such as diffusion tensor imaging (DTI) or functional MRI (fMRI) allows the 

investigation of spreading mechanisms across structural and functional pathways, which will 

support better understanding of this complex neurodegenerative disease (Bischof et al., 2019). 
 

 
 

Figure 3– Illustration of PET tracers and their binding sites. AV-1451 is used to visualize paired helical filaments 

and neurofibrillary tangles in the neuron. C-PiB binds to amyloid ȕ plaques in the extracellular space and FDG 
is a marker of metabolic consumption mainly at the synapse. The pathological processes of Alzheimer’s disease 
are accompanied by the accumulation of reactive astrocytes and activated microglia, which can also be 

visualized using different PET compounds. C-PiB = Pittsburgh compound B; FDG = fluorodeoxyglucose. 

Created with BioRender.com. 

The picture was blackened due to copyright rights. 
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TEMPORAL EVOLUTION  
OF ALZHEIMER’S DISEA SE BIOMARKERS 

An ever-increasing body of evidence suggests that the two neuropathological hallmarks of 

Alzheimer’s disease appear to evolve in temporal order with a long preclinical phase (Braak et 

al., 2011). In 2010, Jack and colleagues introduced a hypothetical model of Alzheimer’s disease 

biomarker evolution for the in vivo staging of Alzheimer’s disease. This model was based on 

evidence from cross-sectional, longitudinal and autopsy studies (Jack Jr et al., 2010). Three 

years later the model was revised to incorporate the observed variability in clinical expressions 

despite similar pathological burden and to specify the temporal ordering of certain biomarkers 

(Jack Jr et al., 2013). According to this well-established model (see Figure 4), abnormalities in 

amyloid ȕ42 in the CSF followed by abnormalities in amyloid PET imaging are detected up to 

two decades before clinical symptom onset. Following amyloid ȕ accumulation, abnormalities 

in tau CSF become apparent closely followed by biomarker abnormalities of neuronal function, 

such as measured with FDG PET, or of atrophy, as quantified by structural MRI. The 

trajectories of tau pathology, neuronal dysfunction and atrophy patterns are thereby more 

closely associated in time with the onset of clinical symptoms. By the time cognitive symptoms 

occur, amyloid pathology begins to plateau, whereas tau pathology and neurodegeneration 

continue to disperse. The onset of clinical symptoms can differ between individuals as 

represented by two trajectories relating to cognitive decline over time for individuals at low and 

high risk of developing mild cognitive impairment and Alzheimer’s dementia. Importantly, all 

trajectories are considered to be sigmoidal implying an initial phase of acceleration followed 

by a deceleration and plateau.  

 

 
Figure 4 – Update on hypothetical model of Alzheimer’s disease biomarkers (Jack Jr et al., 2013). Temporal 

evolution of currently available Alzheimer’s disease biomarkers, which are colour- coded as depicted in the upper 

left corner. CSF = cerebrospinal fluid; Aȕ = amyloid ȕ; FDG = fluorodeoxyglucose; MRI = magnetic resonance 

imaging; PET = positron emission tomography;MCI = mild cognitive impairment. 
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Notably, the model is based on currently available and detectable abnormalities in Alzheimer’s 
disease biomarkers based on CSF, PET or structural MRI, which may not be sensitive enough 

to detect the earliest changes in the neurodegenerative cascade of Alzheimer’s disease. This 

may explain the discrepancy to recent autopsy studies, which suggested that tau pathology 

already appears in young people below 30 years of age, whereas amyloid ȕ plaques start 
accumulating in the fourth age-decade (Braak et al., 2011). Based on this evidence, it was 

proposed that tau and amyloid ȕ may represent independent pathophysiological processes 
sharing an upstream causative factor, as also proposed by the dual pathway hypothesis (Small 

and Duff, 2008). Further investigations are required to proof or refute this assumption. Yet, the 

current body of evidence is unambiguous regarding the fact that Alzheimer’s disease has a long 
preclinical phase and that by the time initial clinical symptoms occur, amyloid pathology is 

already widely distributed across many brain regions, whereas tau pathology and 

neurodegeneration continue to spatially disperse in a stereotypical manner.  

SPATIAL DISTRIBUTION  
OF ALZHEIMER’S DISEA SE BIOMARKERS 

One of the most puzzling features of the amyloid cascade hypothesis remains the spatial 

disconnection between amyloid ȕ and tau pathology. Autopsy studies and recent PET imaging 
studies indicate that both proteinopathies follow distinct topographies, which initially occur in 

distal regions of each other. The stereotypical distribution patterns have been summarized for 

amyloid pathology by the Thal phases (Thal et al., 2002) and for tau pathology by the Braak 

stages (Braak and Braak, 1991; Braak et al., 2006), which are both based on autopsy data. 

According to the Thal phases, amyloid ȕ initially occurs in the neocortex, in particular in frontal 
areas (Phase 1), followed by accumulation in the hippocampus and entorhinal cortex (Phase 2), 

the basal ganglia (Phase 3), the brainstem (Phase 4), and finally the cerebellum (Phase 5). In 

contrast, tau pathology first gradually deposits in the transentorhinal cortex (Braak I) from 

where it spreads to the entorhinal region and hippocampal formation (Braak II), to temporal 

areas (Braak III), the precuneus (Braak IV), the parietal, occipital, and frontal regions (Braak 

V) and finally to the somatosensory cortex (Braak VI). Braak stages I-II represent the prodromal 

phase, Braak sages III-IV the early-moderate phase, and Braak V-VI the advanced and final 

stage of the disease. More recently, it was suggested that tau pathology may already start in the 

locus coeruleus and spread from there to subcortical and neocortical regions in a stereotypical 

manner (Braak et al., 2011).  

Both staging systems suggest a well-defined neuroanatomical propagation pattern of the two 

proteinopathies (see Figure 5). However, interestingly, studies comparing autopsy data and in 

vivo imaging revealed that the earliest Thal phases cannot be visualized using amyloid PET 

(Murray et al., 2015; Thal et al., 2015). In contrast, tau PET imaging studies consistently 

showed that tau pathology in vivo follows the neuropathologically defined Braak stages (Schöll 
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et al., 2016; Schwarz et al., 2016; Hoenig et al., 2017). Moreover, the spread of tau pathology 

is spatially more closely related with measures of neuronal dysfunction and neurodegeneration 

than the amyloid distribution patterns. This is the case for typical and atypical forms of 

Alzheimer’s disease such as PCA, the logopenic and the dysexecutive variant as illustrated in 

Figure 6 (Bischof et al., 2016; Ossenkoppele et al., 2016; Dronse et al., 2017; Whitwell et al., 

2018).  

Up to date, several factors and hypotheses have been considered concerning the stereotypical 

spread of these neuropathologies, such as susceptibility of distinct neuron groups (Shen et al., 

2016), gene expression patterns (Grothe et al., 2018; Sepulcre et al., 2018), and cell-to-cell 

transmission processes (Clavaguera et al., 2009; De Calignon et al., 2012). Furthermore, 

multimodal imaging studies consistently reported that the topographies of neurodegenerative 

disease pathologies overlap with large-scale neuronal networks (Drzezga, 2018). This suggests 

that functional and structural connectivity between regions promotes the distribution of these 

pathologies across neuronal networks, an observation that is summarized by the network 

degeneration hypothesis (Palop et al., 2006; Seeley et al., 2009), which will be elaborated on 

in the following. 

 

 Amyloid β distribution - Thal phases 
 

 

 

  

 
Tau tangle distribution - Braak stages 

 

 

 

  

 
Figure 5 – The stereotypical distribution pattern of amyloid and tau pathology in Alzheimer’s disease. Brain 

regions of initial amyloid accumulation contain the frontal cortex (dark yellow) from where it spreads throughout 

the neocortex to subcortical regions and cerebellar regions. Tau pathology initially occurs in the entorhinal cortex 

(dark blue) from where it spreads to limbic and neocortical regions. The spatial distribution of amyloid plaques 

is defined by the Thal phases (top row) and the tau pathology distribution pattern is defined by the Braak stages 

(bottom row). The highlighted regions represent the newly affected region. FC= frontal cortex; EC=entorhinal 

cortex. 
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THE NETWORK DEGENERA TION HYPOTHESIS  

An accumulating body of evidence indicates that neurodegenerative diseases do not randomly 

spread across the brain, but coincide with specific functional brain networks (Tahmasian et al., 

2016). Based on these observations, the network degeneration hypothesis has been formulated, 

which postulates that neurodegenerative disease pathologies expand along functional networks 

eventually leading to failure of them (Palop et al., 2006; Seeley et al., 2009). Network failure 

ultimately results in clinical symptomatology, which corresponds to the functional network 

being affected. This hypothesis suggests that functional connectivity between cortical nodes of 

neuronal networks acts as driver in the spread of pathology. 

Over the past decade, several functional connectivity networks have been identified such as the 

executive control, language, visual-spatial, and the default mode network (DMN) (Yeo et al., 

2011), each carrying the name of the supporting cognitive domain. Compelling evidence has 

been gathered by studies combining fMRI and structural MRI or FDG PET, which reported a 

susceptibility of the aforementioned networks to neurodegeneration (Desgranges et al., 2002; 

Seeley et al., 2009; Drzezga et al., 2011). In particular, the DMN has consistently been found 

to be disrupted in Alzheimer’s disease (Greicius et al., 2004; Buckner et al., 2005; Buckner et 

al., 2009; Jones et al., 2015). The DMN is a highly active network during rest and is deactivated 

during externally oriented tasks. Interestingly, amyloid PET imaging studies demonstrated 

predominant amyloid accumulation in hubs of the DMN (Buckner et al., 2005), which 

eventually leads to disconnection of this network (Jones et al., 2015). Importantly, although 

some studies have pointed at a susceptibility of amyloid ȕ in hub regions of functional networks, 

network degeneration appears to rather depend on global levels of amyloid ȕ than local levels 

(Drzezga et al., 2011; Iaccarino et al., 2018). This may be due to the location of amyloid ȕ, 

which distributes diffusely in the extracellular space throughout the brain. Therefore, it was 

recently suggested that tau pathology due to its intracellular location, its trans-synaptic 

spreading potential, and its close relationship to neurodegeneration, better relates to network 

dysfunction and degeneration in Alzheimer’s disease. With the recent development of tau PET 

compounds in combination with fMRI, investigation of functional network infiltration by tau 

pathology is now feasible. Indeed, first in vivo studies have documented a close relationship 

between functional networks and tau pathology distribution patterns in typical Alzheimer’s 
disease (Hansson et al., 2017; Jones et al., 2017; Hoenig et al., 2018), as will be elaborated on 

in publication I and the discussion. Whether similar mechanisms also account for atypical forms 

of Alzheimer’s disease still needs to be investigated. However, these atypical forms represent 

characteristic topographic patterns of hypometabolism and tau pathology, which resemble 

known functional connectivity networks (see Figure 6). A PET imaging study combing amyloid 

and FDG PET revealed that these variants are indeed associated with degeneration of 

phenotype-specific networks (Lehmann et al., 2013). In contrast, amyloid deposition only 

accounted for a small proportion in the topographic heterogeneity of the phenotypes (Lehmann 
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et al., 2013). This points towards a role of tau pathology in specific network degeneration in 

atypical Alzheimer’s disease, as will be discussed later.  

Generally, it is not yet clear why brain pathologies affect distinct brain networks. It could be 

explained by a combination of cell-to-cell transmission processes, inherent genetical, 

developmental susceptibility or by the type of underlying pathological aggregation (Drzezga, 

2018). Notably, the consequences of the observed network degeneration differ between 

individuals. For example, it was recently shown that modulation in efficacy of affected 

networks supports maintenance of cognitive performance in the phase of Alzheimer’s disease- 

related brain pathology (Weiler et al., 2018). Some individuals are thus capable of coping with 

network dysfunction or degeneration, thereby contributing to the clinical heterogeneity seen in 

Alzheimer’s disease. 
 

 
 

Figure 6 – Pathophysiological topographies and their overlap with functional connectivity networks in the 

clinical phenotypes of Alzheimer’s disease. Illustrated are the distribution patterns of amyloid pathology 

(yellow), tau pathology (blue), neuronal dysfunction (red), and resembling functional connectivity networks 

(green) for typical and atypical phenotypes of Alzheimer’s disease. Tau pathology and neuronal dysfunction 
patterns appear closely associated with distinct functional networks, but with predominant susceptibility of the 

posterior DMN across phenotypes. AD = Alzheimer’s disease; bvAD = behavioural variant of Alzheimer’s 
disease; lpAD = logopenic variant of Alzheimer’s disease; PCA = posterior cortical atrophy; DMN = default 

mode network. This figure was adapted from the originally published figure (courtesy of Merle Hönig) in the 

Journal of Nuclear Medicine. Drzezga A. The Network Degeneration Hypothesis: Spread of Neurodegenerative 

Patterns Along Neuronal Brain Networks. J Nucl Med. 2018; 59(11): 1645-8. © SNMMI. 
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THE HETEROGENEITY IN CLINICAL EXPRESSION S OF 
ALZHEIMER’S DISEASE  -  THE ROLE OF RESILIEN CE 

Already in the late 80s, Katzman and colleagues reported a disparity between the extent of brain 

pathology and the individual clinical expression in patients with dementia (Katzman et al., 

1988). Over the past decades, it turned out that the rate of cognitive decline given a certain level 

of pathological burden is highly variable between individuals. This notion has been 

acknowledged, among other things, by the revision of the Jack model integrating two 

trajectories for low and high risk of cognitive decline (Jack Jr et al., 2013). These trajectories 

are based on coping mechanisms, which are associated with factors such as greater educational 

attainment, higher IQ and grey matter volume. As several terms have been used across studies 

to define the disparity between brain pathology and clinical symptoms, a framework was 

recently published to harmonize terminologies (Arenaza-Urquijo and Vemuri, 2018). 

According to this framework, resistance is defined as a mechanism to avoid brain pathology, 

thus preventing Alzheimer’s disease-related pathology aggregation. In contrast, resilience is 

referred to coping with Alzheimer’s disease-related pathology. This framework further 

incorporates the concepts of cognitive reserve, brain reserve and brain maintenance, while 

simultaneously distinguishing between the presence and relative absence of brain pathology 

(Arenaza-Urquijo and Vemuri, 2018). An overview of the framework on resistance and 

resilience is provided in Figure 7. Importantly, within the realm of this dissertation, the focus 

will be laid on resilience mechanisms as the studies conducted as part of this dissertation are 

based on data of individuals, which already present Alzheimer’s disease pathology.  

In the following, the potential coping mechanisms in form of cognitive reserve, brain reserve 

and maintenance will be elucidated in more detail: 

Cognitive reserve 

Cognitive reserve (CR) refers to the adaption of cognitive processes in the presence of brain 

pathology (Stern, 2002, 2009; Stern et al., 2018a). Most commonly used surrogate measures of 

CR are education, occupation, lifetime experience, verbal and general IQ (Yoo et al., 2015). It 

is believed that CR acts through the more efficient use and modulation of distinct brain 

networks or recruitment of additional brain areas in the phase of pathology aggregation. Recent 

imaging studies support this assumption (Morbelli et al., 2013; Yoo et al., 2015; Franzmeier et 

al., 2017a; Franzmeier et al., 2017b; Stern et al., 2018b; Weiler et al., 2018). In particular, these 

studies showed that network adaptations and compensation are associated with higher levels of 

educational attainment (Morbelli et al., 2013; Yoo et al., 2015; Franzmeier et al., 2017a; 

Franzmeier et al., 2017b; Stern et al., 2018b; Weiler et al., 2018). The adaptation of network 

efficacy and recruitment of additional brain areas may in turn provide a coping mechanism for 

increased pathological burden as reported by recent PET studies. These studies demonstrated 

that individuals with higher levels of education can maintain higher cognitive function at similar 
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levels of amyloid burden than lower educated individuals (Roe et al., 2008). Likewise, 

individuals with higher CR can tolerate more amyloid pathology (Kemppainen et al., 2008), 

hippocampal atrophy (Vuoksimaa et al., 2013) and hypometabolism in temporo-parietal areas 

than lower educated individuals with similar clinical impairment (Kemppainen et al., 2008; 

Ewers et al., 2013; Morbelli et al., 2013). Information regarding tau pathology load in vivo and 

CR is still relatively limited due to the only recent availability of tau PET compounds (Hoenig 

et al., 2017; Rentz et al., 2017; Shimada et al., 2017). Publication II of this dissertation is one 

study investigating the association between level of education, as proxy measure of CR, and 

tau pathology in Alzheimer’s disease. 

Brain reserve 

Although the observations relating to CR may be explained by network adaptations, it needs to 

be noted that these adaptations would not be possible without a biological foundation such as 

neuroplasticity, which in turn relates to the concept of brain reserve (BR). BR thereby refers to 

the neurobiological capital, hence brain integrity, of an individual (Stern et al., 2018a). The 

concept of BR is based on a threshold model, which states that an individual with high BR can 

tolerate greater amounts of brain damage or brain pathology than individuals with low BR 

before showing clinical symptoms (Stern, 2002). This is because an individual with high BR 

obtains enough neuronal substrate to compensate the brain damage or pathology. Most 

commonly, grey matter volume, intracranial volume, but also head circumference have been 

used as surrogate measures of BR. Several structural MRI studies have provided support for the 

concept of BR using these proxies and further implicated higher education with better brain 

integrity (Schofield et al., 1997; Perneczky et al., 2010; Chang et al., 2016; Groot et al., 2018). 

Thus, highly educated individuals presenting greater pathology burden may not only possess 

higher CR, but also better brain integrity to cope with the harmful effects of neuropathology. 

In publication III, this assumption is elaborated on by assessing the effects of tau pathology on 

neuronal function at different levels of education (Hoenig et al., 2019). 

 

 
Figure 7 – The framework of resistance and resilience in Alzheimer’s disease. Contributing factors that support 

resilience and resistance mechanisms are for example lifestyle factors or distinct genes. Resistance is associated 

with brain maintenance, whereas resilience is closely associated with brain reserve and cognitive reserve. These 

three concepts in turn modulate the relationship between pathology build-up, neuronal dysfunction and 

cognition. Adapted from Arenaza-Urquijo and Vemuri, 2018. 
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Brain maintenance 

Importantly, the current definition of BR also encompasses processes that support maintenance 

of the neuronal substrate, thus interconnecting the concept of brain maintenance (BM). 

Accordingly, BM relates to neuroprotective mechanisms (Stern et al., 2018a), and thus to 

resistance based on the framework of Arenaza-Urquijo and Vemuri. Possible BM mechanisms 

may encompass clearance mechanisms of tau and amyloid that prevent the accumulation of 

these proteinopathies. Several epidemiology studies have shown that higher education and 

better lifestyles are associated with a lower risk of developing dementia (Mortimer et al., 2003; 

Verghese et al., 2003; Brayne et al., 2010) – a finding which could relate to BM mechanisms. 

Like BR, BM appears to be modifiable by lifetime experience. However, while BR is associated 

with brain integrity at a specific point in time, BM relates to mechanisms that reduce age-related 

changes over time (Stern et al., 2018a). Hence, BR can be measured in cross-sectional studies, 

whereas BM can only be investigated in longitudinal designs. Nonetheless, BM and BR are 

interconnected concepts since higher BR is likely sustained by better BM (Stern et al., 2018a). 

Summing up these three concepts in a more metaphorical way (see Figure 7), CR can be 

considered as the software of the brain, which can be adapted or ‘updated’ in the phase of brain 
pathology. In contrast, BR represents the hardware of the brain as it is based on the 

neurobiological capital of an individual. Both concepts are interconnected via the wetware since 

CR could not exist without a biological foundation. Likely, BM mechanisms foster the build-

up of CR and BR. These BM mechanisms can be regarded as the antivirus software of the brain. 

All three concepts are associated with lifetime factors including education, risk factors (genetic 

risk i.e., apolipoprotein E4 (ApoE 4), or vascular risk), and sex. These factors contribute to 

resilience, thus coping mechanisms against brain pathology (BR & CR) but can also support 

resistance against the aggregation of brain pathology (BM & BR). These mechanisms overall 

modulate the relationship between pathology build-up, subsequent neuronal dysfunction and 

cognitive impairment. Thus, the clinical expression of Alzheimer’s disease patients depends on 
the individual magnitude of the underlying resilience, but also resistance capacity. Independent 

of the terminologies used to describe these mechanisms, the existence of protective factors 

influencing the manifestation and the course of Alzheimer’s disease represents an important 

field of research, as will further be elaborated in the discussion of this dissertation. 
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RATIONALES AND AIMS OF THE DISSERTATION 

The overall aim of this dissertation is to elucidate the role of functional connectivity and the 

influence of a resilience surrogate measure, namely education, concerning the spread of tau 

pathology and its effects on neuronal function using PET imaging. To address these aims, three 

manuscripts have been published as part of this thesis project. A brief overview on the specific 

rationales, research questions and main methods for each publication are mentioned below. 

Please note that the publications are not listed in chronological order, but in order of content. 
 

Rationale & Aim I 

The stereotypical propagation pattern of tau pathology in Alzheimer’s disease is indicative of 
misfolded tau proteins disseminating across interconnected regions. Indeed, recent evidence 

from cellular and rodent studies suggest that misfolded tau proteins can spread trans-

synaptically from neuron-to-neuron in a stereotypical fashion (Clavaguera et al., 2009; Guo and 

Lee, 2014; Guo et al., 2016). Importantly, these experiments further demonstrated that 

misfolded tau proteins are released in an activity-dependent manner (Pooler et al., 2013; Wu et 

al., 2016). These findings point towards a contribution of functional connectivity in the 

spreading of tau pathology across connected brain regions of neuronal networks. This 

infiltration likely results in the degeneration of the affected network, as postulated by the 

network degeneration hypothesis. Given that no information on the relationship between tau 

pathology distribution and the functional connectome was available in vivo, the first aim of this 

dissertation was to assess the spatial overlap of tau pathology distribution patterns and 

functional connectivity networks, using [18F]-AV-1451 PET in a group of Alzheimer’s disease 
patients and resting-state fMRI in a group of young healthy controls, respectively.  

Publication I 

Title: Networks of tau distribution in Alzheimer’s disease 

Research question: Does tau pathology arise in independent networks, which overlap 

with functional connectivity networks? 

Methods: Independent component analysis (Gift toolbox), seed-based functional 

connectivity analysis (DPARSF toolbox), dice similarity coefficient (MATLAB) 
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Rationale & Aim II 

Even though the spatiotemporal disease mechanisms in Alzheimer’s disease are now better 

understood, a striking feature remains the observed disparity between brain pathology burden 

and clinical expression in individuals with Alzheimer’s disease, which might be driven by 

resilience factors such as CR or BR. In case of amyloid ȕ pathology and neurodegeneration it 
has already been reported that individuals with higher education can tolerate more pathology 

burden and neurodegeneration than lower educated with similar cognitive impairment 

(Kemppainen et al., 2008; Ewers et al., 2013; Morbelli et al., 2013; Vuoksimaa et al., 2013). 

Information regarding the relationship between the level of education, a proxy of resilience, 

and in vivo tau pathology were lacking until recently. The investigation of possible associations 

between resilience and tau pathology load, however, is important, as the extent of tau pathology 

in the brain, in contrast to amyloid ȕ, correlates strongly with the degree of cognitive 

impairment and neurodegeneration (Nelson et al., 2012). Thus, the second aim of this 

dissertation was to examine the association between a surrogate measure of resilience, namely 

education, and tau burden in individuals with Alzheimer’s disease. 

Publication II 

Title: Tau pathology and cognitive reserve in Alzheimer’s disease 

Research question: Do higher educated Alzheimer’s disease patients show more tau 
pathology than lower educated Alzheimer’s disease patients with similar cognitive 

impairment? 

Methods: Region-of-interest analysis based on the neuropathologically defined Braak 

stages (MATLAB), whole-brain voxel-wise analysis (SPM8) 
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Rationale & Aim III 

According to current concepts of CR, BR and BM, two potential assumptions can be formulated 

explaining why higher educated individuals can tolerate more neuropathology than lower 

educated Alzheimer’s disease patients with similar clinical expression. Concerning the concept 

of CR, it can be assumed, based on previous research (for review Stern, 2012), that higher 

educated people can better compensate for the harming effects of pathology for example 

through the more efficient use of neuronal resources. On the other hand, one may speculate that 

the effects of brain pathology on neuronal function are less harmful in patients, who have been 

physically and cognitively active throughout their lives, either due to BR-associated 

mechanisms such as higher neuron count or synaptic density and/or due to BM-associated 

neuroprotective mechanisms. These mechanisms may in turn support neuronal resilience to 

brain pathology. Importantly, both assumptions are not exclusive of each other. However, the 

second assumption can be assessed by means of FDG PET imaging, which represents an index 

of synaptic function. Combining FDG PET with tau PET imaging, the third aim of this 

dissertation was to investigate whether glucose metabolism remains relatively preserved at 

higher levels of education despite tau pathology aggregation. Thus, we assessed whether the 

consistently reported relationship between tau pathology and neuronal dysfunction is mitigated 

by a resilience proxy. 

Publication III 

Title: Level of education mitigates the impact of tau pathology on neuronal function 

Research question: Can higher educated Alzheimer’s disease patients tolerate more tau 
pathology, because the effects of tau pathology on neuronal function are less 

pronounced at higher levels of education? 

 Methods: Volume-based approach (MATLAB, SPM12)  
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PUBLICATION I  

Networks of tau distribution in Alzheimer's disease 
 

Hoenig MC, Bischof GN, Seemiller J, Hammes J, Kukolja J, Onur ÖA, Jessen F, Fliessbach K,  

Neumaier B, Fink GR, van Eimeren T, Drzezga A.  

Brain 2018 

 

 

 

 

 

 

 

 

 

 

 

 

Summary: To determine whether tau pathology arises in independent networks of the brain, 

and coincides with functional connectivity networks, we performed an independent component 

analysis on [18F]-AV-1451 PET data of Alzheimer’s disease patients. Based on the resulting 

components, the seeds of maximal tau pathology were extracted and used in a subsequent 

functional seed-based connectivity analysis based on data of young healthy controls. Finally, 

the spatial overlap between the tau pathology networks, the seed-based networks and already 

known resting-state functional connectivity networks was quantified using the dice similarity 

coefficient. We observed a fair-to-moderate overlap between the tau pathology networks and 

the seed-based networks, which in turn coincided with known functional networks such as the 

DMN and the executive control network. Tau burden in these independent components 

correlated with disease progression and global cognitive decline. Overall, the results of this 

study suggest that tau pathology arises synchronously in independent pathways, which overlap 

with known functional connectivity networks and are associated with disease progression. 

These findings are in line with the network degeneration hypothesis and provide a possible 

mechanistic pathway in the spread of tau pathology.  
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Contribution to this work 

This work was a team-effort of the Multimodal Neuroimaging Group, Department of Nuclear 

Medicine, University Hospital Cologne in collaboration with Joseph Seemiller from the 

Geisinger Commonwealth School of Medicine, Scranton PA, USA and the Departments of 

Neurology, Psychiatry and Radiochemistry of the University Hospital Cologne and the 

Department of Neurodegenerative Diseases and Geriatric Psychiatry of the University Hospital 

Bonn. Merle Hönig, Dr. Gérard Bischof, Joseph Seemiller, Prof. Dr. Thilo van Eimeren, and 

Prof. Dr. Alexander Drzezga were involved in the conception and design of the study and 

drafting the manuscript. Merle Hönig had full access to the data in the study and performed the 

analyses. Dr. Jochen Hammes supported the implementation of MATLAB scripts required for 

the data analysis. The remaining co-authors were involved in the acquisition of the data and 

drafting of the manuscript. Publication of the results approximately took one year starting with 

the initial analyses in fall 2016 and receiving the acceptance letter from Brain (impact factor: 

11.81) for publication end of November 2017. Given the invitation to draft a cover image, Merle 

Hönig designed the “independent highways of tau pathology”, which was accepted as cover art 

for the February issue of Brain in 2018 (Brain, Volume 141, Issue 2, February 2018, 

https://academic.oup.com/brain/issue/141/2,  depicted on previous page). 

 

Additional information 

Dr. Jennifer Whitwell wrote a scientific commentary on this article, which is listed in the 

reference list under “Whitwell, 2018a”. 

 

The publication can be found in the attachments under Appendix – B1. 

 

  

https://academic.oup.com/brain/issue/141/2
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PUBLICATION II  

Tau pathology and cognitive reserve in Alzheimer's disease 
 

Hoenig MC, Bischof GN, Hammes J, Faber J, Fliessbach K, van Eimeren T, Drzezga A.  

Neurobiology of Aging 2017 

 

 

 

 

 

 

 

 

 

 

 

 

Summary: To investigate whether higher educated Alzheimer’s disease (HEAD) patients can 

tolerate more tau pathology than lower educated Alzheimer’s disease (LEAD) patients with 

similar clinical severity, we performed, based on [18F]-AV-1451 data, a voxel-wise whole brain 

analysis and a region-of-interest (ROI) analysis using the neuropathologically defined Braak 

stages as ROIs. We compared tau pathology load across the brain and in the ROIs between three 

groups, the HEAD, LEAD and an age-matched healthy control (HC) group. The results yielded 

higher and more wide-spread tau pathology in the HEAD (dark orange in graph above) than the 

LEAD (orange in graph above) and HC (light orange in graph above) groups. The HEAD group 

already presented tau pathology in advanced Braak stages, whereas tau pathology in the LEAD 

group was still confined to temporal areas when compared to HC, respectively. Overall, the 

results are in line with the concept of CR given that HEAD patients can tolerate more tau 

pathology than LEAD patients with similar cognitive impairment. 
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Contribution to this work 

The study was conducted in collaboration of the Multimodal Neuroimaging Group, Department 

of Nuclear Medicine, University Hospital Cologne and the Department of Neurodegenerative 

Diseases and Geriatrics, University Hospital Bonn. Merle Hönig, Dr. Gérard Bischof, Prof. Dr. 

Thilo van Eimeren and Prof. Dr. Alexander Drzezga were involved in the conception and design 

of the study and drafting the manuscript. Dr. Jochen Hammes helped with the implementation 

of MATLAB scripts required for the data analysis. Merle Hönig was responsible for the 

information collection on the educational attainment of the patients, had full access to the data 

in the study and performed the analyses. The remaining co-authors were involved in the 

acquisition of the imaging data and drafting of the manuscript. The initial analyses were 

conducted in May 2016. The paper was submitted end of December 2016 to Neurobiology of 

Aging (impact factor: 5.15) and published in May 2017. 

 

Additional information 

This work has been awarded with two poster prizes, one at the Alzheimer’s Association 
International Conference (AAIC), 2017 in London, UK, and one at the 1st International 

Conference for Cognitive Reserve in Dementias (ResDem), 2017 in Munich, Germany. 

