2,073 research outputs found

    A target guided subband filter for acoustic event detection in noisy environments using wavelet packets

    Get PDF
    This paper deals with acoustic event detection (AED), such as screams, gunshots, and explosions, in noisy environments. The main aim is to improve the detection performance under adverse conditions with a very low signal-to-noise ratio (SNR). A novel filtering method combined with an energy detector is presented. The wavelet packet transform (WPT) is first used for time-frequency representation of the acoustic signals. The proposed filter in the wavelet packet domain then uses a priori knowledge of the target event and an estimate of noise features to selectively suppress the background noise. It is in fact a content-aware band-pass filter which can automatically pass the frequency bands that are more significant in the target than in the noise. Theoretical analysis shows that the proposed filtering method is capable of enhancing the target content while suppressing the background noise for signals with a low SNR. A condition to increase the probability of correct detection is also obtained. Experiments have been carried out on a large dataset of acoustic events that are contaminated by different types of environmental noise and white noise with varying SNRs. Results show that the proposed method is more robust and better adapted to noise than ordinary energy detectors, and it can work even with an SNR as low as -15 dB. A practical system for real time processing and multi-target detection is also proposed in this work

    Framework for a space shuttle main engine health monitoring system

    Get PDF
    A framework developed for a health management system (HMS) which is directed at improving the safety of operation of the Space Shuttle Main Engine (SSME) is summarized. An emphasis was placed on near term technology through requirements to use existing SSME instrumentation and to demonstrate the HMS during SSME ground tests within five years. The HMS framework was developed through an analysis of SSME failure modes, fault detection algorithms, sensor technologies, and hardware architectures. A key feature of the HMS framework design is that a clear path from the ground test system to a flight HMS was maintained. Fault detection techniques based on time series, nonlinear regression, and clustering algorithms were developed and demonstrated on data from SSME ground test failures. The fault detection algorithms exhibited 100 percent detection of faults, had an extremely low false alarm rate, and were robust to sensor loss. These algorithms were incorporated into a hierarchical decision making strategy for overall assessment of SSME health. A preliminary design for a hardware architecture capable of supporting real time operation of the HMS functions was developed. Utilizing modular, commercial off-the-shelf components produced a reliable low cost design with the flexibility to incorporate advances in algorithm and sensor technology as they become available

    Analysis of Speech Recognition Techniques

    Get PDF
    Speech recognition has been an intregral part of human life acting as one of the five senses of human body, because of which application developed on the basis of speech recognition has high degree of acceptance. Here in this project we tried to analyse the different steps involved in artificial speech recognition by man-machine interface. The various steps we followed in speech recognition are feature extraction, distance calculation, dynamic time wrapping. We have tried to find out an approach which is both simple and efficient so that it can be utilised in embedded systems. After analysing the steps above we realised the process using small programs using MATLAB which is able to do small no. of isolated word recognition

    Quality assessment of manufactured ceramic work using digital signal processing

    Get PDF
    Tese de mestrado. Engenharia Mecânica. Faculdade de Engenharia. Universidade do Porto. 199

    A study of the properties of click evoked otoacoustic emissions and development of a clinical otoacoustic hearing test instrument

    Get PDF
    The study of otoacoustic emissions (OAE) from the human ear is introduced with special reference to their clinical applicability. The need for a new instrument is demonstrated, which is capable of measuring click evoked OAEs in the clinical environment. Preparatory to the specification and construction of such an instrument, a thorough examination of the transient acoustic response of the ear canal, and the physical properties of the OAE was undertaken. An outcome of this research was the development of a technique which efficiently extracts the cochlear response component from that of the ear canal and middle ear. Various implementations of possible clinical OAE test systems were developed using a minicomputer prototype OAE instrument. A dedicated clinical OAE measurement instrument was designed and constructed to implement the findings of the above. This comprised 2 digital circuit boards and an extensive suite of software based around an IBM PC. Evaluation of the instrument was undertaken during the testing of patients attending the premises for auditory investigations. Operator experience of instrument function are discussed and used for further refinements. The instrument was placed in routine clinical service. Results for patients with a variety of hearing pathologies are discussed. The practical evaluation of the instrument highlighted two areas for further research. Experimental studies were undertaken to establish the role of the middle ear and the value of latency analysis on the OAE. The instrument developed during this project has been introduced into clinical/laboratory service internationally. A discussion of possible further developments of the instrument/technique are given

    Streamlining analysis methods for large acoustic surveys using automatic detectors with operator validation

    Get PDF
    1.  Passive acoustic surveys are becoming increasingly popular as a means of surveying for cetaceans and other marine species. These surveys yield large amounts of data, the analysis of which is time consuming and can account for a substantial proportion of the survey budget. Semi-automatic processes enable the bulk of processing to be conducted automatically while allowing analyst time to be reserved for validating and correcting detections and classifications. 2.  Existing modules within the Passive Acoustic Monitoring software PAMGuard were used to process a large (25.4 Terabyte) dataset collected during towed acoustic ship transits. The recently developed ‘Multi-Hypothesis Tracking Click Train Detector’ and the ‘Whistle and Moan Detector’ modules were used to identify occasions within the dataset at which vocalising toothed whales (odontocetes) were likely to be acoustically present. These putative detections were then reviewed by an analyst, with false positives being corrected. Target motion analysis provided a perpendicular distance to odontocete click events enabling the estimation of detection functions for both sperm whales and delphinids. Detected whistles were assigned to the lowest taxonomical level possible using the PAMGuard ‘Whistle Classifier’ module. 3.  After an initial tuning process, this semi-automatic method required 91 hr of an analyst's time to manually review both automatic click train and whistle detections from 1,696 hr of survey data. Use of the ‘Multi-Hypothesis Tracking Click Train Detector’ reduced the amount of data for the analyst to search by 74.5%, while the ‘Whistle and Moan Detector’ reduced data to search by 85.9%. In total, 443 odontocete groups were detected, of which 55 were from sperm whale groups, six were from beaked whales, two were from porpoise and the remaining 380 were identified to the level of delphinid group. An effective survey strip half width of 3,277 and 699 m was estimated for sperm whales and delphinids respectively. 4.  The semi-automatic workflow proved successful, reducing the amount of analyst time required to process the data, significantly reducing overall project costs. The workflow presented here makes use of existing modules within PAMGuard, a freely available and open-source software, readily accessible to acoustic analysts.Publisher PDFPeer reviewe

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits

    Low-Power and Programmable Analog Circuitry for Wireless Sensors

    Get PDF
    Embedding networks of secure, wirelessly-connected sensors and actuators will help us to conscientiously manage our local and extended environments. One major challenge for this vision is to create networks of wireless sensor devices that provide maximal knowledge of their environment while using only the energy that is available within that environment. In this work, it is argued that the energy constraints in wireless sensor design are best addressed by incorporating analog signal processors. The low power-consumption of an analog signal processor allows persistent monitoring of multiple sensors while the device\u27s analog-to-digital converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes the development of analog signal processing integrated circuits for wireless sensor networks. Specific technology problems that are addressed include reconfigurable processing architectures for low-power sensing applications, as well as the development of reprogrammable biasing for analog circuits
    corecore