
Graduate Theses, Dissertations, and Problem Reports

2014

Low-Power and Programmable Analog Circuitry for Wireless Low-Power and Programmable Analog Circuitry for Wireless

Sensors Sensors

Brandon David Rumberg

Follow this and additional works at: https://researchrepository.wvu.edu/etd

Recommended Citation Recommended Citation
Rumberg, Brandon David, "Low-Power and Programmable Analog Circuitry for Wireless Sensors" (2014).
Graduate Theses, Dissertations, and Problem Reports. 6541.
https://researchrepository.wvu.edu/etd/6541

This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research
Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license
in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses,
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU.
For more information, please contact researchrepository@mail.wvu.edu.

https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F6541&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/6541?utm_source=researchrepository.wvu.edu%2Fetd%2F6541&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu

Low-Power and Programmable Analog

Circuitry for Wireless Sensors

by

Brandon David Rumberg

Dissertation submitted to the
College of Engineering and Mineral Resources

at West Virginia University
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Electrical Engineering

David W. Graham, Ph.D., Chair
Lawrence A. Hornak, Ph.D.

Vinod K. Kulathumani, Ph.D.
James W. Lewis, Ph.D.

Matthew C. Valenti, Ph.D.

Lane Department of Computer Science and Electrical Engineering

Morgantown, West Virginia
2014

Copyright 2014 Brandon David Rumberg

Abstract

Low-Power and Programmable Analog Circuitry for Wireless Sensors

by

Brandon David Rumberg
Doctor of Philosophy in Electrical Engineering

West Virginia University

David W. Graham, Ph.D., Chair

Embedding networks of secure, wirelessly-connected sensors and actuators will help us to
conscientiously manage our local and extended environments. One major challenge for this
vision is to create networks of wireless sensor devices that provide maximal knowledge of
their environment while using only the energy that is available within that environment. In
this work, it is argued that the energy constraints in wireless sensor design are best addressed
by incorporating analog signal processors. The low power-consumption of an analog signal
processor allows persistent monitoring of multiple sensors while the device’s analog-to-digital
converter, microcontroller, and transceiver are all in sleep mode. This dissertation describes
the development of analog signal processing integrated circuits for wireless sensor networks.
Specific technology problems that are addressed include reconfigurable processing architec-
tures for low-power sensing applications, as well as the development of reprogrammable
biasing for analog circuits.

iii

Dedication

To faculty and peers who have been so helpful,
To family who won’t try to read beyond this page—

and more so to those who will,
And to anyone who may benefit from this work.

iv

Contents

Dedication iii

List of Figures ix

List of Tables xii

Symbols and Acronyms xiii

1 Introduction 1

2 Analog Signal Processing and Energy Efficiency in Sensor Networks 3
2.1 Resource Limitations in Wireless Sensors . 3
2.2 Low-Power Analog Signal Processing . 7

3 A “Hibernets” Event Detector for Slumbering Sensors 9
3.1 Introduction . 9
3.2 Analog Signal Processing in Sensor Networks 11
3.3 Background . 13
3.4 Design of Analog Computational Elements 14

3.4.1 Filter Bank . 15
3.4.2 Resistive Biasing . 16
3.4.3 Magnitude Detector . 16
3.4.4 Event Detection . 17
3.4.5 Power Consumption . 18

3.5 Interfacing With the Telos Mote . 20
3.6 Performance Evaluation . 21

3.6.1 Selective Wake-Up Mode . 21
3.6.2 Selective Sample Mode . 22
3.6.3 Evaluation in the context of an automobile classification application . 23

3.6.3.1 Data Collection . 24
3.6.3.2 Training . 25
3.6.3.3 Testing . 26
3.6.3.4 Comparison with all-digital implementation 26
3.6.3.5 Discussion . 28

3.6.4 Other Applications and Potential Extensions 29
3.7 Conclusions . 29

CONTENTS v

4 A Low-Power and High-Precision Programmable Analog Filter Bank 31
4.1 Analog Filter Banks . 31
4.2 Bandpass Filter . 33

4.2.1 OTA-C4 . 34
4.2.2 Design . 35
4.2.3 Performance . 36

4.3 Filter Bank . 38
4.3.1 Filter Characterization and Programming 38
4.3.2 Demonstrations . 40

4.4 Conclusion . 40

5 A Low-Power Magnitude Detector for Analysis of Transient-Rich Signals 41
5.1 Magnitude Detector Circuits . 41
5.2 Magnitude Detector Architecture . 43
5.3 Peak Detector . 45

5.3.1 Overview of the Peak Detector Circuit 45
5.3.2 Peak Detector Analysis . 46
5.3.3 Peak Detector Biasing . 48

5.4 Adaptive-Time-Constant Filter . 49
5.4.1 Nonlinear Transconductor . 49
5.4.2 Demonstration of Performance . 50
5.4.3 Design . 51

5.5 Complete Magnitude Circuit . 52
5.6 Conclusion . 56

6 Floating-Gate Transistors for Programmable Analog Circuitry 58
6.1 Floating-Gate Transistors . 58
6.2 Applications of Floating-Gate Transistors . 60

6.2.1 Programmable Parameters . 60
6.2.2 Precision Mismatch Correction . 62
6.2.3 Parameter Adaptation . 62
6.2.4 Input Scaling . 62
6.2.5 Multiple-Input Transistors . 63
6.2.6 Summary of FG Transistor Applications 63

6.3 Overview of Floating-Gate Programming . 64
6.4 Pulse-Based Programming . 65

6.4.1 Coarse Programming Mode . 66
6.4.2 Fine Programming Mode . 68

6.5 Continuous-Time Floating Gate Programming 69
6.6 Current-Conveyor-Based Memory Cell . 70
6.7 Programmer Circuit . 72
6.8 Array Architecture . 74
6.9 Conclusion . 74

CONTENTS vi

7 Modeling of Charge Manipulation in Floating-Gate Transistors 76
7.1 Efficiency and Reliability of Fowler-Nordheim Tunneling in CMOS Floating-

Gate Transistors . 76
7.1.1 Fowler-Nordheim Tunneling Current 77
7.1.2 Temporal Dynamics of Tunneling Junctions 78
7.1.3 Sizing of Tunneling Junctions for Speed and Reliability 80
7.1.4 Conclusion of Tunneling-Junction Study 81

7.2 Characterization of Hot-Electron Injection Across Varying Transistor Dimen-
sions . 81
7.2.1 Injection Measurement . 81
7.2.2 Injection Parameterization . 82

7.3 Conclusion and Future Work . 85

8 A Regulated Charge Pump for Programming Floating-Gate Transistors 86
8.1 Floating-Gate Programming Voltages in Standard CMOS 86
8.2 Overview of Charge Pump Circuitry . 89

8.2.1 Charge Pump Topologies . 89
8.2.2 Charge Pump Regulation . 90

8.3 The Charge Pump Stages . 93
8.4 The Current-Controlled Oscillator and the Edgifier 96
8.5 The Complete Charge Pump . 100
8.6 How to Adapt the Charge Pump to Generate the Injection Voltage 106
8.7 Conclusion . 106

9 Improving the Hibernets Signal Processor 107
9.1 Hibernets 2.0 Architecture . 108
9.2 Spectral Analysis Block . 109

9.2.1 Transconductor . 109
9.2.2 Floating-Gate Biasing . 110

9.3 System Operation . 110
9.4 Vehicle-Classification Application . 112
9.5 Discussion of In-Network Training . 115

9.5.1 Towards In-the-Field Training . 115
9.5.2 Steps to Achieve In-the-Field Training 116

9.6 Conclusion . 117

10 Netamorph: Simplifying the Design of Low-Power Sensor Networks with
Reconfigurable Analog Circuitry 119
10.1 A Sensor Node Architecture Incorporating Reconfigurable Analog Circuitry . 119
10.2 Parallelized FPAA Architecture for Embedded Signal Processing 123

10.2.1 Netamorph 1.0 . 124
10.2.2 Netamorph 2.0 . 125

10.3 Memory Programming . 126
10.3.1 Memory Programming Infrastructure 127

10.3.1.1 Clear Switches & NVM . 128

CONTENTS vii

10.3.1.2 Write NVM . 128
10.3.1.3 Write Switches . 128

10.3.2 High-Side Switch . 129
10.3.3 Summary of FPAA Programming . 130

10.4 Using the FPAA . 130
10.4.1 Interface PCBs . 130

10.4.1.1 Netamorph 1.0 Interface PCB 130
10.4.1.2 Netamorph 2.0 Interface PCB 131

10.4.2 Development Environment . 132
10.4.3 Compression of FPAA Configuration Files 133

10.5 Applications . 137
10.5.1 Demonstrations of Netamorph 1.0 . 137

10.5.1.1 Rising Frequency Detector 137
10.5.1.2 Voice-Activity Detector . 137

10.5.2 Demonstrations of Netamorph 2.0 . 137
10.5.2.1 Temperature Sensor . 139
10.5.2.2 Heart-Rate Monitor . 140
10.5.2.3 Audio Spectrum Normalization 140

10.6 Conclusion and Future Work . 140

11 Tradeoffs in Designing Reconfigurable Analog Sensor Interfaces for Wire-
less Sensing Applications 144
11.1 FPAA Trends . 144
11.2 FPAA Architecture Tradeoffs . 147

11.2.1 Applying Rent’s Rule to FPAA Design 148
11.2.2 Designing CAB Size . 149

11.3 The Cost of Analog Reconfiguration . 152
11.3.1 Equivalent Switch Resistance . 152
11.3.2 Erasing a Floating-Gate Switch Matrix 153
11.3.3 Writing a Floating-Gate Switch . 154
11.3.4 Energy Costs of Volatile and Nonvolatile Switches 155
11.3.5 Other Considerations Regarding Switches 155

11.4 System-Level Implications of Reconfiguration 156
11.5 Discussion of Reconfiguration Costs . 158

12 Conclusions and Future Work 160

References 162

A Background on Sub-Threshold Analog Circuits 181
A.1 Sub-Threshold MOSFET Operation . 181
A.2 Electronically-Tunable Transconductors . 182

B Event Detection Time-Lag and Memory Buffers 184
B.1 Time Lag to Assert Events . 184
B.2 Memory Buffering . 185

CONTENTS viii

C Analysis of the OTA-Based Capacitively-Coupled Current Conveyor 190
C.1 Derivations for an OTA-based C4 . 190

C.1.1 Transfer Function . 190
C.1.2 C4 at High Frequencies . 192
C.1.3 C4 at Low Frequencies . 193
C.1.4 Capacitive Feedthrough . 193
C.1.5 Solving for Qmax . 194

C.2 OTA-C4 Noise Analysis . 195
C.2.1 Noise Transfer Function for Gm1 Noise Source 195
C.2.2 Noise Transfer Function for Gm2 Noise Source 196
C.2.3 Integrated Noise . 197

D Analysis of the Peak Detector 201
D.1 Problem Setup . 201

D.1.1 Input/Output Definitions . 202
D.2 Solving the Loop . 203

D.2.1 Node e . 203
D.2.2 Node u . 204

D.2.2.1 Solving for DC at Node u 204
D.2.2.2 Solving for the Fundamental at Node u 204

D.2.3 Node Vout . 205
D.3 Balancing the Terms . 205

D.3.1 Tracking Level . 206
D.4 Ripple . 207
D.5 Conclusions . 207

ix

List of Figures

3.1 Analog pre-processing for sensor networks 10
3.2 “Hibernets” architecture . 11
3.3 First Hibernets design . 14
3.4 Hibernets filter bank . 15
3.5 Hibernets magnitude detector . 17
3.6 Multi-band detection using an exclusive-or template 18
3.7 Power consumption of ASP versus frequency 19
3.8 Hibernets system . 20
3.9 Event detection demonstrations . 22
3.10 Vehicle classification demonstration . 24
3.11 System lifetime as a function of event frequency 28

4.1 Block diagram of the programmable analog filter bank chip 32
4.2 Capacitively-coupled current conveyor (C4) bandpass filter 33
4.3 Bandpass filter noise and linearity measurements. 37
4.4 AC responses of the programmable filter bank 39
4.5 Time-frequency decomposition with the filter bank 40

5.1 Magnitude detector overview . 42
5.2 Tradeoff between amplitude accuracy and temporal accuracy 44
5.3 Peak detector circuit . 46
5.4 Nonlinear modeling of the peak detector circuit 47
5.5 Adaptive-time-constant filter . 49
5.6 Operation of the adaptive-time-constant filter 50
5.7 Amplitude dependence of the time constant 51
5.8 Micrograph of the magnitude circuit . 53
5.9 Dynamic range of the magnitude detector 55
5.10 Transient response of the magnitude detector 56
5.11 Speech response of the magnitude detector 57

6.1 Overview of floating-gate transistors . 59
6.2 Applications of charge manipulation in floating-gate transistors 61
6.3 Applications of capacitive coupling in floating-gate transistors 63
6.4 Floating-gate programming: pulsed vs. continuous 65
6.5 Block diagram of our benchtop floating-gate programmer 66

LIST OF FIGURES x

6.6 Coarse programming block diagram . 67
6.7 Coarse programming mode results . 67
6.8 Fine programming mode results . 68
6.9 Prior floating-gate programming cells . 70
6.10 Current conveyor floating-gate programming cell 71
6.11 Continuous-time programming experiments 73
6.12 Array architecture for the memory cell and programmer 75