 

The publication can be found in the attachments under Appendix-B2. 
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PUBLICATION III  

Level of education mitigates the impact of tau pathology  
on neuronal function 

 

Hoenig MC, Bischof GN, Onur ÖA, Kukolja J, Jessen F, Fliessbach K, Neumaier B,  

Fink GR, Kalbe E, Drzezga A, van Eimeren T.  

European Journal of Nuclear Medicine and Molecular Imaging 2019 

 

 

 

 

 

 

 

 

 

Summary: To examine whether the harmful effects of tau pathology ([18F]-AV-1451 PET) on 

neuronal function ([18F]FDG PET) are mitigated by the level of education, we used a novel 

volume-based approach on PET data from patients with typical and atypical Alzheimer’s 
disease. The volume-based approach comprised the following technique: all PET scans were z-

score standardized and thresholded at a z-score >= 3.0 using an FDG and tau PET template 

based on data of an age-matched healthy control sample. Three volumes were extracted based 

on the z-maps: 1) the tau-specific volume (i.e., regions with only tau), 2) the overlap volume 

(i.e., regions with both tau and changes in neuronal function), 3) the FDG-specific volume (i.e., 

regions with only changes in neuronal function). Regression analyses were performed including 

the respective volumes and the z-scores within these volumes as dependent variables and 

education as predictor. We found that higher education is associated with a greater tau-specific 

volume (depicted in blue in picture above) and greater tau burden in the overlap volume 

(depicted in green in picture above). The results indicate that tau pathology is less paralleled by 

neuronal dysfunction at higher education, which may explain why higher educated patients can 

tolerate more tau pathology than lower educated patients albeit similar cognitive impairment 

levels. These findings further support the concepts of BR and BM mechanisms. 
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Contribution to this work 

This study was performed in collaboration of the Multimodal Neuroimaging Group, 

Department of Nuclear Medicine, University Hospital Cologne with the Departments of 

Neurology, Psychiatry, Radiochemistry and Medical Psychology, University Hospital Cologne 

and the Department of Neurodegenerative Diseases and Geriatric Psychiatry, University 

Hospital Bonn. Merle Hönig, Dr. Gérard Bischof, Prof. Dr. Alexander Drzezga and Prof. Dr. 

Thilo van Eimeren were involved in the conception and design of the study and drafting the 

manuscript. Merle Hönig had full access to the data in the study and performed the analyses. 

The co-authors contributed to the content of the manuscript and gave valuable feedback to the 

current work. The paper was submitted end of February 2019 to the European Journal of 

Nuclear Medicine and Molecular Imaging (impact factor: 7.23) and accepted for publication in 

April 2019. 

 

Additional information 

This work has been ranked under the 15 best papers of young researchers at the European 

Association of Nuclear Medicine (EANM) conference, 2018 in Dusseldorf, Germany, and has 

been awarded with the junior faculty award at the Alzheimer’s and Parkinson’s disease congress 
(ADPD), 2019 in Lisbon, Portugal. 

 

The publication can be found in the attachments under Appendix-B3. 
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DISCUSSION 

By means of multimodal imaging, a potential mechanism in the spread of misfolded tau proteins 

and the role of a resilience proxy, namely education, were examined as part of this thesis, 

resulting in the following findings:  

1) Tau pathology arises synchronously in independent components of the brain, which 

coincide with functional connectivity networks, and which are associated with disease 

progression and global cognitive dysfunction (Hoenig et al., 2018). 

 

2) Higher educated Alzheimer’s disease patients present more extended tau pathology, 

already in advanced Braak stages, than lower educated Alzheimer’s disease patients 

despite similar cognitive impairment (Hoenig et al., 2017). 

 

3) At higher levels of education, the extent of tau pathology is less paralleled by a reduction 

in glucose metabolism (i.e., neuronal dysfunction) and more tau pathology appears 

necessary to induce neuronal dysfunction (Hoenig et al., 2019).  

Collectively, the results of this doctoral thesis suggest that the spread of misfolded tau proteins 

is facilitated by functional connectivity between brain regions belonging to distinct neuronal 

networks. The more affected these networks are by tau pathology, the further the disease has 

already progressed, and global cognitive function declined. The early lifetime factor education, 

in turn, appears to alter the deleterious consequence of tau pathology on the disease 

manifestation. The current findings indicate that higher educated individuals with Alzheimer’s 
disease can tolerate more tau pathology while maintaining their cognitive function up to a 

certain extent. A possible explanation for this observation relates to the final finding of this 

thesis, namely that the effects of tau pathology appear less harmful to neuronal function at 

higher levels of education. 

In the following, these results will be discussed in the context of a) factors contributing to the 

spreading of tau pathology, b) distinct network susceptibility, and c) resilience factors that 

potentially modify the pathophysiological consequences of tau pathology. Lastly, d) the role of 

education as resilience proxy will be considered in more detail. 

Spreading mechanisms of tau pathology 

Given the spatial and temporal lag of the neuropathological hallmarks of Alzheimer’s disease, 
and the previous lack of methods to assess cerebral tau deposition in vivo, it remained unknown 

not until just recently, whether tau pathology also follows distinct connectivity networks. In the 

first publication of this dissertation we therefore addressed the role of functional connectivity 

in the spread of tau pathology in patients with Alzheimer’s disease employing the data-driven 

approach of independent component analysis (ICA). We observed tau pathology networks 
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(TPNs) comprising regions not anatomically adjacent to each other and which coincided with 

functional connectivity networks, which have previously been reported to be impaired in 

Alzheimer’s disease (Hoenig et al., 2018). This signifies that tau pathology arises 

synchronously, but not homogenously in independent compartments of the brain, which in turn 

relate to distinct functional networks. The observation of synchronous aggregation of tau 

pathology in distal brain regions points towards a common mechanism, which contributes to 

the coherent aggregation of tau pathology. According to the assumptions of ICA, regions within 

an independent component can be inferred to be spatially correlated, either by structural or 

functional connections (Cohen et al., 2008). Hence, the topographic characteristics of the 

identified TPNs potentially reflect the underlying neural architecture of existing structurally or 

functionally linked networks. In this study, we showed the contribution of functional 

connectivity to tau spread, whereas the role of structural connectivity still needs to be 

investigated, as detailed below. 

Prion-like spreading mechanisms of tau pathology 

Over the years, persuasive evidence in support of prion-like spreading of tau has been gathered 

indicating that pathogenic forms of tau are capable to seed into tau aggregates, which can induce 

further aggregation of non-aggregated tau and be transmitted trans-synaptically (for review see 

Soto, 2012; Mudher et al., 2017). Repetition of this seeding process potentially results in the 

infestation of synaptically linked networks (Mudher et al., 2017). Supporting the prion-like 

seeding behaviour, several studies have demonstrated that injection of pathogenic tau forms 

from different tauopathies or brain homogenates of Alzheimer’s disease patients into the brain 

of transgenic and wild-type mice led to the expression of the corresponding tauopathy’s 
inclusion (De Calignon et al., 2012; Liu et al., 2012; Clavaguera et al., 2013; Guo et al., 2016; 

He et al., 2018). Importantly, it was not only reported that injection of brain homogenates of 

tau led to tau seeding, but also to a time-dependent spread of tau pathology across structurally 

connected regions (De Calignon et al., 2012; Liu et al., 2012; Clavaguera et al., 2013; Guo et 

al., 2016; He et al., 2018). Moreover, the distribution of tau pathology is associated with 

synaptic connectivity, thus structural connections, rather than spatial proximity (Ahmed et al., 

2014). The suggested prion-like spreading of tau pathology across structural connections likely 

contributed to the observation of distinct TPNs in publication I, which involved remote brain 

areas. In addition, the time-dependent seeding process of tau may further explain why the TPNs 

were characterized by varying loads of tau pathology and associated with disease progression. 

Hence, TPNs with low levels of tau burden may represent regions that are affected later in the 

disease than TPNs with higher tau burden. The more severe these networks are affected, the 

further has the disease progressed. However, as we only had cross-sectional data available, 

these assumptions remain speculative and require longitudinal assessment. Up to date, 

longitudinal evidence regarding the structural distribution of tau pathology in patients with 

Alzheimer’s disease is still sparse. Recently, Jacobs and colleagues, employing DTI and tau 

PET imaging, reported that tau tangles distribute from the hippocampus to the parietal cortex 

via axonal pathways in amyloid positive individuals (Jacobs et al., 2018). In line with this, 
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Strain and colleagues found that tau pathology was closely associated with a decline in white 

matter integrity in anterior temporal regions (Strain et al., 2018). These studies overall offer 

first insights into the mechanistic pathways of structural connectivity in the distribution of tau 

pathology. Furthermore, these findings may provide an explanation of the spatial pattern and 

load of tau pathology of the identified TPNs in publication I. Notably, further investigation on 

the actual underlying structural connectivity patterns of the TPNs are required using for 

example tract -based analysis based on DTI data. Additionally, investigation of tract alterations 

such as changes in fractional anisotropy (i.e., a measure of white matter integrity) and their 

association with tau pathology aggregation in regions connected downstream to the region of 

maximal tau pathology within a respective TPN will provide further insights into the spreading 

mechanisms across these networks. 

The role of functional connectivity in the spread of tau pathology 

Importantly, in contrast to structural connectivity analyses, which reflect the presence of 

anatomical linkage, functional connectivity analyses provide insights on the functional 

interaction of specific brain regions. Here, we observed a spatial link between the TPNs and 

tau-dependent seed-based functional connectivity networks indicating that functional 

connectivity between regions supports the distribution of tau pathology across these 

connections. The investigation of functional connectivity as a driver of tau pathology spread 

has recently been expanded upon. Results from our group in collaboration with the Faculty of 

Mathematics and Natural Sciences of the University Cologne suggest that the spread of tau 

pathology and tau burden of the affected regions depends on the overall functional in-/output 

(functional weights) rather than the metabolic rate of that region (Weller et al., 2019). This is 

in line with a recently published study demonstrating that strongly connected regions 

accumulate more tau pathology in Alzheimer’s disease independent of the metabolic demands 

(Cope et al., 2018). Also, in animal models, exacerbated pathological tau aggregation in vivo 

was found upon increased neuronal activity (Wu et al., 2016) and normal tau was released in 

an activity-dependent manner (Pooler et al., 2013). Together these findings suggest that 

synchronous neuronal activity, thus the temporal coherence between functionally connected 

regions, may act as an amplifier enhancing tau pathology to accumulate in functionally 

connected brain sites. The tau maxima of the TPNs identified in the current study, which 

corresponded to highly functionally connected brain regions such as the precuneus or the 

posterior cingulum, may thereby act as “susceptibility seeds” and relays for tau aggregates to 

further propagate along connected regions of neuronal networks. Arguably, the prion-like 

spreading mechanisms are rather in support of structural connectivity in the distribution of tau. 

However, functional connectivity is associated with higher synaptic activity and thereby with 

greater axonal transport, which may ultimately lead to increased release of tau aggregates into 

the synaptic cleft (Soto, 2012). Functional connectivity between structurally connected regions 

may thus stimulate the synchronous propagation of tau along these connections. Indeed, it was 

just recently shown that higher functional connectivity between regions was related to similar 

tau levels in these regions in MCI and Alzheimer’s disease patients (Franzmeier et al., 2019). 
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This may also explain the synchronous aggregation of tau pathology in the identified 

independent components of publication I.  

Overall, the results of publication I and other recent studies on functional connectivity and tau 

pathology (Hansson et al., 2017; Jones et al., 2017; Cope et al., 2018; Franzmeier et al., 2019) 

offer one potential mechanistic perspective for the spreading of tau pathology in Alzheimer’s 
disease by means of which synchronous oscillatory activity between connected brain regions 

contributes to the propagation of tau pathology within distinct neural networks. However, 

despite the investigation of structural and functional connectivity patterns, also the role of 

neuroinflammation and genetic vulnerability factors need to be considered in the spread of tau 

pathology, which shall briefly be mentioned below. 

Factors beyond structural and functional connectivity 

Recently, it was suggested that neuroinflammatory processes may actually precede tau seeding 

and overt tau pathology (Wang and Mandelkow, 2016). Concordantly, also PET imaging 

studies proposed that neuroinflammatory processes may peak early in the temporal evolution 

of Alzheimer’s disease-related pathophysiological processes (Rodriguez-Vieitez et al., 2016). 

Furthermore, a close relationship between microglia activation and tau aggregation patterns has 

been observed (Dani et al., 2018; Terada et al., 2019). Thus, patterns of neuroinflammation 

may represent an early marker of subsequent network infiltration by tau pathology. However, 

these findings need to be cautiously interpreted, as it remains still unknown whether the 

observed patterns are a cause or a consequence of tau pathology aggregation. To address the 

questions of the temporal sequence of biomarkers and network susceptibility to 

neuroinflammation, it will be crucial to develop sensitive PET ligands for the visualization of 

neuroinflammatory processes in cognitively normal individuals at risk of developing 

Alzheimer’s disease (e.g., ApoE 4 carriers). After two decades of research, a challenge remains 

the development of sensitive ligands for neuroinflammation since it is a complex, dynamic and 

multicellular process. Currently available tracers such as the translocator protein-18 kDa 

(TSPO) compounds, which are used to quantify microglia activation, lack cellular specificity 

and present difficulties in quantification (Narayanaswami et al., 2018). Thus, radiotracer 

development for neuroinflammation beyond the TSPO ligands represents an important field of 

research since neuroinflammatory constitutes potentially provide viable targets for the 

treatment of Alzheimer’s disease and insights into its cascade (Narayanaswami et al., 2018).  

Aside from the neuroinflammatory signatures potentially preceding overt tau pathology, it has 

recently been shown that connected brain regions belonging to certain brain networks, present 

similar gene-expression patterns (Richiardi et al., 2015). Depending on the gene-expression 

patterns in these regions, the susceptibility of Alzheimer’s disease pathology may in turn 

increase (Grothe et al., 2018; Sepulcre et al., 2018). Indeed, according to these studies, regional 

expression levels of the APP gene were associated with amyloid deposition as measured with 

[18F]AV45 PET, but not neurodegeneration as quantified by structural MRI (Grothe et al., 

2018). Furthermore, regional MAPT gene expression patterns predicted the spreading of tau 
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pathology, measured with longitudinal [18F]-AV-1451 PET in cognitively normal older 

individuals (Sepulcre et al., 2018). These studies suggest that regional vulnerability in addition 

to functional and structural correlates relate to the expression and stereotypical distribution of 

Alzheimer’s disease-related pathology. Arguably, these studies are based on post-mortem gene 

expression patterns of six adult individuals from the Allen brain atlas, which were related to in 

vivo brain pathology of different individuals. Hence, a direct assessment of in vivo brain 

pathology and subsequent post-mortem investigation of gene expression patterns is still 

pending. 

Nonetheless, collectively, the results of publication I and the above-mentioned in vivo studies 

suggest that the distribution of tau pathology is partly driven by mechanistic pathways in terms 

of structural and functional connectivity, but also by predetermined regional susceptibility to 

Alzheimer’s disease pathology. Future longitudinal multimodal studies using DTI, fMRI and 

PET tracers are necessary to elucidate the structural and functional underpinnings contributing 

to the propagation of misfolded tau proteins within neuronal networks and its interaction with 

amyloid ȕ accumulation, neuroinflammation, and genetic vulnerability. This will shed light into 

the pathogenic cascade of Alzheimer’s disease, which is crucial for the development and timing 

of target-specific interventions (Bischof et al., 2019). Additionally, better understanding of the 

spreading mechanisms of tau pathology in Alzheimer’s disease may also be relevant for other 
tauopathies and the monitoring and diagnosis of these diseases. 

Susceptibility of the default mode network to tau pathology 

Regarding the evolution of pathogenic events, evidence from molecular studies suggests that 

tau seeding does not affect a certain cell population, but rather commences in a vulnerable 

location from where its spreads via neuronal connections (Guo and Lee, 2014; Goedert, 2015). 

This is in line with several studies on network degeneration suggesting that pathologies 

distribute along functional networks from a central starting point (Drzezga, 2018). In the first 

study of this thesis, we observed TPNs that coincided with known resting-state networks such 

as the DMN, salience or higher-visual network (Hoenig et al., 2018). This indicates that tau 

pathology does not only affect one distinct network but accrues in different neuronal networks 

depending on the most vulnerable locations. In accordance with this, recent imaging studies 

examining tau-dependent functional network infiltration observed that tau pathology arises in 

various functional networks, but also reported a particular vulnerability of the DMN (Hansson 

et al., 2017; Jones et al., 2017). This accords with the results of publication I as several of seed-

based derived networks overlapped with the DMN.  

So far, it remains unknown why the DMN is particularly affected in this disease. Several 

explanations and hypotheses have been put forward, such as the role of developmental, 

evolutionary, and metabolic aspects (Buckner and Krienen, 2013). The DMN is an association 

network, which is phylogenetically relatively young, potentially rendering these regions more 

vulnerable to disease-related changes. Moreover, the “wear and tear” hypothesis suggests that 
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excessive use of neuronal resources leads to their dysfunction and destruction (Swaab, 1991). 

As the DMN is a highly active network during rest, its continuous activation throughout life 

may render it vulnerable according to this hypothesis. Differences in network activation 

throughout life may also explain resilience to disease-related changes late in life. Although 

speculative, individuals with low cognitive engagement (e.g., low resilience) may be prone to 

the development of Alzheimer’s disease, because of high DMN activation throughout life 

leading to pathology accumulation and concomitant failure of this network. In contrast, 

individuals with high resilience may more efficiently switch between networks allowing for a 

more balanced energy consumption across networks reducing the risk of “network tearing” or 

disconnection and slowing brain pathology accumulation. Despite the “wear and tear” 
hypothesis, another explanation for the susceptibility of the DMN may signify the initial starting 

point of pathophysiological changes, which determines the distribution of tau pathology in a 

posterior-anterior fashion across this network as seen in Alzheimer’s disease (Jones et al., 

2015). Notably, the mentioned explanations are not exclusive of each other and may 

collectively lead to an increased susceptibility of the DMN to tau pathology, as observed in 

publication I. 

Interestingly, the posterior part of the DMN is not only affected in typical, but also in atypical 

Alzheimer’s disease (see Figure 8). Following the idea of a central starting point in the spread 

of tau pathology and concomitant network degeneration, we performed a preliminary analysis 

to elucidate whether differential susceptibility of the posterior DMN can explain the clinical 

phenotypes of Alzheimer’s disease (Appendix – Abstract A1, page 64). The results suggest that 

the peak of tau pathology in the posterior DMN regionally differs between the clinical 

phenotypes. In turn, these peaks of tau pathology are functionally associated with connectivity 

networks outside the posterior DMN that correspond to the respective clinical phenotype e.g., 

visuo-spatial network in PCA. This suggests that the tau-peak in the posterior DMN may 

determine the spread of tau pathology across distinct functional networks (Hönig et al., 2019). 

According to the network degeneration hypothesis, the spread of tau along these networks 

eventually results in network dysfunction and cognitive decline relating to the clinical 

phenotype.  

 

 
Figure 8 – Regional susceptibility of the posterior default mode network in phenotypes of Alzheimer’s disease. 
The tau pathology distribution pattern for each phenotype is depicted in blue. In addition, the topography of the 

posterior default mode network (in green) is superimposed on the respective tau distribution patterns. 

AD=Alzheimer’s disease; bvAD=behavioural variant of Alzheimer’s disease; lpAD = logopenic variant of 
Alzheimer’s disease; PCA = posterior cortical atrophy. 
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There remain several unanswered questions and somehow contrasting evidence regarding the 

network degeneration seen in Alzheimer’s disease and other neurodegenerative diseases. For 

example, it needs to be elucidated why in similar neurodegenerative diseases such as primary 

tauopathies different network pathways are affected (Drzezga, 2018). Moreover, it remains 

unknown how the spreading theory of tau pathology along functional connectivity networks is 

compatible with the stage-wise progression according to the neuropathological Braak stages, 

which have been replicated in vivo by tau PET imaging studies (Schöll et al., 2016; Schwarz et 

al., 2016). Work from our group, which is currently under revision, indicates that tau spreading 

from lower to higher Braak stages is mediated by intrinsic functional connectivity, partly 

supporting the network degeneration hypothesis (Seemiller et al., 2019).  

Albeit these uncertainties, multimodal imaging studies including our study have consistently 

shown a relation between distribution patterns of neurodegenerative diseases, functional 

networks, and network dysfunction supporting the current hypothesis of network degeneration 

(for a more detailed discussion see Drzezga, 2018). Importantly, recent fMRI studies indicate 

that network signatures derived from ICA may provide a non-invasive biomarker of 

neurodegenerative diseases (Zhou et al., 2010). This suggest that multimodal imaging of 

network degeneration carries potential in the classification of neurodegenerative diseases and 

likely also for the monitoring of disease progression. In line with this, TPNs identified in 

publication I were associated with disease progression and varying loads of tau pathology 

indicating that tau burden within these TPNs provide information on the progression of the 

disease. The data-driven approach of ICA hereby offers a suitable tool to define characteristic 

network patterns as it is not based on predefined significance thresholds, but a blind source 

separation technique. Furthermore, independent components derived from tau or amyloid PET 

imaging may yield a marker with the potential to detect disease-related network changes before 

the degenerative process emerges, which will be important for the early diagnosis and 

intervention. In addition, this hypothesis-free approach can be used to elucidate distinct network 

signatures depending on the level of resilience that an individual possesses. Thus, comparison 

of network signatures derived from structural/functional MRI or PET may provide information 

on differences in network flexibility and vulnerability depending on the level of resilience. 

Overall, reliable discrimination patterns for neurodegenerative diseases, including the influence 

of resilience mechanisms, will be important for diagnostic and prognostic purposes. 
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Resilience against the evolution of tau pathology 

Over the past decade, resilience mechanisms have received increased interest as they may 

account for the clinical heterogeneity and are hence important for the diagnosis and prognosis 

of the Alzheimer’s disease. In studies on resilience, parameters of individuals’ lifetime 
experiences including education, occupation as well as leisure activities have been discussed as 

surrogate measures of resilience. However, no information had yet been available regarding the 

relation between these measures and tau pathology in Alzheimer’s disease. In publication II, 

we showed that higher education is associated with the relative preservation of cognitive 

performance in the phase of tau pathology aggregation (Hoenig et al., 2017). Moreover, as 

shown in publication III, there appears to be a longer temporal delay between tau pathology 

aggregation and concomitant neuronal dysfunction at higher levels of education, potentially 

explaining the prior finding (Hoenig et al., 2019). In the following, these findings will be 

discussed in the light of mechanisms associated with the concepts of CR and BR, animal models 

for the investigation of resilience and the significant contribution of early lifetime factors, such 

as education, to protective or compensatory mechanisms late in life.  

An interpretation based on cognitive reserve and brain reserve 

Our finding of higher educated patients being able to tolerate more advanced tau burden than 

lower educated patients with similar cognitive impairment may be due to an adaptation of 

cognitive processes, as defined by the concept of CR (Hoenig et al., 2017). This adaptation of 

cognitive processes likely occurs through the modulation of brain networks and additional 

recruitment of brain areas. Importantly, Neitzel and colleagues recently demonstrated that left 

frontal connectivity mitigated the deleterious effects of tau pathology on cognitive function in 

non-demented elderly and MCI patients (Neitzel et al., 2019). This region has also been 

demonstrated to provide compensation in the phase of emerging neuronal dysfunction 

(Franzmeier et al., 2017b). Presumably, similar mechanisms may have acted in the patient 

cohort assessed in publication II. But it remains to be assessed whether the reported effects by 

Neitzel et al. are transferrable to patients who have already advanced to Alzheimer’s disease. It 

will thus be of interest to investigate how this potential CR mechanism changes in the course 

of the disease from MCI to Alzheimer’s dementia, thus whether it is up- or downregulated as 

the disease progresses and at which point of the disease course the compensatory effect fails to 

work. As recently suggested, CR mechanisms support cognitive maintenance in prodromal 

phases of Alzheimer’s disease, but from the onset of diagnosis cognitive function declines more 

rapidly in individuals with higher reserve, likely because a certain threshold is reached at which 

compensatory CR effects fail (van Loenhoud et al., 2019). 

Importantly, while CR mechanisms can be quantified with fMRI or DTI, current imaging 

techniques of BR allow for a crude estimation of BR based on grey matter or intracranial 

volume analyses in humans (Chang et al., 2016; Groot et al., 2018). However, also FDG PET 

measures may provide a surrogate measure of BR. Using this technique, we demonstrated in 

publication III that education mitigates the spatial relationship between tau pathology 



  

39 

 

aggregation and neuronal dysfunction (Hoenig et al., 2019). In addition, we observed that more 

tau burden is required to induce neuronal dysfunction at higher levels of education. These 

observations may be driven by individual differences in brain integrity (i.e., BR), such as 

synaptic density, which permits compensation for the effects of tau pathology on neuronal 

function and, in turn, influences the FDG signal. However, no direct conclusion regarding the 

underlying neuronal composition, hence number of synapses, can be drawn by means of FDG 

PET and is thus still pending. Intriguingly, the newly introduced PET imaging technique for 

the visualization of synaptic density, such as the SV2A PET tracer (Chen et al., 2018; Finnema 

et al., 2018), has opened a new avenue to study the compensatory effects of BR. Using this 

technique, quantification of the underlying synaptic density is now feasible and the effects of 

tau pathology on neuronal and cognitive function in groups with high and low synaptic density 

can directly be assessed. Quantifying BR based on the underlying synaptic density may thereby 

provide novel insights into the effects of lifetime and environmental factors on disease-related 

changes late in life. 

Animal models for the investigation of resilience and maintenance mechanisms 

Aside from the novel developments in PET imaging, rodent models exposed to enriched 

environments may yield another possibility to study the effects of lifelong cognitive and 

physical engagement on the molecular and cellular level, which may then be transferrable to 

humans. Using these paradigms, researchers reported increased synaptogenesis, neurogenesis, 

gliogenesis and angiogenesis after exposing the animals to enriched environments (for detailed 

review see Gelfo et al., 2018). Moreover, in terms of BM mechanisms, these studies 

demonstrated a reduction of amyloid ȕ burden (Berardi et al., 2007) and mitigation of the 

neurotoxic effects of tau pathology (Belarbi et al., 2011). Additionally, an up-regulation of 

neurotrophic factors such as the brain-derived neurotrophic factor (BDNF) was consistently 

observed (Wolf et al., 2006; Hu et al., 2013). Also, epigenetic modifications (i.e., gene-

environment interactions) in form of non-coding RNAs, histone modifications or DNA 

methylation patterns have been found after exposure to environmental enrichment paradigms, 

and which were associated with beneficial effects on cognition (for review see Fischer, 2014). 

Whether these findings can be translated to humans, and thus to the findings of publication II-

III, still needs to be assessed. However, recent imaging studies reported a relationship between 

lifestyle factors, BDNF, vascular and insulin growth factor levels, better cognition, and greater 

brain volume in humans (Coelho et al., 2014; Westwood et al., 2014; Hohman et al., 2015). In 

particular, lifelong physical exercise appears to be associated with an upregulation of BDNF in 

brain tissue and peripheral blood samples (Szuhany et al., 2015; Håkansson et al., 2017). 

Interestingly, the BDNF Val66Met polymorphism appears to moderate the relationship between 

resilience and executive function (Ward et al., 2015). Thus, for future assessments on BR, 

serum levels of BDNF as well as polymorphisms of the gene encoding BNDF may be used as 

proxy measures. Aside from this, Pereira and colleagues derived an imaging correlate of 

exercise-induced neurogenesis for humans based on observations in mice (Pereira et al., 2007). 

The group found that dentate gyrus cerebral blood volume as measured with MRI correlated 
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with post-mortem measurements of neurogenesis in mice and cardiopulmonary and cognitive 

function in exercising humans.  

Taken together, there are a multitude of molecular and cellular factors that appear to be 

modulated by lifestyle and environmental factors and which may have contributed to the 

findings of this thesis work. The abovementioned studies indicate that by means of translational 

research novel mechanisms of brain resilience can be derived, which can be employed as better 

measures of BR in humans. Importantly, across these studies it was reported that the quantity 

of cognitive and physical activity appears to be essential regarding the upregulation of these 

factors. Nonetheless, also the timing may play a pivotal role (Nithianantharajah and Hannan, 

2009), which will briefly discussed in the following. 

The role of early lifetime intervention 

Findings from rodent and clinical studies suggest that resilience can be built up over a long 

period of time and may prevent aging- or disease-related processes late in life 

(Nithianantharajah and Hannan, 2009). In particular, early lifetime exposure to enriched 

environments appear to have long-lasting impact on the function of the brain in rodents (Wagner 

et al., 2000; Bloss et al., 2011). In our studies, we used education as proxy variable of resilience, 

which is an early lifetime factor occurring when the brain is still developing and most plastic 

(Hoenig et al., 2017). It is closely related with beneficial mid- and late-life factors (Jefferson et 

al., 2011). In line with this, a recent imaging study reported that early lifetime factors are 

positively associated with age-related structural brain trajectories and cognitive function late in 

life (Walhovd et al., 2016). This indicates that these factors contribute to the build-up of 

resilience mechanisms crucial for late life cognition and complies with the findings from the 

aforementioned animal studies (Wagner et al., 2000; Bloss et al., 2011). However, these early 

lifetime factors such as education have also consistently been associated with higher IQ, 

healthier lifestyles, less chronic stress and higher socioeconomic status (Fritsch et al., 2007) 

and may also relate to genetic predispositions (Rowe et al., 1998). Thus, early lifetime factors 

are interrelated with several societal, familial, genetic and environmental factors throughout life 

rendering it difficult to decipher the actual contribution of early lifetime exposure to late- life 

brain health. Nonetheless, these factors may lay the foundation for the build-up of resilience 

and resistance mechanisms that become crucial as we age and are therefore valuable proxies 

for late life functional and structural differences, as also indicated by the publications of this 

dissertation. 

Implications of resilience for the diagnosis, prognosis and drug evaluation 

The abovementioned studies including ours document that early lifetime factors, as education, 

contribute to the shaping of the brain in a way to protect it against or to cope with disease-

related changes. Importantly, not only can these factors alter brain structure and function in the 

phase of pathology through mechanisms associated with CR and BR, these factors also support 

maintenance of the neuronal substrate over life, thereby on the one hand decreasing the risk of 

developing dementia (Stern et al., 1994; Dekhtyar et al., 2016; Wang et al., 2017) and on the 
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other hand slowing the accumulation of brain pathology (Landau et al., 2012; Brown et al., 

2013; Wirth et al., 2014).  

