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Abstract

Current theory suggests brain regions interact to reconcile the competing demands of 

integration and segregation by leveraging metastable dynamics. An emerging consensus 

recognises the importance of metastability in healthy neural dynamics where the transition 

between network states over time is dependent upon the structural connectivity between 

brain regions. In Alzheimer’s disease (AD) – the most common form of dementia – these 

couplings are progressively weakened, metastability of neural dynamics are reduced and 

cognitive ability is impaired. Accordingly, we use a joint empirical and computational 
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approach to reveal how behaviourally relevant changes in neural metastability are 

contingent on the structural integrity of the anatomical connectome. We estimate the 

metastability of fMRI BOLD signal in subjects from across the AD spectrum and in healthy 

controls and demonstrate the dissociable effects of structural disconnection on synchrony 

versus metastability. In addition, we reveal the critical role of metastability in general 

cognition by demonstrating the link between an individuals cognitive performance and their

metastable neural dynamic. Finally, using whole-brain computer modelling, we 

demonstrate how a healthy neural dynamic is conditioned upon the topological integrity of 

the structural connectome. Overall, the results of our joint computational and empirical 

analysis suggest an important causal relationship between metastable neural dynamics, 

cognition, and the structural efficiency of the anatomical connectome.

Keywords

Alzheimer’s disease, metastability, structural connectome, whole-brain modelling, 

Kuramoto, DTI

Introduction

Duality lies at the origin of many branches of science and philosophy wherein seemingly 

opposite forces interact to form a dynamic system in which the whole is greater than the 

sum of its assembled parts (Kelso, 2008). Rather than viewing apparently contrary 

phenomena as irreconcilable features of the world, the “philosophy of complementary 

pairs” recognises their mutually related nature while simultaneously honouring their 

differences (Engstrøm and Scott Kelso, 2008). One such "complementary pair” may be 

found in the dialogue between synchrony and asynchrony in the brain – a reflection of the 

growing consensus that the complementary nature of integrating and segregating 

tendencies is an essential feature of how brains operate (Bressler and Kelso, 2001, 2016).

Accordingly, several developmental, traumatic, and neurodegenerative conditions could be

described as an imbalance in the optimal working point of synchrony and asynchrony 

(Uhlhaas and Singer, 2006; Uhlhaas, 2015). Epilepsy, for example, could be described in 

terms of excess neural order – synchrony has become a tyrant. Conversely, several 

neuropsychiatric conditions, in which the structure of the brain is abnormal e.g. 
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schizophrenia, autism, and Alzheimer’s disease (AD) are defined by an excess of neural 

disorder or asynchrony. 

Recently, these observations have been placed on firm empirical and theoretical ground by

appealing to a dynamical regime known as metastability (Kelso, 1995, 2012, Tognoli and 

Kelso, 2009, 2014a, 2014b), in which the tendency for local regions to express their local 

independence is balanced with the requirement to integrate and coordinate information 

globally (Deco et al., 2015). The advent of diffusion tensor imaging (DTI) has permitted 

these observations to be tested in-silico (Deco and Kringelbach, 2014). Here, networks of 

oscillators interact on a backbone of inferred inter-regional white matter known as the 

structural connectome (Ghosh et al., 2008; Deco et al., 2009, 2013a, 2013b; Honey et al., 

2010; Deco and Jirsa, 2012; Cabral et al., 2014; Breakspear, 2017). In this way, 

connectomic-based computer modelling permits an analysis of the structural connectivity’s

role in shaping the brain’s functional architecture. The relationship between the 

connectome’s structural integrity and metastable neural dynamics has previously been 

investigated in a model of traumatic brain injury (Hellyer et al., 2015). In this work, Hellyer 

et al., (2015) observed that decreases in neural metastability were behaviourally relevant 

and linked to damage within the connectome. In other work, Váša et al., (2015) appraised 

the impact of removing individual nodes on metastability in a systematic manner.

The relationship between structure and function is also altered in Alzheimer’s disease  – 

the most common form of dementia. AD presents as a steadily worsening constellation of 

symptoms that mirror the gradual accumulation of misfolded amyloid protein and 

neurofibrillary tangles. Accordingly, patients are situated on a continuum of phenotypes 

related to cognitive status ranging from mild memory loss in mild cognitive impairment 

(MCI) through to advanced cognitive and behavioural deficits in overt AD. The transition 

between diagnostic categories is marked by a reliable asymptotic decline in overall neural 

metastability that conforms to the pathophysiological staging of the disease (Córdova-

Palomera et al., 2017; Demirtaş et al., 2017).

In light of the foregoing, the present paper utilises a dual empirical and computational 

approach to investigate the relationship between topological properties of the structural 

connectome, metastable neural dynamics, and cognitive performance in healthy control 

(HC) subjects and in patients from across the AD spectrum. For this reason, resting state 

functional and structural neuroimaging data were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI; Mueller et al., 2005) in three subject groups including 
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healthy control (HC), mild cognitive impairment, and AD. The inclusion of resting state or 

task-free fMRI into the functional imaging suite has been especially advantageous to 

dementia researchers where subject compliance can be an issue – here subjects are 

simply required to lie down and stay awake. In the absence of an assigned task, the ultra-

low frequency (< 0.1HZ) blood oxygen level dependent (BOLD) signal demonstrates 

several distinct patterns of covariance across the cortex known as resting state networks 

(Damoiseaux et al., 2006). Several neurodegenerative disorders including AD (Buckner et 

al., 2008) show dissociable patterns of abnormal structure and function in these networks 

consistent with a disconnection syndrome (Seeley et al., 2009). Converging lines of 

evidence from experimental neuropathology (Braak and Braak, 1991), neuroimaging 

(Greicius et al., 2004; Buckner et al., 2005), and transgenic animal studies (Palop and 

Mucke, 2010) support the contention that AD, in part, represents a disconnection 

syndrome. Indeed, recent empirical findings emphasise the importance of early inter-areal 

white matter connectivity in AD pathogenesis (O’Dwyer et al., 2011a, 2011b) and challenge

the conventional view that AD solely represents a disease of the grey matter (Sachdev et 

al., 2013). Contemporary observations suggests that 1), white matter abnormalities occur 

while grey matter is still relatively preserved (Brun and Englund, 1986; de la Monte, 1989; 

Heise et al., 2010; Zhuang et al., 2012); 2), that demyelination and axonal abnormalities 

occur before the formation of amyloid plaque and neurofibrillary tangles (Desai et al., 

2009, 2010); and 3), that impaired axonal transport not only precedes the downstream 

production of grey matter amyloid but actively participates in its formation (Wirths et al., 

2006, 2007; Smith et al., 2007).

The paper is structured as follows. We first estimate the global neural metastability of fMRI

BOLD signal in resting state networks across the three subject populations (HC/MCI/AD). 

Next, we evaluate the impact of macroscopic structural disconnection on large-scale 

neural metastability. For this we employ whole-brain computer models informed by 

subject-level anatomical connectivity. We then explore the relationship between local 

network topology in the healthy connectome and damage at the regional level between 

nodes of the computer model. Next, we investigate how damage to the large-scale 

structural topology of the connectome effects the metastability of simulated neural 

dynamics. We subsequently identify differences in synchrony and metastability of fMRI 

BOLD signal in patients and controls using the network based statistic (NBS). Finally, we 
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ascertain if the empirical estimates of brain-wide neural metastability are linked to 

cognitive ability. 

We found that 1), macroscopic damage to the structural connectome elicited comparable 

reductions in simulated metastability to that observed in the empirical data; 2), damage to 

the computer model’s connectivity was centred around highly connected nodes; 3), 

reductions in simulated neural metastability were the product of abnormal network 

topology; 4), widespread decreases in metastability between empirical resting state 

networks in AD subjects contrasted sharply with more focal decreases in synchrony; and 

5), reductions in large-scale metastability of fMRI BOLD signal correlated with cognitive 

test scores across the AD spectrum. Overall, the results of our joint computational 

modelling and empirical analysis suggest a key linkage between metastable neural 

dynamics, cognition and the structural integrity of the human brain. 

Materials and Methods

2.1 Data overview

Data were obtained from the ADNI database (http://adni.loni.usc.edu). In the present study,

we analysed baseline visit data collected from HC, MCI, and AD subjects who were 

recruited for ADNI-2. All subjects and their study partners completed the informed consent 

process, and the study protocols were reviewed and approved by the Institutional Review 

Board at each ADNI data collection site.

The ADNI was launched in 2003 by the National Institute on Aging, the National Institute of

Biomedical Imaging and Bioengineering, the Food and Drug Administration, private 

pharmaceutical companies and non-profit organizations as a public-private partnership. 