7.1 Fowler-Nordheim tunneling characteristics 77
7.2 Tunneling junction transient characteristics 79
7.3 Optimal tunneling junction sizing . 80
7.4 Method for characterizing injection . 82
7.5 Extraction of injection parameters . 84

8.1 Step-up converters for floating-gate programming 87
8.2 Scaling of FG write and erase voltages in standard CMOS 88
8.3 Ideal charge pump . 90
8.4 Charge pump regulation . 91
8.5 All-pFET charge transfer switch . 94
8.6 All-pFET charge pump stage . 95
8.7 Die photograph of charge pump circuit . 96
8.8 Current-controlled oscillator . 97
8.9 Edgifier circuit . 98
8.10 Power consumption of current-controlled oscillator 99
8.11 Our regulated charge pump . 101
8.12 Load regulation and reliability characteristics of charge pump 102
8.13 Transient characteristics of charge pump 103
8.14 Measured efficiency of the charge pump . 104
8.15 Power-supply rejection of the charge pump 105

9.1 Hibernets 2.0 block diagram . 108
9.2 Front-end spectral analysis circuits . 109
9.3 Dynamic range of spectral analysis block 111
9.4 Demonstration of the event detector IC . 112
9.5 Illustration of training algorithm . 114
9.6 Die photograph of the front-end IC . 117

10.1 An FPAA-enabled sensor node architecture 120
10.2 FPAA architecture: diagram and switch fabric 121
10.3 Switch matrix parasitics . 123
10.4 Diagrams and die photos of our family of Netamorph FPAAs 124
10.5 Memory programming infrastructure of Netamorph 2.0 127
10.6 Schematic of the NVM cell used in Netamorph 2.0 128
10.7 Schematic of high-side switch . 129
10.8 PCBs for interfacing our Netamorph FPAAs with sensor nodes 131

LIST OF FIGURES xi

10.9 “Level of programmability” versus the “quiescent power consumption” for
each of our ASP systems . 132

10.10 Illustration of compressing FPAA configuration files 134
10.11 Results of applying the compression algorithm to large FPAA designs . . . 135
10.12 Rising frequency detection application . 138
10.13 Voice-activity detection application . 138
10.14 Temperature sensor application . 139
10.15 Heart-rate monitor application . 142
10.16 Audio spectrum normalization application 143

11.1 Trends in the intended usage of FPAAs . 145
11.2 Trends in the design of FPAA CABs . 146
11.3 Effect of CAB size on FPAA performance 150
11.4 Number of CABs per net . 151
11.5 Analog switches: implementations and parasitic modeling 153
11.6 Energy to program nonvolatile switches . 154
11.7 Measurements of system-level reconfiguration energy 158

A.1 MOSFET background . 182
A.2 Overview of operational transconductance amplifiers 183

B.1 Diagram of memory buffer . 186
B.2 Adaptive sampling experiment . 187
B.3 Size comparison of SRAM and S/H memory 188

C.1 Schematic for transfer-function derivation 190
C.2 Schematic for transfer-function derivation at high frequencies 192
C.3 Schematic for transfer-function derivation at low frequencies 193
C.4 Schematic for noise analysis . 196

D.1 Nonlinear model of the peak detector . 201
D.2 Illustration of the input/output definitions. 203

xii

List of Tables

2.1 Sensor Node Platforms . 5
2.2 Comparison of Wireless Protocols . 5

3.1 Power Consumption . 27
3.2 Vehicle Classification Results . 27

4.1 Bandpass filter performance results . 37
4.2 Comparison of bandpass filters . 38

5.1 Tradeoff between ripple and acquisition time 53
5.2 Comparison of magnitude detectors . 56

8.1 Charge pump performance . 92
8.2 Charge pump variables . 93
8.3 Charge pump specifications . 97
8.4 Comparison of charge pumps . 105

9.1 Hibernets 2.0 specifications . 111
9.2 Vehicle classification results . 114
9.3 Comparison of audio-frequency detector ICs 118

10.1 Computational elements in Netamorph 1.0 125
10.2 Computational elements in Netamorph 2.0 126
10.3 Netamorph 2.0 demonstration results . 139

11.1 Variables used in FPAA analysis . 147
11.2 Rent exponents of Netamorph FPAAs . 149
11.3 Summary of reconfiguration costs . 157
11.4 Maximum frequency of reconfiguration . 158

xiii

Symbols and Acronyms

ADC — Analog-to-Digital Converter
ASP — Analog Signal Processor
BPF — Bandpass Filter
C4 — Capacitively-Coupled Current Conveyor
CAB — Computational Analog Block
CB — Connection Box
CLB — Configurable Logic Block
CMOS — Complementary Metal-Oxide Semiconductor
CTS — Charge-Transfer Switch
DAC — Digital-to-Analog Converter
DSP — Digital Signal Processor
FG — Floating Gate
FPAA — Field-Programmable Analog Array
FPGA — Field-Programmable Gate Array
Gm — Tranconductance
Gm–C — Transconductance-Capacitance
IC — Integrated Circuit
κ — Subthreshold Slope
LPF — Lowpass Filter
LUT — Lookup Table
NVM — Nonvolatile Memory
PD — Peak Detector
PLA — Programmable Logic Array
PSRR — Power-Supply Rejection Ratio
OTA — Operational Transconductance Amplifier
Q — Quality Factor
RMS — Root-Mean-Square
SB — Switch Box
SPI — Serial Peripheral Interface
SRAM — Static RAM
THD — Total Harmonic Distortion
tox — Oxide Thickness
UT — Thermal Voltage
VLSI — Very-Large-Scale Integration
WSN — Wireless Sensor Network
xj — Source/Drain Junction Depth

1

Chapter 1

Introduction

The most profound technologies are those that disappear. — Mark Weiser [1]

Advancements in technologies such as MEMS sensors, low-power electronics, wireless
communications, and the processing of large data-sets have converged to a point where
certain aspects of computing might recede into an invisible ubiquity. By embedding networks
of secure, wirelessly-connected sensors and actuators, a conscientious management of our
local and extended environments may become second nature. Such a scenario will unlock
the capabilities of automation and analytics for non-specialists, and in the process, will help
us to make our living and working spaces more comfortable and sustainable, and also help
us to make our public and health services more attentive and affordable.

One major challenge for this vision is to create networks of wireless sensor devices that
provide maximal knowledge of their environment while using only the energy that is available
within that environment. This challenge has prompted a significant amount of low-power
circuits research. For example, in the past three regular issues of the Journal of Solid-State
Circuits (February, March, and June of 2014), 12 out of 46 papers dealt specifically with
this problem of power consumption in wireless sensor devices. Each paper centered upon
improving the existing componentry of sensor devices: 5 focused on wireless transceivers, 3
on energy harvesting, 2 on digital circuit techniques, and 2 on analog-to-digital converters.

In this work, we contend that incremental improvements in existing components are
insufficient, and that the energy constraints in wireless sensor design are best addressed
by incorporating analog signal processors (ASP). The low power-consumption of an ASP
allows persistent monitoring of multiple sensors while the analog-to-digital converter, mi-
crocontroller, and transceiver are all in sleep mode. By programming the ASP to detect
consequential characteristics in the sensor signal, the other components can be awakened as
needed. Thus the energy constraints are met without compromising important knowledge
of the device’s environment.

This dissertation describes the application of analog signal processing to wireless sensor
networks and solves several technological problems to minimize the power consumption and
to increase the programmability of ASPs. This dissertation is organized into five basic
sections:

1. We discuss the backgrounds of analog signal processing and low-power sensing de-
vices (Chapter 2) and then test our “ASP-augmented sensor device” idea with an

Brandon D. Rumberg Chapter 1. Introduction 2

automobile-detection application (Chapter 3).

2. We detail the design of two low-power analog signal processing components—a band-
pass filter (Chapter 4) and a magnitude detector (Chapter 5).

3. We address one of the major barriers to creating non-trivial analog signal process-
ing systems: programmable analog parameters. To create programmable analog pa-
rameters, we use floating-gate transistors, which are the core of Flash memory. To
improve the feasibility of floating gates for low-power wireless systems, 1) we have
developed a low-overhead floating-gate programming infrastructre (Chapter 6), 2) we
have developed better characterization and design-optimization methods for floating
gates (Chapter 7), and 3) we have developed an integrated voltage step-up converter
to generate floating-gate programming voltages (Chapter 8).

4. We combine much of the above work and revisit our initial test case for an “ASP-
augmented sensor device,” where we show a great improvement (Chapter 9).

5. We advance this work by developing a field-programmable ASP for low-power sensing
applications (Chapter 10) and examine the sensor-network-specific design tradeoffs
for field-programmable ASPs (Chapter 11). This reconfigurable architecture allows
a larger range of applications and increases the ability to explore new analog signal
processing algorithms.

3

Chapter 2

Analog Signal Processing and Energy
Efficiency in Sensor Networks

Large-scale systems of networked sensors offer a real-time understanding of the complex
environments that they monitor. Applications include environmental monitoring, protection
of borders/resources against intruders, and monitoring of critical infrastructure like bridges
and power grids [2–7]. However, wide-scale deployment of sensor networks for these applica-
tions has been inhibited primarily by the inability to last for long durations on small power
sources, such as batteries and energy-harvesting systems. In this Chapter, we discuss how
analog processing can help sensor networks overcome this energy limitation.

2.1 Resource Limitations in Wireless Sensors

Wireless sensor networks are composed of miniaturized computing platforms containing a
variety of sensors. The gathered data from all of the sensor nodes are used in combination to
provide a detailed understanding of the surrounding environment. Significant variation exists
in the hardware design of sensor nodes. While some sensor nodes have been designed for high-
bandwidth sensing applications, and have therefore included high-performance processors [8]
or FPGAs [9], the majority of research on wireless sensor networks has used low-power “duty-
cycle oriented” sensor nodes. These sensor nodes are designed—both in terms of hardware
and software—to be active for short durations, and to otherwise occupy a low-power sleep
state.

The power consumption of a duty-cycled sensor node includes active power—such as
computation, sensing, and transmission—as well as sleep power. The system’s total average
power consumption can be expressed as

Ptotal = Psleep + fsenseEsense + fcompEcomp + fTX/RXETX/RX (2.1)

where Psleep is the sleep power, fsense/fcomp/fTX/RX are the frequencies with which sens-
ing/computing/transceiver operations are performed, and Esense/Ecomp/ETX/RX are the en-
ergies used to perform each sensing/computing/transeiver operation.1 We leave the term

1Note that this simple expression does not include the overhead associated with mesh networking. How-

Brandon D. Rumberg Chapter 2. Analog Signal Processing for Sensor Networks 4

“operation” purposely vague to accomodate a variety of wireless sensing applications. We
offer two examples to illustrate different ways to interpret “operation”:

1. Consider a temperature-monitoring application in which the temperature is read once
per minute. Then, once per hour, the mean, maximum, and minimum of these values
are transmitted to a basestation. In this example, one sensing operation consists of
measuring and storing one temperature value; one computation operation consists
of calculating the mean, maximum, and minimum of 60 values; and one transceiver
operation consists of transmitting those three statistics. Furthermore, fsense = 1

60s
and

fcomp = fTX/RX = 1
3600s

.

2. Consider a “noise pollution”-monitoring application in which every ten minutes a mi-
crophone signal is sampled at 10kHz for one second, after which the A-weighted “loud-
ness” is calculated and stored. Then, all results are transmitted to a basestation once
per day. In this example, one sensing operation consists of reading and storing ten-
thousand samples, one computation operation consists of calculating and storing the
loudness of one 10,000-sample frame, and one transceiver operation consists of trans-
mitting 600 loudness values. Furthermore, fsense = fcomp = 1

600s
and fTX/RX = 1

24×3600s .
Note that most low-power sensor nodes have used microcontrollers that are clocked
under 10MHz and have included less than 10KB of RAM, so this application would
push these systems to their limit while active.

These examples show varying degrees of buffering and compression in each stage of oper-
ation. As a result, the complexity and frequency of these operations can be highly decoupled
from each other. For example, the frequency of computation events may be much lower than
the frequency of sensing events due to buffering, or the frequency of transmission events may
be much lower than the frequency of the other events due to compression. Herein lies the ap-
plication developer’s control over power consumption. Once a sensor node platform is chosen,
a developer cannot reduce the sleep-mode power consumption (Psleep) or the power consump-
tion in the different operating modes. The total power can only be reduced by reducing the
frequency at which the operations occur or by reducing the energy of each operation (e.g.
by reducing the complexity, and therefore the active time, of each operation). Consequently,
a power-consumption tradeoff exists between the complexity of the operation and the fre-
quency at which that operation occurrs. For instance, in the above noise-pollution example,
the relatively high sampling frequency and relatively complex computation operations are
balanced by invoking those operations infrequently.

Examining (2.1), we may observe several options for reducing the total power consump-
tion. The frequency of operations (f*) may be reduced by compressing the data or by taking
fewer sensor readings (which may result in an unacceptable loss of data). The sleep power
may be reduced by placing components into deeper power-off states; however, the deepest
power-off states often do not maintain their operating context and thus require too much
time to wake up. The sleep power may also be reduced by optimizing the supply voltage
and/or gate threshold voltages to minimize leakage current; however, the leakage current

ever, minimizing the transceiver contributions in the expression will generally help to minimize networking
overhead.