Important implications can be drawn from this regarding the clinical diagnosis and prognosis, 

the evaluation and development of drug therapies, and the general conception of the disease: 

1) Concerning the clinical diagnosis and prognosis, consistent evidence (including publication 

II) signifies that individuals with high education remain under the diagnostic radar for a 

longer time as indicated by the more advanced pathology burden at the point of diagnosis. 

Hence, it will be important to develop sensitive diagnostic tools for the identification of 

individuals with high levels of resilience, who are still in the prodromal phase of the disease. 

This is particularly crucial given that a person with high resilience tends to decline quicker 

from the point of diagnosis, likely because of the high pathological burden (Stern et al., 

1999; Scarmeas et al., 2006; van Loenhoud et al., 2019). Detecting individuals with high 

resilience at the earliest stages of the disease, which requires neuropsychological tests with 

high ceiling effects, is also crucial for the early intervention with pharmacological 

treatments. 

 

2) Regarding the development of pharmacological strategies, proxy measures of resilience such 

as education need to be considered when allocating patients to treatment groups of drug-

based therapies. Results may otherwise lead to a biased interpretation of the results or an 

observation of effects that is not due to the drug, but resilience capacity interfering with 

pathophysiological processes. Aside from that, novel drugs could be developed that directly 

tackle maintenance and resilience mechanisms thereby yielding a treatment to either prevent 

or prolong the neurodegenerative disease process. Also, lifestyle, cognitive and physical 

intervention strategies in mid-life and late-life may offer potential to prolong the onset of the 

disease. 

 

3) Moreover, resilience factors need to be considered in the general conception of the disease. 

The results of publication III suggest that the consistently reported relationship between tau 

pathology aggregation and neuronal dysfunction differs depending on the level of education. 

This is in line with other findings suggesting a slowing in pathophysiological processes at 

higher levels of resilience (Landau et al., 2012; Brown et al., 2013; Wirth et al., 2014). 

Therefore, the currently discussed trajectories for the temporal and spatial evolution of 

Alzheimer’s disease biomarkers should not be considered uniform across patients (as shortly 

discussed in the next chapter).  

Overall, further investigation is necessary to determine direct neuronal mechanisms of 

resilience and resistance. Multimodal approaches including neuroimaging in combination with 

genetic and epigenetic screenings and lifestyle assessments will provide novel insights in this 

regard. In particular, the investigation of individuals who show exceptional cognitive 

performance and lower than expected brain pathology will be essential as these individuals 
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must obtain mechanisms allowing them to become so-called super-agers. Indeed, lower DNA 

damage, high genomic stability, telomere maintenance has been observed in these individuals 

(Wagner et al., 2018). Interestingly, also lower frequencies of tau tangles were found in super 

agers when compared to typical agers in a histopathological study (Gefen et al., 2015). Hence, 

super-agers represent a model of successful aging as they have avoided or postponed age-

related diseases. In contrast, patients with Alzheimer’s disease represent the model for 
unsuccessful and unhealthy aging. Comparison of both extremes (i.e., super-aging and 

Alzheimer’s disease) with a multimodal approach may thus provide information on underlying 
mechanisms preventing or fostering the accumulation of aging-related damage in healthy aging 

and disease. Overall, identified factors such as for example epigenetic modifications may 

thereby be harnessed in therapeutic interventions that may not only be relevant for Alzheimer’s 
disease, but other aging-related diseases such as vascular diseases or other forms of dementia. 

Resilience mechanisms prompt refinement of current model of Alzheimer’s 
disease biomarkers 

In terms of explaining the results of publication II and III, the focus was put on the current 

framework of resistance vs. resilience introduced by Arenaza-Urquijo & Vemuri in 2018 as it 

comprehensively summarizes the common terms used in this field of research (Arenaza-Urquijo 

and Vemuri, 2018). In the past months, recent discussions have come up arguing for and against 

a revision of terminologies in the field of resilience such as the introduction of the term 

‘neurocognitive reserve’ instead of ‘cognitive and brain reserve’ (Cabeza et al., 2018, 2019; 

Stern et al., 2019). While a consistent and well-defined nomenclature is important for study 

designs and interpretation of results and mechanisms, it is even more important to address the 

implications of the studies’ findings concerning the conception of the disease, namely 

identifying factors that prevent from or modulate the course of Alzheimer’s disease. As 
elucidated above, more and more progress has been made in this regard. Consideration of these 

factors has among other things led to revision of the well-established model of Alzheimer’s 
disease biomarkers (Jack Jr et al., 2013). However, the accumulating body of evidence on 

resilience prompts for further refinement of this current model. Dichotomizing individuals into 

low- and high-risk groups based on the extent of pathophysiological changes may not be 

sufficient given that the temporal and spatial evolution of Alzheimer’s disease biomarkers and 

the disease trajectories may differ depending on the resilience capacity an individual possesses.  

In Figure 9, a hypothetical model of the temporal evolution of Alzheimer’s disease and the 
disease course for individuals with low and high resilience is depicted. According to this model, 

there exists a temporal delay in individuals with high resilience concerning the initial 

accumulation of amyloid and tau pathology, and subsequent neuronal dysfunction. Moreover, 

the temporal association between tau pathology and neuronal dysfunction is closer at lower 

levels of resilience. Importantly, at the point of initial symptom occurrence, individuals with 

high resilience show more brain pathology than individuals with lower levels of resilience. 

Consequently, the prodromal phase is longer at high levels of resilience. But from the point of 
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diagnosis individuals with high resilience tend to decline more rapidly. This accelerated 

deterioration is likely due to greater pathological burden at the point of diagnosis.  

Notably, this hypothetical model is based on the current body of evidence concerning resilience 

mechanisms mostly evaluated in cross-sectional designs and based on educational attainment 

levels. Moreover, the term “resilience” is used to encompass various mechanisms contributing 

to the slowing of pathology build-up (i.e., resistance), its effects on neuronal function and 

cognition. Longitudinal approaches are certainly necessary to underpin the assumptions of this 

model. Nonetheless, it may provoke discussions concerning the currently tested model of 

Alzheimer’s disease biomarkers. These discussions may overall refine the current conception 

of the disease, lead to the development of diagnostic tests for the early diagnosis of individuals 

with high resilience and potentially foster novel research ideas and approaches. Furthermore, it 

may lead to the establishment of more precise measures of resilience in contrast to the currently 

used surrogate measures such as education. 

 

 

 

 
Figure 9 – Hypothetical model on the evolution of Alzheimer’s disease biomarkers based on the level of 
resilience. At high levels of resilience, the onset of pathophysiological processes of Alzheimer’s disease is 
temporally delayed and slowed down including a longer prodromal phase in comparison to individuals with low 

resilience. Moreover, the temporal relationship between tau pathology and neuronal dysfunction is less close at 

higher levels of resilience. At the point of initial symptom occurrence, individuals with high resilience show 

greater levels of amyloid ȕ and tau pathology, a faster disease progression and cognitive decline. MCI = mild 

cognitive impairment. 
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From education towards a more direct measure of resilience 

In the discussed studies of publication II and III, we employed education as surrogate marker 

of resilience like numerous other studies on resilience. However, education only represents an 

indirect measure of resilience, which is influenced by several other lifetime factors. In addition, 

considering that in the younger generations more and more individuals tend to graduate at 

higher levels of education as compared to the older generations, education may become a less 

meaningful surrogate measure in the future. Aside from this, it was recently reported that 

general cognitive ability measured early in life was a better predictor of late-life cognition than 

education (Kremen et al., 2019). Nonetheless, early lifetime factors such as education or general 

IQ are static and are based on one single value measured at a single point in time. They may 

thus not capture the entire picture and are less dynamic. Therefore, a residual approach has 

recently been introduced. This approach considers the variance in cognition that is not explained 

by demographic and brain predictors such as grey matter volume or pathology burden as 

measure of CR (see Figure 10A) (Stern et al., 2018a). To measure BR, the variance in grey 

matter volume that is not explained by demographic and brain pathology needs to be derived 

when using the residual method (see Figure 10B). Studies employing this approach so far 

showed a close association between derived CR residuals and changes in network  integrity 

(Lee et al., 2019) and the level of education (van Loenhoud et al., 2017; Lee et al., 2019). 

Moreover, the residual approach has been suggested to be more dynamic in terms of change 

over time as it allows the continuous quantification of resilience at different disease stages 

(Arenaza-Urquijo and Vemuri, 2018). In line with this, recent studies demonstrated that the 

residuals derived from different time points were better predictors for cognitive deterioration 

and disease progression over time than education (Reed et al., 2010; Zahodne et al., 2015; van 

Loenhoud et al., 2017).  

In a subproject of this thesis, we employed this approach to investigate whether residuals 

derived from amyloid PET and cognitive variables are associated with years of education and 

changes in intrinsic connectivity based on resting-state fMRI (Appendix – Abstract A2, page 

65). By means of this approach we aimed to identify a neuronal correlate of CR. The results 

yielded a relationship between the CR residuals and education. More importantly, we found an 

association between the CR residuals and regional upregulation in intrinsic connectivity of the 

right hippocampus in preclinical and clinical phases of Alzheimer’s disease. The positive 

correlation between the residuals and intrinsic connectivity of the right hippocampus was 

stronger in the early Alzheimer’s disease group than the amyloid-positive cognitively normal 

group, indicating that the early Alzheimer’s disease patients have a higher need for CR. The 

results suggest that cognition may be maintained by upregulations of this area, representing a 

potential CR support mechanism.  

Taken together, the accumulating body of evidence signifies that the residual approach could 

be used to study resilience mechanisms more directly and dynamically than when using 

education as proxy (Stern et al., 2018a). However, it contains a major drawback, namely that it 
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is primarily based on the error that is not explained by the model (Arenaza-Urquijo and Vemuri, 

2018). To increase the predictive power of the residuals, numerous variables need to be included 

and there is no proof that these variables can sufficiently explain the relationship of interest. 

Poorly defined models may therefore result in noisy residuals that are not associated with 

resilience, but other factors that had not been considered. Moreover, caution needs to be taken 

when modelling certain relationships and deriving the residuals from them since these 

associations may not be purely linear, but of exponential or cubic nature. In our preliminary 

study, we therefore performed a model fit to address at least this issue of the residual approach 

and used the best fit to derive the residuals. 

Despite these disadvantages, the current evidence suggests that the residual approach can be 

used to measure resilience-related mechanisms. Importantly, with the advances in 

neuroimaging, even better measures of resilience can be established. For example, with the 

recent development of PET tracers for the visualization of changes in synaptic density (Chen et 

al., 2018; Finnema et al., 2018), an opportunity is provided to directly investigate BR 

mechanisms. Moreover, recent fMRI studies have determined a task-invariant covariance 

network (Stern et al., 2018b). The activation or deactivation of this network during a task may 

represent a direct measure of CR according to the authors (Stern et al., 2018b). Overall, 

employment of brain imaging methods will facilitate better knowledge on potential mechanisms 

contributing to resilience to Alzheimer’s disease and provide better means of quantifying 

resilience in comparison to the currently available surrogate measures. 

 

A) B) 

  

Figure 10 – Illustration of the residual approach for the quantification of cognitive and brain reserve. A) 

Residuals represent the variance in cognition that is not explained by the neuropathological burden. Residuals 

above the slope relate to better than predicted cognitive performance (i.e., high cognitive reserve, dark blue) 

and residuals below the slope indicate lower than expected cognitive performance (i.e., low cognitive reserve, 

light blue). B) Residuals represent the variance in brain volume that is not explained by the neuropathological 

burden. Residuals above the slope indicate relative maintenance of brain volume at a given level of 

neuropathological burden (i.e., high brain reserve, dark green), while residuals below the slope indicate 

greater volume loss than predicted (i.e., low brain reserve, light green). CR = cognitive reserve; BR = brain 

reserve. 
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LIMITATIONS 

A few general methodological limitations and caveats should be considered regarding the 

discussion of the results of publication I-III. 

First generation tau PET tracers 

First, all three publications included the data analysis of the first-generation tau PET tracer 

[18F]-AV-1451. Although this tracer was reported to show high affinity for Alzheimer’s disease 

tauopathy in form of 3R/4R tau (Marquié et al., 2015), off-target binding to subcortical 

structures, especially in the basal ganglia has consistently been observed in healthy controls and 

Alzheimer’s disease patients. This off-target potential is not only observed in case of [18F]-AV-

1451, but all current first-generation tau PET tracers (Chiotis et al., 2018b). A potential binding 

site may represent monoamine oxidase (MAO) A and B activity (Lemoine et al., 2017; Saint-

Aubert et al., 2017), but results have so far been inconsistent (Xia et al., 2013; Hansen et al., 

2018). Despite off-target binding to these subcortical regions, also vascular structures such as 

the choroid plexus and the dural venous sinuses are affected (Marquié et al., 2015; Lowe et al., 

2016). Given the close proximity of the choroid plexus to the hippocampus, spill-over effects 

might bias the quantification of tracer retention in the hippocampus (Lemoine et al., 2018). 

Therefore, partial volume corrections are recommended when considering this region in 

analyses. In our studies, we carefully inspected each image to rule out significant off-target 

signal in this area and signal retention in the hippocampus was considered with caution. In 

addition to this caveat, off-target binding in the dural venous sinuses may lead to an 

underestimation of the tracer retention in cortical regions given its close location to the 

cerebellum, which is commonly used as reference region (Lemoine et al., 2018). Despite the 

limitations of this tracer, in vitro and in vivo evidence exists demonstrating binding of [18F]-

AV-1451 to paired helical filaments containing tau (Smith et al., 2016). Moreover, currently 

available studies on tau PET suggest that these tracers coincide with the regional distribution 

of tau pathology in Alzheimer’s disease as determined by histopathological studies (Schöll et 

al., 2016; Schwarz et al., 2016). Also, in publication II of this study, we observed tracer binding 

that resembled the neuropathological Braak stages. It remains to be elucidated, which factors 

cause the off-target binding of the first-generation tau PET tracers. The recent introduction of 

second-generation tau PET tracers, which show lower off-target binding to subcortical 

structures, may provide better means to quantify tau pathology in Alzheimer’s disease and other 
tauopathies. Nonetheless, further comparisons are necessary to determine whether these novel 

tracers are superior to the first-generation tracers. 

Current lack of longitudinal tau PET studies 

Given the novelty of tau PET imaging, most studies including ours are restricted to the analysis 

of cross-sectional data. Thus, no interferences can be drawn regarding the spread of tau 

pathology along functional networks as well as how this spread is modulated by resilience 
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mechanisms over time. So far, first longitudinal studies demonstrated that tau pathology arises 

uniformly in certain regions of the brain outside the medial temporal lobe (Jack Jr et al., 2018b). 

Moreover, a time lag was observed between tau pathology aggregation and changes in neuronal 

function confirming the current model of Alzheimer’s disease biomarkers (Chiotis et al., 

2018a). But these longitudinal studies are currently limited to follow-up assessments of 1 to 1.5 

years. Therefore, the effect of change over time may be relatively small. Despite this, 

longitudinal tau PET may potentially be used in the evaluation of drug efficacy, although 

currently available tracers may not be sufficient for the determination of the earliest 

accumulation of tau pathology such as abnormal phosphorylation of tau (Hansson and 

Mormino, 2018). Moreover, the methodology of tau PET needs to be further assessed, in 

particular regarding the processing of longitudinal data including the determination of 

appropriate reference regions and methods for partial volume effects (Southekal et al., 2018). 

Given the availability of tau PET compounds for more than five years now, it is expected that 

more longitudinal studies with longer follow-up periods will soon be conducted allowing for a 

better understanding of the intracerebral progression of tau pathology and the methodological 

caveats associated with longitudinal tau PET. Moreover, future tau PET imaging studies with 

longitudinal designs will allow to investigate whether tau pathology is triggered, accelerated or 

independent of amyloid ȕ accumulation (Villemagne et al., 2017) and how resilience influences 

the progression of tau pathology over time. 

Proxies of resilience 

Finally, regarding the investigation of resilience mechanisms, we employed the indirect 

measure of educational attainment as proxy for resilience, which is correlated with other 

lifestyle factors rendering the investigation of the sole contribution of education to late-life 

effects difficult. To gain further insights into lifestyle factors associated with resilience, more 

elaborate information on lifetime experience such as physical activity or nutrition needs to be 

gathered. By means of this, specific lifestyle components could be extracted and set in relation 

to a distinct resilience mechanism. Potentially, physical activity is more closely associated with 

better vascular systems or neurogenesis factors, whereas education or lifetime cognitive 

stimulation is more closely associated with adaptations of network structures and functions. 

Moreover, most studies have, so far, mainly focused on the maintenance of cognitive function 

and less studies have focused on the actual underlying brain mechanisms such as changes in 

neuronal plasticity. The use of the residual approach in a different way as it has previously been 

used, may yield novel insights into resilience based on brain measurements. Hence, instead of 

taking cognitive function as the dependent variable, one may instead examine a distinct brain 

measurement such as synaptic density and test which factors are associated with maintenance 

of this measurement. Overall, with the advancements in the research field of resilience and 

resistance, the focus will eventually shift from observational studies towards the development 

of intervention therapies and prevention strategies (Arenaza-Urquijo and Vemuri, 2018).  
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CONCLUSION & OUTLOOK  

It is certainly of utmost importance to understand the pathophysiological mechanisms and risk 

factors of a given disease in order to find an effective treatment. In the past decades, researchers 

have continuously accumulated knowledge regarding the underlying mechanisms of 

Alzheimer’s disease. Despite the ever-increasing knowledge of the disease mechanisms, a cure 

has not been found yet. Striving to find the trigger of the disease may be one option in the 

development of effective treatment strategies. Another approach, however, lies in the 

identification of mechanisms that protect against or prolong the detrimental effects of 

neuropathology. The development and use of innovative neuroimaging techniques and the 

advancement of PET tracer development offer new avenues to study the in vivo characteristics 

of Alzheimer’s disease and factors that protect against the progression of the disease, as 

signified by this thesis work. Combination of these neuroimaging techniques with blood-based 

markers, epi-/genetic screenings and neuropsychological testing will provide a better 

understanding of the disease mechanisms and the contribution of resilience factors in the 

conception of the disease. To extend on the current knowledge on Alzheimer’s disease, we are 
therefore collecting data on several lifestyle factors including physical activity, occupation, 

social environment, stress resilience and nutrition and assessing their relation to epigenetic 

changes. In combination with PET imaging, this study may further provide insights into the 

underlying disease mechanisms of Alzheimer’s disease and determine protective molecular 
mechanisms.  

Importantly, the results of thesis and the ongoing study may not only bear crucial implications 

for the treatment of Alzheimer’s disease, but other age-related neurodegenerative diseases, in 

particular, tauopathies. Better understanding of the spreading mechanisms in these diseases will 

permit a more precise prediction of disease progression and will thus be valuable for disease 

monitoring. Moreover, identified resilience mechanisms may potentially be transferable to 

other neurological conditions. Several studies have shown that early lifetime factors such as 

education are associated with protection of performance in the face of brain pathology such as 

in small-vessel disease (Zieren et al., 2013; Pinter et al., 2015), stroke (Nunnari et al., 2014), 

multiple sclerosis (Sumowski et al., 2009; Benedict et al., 2010), fronto-temporal dementia 

(Premi et al., 2013) and Parkinson’s disease (Guzzetti et al., 2016; Hindle et al., 2016). Thus, 

mechanisms associated with resilience may be harnessed for their therapeutic treatment across 

neurological conditions. This will hopefully one day contribute to the development of effective 

disease-modifying treatments.  



  

49 

 

REFERENCES 

Ahmed Z, Cooper J, Murray TK, Garn K, McNaughton E, Clarke H, et al. A novel in vivo model of tau propagation 
with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, 
not proximity. Acta neuropathologica 2014; 127(5): 667-83. 

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive 
impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s 
Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & dementia 2011; 7(3): 
270-9. 

Alonso AdC, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K. Hyperphosphorylation induces self-assembly of τ into 
tangles of paired helical filaments/straight filaments. Proceedings of the National Academy of Sciences 2001; 
98(12): 6923-8. 

Arenaza-Urquijo EM, Vemuri P. Resistance vs resilience to Alzheimer disease: clarifying terminology for 
preclinical studies. Neurology 2018; 90(15): 695-703. 

Bao F, Wicklund L, Lacor PN, Klein WL, Nordberg A, Marutle A. Different ȕ-amyloid oligomer assemblies in 
Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiology of aging 
2012; 33(4): 825. e1-. e13. 

Belarbi K, Burnouf S, Fernandez-Gomez F-J, Laurent C, Lestavel S, Figeac M, et al. Beneficial effects of exercise 
in a transgenic mouse model of Alzheimer's disease-like Tau pathology. Neurobiology of disease 2011; 43(2): 
486-94. 

Benedict RH, Morrow SA, Guttman BW, Cookfair D, Schretlen DJ. Cognitive reserve moderates decline in 
information processing speed in multiple sclerosis patients. Journal of the International Neuropsychological 
Society 2010; 16(5): 829-35. 

Berardi N, Braschi C, Capsoni S, Cattaneo A, Maffei L. Environmental enrichment delays the onset of memory 
deficits and reduces neuropathological hallmarks in a mouse model of Alzheimer-like neurodegeneration. Journal 
of Alzheimer's disease 2007; 11(3): 359-70. 

Bischof GN, Ewers M, Franzmeier N, Grothe MJ, Hoenig M, Kocagoncu E, et al. Connectomics and molecular 
imaging in neurodegeneration. European journal of nuclear medicine and molecular imaging 2019: 1-12. 

Bischof GN, Jessen F, Fliessbach K, Dronse J, Hammes J, Neumaier B, et al. Impact of tau and amyloid burden 
on glucose metabolism in Alzheimer's disease. Annals of clinical and translational neurology 2016; 3(12): 934-9. 

Bloss EB, Janssen WG, Ohm DT, Yuk FJ, Wadsworth S, Saardi KM, et al. Evidence for reduced experience-
dependent dendritic spine plasticity in the aging prefrontal cortex. Journal of Neuroscience 2011; 31(21): 7831-9. 

Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated 
neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta neuropathologica 2006; 112(4): 
389-404. 

Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta neuropathologica 1991; 82(4): 
239-59. 

Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age 
categories from 1 to 100 years. Journal of Neuropathology & Experimental Neurology 2011; 70(11): 960-9. 

Brayne C, Ince PG, Keage HA, McKeith IG, Matthews FE, Polvikoski T, et al. Education, the brain and dementia: 
neuroprotection or compensation? EClipSE Collaborative Members. Brain 2010; 133(8): 2210-6. 

Brier MR, Gordon B, Friedrichsen K, McCarthy J, Stern A, Christensen J, et al. Tau and Aȕ imaging, CSF 
measures, and cognition in Alzheimer’s disease. Science translational medicine β016; 8(γγ8): γγ8ra66-ra66. 



  

50 

 

Brown BM, Peiffer J, Taddei K, Lui J, Laws SM, Gupta VB, et al. Physical activity and amyloid-ȕ plasma and 
brain levels: results from the Australian Imaging, Biomarkers and Lifestyle Study of Ageing. Molecular psychiatry 
2013; 18(8): 875. 

Buckner RL, Krienen FM. The evolution of distributed association networks in the human brain. Trends in 
cognitive sciences 2013; 17(12): 648-65. 

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al. Cortical hubs revealed by intrinsic 
functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. Journal of 
neuroscience 2009; 29(6): 1860-73. 

Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. Molecular, structural, and functional 
characterization of Alzheimer's disease: evidence for a relationship between default activity, amyloid, and 
memory. Journal of Neuroscience 2005; 25(34): 7709-17. 

Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in 
neurodegenerative disorders. Brain Research Reviews 2000; 33(1): 95-130. 

Cabeza R, Albert M, Belleville S, Craik FI, Duarte A, Grady CL, et al. Maintenance, reserve and compensation: 
the cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience 2018: 1. 

Cabeza R, Albert M, Belleville S, Craik FI, Duarte A, Grady CL, et al. Reply to ‘Mechanisms underlying resilience 
in ageing’. Nature Reviews Neuroscience 2019; 20(4): 247. 

Chang Y-T, Huang C-W, Chen N-C, Lin K-J, Huang S-H, Chang Y-H, et al. Prefrontal lobe brain reserve capacity 
with resistance to higher global amyloid load and white matter hyperintensity burden in mild stage Alzheimer’s 
disease. PloS one 2016; 11(2): e0149056. 

Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid 
beta peptide in Alzheimer's disease. Redox biology 2018; 14: 450-64. 

Chen G-f, Xu T-h, Yan Y, Zhou Y-r, Jiang Y, Melcher K, et al. Amyloid beta: structure, biology and structure-
based therapeutic development. Acta Pharmacologica Sinica 2017; 38(9): 1205. 

Chen M-K, Mecca AP, Naganawa M, Finnema SJ, Toyonaga T, Lin S-f, et al. Assessing synaptic density in 
Alzheimer disease with synaptic vesicle glycoprotein 2A positron emission tomographic imaging. JAMA 
neurology 2018; 75(10): 1215-24. 

Chien DT, Szardenings AK, Bahri S, Walsh JC, Mu F, Xia C, et al. Early clinical PET imaging results with the 
novel PHF-tau radioligand [F18]-T808. Journal of Alzheimer's Disease 2014; 38(1): 171-84. 

Chiotis K, Saint-Aubert L, Rodriguez-Vieitez E, Leuzy A, Almkvist O, Savitcheva I, et al. Longitudinal changes 
of tau PET imaging in relation to hypometabolism in prodromal and Alzheimer’s disease dementia. Molecular 
psychiatry 2018a; 23(7): 1666. 

Chiotis K, Stenkrona P, Almkvist O, Stepanov V, Ferreira D, Arakawa R, et al. Dual tracer tau PET imaging 
reveals different molecular targets for 11 C-THK5351 and 11 C-PBB3 in the Alzheimer brain. European journal 
of nuclear medicine and molecular imaging 2018b; 45(9): 1605-17. 

Chohan M, Haque N, Alonso A, El-Akkad E, Grundke-Iqbal I, Grover A, et al. Hyperphosphorylation-induced 
self assembly of murine tau: a comparison with human tau. Journal of neural transmission 2005; 112(8): 1035-47. 

Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, et al. Brain homogenates from human 
tauopathies induce tau inclusions in mouse brain. Proceedings of the National Academy of Sciences 2013; 110(23): 
9535-40. 

Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading of 
tauopathy in transgenic mouse brain. Nature cell biology 2009; 11(7): 909-13. 



  

51 

 

Coelho FGdM, Vital TM, Stein AM, Arantes FJ, Rueda AV, Camarini R, et al. Acute aerobic exercise increases 
brain-derived neurotrophic factor levels in elderly with Alzheimer's disease. Journal of Alzheimer's Disease 2014; 
39(2): 401-8. 

Cohen AD, Rabinovici GD, Mathis CA, Jagust WJ, Klunk WE, Ikonomovic MD. Using Pittsburgh Compound B 
for in vivo PET imaging of fibrillar amyloid-beta.  Advances in pharmacology: Elsevier; 2012. p. 27-81. 

Cohen AL, Fair DA, Dosenbach NU, Miezin FM, Dierker D, Van Essen DC, et al. Defining functional areas in 
individual human brains using resting functional connectivity MRI. Neuroimage 2008; 41(1): 45-57. 

Cope TE, Rittman T, Borchert RJ, Jones PS, Vatansever D, Allinson K, et al. Tau burden and the functional 
connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain 2018; 141(2): 550-67. 

Cummings JL, Dubois B, Molinuevo JL, Scheltens P. International Work Group criteria for the diagnosis of 
Alzheimer disease. Medical Clinics 2013; 97(3): 363-8. 

Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, et al. Microglial activation correlates in vivo with 
both tau and amyloid in Alzheimer’s disease. Brain β018; 141(9): β740-54. 

De Calignon A, Polydoro M, Suárez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, et al. Propagation of 
tau pathology in a model of early Alzheimer's disease. Neuron 2012; 73(4): 685-97. 

De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, et al. Alzheimer's disease-type neuronal 
tau hyperphosphorylation induced by Aȕ oligomers. Neurobiology of aging β008; β9(9): 1γγ4-47. 

Dekhtyar S, Wang H-X, Fratiglioni L, Herlitz A. Childhood school performance, education and occupational 
complexity: a life-course study of dementia in the Kungsholmen Project. International journal of epidemiology 
2016; 45(4): 1207-15. 

Desgranges B, Baron JC, Lalevée C, Giffard B, Viader F, de la Sayette V, et al. The neural substrates of episodic 
memory impairment in Alzheimer’s disease as revealed by FDG–PET: Relationship to degree of deterioration. 
Brain 2002; 125(5): 1116-24. 

Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, Dunmore J, et al. The high-affinity HSP90-CHIP 
complex recognizes and selectively degrades phosphorylated tau client proteins. The Journal of clinical 
investigation 2007; 117(3): 648-58. 

Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-
to-moderate Alzheimer's disease. New England Journal of Medicine 2014; 370(4): 311-21. 

Dronse J, Fliessbach K, Bischof GN, von Reutern B, Faber J, Hammes J, et al. In vivo Patterns of Tau Pathology, 
Amyloid-ȕ Burden, and Neuronal Dysfunction in Clinical Variants of Alzheimer’s Disease. Journal of Alzheimer's 
Disease 2017; 55(2): 465-71. 

Drzezga A. The Network Degeneration Hypothesis: Spread of Neurodegenerative Patterns Along Neuronal Brain 
Networks. Journal of Nuclear Medicine 2018; 59(11): 1645-8. 

Drzezga A, Becker JA, Van Dijk KR, Sreenivasan A, Talukdar T, Sullivan C, et al. Neuronal dysfunction and 
disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 2011; 134(6): 1635-
46. 

Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic 
criteria for Alzheimer's disease: the IWG-2 criteria. The Lancet Neurology 2014; 13(6): 614-29. 

Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, et al. Amyloid‐beta oligomerization in 
Alzheimer dementia versus high‐pathology controls. Annals of neurology β01γ; 7γ(1): 104-19. 

Ewers M, Insel PS, Stern Y, Weiner MW, Initiative AsDN. Cognitive reserve associated with FDG-PET in 
preclinical Alzheimer disease. Neurology 2013; 80(13): 1194-201. 



  

52 

 

Finnema SJ, Nabulsi NB, Mercier J, Lin S-f, Chen M-K, Matuskey D, et al. Kinetic evaluation and test–retest 
reproducibility of [11C] UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle 
glycoprotein 2A in humans. Journal of Cerebral Blood Flow & Metabolism 2018; 38(11): 2041-52. 

Fischer A. Epigenetic memory: the Lamarckian brain. The EMBO journal 2014; 33(9): 945-67. 

Fleisher AS, Chen K, Liu X, Roontiva A, Thiyyagura P, Ayutyanont N, et al. Using positron emission tomography 
and florbetapir F 18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to 
Alzheimer disease. Archives of neurology 2011; 68(11): 1404-11. 