The primary goal of ADNI has been to test whether neuroimaging, fluid and genetic 

biomarkers, and cognitive assessments can be combined to measure the progression of 

MCI and early AD. Additional information is available at www.adni-info.org.

2.2 Subjects

All ADNI participants underwent a “screening” visit, during which they completed the Mini-

Mental State Examination (MMSE; Folstein et al., 1975), Clinical Dementia Rating (CDR; 

Hughes et al., 1982) scale, and the Wechsler Memory Scale-Revised (WMS-R; Wechsler, 

1987) Logical Memory II test. Three cohorts composed of 36 HC, 33 MCI, and 34 AD were
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included in the functional magnetic resonance imaging (fMRI; Table S1) study and 30 in 

each group were included in the diffusion tensor imaging (DTI; Table S2) study. Since 

ADNI currently does not collect multi-modal DTI/fMRI imaging data for the same subjects, 

the DTI and fMRI cohorts comprised different individuals. For this reason we are unable to 

directly compare structural and functional data at the subject-level and instead compare 

participants at the group-level. We justify this by appealing to the stereotypical spatio-

temporal staging of neuropathology (Braak and Braak, 1991; Braak et al., 1999) and 

biomarkers (Jack et al., 2013) across individuals. The detailed criteria used to define the 

three groups (HC/MCI/AD) are provided as supplementary information along with full 

participant demographics.

2.3 MRI data acquisition

Standard protocols were used to acquire functional, structural, and diffusion tensor image 

data. Whole-brain structural and functional data were acquired on a 3.0 Tesla Philips Intera

MR system (Philips, Best, Netherlands) equipped with an eight channel head coil and 

sensitivity encoding (SENSE) with a reduction factor of one. A high-resolution anatomical 

T1-weighted sagittal 3D MP-RAGE image was acquired with the following parameters: 1 x 

1 mm2 in-plane resolution, 1.2 mm slice thickness, TR = 6.8 ms, TE = 3.2 ms, flip angle = 

9º, 256 x 240 mm FOV, and 256 x 240 matrix. Resting-state fMRI data were also acquired.

Subjects were instructed to keep their eyes open during the scan and fixate on a cross hair

in the centre of a screen located behind the MR scanner, visible via a mirror. Each volume 

of data covered the entire brain with 48 slices, and the slices were acquired in interleaved 

sequence from inferior to superior direction. One hundred and forty volumes were 

acquired. The BOLD signal changes were measured using a T2*-weighted echo-planar 

imaging sequence with the following parameters: 3.3 x 3.3 mm2 in-plane resolution, 3.3 

mm slice thickness, TR = 3000 ms, TE = 30 ms, flip angle = 80º, 212 x 198.75 mm2 FOV, 

and 64 x 59 matrix. 

Likewise, whole-brain structural and diffusion tensor data were acquired on a 3.0 Tesla 

General Electric Signa HDxt MR system (General Electric Medical Systems, Milwaukee, 

WI, USA) equipped with an 8HRBRAIN head coil. A high-resolution anatomical T1-

weighted sagittal 3D IR-SPGR image was acquired with the following parameters: 1 x 1 

mm2 in-plane resolution, 1.2 mm slice thickness, TR = 7 ms, TE = 2.85 ms, flip angle = 

11º, 256 x 240 mm FOV, and 256 x 240 matrix. Single-shot spin echo-planar imaging was 

used to acquire the diffusion weighted image data with following parameters: 2.7 x 2.7 

160

165

170

175

180

185

190



7

mm2 in-plane resolution and 2.7 mm slice thickness, TR = 13000 ms, TE = 68.4 ms, flip 

angle = 90º, 350 mm FOV, and 129 x 129 matrix. Diffusion gradients were applied in 41 

isotropically distributed orientations with b = 1000 s/mm2, and five images with b = 0 

s/mm2.
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Figure 1: Overview of experimental design. Resting state fMRI BOLD signal was used to 
calculate empirical metastability across three groups including HC, MCI, and AD (top). 1.A,
Each subject’s T1-weighted structural image was parcellated into 148 regions from which 
average BOLD signal was extracted. Time series were then converted into complex phase
plane representation using the Hilbert transform. 1.B, Estimates of resting state network 
metastability were then calculated. DTI data across the same three groups were used to 
inform the coupling strength between nodes in a simple oscillator model (bottom). 2.A, A 
subject’s T1-weighted image was parcellated into 148 distinct regions which were 
subsequently used to constrain tractography. 2.B, Individual connectivity matrices were 
created for each clinical subject by lesioning the average control connectivity in tracts that 
significantly deviated from healthy control values. 2.C, Subject-level whole-brain computer 
models were constructed with coupling informed by the anatomical data. 2.D, Simulated 
phase output was subsequently used to estimate resting state network metastability.
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2.4 Overview of MRI data analysis

The processing steps approximated the procedures outlined in the automated 

personalised processing pipeline (Schirner et al., 2015) and comprised 1) pre-processing 

of anatomical T1-weighted images, cortical reconstruction, tessellation and parcellation 

into 148 3D volume masks; 2) transformation of anatomical masks to fMRI space; 3) 

processing of fMRI data and extraction of mean BOLD signal from each 3D volume mask 

for calculating pairwise phase relations; 4) transformation of anatomical masks to diffusion 

space; 5) processing of diffusion weighted data and tractography between pairwise 3D 

volume masks to derive structural connectivity and mean fractional anisotropy (FA) 

matrices. FA corresponds to the primary direction of water molecule diffusion within a tract.

An overview of the steps are provided in Figure 1.

The above workflow was employed to 1) estimate the average structural connectivity of 

controls based on DTI track fibre density i.e. the healthy template; and 2) estimate 

individual FA matrices for each MCI and AD subject. Subject-level connectomes were 

derived by lesioning the healthy template using each clinical subject’s FA matrix (see: 

Generating subject-level structural connectivity). The resulting matrices then informed 

coupling strength between nodes in a simple oscillator model (see: Constructing the 

cortical network model). 

2.5 Anatomical MRI data analysis

The Freesurfer image analysis suite (http://surfer.nmr.mgh.harvard.edu) performed cortical

reconstruction and volumetric segmentation based on the high resolution T1 weighted 

images. Briefly, these steps included motion correction (Reuter et al., 2010); intensity 

normalisation (Sled et al., 1998), skull stripping; removal of non-brain tissue, brain mask 

generation, cortical reconstruction, white matter and sub-cortical segmentation (Fischl et 

al., 2002, 2004a), cortical tessellation (Fischl et al., 2001; Ségonne et al., 2007) generating

grey-white matter interface surface-triangulations, and probabilistic atlas based cortical 

parcellation (Fischl et al., 2004b; Desikan et al., 2006) using the 2009 Destrieux atlas 

producing a cortical parcellation with 148 independent sulcal and gyral regions.

2.6 Empirical DTI data analysis and tractography

Pre-processing of the diffusion MRI data included eddy current and motion correction with 

re-orientation of b-vectors. The b-zero image was linearly registered to the subject's 
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anatomical T1-weighted image; the resulting transformation rule was stored for later use 

(see: Empirical fMRI data analysis). 

Tractography was constrained by seed, target and stop masks. Masks were transformed 

from individual anatomical to individual diffusion space. The grey-white matter interface 

surface triangulation was dilated into a 3D volume, labelled to match the adjacent cortical 

parcellation and split into 148 separate masks for use as seed and target regions. Tracks 

exiting the union of grey-white matter interface and cortical white matter were regarded as 

spurious and terminated. Registrations were performed using the FSL (FMRIB's Software 

Library, www.fmrib.ox.ac.uk/fsl) software package tool FLIRT (Jenkinson and Smith, 2001; 

Jenkinson et al., 2002; Greve and Fischl, 2009) and FNIRTs (Andersson et al., 2007).

Probabilistic white matter tractography was performed on the diffusion weighted images 

using the MRtrix3 software package (http://www.mrtrix.org). Crossing fibres were resolved 

using the constrained spherical deconvolution algorithm (Tournier et al., 2004, 2012). 

MRtrix3 pre-processing included computing the diffusion tensor images (or diffusion 

ellipsoids) for each voxel from which fractional anisotropy (FA) images were subsequently 

generated. To exclude noise, these were masked by the binary white matter parcellation 

created previously. Tracks were initiated from randomly distributed seed points within each

voxel of the seed mask. Tracks successfully propagating from seed i  to target mask j  

defined a connectivity matrix C ( i , j )  of size C148×148  .

To mitigate bias associated with using seed and target masks of different sizes, 

tractography was performed in both directions; from seed to target mask C (i , j )  and from 

target to seed mask C ( j , i )  with each set of tracks being consolidated into a single entry. 