Brandon D. Rumberg Chapter 2. Analog Signal Processing for Sensor Networks 5

should not be made arbitrarily low: an optimal point exists beyond which the energy to per-
form an operation increases because more time is needed to perform the operation—a rule
of thumb says that the leakage power should be approximately 30% of the active power [10].

To reduce the various components of the total average power consumption, sensor network
developers have favored platforms that use microcontrollers with low sleep power and fast
wake-up from sleep mode. In Table 2.1, we identify three important sensor node platforms.
The Mica and TelosB platforms are based upon 8- and 16-bit microcontrollers, and have
been used as reference designs for many subsequent platforms, which have similar specifica-
tions. Throughout this work, we use the TelosB platform. Some higher-performance 32-bit
microcontrollers are approaching the low sleep-power of 8-/16-bit microcontrollers. Ko et
al [11] have argued that this low sleep-power, combined with greater energy-per-instruction
efficiency, allows these higher-performance microcontrollers to achieve lower average power
consumption in all but the lowest duty-cycle applications. Consequently, we expect that
platforms such as the Opal will become a model for future sensor node platforms.

Table 2.1: Sensor Node Platforms

Year MCU Memory Wake-up Psleep PMCU PRadio

Mica [12] 2001 ATmega128 (4MHz) 4K RAM, 128K Flash 180µs 75µW 8mW 36mW

TelosB [13] 2004 MSP430 (8MHz) 10K RAM, 48K Flash 6µs 25µW 6mW 60mW

Opal [14] 2011 Cortex-M3 (96MHz) 52K RAM, 256K Flash 10µs 120µW 48mW 94.5mW

For wireless communication, all of the above sensor node platforms have used ZigBee
transceivers. The Opal platform uses two ZigBee transceivers in different bands for diver-
sity. ZigBee has been favored for wireless sensor networks because it offers low complexity,
low power consumption, and large network sizes. However, these advantages come at the ex-
pense of relatively inefficient energy-per-byte compared to other protocols. Currently, many
microcontroller manufacturers are combining various wireless connectivity options with Cor-
tex cores (as used in the Opal platform) into single chips. So a greater mixture of wireless
protocols may be used in future sensor networks. Table 2.2 summarizes the comparison of
wireless protocols from [15]. Regardless of the protocol, the high communication power—
compared to the sleep and microcontroller power—compels the use of local compression and
decision-making to minimize the total system power.

Table 2.2: Comparison of Wireless Protocols

Bit rate (Mb/s) Range (m) TX (mW) RX (mW) Bit rate @ 50µW (kb/s)

ZigBee 0.25 10–100 74 81 0.17

Bluetooth 1 10 103 85 0.49

Wi-Fi 54 10 723 710 3.7

UWB 110 100 750 750 7.3

The power that is available to a sensor node will determine the amount of communication
and local computation that it can perform. The power source for most sensor nodes has been
a pair of AA batteries. Thoughout this work, we calculate the battery life of our systems
by also assuming that the power source is a pair of AA batteries with a nominal capacity

Brandon D. Rumberg Chapter 2. Analog Signal Processing for Sensor Networks 6

of 1500mAh. However, batteries have temperature and lifetime limitations that prevent
sensor nodes from using their full capacity. As a result, much interest has been placed on
“supercapacitors”—which achieve several orders of magnitude higher capacitance density
than traditional capacitors—as the future energy-storage elements for long-lifetime wireless
systems. In contrast to batteries, supercapacitors have lower series resistance, an increased
number of charge/discharge cycles, and faster charging capabilities [16].

Regardless of the energy storage element that is used, the energy-storage densities are
too low for small sensor nodes to endure for decades without recharging. Thus, sensor nodes
will need to harvest energy from their environment. As an example, Yerva et al [17] showed
that, for a node size of 1cm3 or less, solar cells will supply greater average power than a
lithium battery (over a seven-year lifetime, the power would be limited to 10µW). Typical
sources of energy that are harvested include photoelectric, thermoelectric, RF, and vibra-
tion. Gorlatova et al [18] studied the vibration energy that can be harvested from human
motion using a 1g proof mass: they found that although walking can generate over 150µW,
the average power that is generated over the course of a day by a college student is only
5–10µW. The choice of energy source depends upon the application, but it will likely be
common to combine multiple energy sources to guarantee operation in uncertain environ-
mental conditions [19]. While energy harvesting is a promising technology to practically
achieve long-life sensor nodes, the power that harvesters supply is insufficient for significant
in-network processing.

Returning to the question of power availability for a sensor node: for 10-year operation
on a pair of AA batteries, the average power consumption must be less than approximately
51µW, whereas energy-harvesting sources supply in the range of tens to hundreds of mi-
crowatts. Let us use 50µW as the target for the average power consumption of the system.
To determine the maximum allowable data transmission for a node, Table 2.2 shows the bit
rate of different wireless protocols at 50µW power consumption. These numbers are illus-
trative and assume that the transceivers can operate at less than 0.05% duty cycles with
zero sleep power and zero startup power. This is currently unrealistic—e.g. the CC3100
low-power Wi-Fi transceiver requires over 2mW to maintain a connection with an access
point. Regardless, we see that a ZigBee transceiver is definitely limited to less than 20 bytes
per second. This clearly illustrates the need to compress the data locally for all but the
lowest-bandwidth sensing applications.

Turning specifically to the TelosB platform, after 25µW of sleep power is removed from
the 50µW budget, only 25µW is left for sensing, computing, and transmission. If this power is
split into 8.33µW for each task, then we can read 277sps2 and transmit 28bps. The remaining
8.33µW for computation must compress 277 samples into 28 bits. This is a challenging task,
and we argue in this work that the solution is to use hardware to pre-process the sensor
data.

2With direct memory access enabled, the TelosB platform can read 200ksps [13]. After duty-cycling
to drop the full power consumption to 8.33µW, the sampling rate is 277. We have neglected the power
consumption of the transducer that senses the data. In the case of microphones, the lowest-power MEMS
microphone (Knowles SPW0430) consumes 240µW. On the other hand, crystal microphones are passive, but
they are too large and expensive for the envisioned sensor nodes of the future. Unless otherwise noted, we will
assume that a passive transducer can be used, and hope that the power consumption of cheap transducers
continues to fall.

Brandon D. Rumberg Chapter 2. Analog Signal Processing for Sensor Networks 7

Hardware-based event detection has been suggested for reducing power consumption in
sensor networks. Referring to (2.1), accurate hardware-based event detection allows all of
the “frequency of operation” terms (f*) to be minimized to the lowest values that allow
collection of the important data. The cost of hardware-based event detection is the event
detector’s power, which is potentially only a minor increase in Psleep. Jevtic et al [20] reported
a crack monitoring device which uses a comparator to trigger a wake-up signal based on
the amplitude of the signal. Their complete wake-up circuit consumes 16.5µW , and they
describe the use of both a passive sensor for event detection and a high-precision sensor
for event recording. Malinowski et al [21] developed a cargo-monitoring tag with a total
quiescent current of approximately 5µA. In their event detection circuits, they prepend peak
detectors to the comparators, triggering interrupts based on the envelope of the signal. They
also describe a dynamically adjustable threshold scheme to achieve a post-event refractory
period. Goldberg et al [22] presented an acoustic surveillance system, which uses a digital
VLSI periodicity detector (with a core power consumption of 835nW) to wake up the system.

Our approach is to develop a programmable, low-power analog signal processor, which
can provide discerning event detection, as well as perform signal analysis to supplement the
sensor node’s processing capability. Our Netamorph 2.0 analog processor in Chapter 10 can
compress and pre-classify sensor data and only adds 20µW of power consumption to a TelosB
platform, so that 5µW is left over for communication. This level of power consumption also
allows a greater amount of data processing to be achieved with energy harvesting sources.

2.2 Low-Power Analog Signal Processing

It is doubtful that the present course of digital processing will fill the need for local
computation in wireless sensors. Power reduction in digital processors has largely relied on
device scaling. Device scaling is the regular reduction of transistor dimensions. Beyond the
obvious benefit of packing more devices into a given area, Dennard et al showed in 1974
that, by proportionally scaling the vertical and lateral dimensions, the power-per-area of
digital circuitry would remain constant and thus the computation-per-power would increase
with the square of the scale factor [23]. However, this scaling regimen broke down in the late
1990’s [24]. Marr et al analyzed processor performance-efficiency data from 1980 to 2011 and
concluded that the existing trend of exponential improvement is leveling off and will hit a
ceiling within the next decade [25]. Nevertheless, there is hope that the overall performance-
efficiency will continue to improve for reasons beyond scaling. For a longer-term historical
perspective, Koomey et al analyzed the overall electrical efficiency of complete computer
systems (i.e. including the power supply, monitor, etc.) from the ENIAC in 1946 to personal
computers in 2009 [26]. They observed a consistent exponential improvement over a 63-year
period—well before the age of CMOS scaling, as well as after the break-down of CMOS
scaling. Several disruptive innovations have been required at different times to maintain this
trend—transistors, integrated circuits, CMOS logic, switched-mode power supplies, LCD
monitors, software-based power management, etc.—and it appears that we have reached the
point that a new disruption is needed.

As power constraints on various types of systems are becoming more stringent, analog
circuits are being re-investigated for use in low-power systems, such as hearing prostheses

Brandon D. Rumberg Chapter 2. Analog Signal Processing for Sensor Networks 8

[27] and implantable electronics [28], as well as for the implementation of high-level signal-
processing algorithms [29] that are normally performed in the digital domain. Examples
of such operations include support vector machines [30], cepstral transforms [31], vector
quantizers [32], hidden Markov model decoders [33], motion estimation [34], and adaptive
filtering [35]. With such a portfolio of operations, analog circuits can take the place of digital
circuits in many signal processing tasks.

Several studies over the past two decades have examined the use of analog circuits to
perform low-power processing. Mead made arguments for a computational paradigm that
takes advantage of the complexities of the computational primitives (i.e. transistors) [36,37].
Noting the similarities between electron diffusion in subthreshold MOS transistors and ion
diffusion in neurons, he made pioneering steps in developing low-power analog circuits that
were inspired by biology. Vittoz examined the effects of scaling on the future of analog circuits
and analyzed the theoretical performance-per-power limits for linear filter implementations
in both digital and analog circuits [38]. He found that analog circuits can often be more
efficient for low-precision operations, and he argued that analog circuits are more appropri-
ate for perceptual sensing tasks. Sarpeshkar expanded upon Vittoz’s study by considering
the cost of general computing operations (i.e. not just linear filters) in analog and digital
circuitry, and came to the same conclusion regarding analog circuitry being more efficient
for low-resolution operations [39]. Furthermore, his analysis showed that a hybrid analog-
digital paradigm—which combines the efficiency at low precision levels of analog circuitry
with the bit regeneration and bit-slice scalability of digital circuitry—would achieve the
best performance-per-power trade-off. Hasler and Anderson then suggested a “cooperative
analog-digital” approach that combines a low-power analog front-end with a programmable
digital back-end [29]. They observed that some analog processing circuits at that time (2002)
represented a 20-year leap in performance-per-power over digital signal processors. Further-
more, they suggested that the impending data-conversion bottleneck—i.e. the slower perfor-
mance scaling of analog-to-digital converters (2× improvement every 2 years) in relation to
the performance scaling of digital processors (2× improvement every 1.5 years) [40]—could
be overcome with a cooperative analog-digital approach, wherein the signal is compressed
by the analog front-end in order to reduce the data conversion burden [29].

Despite the advantages of low-power analog signal processing, there have been few ad-
vantageous applications of analog signal processing. In the remainder of this work, we apply
analog signal processing to wireless sensor networks, and in the process we contribute towards
solving the obstacles that are encountered in large-scale, low-power analog signal processing
systems.

9

Chapter 3

A “Hibernets” Event Detector for
Slumbering Sensors

Pre-processing of data before transmission is recommended for many sensor network
applications to reduce communication and improve energy efficiency. However, constraints
on memory, speed, and energy currently limit the processing capabilities within a sensor
network. In this Chapter, we describe how ultra-low-power analog circuitry can be integrated
with sensor nodes to create energy-efficient sensor networks. To support this proposition,
we present a custom analog front-end which performs spectral analysis at a fraction of
the power used by a digital counterpart. Furthermore, we show that the front-end can be
combined with existing sensor nodes to 1) selectively wake up the node based upon spectral
content of the signal, thus increasing battery life without missing interesting events, and to
2) achieve low-power signal analysis using an analog spectral decomposition block, freeing
up digital computation resources for higher-level analysis. Experiments in the context of
vehicle classification show improved performance for our ASP-interfaced mote over an all-
digital implementation.

The work in this Chapter was published in the IEEE Journal on Emerging and Selected
Topics in Circuits and Systems [41].

3.1 Introduction

Wireless sensor networks (WSN) hold great promise for use in applications such as en-
vironmental monitoring, protection of borders/resources against intruders, and monitoring
critical infrastructure like bridges and power grids [2–7]. However, wide-scale deployment of
sensor networks for these applications has been inhibited primarily by the inability to last
for long durations on small power sources, such as batteries and energy-harvesting systems.