Foster NL, Heidebrink JL, Clark CM, Jagust WJ, Arnold SE, Barbas NR, et al. FDG-PET improves accuracy in 
distinguishing frontotemporal dementia and Alzheimer's disease. Brain 2007; 130(10): 2616-35. 

Franzmeier N, Duering M, Weiner M, Dichgans M, Ewers M, Initiative AsDN. Left frontal cortex connectivity 
underlies cognitive reserve in prodromal Alzheimer disease. Neurology 2017a; 88(11): 1054-61. 

Franzmeier N, Hartmann JC, Taylor AN, Araque Caballero MÁ, Simon-Vermot L, Buerger K, et al. Left frontal 
hub connectivity during memory performance supports reserve in aging and mild cognitive impairment. Journal 
of Alzheimer's Disease 2017b; 59(4): 1381-92. 

Franzmeier N, Rubinski A, Neitzel J, Kim Y, Damm A, Na DL, et al. Functional connectivity associated with tau 
levels in ageing, Alzheimer’s, and small vessel disease. Brain 2019; 142(4): 1093-107. 

Fritsch T, McClendon MJ, Smyth KA, Lerner AJ, Friedland RP, Larsen JD. Cognitive functioning in healthy 
aging: the role of reserve and lifestyle factors early in life. The Gerontologist 2007; 47(3): 307-22. 

Gao Y-L, Wang N, Sun F-R, Cao X-P, Zhang W, Yu J-T. Tau in neurodegenerative disease. Annals of translational 
medicine 2018; 6(10). 

Gaugler J, James B, Johnson T, Marin A, Weuve J. 2019 Alzheimer's disease facts and figures. Alzheimers & 
Dementia 2019; 15(3): 321-87. 

Gefen T, Peterson M, Papastefan ST, Martersteck A, Whitney K, Rademaker A, et al. Morphometric and histologic 
substrates of cingulate integrity in elders with exceptional memory capacity. Journal of Neuroscience 2015; 35(4): 
1781-91. 

Gelfo F, Mandolesi L, Serra L, Sorrentino G, Caltagirone C. The neuroprotective effects of experience on cognitive 
functions: evidence from animal studies on the neurobiological bases of brain reserve. Neuroscience 2018; 370: 
218-35. 

Gilman S, Koller M, Black R, Jenkins L, Griffith S, Fox N, et al. Clinical effects of Aȕ immunization (AN179β) 
in patients with AD in an interrupted trial. Neurology 2005; 64(9): 1553-62. 

Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid 
fibril protein. Biochemical and biophysical research communications 1984; 122(3): 1131-5. 

Goate A, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense 
mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 1991; 349(6311): 704. 

Goedert M. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aȕ, tau, and α-
synuclein. Science (New York, NY) 2015; 349(6248): 1255555. 

Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer's disease 
from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences 2004; 
101(13): 4637-42. 

Groot C, van Loenhoud AC, Barkhof F, van Berckel BN, Koene T, Teunissen CC, et al. Differential effects of 
cognitive reserve and brain reserve on cognition in Alzheimer disease. Neurology 2018; 90(2): e149-e56. 



  

53 

 

Grothe MJ, Sepulcre J, Gonzalez-Escamilla G, Jelistratova I, Schöll M, Hansson O, et al. Molecular properties 
underlying regional vulnerability to Alzheimer’s disease pathology. Brain β018; 141(9): β755-71. 

Grothe MJ, Teipel SJ, Initiative AsDN. Spatial patterns of atrophy, hypometabolism, and amyloid deposition in 
Alzheimer's disease correspond to dissociable functional brain networks. Human brain mapping 2016; 37(1): 35-
53. 

Grundke-Iqbal I, Iqbal K, Quinlan M, Tung Y-C, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. 
A component of Alzheimer paired helical filaments. Journal of Biological Chemistry 1986; 261(13): 6084-9. 

Guillozet‐Bongaarts AL, Cahill ME, Cryns VL, Reynolds MR, Berry RW, Binder LI. Pseudophosphorylation of 
tau at serine 422 inhibits caspase cleavage: in vitro evidence and implications for tangle formation in vivo. Journal 
of neurochemistry 2006; 97(4): 1005-14. 

Guo JL, Lee VM. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nature medicine 
2014; 20(2): 130. 

Guo JL, Narasimhan S, Changolkar L, He Z, Stieber A, Zhang B, et al. Unique pathological tau conformers from 
Alzheimer’s brains transmit tau pathology in nontransgenic mice. Journal of Experimental Medicine 2016; 
213(12): 2635-54. 

Guzzetti S, Caporali A, Mancini F, Manfredi L, Daini R, Antonini A. Parkinson's Disease and cognitive reserve. 
Parkinsonism & Related Disorders 2016; 22: e57-e8. 

Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid ȕ-
peptide. Nature reviews Molecular cell biology 2007; 8(2): 101-12. 

Håkansson K, Ledreux A, Daffner K, Terjestam Y, Bergman P, Carlsson R, et al. BDNF responses in healthy 
older persons to 35 minutes of physical exercise, cognitive training, and mindfulness: associations with working 
memory function. Journal of Alzheimer's Disease 2017; 55(2): 645-57. 

Hammes J, Bischof GN, Giehl K, Faber J, Drzezga A, Klockgether T, et al. Elevated in vivo [18F]‐AV‐1451 
uptake in a patient with progressive supranuclear palsy. Movement Disorders 2017; 32(1): 170-1. 

Hansen AK, Brooks DJ, Borghammer P. MAO-B inhibitors do not block in vivo flortaucipir ([18 F]-AV-1451) 
binding. Molecular imaging and biology 2018; 20(3): 356-60. 

Hansson O, Grothe MJ, Strandberg TO, Ohlsson T, Hägerström D, Jögi J, et al. Tau pathology distribution in 
Alzheimer's disease corresponds differentially to cognition-relevant functional brain networks. Frontiers in 
neuroscience 2017; 11: 167. 

Hansson O, Mormino EC. Is longitudinal tau PET ready for use in Alzheimer’s disease clinical trials? Brain β018; 
141(5): 1241-4. 

Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. [18 F] THK-5117 PET for assessing 
neurofibrillary pathology in Alzheimer’s disease. European journal of nuclear medicine and molecular imaging 
2015; 42(7): 1052-61. 

Harada R, Okamura N, Furumoto S, Furukawa K, Ishiki A, Tomita N, et al. 18F-THK5351: a novel PET 
radiotracer for imaging neurofibrillary pathology in Alzheimer disease. Journal of Nuclear Medicine 2016; 57(2): 
208-14. 

Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-6. 

Harris JJ, Jolivet R, Attwell D. Synaptic energy use and supply. Neuron 2012; 75(5): 762-77. 

He Z, Guo JL, McBride JD, Narasimhan S, Kim H, Changolkar L, et al. Amyloid-ȕ plaques enhance Alzheimer's 
brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nature medicine 2018; 24(1): 29. 



  

54 

 

Helzner EP, Scarmeas N, Cosentino S, Tang M, Schupf N, Stern Y. Survival in Alzheimer disease: a multiethnic, 
population-based study of incident cases. Neurology 2008; 71(19): 1489-95. 

Hindle JV, Hurt CS, Burn DJ, Brown RG, Samuel M, Wilson KC, et al. The effects of cognitive reserve and 
lifestyle on cognition and dementia in Parkinson's disease—a longitudinal cohort study. International journal of 
geriatric psychiatry 2016; 31(1): 13-23. 

Hoenig MC, Bischof GN, Hammes J, Faber J, Fliessbach K, van Eimeren T, et al. Tau pathology and cognitive 
reserve in Alzheimer's disease. Neurobiology of Aging 2017; 57: 1-7. 

Hoenig MC, Bischof GN, Onur OA, Kukolja J, Jessen F, Fliessbach K, et al. Level of education mitigates the 
impact of tau pathology on neuronal function. European journal of nuclear medicine and molecular imaging 2019; 
46(9): 1787-95. 

Hoenig MC, Bischof GN, Seemiller J, Hammes J, Kukolja J, Onur ÖA, et al. Networks of tau distribution in 
Alzheimer’s disease. Brain β018; 141(β): 568-81. 

Hohman TJ, Bell SP, Jefferson AL. The role of vascular endothelial growth factor in neurodegeneration and 
cognitive decline: exploring interactions with biomarkers of Alzheimer disease. JAMA neurology 2015; 72(5): 
520-9. 

Honig LS, Vellas B, Woodward M, Boada M, Bullock R, Borrie M, et al. Trial of solanezumab for mild dementia 
due to Alzheimer’s disease. New England Journal of Medicine β018; γ78(4): γβ1-30. 

Hönig M, Bischof G, Onur Ö, Jessen F, Fließbach K, Neumaier B, et al. Regional susceptibility of the default 
mode network is associated with clinical phenotypes of Alzheimer's disease. Nuklearmedizin 2019; 58(02): V7. 

Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al. Tau mislocalization to dendritic spines 
mediates synaptic dysfunction independently of neurodegeneration. Neuron 2010; 68(6): 1067-81. 

Hostetler ED, Walji AM, Zeng Z, Miller P, Bennacef I, Salinas C, et al. Preclinical Characterization of 18F-MK-
6240, a Promising PET Tracer for In Vivo Quantification of Human Neurofibrillary Tangles. Journal of Nuclear 
Medicine 2016; 57(10): 1599-606. 

Hu Y-S, Long N, Pigino G, Brady ST, Lazarov O. Molecular mechanisms of environmental enrichment: 
impairments in Akt/GSKγȕ, neurotrophin-3 and CREB signaling. PloS one 2013; 8(5): e64460. 

Iaccarino L, Sala A, Caminiti SP, Perani D. The emerging role of PET imaging in dementia. F1000Research 2017; 
6. 

Iaccarino L, Tammewar G, Ayakta N, Baker SL, Bejanin A, Boxer AL, et al. Local and distant relationships 
between amyloid, tau and neurodegeneration in Alzheimer's Disease. NeuroImage: Clinical 2018; 17: 452-64. 

Jack Jr CR, Albert M, Knopman DS, McKhann GM, Sperling RA, Carillo M, et al. Introduction to revised criteria 
for the diagnosis of Alzheimer’s disease: National Institute on Aging and the Alzheimer Association Workgroups. 
Alzheimer's & dementia: the journal of the Alzheimer's Association 2011; 7(3): 257. 

Jack Jr CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: 
Toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia 2018a; 14(4): 535-62. 

Jack Jr CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological 
processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology 
2013; 12(2): 207-16. 

Jack Jr CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic 
biomarkers of the Alzheimer's pathological cascade. The Lancet Neurology 2010; 9(1): 119-28. 

Jack Jr CR, Wiste HJ, Schwarz CG, Lowe VJ, Senjem ML, Vemuri P, et al. Longitudinal tau PET in ageing and 
Alzheimer’s disease. Brain β018b; 141(5): 1517-28. 



  

55 

 

Jacobs HI, Hedden T, Schultz AP, Sepulcre J, Perea RD, Amariglio RE, et al. Structural tract alterations predict 
downstream tau accumulation in amyloid-positive older individuals. Nature neuroscience 2018; 21(3): 424. 

Jefferson AL, Gibbons LE, Rentz DM, Carvalho JO, Manly J, Bennett DA, et al. A life course model of cognitive 
activities, socioeconomic status, education, reading ability, and cognition. Journal of the American Geriatrics 
Society 2011; 59(8): 1403-11. 

Jeganathan S, von Bergen M, Brutlach H, Steinhoff H-J, Mandelkow E. Global hairpin folding of tau in solution. 
Biochemistry 2006; 45(7): 2283-93. 

Jones DT, Graff-Radford J, Lowe VJ, Wiste HJ, Gunter JL, Senjem ML, et al. Tau, amyloid, and cascading 
network failure across the Alzheimer's disease spectrum. Cortex 2017; 97: 143-59. 

Jones DT, Knopman DS, Gunter JL, Graff-Radford J, Vemuri P, Boeve BF, et al. Cascading network failure across 
the Alzheimer’s disease spectrum. Brain β015; 1γ9(β): 547-62. 

Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, et al. Clinical, pathological, and neurochemical 
changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Annals of 
Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 1988; 
23(2): 138-44. 

Kemppainen NM, Aalto S, Karrasch M, Någren K, Savisto N, Oikonen V, et al. Cognitive reserve hypothesis: 
Pittsburgh Compound B and fluorodeoxyglucose positron emission tomography in relation to education in mild 
Alzheimer's disease. Annals of Neurology: Official Journal of the American Neurological Association and the 
Child Neurology Society 2008; 63(1): 112-8. 

Kikuchi A, Okamura N, Hasegawa T, Harada R, Watanuki S, Funaki Y, et al. In vivo visualization of tau deposits 
in corticobasal syndrome by 18F-THK5351 PET. Neurology 2016; 87(22): 2309-16. 

Koedam EL, Lauffer V, van der Vlies AE, van der Flier WM, Scheltens P, Pijnenburg YA. Early-versus late-onset 
Alzheimer's disease: more than age alone. Journal of Alzheimer's Disease 2010; 19(4): 1401-8. 

Kremen WS, Beck A, Elman JA, Gustavson DE, Reynolds CA, Tu XM, et al. Influence of young adult cognitive 
ability and additional education on later-life cognition. Proceedings of the National Academy of Sciences 2019; 
116(6): 2021-6. 

Landau SM, Marks SM, Mormino EC, Rabinovici GD, Oh H, O’neil JP, et al. Association of lifetime cognitive 
engagement and low ȕ-amyloid deposition. Archives of neurology 2012; 69(5): 623-9. 

Larson EB, Shadlen M-F, Wang L, McCormick WC, Bowen JD, Teri L, et al. Survival after initial diagnosis of 
Alzheimer disease. Annals of internal medicine 2004; 140(7): 501-9. 

Lee DH, Lee P, Seo SW, Roh JH, Oh M, Oh JS, et al. Neural substrates of cognitive reserve in Alzheimer's disease 
spectrum and normal aging. NeuroImage 2019; 186: 690-702. 

Lehmann M, Ghosh PM, Madison C, Laforce R, Corbetta-Rastelli C, Weiner MW, et al. Diverging patterns of 
amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease. Brain β01γ; 1γ6(γ): 
844-58. 

Lemoine L, Gillberg P-G, Svedberg M, Stepanov V, Jia Z, Huang J, et al. Comparative binding properties of the 
tau PET tracers THK5117, THK5351, PBB3, and T807 in postmortem Alzheimer brains. Alzheimer's research & 
therapy 2017; 9(1): 96-. 

Lemoine L, Leuzy A, Chiotis K, Rodriguez-Vieitez E, Nordberg A. Tau positron emission tomography imaging 
in tauopathies: the added hurdle of off-target binding. Alzheimer's & Dementia: Diagnosis, Assessment & Disease 
Monitoring 2018; 10: 232-6. 

Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al. Candidate gene for the 
chromosome 1 familial Alzheimer's disease locus. Science 1995; 269(5226): 973-7. 



  

56 

 

Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, et al. Trans-synaptic spread of tau pathology in vivo. 
PloS one 2012; 7(2): e31302. 

Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE, et al. An autoradiographic evaluation of AV-
1451 Tau PET in dementia. Acta neuropathologica communications 2016; 4(1): 58. 

Luca A, Calandra C, Luca M. Molecular bases of Alzheimer’s disease and neurodegeneration: the role of 
neuroglia. Aging and disease 2018; 9(6): 1134. 

Mandelkow EM, Schweers O, Drewes G, Biernat J, Gustke N, Trinczek B, et al. Structure, Microtubule 
Interactions, and Phosphorylation of Tau Protein a. Annals of the New York Academy of Sciences 1996; 777(1): 
96-106. 

Marquié M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, et al. Validating novel tau 
positron emission tomography tracer [F‐18]‐AV‐1451 (T807) on postmortem brain tissue. Annals of neurology 
2015; 78(5): 787-800. 

Maruyama M, Shimada H, Suhara T, Shinotoh H, Ji B, Maeda J, et al. Imaging of tau pathology in a tauopathy 
mouse model and in Alzheimer patients compared to normal controls. Neuron 2013; 79(6): 1094-108. 

Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins R, Beyreuther K. Neuronal origin of a cerebral amyloid: 
neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood 
vessels. The EMBO journal 1985a; 4(11): 2757-63. 

Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in 
Alzheimer disease and Down syndrome. Proceedings of the National Academy of Sciences 1985b; 82(12): 4245-
9. 

Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT, et al. A lipophilic thioflavin-T 
derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorganic & medicinal 
chemistry letters 2002; 12(3): 295-8. 

Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS ȕ-
amyloid in Alzheimer’s disease. Science β010; γγ0(601β): 1774-. 

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack Jr CR, Kawas CH, et al. The diagnosis of dementia 
due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association 
workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & dementia 2011; 7(3): 263-9. 

Morbelli S, Perneczky R, Drzezga A, Frisoni GB, Caroli A, Van Berckel BN, et al. Metabolic networks underlying 
cognitive reserve in prodromal Alzheimer disease: a European Alzheimer disease consortium project. Journal of 
Nuclear Medicine 2013; 54(6): 894-902. 

Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron 2011; 70(3): 410-26. 

Mortimer JA, Snowdon DA, Markesbery WR. Head circumference, education and risk of dementia: findings from 
the Nun Study. Journal of clinical and experimental neuropsychology 2003; 25(5): 671-9. 

Mucke L, Selkoe DJ. Neurotoxicity of amyloid ȕ-protein: synaptic and network dysfunction. Cold Spring Harbor 
perspectives in medicine 2012; 2(7): a006338. 

Mudher A, Colin M, Dujardin S, Medina M, Dewachter I, Naini SMA, et al. What is the evidence that tau 
pathology spreads through prion-like propagation? Acta neuropathologica communications 2017; 5(1): 99. 

Mueller A, Kroth H, Berndt M, Capotosti F, Molette J, Schieferstein H, et al. Characterization of the novel PET 
Tracer PI-β6β0 for the assessment of Tau pathology in Alzheimer’s disease and other tauopathies. Journal of 
Nuclear Medicine 2017; 58(supplement 1): 847-. 

Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J, Griesinger C, et al. Structural polymorphism of 
441-residue tau at single residue resolution. PLoS biology 2009; 7(2): e1000034. 



  

57 

 

Murray ME, Lowe VJ, Graff-Radford NR, Liesinger AM, Cannon A, Przybelski SA, et al. Clinicopathologic and 
11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer’s disease spectrum. Brain 
2015; 138(5): 1370-81. 

Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET radiotracers 
and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO. Molecular 
imaging 2018; 17: 1536012118792317. 

Neitzel J, Franzmeier N, Rubinski A, Ewers M, Initiative AsDN. Left frontal connectivity attenuates the adverse 
effect of entorhinal tau pathology on memory. Neurology 2019: 10.1212/WNL. 0000000000007822. 

Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, et al. Correlation of Alzheimer disease 
neuropathologic changes with cognitive status: a review of the literature. Journal of Neuropathology & 
Experimental Neurology 2012; 71(5): 362-81. 

Ng KP, Pascoal TA, Mathotaarachchi S, Therriault J, Kang MS, Shin M, et al. Monoamine oxidase B inhibitor, 
selegiline, reduces 18 F-THK5351 uptake in the human brain. Alzheimer's research & therapy 2017; 9(1): 25. 

Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as 
modulators of brain disorders. Progress in neurobiology 2009; 89(4): 369-82. 

Noble W, Hanger DP, Miller CC, Lovestone S. The importance of tau phosphorylation for neurodegenerative 
diseases. Frontiers in neurology 2013; 4: 83. 

Nunnari D, Bramanti P, Marino S. Cognitive reserve in stroke and traumatic brain injury patients. Neurological 
Sciences 2014; 35(10): 1513-8. 

Olsson F, Schmidt S, Althoff V, Munter LM, Jin S, Rosqvist S, et al. Characterization of intermediate steps in 
amyloid beta (Aȕ) production under near-native conditions. Journal of Biological Chemistry 2014; 289(3): 1540-
50. 

Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL, et al. Tau PET patterns mirror 
clinical and neuroanatomical variability in Alzheimer’s disease. Brain β016; 1γ9(5): 1551-67. 

Palop JJ, Chin J, Mucke L. A network dysfunction perspective on neurodegenerative diseases. Nature 2006; 
443(7113): 768-73. 

Passamonti L, Vázquez Rodríguez P, Hong YT, Allinson KS, Williamson D, Borchert RJ, et al. 18F-AV-1451 
positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain 2017; 140(3): 
781-91. 

Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, et al. An in vivo correlate of 
exercise-induced neurogenesis in the adult dentate gyrus. Proceedings of the National Academy of Sciences 2007; 
104(13): 5638-43. 

Perneczky R, Wagenpfeil S, Lunetta K, Cupples L, Green R, DeCarli C, et al. Head circumference, atrophy, and 
cognition: implications for brain reserve in Alzheimer disease. Neurology 2010; 75(2): 137-42. 

Pinter D, Enzinger C, Fazekas F. Cerebral small vessel disease, cognitive reserve and cognitive dysfunction. 
Journal of neurology 2015; 262(11): 2411-9. 

Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by 
neuronal activity. EMBO reports 2013; 14(4): 389-94. 

Premi E, Gazzina S, Bozzali M, Archetti S, Alberici A, Cercignani M, et al. Cognitive reserve in granulin-related 
frontotemporal dementia: from preclinical to clinical stages. PLoS One 2013; 8(9): e74762. 

Reed BR, Mungas D, Farias ST, Harvey D, Beckett L, Widaman K, et al. Measuring cognitive reserve based on 
the decomposition of episodic memory variance. Brain 2010; 133(8): 2196-209. 



  

58 

 

Rentz DM, Mormino EC, Papp KV, Betensky RA, Sperling RA, Johnson KA. Cognitive resilience in clinical and 
preclinical Alzheimer’s disease: the Association of Amyloid and Tau Burden on cognitive performance. Brain 
imaging and behavior 2017; 11(2): 383-90. 

Richiardi J, Altmann A, Milazzo A-C, Chang C, Chakravarty MM, Banaschewski T, et al. Correlated gene 
expression supports synchronous activity in brain networks. Science (New York, NY) 2015; 348(6240): 1241-4. 

Rinne JO, Wong DF, Wolk DA, Leinonen V, Arnold SE, Buckley C, et al. [18 F] Flutemetamol PET imaging and 
cortical biopsy histopathology for fibrillar amyloid ȕ detection in living subjects with normal pressure 
hydrocephalus: pooled analysis of four studies. Acta neuropathologica 2012; 124(6): 833-45. 

Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Schöll M, et al. Diverging longitudinal 
changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain β016; 1γ9(γ): 9ββ-
36. 

Roe CM, Mintun MA, D’Angelo G, Xiong C, Grant EA, Morris JC. Alzheimer disease and cognitive reserve: 
variation of education effect with carbon 11–labeled Pittsburgh Compound B uptake. Archives of Neurology 2008; 
65(11): 1467-71. 

Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O'Keefe G, et al. Imaging of amyloid ȕ in Alzheimer's 
disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. The Lancet Neurology 2008; 7(2): 129-
35. 

Rowe DC, Vesterdal WJ, Rodgers JL. Herrnstein's syllogism: Genetic and shared environmental influences on IQ, 
education, and income. Intelligence 1998; 26(4): 405-23. 

Saint-Aubert L, Lemoine L, Chiotis K, Leuzy A, Rodriguez-Vieitez E, Nordberg A. Tau PET imaging: present 
and future directions. Molecular neurodegeneration 2017; 12(1): 19-. 

Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in 
mild-to-moderate Alzheimer's disease. New England Journal of Medicine 2014; 370(4): 322-33. 

Scarmeas N, Albert S, Manly J, Stern Y. Education and rates of cognitive decline in incident Alzheimer’s disease. 
Journal of Neurology, Neurosurgery & Psychiatry 2006; 77(3): 308-16. 

Schofield P, Logroscino G, Andrews HF, Albert S, Stern Y. An association between head circumference and 
Alzheimer's disease in a population-based study of aging and dementia. Neurology 1997; 49(1): 30-7. 

Schöll M, Lockhart SN, Schonhaut DR, O’Neil JP, Janabi M, Ossenkoppele R, et al. PET imaging of tau deposition 
in the aging human brain. Neuron 2016; 89(5): 971-82. 

Schwarz AJ, Yu P, Miller BB, Shcherbinin S, Dickson J, Navitsky M, et al. Regional profiles of the candidate tau 
PET ligand 18 F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 2016; 139(5): 1539-
50. 

Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human 
brain networks. Neuron 2009; 62(1): 42-52. 

Seemiller J, Bischof G, Hoenig M, Tahmasian M, Van Eimeren T, Drzezga A. Bi-directional Analysis of Tau 
Propagation between Braak Stages along Functional Connectivity Pathways (S9.001). Neurology 2019; 92(15 
Supplement): S9.001. 

Seino Y, Kawarabayashi T, Wakasaya Y, Watanabe M, Takamura A, Yamamoto‐Watanabe Y, et al. Amyloid ȕ 
accelerates phosphorylation of tau and neurofibrillary tangle formation in an amyloid precursor protein and tau 
double‐transgenic mouse model. Journal of neuroscience research 2010; 88(16): 3547-54. 

Selkoe DJ. Normal and abnormal biology of the beta-amyloid precursor protein. Annual review of neuroscience 
1994; 17(1): 489-517. 

Sepulcre J, Grothe MJ, Uquillas FdO, Ortiz-Terán L, Diez I, Yang H-S, et al. Neurogenetic contributions to 
amyloid beta and tau spreading in the human cortex. Nature medicine 2018; 24(12): 1910. 



  

59 

 

Shen X, Chen J, Li J, Kofler J, Herrup K. Neurons in vulnerable regions of the Alzheimer’s disease brain display 
reduced ATM signaling. eNeuro 2016; 3(1). 

Sherrington R, Rogaev E, Liang Ya, Rogaeva E, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense 
mutations in early-onset familial Alzheimer's disease. Nature 1995; 375(6534): 754. 

Shimada H, Kitamura S, Shinotoh H, Endo H, Niwa F, Hirano S, et al. Association between Aȕ and tau 
accumulations and their influence on clinical features in aging and Alzheimer's disease spectrum brains: A [11C] 
PBB3-PET study. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring 2017; 6: 11-20. 

Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, et al. Phase 3 solanezumab trials: 
secondary outcomes in mild Alzheimer's disease patients. Alzheimer's & Dementia 2016; 12(2): 110-20. 

Small SA, Duff K. Linking Aȕ and tau in late-onset Alzheimer's disease: a dual pathway hypothesis. Neuron 2008; 
60(4): 534-42. 

Smith R, Puschmann A, Schöll M, Ohlsson T, Van Swieten J, Honer M, et al. 18F-AV-1451 tau PET imaging 
correlates strongly with tau neuropathology in MAPT mutation carriers. Brain 2016; 139(9): 2372-9. 

Smith R, Schöll M, Widner H, van Westen D, Svenningsson P, Hägerström D, et al. In vivo retention of 18F-AV-
1451 in corticobasal syndrome. Neurology 2017; 89(8): 845-53. 

Snowden JS, Stopford CL, Julien CL, Thompson JC, Davidson Y, Gibbons L, et al. Cognitive phenotypes in 
Alzheimer's disease and genetic risk. Cortex 2007; 43(7): 835-45. 

Soto C. In vivo spreading of tau pathology. Neuron 2012; 73(4): 621-3. 

Southekal S, Devous MD, Kennedy I, Navitsky M, Lu M, Joshi AD, et al. Flortaucipir F 18 quantitation using 
parametric estimation of Reference signal intensity. Journal of Nuclear Medicine 2018; 59(6): 944-51. 

Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages 
of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer's Association 
workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's & dementia 2011; 7(3): 280-92. 

Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. Journal of the 
International Neuropsychological Society 2002; 8(3): 448-60. 

Stern Y. Cognitive reserve. Neuropsychologia 2009; 47(10): 2015-28. 

Stern Y. Cognitive reserve in ageing and Alzheimer's disease. The Lancet Neurology 2012; 11(11): 1006-12. 

Stern Y, Albert S, Tang M-X, Tsai W-Y. Rate of memory decline in AD is related to education and occupation: 
cognitive reserve? Neurology 1999; 53(9): 1942-. 

Stern Y, Arenaza-Urquijo EM, Bartrés-Faz D, Belleville S, Cantilon M, Chetelat G, et al. Whitepaper: Defining 
and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer's & Dementia 2018a. 

Stern Y, Chételat G, Habeck C, Arenaza-Urquijo EM, Vemuri P, Estanga A, et al. Mechanisms underlying 
resilience in ageing. Nature Reviews Neuroscience 2019; 20(4): 246. 

Stern Y, Gazes Y, Razlighi Q, Steffener J, Habeck C. A task-invariant cognitive reserve network. Neuroimage 
2018b; 178: 36-45. 

Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R. Influence of education and occupation on the 
incidence of Alzheimer's disease. Jama 1994; 271(13): 1004-10. 

Strain JF, Smith RX, Beaumont H, Roe CM, Gordon BA, Mishra S, et al. Loss of white matter integrity reflects 
tau accumulation in Alzheimer disease defined regions. Neurology 2018; 91(4): e313-e8. 



  

60 

 

Sumowski JF, Chiaravalloti N, Wylie G, DeLuca J. Cognitive reserve moderates the negative effect of brain 
atrophy on cognitive efficiency in multiple sclerosis. Journal of the International Neuropsychological Society 
2009; 15(4): 606-12. 

Swaab D. Brain aging and Alzheimer's disease,“wear and tear” versus “use it or lose it”. Neurobiology of aging 
1991; 12(4): 317-24. 

Szuhany KL, Bugatti M, Otto MW. A meta-analytic review of the effects of exercise on brain-derived neurotrophic 
factor. Journal of psychiatric research 2015; 60: 56-64. 

Tahmasian M, Shao J, Meng C, Grimmer T, Diehl-Schmid J, Yousefi BH, et al. Based on the network degeneration 
hypothesis: separating individual patients with different neurodegenerative syndromes in a preliminary hybrid 
PET/MR study. Journal of Nuclear Medicine 2016; 57(3): 410-5. 

Takami M, Nagashima Y, Sano Y, Ishihara S, Morishima-Kawashima M, Funamoto S, et al. Ȗ-Secretase: 
successive tripeptide and tetrapeptide release from the transmembrane domain of ȕ-carboxyl terminal fragment. 
Journal of Neuroscience 2009; 29(41): 13042-52. 

Terada T, Yokokura M, Obi T, Bunai T, Yoshikawa E, Ando I, et al. In vivo direct relation of tau pathology with 
neuroinflammation in early Alzheimer’s disease. Journal of neurology 2019: 1-11. 