The seed mask voxel and corresponding target mask voxel were identified and recorded 

for each track. To address the uncertainty surrounding the relationship between the 

number of tracks generated for a given pathway and the synaptic strength of that pathway,

only distinct connections between seed and target voxels contributed toward overall track 

count. Track counts were subsequently converted into track density by dividing total track 

count between region i  and region j  by total seed and target mask volume and 

normalising between zero and one. Finally, the mean FA of each fibre bundle was 

recorded in matrix FA (i , j )  of size FA148× 148  .

2.7 Empirical fMRI data analysis

10

225

230

235

240

245

250

255



11

Excessive peaks in the resting state fMRI time series were first removed using AFNI's 

(https://afni.nimh.nih.gov/afni) 3dDespike script. Functional connectivity matrices for each 

subject were then extracted using the FSL software package. Registration to high 

resolution structural and standard space images was performed using FLIRT and FNIRT 

respectively. FMRI data processing was carried out using FEAT (FMRI Expert Analysis 

Tool) Version 6.00. The following pre-statistics processing was applied: motion correction 

using MCFLIRT, slice-timing correction using Fourier-space time-series phase-shifting, 

non-brain removal using BET, spatial smoothing using a Gaussian kernel of FWHM 

3.0mm, and grand-mean intensity normalisation of the entire 4D dataset by a single 

multiplicative factor. The first five image volumes were deleted to exclude possible T1-

related saturation effects.

The Freesurfer cortical parcellation was transformed to functional space by inverting the 

functional to T1 structural image transformation rule acquired earlier as part of the diffusion

MRI preprocessing pipeline. To account for non-neural sources of physiological noise and 

head movement, the signals from white matter, cerebrospinal fluid and the six motion 

parameter time courses estimated by MCFLIRT were regressed out of the functional time 

series. The empirical BOLD signals were bandpassed filtered in the functionally relevant 

0.04 – 0.07 Hz narrowband range to avoid including artefactual correlations and obtain 

meaningful signal phases (Glerean et al., 2012). Finally, the mean BOLD signal was 

extracted from each region in the T1-derived cortical parcellation. An overview of the steps

are provided in Figure 1.
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Figure 2: Nine canonical resting state networks 
reconstructed in MNI 152 space according to 
the 148 region’s of the Destrieux atlas with a 
3mm isotropic Gaussian blur. The resting state 
fMRI data of  36 control subjects was 
decomposed into fifteen independent 
components nine of which resembled canonical
resting state networks (Smith et al., 2009). 
These nine were subsequently projected into 
the same space as the Destrieux atlas. 
Regions exhibiting a mean z-score > 2.3 (p < 
0.01) were entered into that network.
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2.8 Defining resting state networks from functional imaging data

Independent component analysis (ICA) was used to separate the cortical resting state 

BOLD signals of the controls into independent components using FSL MELODIC. The 

optimal decomposition yielded fifteen components each representing a putative resting 

state network. The correlation of these components with the canonical networks identified 

by Smith et al. (2009) yielded nine behaviourally relevant resting state networks. These 

included regions associated with medial visual, occipital pole, dorsal attention, default 

mode, motor, auditory, salience, and fronto-parietal areas. 

The nine independent components were subsequently projected onto the 148 regions of 

interest from the Destrieux atlas (Hellyer et al., 2014). A region was classified as belonging

to a particular resting state network if its mean z-score was greater than 2.3 (p < 0.01). In 

detail, the z-scores contained within a given region’s voxels were summed and divided by 

the total number of voxels in that region. If the mean z-score exceeded 2.3 (p < 0.01) that 

region was included in the resting state network. Figure 2 shows the nine canonical resting

state networks reconstructed in MNI 152 space according to the 148 regions of the 

Destrieux atlas with a 3mm isotropic Gaussian blur.

2.9 Calculating resting state network metastability

Mean BOLD signals were subsequently transformed into complex phase representation 

via Hilbert transform. The first and last ten time points were removed to minimise border 

effects (Ponce-Alvarez et al., 2015). Oscillator phases were similarly extracted from the 

cortical network model. The Kuramoto order parameter (a measure of instantaneous 

synchronisation; Strogatz, 2000; Acebrón et al., 2005) was estimated for 1), the set of 

regions comprising single resting state network, and 2), when evaluating their interactions, 

the set of regions comprising two resting state networks, as:

RRSN (t)=
1
N |∑

k=1

N

ei θK ( t )| (1)

where k={1,. .. , N }  is region number and θK (t)  is the instantaneous phase of oscillator k

at time t  . Under complete independence, all phases are uniformly distributed and RRSN  

approaches zero. Conversely, if all phases are equally distributed, RRSN  approaches one 

and full synchrony. Global metastability was calculated using all 148 cortical regions. The 

maintenance of a particular communication channel through coherence implies a 
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persistent phase relationship. The number or repertoire of such channels therefore 

corresponds to the variability of these phase relationships (i.e. the metastability) measured

as the standard deviation of RRSN  (Kringelbach et al., 2015; Deco and Kringelbach, 2016). 

2.10 Assessing connectivity changes between empirical resting state networks

Given that 1), the current formulation of metastability only permits calculation between a 

set of regions, and 2), that inter-connected subnetworks convey more behaviourally 

relevant information than single pairs of functional connectivity observed in isolation (Smith

et al., 2009), we argue that an approach exploiting the clustering structure of connectivity 

alterations between functionally related networks may offer the optimal outcome in 

assessing connectivity changes between empirical resting state networks. Accordingly, we 

apply the NBS to measures of synchrony and metastability estimated from empirical fMRI 

data at the network rather than regional level. 

The NBS is a non-parametric statistical test designed to deal with the multiple 

comparisons problem on a graph by identifying the largest connected sub-component 

(either increases or decreases) in topological space while controlling the family wise error 

rate (FWER). To date, several studies have used the method to identify pairwise regional 

connections that are associated with either an experimental effect or between-group 

difference in functional connectivity (Zalesky et al., 2010). 

The present paper adopts a different approach. Rather than applying the NBS to a matrix 

of pairwise regional correlations, we apply the NBS to measures of synchrony and 

metastability evaluated at the resting state network level. Accordingly, pairwise interactions

between all nine resting state networks were evaluated using the approach described 

above (see section 2.9). In the case of synchrony, we applied the NBS to 36 9x9 

symmetric matrices derived from healthy controls and 34 9x9 symmetric matrices derived 

from subjects with AD. Of the matrices, each row/column represented an interaction 

between a resting state network and eight others. We performed the same procedure in 

the case of metastability. We report the mean synchrony and metastability of each group’s 

interaction matrix in the supplementary information (Figs. S2 and S3).

First mass univariate testing is used to test the hypothesis of interest at every connection 

in the graph. Each connection is provided with a single test statistic capturing the evidence

in favour of the null hypothesis, that is, there is no significant difference in the means of the

two diagnostic groups (HC vs. MCI, HC vs. AD). Second, the test statistic is thresholded at
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an arbitrary value. The set of connections exceeding this threshold are admitted into a set 

of supra-threshold connections representing potential candidates for which the null 

hypothesis can be rejected. The third step is to identify topological clusters among the 

supra-threshold connections for which a connected path can be found between any two 

nodes. It is important to note that clustering is not in physical space, rather the NBS 

clusters in topological space where a cluster corresponds to a connected graph 

component. The null hypothesis is therefore rejected or confirmed at the level of the whole 

structure rather than at the level of individual connections. The final step is to compute a 

FWER-corrected p-value for each component using permutation testing. For each 

permutation, the above three steps are repeated to construct an empirical null distribution 

of the largest connected component size. The FWER-corrected p-value for a component of

a given size is estimated as the proportion of permutations for which the largest 

component was of the same size or greater. The size of a component can be measured in 

two ways 1) as the total number of connections or extent of that component or 2) as the 

sum of the test statistic values across all connections, namely, the intensity of that 

component. Extent is appropriate for detecting relatively weak effects that extend to 

encompass many connections while intensity is more suitable for detecting strong, focal 

effects confined to a limited number of connections. The threshold revealing the largest 

disconnected sub-component in the network was selected.
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Figure 3: Estimation of subject-level structural 
disconnection in diagnostic groups (MCI/AD). A. Subject-
level connectivity matrices were derived by lesioning the 
average control network or “healthy template” in locations
where tracts demonstrated unusually low FA. The FA 
value for a single tract was extracted from all 30 controls 
to form a normal distribution with characteristic mean and
standard deviation (blue). The same procedure in the 
patient cohort yielded a second normal distribution with a
mean offset from the first (orange). Patients with tracts 
displaying FA values less than -1.96 standard deviations 
from the mean of the controls (p < 0.05; uncorrected) 
were considered damaged and lesioned from the 
average structural network of the controls, the strength of
these connections being weakened by 50%. Repeating 
the procedure for all tracts yielded 30 subject-level 
connectivity matrices per diagnostic group (MCI/AD). B, 
Group-level structural connectivity matrices (MCI/AD) 
were derived for different values of the network based 
statistic threshold. Nodes forming part of significantly 
disconnected FA sub-components were considered 
damaged and lesioned from the average control network 
or “healthy template”, the strength of these connections 
being weakened by 50%.
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2.11 Generating subject-level structural connectivity

The derivation of structural connectivity relied on changes in FA which are more closely 

linked to axonal degeneration and demyelination (Aung et al., 2013; Teipel et al., 2014) 

than track count, which lacks a clear biological interpretation. Figure 3.A shows the 

procedure for generating subject-level connectivity matrices. Tracts demonstrating 

significantly lower FA than controls (p < 0.05; uncorrected) were lesioned from the healthy 

template i.e. the average structural connectivity of controls. This corresponded to a 5% 

probability that a control subject would exhibit an FA value this low. Since total denervation

was unlikely, the strength of coupling was weakened by 50% with values ranging from 25-

75% producing comparable results.