One strategy to conserve energy locally is to perform minimal computation at each node
while transmitting most of the data, thereby leaving a majority of the computation and any
necessary decision-making to one or more centralized units. However, this strategy leads to
increased communication overhead. Therefore, local processing and in-network aggregation
are recommended for reducing power consumption due to the high cost of communication.
However, the amount of processing that a node can perform is restricted by both its power

Brandon D. Rumberg Chapter 3. Hibernets 1.0 10

Mote

A
D

C

µProcessorSensor

Mote

A
D

C µProcessorSensor
Analog
Signal

Processor

I/O

Figure 3.1: In contrast to many WSN designs in which sensor data is directly converted into
the digital domain by a mote, we introduce an intermediate stage composed of analog circuits
for pre-processing of the sensor data. This analog pre-processor allows us to compress the
sensor data into relevant characteristics, improve the performance of event detection (while
letting the mote sleep), add processing capabilities, and reduce power consumption.

budget and its limited processing resources. These constraints restrict the amount of signal
processing that the node can perform and also limit the highest sampling frequency at which
processing can be sustained. In order to perform more advanced signal processing and work
with higher frequency signals, it is often necessary for the sensor node, or “mote,” to include
a faster processor such as in the Intel Imote2 [8] and Stargate platforms, but this technique
comes at the expense of higher power consumption and higher cost.

Thus, a fundamental tradeoff exists between the power required to communicate data and
the power required to reduce communication using local processing. A variety of network-
level design techniques have been developed that trade one for the other in order to increase
the life-span of the system [42–58]. While these techniques have yielded useful improvements
in life-span, available computational resources limit the degree of those improvements. Sig-
nificant increases in life-span will require simultaneous consideration of both the hardware
and the network-level algorithms.

In this work, we suggest augmenting sensor nodes with an ultra-low-power analog signal
processor (ASP). Since analog circuitry offers significant computational resources for minimal
power consumption [39, 59], we are using analog signal processing within wireless sensor
networks to increase the node-level computational resources while simultaneously reducing
the power consumption of these nodes. One of the major objectives of this project has been to
develop ways to perform analog pre-processing and classification prior to converting into the
digital domain [Fig. 3.1 (bottom)], as opposed to immediately converting analog data from
a sensor into a digital signal via an analog-to-digital converter (ADC), as is typically done
[Fig. 3.1 (top)]. Consequently, we are able to work with the sensor data in its native domain,
avoiding unnecessary and power-wasting conversion. Only data that need to be converted are
actually processed by the ADC, and only after first being processed/compressed/classified
by the analog circuitry.

The outline for this Chapter is as follows. In Section 3.2, we provide a description of our

Brandon D. Rumberg Chapter 3. Hibernets 1.0 11

RMS

Logic

BPF

Analysis Event Detection

RMSBPF

RMSBPF

BPFout RMSout Wake-up

Input

(a)

Sensors

Analysis

Event
Detection/

Classification

Mote

Settings

Settings

Interrupt/
Class

Features

Settings

Signals

ASP Front-end

(b)

Figure 3.2: (a) A generalized “hibernet” system. In such a system, an analog signal pro-
cessor (ASP) continuously monitors sensor information while the subsequent digital system
(i.e. data converters, microprocessor, and radio) are maintained in a low-power sleep mode.
Hence, the higher power consuming portions of the signal-processing chain are allowed to
hibernate until needed. (b) The specific analog signal processor that we present in this
work is capable of performing spectral decomposition of the incoming signal and generating
interrupt signals to wake a sleeping mote.

framework for using ASPs within WSNs to drastically reduce the overall power consumption
of a sensor node, and we also provide an overview of how we can apply this technique to
acoustic- and vibration-sensing systems. We describe related work in Section 3.3. In Section
3.4, we present our low-power analog circuitry that is used in our ASP, as well as provide
demonstrations of analog event detection. In Section 3.5, we discuss how to interface such
ASP systems with standard commercially available motes, and then in Section 3.6, we apply
this overall system to acoustic classification of automobiles. Finally, in Section 3.7, we discuss
our results and summarize our work.

3.2 Analog Signal Processing in Sensor Networks

We present the framework shown in Fig. 3.2(a) as a way to use analog signal processing
to simultaneously increase local computational resources while decreasing system-level power
consumption. In such a system, the ultra-low-power, “always-on” analog circuitry constantly
monitors incoming sensor data to determine if the information is relevant to the system’s
task. Meanwhile, the digital mote (including the ADC) is kept in a low-power state (e.g. sleep
mode). Only when the incoming signal is relevant to the system’s task does the ASP trigger
the digital system and/or the radio to enter a higher-power state to further process and/or
transmit the data.

To perform these wake-up and processing duties, the ASP consists of two parts: 1) signal
analysis/pre-processing and 2) event detection/classification. The analysis portion serves
two purposes: 1) generate features for use in event detection and 2) perform pre-processing
to free up the mote’s computing resources. The classifier wakes the mote when it detects
events of interest and allows the mote to operate at a higher abstraction level, dealing with

Brandon D. Rumberg Chapter 3. Hibernets 1.0 12

sensor data at the level of classes.
To demonstrate the potential of the ASP/WSN framework, we have designed and fab-

ricated an analog integrated circuit [Fig. 3.2(b)] for use in wireless sensor networks. The
analysis portion of the system performs spectral decomposition using a constant relative-
bandwidth filter bank with subband root-mean-square (RMS) detection circuits. Event
detection is performed using a comparator on the RMS output of each subband, followed
by digital logic which asserts a hardware interrupt when the signal spectrum matches a
user-defined binary template. The core of this chip operates at an average power of 1–3µW,
which is less than the power consumed by a TelosB mote in its lowest-power sleep mode
(> 25µW).

We note that spectral decomposition is a crucial first-step for many sensor network
applications, such as acoustic/seismic object classification, event detection, and vibration
monitoring [2, 5, 6]. By combining a spectral analyzer with a template-based classifier,
our ASP can benefit any application where signal events can be distinguished from other
events/noise based on instantaneous frequency content. Therefore, these analog circuits hold
great promise for use in wireless sensor networks, and in this work, we show different ways
to utilize these circuits.

Typical low power sensor mote platforms, such as the TelosB mote [13], are unable to
process incoming data at frequencies higher than a few kilohertz, and are also unable to per-
form significant signal processing operations such as the FFT [60]. This limitation typically
warrants the use of higher-processing-ability platforms, such as the Stargate [61], to perform
these signal-processing operations, thus increasing the overall system power requirements.
By using the ASP to perform spectral decomposition, we offload major computational tasks
away from the mote, thus allowing us to use even a low-power platform such as the TelosB
mote. Also, by simply sampling the RMS energy of individual frequency subbands (which
can be done at a much lower sampling frequency than the original signal), a mote is able to
obtain a complete spectral analysis of the signal. This allows us to operate the system on
signals with much higher frequencies than would be possible with a mote alone.

In order for an ASP/WSN system to be practical, the use of the ASP must be as straight-
forward as writing programming code in a high-level programming language. Also, there
should be some flexibility in controlling the parameters of the circuit at run-time and after
deployment. With these requirements in mind, we have interfaced the ASP to a TelosB
mote [13]. All signal analysis outputs are multiplexed to a single analog-to-digital converter
(ADC) pin on the mote, allowing the mote to sample these outputs using standard TinyOS
[62] sensor interfaces. The event detector can be set to generate an interrupt when activity
has been detected in a user-selected combination of channels. Additionally, the frequency
range and spacing of the filter bank can be varied using the mote’s built-in digital-to-analog
converters (DACs).

We demonstrate the effectiveness of our cooperative analog-digital mote architecture by
using it to implement a vehicle classification system similar to [63], and comparing the system
performance (accuracy, latency, and energy) with an all-digital implementation. Our chosen
application scenario is representative of typical WSN applications for monitoring that involve
detection and classification of rare, short-lived events and that demand high accuracy and
energy-efficiency. By using an ASP to perform computations and by using the digital mote
to refine the classification decisions, we are able to achieve classification accuracies of 90%,

Brandon D. Rumberg Chapter 3. Hibernets 1.0 13

while extending the battery lifespan from four months for a mote-only implementation to
nine years for our ASP-mote implementation.

3.3 Background

Many WSN applications require some form of spectral analysis for detection and clas-
sification of events [2, 5, 60, 63–65]. All of these applications have discussed the need for
processing within the network in order to decrease communication requirements. Our analog
front-end would complement all such systems by providing low-power processing capabili-
ties. Additionally, our ASP can complement the low-power digital processors that are being
developed for sensor networks [66–69].

Hardware-based event detection, in contrast to sensor polling, has been suggested for
reducing power consumption in sensor networks. Jevtic et al [20] reported a crack monitoring
device which uses a comparator to trigger a wake-up signal based on the amplitude of the
signal. Their complete wake-up circuit consumes 16.5µW , and they describe the use of
both a passive sensor for event detection and a high-precision sensor for event recording.
Malinowski et al [21] developed a cargo-monitoring tag with a total quiescent current of
approximately 5µA. In their event detection circuits, they prepend peak detectors to the
comparators, triggering interrupts based on the envelope of the signal. They also describe a
dynamically adjustable threshold scheme to achieve a post-event refractory period. Goldberg
et al [22] presented an acoustic surveillance system, which uses a digital VLSI periodicity
detector (with a core power consumption of 835nW) to wake up the system. In this Chapter,
we present an analog event detector which goes beyond amplitude-based event detection. We
also show how the signal analysis performed for event detection can supplement the mote’s
processing capability.

As power constraints on various types of systems are becoming more stringent, analog cir-
cuits are being re-investigated for use in low-power systems, such as hearing prostheses [27],
implantable electronics [28], and high-level signal-processing algorithms [29] which are nor-
mally implemented in digital, such as support vector machines [30], cepstral transforms [31],
vector quantizers [32], bidirectional associative memories [70], and belief propagation [71].
With such a portfolio of operations, analog circuits can take the place of digital circuits in
many signal processing tasks, such as acoustic event detection as we discuss in this Chapter.
While digital circuits have been used in most settings because of their flexibility, ease of
use through programming, noise robustness, benefits of aggressive technology scaling, and
scalable dynamic range, analog circuits are able to operate in real-time and perform many
computations inherently that would require significant overhead in the digital domain (e.g.
multiplication) [59]. Additionally, analog circuitry provides significant power savings over
digital, even with the benefits of CMOS scaling for digital systems. For example, it has been
observed that ASP performance-per-power represents a 20-year leap over DSP scaling [72],
meaning that analog circuitry will continue to provide more efficient signal processing over
digital, even though digital processing is progressively becoming more power efficient. This
also means that analog has the added benefit of not needing to use the most recent, and
often prohibitively expensive, CMOS processes to achieve very low power levels. Instead,
analog circuitry can use older and far less-expensive processes and still provide significant

Brandon D. Rumberg Chapter 3. Hibernets 1.0 14

Acoustic
Sensor

RMS

Prog.
Logic

BPF

Analysis Event Detection

Mote
RMSBPF

RMSBPF

(a) (b)

Figure 3.3: (a) Die photograph of the ASP. (b) Block diagram of the ASP. Note that in this
preliminary front-end, the programmable logic is external to the IC.

power savings. Furthermore, increased leakage current in smaller processes (i.e. current that
flows even when a gate is not switching) requires extra attention to keep power low in newer
digital systems and can limit the lowest power state of the digital system [73]; this same
leakage current rarely affects continuous-time analog circuits to the same degree since they
are typically biased to the exact amount of current required for the application.

While general-purpose microcontrollers dominate most WSN systems due to their flexi-
bility, application-specific (and less flexible) digital circuitry could also be used to perform
pre-processing for wake-up tasks (i.e. wake up a more powerful digital system). However, the
infrastructure required to support such digital systems can still be quite costly in terms of
power consumption. One major advantage of using an ASP as opposed to a digital ASIC for
untethered sensing applications is that the sensed signal will inherently be an analog signal.
As a result, an ASP can work directly with the signal in its native format. Additionally, a
digital system requires data conversion at the full speed of the signal of interest, whereas an
ASP approach can reduce/compress the signal content, thereby allowing a further reduction
in required power of the ADC. Beyond the necessary ADC, digital systems also require other
infrastructure such as a clock, whereas a continuous-time ASP does not, and generating the
clock signal will require even further power consumption.

3.4 Design of Analog Computational Elements

Our analog signal processor, shown in Fig. 3.3, is fabricated on a 0.5µm standard CMOS
process available through MOSIS. This integrated circuit is 2.25mm2, and consumes only
3µW when biased for speech frequencies. The intent is to make a low-power, but discrimi-
nating, event detector which can call attention to compelling characterisitics of a signal. The
detection approach is to identify when the signal matches a binary spectral template. This
integrated circuit has two stages: a spectral analysis stage; and an event detection stage,
formed by combining an array of comparators with external logic.