Thal DR, Beach TG, Zanette M, Heurling K, Chakrabarty A, Ismail A, et al. [18F] flutemetamol amyloid positron 
emission tomography in preclinical and symptomatic Alzheimer's disease: specific detection of advanced phases 
of amyloid-ȕ pathology. Alzheimer's & Dementia 2015; 11(8): 975-85. 

Thal DR, Rüb U, Orantes M, Braak H. Phases of Aȕ-deposition in the human brain and its relevance for the 
development of AD. Neurology 2002; 58(12): 1791-800. 

Thies E, Mandelkow E-M. Missorting of tau in neurons causes degeneration of synapses that can be rescued by 
the kinase MARK2/Par-1. Journal of Neuroscience 2007; 27(11): 2896-907. 

van Eimeren T, Bischof GN, Drzezga A. Is Tau Imaging More Than Just Upside-Down 18F-FDG Imaging? 
Journal of Nuclear Medicine 2017; 58(9): 1357-9. 

van Loenhoud AC, van der Flier WM, Wink AM, Dicks E, Groot C, Twisk J, et al. Cognitive reserve and clinical 
progression in Alzheimer disease: A paradoxical relationship. Neurology 2019; 93(4): e334-e46. 

van Loenhoud AC, Wink AM, Groot C, Verfaillie SC, Twisk J, Barkhof F, et al. A neuroimaging approach to 
capture cognitive reserve: application to Alzheimer's disease. Human brain mapping 2017; 38(9): 4703-15. 

Vergara C, Houben S, Suain V, Yilmaz Z, De Decker R, Dries VV, et al. Amyloid-ȕ pathology enhances 
pathological fibrillary tau seeding induced by Alzheimer PHF in vivo. Acta neuropathologica 2019; 137(3): 397-
412. 

Verghese J, Lipton RB, Katz MJ, Hall CB, Derby CA, Kuslansky G, et al. Leisure activities and the risk of 
dementia in the elderly. New England Journal of Medicine 2003; 348(25): 2508-16. 

Villemagne V, Dore V, Mulligan R, Lamb F, Bourgeat P, Salvado O, et al. Evaluation of 18F-PI-2620, a second-
generation selective tau tracer for the assessment of Alzheimer’s and non-Alzheimer’s tauopathies. Journal of 
Nuclear Medicine 2018; 59(supplement 1): 410-. 

Villemagne VL, Doré V, Bourgeat P, Burnham SC, Laws S, Salvado O, et al. Aȕ-amyloid and tau imaging in 
dementia.  Seminars in nuclear medicine; 2017: Elsevier; 2017. p. 75-88. 

Vuoksimaa E, Panizzon MS, Chen C-H, Eyler LT, Fennema-Notestine C, Fiecas MJA, et al. Cognitive reserve 
moderates the association between hippocampal volume and episodic memory in middle age. Neuropsychologia 
2013; 51(6): 1124-31. 

Wagner A, Schmoll H, Badan I, Platt D, Kessler C. Brain plasticity: to what extent do aged animals retain the 
capacity to coordinate gene activity in response to acute challenges. Experimental gerontology 2000; 35(9-10): 
1211-27. 



  

61 

 

Wagner K-H, Franzke B, Neubauer O. Super DNAging—New Insights Into DNA Integrity, Genome Stability, 
and Telomeres in the Oldest Old.  Conn's Handbook of Models for Human Aging (Second Edition): Elsevier; 
2018. p. 1083-93. 

Walhovd KB, Krogsrud SK, Amlien IK, Bartsch H, Bjørnerud A, Due-Tønnessen P, et al. Neurodevelopmental 
origins of lifespan changes in brain and cognition. Proceedings of the National Academy of Sciences 2016; 
113(33): 9357-62. 

Walji AM, Hostetler ED, Selnick H, Zeng Z, Miller P, Bennacef I, et al. Discovery of 6-(Fluoro-18 F)-3-(1 H-
pyrrolo [2, 3-c] pyridin-1-yl) isoquinolin-5-amine ([18F]-MK-6240): A Positron Emission Tomography (PET) 
Imaging Agent for Quantification of Neurofibrillary Tangles (NFTs). Journal of medicinal chemistry 2016; 59(10): 
4778-89. 

Wang H-X, MacDonald SW, Dekhtyar S, Fratiglioni L. Association of lifelong exposure to cognitive reserve-
enhancing factors with dementia risk: a community-based cohort study. PLoS medicine 2017; 14(3): e1002251. 

Wang Y, Mandelkow E. Tau in physiology and pathology. Nature Reviews Neuroscience 2016; 17(1): 22. 

Ward DD, Summers MJ, Saunders N, Ritchie K, Summers J, Vickers J. The BDNF Val66Met polymorphism 
moderates the relationship between cognitive reserve and executive function. Translational psychiatry 2015; 5(6): 
e590. 

Weiler M, Casseb RF, Campos BMD, Teixeira CVL, Carletti-Cassani AFMK, Vicentini JE, et al. Cognitive 
reserve relates to functional network efficiency in Alzheimer’s disease. Frontiers in aging neuroscience β018; 10: 
255. 

Weingarten MD, Lockwood AH, Hwo S-Y, Kirschner MW. A protein factor essential for microtubule assembly. 
Proceedings of the National Academy of Sciences 1975; 72(5): 1858-62. 

Weller A, Bischof G, Schlüter P, Richter N, Kukolja J, Neumaier B, et al. Graph theoretical analysis of tau burden 
and the functional connectome in Alzheimers disease. Nuklearmedizin 2019; 58(02): L10. 

Westwood AJ, Beiser A, DeCarli C, Harris TB, Chen TC, He X-m, et al. Insulin-like growth factor-1 and risk of 
Alzheimer dementia and brain atrophy. Neurology 2014; 82(18): 1613-9. 

Whitwell JL. Multimodal neuroimaging provides insights into the biology of Alzheimer’s disease. Brain β018a; 
141(2): 326-9. 

Whitwell JL, Graff-Radford J, Tosakulwong N, Weigand SD, Machulda MM, Senjem ML, et al. Imaging 
correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer's disease. Alzheimer's & 
Dementia 2018b; 14(8): 1005-14. 

Whitwell JL, Lowe VJ, Tosakulwong N, Weigand SD, Senjem ML, Schwarz CG, et al. [18F] AV‐1451 tau 
positron emission tomography in progressive supranuclear palsy. Movement Disorders 2017; 32(1): 124-33. 

Wirth M, Haase CM, Villeneuve S, Vogel J, Jagust WJ. Neuroprotective pathways: lifestyle activity, brain 
pathology, and cognition in cognitively normal older adults. Neurobiology of aging 2014; 35(8): 1873-82. 

Wolf SA, Kronenberg G, Lehmann K, Blankenship A, Overall R, Staufenbiel M, et al. Cognitive and physical 
activity differently modulate disease progression in the amyloid precursor protein (APP)-βγ model of Alzheimer’s 
disease. Biological psychiatry 2006; 60(12): 1314-23. 

Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition 
in Alzheimer disease using the radioligand 18F-AV-45 (flobetapir F 18). Journal of Nuclear Medicine 2010; 51(6): 
913-20. 

Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau 
propagation and tau pathology in vivo. Nature Neuroscience 2016; 19(8): 1085-92. 

Xia C-F, Arteaga J, Chen G, Gangadharmath U, Gomez LF, Kasi D, et al. [18F] T807, a novel tau positron 
emission tomography imaging agent for Alzheimer's disease. Alzheimer's & Dementia 2013; 9(6): 666-76. 



  

62 

 

Yeo TB, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human 
cerebral cortex estimated by intrinsic functional connectivity. Journal of neurophysiology 2011; 106(3): 1125-65. 

Yoo SW, Han CE, Shin JS, Seo SW, Na DL, Kaiser M, et al. A network flow-based analysis of cognitive reserve 
in normal ageing and Alzheimer’s disease. Scientific reports β015; 5: 10057. 

Zahodne LB, Manly JJ, Brickman AM, Narkhede A, Griffith EY, Guzman VA, et al. Is residual memory variance 
a valid method for quantifying cognitive reserve? A longitudinal application. Neuropsychologia 2015; 77: 260-6. 

Zempel H, Dennissen FJ, Kumar Y, Luedtke J, Biernat J, Mandelkow E-M, et al. Axodendritic sorting and 
pathological missorting of Tau are isoform-specific and determined by axon initial segment architecture. Journal 
of Biological Chemistry 2017; 292(29): 12192-207. 

Zempel H, Thies E, Mandelkow E, Mandelkow E-M. Aȕ oligomers cause localized Caβ+ elevation, missorting of 
endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. Journal of 
Neuroscience 2010; 30(36): 11938-50. 

Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY, Rabinovici GD, et al. Divergent network connectivity 
changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain β010; 1γγ(5): 1γ5β-67. 

Zieren N, Duering M, Peters N, Reyes S, Jouvent E, Hervé D, et al. Education modifies the relation of vascular 
pathology to cognitive function: cognitive reserve in cerebral autosomal dominant arteriopathy with subcortical 
infarcts and leukoencephalopathy. Neurobiology of aging 2013; 34(2): 400-7. 

  



  

63 

 

APPENDIX 

A. Conference abstracts 
 

1) Regional susceptibility of the default mode network is associated with 

clinical phenotypes of Alzheimer’s disease 

 

2) Hippocampal intrinsic connectivity supports cognitive reserve in amyloid-

positive cognitively normal subjects and Alzheimer’s disease patients 

 

 

B. Publications 
 

1) Networks of tau distribution in Alzheimer’s disease 

 

2) Tau pathology and cognitive reserve in Alzheimer's disease 

 

3) Level of education mitigates the impact of tau pathology on neuronal 

function 

 

  



  

64 

 

A1.) Abstract I 

Title: Regional susceptibility of the default mode network is associated with clinical 

phenotypes of Alzheimer’s disease (Hönig et al., 2019) 

Authors: Hoenig MC, Bischof GN, Onur ÖA, Jessen F, Fließbach K, Neumaier B, van Eimeren 

T, Drzezga A 

Presented at: Deutsche Gesellschaft für Nuklearmedizin, 2019, Bremen, Germany (talk) 

Background: Alzheimer’s disease (AD) is characterized by heterogeneous clinical phenotypes, 

which present distinct tau-pathology patterns. The posterior default mode network (pDMN) 

seems, however, to be similarly affected by tau-pathology across clinical phenotypes. In this 

study, we investigated whether the tau-peaks in the pDMN of AD variants are associated with 

different functional connectivity networks. 

Methods: We included three age-matched groups: a typical AD group (n=14), a group with the 

logopenic variant (n=6), and a group with posterior cortical atrophy (n=6). For all patients, an 

[18F]AV-1451 scan was available, which was normalized, intensity-standardized to the 

cerebellum, and z-transformed employing a [18F]AV-1451 template of a healthy control 

sample.  Following the z-standardization, one-sample t-tests were performed (p < .0001) for 

each group, respectively, in SPM12. The coordinate of maximum t-value coinciding in the 

pDMN was extracted for each group and used in a seed-based analysis conducted on functional 

imaging data of a healthy control group (FWE corrected). Finally, using the dice similarity 

coefficient, the spatial overlap was computed between the seed-based networks (SBNs), known 

functional connectivity networks, and the thresholded t-maps of the three groups. 

Results: The three seeds were located in middle-superior temporal and parietal regions. The 

AD-derived SBN fairly overlapped with the executive control network (Dice=35%), the PCA-

derived SBN overlapped well with the visuospatial network (Dice=51%), and the SBN of the 

logopenic group coincided with the language network (Dice=24%). The respective SBNs 

poorly-to-fairly overlapped with the group-specific tau-pathology patterns (Dice=9-27%). 

Conclusion: The tau-peak in the pDMN may determine the spread of tau-pathology across 

distinct functional networks, which are associated with clinical phenotypes of AD.  
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A2.) Abstract II 

Title: Hippocampal intrinsic connectivity supports cognitive reserve in amyloid-positive 

cognitively normal subjects and Alzheimer’s disease patients 

Authors: Hoenig MC, Bischof GN, Lopes Alves I, Ahlswede M, Sakagiannis P, Jessen F, 

Schmidt M, Barkhof F, van Eimeren T, Drzezga A for the AMYPAD Consortium 

Presented at: AAIC, 2019, L.A., USA (poster presentation) 

Background: Cognitive reserve (CR) accounts for maintaining functionality despite brain 

pathology. Recently, a residual approach was introduced as a more specific measure of CR. 

This approach considers the variance in cognition not being explained by demographic and 
neuroimaging predictors as CR measure. Here, we aimed to determine a functional neuronal 
correlate of CR from resting-state functional MRI (rs-fMRI). 

Methods: 103 cognitively normal subjects (mean age 72.01 ± 5.98) and 36 early amyloid-

positive Alzheimer’s disease (AD) patients (74.08 ± 7.33) were included, for whom 

neuropsychological data, an amyloid PET, and a rs-fMRI scan were available at the Open 

Access Series of Imaging Studies (OASIS; https://www.oasis-brains.org/). Information on 

global amyloid load was assessed based on the Freesurfer-ROIs available in OASIS. Cognition 

residuals were computed regressing global amyloid, ApoE status, age and sex onto cognitive 

test performance using an exponential model fit. Positive residuals indicate higher cognitive 

performance than predicted. Intrinsic connectivity (IC) maps were extracted based on the pre-

processed rs-fMRI data using the CONN toolbox. Using general linear modeling in SPM12 (p 

< .0001, uncor.), we first examined the voxel-based association between the individual IC maps 

and the cognition residuals in the early AD group, assuming this group requires a high need for 

reserve. To determine if the identified neuronal CR correlate extends to the preclinical phase of 

AD, we extracted the beta values of IC of the identified neuronal CR correlate in the amyloid-

positive cognitively normal group (SUVR > 1.1., n=57) and examined the relationship between 

cognition residuals and IC. 

Results: Only increased IC in the right hippocampus was associated with higher residuals in 

the early AD group. In the amyloid-positive cognitively normal group, the IC in this area was 

also correlated with greater residuals (r=.34, p<.05). The effect of the neuronal correlate and 

the residuals was stronger in the AD group when comparing both groups in terms of their 

correlation strengths. 

Conclusion: The findings indicate that intrinsic hippocampal connectivity might contribute to 

CR seen in both preclinical and clinical phases of AD. Moreover, the residual approach proves 

to be sensitive to compensatory effects of IC in the face of AD-pathology. 
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Abstract 

A stereotypical anatomical propagation of tau pathology has been described in Alzheimer’s 

disease. According to recent concepts (network degeneration hypothesis), this propagation is 

thought to be indicative of misfolded tau proteins possibly spreading along functional networks. 

If true, tau pathology accumulation should correlate in functionally connected brain regions. 

Therefore, we examined whether independent components could be identified in the 

distribution pattern of in vivo tau pathology and whether these components correspond with 

specific functional connectivity networks. 22 [18F]AV-1451 PET scans of patients with 

amnestic Alzheimer’s disease (M(Age)= 66.00 ± 7.22 years, 14M/8F) were spatially 

normalized, intensity standardized to the cerebellum, and z-transformed using the mean and 

deviation image of a healthy control sample to assess Alzheimer’s disease-related tau 

pathology. First, to detect distinct tau pathology networks, the deviation maps were subjected 

to an independent component analysis. Second, to investigate if regions of high tau burden are 

associated with functional connectivity networks, we extracted the region with the maximum 

z-value in each of the generated tau pathology networks and used them as seeds in a subsequent 

resting-state functional MRI analysis, conducted in a group of healthy adults (n=26) who were 

part of the 1000 Functional Connectomes Project. Third, to examine if tau pathology co-

localizes with functional connectivity networks, we quantified the spatial overlap between the 

seed-based networks and the corresponding tau pathology network by calculating the dice 

similarity coefficient. Additionally, we assessed if the tau-dependent seed-based networks 

correspond with known functional resting-state networks. Finally, we examined the relevance 

of the identified components in regard to the neuropathological Braak stages. We identified 10 

independently coherent tau pathology networks with the majority showing a symmetrical bi-

hemispheric expansion and coinciding with highly functionally connected brain regions such 

as the precuneus and cingulate cortex. A fair to moderate overlap was observed between the tau 

pathology networks and corresponding seed-based networks (Dice range: 0.13-0.57), which in 

turn resembled known resting-state networks, particularly the default mode network (Dice 

range: 0.42-0.56). Moreover, greater tau burden in the tau pathology networks was associated 

with more advanced Braak stages. Using the data-driven approach of an independent 

component analysis, we observed a set of independently coherent tau pathology networks in 

Alzheimer’s disease which were associated with disease progression and coincided with 

functional networks previously reported to be impaired in Alzheimer’s disease. Together, our 

results provide novel information regarding the impact of tau pathology networks on the 

mechanistic pathway of Alzheimer’s disease.  
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Abbreviations 

Aβ - amyloid beta 

CSF - cerebrospinal fluid 

DMN – default mode network 

DSC – dice similarity coefficient 

ICA – independent component analysis 

ROI – region of interest 

rs-fMRI – resting-state functional MRI 

TPN – tau pathology network 

  



Tau pathology networks in Alzheimer’s disease 

 

 

Introduction 

Alzheimer’s disease is characterized by two neuropathological hallmarks, i.e., the 

accumulation of extracellular β-amyloid (Aβ) plaques and the intracellular aggregation of 

misfolded tau proteins in form of neurofibrillary tangles. Aβ pathology initially spreads across 

neo- and allocortical brain regions and only propagates downstream to the brainstem in late 

stages of the disease (Thal et al., 2002), whereas tau pathology first occurs in the locus coeruleus 

and the entorhinal cortex from where it expands upstream to limbic and isocortical regions 

(Braak and Braak, 1991; Braak and Braak, 1995). Several hypotheses have been suggested to 

explain the spreading and distribution of these pathologies across the brain. One prominent 

proposal is the network degeneration hypothesis, which postulates that neurodegenerative 

disease pathologies expand along functional networks, consequently leading to failure of these 

networks (Palop et al., 2006; Seeley et al., 2009). Network dysfunction then in turn likely 

provokes clinical symptomatology. In the past decade, multimodal imaging studies have 

provided compelling evidence in support of the network degeneration hypothesis: A spatial 

overlap between the deposition of Aβ plaques and neuronal networks, in particular the default 

mode network (DMN), has been reported (Buckner et al., 2005; Buckner et al., 2009; Grothe 

and Teipel, 2016; Jones et al., 2016). Similar results were obtained when investigating the 

convergence between Alzheimer’s disease-related grey matter volume reduction and large-

scale networks (Seeley et al., 2009). Furthermore, it was suggested that elevated Aβ deposition 

in regions of the DMN in asymptomatic cognitively normal individuals could serve as an 

indicator of incipient Alzheimer’s disease (Sperling et al., 2009). So far, it remains unknown 

whether tau pathology similarly expands along functional networks as the visualization of tau 

pathology in vivo has only recently become available. However, the stereotypical anatomical 

distribution pattern of tau pathology is indicative of misfolded tau proteins spreading 

throughout interconnected regions (Clavaguera et al., 2009). This assumption is supported by 

recent findings from studies in rodent models of early Alzheimer’s disease proposing that 

neurofibrillary tangles may exhibit prion-like properties (Clavaguera et al., 2009; de Calignon 

et al., 2012; Liu et al., 2012). These properties may foster the spreading of tau pathology 

through axons and across synapses to other neurons, potentially consecutively affecting 

connected brain regions and eventually leading to severe neurodegeneration that causes 

cognitive impairment. 

With the development of PET ligands for the visualization of tau depositions, disease-

specific distribution patterns of tau pathology can now be detected and studied in humans in 

vivo. The radioactive tracer [18F]AV-1451 appears especially useful for the visualization of 
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separate patterns of tau pathology distribution within the Alzheimer’s disease spectrum 

(Ossenkoppele et al., 2016; Dronse et al., 2017), and across different tauopathies (Passamonti 

et al., 2017). In order to assess distinct pathways of Alzheimer’s disease-related tau pathology 

based on [18F]AV-1451 PET imaging data, the multivariate approach of an independent 

component analysis (ICA) may represent a particularly well-suited tool. ICA is a blind source 

separation technique used to establish common features within a given dataset by decomposing 

the data into independent patterns (McKeown et al., 2003). ICA is based on a whole-brain data-

driven approach that is not limited to a set of pre-defined regions of interest (Fan et al., 2008). 

Even though ICA has often been used to study properties of brain networks based on functional 

MRI (fMRI) data (Calhoun and Adali, 2012), several studies also confirmed the utility of ICA 

for the analysis of PET data (Illán et al., 2011; Di et al., 2012; Toussaint et al., 2012; Shaffer 

et al., 2013; Yakushev et al., 2013; Savio et al., 2017). For example, ICA identified distinct 

metabolic networks in [18F]Fluorodeoxyglucose- PET scans, which resembled known resting-

state functional connectivity networks (Di et al., 2012; Yakushev et al., 2013; Savio et al., 

2017).  

Using ICA within the realm of structural or functional brain imaging analyses, regions 

within an independent component can be inferred to be spatially correlated either through 

structural or functional connections (Cohen et al., 2008; Di et al., 2012). However, the detection 

of independent components in PET imaging data does not necessarily allow drawing 

conclusions about the functional or structural connections of the associated brain regions within 

a given independent components. Consequently, systematic comparison of such components 

with information on existing functional or structural networks is required. 

Here, in order to gain insights into the mechanistic pathways of tau pathology and to 

identify independent tau pathology networks (TPNs), we employed an ICA approach on 

[18F]AV-1451 tau-PET imaging data of 22 patients with mild to moderate amnestic Alzheimer’s 

disease. Subsequently, we systematically assessed the relationships between the identified 

TPNs and the functional network architecture of the brain. For this purpose, we first extracted 

the region of maximum tau deposition from each of the generated TPNs. Next, we employed 

these regions as seeds for a seed-based resting-state fMRI (rs-fMRI) analysis in a group of 

healthy control subjects (derived from the 1000 Functional Connectomes Project). The seed-

based networks were established to identify regions of strongest connections to the seed of tau 

pathology of a given TPN. We assessed the spatial conformity of these (tau-dependent) 

functional connectivity networks with the detected TPNs as well as with established functional 

resting-state networks (Shirer et al., 2012). Finally, we assessed whether higher tau burden in 
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the identified TPNs was associated with a more advanced Braak stage as well as global 

cognitive dysfunction as assessed by the Mini Mental State Examination (MMSE). We 

hypothesized that the ICA would yield TPNs that coincide with functionally connected 

networks resembling known resting-state networks, such as the DMN. Moreover, we assumed 

that increased tau burden within distinct TPNs would be associated with a more advanced Braak 

stage and negatively correlate with global cognitive function. 

 

Materials & Methods 

Participants 

We included 22 patients with typical amnestic Alzheimer’s disease (Table 1) who were 

diagnosed with probable Alzheimer’s disease dementia according to the recommended NIA-

AA guidelines (McKhann et al., 2011) and based on the results of diagnostic PET imaging and 

cerebrospinal fluid (CSF) measurements. Out of the 22 patients, 16 patients were amyloid 

positive (based upon their amyloid PET scan). In addition, three patients were amyloid positive 

based upon the assessment of their CSF. In the remaining three patients, diagnosis of 

Alzheimer’s disease was established without assessment of amyloid status, based on the NIA-

AA guidelines. All patients underwent an [18F]AV-1451 PET scan as part of their clinical 

evaluation in the Department of Nuclear Medicine at the University Hospital Cologne, 

Germany, and gave informed consent for the scientific evaluation and publication of their data. 

Key inclusion criteria for the patient sample were: 1) diagnosis of probable typical Alzheimer’s 

disease according to the NIA-AA criteria, 2) age range: >55 ≤ 80, and 3) evaluable [18F]AV-

1451 scan. The study was performed according to the Declaration of Helsinki and was in 

compliance with the requirements of the ethics board of the Faculty of Medicine at the 

University of Cologne and of the responsible local regulatory authorities. 

Characteristic Mean ± SD Min Max 

Age 66.00 ± 7.22 55 75 

Education 13.80 ± 3.11 8 18 

MMSE 24.45 ± 4.38 15 30 

Sex M=14; F=8   

Race Caucasian   

Table 1 – Demographic characteristics. The range and average age 

in years, years of education, level of cognitive dysfunction as 

assessed by the MMSE, sex distribution, and race are listed in this 

table. SD = Standard deviation; M = Male; F=Female; MMSE = 

Mini Mental State Examination. 
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PET data 

The PET scans were collected from a PET-CT Siemens Biograph mCT Flow 128 Edge 

(Siemens, Knoxville, TN). A low dose transmission scan was performed with CT for 

attenuation correction prior to the beginning of the PET scanning. PET scans were acquired in 

list mode (15 minutes) 90 minutes after an intravenous injection of a mean dose of 230 MBq of 

[18F]AV-1451. The scans were iteratively reconstructed using a 3D OSEM algorithm of four 

iterations and 12 subsets, and were smoothed with a Gaussian filter of 5 mm FWHM on a 

128x128 matrix. 

 

Rs-fMRI data 

To identify functional networks in a group of healthy adults, we employed the publically 

available rs-fMRI dataset by Berlin-Margulies (Rohr et al., 2013), which is part of the 1000 

Functional Connectomes Project (http://www.nitrc.org/frs/?group_id=296). The dataset 

included 26 healthy controls (13M/13F) aged between 23 and 44 years (M(Age)=29.77 ± 5.21 

years). The rs-fMRIs were acquired on a 3T Trio Tim Siemens Magnetom (Siemens, Erlangen, 

Germany). The scanning protocol was as follows: repeat time (TR) = 2300 ms, echo time (TE) 

= 30 ms, time points =195, slice number= 34, flip angle = 90°, voxel size = 3x3x4 mm3, field 

of view (FOV) = 192 x 192. 

 

PET image preprocessing 

The [18F]AV-1451 PET scans were preprocessed using Statistical Parametric Mapping 

(SPM) version 8 (Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University 

College London). The images were spatially normalized to a tau template of a healthy control 

group. This template was previously established by our group based on a dataset of [18F]AV-

1451 PET scans from 19 healthy controls (M(Age)=56.63 ± 16.65 years) provided by Avid 

Radiopharmaceuticals, Inc, Philadelphia (Bischof et al., 2016; Hammes et al., 2017). The 

normalized PET scans were smoothed using a Gaussian filter of 12 mm FWHM. Using the 

whole cerebellum as reference region, standard uptake value ratios (SUVRs) images were 

computed utilizing in house scripts in MATLAB R2016a (The MathWorks, Inc., Natick, MA, 

USA). To assess specific Alzheimer’s disease-related tau pathology patterns, images were z-

transformed using the mean and deviation image from a healthy control sample. A detailed 

description of the sample and z-transformation can be found elsewhere (Bischof et al. 2016). 

The generated z-transformed images were then subjected to an ICA. 
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Rs- fMRI image preprocessing 

The rs-fMRI dataset was pre-processed using the pipeline of the Data Processing 

Assistant for Resting-State fMRI (DPARSF) toolbox, version 4.3 (Yan and Zang, 2010). The 

pipeline consists of the following steps:  

Initially, the first 10 time points of each subject were removed and the remaining slices 

were processed with slice timing. Second, nuisance variables were regressed including white 

matter, CSF, and global mean signal. To control for head motion, the Friston 24 parameter 

model was applied (Friston et al., 1996). Third, the realigned images were normalized to the 

default EPI template provided by the DPARSF toolbox. In a final step, the images were 

smoothed with a Gaussian filter of 8 mm. All pre-processed images were visually checked to 

assure that the normalization process had not resulted in distorted images. The pre-processed 

images were then used for the seed-based functional connectivity analysis. 

 

Statistical Analysis 

Independent component analysis 

To identify independently coherent TPNs, we performed an ICA on the z-standardized tau-

PET images using the group ICA function of the fMRI Toolbox (GIFT toolbox, version 4.0a, 

2015; MIALAB, The Mind Research Network, University of New Mexico, Albuquerque, NM, 

USA). To avoid overfitting of the data based on the given number of input images and to create 

meaningful orthogonal components, the default setting of 20 components was reduced to 10 

components (Särelä and Vigário, 2003). We then applied the Infomax algorithm implemented 

in the GIFT toolbox to extract common tau pathology features from the PET dataset.  

To support our ICA approach and in order to evaluate the possible influence of confounding 

factors that might bias the results, we performed a series of additional analyses: We ran the ICA 

with different numbers of allowed components (5 and 20 components), with a different 

Gaussian kernel (8mm instead of 12mm), and, in addition, an ICA including only scans from 

patients who were amyloid positive on their amyloid PET scan (n=16). Moreover, we conducted 

a conventional SPM t-test to identify peaks of tau pathology. For this, we compared the 

Alzheimer’s disease group against a group of healthy controls (n=19) using a voxel-based 

independent t-test. The identified peaks of tau pathology were employed as seeds in a following 

seed-based fMRI analysis. 
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Seed-based functional connectivity analysis 

 To assess if regions of high tau burden are involved in functional connectivity networks, 

we conducted a seed-based analysis using the pre-processed rs-fMRI dataset by Berlin-

Margulies (Rohr et al., 2013). As seeds for the functional connectivity analysis, we extracted 

the coordinate of the maximal peak z-score from each generated TPN. The seeds of maximum 

tau burden were each defined as a sphere centered at the respective peak coordinate with a 

radius of 5 mm. Given that we allowed 10 components to be generated by the ICA, we obtained 

10 tau-dependent seeds, which were submitted to the functional connectivity analysis using the 

DPARSF toolbox.  

Following the pipeline of the DPARSF toolbox for the functional connectivity analysis, 

the motion parameters, white matter, CSF, and global mean signal were regressed out. Next, 

the images were band pass filtered at 0.01-0.1 Hz. In order to reduce the number of comparisons 

for the connectivity analysis conducted in SPM 12, we included a grey matter mask. Then, the 

correlation of the rs-fMRI time series between the respective seed and coherently active regions 

were computed for each subject yielding individual functional connectivity maps for each seed. 

In a last step, we conducted one-sample t-tests in SPM 12 (FWE, p < .05) comprising the 

individual functional connectivity maps for each seed. Age and gender were included as 

covariates. The SPM analyses yielded the respective functional connectivity maps for each 

seed. 

 

Evaluation of spatial overlap: Dice Similarity Coefficient 

To examine the overlap between the TPNs and the corresponding tau-dependent seed-

based networks, we next calculated the Dice Similarity Coefficient (DSC). The DSC is a 

measure that quantifies the spatial overlap between two binarized maps and is calculated as 

follows: DSC = 2��(�௫+ �௬) 

where �� denotes the volume intersection between the image volume �௫ and �௬, which is 

divided by the sum of the respective image volumes �௫ and �௬. The DSC thereby yields the 

percentagewise overlap between two maps/networks. It is interpreted as follows: <0.2 reflects 

poor, 0.2-0.4 fair, 0.4-0.6 moderate, 0.6-0.8 good, and > 0.8 near complete overlap (Savio et 

al., 2017). 