In detail, FA values FA ( i , j )  of tracks running between pairwise regions i  and j  were 

concatenated for all 30 controls to form a 3D matrix HC (i , j , k )  of size HC148× 148× 30 . The 

same procedure was performed for the two patient cohorts to form MCI (i , j , k )  and

AD ( i , j , k ) . The mean and standard deviation of the resulting normal distribution for

HC (i , j ,∗)  was then used to convert FA values in the corresponding pairwise regions i  

and j  of MCI (i , j ,∗) , and AD ( i , j ,∗)  into z-values. 

Comparison between the normal distribution of FA values for the tract (i , j)  in the control 

population and the normal distribution of FA values for the tract (i , j)  in the patient 

population was then possible. Patients were assigned their own copy of the healthy 

template prior to lesioning. Patients whose FA value was less than -1.96 standard 

deviations from the mean of the control FA distribution (corresponding to p < 0.05; 

uncorrected) had their tracts lesioned from the healthy template. The process was 

repeated for all tracts to produce 30 subject-level connectivity matrices in each patient 

cohort (MCI/AD).
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Figure 4: Total number of lesions pertaining to each region of the Destrieux cortical atlas in
MCI (left) and AD cohorts (right), where blue indicates zero lesions and yellow the highest 
number recorded (normalised between zero and one). In both diagnostic groups, the 
majority of lesions was focused around core components of default mode network. Notice 
however the relative difference in magnitude.
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2.12 Building a consensus distribution of structural lesions

The presence or absence of a lesioned tract was recorded in a binary matrix for each 

clinical subject. The summation of matrices within a diagnostic grouping yielded a single 

consensus distribution of lesioned tracts for all subjects where each index corresponded to

the total number of subjects with a lesioned tract at that location (Fig. S1). Summing each 

row provided a regional measure corresponding to the total number of lesions in the 

connectivity of that region. Figure 4 shows this metric normalised between zero and one 

plotted on the inflated cortical surface of the Destrieux atlas where dark blue corresponds 

to zero lesions and yellow to the highest number recorded.

The purpose of the consensus distribution was three-fold: 1), to demonstrate how lesions 

were distributed on the cortical surface; 2), to determine which features of nodal topology 

were most associated with damage; and 3), to evaluate the distribution of lesions within 

the rich-club i.e. a network of high degree nodes that are more connected to each other 

than expected by chance (van den Heuvel and Sporns, 2011).

2.13 Generating group-level structural connectivity

Since networks grow or shrink in size depending on the choice of NBS threshold (note 

however the FWER is always controlled regardless of the choice of threshold) we employ 

a model-based fitting approach to determine the most likely structural skeleton (and hence 

threshold) responsible for generating the observed dynamic. 

In this scenario, the NBS is used to guide the lesioning process. The resulting structure is 

used to inform coupling in the cortical network model. Firstly, the NBS identifies the largest

disconnected sub-component in the FA matrix of the diagnostic group at a particular 

threshold. Secondly, the identified nodes are lesioned from the healthy template by having 

the strength of their connections reduced by 50%. Finally, the simulated dynamic 

(measured as resting state network synchrony and metastability) is correlated with 

empirical estimates based on fMRI BOLD signal (Figs. S2 and S3) allowing the most 

probable structural skeleton and hence most appropriate choice of threshold to be inferred.

A control was provided by lesioning the same number of random nodes from the healthy 

template. Figure 3.B shows the procedure for generating group-level (MCI/AD) structural 

connectivity information at different values of the NBS threshold. 

2.14 Constructing the cortical network model
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The network model consisted of 148 nodes each described by a single Kuramoto phase 

oscillator (Kuramoto, 1984; Acebrón et al., 2005; Breakspear, 2017). Here, global 

synchronisation dynamics emerge through the reciprocal interaction of pairwise nodes 

coupled through the underlying anatomical structure. Despite its apparent simplicity, the 

Kuramoto model generates macroscopic dynamics comparable to significantly more 

complex spiking models at a significantly reduced computational cost (Messé et al., 2014).

The phase θ (t )  of each oscillator i  is governed by the equation:

dθi
dt

=ωi+
1
N
∑
j=1

N

K i , jsin ⁡(θ j−θ i−ρ ) i=1…N (2)

where ω  represents the oscillator's natural frequency i.e. the phase change of an 

uncoupled node per time step, N  the total number of connections made by the oscillator,

K i , j  the strength of coupling between oscillators i  and j  , and ρ  a fixed phase lag. In 

this context, phase lag is used as a abstract tuning parameter to match the simulated 

metastability to that of the empirical BOLD data (see: Computational model validation and 

tuning). Collective synchronisation between a set of oscillators can be achieved by 

increasing the coupling strength between the oscillating units, or by introducing a 

homogeneous distribution of frequencies between the oscillators. However, these 

strategies fail in the case where coupling between oscillators induces phase lags (Kundu 

et al., 2017). Such a scenario is common among many real-world systems (including the 

brain) where components take time to respond to their neighbouring oscillators. Under 

phase-frustration, the system indefinitely avoids synchronisation, even when frequencies 

are homogeneous and coupling is relatively strong. The phase lag parameter between 

oscillators can therefore be conceptualised as form of fixed time delay (Shanahan, 2010; 

Wildie and Shanahan, 2012). Metastable fluctuations in synchrony are only present for a 

critical range of the phase lag parameter. In this regime, integrative and segregative 

tendencies between oscillators are continually engaged but never fully reconciled. 

The present paper simulates the BOLD signal directly using low frequency oscillators 

(Ponce-Alvarez et al., 2015). Such an approach should be distinguished from previous 

work where simulated electro-physiological signals (Hellyer et al., 2014, 2015; Váša et al., 

2015) were transformed into BOLD signals using Balloon-Windkessel hemodynamics 

(Cabral et al., 2011, 2012). Since the match between simulated and empirical functional 
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connectivity is largely insensitive to the inclusion of hemodynamic effects (Messé et al., 

2014), Balloon-Windkessel hemodynamics are not included here.

The oscillator's intrinsic frequency f i  and natural frequency ωi  are related through the 

equation f i=ωi /2π . The intrinsic frequencies are characterised as limit cycles distributed 

in the low frequency 0.04 – 0.07 Hz range of empirical BOLD signal oscillation. The model 

was numerically simulated in MATLAB 2016a (https://uk.mathworks.com) using the 

Runge-Kutta integration scheme with a time step of 10 ms. To ensure robust estimation of 

metastability and synchrony, we run the simulation for 1000 sec. with oscillator phase 

initialised randomly. We discard the first 200 sec. of simulation time to remove initial 

transients.
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Figure 5: Model validation and tuning. A, Correlation between simulated and empirical 
functional connectivity for increasing value of phase lag parameter with 95% CI. B, Mean 
simulated global synchrony for increasing value of phase lag parameter with correlation 
overlaid for comparison. Correlation peaks where simulated synchronisation matches 
empirical synchronisation. C, Mean simulated global metastability for increasing value of 
phase lag parameter with correlation overlaid for comparison. Again, correlation peaks 
where simulated metastability matches empirical metastability. 
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2.16 Tuning and validating the cortical network model

Since empirical metastability intersected the curve of simulated metastability at two points 

and was thus, mathematically speaking, not a well defined function i.e. there were multiple 

values of phase lag that produced the same value of metastability, it alone was insufficient 

to tune the model. Instead, model validation and tuning was performed by correlating the 

average functional connectivity of the empirical BOLD data of healthy subjects with the 

average functional connectivity of the simulated cortical model over several runs at a given

value of the phase lag parameter (Fig. 5.A). The value of phase lag producing the highest 

correlation (~1.1 rads) between simulated and empirical functional connectivity 

corresponded to the regime where empirical and simulated data agreed with each other 

(Fig. 5B, C; (Cabral et al., 2011, 2012, Hellyer et al., 2014, 2015; Váša et al., 2015). 

