828 research outputs found

    Ageing and embedded instrument monitoring of analogue/mixed-signal IPS

    Get PDF

    Low-Power Wireless Medical Systems and Circuits for Invasive and Non-Invasive Applications

    Get PDF
    Approximately 75% of the health care yearly budget of public health systems around the world is spent on the treatment of patients with chronic diseases. This, along with advances on the medical and technological fields has given rise to the use of preventive medicine, resulting on a high demand of wireless medical systems (WMS) for patient monitoring and drug safety research. In this dissertation, the main design challenges and solutions for designing a WMS are addressed from system-level, using off-the-shell components, to circuit implementation. Two low-power oriented WMS aiming to monitor blood pressure of small laboratory animals (implantable) and cardiac-activity (12-lead electrocardiogram) of patients with chronic diseases (wearable) are presented. A power consumption vs. lifetime analysis to estimate the monitoring unit lifetime for each application is included. For the invasive/non-invasive WMS, in-vitro test benches are used to verify their functionality showing successful communication up to 2.1 m/35 m with the monitoring unit consuming 0.572 mA/33 mA from a 3 V/4.5 V power supply, allowing a two-year/ 88-hour lifetime in periodic/continuous operation. This results in an improvement of more than 50% compared with the lifetime commercial products. Additionally, this dissertation proposes transistor-level implementations of an ultra-low-noise/low-power biopotential amplifier and the baseband section of a wireless receiver, consisting of a channel selection filter (CSF) and a variable gain amplifier (VGA). The proposed biopotential amplifier is intended for electrocardiogram (ECG)/ electroencephalogram (EEG)/ electromyogram (EMG) monitoring applications and its architecture was designed focused on improving its noise/power efficiency. It was implemented using the ON-SEMI 0.5 µm standard process with an effective area of 360 µm2. Experimental results show a pass-band gain of 40.2 dB (240 mHz - 170 Hz), input referred noise of 0.47 Vrms, minimum CMRR of 84.3 dBm, NEF of 1.88 and a power dissipation of 3.5 µW. The CSF was implemented using an active-RC 4th order inverse-chebyshev topology. The VGA provides 30 gain steps and includes a DC-cancellation loop to avoid saturation on the sub-sequent analog-to-digital converter block. Measurement results show a power consumption of 18.75 mW, IIP3 of 27.1 dBm, channel rejection better than 50 dB, gain variation of 0-60dB, cut-off frequency tuning of 1.1-2.29 MHz and noise figure of 33.25 dB. The circuit was implemented in the standard IBM 0.18 µm CMOS process with a total area of 1.45 x 1.4 mm^(2). The presented WMS can integrate the proposed biopotential amplifier and baseband section with small modifications depending on the target signal while using the low-power-oriented algorithm to obtain further power optimization

    Design of sigma-delta modulators for analog-to-digital conversion intensively using passive circuits

    Get PDF
    This thesis presents the analysis, design implementation and experimental evaluation of passiveactive discrete-time and continuous-time Sigma-Delta (ΣΔ) modulators (ΣΔMs) analog-todigital converters (ADCs). Two prototype circuits were manufactured. The first one, a discrete-time 2nd-order ΣΔM, was designed in a 130 nm CMOS technology. This prototype confirmed the validity of the ultra incomplete settling (UIS) concept used for implementing the passive integrators. This circuit, clocked at 100 MHz and consuming 298 μW, achieves DR/SNR/SNDR of 78.2/73.9/72.8 dB, respectively, for a signal bandwidth of 300 kHz. This results in a Walden FoMW of 139.3 fJ/conv.-step and Schreier FoMS of 168 dB. The final prototype circuit is a highly area and power efficient ΣΔM using a combination of a cascaded topology, a continuous-time RC loop filter and switched-capacitor feedback paths. The modulator requires only two low gain stages that are based on differential pairs. A systematic design methodology based on genetic algorithm, was used, which allowed decreasing the circuit’s sensitivity to the circuit components’ variations. This continuous-time, 2-1 MASH ΣΔM has been designed in a 65 nm CMOS technology and it occupies an area of just 0.027 mm2. Measurement results show that this modulator achieves a peak SNR/SNDR of 76/72.2 dB and DR of 77dB for an input signal bandwidth of 10 MHz, while dissipating 1.57 mW from a 1 V power supply voltage. The ΣΔM achieves a Walden FoMW of 23.6 fJ/level and a Schreier FoMS of 175 dB. The innovations proposed in this circuit result, both, in the reduction of the power consumption and of the chip size. To the best of the author’s knowledge the circuit achieves the lowest Walden FOMW for ΣΔMs operating at signal bandwidth from 5 MHz to 50 MHz reported to date