In order to calculate the DSC, we first binarized the generated t-maps of the seed-based 

networks. Next, the generated TPNs were binarized at a z-score of z > 2.0. We then compared 
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the spatial overlap between the TPNs and the corresponding seed-based networks. Furthermore, 

to characterize the topography of the seed-based networks, we compared these networks with 

previously established functional connectivity networks obtained by a rs-fMRI study in 27 

healthy subjects at the FIND lab of Stanford University (Shirer et al., 2012). The Stanford 

networks consist of 14 networks, including the DMN, salience network and language network, 

and have consistently been used by other studies to characterize resting-state functional 

connectivity networks (Lehmann et al., 2013; Leonardi et al., 2014; Lim et al., 2014). We 

quantitatively compared the spatial overlap of each binarized seed-based network against all 

binarized resting-state networks. The resting-state network with the highest dice coefficient was 

chosen as best match for the seed-based network. 

 

Relation between Braak stages and tau pathology networks (TPNs) 

To examine the association between tau pathology in the respective TPNs and the 

individual Braak stage of each patient, we extracted mean SUVRs for Braak stages I/II-VI for 

each patient based on the region of interest (ROI)-based Braak staging approach previously 

used (Schöll et al., 2016; Hoenig et al., 2017). Moreover, we computed the median SUVR for 

each Braak stage across the patient sample. Patients, who had a mean SUVR greater than the 

median, were determined to be positive for the respective Braak stage, whereas patients who 

had a lower SUVR than the median were classified as negative. The highest positive Braak 

stage was used for final classification. Patients could obtain a score ranging from 2-6 

(corresponding to Braak stage I/II-VI) and were grouped into either an early Braak (score 2-3) 

or advanced Braak group (stage 4-6). Finally, we compared the mean SUVRs of each TPN 

between the early (n=10) and the advanced (n=12) Braak group. We extracted the mean SUVRs 

for the respective components based on the intensity standardized images using the binarized 

component maps. As the assumptions for normality and homoscedasticity were not given, the 

Mann-Whitney-U test was used for comparison. Results were corrected for multiple 

comparison using Bonferroni correction (p* = .005). 

 

Relation between cognitive function and tau burden in tau pathology networks (TPNs) 

We further examined whether tau burden within distinct TPNs was associated with 

global cognitive dysfunction. We used the MMSE as a measure of global cognitive function 

(Folstein et al., 1975). Both, tau burden within each component and global cortical tau was 

quantified based on the individual SUVR images employing the binarized component maps and 

a whole-brain cortical grey matter ROI, respectively. The extracted SUVRs for each component 
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and for global cortical tau burden of each patient were correlated with the individual MMSE 

scores including age and gender as covariates. The analyses were corrected for multiple 

comparisons using Bonferroni correction (p* = .0045). 

 

Results 

Tau pathology networks (TPNs)  

The ICA resulted in the detection of independent TPNs, which spatially resembled 

established language, frontal control, default mode, visuospatial, and hippocampal networks 

(Fig. 1). Some of the TPNs showed a symmetrical bi-hemispheric expansion (Component 2-

4,6,8, & 10), whereas the remaining components were lateralized (Component 1,5,7, & 9). 

Moreover, the TPNs were characterized by varying 

loads of tau pathology (Table 2). The generated TPNs 

coincided with highly functionally connected regions 

predominantly involving parietal and temporal areas. 

The total percent variance explained by all ten 

components was 95.7%. The topographical 

distributions of the TPNs are depicted in blue in Fig. 3. 

The different ICA settings revealed similar 

components confirming the statistical stability of the 

generated TPNs. Importantly, the ICA including only 

amyloid positive patients resulted in similar 

components as the initial ICA (Supplementary Fig. 4). 

Moreover, the conventional SPM approach using a t-

test yielded four peaks of tau pathology, which 

resembled the tau maxima detected by the ICA 

(Supplementary Table 1). Further details of the 

additional analyses can be found in the supplementary 

data. 

 

Tau-dependent seed-based functional networks 

The tau maxima of the respective TPNs used for the seed-based approach corresponded 

to the following regions; temporal middle gyrus, precentral gyrus, precuneus, superior occipital 

region, fusiform gyrus, posterior cingulate cortex, cuneus, frontal medial orbital region, 

superior temporal gyrus and parahippocampal gyrus (Table 3). The seed-based functional 

TPN Mean SUVR (SE) 

1 1.70 (0.09) 

2 1.66 (0.11) 

3 1.57 (0.12) 

4 1.68 (0.90) 

5 1.52 (0.08) 

6 1.71 (0.10) 

7 1.38 (0.07) 

8 1.42 (0.07) 

9 1.59 (0.09) 

10 1.51 (0.04) 

Table 2 – Tau load of independent tau 

pathology networks. Mean SUVR and 

standard error for each tau pathology 

network are provided. TPN = tau 

pathology network; SUVR = standard 

uptake value ratio; SE = standard error. 



Tau pathology networks in Alzheimer’s disease 

 

 

connectivity analysis resulted in specific functional connectivity networks for each tau maxima. 

For several seed-based analyses, the functional networks included remote brain regions which 

were not anatomically adjacent to the corresponding seed region (seed-based networks: 

1,2,6,8,9, & 10). Furthermore, the tau-dependent seed-based networks were characterized by a 

symmetrical bi-hemispheric functional connectivity pattern. The respective projections of the 

seed-based networks are depicted in red in Fig. 3. 

TPN Max Z-Score Coordinates AAL Region 

X Y Z 

1 5.54 -60 -46 0 L Temporal Middle Gyrus (85) 

2 6.53 -48 0 46 L Precentral Gyrus (1) 

3 5.95 8 -52 52 R Precuneus (68) 

4 7.11 28 -68 26 R Superior Occipital Region (50) 

5 8.06 -40 -66 -12 L Fusiform Gyrus (55) 

6 5.10 0 -46 28 L Posterior Cingulate Cortex (35) 

7 5.32 10 -72 24 R Cuneus (46) 

8 3.96 6 50 -6 R Frontal Medial Orbital Region (26) 

9 6.32 58 -48 16 R Superior Temporal Gyrus (82) 

10 3.93 -24 -5 -22 L Parahippocampal Gyrus (39) 

Table 3- Coordinates and z-scores of the tau pathology networks. The maximum z-score and the peak 

coordinates of each tau pathology network with the corresponding brain region based on the automated 

anatomical labeling atlas are listed (Tzourio-Mazoyer et al., 2002). TPN= tau pathology network; Max 

= Maximum; AAL = Automated anatomical labeling atlas; R = Right; L= Left. 

Spatial overlap between distribution of tau pathology and functional networks 

 The comparison between the identified TPNs and the tau-dependent seed-based 

functional connectivity networks yielded moderate spatial overlap (DSC: 0.4-0.6) for 

components 3, 5, and 10 with their corresponding tau-dependent seed-based functional 

networks. In addition, TPN components 1, 4, 7, 8, and 9 were fairly (DSC: 0.2-0.4) associated 

with the corresponding tau-maximum seeded functional network. Only poor overlap (DSC < 

0.2) was found between the seed-based networks and the remaining components (2 & 6). The 

respective DSCs are reported in Table 4A. 

The comparison between the tau-dependent seed-based networks with known resting-

state functional connectivity networks yielded moderate overlap (DSC: 0.4-0.6) for seed-based 

networks 3,4,6,8, & 9, predominantly with regions associated with the ventral and dorsal DMN. 

Moreover, fair overlap (DSC: 0.2-0.4) was observed between the seed-based networks 1,2,5, 

and 7 and the language, the salience, higher visual, and primary visual network. The seed-based 
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network 10 strongly resembled the hippocampal network. As the hippocampal network is not 

part of the predefined Stanford networks, we could not quantitatively assess the actual spatial 

overlap. The respective DSCs are reported in Table 4B. 

Fig. 2 provides an exemplary illustration of the best overlapping TPN, the corresponding 

seed-based network, and the best matching Stanford resting-state network on a rendered brain 

surface. Fig. 3 illustrates the spatial resemblance between the respective components 

(highlighted in blue) and the corresponding seed-based network (highlighted in red) and the 

best-matching Stanford resting-state network (highlighted in green), respectively. This figure 

further includes the DSCs for the quantification of the spatial overlap between the respective 

TPNs and the seed-based networks (first DSC) and between each seed-based network and the 

corresponding Stanford resting-state network (second DSC). 

 

A. DSC for overlap between 

TPN and SBN 

B. DSC for overlap between 

SBN and RSN 

TPN 1 & SBN 1 0.39 SBN1 & Language Network 0.37 

TPN 2 & SBN 2 0.17 SBN 2 & Salience Network 0.28 

TPN 3 & SBN 3 0.57 SBN 3 & Ventral DMN 0.56 

TPN 4 & SBN 4 0.34 SBN 4 & Ventral DMN 0.42 

TPN 5 & SBN 5 0.41 SBN 5 & Higher Visual Network 0.33 

TPN 6 & SBN 6 0.13 SBN 6 & Dorsal DMN 0.51 

TPN 7 & SBN 7 0.36 SBN 7 & Primary Visual Network 0.23 

TPN 8 & SBN 8 0.25 SBN 8 & Dorsal DMN 0.55 

TPN 9 & SBN 9 0.38 SBN 9 & Language Network 0.52 

TPN 10 & SBN 10 0.46 SBN 10 & Hippocampal Network na 

Table 4 – Dice similarity coefficient for the overlap between networks. The table summarizes the 

quantification of the overlap between the tau pathology network and the corresponding seed-based 

network (A) and the seed-based network and best-matching Stanford resting-state network (B). DSC = 

Dice similarity coefficient; TPN = Tau pathology network; SBN = Seed-based network; RSN = Resting-

state network; DMN = Default mode network; na = Not available. 

 

Relationship between Braak stages and tau pathology networks (TPNs) 

The advanced Braak group showed significantly higher SUVRs in eight components 

when compared to the early Braak group (Fig. 4). Mean SUVRs in component 3 and 7 did not 

significantly differ between groups after correcting for multiple comparison (p* = .005), 

although a trend was observed. A summary of the U-statistics can be found in the supplementary 

data (Supplementary Table 2). 
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Cognitive function and tau burden in distinct tau pathology networks (TPNs) 

Global cognitive function was negatively correlated with tau burden in components 4 

(r(18)= -.496, p= .026), 5 (r(18)= -.554, p= .011), and 7 (r(18)= -.641, p= .002). A trend 

significant effect was observed for global cognitive function and component 3 (r(18)= -.440, 

p= .052). Global cortical tau burden, assessed based on a cortical gray matter ROI, was not 

negatively correlated with global cognitive function (r(18)= -.305, p= .190). Exclusively, the 

negative association between global cognitive function and tau burden in component 7 survived 

correction for multiple comparison (p* = .0045). The tau maximum of component 7 coincided 

with cuneal regions, whereas the tau maximum of component 3 was located in precuneal areas, 

of component 4 in superior occipital, and of component 5 in fusiform gyral areas. 

 

Discussion 

 In the current study, we identified a set of independently coherent networks of tau 

pathology in a sample of patients with mild to moderate Alzheimer’s disease. This finding 

supports the idea that the aggregation of tau pathology in the brain follows several independent 

pathways and partly develops coherently in different compartments of the brain. The peaks of 

tau within these detected TPNs included, among others, the precuneus, parahippocampus, and 

posterior cingulate cortex, regions known to be involved in various functional networks. In 

accordance with this, the TPNs overlapped distinctly with seed-based functional connectivity 

networks, some of which have previously been reported to be impaired in Alzheimer’s disease, 

including the DMN (Greicius et al., 2004; Zhang et al., 2010; Zhou et al., 2010) and the frontal 

control network (Lehmann et al., 2013; Agosta et al., 2012; Balthazar et al., 2014). Moreover, 

tau burden within the TPNs was associated with the advancement along Braak stages and global 

cognitive dysfunction, indicating that the identified networks may bear clinical relevance. In 

the following, we discuss our findings in the context of (a) distribution of tau pathology along 

independent pathways, (b) the relevance of TPNs in regard to disease progression and cognitive 

profiles, and (c) the relationship of these TPNs with functional connectivity networks. 

 

Properties of independent tau pathology networks 

 Here, we determined a set of distinct TPNs by means of ICA. Some of the TPNs 

involved regions that were not anatomically adjacent. This is per se of interest as it indicates 

that tau pathology does not distribute homogenously across the brain, but importantly 
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propagates across independent pathways and possibly arises synchronously in different brain 

compartments at certain stages of the disease.  

 Interestingly, several TPNs were characterized by a symmetrical distribution pattern 

across hemispheres, whereas some were asymmetric. This characteristic difference in the 

symmetry of the TPNs may be partly attributed to early disease stage, where tau pathology may 

not have advanced to a symmetric pattern across hemispheres within a given network, but has 

centered on the most susceptible regions of tau accumulation. Indeed, according to recent 

models of tau propagation misfolded tau proteins predominantly spread along the most 

interconnected regions of the seed of tau pathology (Fox et al., 2011; Liu et al., 2012; Menkes-

Caspi et al., 2015). Thus, depending on the stage of the disease and the anatomical location of 

the seed of pathology, which may be represented by the tau maxima of each independent 

component, tau distribution patterns may differ in their symmetry. Moreover, the current 

finding of asymmetric components accords with the known fact that neurodegenerative 

disorders may start in one hemisphere and initially spread dominantly across this hemisphere 

before eventually affecting the other hemisphere in later stages of disease (Shi et al., 2009; 

Claassen et al., 2016). In this regard, the implications of employing ICA as an analysis method 

also need to be considered. ICA is a data-driven approach that is based on the underlying tau 

pathology distribution of the patient sample, which in this study consists of patients with mild 

to moderate Alzheimer’s disease. Consequently, component patterns of coherent tau pathology 

can be identified that may be characterized either by an asymmetric distribution pattern, likely 

reflecting earlier stages of the disease, or by symmetric and bi-hemispheric patterns, potentially 

reflecting a more advanced disease stage. ICA hence defines independent regional patterns of 

coherent tau pathology, which do not necessarily have to be symmetric supporting the current 

finding of asymmetric and symmetric component patterns. 

 As discussed above, ICA can determine unique disease-specific and coherent patterns 

of tau pathology without any a priori knowledge or topographic assumptions (Pagani et al., 

2016). This blind source separation technique contrasts conventional voxel-based statistical 

parametric mapping approaches that are often based on a priori hypotheses regarding the 

cortical disease localization and require categorical distinction into significant and non-

significant voxels depending on the intensity values of the voxels. ICA, on opposite, provides 

a more graduated consideration, where significance is not based on severity but regional 

coherence of pathology and thus regional interrelations. Importantly, ICA does thereby not 

exclusively provide components of highest tau pathology, but can also determine regional 

distribution patterns of lower pathology load, which are nevertheless characterized by 
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synchronous tau pathology aggregation. In compliance with this, in the current study the 

conventional SPM approach only yielded four peaks of tau pathology, whereas by means of 

ICA several additional TPNs were established. Importantly, the TPNs identified by ICA were 

characterized by varying loads of tau pathology pointing towards different susceptibility of 

these TPNs potentially depending on the stage of the disease. Intriguingly, the components 

involving orbito-frontal and cuneal areas showed lowest tau burden. These regions are known 

to be affected relatively late in Alzheimer’s disease according to the neuropathological Braak 

stages (Braak and Braak, 1991; Braak and Braak, 1995). Interestingly, when directly assessing 

the relationship between the neuropathological Braak stages and the identified TPNs, we 

observed that individuals in an advanced Braak stage demonstrated higher tau pathology burden 

in the established TPNs as compared to individuals at an earlier Braak stage. This result 

indicates that the accumulation of tau pathology within the identified TPNs may contribute to 

the advancement along Braak stages. Moreover, in the early Braak stage group highest tau 

burden was observed in the TPN associated with the parahippocampus, whereas the advanced 

Braak stage group presented highest tau pathology in the TPN associated with the posterior 

cingulate cortex. This may suggest that distinct TPNs exist as a determinant of each Braak stage. 

Larger data samples of early and advanced Braak stage groups will be required to investigate 

this assumption further. Overall, the current findings suggest that the differential load of tau 

pathology in the independent TPNs may track the expansion of tau pathology at various disease 

stages.  

 In addition to the implications of the TPNs with respect to the neuropathological Braak 

staging, tau pathology within the TPN including cuneal and primary visual areas was also 

associated with decreased global cognitive function. This finding points towards a specific 

deleterious effect as soon as tau pathology strikes visual cortical brain regions (Braak and 

Braak, 1991; Braak and Braak, 1995) underscoring the regional specificity of a tau-cognition 

relationship. Moreover, these findings are consistent with recent findings reporting a 

relationship between cognitive function and regional tau pathology (Brier et al., 2016; 

Ossenkoppele et al., 2016; Shimada et al., 2016). To achieve a more fine-grained 

characterization of distinct cognitive profiles in Alzheimer’s disease, future studies may employ 

an elaborate neuropsychological assessment and examine its correspondence with the TPNs 

identified here. Alternatively, as atypical cases of Alzheimer’s disease such as posterior cortical 

atrophy or the logopenic variant of Alzheimer’s disease express distinct cognitive profiles, 

which are dissociable from amnestic cases, further investigations are warranted that explore 

whether these clinical variants are also characterized by variant-specific TPNs. 
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 Overall, our results provide first evidence of independently coherent tau pathology 

networks, which not only appear to track disease progression but are also, at least in part, relate 

to global cognitive dysfunction. Importantly, these networks of interrelated tau deposition point 

towards brain regions potentially being synchronously affected by tau pathology in the course 

of the disease, providing new insights into the mechanistic pathway of the disease. Given that 

the identified TPNs differed in their topographical distribution and in the degree of tau 

pathology, it will be of great interest to investigate the influence of additional factors on the 

generation of these networks. In particular, a putative synergistic effect of Aβ and tau pathology 

may be of interest with regard to the propagation of tau pathology along the identified networks. 

Moreover, investigating how the cellular, functional, and structural composition underlying 

specific networks influences the propagation of tau pathology and thereby the generation of 

these distinct TPNs will provide further information on the pathophysiological processes 

underlying Alzheimer’s disease. 

 

Relation between independent tau pathology patterns and functional connectivity 

networks 

 Some of the identified TPNs involved anatomically distant regions, indicating that these 

regions may share a joint mechanism, which could be of structural or functional nature and 

which may contribute to the coherent accumulation of tau pathology in these compartments. In 

the current study we focused on the role of seeded functional connectivity in regard to in vivo 

tau distribution patterns for two reasons: First, seed-based connectivity networks include 

regions which show highest connectivity to the seed and thus comply with recent models of tau 

propagation. Second, functional connectivity hubs have been suggested to be most susceptible 

to the development of neuropathology (Buckner et al., 2009; Drzezga et al., 2011; de Haan et 

al., 2012). From these hubs pathology may then spread to connected brain regions (Buckner et 

al., 2009; Drzezga et al., 2011; de Haan et al., 2012). Indeed, a number of studies consistently 

demonstrated striking similarity and overlap of Aβ plaque pathology with functional 

connectivity networks (Buckner et al., 2005; Buckner et al., 2009; Lehmann et al., 2013; Grothe 

and Teipel, 2016). In accordance with this, we observed tau-dependent seed-based functional 

networks, characterized by a symmetrical bi-hemispheric activation, which in part spatially 

corresponded to the established TPNs. 

 Some of the seed-based networks resembled the salience, the primary visual, the higher 

visual, the language, and the hippocampal network indicating that tau pathology does not 

exclusively distribute along one particular network. This finding is in accordance with recently 

provided evidence demonstrating that the Alzheimer’s disease- associated tau pathology pattern 
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corresponds to several cognition-relevant networks (Hansson et al., 2017). Interestingly, the 

majority of tau-dependent seed-based networks established in the current study predominantly 

overlapped with regions of the ventral and dorsal DMN. This suggests that the DMN may be 

particularly susceptible to not only Aβ pathology, as previously shown (Buckner et al., 2005; 

Buckner et al., 2009; Grothe and Teipel, 2016), but also to tau pathology. Note, however, that 

all identified seed-based networks overlapping with the DMN had different origins, suggesting 

that the networks identified in our study may represent subnetworks of a more superordinate 

network. The existence of such subnetworks within a superordinate network has been recently 

proposed (Doucet et al., 2011). These subnetworks may differently be affected depending on 

the stage of the disease and therefore, by using ICA, several components, each with a different 

pathological load, can actually belong to a more superordinate network. Thus, directly 

comparing the spatial overlap between ICA-derived patterns of tau load and an entire resting-

state network such as the DMN may not be an appropriate comparison, as the ICA patterns may 

only reflect subnetworks of the resting-state networks. Therefore, generating seed-based 

functional connectivity networks from the ICA-derived patterns likely allows to more 

accurately compare the functional networks related to tau pathology distribution patterns. 

 Although we observed an overlap between the TPNs, the tau-dependent seed-based 

networks, and known resting-state networks, the overlap was moderate. Several aspects may 

contribute to this moderate spatial correspondence:  

 As the seed-based functional connectivity networks in the current study were defined 

based on a group of healthy young adults, they likely differed from the functional networks 

present in Alzheimer’s disease patients (Jones et al., 2016; Teipel et al., 2016). Following the 

concept of tau propagation, tau pathology may no longer be able to expand along these networks 

due to disease-related disconnection between regions within a given network, changes in the 

location of network hubs, or functional breakdown of the entire network. Thus, the overlap 

between the tau-dependent seed-based networks and the TPNs may have been moderate due to 

disease-related and/or age-related changes in network architecture. Based on the proposed 

prion-like mechanisms of tau, tau pathology may propagate along reorganized networks that 

may differ from the ones identified in the young.  

 Furthermore, although a close link between structural and resting-state functional 

connectivity has been reported (Greicius et al., 2009), functional connectivity maps only 

capture the superficial structure of regions and collapse several sub-regions into one. Given that 

tau pathology appears to follow synaptic connectivity (Clavaguera et al., 2009; de Calignon et 

al., 2012; Liu et al., 2012), the spreading pattern may depend on structural connectivity rather 
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than functional connectivity. It is thus possible that the overlap between structural networks and 

the established TPNs is more coherent. Future multimodal studies using diffusion tensor 

imaging and fMRI are warranted to understand the structural and functional underpinnings 

contributing to the propagation of misfolded tau proteins within neuronal networks. 

 Finally, we only included patients with mild to moderate Alzheimer’s disease in our 

current analyses. Thus, tau pathology in the current patient cohort may just have started to 

spread from the initial seed, thereby rendering the overlap with the corresponding seed-based 

network rather moderate. Longitudinal studies are necessary to assess whether at advanced 

stages of Alzheimer’s disease, the overlap between the TPNs and the corresponding seed-based 

networks becomes more concordant. 

 Despite these arguments, it appears that the functional connections between regions, 

which are characterized by synchronous oscillatory activity, may provide a pathway 

contributing to the propagation of tau pathology within distinct neural networks. Longitudinal 

tau-PET and functional imaging data from the same Alzheimer’s disease cohort will be 

necessary to establish whether the functional coherence between regions acts as an amplifying 

mechanism for tau pathology to spread. 

 

Limitations 

 A few limitations need to be considered when interpreting our results. First, our analysis 

was restricted to a relatively small PET dataset. Studies that include larger patient cohorts are 

needed to confirm that the established TPNs are characteristic for Alzheimer’s disease patients. 

Secondly, it has to be noted that we employed a rs-fMRI dataset of young healthy controls, 

which was used to establish seed-based functional networks associated with the healthy state. 

Using a rs-fMRI data set of age-matched healthy older controls would have allowed us to 

investigate the possible age-related pattern of tau distribution along neural networks. However, 

including an age-matched control sample would have required additional PET or CSF 

measurements to exclude any existing ageing-related pathology, which may have already 

affected (subclinically) network structures. Moreover, we cannot exclude spill-over effects 

from the choroid plexus influencing the signal in hippocampal regions. However, given that 

only one component was associated with hippocampal regions, we believe that the potential 

influence was marginal at most. Finally, we used a cross-sectional approach to assess the 

existence of TPNs and their relation to functional networks. Longitudinal designs may be better 

suited to explore the temporal spread of tau pathology along functionally connected brain 

regions. 
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Conclusion 

The results of this study indicate that in Alzheimer’s disease, the spatial distribution of 

tau pathology is not homogeneous but seems to progress within independent, coherent 

networks. Moreover, tau pathology load in these identified networks is associated with the 

advancement along Braak stages. In addition, the independent, coherent networks were 

characterized by differential distribution patterns, which in turn partially corresponded with 

functional connectivity networks. The relationship between functional connectivity network 

and TPNs may offer new insights into the possible mechanism of tau propagation across brain 

regions. Longitudinal approaches are warranted to further elucidate the temporal spreading 

pattern of tau pathology across large-scale networks, which will provide important information 

on the mechanisms underlying Alzheimer’s disease and may further inform investigation of 

anti-tau based treatment efficacy. 
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Figures 

 

 

Fig. 1 – Illustration of independently coherent tau pathology networks. The respective region 

corresponding to the peak coordinates of each component and the z-score range are depicted 

below each component. The components are projected on the Colin brain in MNI space. Max 

= Maximum. 

 

 

Fig. 2 – Exemplary illustration of the distribution pattern of respective networks. The networks 

are rendered on the inflated Colin brain in MNI space. Blue = Tau pathology network, Red = 

Seed-based network, Green = Ventral default mode network. DMN = Default mode network. 
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Fig. 3 – Illustration of networks and corresponding dice similarity coefficient. The respective 

tau pathology networks are illustrated in blue, the corresponding seed-based networks in red, 

and the best-matching resting-state Stanford network in green. The first dice similarity 

coefficient per cell represents the spatial overlap between the tau pathology network and the 

seed-based network, the second coefficient relates to the overlap between the seed-based and 

the resting- state Stanford network. All networks are projected on the Colin brain in MNI space. 

DSC = Dice similarity coefficient; TPN = Tau pathology network, SBN = Seed-based network; 

DMN = Default mode network. 
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Fig. 4 – Illustration of tau burden in each independent component for the early and advanced 

Braak group. Mean SUVRs and standard error for each component are depicted for the early 

Braak (blue) and advanced Braak (red) group. Significant differences after multiple 

comparison correction are marked with an asterisk. SUVR = Standard uptake value ratio, TPN 

= Tau pathology network. 
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Supplementary Data 

 

Results of confirmatory ICA analyses 

The ICA with the default setting of 20 components revealed 20 components, out of which 

a few resembled the major components obtained in our initial analysis. Some of the remaining 

components were lateralized and occurred separately for the respective hemisphere, while other 

components involved the same region in both hemispheres (Supplementary Fig. 1).  

Reducing the default setting from 20 components to 5 components yielded similar 

components as the initial analysis thereby confirming the statistical stability of the established 

TPNs. The total variance explained by the components was 84.70%, thus lower than the variance 

of the ICA including 10 components (Supplementary Fig. 2).  

Decreasing the smoothing kernel from 12mm FWHM to 8mm FWHM provided similarly 

looking TPNs explaining 95.16% of the variance, additionally supporting the setting of our ICA 

approach (Supplementary Fig. 3).  

Running an ICA with 8 allowed output components only including patients, from who we 

had obtained a positive amyloid PET scan (n=16), yielded similarly looking TPNs 

(Supplementary Fig. 4). 

 

Results of conventional SPM analysis 

We complemented our analyses with a conventional SPM-based approach to identify tau 

maxima as seeds for a seed-based functional connectivity analysis. To extract the tau maxima, we 

employed a voxel-based t-test comparing tau pathology load between the Alzheimer’s disease 

patients and a group of healthy controls (n=19). Thereby, we were able to identify four peaks of 

tau pathology. Interestingly, these maxima (parahippocampus, fusiform gyrus, cuneus, frontal 

middle gyrus) resembled the tau maxima from the independent components detected by the ICA. 

When submitting these four maxima as seeds to a seed-based functional connectivity analysis of 

resting state fMRI data, we obtained similar networks and dice coefficients as produced by the 

initial seed-based analysis based on the independent components (Supplementary Table 1). 
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Seeds Dice for overlap between SBN & RSN 

L Parahippocampus SBN 1 & dDMN  0.40 

R Fusiform Gyrus SBN2 & dMN  0.07 

R Cuneus SBN3 & vDMN  0.61 

R Frontal Middle Gyrus SBN4 & ECN 0.27 
Supplementary Table 1 – Seed regions and overlapping seed-based and resting-state 

networks derived from a conventional SPM-approach. SBN = Seed-based network, RSN 

= Resting-state network, DMN = Default mode network, ECN = Executive control 

network, na = Not available 

 

Results of comparison tau load per component between early and advanced Braak group 

A significant difference between the two groups was observed for 8 components after correcting 

for multiple comparisons (p* = .005). The table below provides the U-statistics of the comparisons. 

Significant differences are marked with an asterisk. 

Component 1 U = 5, p < .001* 

Component 2 U = 3, p < .001* 

Component 3 U = 21, p = .010 

Component 4 U = 8, p = .001* 

Component 5 U = 2, p < .001* 

Component 6 U = 3, p < .001* 

Component 7 U = 17, p = .005 

Component 8 U = 5, p < .001* 

Component 9 U = 2, p < .001* 

Component 10 U = 13, p = .002* 

Supplementary Table 2 – Summary of the U-statistics based on the 

comparison between the early and advanced Braak group. Significant 

differences that survived multiple comparison correction are highlighted 

with an asterisk.  
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Supplementary Fig. 1 – Independent component analysis with the default setting of 20 allowed components. The 

peak coordinates, the brain projection, and the z-score range are depicted for each component.  
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Supplementary Fig. 2 – Independent component analysis with 5 allowed 

components. The peak coordinates, the brain projection, and the z-score range are 

depicted for each component.  
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Supplementary Fig. 3 – Independent component analysis using z-images smoothed 

with a FWHM kernel of 8mm instead of 12mm. The peak coordinates, the brain 

projection, and the z-score range are depicted for each component. 
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Supplementary Fig. 4 – Three exemplary independent components from the 

independent component analysis using z-images of patients with a positive amyloid 

PET scan. The peak coordinates, the brain projection, and the z-score range are 

depicted for each component. 
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a b s t r a c t

Cognitive reserve (CR) is defined as the ability to maintain functionality despite accumulating pathology.