Pearson's correlation coefficients were calculated on pairwise BOLD signals to yield a 

functional connectivity matrix for each control subject. The mean functional connectivity of 

all controls was then calculated through simple averaging. Oscillator phase was 

transformed into a smooth periodic function representing BOLD signal, and Pearson’s 

correlation coefficients were calculated between pairwise nodes of the model. One-

hundred runs were conducted for different values of the phase lag parameter (0 to π  ) 

with the functional connectivity of each phase lag obtained through simple averaging. 

Oscillator phases were randomly initialised prior to each run and coupling between nodes 

informed by the average structural connectivity of the controls. 

2.17 Evaluating the healthy structural connectome’s local topology

The local topological organisation of each of the 148 nodes of the healthy template (i.e. the

average structural network of the controls) were evaluated using the main graph theoretic 

measures (Bullmore and Sporns, 2009; Sporns, 2013). This included a measure of 

connectivity centrality – the eigenvector centrality. Under this framework, nodes have high 

eigenvector centrality if they have many neighbours, if their neighbours are highly 

connected or both). In other words, a node is important if it is linked by other important 

nodes. We also applied two local measures of segregation/integration – the clustering 

coefficient, or fraction of all possible edges linking a node’s neighbours, and the local 

efficiency – the inverse average shortest path length between a node’s neighbours. Finally,

we applied a measure of modularity that relied upon an a priori definition of network 

modules or network components demonstrating high intra-connectivity but sparse inter-

connectivity (see: Defining resting state networks from functional imaging data). These 
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included the participation coefficient, which captures how evenly a node’s connections are 

distributed between modules. Metrics were evaluated using the Brain Connectivity Toolbox

(Rubinov and Sporns, 2010). Full definitions are provided in the supplementary 

information.

2.18 Evaluating the lesioned structural connectome’s large-scale topological 

organisation at the subject-level

We also evaluated four large-scale analogues of the previously described local measures 

namely, the mean eigenvector centrality, the mean clustering coefficient, global efficiency, 

and mean participation coefficient on the subject-level connectivity matrices. Three of 

these measures were discussed previously, the fourth – global efficiency – is closely 

related to path length and captures the trade-off between minimising network costs and 

maximising topological efficiency. For this reason, high global efficiency is associated with 

reduced wiring and metabolic costs, and faster, less noisy information transmission 

(Bullmore and Sporns, 2012). Again, a full definition is provided as supplementary 

information.

595

600

605



25

Figure 6: Empirical global metastability of fMRI 
BOLD signal (in grey) and simulated global 
metastability (in green). Simulated metastability 
was calculated from a computer model with 
anatomically informed coupling. Empirical 
metastability was estimated from fMRI BOLD 
signal. Bars display mean, 95% CI, and one 
standard deviation for the three cohorts 
(HC/MCI/AD) with individual subjects indicated. 
One-way ANOVA revealed significantly lower 
metastability of large-scale neural dynamics in 
AD compared to controls for both empirical and 
simulated data (*p < 0.01).
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Results

3.1 Empirical estimates of large-scale neural metastability measured in fMRI BOLD 

signal are significantly reduced in AD

The metastability of the resting state fMRI BOLD signal was estimated for each cohort 

(Fig.6; in grey). Global metastability of healthy subjects declined asymptotically over the 

course of disease progression. One-way ANOVA identified a statistically significant 

difference between groups (F(2,101) = 4.77, p = 0.011). Subsequent Tukey post hoc test 

revealed significantly lower neural metastability in AD patients compared to controls (p = 

0.0073).

3.2 Empirically defined macroscopic structural disconnection drives reduced 

metastability in large-scale simulations of neural dynamics

The impact of macroscopic structural disconnection on the large-scale neural dynamic was

assessed by informing coupling between nodes in a simple oscillator model with subject-

level connectivity data. Figure 6 shows the simulated metastability of each subject group 

(in green) compared to empirical estimates of global metastability (in grey). 

Since the simulated results were contingent on the choice of starting parameters (the initial

oscillator phases), we calculated the average global metastability produced from each 

subject’s connectivity matrix over 100 runs (signified by a grey dot). For each run, a 

different set of initial oscillator phases was supplied. Each group (set of 30 subjects) 

received the same set of randomly initialised phases. Statistical tests were then conducted

on the average values (the grey dots).

In agreement with empirical observations, simulated global metastability declined 

asymptotically according to diagnostic status. One-way ANOVA determined a statistically 

significant difference between groups (F(59,88) = 7.83, p = 0.0007). Subsequent Tukey 

post hoc test revealed significantly lower neural metastability in simulations informed by 

the subject-level connectivity matrices of AD patients compared to controls (p = 0.00065). 

Importantly, this result was robust against changes in the initial starting parameters (Fig. 

S4).
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Figure 7: Local topological features of the average healthy connectome predict damage to 
nodal connectivity in the computer model (top) of AD subjects. This included A, 
eigenvector centrality, B, participation coefficient, C, clustering coefficient and D, local 
efficiency. All relationships were significant, corrected for multiple comparisons at the 
Bonferroni p-level of p < 0.001. Nodes of the rich club regime demonstrate the highest 
number of lesions (bottom). E, All 148 nodes of the Destrieux atlas rank ordered by degree
with lesion count ranging from zero lesions, in blue, to the highest number recorded, in 
yellow, normalised to lie between zero and one. Dashed horizontal lines signal the rich-
club regime between degrees  = 40 and = 70. F, All 148 nodes of the Destrieux atlas 
plotted at the centre of mass of their respective cortical parcellations (left) with diameter 
proportional to degree and normalised lesion count indicated by colour. Nodes (and their 
edges) with degree  > 60 qualifying for rich-club membership (right).
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3.3 Local topological measures predict damage to the computer model’s 

connectivity

Existing studies typically report finding significant differences in graph theoretic measures 

in clinical groups as compared controls (Tijms et al., 2013). However, here we relate the 

graph theoretic measure to the total number of lesions in the connectivity of each node. In 

doing so, we quantify the degree to which damage is correlated with specific features of 

the connectome’s topology. Since strength of coupling between nodes is determined by 

subject-level connectome data, we emphasise that these results provide insight into how 

connectivity is damaged between nodes in the computer model. Accordingly, lesion count 

was entered into a linear regression analysis as dependent variable with one of four local 

graph metrics as predictors.

Patients demonstrated a statistically significant relationship between the number of lesions

a node receives and key features of its structural topology, corrected for multiple 

comparisons at the Bonferroni p-level of p < 0.001. The relationship was more pronounced

in the AD cohort. 

For the MCI group, these included eigenvector centrality (F(1,146) = 89.2, p = 8.17e-17), 

clustering coefficient (F(1,146) = 75.7, p = 6.26e-15), local efficiency (F(1,146) = 93.3, p = 

2.24e-17) and participation coefficient (F(1,146) = 33.7, p = 3.87e-08). For AD patients, 

these included eigenvector centrality (F(1,146) = 125, p = 2.58e-21), clustering coefficient 

(F(1,146) = 124, p = 3.12e-21), local efficiency (F(1,146) = 106, p = 5.3e-19) and 

participation coefficient (F(1,146) = 35.1, p = 2.19e-08). 

Figure 7 (A-D) shows the total number of lesions in a node’s connections plotted against 

the four measures of local topology. Since the results for the MCI group were qualitatively 

no different from AD, we present only the latter.

3.4 High-degree hubs of the rich-club are selectively vulnerability to damage

The human connectome is organised into a densely interconnected core of high-degree 

hub nodes known as the rich-club (van den Heuvel and Sporns, 2011). We investigated 

the relationship between a nodes rich-club membership and the total number of lesions 

within its connections. 

Figure 7.E shows all 148 nodes rank ordered by degree with each node’s normalised 

lesion count indicated by colour (ranging from zero lesions, blue, to the highest number of 
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lesions recorded, yellow) and dashed horizontal lines signalling the rich-club regime. 