Brandon D. Rumberg Chapter 3. Hibernets 1.0 15

Vτl

Vτh

C2 Vout

C1

CW

CL
Vin

M1

M2

M3

M4

10
1

10
2

10
3

10
4

-15

-10

-5

0
Octave

10
1

10
2

10
3

10
4

-30

-20

-10

0
1/2 Octave

N
o

rm
a

liz
e

d
 G

a
in

 (
d

B
)

10
1

10
2

10
3

10
4

-40

-20

0
1/3 Octave

Frequency (Hz)

(c)

(a) out1

v τh,high v τh,low

out2 out3 out4
out8

v in

v τl,high v τl,low

(b)

Figure 3.4: (a) Schematic of our filter array and biasing structure. Each of the eight filters
receive the input signal in parallel. Two resistive lines are used to bias the corner frequencies
of all of the filters. Since the filters are operated in the subthreshold regime, linear spacing
of the bias voltages translates into exponentially spaced center frequencies. (b) Schematic of
our bandpass filter. The corner frequencies are electronically tunable and are independent of
each other; they are established by biasing Vτl and Vτh, respectively. (c) Frequency response
of the filter bank for octave spacing, 1/2 octave spacing, and 1/3 octave spacing.

The spectral decomposition front-end is composed of a filter bank with subband RMS
detection circuits. This spectral analysis system is used for frequency-based event detection,
and for offloading some of the signal processing which would otherwise be performed by the
mote. Since the outputs of all of the filters and RMS circuits are multiplexed to a single pin,
a mote can select the filter output or RMS output of any frequency band in order to acquire
a frequency-domain representation of the signal.

3.4.1 Filter Bank

The constant-relative-bandwidth filter bank, shown in Fig. 3.4, is created with an eight-
channel array of bandpass filters. The filters—schematic shown in Fig. 3.4(b)—are an early
version of the filter described in Chapter 4, and so we will forego any details in this Chapter.

Brandon D. Rumberg Chapter 3. Hibernets 1.0 16

3.4.2 Resistive Biasing

Since the filters are operated in weak inversion, the transconductance values of the tran-
sistors (and thus the operating frequency of the circuit) vary exponentially with bias volt-
ages Vτl and Vτh. This exponential relationship between voltage and frequency allows us
to achieve the desired log-frequency spacing across the whole filter bank using a simple re-
sistive divider, internal to the chip. The configuration that is used to bias the filter bank
is shown in Fig. 3.4(a), where two large resistive lines are used to generate linearly spaced
bias voltages for each channel’s Vτl and Vτh, respectively. The voltages on either end of the
resistive dividers can be tuned to cover different frequency ranges and spacings, similar to
the procedure that was done with early silicon cochlear models (e.g. [74–76]). We use the
1/N octave spacing convention [77], which is common in vibrational and acoustical analyses.
In fractional-octave spacing, there are N filters per octave, and the filters cross at their −3dB
points. Figure 3.4(c) demonstrates the ability to set the filter bank for one, two, or three
filters per octave. These data, and all subsequent data (unless otherwise specified), were
obtain from our 0.5µm standard-CMOS integrated circuit, shown previously in Fig. 3.3.

One significant benefit to using resistive lines for biasing is the ease of use when incor-
porated into the larger system with the digital mote. In-the-field reconfiguration, which is a
highly desirable attribute of WSNs, is easily obtained by connecting the ends of the resistive
lines to digitally programmed voltage supplies (e.g. DACs or digital potentiometers). Only
a small number of biases must be changed to alter the frequency range and bandwidths of
the filters.

While using a resistive divider to bias the filter bank makes the ASP easy to use, there
are a few drawbacks. First, the accuracy of the filter parameters depends on the matching
of the resistors, which is generally poor. The effects of this mismatch can be observed by
looking at the variation in gain across the AC sweeps in Fig. 3.4(c). Second, if using the
mote’s DAC to permit run-time modification of the biases, resistive biasing will require the
mote’s DAC to remain turned-on all the time, adding to the quiescent power draw. Both
of these issues can be solved by using floating-gate transistors for parameter biasing, as we
show in Chapter 4. Floating-gate transistors allow precise programming of each parameter;
also, since floating-gate transistors are non-volatile, they do not require any external biasing
once they have been programmed. Consequently, in our improved front-end in Chapter 9,
we use floating-gate transistors to provide better accuracy and control to our ASP/WSN
systems.

3.4.3 Magnitude Detector

For sub-band magnitude detection, we use an early version of the detector presented in
Chapter 5. The schematic of this magnitude detector is shown in Fig. 3.5(a). Figure 3.5(c)
demonstrates the combination of the filter bank and magnitude detector. In Fig. 3.5(c), our
spectral decomposition system is set for 1/2-octave spacing, starting at 250Hz. The input to
the filter bank is a logarithmic chirp signal. Shown below the input are the responses of the
second, fourth, sixth, and eigth bands of the decomposition system. As the chirp sweeps to
higher frequencies, the response of the higher-frequency subbands increases, and the response
of the lower-frequency subbands decreases. Note that the output of the magnitude circuit is

Brandon D. Rumberg Chapter 3. Hibernets 1.0 17

M1A M1B

M2 CP

GM1 GM2

VD

CL

VIN

VPD

VOUT 0 0.02 0.04 0.06 0.08 0.1 0.12

1.4

1.5

1.6

In
p

u
t

0 0.02 0.04 0.06 0.08 0.1 0.12

1.4

1.5

1.6

T
a

p
 2 354Hz Band

0 0.02 0.04 0.06 0.08 0.1 0.12

1.4

1.5

1.6

T
a

p
 4 707Hz Band

0 0.02 0.04 0.06 0.08 0.1 0.12

1.4

1.5

1.6

T
a

p
 6 1414Hz Band

0 0.02 0.04 0.06 0.08 0.1 0.12

1.4

1.5

1.6

T
a

p
 8 2828Hz Band

Time (s)

(a)

(b) (c)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
1.62

1.63

1.64

1.65

1.66

1.67

1.68

Time

V
o

lt
a

g
e

V
IN

V
PD

Figure 3.5: (a) Schematic of the circuit used for magnitude detection. (b) Peak detection
waveforms. (c) Demonstration of the spectral decomposition front end. The input (top plot)
is a logarithmic chirp. The rest of the plots show the response of four of the subbands to
obtain an estimate of the RMS of the signal. Note that each channel’s response is frequency
dependent, and that the RMS outputs represent spectral characteristics of the signal.

the signal content in that band.

3.4.4 Event Detection

By combining the spectral analysis system with comparators and digital logic, we form
a simple yet selective event-detection system, with flexibility to define what constitutes an
event. Figure 3.6 provides a simple example in which an event is defined as occuring when
signal content is present in one of two channels, but not both. The two bands being compared
are 500Hz and 1.4kHz. The input consists of a 500Hz sine wave and a 1.4kHz sine wave which
overlap for 10 milliseconds. The wakeup signal is generated by combining the comparator
outputs for those two bands using an exclusive-or (XOR) operation, so that the interrupt is
asserted only when one band exceeds the threshold. In [78], we also illustrated an example in
which we detected harmonically related content, which is a scenario that is straightforward
to establish using a filter array with 1/N octave spacing, such as ours. For example, we
defined an event to contain spectral activity in multiple harmonically related bands with the
simultaneous absence of spectral activity in non-harmonically related bands.

In these examples, we observe that there is some lag-time between when the event occurs
and when the interrupt signal is asserted. The lag-time is caused by the RMS circuit, and is a
result of filtering the peak-detected signal. By adjusting the parameters of the RMS circuit,

Brandon D. Rumberg Chapter 3. Hibernets 1.0 18

0.02 0.025 0.03 0.035 0.04 0.045 0.05

1.2

1.4

1.6

1.8

2

V
ol

ta
ge

 (
V

)

0.02 0.025 0.03 0.035 0.04 0.045 0.05

1.5

1.55

1.6

1.65

Time (s)

R
M

S
 D

et
ec

to
r

O
ut

pu
t (

V
)

500Hz Band

Input

Interrupt

1.4kHz Band

Threshold

Figure 3.6: Demonstration of multi-band detection using an exclusive-or template. The
input consists of two overlapping sine waves. The bottom plot shows the magnitude outputs
for the 500Hz and 1.4kHz bands. The comparator outputs of those two bands are combined
via an exclusive-or to generate an interrupt when only one band exceeds the threshold.

the phase-lag can be reduced, at the expense of reduced RMS tracking accuracy. This lag
time is related to the frequency, f , of the subband, and is approximately 4/f for the RMS
circuit biasing used in this Chapter. For an application where the mote should record the
event, this phase-lag could cause the onset of the event to be overlooked. Regardless of how
small the phase lag is, we will miss the prelude to the event. This problem will be present
in all systems which wake up based on event detection. To solve the phase-lag problem, the
designer can include a memory buffer. This buffer may take the form of an analog delay line
(continuous-time continuous-value), an array of sample-and-holds (discrete-time continuous-
value), or low-power ADC and RAM (discrete-time discrete-value). This memory can also
have a second use of adding memory to the event detection algorithm. Appendix B provides
further consideration of such memory buffers.

3.4.5 Power Consumption

The power consumed by our analog integrated circuit is dominated by the bandpass fil-
ters, and to a lesser extent, the magnitude circuits. As we presented in [79], which describes
the circuit that this BPF is based upon, the power consumed by the BPF is linearly pro-
portional to its center frequency. This relationship is shown in Fig. 3.7 for a filter tuned
to a 1/2-octave bandwidth. This relationship enables the system designer to determine the
maximum frequency of operation available at a given power budget.

As described for the BPF, the power consumption of the RMS circuit also scales with
frequency. Additionally, the RMS circuit can be tuned in various fashions within a given
frequency band f0; for example, this circuit can follow either the envelope or the RMS of a

Brandon D. Rumberg Chapter 3. Hibernets 1.0 19

10
1

10
2

10
3

10
4

10
−10

10
−8

10
−6

10
−4

10
−2

Center Frequency, Highest Frequency (Hz)

P
ow

er
 D

is
si

pa
tio

n
(W

)

Single BPF at f
0

Magnitude at f
0

Filter Bank (BPF+Mag)
w/ Highest f

0

Mote in Sleep Mode

Digital Bandpass Filter

Figure 3.7: The power consumed by our analog spectral-decomposition block depends pri-
marily on the center frequency of the bandpass filter of the highest-frequency subband. The
x-axis shows the center frequency for the filter and RMS circuit, and also shows the center fre-
quency of the highest-frequency subband for an array that performs spectral analysis. These
are extrapolated from circuit simulations. Also included are power measurements from the
digital mote including the minimum measured power consumption in sleep mode and also
the power consumption of the mote performing a simple, single bandpass filtering operation
(at multiple frequency locations). Note that this mote was unable to simultaneously sample
and filter data at frequencies above approximately 1kHz.

signal. Therefore, this circuit has a range of power-consumption values for a given f0. Figure
3.7 shows the worst-case scenario (i.e. highest power consumption) for operation within a
given frequency band, f0.

The overall power consumption of our analog spectral-decomposition block is set by the
center frequency of the highest filter tap. The power consumption of the entire spectral-
decomposition system is described by a geometric series, resulting in a total power consump-
tion of

Ptot =
PBPF,high + PRMS,high

1− 2−1/N
(3.1)

where PBPF,high and PRMS,high represent the power consumed by the BPF and RMS circuits
in the highest-frequency subband, and N indicates the number of filters per octave. The
total amount of power consumed by the analog block is shown in Fig. 3.7 for the case of
1/2-octave spacing. Included in Fig. 3.7 is the measured power consumption of the TelosB
mote in sleep mode (25.4µW , which is within the specified bounds of 15− 60µW). For the
entire audio frequency band, our spectral-decomposition block consumes less power than a
sleeping mote.

Brandon D. Rumberg Chapter 3. Hibernets 1.0 20

ASP

CPLD Programming
Header

Mote Interface

Sensor Inputs
& Conditioning

TelosB Mote

CPLD

Electret & MEMS Microphones

(b)

Mote
ADC

Interrupt

Channel
/Settings

I2C

Biasing
I2CBiases

CPLD

Interrupt
Signal

Digital I/O

Class
Decision

Channel
Select

Classifier
Inputs

In

Muxed
Output

Comparator
Outputs

Channel
Select

Sensor
Data

BiasingASP

Class8

3
3

12

(a)

Figure 3.8: (a) Block diagram of the entire system. (b) The complete system shown with
and without the mote connected to it.

3.5 Interfacing With the Telos Mote

To evaluate the potential of the ASP/WSN framework, we interfaced the integrated
circuit described in Section 3.4 with the TelosB mote. The TelosB mote was chosen for its
low-power sleep mode (25 µW) and fast wakeup time (6 µs), which make it suitable for a
hardware-based wake-up system. A printed circuit board [Fig. 3.8(b)] was built to combine
all components of the system [Fig. 3.8(a)]. A summary of the power consumption of the
circuit board is shown in Table 3.1.

Two acoustic sensors are included on the circuit board, both an electret microphone and
a MEMS microphone. Additionally there is an auxiliary interface for connecting different
sensors, such as the passive piezoelectric microphone which we use as the main microphone.
Included is a low-power microphone amplifier based around the MCP6141 operational am-
plifier. The sensor output is available as an input to both the ASP and the mote’s ADC.

As mentioned in Section 3.4, the filter bank and subband processing elements are biased
with a resistive divider. On the circuit board, the voltages at the ends of these resistive lines
are provided by a network of digital potentiometers (AD5263) and two low-power voltage
references (the ISL60002 and the REF3318). In addition, the comparator trigger point is
also set via the digital potentiometers. A resolution of approximately 2.5 mV is available
across the nominal range of bias voltages for each circuit. The mote applies new settings to
the potentiometers after receiving updates over the radio.