    Low-Power Wake-Up Receivers

    Get PDF
    The Internet of Things (IoT) is leading the world to the Internet of Everything (IoE), where things, people, intelligent machines, data and processes will be connected together. The key to enter the era of the IoE lies in enormous sensor nodes being deployed in the massively expanding wireless sensor networks (WSNs). By the year of 2025, more than 42 billion IoT devices will be connected to the Internet. While the future IoE will bring priceless advantages for the life of mankind, one challenge limiting the nowadays IoT from further development is the ongoing power demand with the dramatically growing number of the wireless sensor nodes. To address the power consumption issue, this dissertation is motivated to investigate low-power wake-up receivers (WuRXs) which will significantly enhance the sustainability of the WSNs and the environmental awareness of the IoT. Two proof-of-concept low-power WuRXs with focuses on two different application scenarios have been proposed. The first WuRX, implemented in a cost-effective 180-nm CMOS semiconductor technology, operates at 401−406-MHz band. It is a good candidate for application scenarios, where both a high sensitivity and an ultra-low power consumption are in demand. Concrete use cases are, for instance, medical implantable applications or long-range communications in rural areas. This WuRX does not rely on a further assisting semiconductor technology, such as MEMS which is widely used in state-of-the-art WuRXs operating at similar frequencies. Thus, this WuRX is a promising solution to low-power low-cost IoT. The second WuRX, implemented in a 45-nm RFSOI CMOS technology, was researched for short-range communication applications, where high-density conventional IoT devices should be installed. By investigation of the WuRX for operation at higher frequency band from 5.5 GHz to 7.5 GHz, the nowadays ever more over-traffic issues that arise at low frequency bands such as 2.4 GHz can be substantially addressed. A systematic, analytical research route has been carried out in realization of the proposed WuRXs. The thesis begins with a thorough study of state-of-the-art WuRX architectures. By examining pros and cons of these architectures, two novel architectures are proposed for the WuRXs in accordance with their specific use cases. Thereon, key WuRX parameters are systematically analyzed and optimized; the performance of relevant circuits is modeled and simulated extensively. The knowledge gained through these investigations builds up a solid theoretical basis for the ongoing WuRX designs. Thereafter, the two WuRXs have been analytically researched, developed and optimized to achieve their highest performance. Proof-of-concept circuits for both the WuRXs have been fabricated and comprehensively characterized under laboratory conditions. Finally, measurement results have verified the feasibility of the design concept and the feasibility of both the WuRXs

    Continuous-time low-pass filters for integrated wideband radio receivers

    Get PDF
    This thesis concentrates on the design and implementation of analog baseband continuous-time low-pass filters for integrated wideband radio receivers. A total of five experimental analog baseband low-pass filter circuits were designed and implemented as a part of five single-chip radio receivers in this work. After the motivation for the research work presented in this thesis has been introduced, an overview of analog baseband filters in radio receivers is given first. In addition, a review of the three receiver architectures and the three wireless applications that are adopted in the experimental work of this thesis is presented. The relationship between the integrator non-idealities and integrator Q-factor, as well as the effect of the integrator Q-factor on the filter frequency response, are thoroughly studied on the basis of a literature review. The theoretical study that is provided is essential for the gm-C filter synthesis with non-ideal lossy integrators that is presented after the introduction of different techniques to realize integrator-based continuous-time low-pass filters. The filter design approach proposed for gm-C filters is original work and one of the main points in this thesis, in addition to the experimental IC implementations. Two evolution versions of fourth-order 10-MHz opamp-RC low-pass filters designed and implemented for two multicarrier WCDMA base-station receivers in a 0.25-µm SiGe BiCMOS technology are presented, along with the experimental results of both the low-pass filters and the corresponding radio receivers. The circuit techniques that were used in the three gm-C filter implementations of this work are described and a common-mode induced even-order distortion in a pseudo-differential filter is analyzed. Two evolution versions of fifth-order 240-MHz gm-C low-pass filters that were designed and implemented for two single-chip WiMedia UWB direct-conversion receivers in a standard 0.13-µm and 65-nm CMOS technology, respectively, are presented, along with the experimental results of both the low-pass filters and the second receiver version. The second UWB filter design was also embedded with an ADC into the baseband of a 60-GHz 65-nm CMOS radio receiver. In addition, a third-order 1-GHz gm-C low-pass filter was designed, rather as a test structure, for the same receiver. The experimental results of the receiver and the third gm-C filter implementation are presented

    Parametric analog signal amplification applied to nanoscale cmos wireless digital transceivers

    Get PDF
    Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e TecnologiaSignal amplification is required in almost every analog electronic system. However noise is also present, thus imposing limits to the overall circuit performance, e.g., on the sensitivity of the radio transceiver. This drawback has triggered a major research on the field, which has been producing several solutions to achieve amplification with minimum added noise. During the Fifties, an interesting out of mainstream path was followed which was based on variable reactance instead of resistance based amplifiers. The principle of these parametric circuits permits to achieve low noise amplifiers since the controlled variations of pure reactance elements is intrinsically noiseless. The amplification is based on a mixing effect which enables energy transfer from an AC pump source to other related signal frequencies. While the first implementations of these type of amplifiers were already available at that time, the discrete-time version only became visible more recently. This discrete-time version is a promising technique since it is well adapted to the mainstream nanoscale CMOS technology. The technique itself is based on the principle of changing the surface potential of the MOS device while maintaining the transistor gate in a floating state. In order words, the voltage amplification is achieved by changing the capacitance value while maintaining the total charge unchanged during an amplification phase. Since a parametric amplifier is not intrinsically dependent on the transconductance of the MOS transistor, it does not directly suffer from the intrinsic transconductance MOS gain issues verified in nanoscale MOS technologies. As a consequence, open-loop and opamp free structures can further emerge with this additional contribution. This thesis is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. The use of the latter is supported on the presentation of several circuits where the MOS Parametric Amplifier cell is well suited: small gain amplifier, comparator, discrete-time mixer and filter, and ADC. Relatively to the latter, a high speed time-interleaved pipeline ADC prototype is implemented in a,standard 130 nm CMOS digital technology from United Microelectronics Corporation (UMC). The ADC is fully based on parametric MOS amplification which means that one could achieve a compact and MOS-only implementation. Furthermore, any high speed opamp has not been used in the signal path, being all the amplification steps implemented with open-loop parametric MOS amplifiers. To the author’s knowledge, this is first reported pipeline ADC that extensively used the parametric amplification concept.Fundação para a Ciência e Tecnologia through the projects SPEED, LEADER and IMPAC

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces
    • …
    corecore