Figure 7.F (left) shows all nodes drawn at the centre of mass of their respective cortical 

parcellations, with diameter proportional to degree and normalised lesion count indicated 

by colour. For visualisation purposes, the diameter of the corpus callosum has been scaled

to correspond to k  = 70. Figure 7.F (right) shows those nodes and their edges with 

degree k  > 60 that qualify for rich-club membership. As in previous work, a densely inter-

connected core spanning multiple cortices and resting state networks is identified. These 

regions (and their respective resting state networks; see Fig. 2) included parieto-occipital 

sulcus (medial visual), intra-parietal sulcus (dorsal attention), precuneus and superior 

temporal sulcus (default mode), superior parietal lobule (default mode adjacent), inferior 

segment of the circular sulcus of the insula (auditory), and pericallosal sulcus of the corpus

callosum (salience).
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Figure 8: Relationship between macroscopic topological organisation 
including A, mean eigenvector centrality, B, mean clustering 
coefficient, C, global efficiency and D, mean participation coefficient 
after lesioning and simulated global metastability in MCI (in red) and 
AD cohorts (in yellow). A significant positive association was found 
between macroscopic measures of structural topology and simulated 
global metastability corrected for multiple comparisons at the 
Bonferroni p-level of p < 0.0063. For reference, vertical dashed line 
indicates the value obtained in the group-averaged control network.
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3.5 Macroscopic topological organisation predicts simulated neural metastability

Simulated global metastability was entered into a linear regression analysis as dependent 

variable with large-scale graph theoretic measures of structural connectivity as predictors.

Since correlations could potentially be driven by a small number of extreme values, we 

removed outliers in the data prior to performing linear regression. We defined an outlier as 

an a value that is more than three scaled median absolute deviations away from the 

median. We perform this step for both the MCI and AD groups independently, and then 

perform a linear regression across all participants. Performing the regression with and 

without outliers did not qualitatively change the result.

Figure 8 shows the association between macroscopic topological organisation (after 

lesioning) and simulated global metastability. Both MCI and AD patients demonstrated a 

statistically significant relationship between simulated global metastability and the large-

scale measures of structural topology, corrected for multiple comparisons at the Bonferroni

p-level of p < 0.0063. 

These included mean eigenvector centrality (F(1,43) = 18.7, p = 0.00009), mean clustering

coefficient (F(1,46 = 16.2, p = 0.0002), global efficiency (F(1,38) =  14.1, p = 0.0006), and 

mean participation coefficient (F(1,45) = 13.9, p = 0.00005). 
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Figure 9: Statistically significant (p < 0.05; corrected) intensity-based 
decreases in focal synchrony between a circumscribed set of resting state 
networks identified using the network based statistic in fMRI data (left). 
Statistically significant (p < 0.05; corrected) extent-based decreases in 
metastability between a widespread set of resting state networks identified
using the network based statistic in fMRI data (right). In both cases, the 
NBS was applied to matrices of synchrony and metastability calculated 
from empirical fMRI BOLD data at the resting state network level where 
thresholds were set to reveal the largest disconnected sub-graphs that 
were statistically significant.
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3.6 Widespread decreases in metastability between empirical resting state networks

in AD

We sought to identify network-level alterations in synchrony and metastability of resting 

state BOLD signal in the MCI and AD cohorts. Accordingly, we applied the NBS to the 9x9 

matrices of synchrony and metastability estimated from empirical fMRI BOLD data for 

each subject (see section 2.10), where each row/column represented the interaction of a 

single resting state network with eight others.

The NBS identified statistically significant (p = 0.033; corrected) intensity-based focal 

decreases in synchrony between large-scale networks in AD. These included decreases 

between right fronto-parietal and sensory-motor networks, and between right fronto-

parietal and default mode network.

The NBS also identified statistically significant (p = 0.043; corrected) extent-based 

decreases in metastability that subsumed all nine resting state networks in AD. Recall that 

extent is indicative of a relatively weak effect spread over many connections while intensity

is associated with stronger effects confined to a small number of connections. No 

significant differences were identified in the MCI cohort for either synchrony (p = 0.29; 

corrected) or metastability (p = 0.86; corrected). Figure 9 shows the statistically significant 

sub-graphs (p < 0.05; corrected) of decreased synchrony (left) and metastability (right) 

identified by the NBS in the AD cohort.
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Figure 10: Relationship between global 
cognitive test scores and brain-wide 
metastability of fMRI BOLD signal. A significant 
association between global cognitive 
performance (MMSE) and empirical 
macroscopic neural metastability was found 
across all participants (p < 0.01).
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3.7 Empirical measures of metastability predict cognitive performance in AD

To understand how empirical measures of neural metastability relate to cognitive 

performance, we performed a multiple linear regression with MMSE test score as 

dependent variable, global metastability as predictor, and age, motion, and total volume of 

grey matter as covariates of no interest. Figure 10 shows MMSE test score plotted against 

brain-wide metastability of empirical fMRI BOLD signal where each dot represents a single

subject. A statistically significant association (t(98) = 11.6, p = 0.0009) was found between 

empirical measures of macroscopic neural metastability and cognitive performance across 

all subjects.
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Figure 11. Determining the most likely group-level structural skeleton (or NBS threshold) 
responsible for generating the empirically observed resting state network synchronisation 
dynamic in the MCI cohort. A, Mean correlation between simulated synchrony (generated 
from a computer model with coupling defined by group-level connectivity) and empirical 
synchrony (measured in fMRI BOLD signal) drawn in blue with 95% CI. For comparison, 
the mean correlation between the simulated synchrony of a random control (generated 
from a computer model with randomly defined coupling) and empirical synchrony 
(measured in fMRI BOLD signal) is in red with 95% CI. Cohen’s d effect size is indicated 
by black dashed line. The group-level connectivity or NBS threshold (3.4) at which 
correlation between simulated and empirical synchrony approximately peaked (r = 0.88) 
and the Cohen effect size maximised (d = 2.1). B, Same as in A but for metastability. At 
the group-level connectivity or NBS threshold of 3.4, correlations between simulated and 
empirical metastability are at their peak (r = 0.80) and the Cohen effect size is moderate (d
= 0.5). C, Disconnected FA sub-networks identified by the NBS in a group of 30 patients 
with MCI at different thresholds (p < 0.05; corrected). Nodes are positioned at the centre of
mass of their respective cortical parcellation. At each threshold, identified nodes had their 
connectivity lesioned from the average control connectivity. The resulting structure 
informed coupling strength between nodes in a group-level simulation.
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Figure 12. Determining the most likely group-level structural skeleton (or NBS threshold) 
responsible for generating the empirically observed resting state network synchronisation 
dynamic in the AD cohort. A, Mean correlation between simulated synchrony (generated 
from a computer model with coupling defined by group-level connectivity) and empirical 
synchrony (measured in fMRI BOLD signal) drawn in blue with 95% CI. For comparison, 
the mean correlation between the simulated synchrony of a random control (generated 
from a computer model with randomly defined coupling) and empirical synchrony 
(measured in fMRI BOLD signal) is in red with 95% CI. Cohen’s d effect size is indicated 
by black dashed line. The group-level connectivity or NBS threshold (4.8) at which 
correlation between simulated and empirical synchrony approximately peaked (r = 0.9) 
and the Cohen effect size maximised (d = 2.9) was considered optimal. B, Same as in A 
but for metastability. At the group-level connectivity or NBS threshold of 4.8, correlations 
between simulated and empirical metastability are at their peak (r = 0.83) and the Cohen 
effect size is moderate (d = 0.75). C, Disconnected FA sub-networks identified by the NBS 
in a group of 30 patients with AD at different thresholds (p < 0.05; corrected). Nodes are 
positioned at the centre of mass of their respective cortical parcellation. At each threshold, 
identified nodes had their connectivity lesioned from the average control connectivity. The 
resulting structure informed coupling strength between nodes in a group-level simulation.
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3.8 Dissociable networks of decreased FA identified in MCI and AD using dual NBS 

and model-based fitting approach

To identify the structural correlates underlying the observations of decreased synchrony 

between fronto-parietal and sensory-motor network in the AD cohort (Fig. 9), we invoked a 

joint model-based fitting and NBS procedure. In doing so, we identified dissociable 

networks of decreased FA between diagnostic groups. The AD cohort showed marked 

decreases in FA within portions of frontal and posterior cortex commensurate with fronto-

parietal network. In contrast, the MCI cohort showed decreased FA in regions situated 

more centrally.

Figure 11.A shows the mean correlation between simulated synchrony (generated from the

NBS identified structure) and mean empirical synchrony (measured using fMRI BOLD 

signal) in MCI patients drawn in blue with 95% CI. For comparison, the mean correlation 

between the simulated synchrony of a random control (generated by lesioning an 

equivalent number of random nodes) and mean empirical synchrony (measured using 

fMRI BOLD signal) is overlaid in red with 95% CI. We used Cohen’s d effect size (indicated

by black dashed line) to assess the standardised difference between the two means (blue 

and red) at different values of the NBS threshold. 