Education has been used as a proxy for CR. For example, by using positron emission tomography imaging,

higher educated Alzheimer’s disease (AD) patients presented increased amyloid b pathology than lower

educated patients despite equal symptomatology. Whether similar associations exist for in vivo tau

pathology remains elusive. We utilized [18F]AV-1451 positron emission tomography imaging to examine

whether high-educated AD patients (n ¼ 12) present more severe tau pathology compared with low-

educated patients (n ¼ 12) despite equal clinical severity in regions of interest corresponding to the

pathologic disease stages defined by Braak & Braak. We report tau pathology in advanced Braak stages

associated with parietal and frontal regions in high-educated AD patients, whereas in low-educated AD

patients tau accumulation is still confined to lower Braak stages associated with temporal and cingulate

regions. Highly educated AD patients seem to be able to tolerate more tau tangle pathology than lower

educated patients with comparable cognitive impairment supporting the cognitive reserve hypothesis.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

Sporadic Alzheimer’s disease (AD) is the most common cause of

dementiawith aworld-wide prevalence of approximately24million

people (Reitz and Mayeux, 2014). The neuropathologic hallmarks of

AD are extracellular amyloid b (Ab) plaque deposition and intra-

cellular aggregation of misfolded tau proteins (neurofibrillary tan-

gles). Based on the observed disparities between the extent of brain

pathology and the individual clinical expression in patients with AD

(Katzman et al., 1988), the theoretical construct of cognitive reserve

(CR) has been introduced to explain this existing variance.

CR is defined as the ability to preserve functionality despite

brain damage and/or accumulating pathology (Stern, 2002, 2006).

So far, the precise neural implementations of CR-related mecha-

nisms are still not completely understood. It has been suggested

that CR may act through the recruitment of additional brain areas

and/or through the more efficient use of pre-existing resources

(Stern, 2002, 2016). Recently, it has further been argued that task-

invariant neural networks may contribute to the CR-mediated

maintenance of functioning despite increasing pathology and

dysfunction of task-related networks (Stern, 2016). Several factors

have been identified to be associated with greater CR such as pa-

rameters of individual’s lifetime experiences including education,

occupation as well as leisure activities (Stern, 2012). These factors

possibly explain some heterogeneity in the clinical expression

among patients with AD (Stern, 2012).

The degree of CR posits important implications for the time of

diagnosis of AD as clinical symptoms may remain undetected for a

longer period of time in AD patients with higher CR. Moreover,

individuals with high levels of CR show a more rapid deterioration

in cognitive function from the point of diagnosis compared with

patients with lower CR (Andel et al., 2006; Stern et al., 1995). This

accelerated decline is likely due to greater accumulation of patho-

logic burden already present by the time of diagnosis. Thus, these

patients may have already progressed to more advanced Braak

neuropathologic stages leading to severe neurodegeneration,

which can no longer be counteracted via compensatory strategies

by the time of diagnosis. Indeed, it was shown in a histopathologic

study that higher levels of education were related to better cogni-

tive function when AD neuropathology was still absent or mild,

whereas the positive effect of education on cognition was
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attenuated when a person presented advanced neuropathology

(Koepsell et al., 2008). Interestingly, recent positron emission to-

mography (PET) studies using the [18F]AV-1451 tracer for the

visualization of tau pathology indicated that the spreading pattern

of tau pathology measured in vivo corresponded with the estab-

lished neuropathologic stages of tangle deposition as described by

Braak and Braak (1995) potentially allowing staging of the disease

using this tracer (Cho et al., 2016; Schöll et al., 2016; Schwarz et al.,

2016).

In the past decade, PET has provided valuable insights into the

association between CR, cognitive function, and the extent of AD

pathology. Higher educated AD patients demonstrated better

cognitive function in the presence of similar levels of Abpathology in

comparison to lower educated patients (Roe et al., 2008). Further-

more, focusing on prodromal (Morbelli et al., 2013) or probable AD

stages (Kemppainen et al., 2008), patients with high CR showed

greater Ab burden and significantly more pronounced hypo-

metabolism when compared with lower educated patients with

similar clinical symptoms. These observations gave rise to the hy-

pothesis that higher educated people might be able to use reserve

mechanisms to compensate for the functional impairment resulting

from the structural damage due to the AD-related brain pathology.

In addition to Ab deposition, AD is characterized by the aggre-

gation of pathologically misfolded tau proteins. Recent studies

demonstrated that the degree of cognitive impairment or neural

dysfunction was more closely correlated with the extent of tau pa-

thology than the distribution of Ab plaque deposition (Bischof et al.,

2016; Brier et al., 2016; Nelson et al., 2012; Ossenkoppele et al.,

2016). Whether this association is modulated by CR remains

elusive. Just recently, first indications have been collected, sug-

gesting that the negative association between tau pathology and

cognitive function measured in vivo may be stronger in individuals

with lower CR than in individuals with higher CR (Rentz et al., 2016).

Based on these results, the authors proposed that AD patients with

high CR might be able to preserve better cognitive function even

when tau pathology has started to spread to neocortical areas. This

assumption may require further substantiation, given that the

examined study cohort included 133 clinically normal patients, 17

patients with mild cognitive impairment, and only 6 AD patients.

Moreover, tau pathologywas solely assessed in the inferior temporal

region limiting the interpretation of these results regarding the ef-

fects of CR on the association between the global cortical spread of

tau pathology and co-occurring cognitive decline.

Given the current body of evidence indicating that AD patients

with high CR are able to cope better with increased brain pathology,

we aimed to assess whether higher educated AD patients showed

greater tau pathology burden and whether they had already pro-

gressed to more advanced Braak stages in comparison to lower

educated AD patients with similar clinical expression. For that

purpose, we analyzed tau pathology in different regions of interest

(ROIs) representing a respective Braak stage in a sample of AD pa-

tients fromwhomwe obtained [18F]AV-1451 PET scans. Referring to

the CR hypothesis, we anticipated that at comparable levels of

cognitive impairment, patients with higher levels of educational

attainment would demonstrate more severe tau burden as well as a

more advanced distribution of tau pathology than patients with

lower educational attainment.

2. Methods and materials

2.1. Participants

We included data from 14 healthy older adults and 24 patients

with typical AD, who were diagnosed with probable AD dementia

using the recommended NIA-AA guidelines (McKhann et al., 2011)

and based on the results of the diagnostic PET imaging or CSF liquor

measurements. All participants underwent a [18F]AV-1451 PET scan

for the in vivo assessment of tau pathology. The [18F]AV-1451 PET

scans of 17 AD patients were acquired in the Nuclear Medicine

Department of the University Hospital Cologne. The remaining 21

scans of the 14 healthy controls and the 7 AD patients were

collected on 3 sites as part of the multicenter trial investigating the

clinical application of [18F]AV-1451 conducted by AVID Radiophar-

maceuticals, Inc, Philadelphia (NCT 02016560). Key inclusion

criteria for the patient sample were: (1) diagnosis of probable

typical AD according to the NIA-AA criteria; (2) age range: >55 �

80; (3) Mini Mental State Examination (MMSE) score �20; (4)

evaluable [18F]AV-1451 scan; and (5) self-report on educational

attainment. The study was approved by the local ethic committees

at the respective sites. All participants signed informed consent

regarding the scientific evaluation and publication of their data.

2.2. Educational attainment and cognitive function

Educational attainment was defined as the sum of schooling and

the following professional education in years (e.g., years of voca-

tional or university training). The AD patients were grouped

according to their level of educational attainment into a high-

educated AD (HEAD) group and a low-educated AD (LEAD) group

using a median split (Mdn ¼ 15.50 years). The group of healthy

controls consisted of 7 high-educated and 7 low-educated partici-

pants again based on a median split (Mdn ¼ 15 years). Global

cognitive function was assessed by the MMSE, which had been

recorded during the clinical visit within 3 months before the

scanning procedure (Folstein et al., 1975).

2.3. Positron emission tomography

The PET scans were acquired on a PET/CT Siemens BiographmCT

Flow 128 Edge (Siemens, Knoxville, TN, USA), a Siemens Biograph

64 PET/CT (Siemens, Erlangen, Germany), a Siemens HRþ (Siemens,

Erlangen, Germany), and a GE Discovery PET/CT 600 (GE Health-

care, Milwaukee, WI, USA). PET scans collected on the Siemens

BiographmCT Flow 128 Edge (n¼ 17) were acquired in list mode for

15 minutes after an intravenous injection with a mean dose of 225

MBq of [18F]AV-1451 and a rest period of 90 minutes. PET scans

collected on the Siemens Biograph 64 (n¼ 16), the HRþ (n¼ 3), and

the GE Discovery PET/CT 600 (n¼ 2) were acquired as 4 � 5 minute

frames for 20 minutes after 90 minutes after injection of a mean

dose of 384 MBq [18F]AV-1451.

2.4. Data processing

All [18F]AV-1451 PET scans were preprocessed using statistical

parametric mapping (SPM), version 8 (Wellcome Trust Centre for

Neuroimaging, Institute of Neurology at University College London,

London, UK). The images were spatially normalized to a tau tem-

plate in Montréal Neurological Institute (MNI) space and smoothed

with a Gaussian filter of 5 mm FWHM. The tau template was pre-

viously established by our group based on a dataset of [18F]AV-1451

PET scans from 19 healthy controls (M(age) ¼ 56.63 � 16.66 years)

provided by AVID Radiopharmaceuticals (Hammes et al., 2016).

Normalization of the individual [18F]AV-1451 scans to this template

resulted in successful preprocessing of the scans. Standard uptake

value ratios (SUVRs) were calculated employing in-house scripts in

MATLAB R2016a (The MathWorks, Inc, Natick, MA, USA) using the

cerebellum as reference region. The cerebellum is a preferable

reference region for tau-PET given that previous studies have

shown that cerebellar regions are relatively spared of tau pathology
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in AD (Braak and Braak, 1991; Marquie et al., 2015). The individual

SUVR images were then submitted to further analyses.

2.5. Statistical analysis

2.5.1. Region of interest analysis for in vivo Braak staging

To assess whether HEAD patients had already advanced to

higher Braak neuropathologic stages compared with LEAD patients

with a comparable level of cognitive function, we conducted an ROI

analysis by extracting mean SUVRs for ROIs representing different

Braak stages. The set of ROIs (Table 1) was adapted from Schoell

et al. (2016). Data from these ROIs were extracted using the auto-

mated anatomical labeling atlas (Tzourio-Mazoyer et al., 2002).

Mean SUVRs for each ROI belonging to one respective Braak stage

were averaged and submitted to the analysis. Proof of tau pathology

within the ROIs belonging to one Braak stage was considered to

represent the progression to the respective Braak stadium. A

multivariate analysis of variance including age as a covariate was

conducted looking at the main effect of group on tau pathology load

at different Braak stages. Next, post hoc pairwise comparisons of

the mean SUVR of the respective Braak stages between the 3 groups

were carried out using SPSS, version 21 for Windows (SPSS Inc,

Chicago, IL, USA). For the post hoc comparison between the AD

groups with the healthy control group, respectively, we included

age as a covariate, whereas for the post hoc comparison between

the 2 AD groups we included age and MMSE as covariates. Multiple

comparisons were corrected using the Sidak method (�Sidák, 1967).

2.5.2. Voxel-wise whole brain analysis

To examine regions that were distinctly different between the

AD groups and to assure that regional differences in tau pathology

loadwere notmasked out by the ROI analysis, we further conducted

voxel-wise t-test comparisons between the 2 AD groups using

SPM8 including age and MMSE score as covariates. Moreover, to

investigate the spatial pattern of tau pathology in both AD groups,

we compared the LEAD and the HEAD groups against the healthy

control group, respectively, including age as a covariate. The voxel-

based contrasts were set to investigate in which regions HEAD

showed greater tau pathology than LEAD as well as in which re-

gions AD groups presented greater tau burden compared with

healthy controls, respectively. Reverse contrasts were performed to

control for possible inverse relationships. For all comparisons, a

binary grey matter mask was used as an explicit mask to reduce the

number of voxel-wise comparisons to grey matter areas. The sig-

nificance levels for the conducted comparisons were set to p �

0.001 (uncorrected). To rule out that the observed effects might

have been influenced by different scanner types, we conducted a

confirmatory analysis, comparing the scans of the HEAD (6 pa-

tients) and LEAD (11 patients) groups which had exclusively been

scanned on the PET-CT Siemens Biograph mCT Flow 128 Edge

against the healthy control group, respectively.

3. Results

3.1. Demographics of the groups

In total, scans of 24 AD patients and 14 scans of healthy controls

were used for analysis. The demographics of the 3 groups are

summarized in Table 2. No significant difference in the degree of

global cognitive function as assessed with the MMSE was observed

between the 2 AD groups. The 3 groups did not significantly differ

in age, although the healthy control group was on average slightly

younger.

3.2. Regional differences in tau load between high- and low-

educated AD patients

The ROI analysis revealed that HEAD patients already presented

tau pathology in regions, which were associated with Braak stages

V and VI, whereas LEAD showed increased tau pathology still

confined to regions associated with stages III and IV when

compared with healthy controls. No significant differences were

observed between groups for Braak stages I/II. The ANOVA cor-

rected for age yielded a significant main effect of group on tau

pathology load in Braak stages III (F[2,34] ¼ 7.229, p ¼ 0.002), IV (F

[2,34] ¼ 7.665, p ¼ 0.002), V (F[2,34] ¼ 9.362, p ¼ 0.001), and VI (F

[2,34] ¼ 12.352, p < 0.001). No significant main effect of group on

tau pathology load was observed for Braak stages I/II (p ¼ 0.411).

The post hoc comparison between the HEAD and LEAD group

corrected for age and MMSE resulted in significantly higher tau

pathology load in the HEAD group for stage V (F[1,20] ¼ 13.285,

p ¼ 0.002) and VI (F[1,20] ¼ 19.302, p < 0.001). The remaining re-

gions did not significantly differ between groups. The post hoc tests

between the LEAD and healthy control group corrected for age

revealed significant differences for Braak stages III (F[1,23] ¼

19.062, p < 0.001) and IV (F[1,23] ¼ 6.800, p ¼ 0.016), whereas the

remaining Braak stages I/II, V, and VI did not significantly differ

between the 2 groups. Comparing the HEAD group against the

healthy controls correcting for age yielded significant differences

for Braak stages III (F[1,23] ¼ 8.443, p ¼ 0.008), IV (F[1,23] ¼ 11.170,

p ¼ 0.003), V (F[1,23] ¼ 10.972, p ¼ 0.003), and VI (F[1,23] ¼ 12.221,

p ¼ 0.002), but not for Braak stages I/II. A summary of the F-sta-

tistics can be found in the Supplementary Data (Table S1). Themean

SUVRs of the respective Braak stages for each group are depicted in

Fig. 1.

3.3. Effect of education on tau pathology burden in high- and low-

educated AD patients

The voxel-wise comparison between HEAD and LEAD patients

yielded significantly increased tau pathology burden in parietal and

frontal regions in HEAD patients when compared with the LEAD

cohort (Fig. 2) confirming the results of the ROI analysis. Further-

more, the voxel-wise comparisons of the 2 AD groups against the

healthy control group, respectively, revealed different spatial pat-

terns of tau pathology for the high- and low-educated groups

(Fig. 3). The HEAD group showed increased tau burden in temporal,

parietal, and frontal regions, whereas tau pathology in the LEAD

group was confined to temporal and partly to inferior parietal re-

gions when compared to the healthy control sample. The reverse

contrasts comparing the healthy group against the AD groups and

the LEAD against the HEAD group did not reveal significant differ-

ences. The peak activations and MNI coordinates of the voxel-wise

comparisons are summarized in the Supplementary Data (Table S2).

Table 1

Braak regions of interest

Braak stage AAL ROIs

I/II Hippocampus

III Parahippocampal gyrus; fusiform gyrus; lingual gyrus;

amygdala

IV Inferior temporal cortex; middle temporal cortex; temporal

pole; thalamus; posterior cingulate; insula

V Frontal cortex; parietal cortex; occipital cortex; superior

temporal cortex; precuneus; caudate nucleus; putamen

VI Precentral gyrus; postcentral gyrus; paracentral gyrus; cuneus

The ROIs of each Braak stage used for the ROI analysis are summarized. Regions were

adapted from Schoell et al. (2016) and extracted from the automated anatomical

labeling atlas.

Key: AAL, automated anatomical labeling atlas; ROI, region of interest.
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In the confirmatory analysis in the sample exclusively scanned on

one identical scanner, we obtained very similar results

(Supplementary Data, Fig. S3).

4. Discussion

This study demonstrated that tau pathology is more advanced in

HEAD than in LEAD patients with comparable level of cognitive

impairment. The ROI analysis revealed that HEAD patients pre-

sented tau pathology in regions, which are associated with Braak

stages V and VI, whereas the LEAD group demonstrated increased

tau pathology in regions still confined to stages III and IV when

compared to healthy controls. Interestingly, no significant differ-

ence in tau pathology load in mediotemporal regions, associated

with Braak stages I/II, were observed between the 3 groups. All of

these results were further confirmed by a voxel-based whole brain

analysis, which revealed that HEAD patients show a different

spatial tau pattern compared with LEAD patients. In particular,

HEAD patients demonstrated increased tau pathology load in pa-

rietal and frontal areas when compared with LEAD patients.

Importantly HEAD and LEAD patients did not significantly differ in

age and their global cognitive function.

4.1. Role of education on reserve capacity

Our results from the ROI and voxel-based analyses showed that

the accumulation of tau pathology measured in vivo differs given

the level of educational attainment as HEAD patients show more

advanced tau pathology burden compared with LEAD patients with

equal cognitive impairment. Thus, the relation between tau burden

and symptomatic appearance in AD patients seems to be mitigated

by CR-mechanisms acquired through factors such as education.

These results are in line with the observation that the effects of

other biomarkers of AD on cognitive function, such as the amount

of Ab burden or hypometabolism, are influenced by the level of

education (Ewers et al., 2013; Kemppainen et al., 2008; Morbelli

et al., 2013). Histopathologic studies revealed that higher levels of

education were associated with better cognitive functioning, in-

dependent of the level of AD-related brain pathology (Bennett et al.,

2003, 2005). In vivo PET studies investigating CR-related changes

reported that higher levels of education were related to greater Ab

plaque deposition in frontal areas (Kemppainen et al., 2008), and a

significant lower glucose metabolism rate (Ewers et al., 2013;

Kemppainen et al., 2008; Morbelli et al., 2013) and greater deple-

tion of blood flow in temporoparietal areas (Stern et al., 1992)

compared with lower levels of education.

Given the provided body of evidence, it appears that education

does not decelerate the accumulation of pathology, but may serve

to alter the clinical expression of the underlying pathology by

slowing down the progressive cognitive decline caused by the

neurotoxic effects of pathology such as tau pathology. Education is a

factor occurring early in life, when the brain is still developing and

considered most plastic. It is widely accepted that early lifetime

factors can have profound impact on a person’s health status later

in life. Indeed, evidence provided recently showed that early life

factors such as general cognitive ability and parental education

positively influenced age-related structural brain trajectories and

cognition late in life (Walhovd et al., 2016). Aside from these early

factors, higher education has consistently been associated with

healthier lifestyles, less chronic stress, better socioeconomic status,

lifelong mental stimulation and lower exposure to toxic factors.

These variables may all subserve reserve capacities throughout life,

which likely protect against the harming effects of age-related pa-

thology (Adler et al., 2013; Fritsch et al., 2007; Kiecolt-Glaser et al.,

2011; Springer et al., 2005).

Table 2

Group characteristics

Characteristic HC group (n ¼ 14) LEAD group (n ¼ 12) HEAD group (n ¼ 12) Group differences (p values)

HC versus LEAD HC versus HEAD LEAD versus HEAD

Age 62.86 � 11.57 68.08 � 6.91 69.33 � 6.08 n.s n.s n.s

Sex (M/F) 6/8 7/5 9/3 n.s n.s n.s

Education 14.71 � 2.43 12.00 � 1.76 17.33 � 0.99 p < 0.001 p < 0.001 p < 0.001

MMSE 29.50 � 0.52 25.50 � 3.43 25.42 � 3.15 p < 0.001 p < 0.001 n.s.

The demographic characteristics of the studied groups are depicted including the average age in years, sex distribution, years of education, and cognitive function as assessed

by the MMSE. Statistical differences between groups are highlighted in the last column.

Key: F, female; HC, healthy control; HEAD, high-educated AD; LEAD, low-educated AD; M, male; MMSE, Mini Mental State Examination; n.s., not significant.

Fig. 1. Tau pathology load in different Braak stages. The mean SUVRs and the standard

error across the respective ROIs for each Braak stage are depicted for the healthy

control, the low-educated AD group, and the high-educated AD group. Significant

differences (p < 0.05) between the groups, which survived the multiple comparison

correction, are highlighted. Abbreviations: a, significant difference healthy controls

versus low-educated AD group; b, significant difference healthy control versus high-

educated AD group; c, significant difference between low-educated versus high-

educated AD group; HEAD, high-educated AD patients; LEAD, low-educated AD

patients; ROI, region of interest; SUVR, standard uptake value ratio.

Fig. 2. HEAD versus LEAD. Voxel-wise comparison of tau pathology load between

high-educated and low-educated AD patients corrected for age and MMSE score using

statistical parametric mapping. Significance level was set to p < 0.001 (uncorrected).

Abbreviations: HEAD, high-educated AD patients; LEAD, low-educated AD patients.
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Based on the current knowledge, it appears that early lifetime

variables such as education contribute to late-life brain function.

Education being associated with other lifetime factors may act on

CR-related compensatory mechanisms, which render some in-

dividuals more resilient to the consequences of accumulating

pathology than others, and in the current study more resistant to-

ward the effects of accumulating tau pathology in the brain. Given

that education is a relative term constantly shifting upward, it will

be particularly important to develop tests with higher ceilings

allowing detection of individuals with high levels of CR in clinical

routine (Stern, 2012). Moreover, it will be crucial to determine

whether other CR proxies such as lifelong cognitive and social

engagement are more sensitive than the level of education in re-

gard to CR-related changes.

4.2. Level of education and tau pathology load in Braak stages

Although both patient groups of this study were characterized

by similar global cognitive function, the HEAD group showed a

wider distributed tau pathology burden, which corresponded to

advanced Braak stages (V and VI), reflecting the expansion of tau

pathology to parietal and frontal regions. In contrast, the tau pa-

thology load of the LEAD group only complied with moderately

advanced Braak stages (III and IV), still largely restricted to temporal

areas and the posterior cingulate cortex. These findings comply

with the assumption by Rentz et al. (2016), mentioned earlier,

presuming that CR exerts mitigating effects on cognition evenwhen

tau pathology has advanced to isocortical regions.

Several explanations for CR-related mechanisms have been put

forward such as CR might act via increases in functional connec-

tivity, via the recruitment of additional brain areas or via improved

physiological properties such as increased dendrite density or

enhanced vascular coupling (Soldan et al., 2015). Magnetic reso-

nance imaging studies have reported increased functional con-

nectivity, in particular, in the default mode network (Bozzali et al.,

2015; Sole-Padulles et al., 2009) and CR-related changes in struc-

tural connectivity (Wook Yoo et al., 2015) in highly educated AD

patients. Regarding CR-related mechanisms on physiological

properties, higher CR levels were associated with enhanced

acetylcholine esterase activity in hippocampal and cingulate areas

(Garibotto et al., 2013) and elevated glucose metabolism rate in

frontal areas (Morbelli et al., 2013). Overall, these changes on the

functional, structural, and molecular levels are presumed to allow

compensation for the aggregating pathologic burden, such as, for

example, for accumulating tau pathology in temporal, parietal, and

frontal areas as observed in this study.

Interestingly, when comparing the 3 groups regarding tau pa-

thology load in regions, which were associated with Braak stages I/

II, we did not observe any significant differences. Also in the voxel-

wise comparison hippocampal areas remained spared of any group-

related differences. These observations may be explained by the

initial occurrence of tau pathology in medial temporal lobe regions

in AD and the notion of primary age-related tauopathy (PART). PART

is based on the findings from several postmortem studies demon-

strating aggregation of tau pathology in medial temporal lobe re-

gions in the absence of Ab pathology in people, who were

cognitively normal or only slightly cognitively impaired before

death (Crary et al., 2014; Iseki et al., 2002). This process was

recognized as part of the normal aging process given that PART was

generally detectable at autopsy in elderly individuals. Also in this

study, we observed slightly elevated levels of tracer retention in

hippocampal regions in the healthy control group as compared

with the retention rates of this group in other brain regions asso-

ciated with more advanced Braak stages. Interestingly, the reten-

tion rates of the AD groups in this area did not significantly differ

from the healthy group, but nonetheless were marginally higher.

These findings suggest that tau pathology in hippocampal regions

may be less disease specific and may occur as part of the aging

process, whereas tau pathology in regions associated with Braak

stages IIIeVI is related with AD (Crary et al., 2014). However, we

cannot exclude that some of the healthy controls already presented

an early form of AD possibly driving the observed increase of tau

pathology in hippocampal regions. Recently, it has been suggested

that the accumulation of tau in the absence of Ab might present an

early phase of AD (Duyckaerts et al., 2015). Moreover, it was argued

that the current body of evidence is not sufficient to conclude that

PART and AD are driven by different processes prompting for

further investigation (Duyckaerts et al., 2015).

Assessing tau pathology at different Braak stages showed that

HEAD patients can maintain their cognitive functioning despite a

more extensively distributed pathologic burden compared with

LEAD patients. These CR-related differences in disease manifesta-

tion have crucial implications for early detection of AD, prognosis of

the disease progression, and the assessment of drug treatments. For

example, the individual degree of CR might particularly be

considered when assessing the efficacy of anti-tauebased phar-

macotherapies. First of all, the response to these drugs could differ

by the extent of underlying pathology. Second, groups which are

not matched according to their level of CR may show different rates

of cognitive decline that are actually not caused by the drug but by

the level of CR as individuals with high CR tend to decline more

rapidly after the initial diagnosis. Future longitudinal studies are,

therefore, warranted to further investigate the mitigating effects of

CR on the functional and structural levels in regard to accumulating

AD-related pathology.

4.3. Limitations

Certain limitations need to be considered when interpreting the

presented results of our study. In this study, the PET scans were

acquired on different scanners. Although this inconsistency has

likely introduced some noise to the data, all scans were successfully

preprocessed and spatially normalized to a common template.

Furthermore, the observed results did hold up, when re-assessed in

a confirmatory analysis in a sample of subjects exclusively scanned

Fig. 3. Spatial patterns of tau pathology in HEAD and LEAD. Voxel-wise comparison of

tau pathology load between (A) high-educated AD patients versus healthy controls and

(B) low-educated AD patients versus healthy controls corrected for age using statistical

parametric mapping. Significance level was set to p < 0.001 (uncorrected). Abbrevia-

tions: HEAD, high-educated AD patients; LEAD, low-educated AD patients.

M.C. Hoenig et al. / Neurobiology of Aging 57 (2017) 1e7 5



on one specific scanner. Moreover, the relative small sample size of

the groups limits the interpretation of the findings in regard to the

general population. In addition, although not significant, the

healthy control group was slightly younger than the AD groups.

Furthermore, with regard to the clinical level of impairment we

only had access toMMSE data of all patients. AlthoughMMSE is one

of the most widely used assessments, a broad neuropsychological

test battery would have allowed us a more detailed and accurate

description of cognitive function. For future studies, it will be of

interest to examine to what extent education and other proxies of

CR moderate the deleterious effect of tau pathology on cognition.

5. Conclusion

In sum, AD patients with higher levels of educational attainment

demonstrate more extensive tau burden than lower educated pa-

tients with equal cognitive function as measured with the MMSE.