A complex programmable logic device (CPLD) was used for the hardware-based pattern
classifier. The XC2C32A was chosen due to its low power consumption. The CPLD arbitrates
all digital connections between the Mote and ASP, and serves two roles: 1) it implements the
detection rules that operate on the comparator outputs, i.e. it performs the role of the “logic”

Brandon D. Rumberg Chapter 3. Hibernets 1.0 21

in the event detector [Fig. 3.2(b)], and 2) it serves as a serial-to-parallel converter, allowing
us to use just three of the mote’s digital I/O pins to select which of the ASP’s analog outputs
are connected to the mote’s ADC, and also to choose between different sets of detection rules
which are preloaded into the CPLD. For event detection, the CPLD receives the comparator
outputs from all frequency bands, and performs template matching to detect/classify events.
Upon detecting an event, one of the CPLD output pins wakes up the mote via a hardware
interrupt, and the other output pins indicate the classification of the event.

To provide the mote with access to the ASP’s signal analysis, the outputs from all band-
pass filters and RMS circuits are multiplexed to the mote’s ADC. The mote communicates
through the CPLD to specify which subband is connected to the ADC. To acquire the entire
spectral representation, the mote selects a new subband between each sample. Due to the
low-frequency nature of the RMS outputs, the mote is able to cycle through all channels
without experiencing aliasing.

3.6 Performance Evaluation

In this section, we describe two modes in which we can exploit the computational capa-
bilities of the analog integrated circuit for WSN applications, namely 1) selective wake-up
mode and 2) selective sample mode. We then quantify the performance gained in both
cases. Finally, we demonstrate the use of our ASP-interfaced mote in a vehicle classifica-
tion application and highlight the energy efficiency gained in comparison to an all-digital
implementation.

3.6.1 Selective Wake-Up Mode

In the selective wake-up mode, we take advantage of the low-power processing capability
of analog circuits by placing the mote into long periods of hibernation and then selectively
waking the mote when a user-specified combination of frequency components are present in
the signal. Figure 3.9(a) demonstrates single-band event detection. The band of interest
is 1kHz and the filter has a quality factor of 2.8. Signal content appears in the band at
2.6 seconds but has noise added to it. This noise is a combination of white noise and
tones at 100Hz, 600Hz, and 10kHz. The bandpass filter focuses on the frequency of interest
and the comparator trips once the RMS reaches the threshold. Note that the subband
event is detected despite having much lower amplitude than the noise and other frequency
components. In this mode, the mote samples the raw sensor signal when it wakes up and
transmits it to a basestation. The signal received by the basestation is shown in the bottom
trace.

In order to compare the power consumed by the ASP-interfaced mote with a mote-
only implementation, we implement a second-order Butterworth bandpass filter on a TelosB
mote running TinyOS and measure the power consumed. The measurements are taken
with a stock TelosB mote, without any of the components added for ASP-interfacing. The
digital filter is implemented by buffering 100 samples at a time and then computing the filter
outputs after every 100ms. The power consumed for this operation is measured for sampling
frequencies ranging from 10Hz to 1kHz. In Fig. 3.7, we compare the average power consumed

Brandon D. Rumberg Chapter 3. Hibernets 1.0 22

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

V
o

lt
a

g
e

 (
V

) Noise+Signal

Signal

0 0.1 0.2 0.3 0.4 0.5

1.4

1.5

1.6

1.7

V
o

lt
a

g
e

 (
V

)

Bandpass

Magnitude

Interrupt

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

Transmitted Signal

Time (s)

V
o

lt
a

g
e

 (
V

)

(a) (b)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
1.2

1.4

1.6

In
p

u
t

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

F
re

q
u

e
n

c
y
 (

H
z
)

Time (s)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

250

354

500

707

1000

1414

2000

2828

Sample and Transmit Data

Trigger

Figure 3.9: (a) Single-band event detection. The frequency of interest is 1kHz and is the
“Signal” trace in the top plot. Broadband noise and tones at 100Hz, 600Hz, and 10kHz
are added to “Signal,” generating “Noise+Signal,” which is the input to the analog signal
processor. The middle plot shows the response of the three stages of the processor within
the 1kHz subband. The bandpass filter cuts the undesired frequencies, while the RMS
circuit tracks the magnitude. Once the magnitude exceeds the threshold, an interrupt is
generated to wake the mote. The mote then samples the output of the sensor and transmits
it to the basestation. The received signal is plotted in the bottom plot. (b) Sampling of
pre-processed subbands and spectral analysis performed by the analog IC. (Top) The input
signal is composed of two 1kHz pulses followed by a logarithmic chirp signal. (Middle) Once
the trigger goes high, the ADC samples all 8 channels for a user-specified amount of time (e.g.
300ms). (Bottom) Spectrogram of the transmitted frequency-dependent magnitude data as
received by the base station.

by the digital filter with the power drawn by an analog bandpass filter for different sampling
frequencies and center frequencies, respectively. No data points could be obtained for mote
power at frequencies above 1kHz since that is the highest sampling frequency that the TelosB
can simultaneously sample and filter data. We point out that the energy consumed by our
entire spectral analysis system is over 1000 times lower than the power consumed by a single
digital filter, thus signifying the energy savings compared to keeping a mote always turned
on.

3.6.2 Selective Sample Mode

In the selective wake-up mode described in the previous subsection, once the mote is
awake it samples the raw signal for processing or transmission. The drawback with this
approach is that a low-power processing platform such as the TelosB mote is unable to
sample and process signals of high frequencies and is also limited in the kind of signal

Brandon D. Rumberg Chapter 3. Hibernets 1.0 23

processing operations that can be performed (an FFT, for example, is infeasible on a TelosB
mote [60]). This often warrants the use of a platform with greater processing capabilities,
such as the IMote2 or Stargate [61], for performing these signal processing operations, which
increases the overall power requirements of the system. In this subsection, we highlight
the selective-sample mode of operation in which we take advantage of the ASP’s ability to
perform pre-ADC signal analysis. The ASP is used to perform a full spectral analysis of
the input signal and the mote only samples the RMS energy of each subband. Thus we are
able to reduce the computational resources required at the mote, allowing for lower power
operation.

In the experiment of Fig. 3.9(b), the input signal consists of two 1kHz pulses followed
by a chirp signal. The 1kHz pulse is used to trigger the mote into sampling the RMS
energy of each subband in succession, for a specified period of time. The mote scans through
subbands by writing to the GIO port’s output register between each sampling operation.
The frequency-decomposed RMS data obtained by the mote is transmitted to a base station
and is displayed in the bottom plot. We note that by scanning through the energy of all
the subband channels in succession, a complete spectral decomposition can be obtained at
the mote in real time using the analog circuit. By doing so, we are also able to operate the
system on signals with much higher frequencies (since we sample only the RMS amplitude
of sub-bands) than would be possible with a mote alone.

3.6.3 Evaluation in the context of an automobile classification ap-
plication

In order to evaluate the accuracy and energy-efficiency of our ASP-interfaced mote in the
context of an actual sensor network application, we have used the system in a re-creation
of the all-digital acoustic-sensor-based vehicle classification experiment that we described
in [63]. The vehicle classification system is intended for unattended monitoring of secure
facilities. The objective of the system is to accurately identify an approaching vehicle as
belonging to one of multiple categories, such as small, medium, and large vehicles, and then
accurately raise an alert when a vehicle of a particular type has been detected. The vehicles
are assumed to appear in isolation and not concurrently with other vehicles. The system is
required to have a long lifespan on battery sources, while at the same time retaining high ac-
curacy and low latency in classification. Arrival of any vehicle is expected to be a rare event,
therefore rendering duty cycling of resources essential for energy-efficiency – but at the same
time it is critical that no vehicles are missed. We note that the chosen application is repre-
sentative of typical wireless sensor network applications for monitoring, such as detection of
anomalies in bridges [80], unattended ground sensing by military personnel in combat situa-
tions, classification of objects for asset protection [2], classification of animal sounds [81], and
monitoring of seismic activity. All of these applications involve detection and classification
of rare, short-lived events and demand high accuracy and high energy-efficiency.

In this subsection, we describe the implementation of the vehicle classification system
described above using our ASP-mote architecture and compare the system performance of
our cooperative analog-digital implementation with that of an all-digital implementation.
We specifically consider classification into two vehicle categories: car and truck.

Brandon D. Rumberg Chapter 3. Hibernets 1.0 24

0 2 4 6 8 10
0

1

2

3

V
ol

ts

0 2 4 6 8 10
0

0.5
1

F
re

qu
en

cy
 (

H
z)

0 2 4 6 8 10
100
141
200
283
400
566
800

1131

0 2 4 6 8 10
0
1
2
3

V
ol

ts

0 2 4 6 8 10
0
1
2
3

V
ol

ts

0 2 4 6 8 10
0
1
2
3

V
ol

ts

0 2 4 6 8 10

1

10

Time (s)

P
ow

er
 (

m
W

)

Vehicle Presence

Comparator Outputs

CPLD: Interrupt

CPLD: Class ’1’ − Truck
’0’ − Car

Input

(ii)

(v)

(vii)

(iii)

(i)

Radio
TX

Mote Processing

(vi)

(iv)

’1’ − Vehicle Present
’0’ − No Vehicle

Figure 3.10: Demonstration of the stages of the detection system for a 10 second test sample
of a truck being classified. The truck is closest to the sensor between seconds 4–6 of the test
sample [shown in (ii)]. The comparator outputs of the 8 filter-bands are shown in (iv) and the
CPLD outputs are shown in (v) and (vi). The CPLD interrupt pin goes high when a car or
truck is detected. The CPLD class pin specifies the classification (high for truck, low for car)
and is only valid when the interrupt pin is high. Once the interrupt is generated, the mote is
awakened and starts recording and accumulating the CPLD classifications (consuming about
1.5mW of power). When a final decision is made, the output is transmitted via radio, which
consumes 60mW [shown in (vii)].

3.6.3.1 Data Collection

The dataset collected for the experiments described in [63] was used for performance
evaluation in this work. The acoustic sensor used for data collection was a Samsung C01U
- USB Studio Condenser Microphone. The directional microphone was placed 10-12 feet
from the road, mounted one foot off the ground, and combined with Samson windshields to
filter out wind noise. A mid-sized car and a pickup truck were considered as the two vehicle
classes. Multiple observations were collected for both vehicles, which were driven at speeds

Brandon D. Rumberg Chapter 3. Hibernets 1.0 25

between 10mph and 30mph. Ambient data was also collected using the microphone without
any vehicle being present in the scene.

3.6.3.2 Training

The dataset was first normalized so that the peak amplitude of the signal across vehicle
classes was uniform. The dataset was then divided into two sets, one for training and the
other for testing, and regions of the data corresponding to when the vehicle was and was
not present were manually identified. Based on the short-time FFT spectra of the data, the
ASP’s filter bank parameters were chosen to be half-octave spacing from 100Hz to 1131Hz.
Using these filter bank settings, analysis was performed on all of the training samples by
streaming them through the ASP using a DAC and recording the RMS output of each
subband. After obtaining the RMS data, the objective was to determine the combination of
comparator trigger point and codeword assignments (codeword defined as the 8-bit output
from the eight comparators) which achieves the desired classification performance. During
training, each of the possible 256 codewords were associated with a class (i.e. car, truck, and
no vehicle).

The training procedure, which was performed offline, was to iterate through comparator
threshold values (20 steps of 10mV), performing the following steps for each threshold: 1)
thresholding was applied to the RMS data to obtain an 8-bit codeword for each time step, 2)
the distribution of each class (i.e. car, truck, and no vehicle; combined across all observations
of the class) across all codewords was computed, 3) each codeword was assigned to the class
that was most likely to result in observing that codeword (i.e. the class that caused that
codeword for the largest percentage of time), and then 4) the combination of comparator
threshold and codewords was evaluated by finding the percentage of time-samples which were
associated with the correct class. After iterating through the threshold values, the threshold
which resulted in the largest percentage of correct decisions in step 4 was chosen as the final
threshold and the codeword assignments found in step 3 for that threshold were used as the
final codeword assignments.

Once the comparator threshold and codeword assignments were determined, the system
was configured by transmitting the threshold value to the mote and programming the code-
word assignments into the CPLD via the JTAG header on the circuit board. The CPLD was
programmed such that the interrupt pin went high whenever a codeword associated with
either a car or truck was encountered, and the classification pin went high whenever a truck
was encountered.

Note that the instantaneous categorization generated by the ASP is susceptible to false
decisions due to noise or differences in the “approaching” versus “present” sounds of the
vehicle. Hence, it is possible for an interrupt pin to be reset despite the presence of a vehicle,
causing the GPIO pins to provide a false classification. In order to compensate for these
false decisions, we use the mote to generate the final classification output based on inputs
from the ASP over a length of time. Once an interrupt has been generated by the ASP, the
mote stays on and records the state of the interrupt pin and the GPIO pin until the interrupt
stays low continuously for a duration of 100ms, confirming that the vehicle is outside of the
sensing range. The mote then generates the final classification result as the most frequent
decision from the ASP over the duration of the event. This simple decision-accumulation

Brandon D. Rumberg Chapter 3. Hibernets 1.0 26

scheme provides good classification results; however, the scheme increases latency since it
waits until the vehicle has left the sensing range before making a decision. Alternative
schemes may be used to make the decision sooner, and future versions of the ASP will
include decision-accumulation capabilities to avoid waking the mote prematurely.