The NBS threshold (3.4) at which correlation between simulated and empirical synchrony 

approximately peaked (r = 0.88; blue line) and the Cohen effect size was maximised (d = 

2.10) is indicated by vertical dashed line. Two-sample t-test at the chosen threshold (3.4) 

revealed a statistically significant difference (t(998) = 21.99, p < 0.01; uncorrected) 

between 1) the mean correlations of the model informed by the group-level structure 

versus empirical fMRI data (blue), and 2) the mean correlations of the model informed by a

randomly lesioned structure versus empirical fMRI data (red). Figures S2 and S3 show the

correlation between simulated and empirical data at the chosen threshold.

Figure 11.B shows the mean correlation between simulated metastability (generated from 

the NBS identified structure) and empirical metastability (measured using fMRI BOLD 

signal) drawn in blue with 95% CI. Again, random controls are highlighted in red. At the 

chosen NBS threshold of 3.4, correlations between simulated and empirical metastability 

peaked (r = 0.8) and the Cohen effect size was moderate (d = 0.5). Two-sample t-test at 

this threshold (3.4) revealed a statistically significant difference (t(998) = 6.38, p < 0.01; 

uncorrected) between 1) the mean correlations of the model informed by the group-level 
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structure versus empirical fMRI data (blue) and 2) the mean correlations of the model 

informed by a randomly lesioned structure versus empirical fMRI data (red). Figure 11.C 

shows the disconnected FA sub-graph determined by the NBS (p < 0.05; corrected) for the

MCI cohort at each threshold. The nodes identified at each threshold are listed in table S3.

The nodes identified at the chosen threshold are shown in figure S7.

The same procedure was applied to the AD cohort. Figure 12.A shows the NBS threshold 

(4.8) at which correlation between simulated and empirical synchrony peaked (r = 0.90) 

and the Cohen effect size was maximised (d = 2.9) as vertical dashed line. Two-sample t-

test at this threshold (4.8) revealed a statistically significant difference (t(998) = 29.26, p < 

0.01; uncorrected) between 1) the mean correlations of the model informed by the NBS 

identified structure versus empirical fMRI data (blue), and 2) the mean correlations of the 

model informed by a randomly lesioned structure versus empirical fMRI data (red). Figures

S2 and S3 show the correlation between simulated and empirical data at the chosen 

threshold. 

Figure 12.B shows that at the chosen NBS threshold of 4.8, correlations between 

simulated and empirical metastability are close to their peak (r = 0.83; blue line) and the 

Cohen effect size is moderate (d = 0.75). Two-sample t-test at this threshold (4.8) revealed

a statistically significant difference (t(998) = 9.68, p < 0.01; uncorrected) between 1) the 

mean correlations of the model informed by the NBS identified structure versus empirical 

fMRI data (blue) and 2) the mean correlations of the model informed by a randomly 

lesioned structure versus empirical fMRI data (red). Figure 12.C shows the disconnected 

FA sub-graph determined by the NBS (p < 0.05; corrected) for the AD cohort at each 

threshold. The nodes identified at each threshold are listed in table S4. The nodes 

identified at the chosen threshold are shown in figure S8.

Discussion

Structure, function, and cognition, can be arranged into an ontological triad each 

influencing the other. Interference to one component destabilises the triad, leading to 

measurable changes in the activity of the remaining two. This paper asked two broadly 

interrelated questions. How do higher level cognitive processes emerge from the 

interactions of dynamical networks of anatomically based brain connectivity, and how do 

disruptions to the topology of this structure impact network dynamics and ultimately 
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cognition? To answer these questions, we interrogated the neural dynamics of MCI and AD

subjects for changes in metastability. In AD, macroscopic damage to the structural 

connectome produced reductions in simulated metastability comparable to that observed 

in empirical fMRI data (Fig. 6). Damage to the computer model’s connectivity was focused 

around nodes scoring high in topological centrality, integration, and efficiency (Fig.  7). 

Reductions in simulated metastability were associated with damage to the connectome’s 

global topology (Fig. 8). Brain-wide decreases in metastability contrasted sharply with 

more focal decreases in synchrony between resting state networks important for cognitive 

control (Fig. 9). Finally, the empirical decreases showed behavioural relevance, correlating

with a subject’s global cognitive ability (Fig. 10). Overall, the results of our dual computer 

modelling and empirical study suggest a causal relationship between metastability of 

neural dynamics, cognitive performance and the structural integrity of the human 

connectome.

We found reduced metastability in the global neural dynamic of fMRI BOLD signal in AD 

patients compared to healthy controls (Fig. 6). In a computer model informed by subject-

level connectivity data, macroscopic structural disconnection was associated with reduced 

metastability of resting state neural dynamic in AD (Fig. 6) that matched similar declines in 

empirical data. Damage was selectively distributed according to the topological properties 

of each node in the healthy connectome (Fig. 7.A-D). Rich-club hubs (Fig. 7.E-F) and long 

distance, inter-modular tracts were especially vulnerable (Fig. S6). Reductions in 

simulated metastability correlated with damage to the structural connectome’s large-scale 

topology (Fig. 8). Decreases in metastability were evident between most of the brain’s 

resting state networks (Fig. 9). This is especially important in AD, as resting state networks

are known to display a high degree of behavioural relevance (Smith et al., 2009). The level

of neural metastability exhibited by a subject was related to the degree of behavioural 

impairment measured through cognitive testing (Fig. 10). These results lend further 

support to previous empirical observations of reduced cognitive flexibility and resting state 

neural metastability in conditions where network topology has been altered (Hellyer et al., 

2015; Váša et al., 2015). 

Eigenvector centrality correlated positively with damaged connectivity in the computer 

model (Fig. 7.A). Our findings are consistent with the selective vulnerability demonstrated 

by topologically important hub nodes in neurodegenerative disorders (Crossley et al., 

2014). In AD, the elevated metabolism of default mode network hubs appears to convey a 
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greater risk of pathology (Buckner et al., 2009) – a view consistent with transgenic animal 

studies linking cellular activity to amyloid deposition (Cirrito et al., 2005; Bero et al., 2011) 

and simulations of activity dependent degeneration in hub regions (de Haan et al., 2012). 

Other hypotheses concerning the nature of brain network organisation and distribution of 

neuropathology have been proposed (Zhou et al., 2012). Foremost among these is the 

contention that pathology spreads transsynaptically in a prion-like manner between 

structurally and functionally related networks (Jaunmuktane et al., 2015). In support of this 

view, patterns of circumscribed atrophy are not randomly distributed with respect to the 

modular architecture of the brain. Rather, they appear to be constrained within specific 

resting state networks depending on the identity of the neurodegenerative disorder (Seeley

et al., 2009). In keeping with this hypothesis, a relatively simple anatomically constrained 

diffusion process accurately predicted spatial patterns of neurodegeneration in AD (Raj et 

al., 2012). Our results indicate that pathological material is disseminated through the 

cortex by a network of nodes scoring high in eigenvector centrality.

Topologically integrated nodes with high clustering coefficient (Fig. 7.B) and local efficiency

(Fig. 7.C) constituted a second locus of disruption in the computer model. Local network 

features providing tight integration between neighbouring nodes may facilitate the spread 

of pathological disease vectors within local communities (Raj et al., 2012). To date, 

disrupted clustering coefficient has been reported across imaging modalities in AD (Tijms 

et al., 2013).

Damage to the computer model’s connectivity also correlated with a node’s participation 

coefficient (Fig. 7.D). Nodes scoring high in participation coefficient bridge segregated 

communities by distributing their long range connections evenly between modules. Our 

results provide a physical basis for reports of reduced participation coefficient reported in 

functional connectivity networks in AD (Brier et al., 2014). Power et al. (2013) identified 

regions with high participation coefficient as convergence zones for different functional 

subsystems. Damage to these nodes produced much greater disruption in resting state 

organisation than lesions of equivalent magnitude in more circumscribed networks 

(Gratton et al., 2012). In another study, Warren et al.(2014) demonstrated that nodes with 

high participation played a distinct role from nodes of high degree. Crucially, lesions to 

nodes with high participation coefficient produced impairment across a range of cognitive 

domains, whereas lesions to high degree nodes displayed more circumscribed cognitive 

deficits. Such results are consistent with the finding of reduced integration between 
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network modules in our study and the global cognitive decline associated with AD. 

Furthermore, our results suggest a causal link between damage in high participation 

nodes, reduced metastability of neural dynamics, and decline in global cognitive 

performance.

Nodes demonstrating both high eigenvector centrality and high participation coefficient are

likely part of the putative rich-club – a densely interconnected core of network hubs (van 

den Heuvel and Sporns, 2011; Pedersen and Omidvarnia, 2016). The rich-club 

phenomena occurs when hub nodes connect more densely among themselves than nodes

of lower degree. Pathways linking these regions constitute an expensive high-performance

backbone for global integration. Accordingly, the rich-club accounts for the majority of 

shortest paths between node pairs (van den Heuvel et al., 2012). Simulations show that 

targeted attack of rich-club hubs impair global efficiency three times more than randomly 

directed attacks (van den Heuvel et al., 2012). Our results show disrupted rich-club 

organisation across the AD spectrum with nodes of the rich-club regime demonstrating the 

greatest number of lesions in their connectivity (Fig. 7.E-F). In line with this view, reduced 

metastability may be a signature of disrupted rich-club organisation consistent with its role 

in boosting functional diversity (Senden et al., 2014).