This corresponds well to previous studies investigating the concept

of CR with regard to AD-related pathology. These findings may have

important implications for the clinical diagnosis which may be

delayed in individuals with high CR as compared with individuals

with lower CR. Better understanding of CR-related mechanisms on

the clinical expression of ADmay improve the clinical diagnosis and

prognosis regarding the disease and additionally promote the

investigation of protective treatment strategies. Given the findings

of this study, further investigations need to elucidate the role of CR

and tau pathology in regard to cognitive function. Multimodal im-

aging approaches may thereby shed light into underlying mecha-

nisms that render some individuals more resilient to disease-

related changes than others.
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Table S1 – F-Statistics for comparison of tau pathology in Braak Stages 

Braak stages HEAD vs LEAD LEAD vs Healthy HEAD vs Healthy 

I/II F(1,20)=.063,  

p=.805 

F(1,23)=.918,  

p=.348 

F(1,23)=1.633, 

 p=.214 

III F(1,20)=.388,  

p=.540 

F(1,23)=19.062, 

p<.001 

F(1,23)=8.443,  

p=.008 

IV F(1,20)=4.310,  

p=.051 

F(1,23)=6.800,  

p=.016 

F(1,23)=11.170, 

p=.003 

V F(1,20)=13.285, 

p=.002 

F(1,23)=1.177, 

 p=.289 

F(1,23)=10.972, 

p=.003 

VI F(1,20)=19.302, 

p<.001 

F(1,23)=1.632,  

p=.214 

F(1,23)=12.221, 

p=.002 

Table S1 depicts the F-statistics for the comparison of the mean SUVRs in the six Braak stages 

between the high educated and low educated AD group corrected for age and MMSE score, and 

the comparison of the low educated and high educated AD groups with the healthy control group 

corrected for age, respectively (p < .05). HEAD = High Educated AD Patients, LEAD=Low 

Educated AD Patients; SUVR = Standard Uptake Value Ratio. 
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Table S2 – Peak activation of voxel-wise comparisons 

HEAD > LEAD 

Region t-value x-coordinate y-coordinate z-coordinate 
Left and Right Postcentral 

Gyrus/Right Supplementary 

Motor Area 

5.29 32 -36 64 

5.83 -52 -2 50 

5.73 10 10 68 

Right Superior Frontal Gyrus 4.98 12 46 44 

Right Inferior Frontal Gyrus 4.56 48 30 18 

Left Postcentral Gyrus 4.31 -52 -4 16 

Left Supplementary Motor 

Area 

4.22 -10 18 62 

Right Angular Gyrus 4.07 36 -66 50 

Left Inferior Parietal 3.87 -30 -72 46 

3.77 -36 -66 50 

LEAD > Healthy 
Left Fusiform Gyrus &  

Left Parahippocampal Gyrus  

6.27 -34 -20 -26 

6.16 -30 -4 -34 

6.11 -28 -24 22 

Right Fusiform Gyrus & 

Right Inferior Temporal 

5.75 30 -2 -36 

4.85 46 -40 -18 

4.72 38 -14 -32 

Right inferior parietal, Right 

Middle Occipital & Right 

Supramarginal Gyrus 

5.24 36 -48 40 

3.97 30 -60 38 

3.66 50 -40 34 

Middle Cingulate 4.66 -2 -30 36 

Right Cuneus 4.33 20 -72 22 

4.25 24 -62 24 

Left Middle Frontal 4.11 -26 22 44 

Left Precuneus 3.96 -10 -58 38 

HEAD > Healthy 
Right Middle Occipital, 

Left Middle Cingulate & 

Left Cuneus  

5.11 30 -64 34 

5.00 -6 -22 -38 

4.93 -18 -58 20 

Right Precentral Gyrus & 

Right Supplementary Motor 

Area 

4.41 26 -14 58 

4.39 10 -4 56 

4.27 26 -8 48 

Left Middle Frontal Gyrus 4.31 -28 10 50 

4.31 -26 20 44 

4.01 -34 32 44 

Left Inferior Frontal Gyrus 4.16 -36 12 26 

Left Middle Frontal Gyrus/ 

Left Supplementary Motor 

Area 

4.12 -12 -4 66 

4.00 -26 -10 48 

3.95 -10 -4 58 

Left Inferior Parietal 4.04 -58 -30 46 

Left Precentral 4.01 -48 0 52 

Table S2 summarizes the t-statistics and MNI coordinates for voxel clusters with an extent threshold 

k=50 for the contrasts investigating in which regions high educated AD patients show more tau 

pathology than low educated AD patients and in which regions low educated AD and high educated 

AD patients present more tau pathology than healthy controls, respectively. HEAD = High Educated 

AD Patients, LEAD=Low Educated AD Patients. 
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Figure S3 – Exclusion of systematic error due to scanner differences 

 

Figure S3 illustrates the results of the voxel-wise comparisons of tau pathology load between 

(1a-c) the AD groups only scanned on the Siemens Biograph mCT Flow 128 Edge (HEAD=6 

patients; LEAD= 11 patients) against the healthy control group and (2a-c) the comparison of 

the AD groups including scans from the nuclear medicine department of the University 

Hospital Cologne and AVID Radiopharmaceuticals against healthy controls. a) HEAD vs 

LEAD, b) HEAD vs healthy control group, c) LEAD vs healthy control group. The p-value was 

set to p<.001 (uncorrected). Age and MMSE score were included as covariates for comparison 

a) and age was included as covariate for comparison b&c). HEAD = High Educated AD 

Patients, LEAD=Low Educated AD Patients. 
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Abstract

Purpose Using PET imaging in a group of patients with Alzheimer’s disease (AD), we investigated whether level of education, a
proxy for resilience, mitigates the harmful impact of tau pathology on neuronal function.
Methods We included 38 patients with mild-to-moderate AD (mean age 67 ± 7 years, mean MMSE score 24 ± 4, mean years of
education 14 ± 4; 20 men, 18 women) in whom a [18F]AV-1451 scan (a measure of tau pathology) and an [18F]FDG scan (a
measure of neuronal function) were available. The preprocessed PETscans were z-transformed using templates for [18F]AV-1451
and [18F]FDG from healthy controls, and subsequently thresholded at a z-score of ≥3.0, representing an one-tailed p value of
0.001. Next, three volumes were computed in each patient: the tau-specific volume (tau pathology without neuronal dysfunction),
the FDG-specific volume (neuronal dysfunction without tau pathology), and the overlap volume (tau pathology and neuronal
dysfunction). Mean z-scores and volumes were extracted and used as dependent variables in regression analysis with years of
education as predictor, and age and MMSE score as covariates.
Results Years of education were positively associated with tau-specific volume (β = 0.362, p = 0.022), suggesting a lower impact
of tau pathology on neuronal function in patients with higher levels of education. Concomitantly, level of education was
positively related to tau burden in the overlap volume (β = 0.303, p = 0.036) implying that with higher levels of education more
tau pathology is necessary to induce neuronal dysfunction.
Conclusion In patients with higher levels of education, tau pathology is less paralleled by regional and remote neuronal dys-
function. The data suggest that early life-time factors such as level of education support resilience mechanisms, which ameliorate
AD-related effects later in life.

Keywords Glucosemetabolism . Brain reserve . Brainmaintenance . Resilience . [18F]AV-1451 . [18F]FDG

Introduction

The neuropathological hallmarks of Alzheimer’s disease
(AD), beta-amyloid (Aβ) plaques and neurofibrillary tangles,

appear to evolve in temporal order with Aβ becoming abnor-
mal first, followed by tau pathology and subsequently neuro-
nal injury [1]. During these pathophysiological processes, tau
pathology, in contrast to Aβ pathology, is more closely asso-
ciated with neuronal dysfunction [2, 3] and symptom severity
[4, 5] in individuals with typical AD and variants of AD such
as posterior cortical atrophy, the logopenic variant and the
behavioural variant [2, 6, 7].

While the direct relationship between tau pathology and
neuronal injury in space and time is now better understood,
substantial heterogeneity in clinical severity in individuals
with comparable degrees of pathology remains a puzzling
feature. To accommodate this heterogeneity, resilience-
related concepts such as cognitive reserve, brain reserve
(BR) and brain maintenance (BM) have been introduced,
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and have been suggested to weaken the relationship between
AD-related pathophysiology and symptom severity. Cognitive
reserve refers to the adaptability of cognitive processes to main-
tain functionality and BR accounts for differences in brain
integrity [8, 9]. In turn, the concept of BM is associated with
neuroprotective mechanisms supporting the preservation of
brain integrity [10, 11].

Consistent with these concepts, we recently showed that
patients with typical AD with higher levels of education are
able to tolerate more severe and spatially extended tau pathol-
ogy than AD patients with lower levels of education but
similar cognitive impairment [12]. One possible explanation
for this finding is that the impact of tau pathology on neuronal
function is less harmful in patients with higher levels of edu-
cation due to mechanisms associated with BR and BM. These
mechanisms potentially support resilience to brain pathology
[13] by, for example, boosting neuronal plasticity through the
upregulation of neuronal growth factors.

To investigate these possibilities, we used a novel volume-
based PET imaging approach to assess whether a resilience-
related proxy, namely education, affects the association be-
tween tau pathology (i.e. [18F]AV-1451 PET) and neuronal
dysfunction (i.e. [18F]FDG PET) in patients with typical AD
and variants of AD. In each patient, we extracted three distinct
volumes: (1) the tau-specific volume (all regions showing only
significant tau pathology in the absence of neuronal dysfunc-
tion); (2) the FDG-specific volume (all regions showing signif-
icant neuronal dysfunction in the absence of tau pathology);
and (3) the overlap volume (all regions showing significant
tau pathology load and neuronal dysfunction). Assuming that
level of education mitigates the effects of tau pathology on
glucose metabolism, we hypothesized the following: (1) the
tau-specific volume is larger despite relative preservation of
regional glucose metabolism in individuals with higher levels
of education; (2) the mean tau pathology load in the overlap
volume is positively correlated with years of education; and (3)
irrespective of level of education, the volume of reduced glu-
cose metabolism is smaller than the tau volume given the pre-
sumed temporal evolution of AD biomarkers [14].

Materials and methods

Participants

The study group comprised 38 patients with mild-to-moderate
AD recruited from the interdisciplinary memory centres of the
University Hospital Cologne and the University Hospital
Bonn. The patients were diagnosed with probable AD demen-
tia using the recommended NIA-AA criteria [15] including
diagnostic amyloid PET imaging or CSF measurements. All

participants underwent a PET scan with [18F]AV-1451 for the
in-vivo assessment of tau pathology and a PET scan with
[18F]FDG for the evaluation of neuronal dysfunction at the
Department of Nuclear Medicine of the University Hospital
Cologne. All participants provided signed informed consent
regarding the scientific evaluation and publication of their
data.

PET acquisition

PETscans were performed on a Siemens Biograph mCT Flow
128 Edge scanner (Siemens, Knoxville, TN) and were itera-
tively reconstructed using a 3-D OSEM algorithm (four itera-
tions, 12 subsets, gaussian filter, 5 mm full-width at half-max-
imum, matrix 128 × 128, slice thickness 3 mm). The two PET
scans were acquired no more than 3 months and on average
less than 1 month apart. Administration parameters are sum-
marized in Table 1.

PET image processing

In each individual, the [18F]AV-1451 scan was coregistered to
the [18F]FDG scan using SPM12 (Wellcome Trust Centre for
Neuroimaging, Institute of Neurology, University College
London, London, UK). The coregistered [18F]AV-1451 scan
and the native [18F]FDG scan were then normalized to a
[18F]FDG PET template in MNI space [16]. Using in-house
scripts in MATLAB R2016a (The MathWorks, Inc., Natick,
MA, USA), the normalized scans were intensity-standardized
to the whole cerebellum, which was used as the reference
region. The preprocessed images were then z-transformed

Table 1 Descriptive characteristics

Characteristic Value

Number of patients 38

Men 20

Women 18

Age (years), mean (SD) 67.11 (6.97)

MMSE score, mean (SD) 23.87 (4.45)

Years of education, mean (SD) 13.85 (3.92)

[18F]AV-1451, mean (SD)

Dose (MBq) 236.26 (48.11)

Administration time after injection (min) 94.81 (26.87)

[18F]FDG, mean (SD)

Dose (MBq) 216.92 (49.22)

Administration time after injection (min) 36.24 (10.55)

SD standard deviation, MMSEMini Mental State Examination
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using an [18F]AV-1451 PET template and an [18F]FDG PET
template from a healthy control sample (n = 15, mean age at
FDG scan 67.47 years, mean MMSE score at FDG scan
28.87, mean years of education 16.67) acquired at two differ-
ent time points and provided by the Alzheimer's Disease
Neuroimaging Initiative database (http://adni.loni.usc.edu/).
The control sample was age-matched to our AD sample.
Numerically, the mean years of education in the healthy con-
trol sample was slightly higher than in the patient sample,
most likely reflecting differences in the German and North
American educational systems (U = 148, p = 0.007). For fur-
ther information on the processing of the healthy control tem-
plates see the Supplementary material.

The z-transformed images were thresholded at a z-score
of ≥3.0 approximately corresponding to an one-tailed p

value of 0.001. In a next step, using a batch script
employing the imcalc function implemented in SPM12,
three volumes were extracted: (1) the tau-specific volume
comprising regions characterized by significant tau pa-
thology but no significant change in glucose metabolism;
(2) the FDG-specific volume comprising regions with sig-
nificant changes in glucose metabolism in the absence of
tau pathology; and (3) the overlap volume comprising
regions in which both the [18F]AV-1451 and the
[18F]FDG scan showed a z-score of ≥3.0. The difference
between the tau-specific volume and the FDG-specific
volume was also extracted. A positive difference value
indicated a larger tau-specific volume than FDG-specific
volume, whereas a negative value indicated the reverse.
All computed volumes, the volume difference and z-
scores of the volumes were then used for further statistical
analysis.

To ensure that the results were not predominantly driven by
the predefined z-score threshold of ≥3.0, the same analysis
was performed with the PET scans thresholded at a more
liberal z-score of ≥2.0, representing an one-tailed p value of
0.02. A subanalysis (z ≥ 3.0) was also performed limiting the
dataset to data from patients with typical AD to ensure that the
results were not solely driven by the data from patients with
variants of AD.

Statistical analysis

Multivariable regression analysis was performed with SPSS
version 21 (IBM Corp., Armonk, NY USA). Years of educa-
tion (that is, schooling and subsequent professional education
including vocational or university training) was employed as
the predictor with the volumes, mean z-scores within these
volumes and the difference in volume as dependent variables,
controlling for age andMMSE score. The models were further
tested for a potential gender effect. As the gender effect was

not significant, it was excluded from the final analysis.
Moreover, one-tailed bivariate correlation analysis was per-
formed to evaluate the association between the mean z-scores
of the respective volumes. The significance threshold for all
analyses was set at p < 0.05.

The graphs of the results were computed using R (R: A
language and environment for statistical computing, 2018; R
Core Team, R Foundation for Statistical Computing, Vienna,
Austria. https://www.R-project.org/). The brain surface
illustrations were created using the CAT12 toolbox
implemented in SPM and the Surf Ice toolbox (https://www.
nitrc.org/projects/surfice/).

Results

Descriptive data

Of the 38 patients, 26 were diagnosed with typical AD,
six with the logopenic variant, three with posterior corti-
cal atrophy, two with the behavioural variant, and one
with atypical AD without further specification. The pa-
tients with lower levels of education had on average
11 years of education, whereas the patients with higher
levels of education level had on average ≥18 years of
education (see Supplementary material for information
on the German education system). Descriptive data of
the group are presented in Table 1. One extreme outlier
was removed from the analysis to fulfil the underlying
assumptions for regression analysis.

Associations with level of education

A significant positive association was observed between years
of education and tau-specific volume (β = 0.362, t = 2.414,
p = 0.022). In other words, higher levels of education were
associated with more brain areas showing preserved metabo-
lism despite the presence of tau pathology. Furthermore, in
regions with tau pathology and hypometabolism overlap,
years of education was positively correlated with tau patholo-
gy load (β = 0.303, t = 2.183, p = 0.036), but not with the de-
gree of hypometabolism (β = −0.057, t = −0.385, p = 0.703).
Moreover, no significant effect was observed in the regression
analysis between level of education and FDG-specific volume
(β = −0.242, t = −1.423, p = 0.164). Furthermore, a significant
positive relationship was observed between years of education
and the difference between the tau-specific volume and the
FDG-specific volume (β = 0.342, t = 2.190, p = 0.036). The
difference values were not exclusively positive, meaning that
in patients with the lowest levels of education the FDG-
specific volume was even larger than the tau-specific volume.
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The results of the regression analysis are summarized in
Table 2 and respective plots are shown in Fig. 1 and
Supplementary Fig. 1a. Figure 2 illustrates a brain projection
showing the increase in tau-specific volume with increasing
years of education.

Aside from this, a positive trend for an association was
found between the respective average z-scores for
hypometabolism and tau pathology within the overlap vol-
ume (r = 0.264, p = 0.057; Supplementary Fig. 1b). In con-
trast, the average z-scores of the FDG-specific volume
were not correlated with the average z-scores of the tau-
specific volume (r = −0.109, p = 0.260; Supplementary
Fig. 1c). Moreover, the subanalysis including only patients
with typical AD showed a trend for significance of the
main variables of interest (Supplementary Table 1). In ad-
dition, the confirmatory analysis using a threshold z-score
of ≥2.0 yielded similar results, supporting our approach
(Supplementary Table 2).

Discussion

Several studies using PET imaging have shown that the spatial
extent of tau pathology is closely related to changes in glucose
metabolism, a measure of neuronal dysfunction. Here, we
report evidence that level of education mitigates the local im-
pact of tau pathology on neuronal function. We observed that
the volume of brain regions with relatively preserved metab-
olism despite the presence of significant tau pathology (i.e. the

tau-specific volume) is greater in patients with higher levels of
education. Furthermore, our data suggest that in regions char-
acterized by coexisting tau pathology and neuronal dysfunc-
tion (i.e. the overlap volume), a greater tau burden is required
to cause comparable metabolic dysfunction in individuals
with higher levels of education. Taken together, our findings
point towards the existence of protective mechanisms against
tau pathology, which may be associated with the early life-
time factor of education. We discuss below the current find-
ings based on the concept of BR continued by an argumenta-
tion relating to resilience factors supporting BM.

An explanation based on the concept of brain reserve

Numerous studies have shown that life-time factors, such as
education, play an important role in prolonging and slowing
cognitive decline following the advent of brain pathology [12,
17–22]. Education, an early life-time factor, has consistently
been associated with higher socioeconomic status, better
health, less chronic stress and life-long mental stimulation,
factors that probably contribute to better brain health later in
life [23–26]. With an accumulating body of evidence across
neurological conditions, it is believed that education can pro-
tect and provide resilience against the harmful effects of pa-
thology [27]. In line with this, we found that higher levels of
education are associated with less pronounced effects of tau
pathology on neuronal function. Moreover, more tau patholo-
gy appears necessary to induce changes in glucose metabo-
lism in individuals with higher levels of education.

Table 2 Results of regression analysis

t β P 95% CI F df p Adjusted R2

Tau-specific volume 5.306 3,33 0.004 0.264

Level of education 2.414 0.362 0.022 0.002, 0.025

MMSE score −1.903 −0.293 0.066 −0.021, 0.001

Age −2.558 −0.376 0.015 −0.014, −0.002

Mean tau burden in overlap volume (tau-specific/FDG-specific overlap) 8.109 3,33 <0.001 0.372

Level of education 2.183 0.303 0.036 0.016, 0.465

MMSE score −2.835 −0.403 0.008 −0.511, −0.084

Age −3.150 −0.428 0.003 −0.317, −0.068

FDG-specific volume 1.704 3,33 0.185 0.055

Level of education −1.423 −0.242 0.164 −0.016, 0.003

MMSE score 1.827 0.319 0.077 −0.001, 0.017

Age 0.595 0.099 0.556 −0.004,0.007

Volume difference (tau-specific – FDG-specific) 4.061 3,33 0.015 0.203

Level of education 2.190 0.342 0.036 0.001, 0.039

MMSE score −2.086 −0.334 0.045 −0.037, 0.000

Age −1.855 −0.284 0.072 −0.020, 0.001

The table includes the statistical model summaries of all regression analyses

CI confidence interval, df degrees of freedom, MMSEMini Mental State Examination
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These findings may first be explained based on the concept
of BR, which accounts for the individual neurobiological cap-
ital such as neuron count and synaptic density [9].
Accordingly, individuals with a high BR will show less severe
symptoms than individuals with a low BR despite similar
brain pathology, because they possess more BR to counteract
the brain damage. Hence, although the same numbers of neu-
rons or synapses are rendered dysfunctional by misfolded tau
aggregates in individuals with low and high levels of educa-
tion, an individual with a higher level of education will be able
to counteract the brain damage given that he/she possesses
enough resources in the form of yet-unaffected neurons or
synapses. Due to the activation of these (thus far) spared re-
sources, the metabolic rate (i.e. FDG uptake on PET) in indi-
viduals with higher levels of education may in turn not signif-
icantly deviate from that detected in healthy controls despite
tau aggregation. Furthermore, according to the BR-concept, a
greater pathological burden is necessary to eventually affect
the compensatory resources in individuals with higher levels
of education, which may account for our finding of greater tau
burden in the overlap volume in patients with higher levels of
education.

Importantly, it has been postulated that glucose metabolism
reflects synaptic function rather than overall neuronal function
[28]. The possible BR-related compensatory process may thus
be a matter rather of synaptic density and plasticity than of
total neuron count. Indeed, several studies using rodent
models have demonstrated that enriched environments, which
are used to study the benefits of life-long cognitive stimula-
tion, promote neuronal plasticity in the form of increased syn-
aptic density [29–31] and dendritic branching [32, 33]. Similar
effects are believed to occur in humans. With the recent devel-
opment of PET tracers to visualize changes in synaptic density
[34], future studies will be able to directly elucidate the protec-
tive effect of education on AD-related pathology.

Concerning our reasoning based on the BR concept, it must
be emphasized that the neurotoxic effects of tau pathology on
neuronal function are considered similar at different levels of
education. Yet, the detectable and measurable outcome (i.e.
the FDG PET signal) of regional tau pathology on neuronal
function differs according to the individual extent of underly-
ing compensatory resources. One may, however, also argue

a Tau-specific volume

b Overlap volume 

c FDG-specific volume 

�Fig. 1 Regression analysis including years of education (residuals)
corrected for MMSE and age as predictor and mean tau burden (z-score)
and volumes (litre) as dependent variables (a blue tau-specific volume, b
green mean tau burden in overlap volume, c red FDG-specific volume;
grey areas 95% confidence intervals). Brain projections of the respective
volumes are illustrated below each scatterplot. a and c show the volume
extents in a patient with a low level of education (left) and a patient with a
high level of education (right), and b depicts the average overlap volume
in patients with typical AD. The respective volumes were rendered on a
brain surface in MNI space using the CAT toolbox implemented in
SPM12
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that in individuals with higher levels of education the impact
of tau pathology on neuronal function is ameliorated by resil-
ience factors supporting BM, as discussed below.

An explanation based on resilience factors supporting
brain maintenance

Again, rodent studies have provided valuable information on
resilience factors that are associated with life-long engagement
and facilitate clearance or decreases in tau pathology and neu-
roinflammation, thereby supportingmaintenance of brain integ-
rity. These factors are potentially associated with level of edu-
cation in humans and thus contribute to the current findings.
Given the complexity of these resilience factors, we mention,
within the scope of this discussion, only a few examples that
may have contributed to the current findings.

Over the past decade, several cellular growth factors have
been reported to be neuroprotective, such as the brain-derived
neurotrophic factor (BDNF). BDNF has been demonstrated
in vitro to alter the phosphorylation of tau [35] and has con-
sistently been found to positively affect memory processes
even in subjects with dementia (for review see [36]). More
recently, elevated CSF levels of vascular endothelial growth
factor [37] and increased serum levels of insulin growth factor
[38] have also been associated with healthier brain ageing and
brain volume late in life. Aside from the upregulation of these
growth factors, distinct proteomic signatures [39] and genes
[40, 41] have been related to neuronal resilience. For example,
increased expression of genes involved in the control of lyso-
somes has been found after long-term physical exercise. This
upregulation appears to ameliorate the neurotoxic effects of
hippocampal tau pathology in rodents [41]. Interestingly, the

lysosomal pathway has been suggested to mediate the degra-
dation of tau isoforms [42, 43].

So far, it remains unknown whether these molecular under-
pinnings are directly associated with early life-time factors,
such as education, or whether they are more closely related
to life-long cognitive and physical engagement. Longitudinal
studies, including elaborate questionnaires of life-time cogni-
tive and physical activities, are necessary to gain further in-
sights into the relationship between early life-style factors and
protective molecular signatures later in life.

Downstream effects of regional tau pathology

Despite the observation that tau pathology appears to be
less harmful to neuronal function in individuals with
higher levels of education, we conversely observed that
changes in neuronal function in the absence of local tau
pathology appear to be potentiated in individuals with
lower levels of education. These changes may represent
effects of neuropathology aggregation in remote but
functionally connected brain regions in the sense of func-
tional deafferentation or diaschisis.

Interestingly, molecular studies have shown that tau pathol-
ogy preferentially affects long-range projection neurons rather
than locally projecting neurons [44, 45]. Thus, signal changes
detected on [18F]FDG PET probably represent downstream
projection sites from the neuron affected by tau pathology.
This may cause a topographic discordance between the
[18F]AV-1451 and [18F]FDG signals. Indeed, recently, it has
been suggested that the topographic overlap between tau pa-
thology and neuronal dysfunction becomes less coherent as
the disease progresses [46]. Given these findings, it may be
that the disease in individuals with lower levels of education in

Fig. 2 Brain projection showing the tau-specific volume in relation to
level of education: green average overlap volume (i.e. significant tau
pathology and neuronal dysfunction) in patients with typical AD, blue
average tau-specific volumes in three groups with different levels of ed-
ucation (average 11, 16 and 20 years) surrounding the overlap volume.
Importantly, the volumes shown were derived solely from patients with
typical AD, because those with atypical AD showed different

topographical patterns. Moreover, the tau-specific volume in the patients
with an average of 16 years of education is in addition to the volume of
those with an average of 11 years of education. Likewise, the volume in
the patients with an average of 20 years of education is in addition to the
two volumes of the groups with less education. The respective volumes
were rendered on a brain surface in MNI space using the Surf-Ice toolbox
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our sample had already progressed to more advanced stages.
Furthermore, the downstream effects of tau pathology could
be more severe in patients with lower levels of education,
because they do not possess sufficient compensatory or main-
tenance mechanisms to counteract the local upstream effects
of misfolded tau aggregates. This would explain why in pa-
tients with lower levels of education the FDG-specific vol-
umes were greater than the tau-specific volumes.

Limitations

We used a volume-based approach with a predefined threshold,
whichmay have led to underestimation or overestimation of the
overall tau pathology and hypometabolism pattern. Yet the anal-
ysis based on a more liberal threshold yielded similar results,
supporting the current findings. Moreover, with the approach
used, we were able to perform a group analysis including indi-
viduals with different variants of pathology distribution.
However, as the patient groups with atypical ADwere relatively
small, we could not run subsequent analyses for each group.
Moreover, the potential contribution of Aβ pathology could not
be considered in the analyses as amyloid PET scans were
not available in all patients. Nonetheless, all patients were
amyloid-positive based on either CSF or PET imaging mea-
sures. Moreover, we cannot rule out the possibility that our
findings, although less likely, were driven by a faster spatial
spread of tau pathology in patients with higher levels of educa-
tion. Lastly, we used an indirect proxy of neuronal resilience,
namely educational attainment, as there is no direct measure
available yet. It is possible that more elaborate measures of
resilience such as life-long cognitive engagement, physical ac-
tivity or even nutrition may be more closely associated with the
observed effects. Overall, future studies in larger cohorts using
elaborate questionnaires on life-time experience are required to
establish direct measures of neuronal resilience.

Conclusion

The results of this study indicate that level of education is
associated with resilience capacity, which ameliorates the neu-
rotoxic effects of misfolded tau aggregates on neuronal func-
tion in AD. This finding potentially explains why AD patients
with higher levels of education can tolerate more tau patholo-
gy than those with lower levels of education and similar cog-
nitive impairment. It would be of interest to examine whether
the current findings are transferrable to other tauopathies such
as progressive supranuclear palsy, corticobasal syndrome and
frontotemporal dementia. These tauopathies are characterized
by morphological differences in tau aggregates, but the dis-
ease mechanisms appear similar, at least to some degree [47].
Thus, the elucidation of resilience mechanisms may lead to
treatment interventions that are relevant not only to AD but
also to other neurodegenerative diseases.
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Supplementary Data 

 

German educational system:  

In Germany, there are five potential schooling-leaving qualifications: board school (8 years), 

main school (9 years), middle school (10 years), vocational baccalaureate diploma (12 years), 

A-levels (13 years). Depending on the schooling-leaving qualification, people can either start 

a vocational training (3 years) or go to university. A-level graduates can go to university, 

whereas individuals with a vocational baccalaureate diploma can study at a university of 

applied science (similar to a college). 

 

Healthy control template: 

The PET imaging data for the healthy control template was acquired from the ADNI platform. 

In ADNI, most of the cognitively normal subjects are above the age of 70 years. That it is 

why only a relatively small sample remained for the creation of the template in this study after 

age-matching the healthy control subjects to our patient sample. The respective and available 

co-registered, averaged images were downloaded and processed with the same pipeline as the 

PET imaging data of the patient sample. 

 

Supplementary Fig. 1 – Scatterplots of difference volume and bivariate correlation 

analyses 

a 

 

b 

 

c 

 

a: Scatterplot of volume difference (y-axis) and 

residuals of education (x-axis). b-c: Correlation 

analysis: Correlation between mean tau burden in 

overlap volume by mean hypometabolism in 

overlap volume (b, purple), correlation between 

mean tau burden in tau-specific volume and mean 

hypometabolism in FDG-specific volume (c, 

orange). Respective confidence intervals (95%) 

are depicted for each scatterplot. 
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To ensure that the results were not driven by the atypical AD group, we performed a 

subanalysis on the typical AD group. Trend significance was reached for the main variables of 

interest (i.e., tau-specific volume and tau burden in the overlap volume). 

Supplementary Table 1 – Results of regression analysis limited to the typical AD group 

 t β p  F df p Adj. R2 

Tau-Specific Volume    3.012 3,22 .053 .201 

 Education 1.943 .392 .066      

 MMSE -.912 -.186 .372      

 Age -2.280 -.424 .033      

Mean Tau Burden in Overlap Volume (Tau ∩ FDG)  7.591 3,22 .001 .452 

 Education 1.802 .301 .086      

 MMSE -.943 -.160 .356      

 Age -4.341 -.668 <.001      

FDG-Specific Volume   .804 3,22 .506 -.025 

 Education -.345 -.079 .734      

 MMSE .323 .075 .750      

 Age 1.446 .304 .163      

Volume Difference (Tau-Specific- FDG-Specific)   2.365 3,22 .100 .146 

 Education 1.461 .305 .159      

 MMSE -.759 -.160 .456      

 Age -2.188 -.421 .040      

The table includes the statistical model summaries of all regression analysis based on the typical AD group. CI= 

confidence interval; MMSE = Mini Mental State Examination. 
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To ensure that the results were not predominantly driven by the predefined threshold of z >= 

3.0, we conducted the same analyses, but thresholding the PET scans at a more liberal z-score 

level of z >= 2.0, representing a one-tailed p-value of p < .02. 

Supplementary Table 2 – Results of regression analysis using data threshold of z >= 2.0 

 t β p  F df p Adj. R2 

Tau-Specific Volume    3.062 3,33 .042 .147 

 Education 1.758 .284 .088      

 MMSE -1.483 -.246 .147      

 Age -1.960 -.310 .058      

Mean Tau Burden in Overlap Volume (Tau ∩ FDG)  9.320 3,33 <.001 .409 

 Education 2.370 .319 .024      

 MMSE -2.922 -.403 .006      

 Age -3.466 -.456 .001      

FDG-Specific Volume   2.875 3,33 .051 .135 

 Education -1.771 -.288 .086      

 MMSE 2.093 .349 .044      

 Age 1.246 .199 .221      

Volume Difference (Tau-Specific- FDG-Specific)   3.462 3,33 .027 .170 

 Education 1.928 .307 .063      

 MMSE -1.974 -.323 .057      

 Age -1.727 -.270 .093      

The table includes the statistical model summaries of all regression analysis. CI= confidence interval; MMSE = 

Mini Mental State Examination. 
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Given that we observed a significant effect of age in our regression models, we further tested 

for the interaction effect between age and education. No significant interaction effect with age 

and education was found. 

 

Supplementary Table 3 – Regression analysis (threshold: z >= 3.0) including interaction 

of age x education 

 t β p  F df p Adj. R2 

Tau-Specific Volume    3.941 4,32 .010 .246 

 Education -.235 -.369 .816      

 MMSE -1.925 -.303 .063      

 Age -1.105 -.636 .278      

 Age x Education .467 .799 .643      

Mean Tau Burden in Overlap Volume (Tau ∩ FDG)  6.322 4,32 .001 .372 

 Education 1.194 1.715 .241      

 MMSE -2.682 -.385 .011      

 Age .140 .074 .889      

 Age x Education -.988 -1.543 .331      

FDG-Specific Volume   1.283 4,32 .297 .030 

 Education -.522 -.932 .605      

 MMSE 1.738 .310 .092      

 Age -.223 -.146 .825      

 Age x Education .388 .754 .700      

Volume Difference (Tau-Specific- FDG-Specific)  2.956 4,32 .035 .179 

 Education .124 .203 .902      

 MMSE -2.048 -.336 .049      

 Age -.555 -.333 .583      

 Age x Education .085 .152 .933      

The table includes the statistical model summaries of all regression analysis including the interaction term age x 

education. CI= confidence interval; MMSE = Mini Mental State Examination. 
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