3.6.3.3 Testing

All testing was performed by streaming the samples into the ASP using a 16-bit DAC at a
samping frequency of 4kHz. The operation and the power consumption of the ASP-interfaced
mote is shown in Fig. 3.10 in the form of a timing diagram for one 10-second test sample
of a truck [Fig. 3.10(i)] being classified. The truck is closest to the sensor between seconds
4 − 6 of the test sample [shown in Fig. 3.10(ii)]. The spectral analysis output of the event
detector front-end is shown in Fig. 3.10(iii) in the form of a spectrogram. The comparator
outputs of the eight filter-bands are shown in Fig. 3.10(iv), and the CPLD outputs are
shown in Fig. 3.10(v)-(vi). The CPLD interrupt pin goes high when either a car or truck
is detected, and the CPLD class pin specifies the classification (high for truck, low for car),
which is only valid when the interrupt pin is high. Once the interrupt is generated, the mote
is awake and starts accumulating the classifications from the CPLD (consuming about 1.5
mW of power). When a final decision is made, the output is transmitted via radio (if it was
determined that an event occurred), which consumes 60mW [Fig. 3.10(vii)]. The detailed
power consumption of the ASP-interfaced mote for the various operations being performed
are shown in Table 3.1. The accuracy of classification is highlighted in Table 3.2. An overall
accuracy of 90% is achieved with an average false alarm rate of one false positive every 50
seconds in the presence of amplified ambient wind noise.

3.6.3.4 Comparison with all-digital implementation

Low-power computing platforms such as the TelosB mote are unable to perform spectral
analysis on-board, and therefore processing platforms such as the Stargate have to be used
to perform signal processing. Since these devices consume significantly higher power, they
are typically used in a layered architecture in conjunction with mote platforms that act as
wakeup devices to trigger the detection of an event. In [63], we presented an all-digital im-
plementation using such a layered architecture for the vehicle classification system described
above. In that all-digital implementaion, a low-power Mica2 mote attached to a seismic
sensor stays on all the time to detect the arrival of a vehicle. Upon detection of a vehicle,
the mote triggers a signal to wake up a Linux-based Stargate platform that performs spec-
tral analysis for vehicle classification. The Mica2 mote stays on all the time and consumes
24mW of power when processing and 60mW when transmitting. The Stargate running off
of a 4.2V battery consumes 420-470mA when processing for a duration of 8−10 seconds per
vehicle detection. In comparison, our cooperative analog-digital implementation consumes
only 214 µW of power when idle and 1.5 mW when an event is detected.

Now we analyze the power savings afforded by using the ASP in the vehicle classification
scenario. Table 3.1 details the contribution of each component to the system’s power bud-
get, showing the power breakdown of the ASP-augmented mote for three operating states:
event-monitoring (mote asleep while ASP performs event detection), sampling/processing

Brandon D. Rumberg Chapter 3. Hibernets 1.0 27

Table 3.1: Power Consumption

Power

Device Power (Projected)

ASP-mote ASP 3µW 3µW

event- CPLD 48µW 5µW

monitoring Biasing 135µW 20µW

Sensor (w/ interfacing) 3µW 3µW

Sleeping mote 25µW 25µW

Total 214µW 56µW

ASP-mote ASP board 189µW 31µW

sampling/ I/O Buffers 30µW 30µW

processing Awake mote 1.5mW 1.5mW

Total 1.72mW 1.56mW

Transmitting ASP board 189µW 31µW

Transmitting mote 60mW 60mW

Total 60.19mW 60.03mW

Table 3.2: Vehicle Classification Results

Ground Truth

NULL Car Truck

(200 seconds) (10 Samples) (10 Samples)

NULL 20% 0%

Car 2 false alarms 80% 0%

Truck 2 false alarms 0% 100%

(mote awake, e.g., the decision-accumulation scheme discussed in Section 3.6.3.2), and data
transmission. Since this initial IC did not have optimized biasing and did not integrate the
logic that is needed for the pattern matching portion of the event detector, we provide two
sets of power numbers: the measured values for this system which are shown under “Power,”
and the expected power values (assuming integrated event-detection logic and floating-gate
biasing) which are shown under “Power (Projected).” The projected power numbers are
based on previous floating-gate-biased filter banks and programmable logic arrays that we
have made. The “Sensor (w/ interfacing)” number is for a passive piezoelectric microphone
with a low-power amplifier.

To visualize the power savings of the event detector, we plot the system lifespan as a func-
tion of the frequency of events (Fig. 3.11), assuming a nominal battery capacity of 1500mAh.
Using the power numbers given in Table 3.1, the lifespan is calculated for the following plat-
forms: an ASP-augmented mote (w/ measured power numbers), an ASP-augmented mote

Brandon D. Rumberg Chapter 3. Hibernets 1.0 28

10
1

10
2

10
3

10
4

10
2

10
3

Events per hour

B
at

te
ry

 L
ife

tim
e

(D
ay

s)

w/o TX
w/ TXw/ ASP ~ 9 years

(projected power)

w/ ASP ~ 2.4 years

w/o ASP ~ 4 months

Figure 3.11: System lifetime as a function of event frequency.

(w/ projected power numbers), and a digital-only mote. For our comparisons, the digital-only
mote is the TelosB, which is one of the lowest-power commercially-available mote platforms.
Comparing against the TelosB mote gives digital-only platforms the benefit of the doubt
since (as we discussed in Section 3.6.1) the TelosB is unable to perform even a single band-
pass filter in real-time for signal bandwidths exceeding 1kHz. Each platform is considered
with and without the cost of transmitting the classification decision (which requires the radio
to be turned on for 16ms). The digital-only scenario with no transmission has a constant
lifetime since it is always awake and processing, while the digital-only scenario with trans-
mission shows a decreasing lifetime with increasing event frequency since the radio is turned
on more frequently. In the ASP scenario, the mote enters a low-power state between events.
When events are infrequent, the average power consumption of the system approaches the
sum of the ASP and sleeping-mote power levels. As events become more frequent, the mote
spends a larger percentage of time awake, and the system’s average power consumption ap-
proaches the sum of the ASP and awake-mote power levels. When events occur so rapidly
that the mote never turns off, the lifespan of the ASP-augmented system drops slighly below
the lifespan of the mote-only system due to the additional power of the ASP.

3.6.3.5 Discussion

We note that in our implementation, we used the ASP to output binary decision bits,
which are read with the GPIO pins on the mote and used to make the final classification
output. Alternatively, the mote can be used to sample the RMS energy of each subband,
as described in Section 3.6.2, while the interrupt pin stays high, and then use the sampled
spectrogram of the signal to make a decision. Such an approach is likely to be beneficial in
a more general classification scenario with much more than 2 classes.

Brandon D. Rumberg Chapter 3. Hibernets 1.0 29

3.6.4 Other Applications and Potential Extensions

We chose to implement spectral decomposition as our computational block in this version
of our ASP because spectral analysis is often the first step in a majority of WSN event detec-
tion/classification applications (e.g. vibration monitoring for anomaly detection in buildings,
bridges, etc. [6], vehicle classification [5,64], habitat monitoring, perimeter monitoring [65]).
Combining a filter bank with a template-based classifier allows the system to be used for any
scenario where events can be distinguished from other events/noise based on the instanta-
neous frequency content. Further improvements on this acoustic processor could be gained
by using more sophisticated classifiers (e.g. [82–84]) that have memory, and also by using sig-
nal features other than the spectrum, such as the cepstrum, which has been shown to provide
better separation between acoustic classes for both speech and vehicle applications, and has
been previously implemented in analog ICs [31]. If the application is changed to something
that is not suitable for frequency analysis (e.g. imaging or chemical sensing), or if the domain
is changed to something other than event detection (e.g. object localization/tracking), then
a different set of operations will need to be implemented in the ASP.

Digital processing is likely to provide a simpler solution for systems in which a particu-
lar sensor node demands very high resolution processing, branching (e.g. state machines),
long-term data storage of sensor information, or a high degree of flexibility for in-the-field
reconfiguration. However, ASPs can still be used to complement the digital processors in
such scenarios. For example, a system which requires high-resolution processing (e.g. SNR
> 16 bits) can use a lower-resolution ASP (where ASPs are always more efficient than digital
circuitry [39]) to act as an energy-management tool to wake up a high-resolution digital sys-
tem. Also, operations which require branching can be accomplished by incorporating state
machines into the “Logic” portion of the ASP [see Fig. 3.2(b)]. Additionally, recent devel-
opments in programmable/reconfigurable analog systems enable analog integrated circuits
to be general-purpose and easy to use, thereby providing significant flexibility and reducing
the design time [35,85].

3.7 Conclusions

In this Chapter, we have described how ultra-low-power analog circuitry can be integrated
with sensor nodes to reduce the node-level power consumption. We have shown the ability
to interface these circuits with existing sensor platforms and have presented demonstrations
to illustrate how analog hardware can reduce node resource usage and increase performance.
We have implemented a vehicle classification system using our ASP-interfaced mote and
have shown that it significantly improves the energy-efficiency over that of an all-digital
implementation while retaining high classification accuracies.

We have utilized the strong points of both analog and digital such that each computa-
tional domain compensates for the limitations of the other. Specifically, by combining the
ASP and the mote’s microcontroller, we retain the flexibility of configuring system param-
eters at run-time and of implementing additional high-level decision making on the motes.
At the same time, the use of the ASP enables ultra-low-power operation by reducing the
amount of time that the mote is powered on and by reducing the required computational

Brandon D. Rumberg Chapter 3. Hibernets 1.0 30

resource implemented by the mote. By using both the analog and digital systems together,
we have increased the lifetime of a wireless sensor network system from a few months to
several years.

In the remainder of this Dissertation, we improve upon our “ASP-augmented mote”
paradigm with the development of improved analog processing blocks (Chapters 4 and 5)
and with the development of a low-overhead architecture for programming analog mem-
ory (Chapters 6 through 8). These developments are included in an improved version of
the Hibernets processor (Chapter 9), as well as in a more capable and more flexible field-
programmable analog array (FPAA) architecture (Chapter 10).

31

Chapter 4

A Low-Power and High-Precision
Programmable Analog Filter Bank

Analog filter banks befit remote audio- and vibration-sensing applications, which require
frequency analysis to be performed with low power consumption and with moderate to high
precision. The precision of a filter bank depends on both the signal-path precision (i.e.,
dynamic range) and also the parameter precision (e.g., accuracy of the center frequencies).
This work presents a new bandpass filter for audio-frequency filter banks and provides a
procedure for designing this filter. The filter is used in a 16-channel filter bank which
has been fabricated in a 0.35µm CMOS process. This filter bank has a dynamic range
exceeding 62dB and consumes only 63.6µW when biased for speech frequencies. The filter
bank’s parameters are set via floating-gate current sources.1 This work shows how to use
these floating gates to obtain a versatile filter bank that can be precisely reprogrammed
to arbitrary filter spacings and frequency weightings, with a parameter accuracy exceeding
99%.

The work in this Chapter was published in the IEEE Transactions on Circuits and Sys-
tems II [86]. Variations of the filter bank described in this Chapter have been a major
component in all of our wireless-sensing-oriented analog processors, namely our Hibernets
event detectors in Chapters 3&9 and our Netamorph field-programmable analog arrays in
Chapter 10.

4.1 Analog Filter Banks

Due to the dynamic vibrational nature of many phenomena, sensor-processing applica-
tions often decompose signals into a time-frequency representation for analysis, manipula-
tion, or recognition of the signal. Time-frequency representations characterize changes in the
signal’s spectrum over time and are typically implemented in two main ways: 1) a constant-
bandwidth representation such as the short-time Fourier transform, which provides the most
compact representation for signals with long-term periodicity and 2) a constant-relative-
bandwidth or scale-space representation such as the wavelet transform, which provides the
most compact representation for signals with localized time-frequency components [87].

1More details on floating gates are provided in Chapter 6.

Brandon D. Rumberg Chapter 4. Programmable Filter Bank 32

Bandpass Filter
Magnitude
Detector

IτL,0 IτH,0

In

BPF0 Mag0

Bandpass Filter
Magnitude
Detector

IτL,1 IτH,1

BPF1 Mag1

Bandpass Filter
Magnitude
Detector

IτL,15 IτH,15

BPF15 Mag15

Figure 4.1: Block diagram of our analog filter bank chip, which combines a parallel array
of bandpass filters with subband magnitude detectors. Each circuit parameter is controlled
independently via floating-gate current sources, thus achieving precise control of the filter
bank’s settings.

Time-frequency analysis can be performed efficiently with analog filter banks [88], which
naturally yield a scale-space representation [89]. Integrated analog filter banks were incu-
bated in the research of silicon cochleae [90–94], and their low-power operation makes them
well suited to battery-powered applications such as cochlear implants [95, 96] and wireless
sensor networks [41].