The drive for rich-club architecture is associated with the tendency for hubs to connect 

regions over large physical distances (van den Heuvel et al., 2012). In a similar vein, cross

modality sensory information is often integrated over long distances by hubs located in 

heteromodal association cortex. Damage to long distance association and commissural 

tracts (Fig. S6) may therefore provide an anatomical basis for reports of attenuated long 

range functional connectivity in AD (Liu et al., 2014).

Importantly, MMSE test scores correlated positively with empirical resting state global 

metastability in AD patients (Fig. 10). The MMSE measures the severity and progression 

of longitudinal cognitive impairment by testing abilities related to memory, attention, and 

language. All three domains involve the large-scale integration of information across 

distributed sensory, motor, and cognitive control regions. For this reason, metastability 

may represent an important mechanism underlying general cognitive function. 

Our study found decreases in global metastability (Fig. 6) that correspond to an extended 

network of behaviourally relevant cognitive subsystems (Fig. 9). This is consistent with the 

understanding that higher order processes involving memory and attention (such as those 
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captured by the MMSE) are unlikely to reside within discrete topological modules. Instead, 

traditional modular architecture is likely dissolved in favour of a highly integrated global 

neuronal workspace (Dehaene et al., 1998). Measures of network integration including 

clustering coefficient, global efficiency, and participation coefficient, may therefore be more

closely linked to higher order task performance than measures of segregation such as 

modularity (Bassett et al., 2011). In line with this view, reduced path length, heightened 

topological efficiency, and disrupted modular topology has been reported in functional 

networks during more challenging cognitive operations (Kitzbichler et al., 2011). 

The present paper adopted a different strategy. Instead of assessing topological properties

of functional connectivity networks directly, we used computer modelling to examine the 

link between a connectome’s large-scale integrative structure and its ability to generate 

metastable neural dynamics. We did this by using anatomically derived subject-level 

connectivity data to inform coupling strength between nodes. With this approach, changes 

in metastable dynamic could be directly linked to topological changes taking place in the 

structural connectome. Since the subject-level connectomes were derived by lesioning the 

healthy template i.e. the average structural connectivity of the controls, the finding of 

reduced topological efficiency is perhaps unsurprising. Of note however, is the direct 

causal relationship between degraded topological structure and reduced metastability in 

the simulated neural dynamics. Crucially, in the present research, simulated and empirical 

data are in qualitative agreement (Fig. 6). 

Overall, AD was defined by reduced connectivity between topologically important and well 

connected nodes, fragmented local network structure, increased path length between 

nodes, and reduced diversity of inter-module links. Accordingly, the structural 

connectomes belonging to MCI and AD subjects demonstrated a positive association 

between their simulated metastable dynamic and global measures of topological centrality,

integration, and efficiency (Fig. 8.A-D). Such patterns of large-scale structural 

reorganisation may signal a shift in cost-efficiency trade-off in the direction of lowered 

metabolic costs at the price of reduced integrative capacity (Bullmore and Sporns, 2012).

Interestingly, time resolved fluctuations in resting state functional connectivity are 

characterised by two different states (Zalesky et al., 2014): one consistent with a long 

distance, highly efficient, integrated workspace configuration, and another, more 

segregated, less metabolically demanding configuration favouring local efficiency. The 

spontaneous switching of these configurations likely underlies the variation in synchrony 
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we registered here as metastability. On this basis, reduced metastability in AD may reflect 

a change in the transition rate or dwell time of each configuration (Jones et al., 2012). One

hypothesis is that AD patients spend more time in segregated, locally efficient 

configurations and less time in metabolically demanding states of global integration. Thus, 

the indiscriminate decrease in brain-wide metastability observed in AD (Fig. 9) may signal 

a reduction in the brain’s dynamic repertoire when subjects are at rest.

Diffuse decreases in metastability were accompanied by more circumscribed decreases in 

focal synchrony between fronto-parietal and sensory-motor network and between fronto-

parietal and default mode network (Fig. 9). These decreases were consistent with 

structural damage in a comparable set of regions (Figs. 12.C and S8). The present results 

accord with recent findings of disrupted fronto-parietal network functional connectivity in 

AD (Zhao et al., 2018) and a growing consensus that frontal-parietal regions constitute a 

domain general control system for orchestrating more specialised networks (Vincent et al., 

2008; Cole et al., 2013; Crossley et al., 2013). Recently, Dixon et al.(2018) revealed a 

novel processing stream between fronto-parietal and default mode network involved in 

regulating introspective behaviour. Of note are the associations between functions 

ascribed to the DMN and symptoms of AD. These include 1), recollection of 

autobiographical events in the past (Andreasen et al., 1995; Buckner and Carroll, 2007; 

Buckner et al., 2008); 2), simulation of prospective events and self-projection in the future 

(Schacter et al., 2007, 2008); and 3), theory of mind and social cognition (Schilbach et al., 

2008; Spreng et al., 2009). Fronto-parietal and default mode network interactions have 

also been identified in autobiographical (Spreng et al., 2010) and working memory (Piccoli 

et al., 2015) that overlap with the core dysfunction of AD – the ability to author and recall 

one’s own history (Gil et al., 2001). In fact, DMN dysfunction is considered a hallmark of 

incipient AD (Greicius et al., 2004). Tellingly, hypometabolism in default mode network 

structures has been found to correlate with anosognosia score in MCI patients (Therriault 

et al., 2018). The fronto-parietal control system has been proposed to play a central role in

regulating mental health (Cole et al., 2014). Dubbed the “immune system of the mind” its 

flexible hubs may implement adaptive feedback control to regulate symptoms as they 

arise. Our results indicate a possible role for fronto-parietal network in default mode 

network dysfunction in AD. 

Metastability is consistent with other descriptions of the brain as a dynamical system such 

as self-organised criticality (Hesse and Gross, 2014). For example, figure 5 implies a 
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phase transition from a highly disordered (sub-critical) to a highly ordered (super-critical) 

state. In finite systems such as the connectome, phase transitions do not occur at a 

precise point but are smoothed out over a parameter range (Tagliazucchi et al., 2012; 

Moretti and Muñoz, 2013). Thus, we find a small region between 0.5 and 1.5 rad that is not

technically critical, but likely retains properties of criticality. These hallmarks of criticality 

lend critical systems their optimal information processing and storage capabilities (Shew 

and Plenz, 2013). Resting state dynamics of human brains demonstrate properties 

consistent with critical dynamics (Tagliazucchi et al., 2012). In this regime, the brain is 

likely poised at an equilibrium point of balanced excitation and inhibition where synchrony 

is maximally variable and pathological states of low or high synchrony are avoided (Yang 

et al., 2012). The consequences of highly variable synchrony on information processing is 

not well understood. Since the maintenance of a particular communication channel 

through coherence relies on a persistent phase relationship, the continuous variation in 

phase associated with metastability is potentially commensurate with a large number of 

independent communication channels (Deco and Kringelbach, 2016).

Some limitations should be noted. Since there are many ways of defining a network both 

functionally and structurally, and at multiple scales, the current results are only valid for the

Destrieux atlas parcellation. Since the major sulci and gyri are unlikely to align well with 

functional activity, future modelling work may benefit from using atlas regions defined 

multi-modally, that is, based on more than one neurobiological property (Glasser et al., 

2016). In addition, the use of model-based fitting to select the structural skeleton 

responsible for generating the observed dynamic does not consider likely degeneracies in 

the structural data i.e. the method only considers a subset of the possible structural lesions

responsible for changes in empirical metastability. Any lesions outside the largest detected

component are explicitly ignored.

In summary, we used a neurodegenerative disorder, AD, and its prodromal stage MCI, to 

clarify the relationship between structural network topology and metastable neural 

dynamics. Overall, our results indicate a causal relationship between structure, dynamics, 

and cognition and support the contention that structure and cognition can be bridged 

through metastability (Kelso, 1995, 2012, Tognoli and Kelso, 2009, 2014a, 2014b). In AD, 

metastability of fMRI BOLD signal was decreased and this correlated with cognitive 

performance. Using a model based on empirical connectivity we showed a direct link 

between reductions in metastability and structural damage. These findings offer a distinct 
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perspective on the network-level role of metastability in cognition, its relation to structure, 

and its inexorable decline in neurodegenerative disease. 
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