In order for analog filter banks to be an option for incorporation into mature systems, they
should operate with high precision, and their filter parameters should be reprogrammable.
The precision of a filter bank is affected by both the signal-path precision (e.g., dynamic
range) and the parameter precision (e.g., center frequencies and bandwidths). A large dy-
namic range is difficult to achieve in low-power circuits due to the relatively high noise levels
and reduced voltage headroom [93]. Precise tuning of filter parameters is difficult to achieve
in compact and low-power circuits due to process variations, which can be partially overcome
by using large device sizes and additional circuitry. Nevertheless, state-of-the-art filter banks
have center-frequency errors >10% [91]. Previous filter banks have been demonstrated to
achieve either a large dynamic range [96] or precise and reprogrammable parameters [97],
but in this work, we present a filter bank which achieves both a large dynamic range and is
also precise and programmable, while maintaining low power consumption.

Figure 4.1 shows the block diagram of our 16-channel filter bank chip, which was fabri-
cated in a 0.35µm standard CMOS process. The filter bank performs time-frequency analysis
with a parallel array of bandpass filters. For the bandpass filter, we use our new OTA-based
(operational transconductance amplifier) capacitively-coupled current conveyor (C4), which
significantly improves upon the shortcomings of the transistor-based version [79]. In Section
4.2, we present this bandpass filter, demonstrate its large dynamic range, and provide a de-
sign procedure. To achieve precise programmability at low-power operation, we set the filter

Brandon D. Rumberg Chapter 4. Programmable Filter Bank 33

Vin

C1

CW

VA

C2

CL

Vout
Vref

Gm,H

Gm,L

(b)

Vout

M3

M4

M2

M1

Vin CL

CW

C1

C2

VA

Vτ,L

(a)

Vb Mb

V+ V-

M1 M2M3 M4

M5 M6

M7 M8

Vout

Iout

(c)

Gain (Measured)
Q (Measured)
Q (Theory)

Frequency (Hz)

G
a

in
 (

d
B

)

101 102 103 104

101 102 103 104

0

-10

-20

G
a

in
 (

d
B

)

0

-10

-20

0

-10

-20

10

-30

-40

-50

G
a

in
 (

d
B

)

3.5

3

2.5

2

1.5

1

0.5

Q
u

a
lit

y
 F

a
c
to

r

10-3 10-2 10-1 100

τL / τH
(d) (e)

Increasing
Gm,L

Increasing
Gm,H

Vτ,H

Figure 4.2: (a) The original transistor-based C4. (b) The new OTA-based C4. (c) The
symmetric “bump”-linearized transconductor that is used in the OTA-C4. (d) Measured
frequency responses of the OTA-C4. The independence of the corner frequencies is demon-
strated by stepping one bias at a time. (e) The measured gain and Q of the OTA-C4, both
plotted as a function of the time constant ratio τl/τh, which is proportional to Gm,H/Gm,L.

bank parameters with floating-gate-based current sources (i.e., non-volatile analog memory),
which have been shown to be a good option for achieving precise and programmable biasing
in CMOS circuits [97]. Through the use of floating-gate transistors, we have consistently
achieved a percent error below 1% when programming the center frequencies, gains, and
bandwidths of the filters. In Section 4.3, we demonstrate the precise programmability of the
filter bank by programming it to different filter spacings and frequency weightings. All plots
in this Chapter are measurements from the fabricated filter bank.

4.2 Bandpass Filter

Transconductance-capacitance (Gm–C) topologies are a common choice for low-power in-
tegrated filters. When low-power operation is required, Gm–C filters can be operated in the
subthreshold domain. Since OTAs have low transconductance in the subthreshold region,
these filters are able to achieve the long time constants that are needed for audio-frequency
operation while using small integrated capacitors, thus enabling compact designs. Gm–C

Brandon D. Rumberg Chapter 4. Programmable Filter Bank 34

filters are also good for applications requiring programmability since the transconductance
values, which are easily controlled by adjusting OTA bias currents, appear in the transfer
function as parameters of the filter (thus the filter parameters are easily modified). Further-
more, since these filter parameters typically scale with center frequency, filter bank spacing is
easily achieved with current ratioing or resistive dividers. For these reasons, most low-power
filter banks have been based on Gm–C filters.

Unfortunately, the dynamic range of Gm–C filters is limited by the small linear range of
the subthreshold differential pair. This problem is often mitigated through transconductor
linearization [98,99] or through capacitive division to keep the signal within the linear range
of the transconductors [100]; we use both of these techniques in this work. Another limitation
to the dynamic range of low-power Gm–C filters is the small subthreshold current, which
results in relatively high noise levels for the bandwidth, and can be alleviated by increasing
both the capacitor sizes and the power level.

4.2.1 OTA-C4 Bandpass Filter2

The bandpass filter that we created for our filter bank is our new OTA-based capacitively-
coupled current conveyor (C4) shown in Fig. 4.2(b). This filter is based on the previously
reported transistor-based C4 [79], which is shown in Fig. 4.2(a). The C4 filter topology offers
flexible tuning, with run-time adjustable center frequency, gain, and quality factor (Q). In
the OTA-based version of the C4, the high-gain inverting transconductor Gm,H replaces the
common-source amplifier M3–M4, and the follower-configured transconductor Gm,L replaces
the source follower M1–M2. We have developed the OTA-C4 to more easily increase the
filter’s linear range and also to obtain control over the filter’s DC operating point.

In the OTA-C4, capacitors C1 and CW form a capacitive divider that attenuates the AC
input onto the central node VA and makes the filter’s response independent of Vin’s DC level.
The negative feedback around Gm,H holds VA at a DC level of Vref . In the transistor-based
C4, the source follower causes an offset in the feedback path which can shift the equilibrium
point away from the center of the inverting amplifier’s linear range, reducing the filter’s
linear range below the linear range of its transconductance elements. The OTA-C4 fixes this
by feeding back through a low-offset follower OTA (Gm,L).

Another problem with the transistor-based C4 is that the common-source amplifier’s
quiescent point is bias-dependent; this means that the output DC level of each filter in the
array will be different, thereby requiring some way of correcting for these differences in order
to compare/combine the outputs of different channels. The OTA-C4 fixes this problem by
using the non-inverting terminal of Gm,H to globally set the DC level of the filter bank.

Additionally, the use of OTAs makes the filter modular, offering the designer the flexibility
to optimize the filter for their application, e.g., further extending the linear range or reducing
the transconductance for ultra-low-frequency applications. We have extended the linear
range of the OTA-C4 by using the symmetric “bump” OTA shown in Fig. 4.2(c) [99], which
has four times the linear range of the standard differential pair.

2A detailed analysis of the OTA-C4 is provided in Appendix C.

Brandon D. Rumberg Chapter 4. Programmable Filter Bank 35

The transfer function for the OTA-C4 is

Vout
Vin

= −C1

C2

sτl (1− sτf)

1 + s
(
τl + τf

(
CO
C2
− 1
))

+ s2τhτl
(4.1)

where CT = C1 + C2 + CW and CO = C2 + CL and

τl =
C2

Gm,L

; τh =
COCT − C2

2

C2Gm,H

; τf =
C2

Gm,H

(4.2)

τl is the time constant of the low corner frequency and τh is the time constant of the high
corner frequency. These time constants are controlled independently by the transconduc-
tances Gm,L and Gm,H , respectively, as shown in Fig. 4.2(d). Proper capacitor sizing ensures
that the feed-through time constant τf is at a sufficiently high frequency such that its effect
on the numerator of the transfer function can be ignored, so that the transfer function takes
the familiar form of a bandpass filter.

The OTA-C4 is a flexible bandpass filter, with run-time tunable center frequency, gain,
and Q, which are all established via the transconductances. The gain and Q both depend
on the ratio Gm,H/Gm,L, and are specified as

|Av| =
C1

C2

1

1 + CL
C2

Gm,L
Gm,H

; Q =

√
CTCO − C2

2

CL

√
Gm,L
Gm,H

+ C2

√
Gm,H
Gm,L

(4.3)

Figure 4.2(e) shows the measured gain and Q of the OTA-C4 for different transconductance
ratios as a function of τl/τh, which is proportional to Gm,H/Gm,L. Equation (4.3) shows that
the gain is highest when Gm,H � Gm,L where it approaches a value of C1/C2, which is 2 (6dB)
for this particular implementation. As Gm,H/Gm,L decreases, the corner frequencies cross
and cause the gain to decrease. The Q has a maximum value when Gm,H/Gm,L = CL/C2 and
decreases symmetrically as the transconductance ratio changes. When biased for maximum
Q, the gain is |Av| = C1/(2C2).

4.2.2 Design

We have developed an algorithmic design procedure for the OTA-C4 that is similar to
the procedure for the transistor-C4 in previous work [79] but that has been modified for
this new circuit. This design procedure helps the designer to choose the device sizes that
are needed to achieve the desired dynamic range (DR) in decibels, maximum gain (Av,max),
and maximum Q (Qmax), as well as to choose the currents that are needed to achieve the
desired filter characteristics. We make the following assumptions for this procedure: 1) the
dynamic range requirement is met at the Qmax condition, 2) the maximum output amplitude
(Vout,max) is equal to the linear range of the transconductors (VL), and 3) the transconductor
noise is mostly white, as is typical for subthreshold OTAs [98].

1. Choose C2 to meet the DR specification.

C2 =
Nq

4VL
10

DR
10 (4.4)

Brandon D. Rumberg Chapter 4. Programmable Filter Bank 36

where N is the number of noise sources in the transconductors [98] and q is the charge
of an electron.

2. Choose C1 either for (a) the desired maximum gain or (b) the desired gain at the Qmax

condition.

C1 =

{
C2Av,max (a)
2C2Av,Q (b)

(4.5)

3. Choose CT for linearity: CT = 4C2Q
2
max

4. CL should be on the same order as CT for step 1 to be valid but can otherwise be used
to position the feed-through time constant (τf) or to optimize for power.

P =
CL
VL
VddQmaxfc (4.6)

5. Use Equation (4.3) to choose the transconductance ratio (R = Gm,H/Gm,L) for either
the desired gain or Q.

6. Choose the transconductance values for the desired center frequency (fc) using

Gm,L =

√
COCT − C2

2

R
2πfc; Gm,H = RGm,L (4.7)

4.2.3 Performance

Using the above design procedure, the filters for our filter bank chip were designed for a
dynamic range of 60dB, a maximum gain of 6dB, and a maximum Q of 3. The frequency
response measurements in Fig. 4.2(d)–(e) verify that the filter meets the maximum gain and
maximum Q specifications.

To verify that the fabricated filter meets the dynamic range specifications, we determined
the maximum and minimum signal levels while the filter was simultaneously biased for unity
gain and maximum Q. The experiments were performed at four center frequencies across
the audio frequency range (20Hz, 200Hz, 2kHz, and 20kHz). The minimum signal level
is defined as the integrated output noise and the maximum signal level is defined as the
output-referred 1dB compression point. The compression point is an appropriate criterion for
spectral analysis applications, for which only the magnitude of the filter output is required.

The circuit was designed for a dynamic range that extends from 70.7µVrms to 70.7mVrms.
The measured output-referred noise is shown in Fig. 4.3(a). The integrated output noise
values are all well below the designed noise floor and are listed in Table 4.1 along with all other
measured performance results. Figure 4.3(b) shows the compression point measurements,
which exceed 70.7mVrms for all cases (a 2.5-times improvement over the original C4 [79]),
yielding a dynamic range of over 62dB for all four frequencies. To further characterize the
linearity, we also measured the total harmonic distortion (THD) and the intermodulation
distortion (IMD). The THD was measured to be less than 1% for 70.7mVrms inputs and the
OIP3 point was measured to be 141.4mVrms, or -4dBm (50Ω reference).

Brandon D. Rumberg Chapter 4. Programmable Filter Bank 37

10
0

10
1

10
2

10
3

10
4

10
5

10
−15

10
−10

Frequency (Hz)

O
ut

pu
t N

oi
se

 (
V

rm
s

2
/H

z)

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

Input Amplitude (V
rms

)

O
ut

pu
t A

m
pl

itu
de

 (
V

rm
s)

20Hz
200Hz
2kHz
20kHz

(a)

(b)

Figure 4.3: (a) Measured output-referred noise of the OTA-C4. (b) Compression point
measurement for the OTA-C4. The line shows the 1dB deviation.

Table 4.1: Performance Results

Metric 20Hz 200Hz 2kHz 20kHz

Noise (µVrms) 59.8 59.7 58.2 58.7

1dB Comp. Point (mVrms) 76.5 80.3 87.4 86.8

1dB Comp. Point (dBm) -9.32 -9.00 -8.16 -8.22

1dB DR (dB) 62.1 62.6 63.5 63.4

THD at 70.7mVrms 0.89% 0.89% 0.84% 0.61%

OIP3 141.4mVrms; -4.00dBm

Power 19.0nW 198nW 2.85µW 75.4µW

In Table 4.2, we compare the OTA-C4 with other recently reported, low-power, second-
order, voltage-mode, audio-range, bandpass filters. We note that three of the filters are
fully differential [102–104] and all but one of the topologies [100] in the Table are capable
of complex poles (i.e. Q >0.5). In comparison to the other filters, the OTA-C4 achieves
comparable performance and is compact with the fewest transconductors.

Brandon D. Rumberg Chapter 4. Programmable Filter Bank 38

Table 4.2: Comparison Amongst Low-Power, Second-Order, Audio-Range, Bandpass Filters

Technology Freq. Range DR Power

Proposed 0.35µm 20Hz–20kHz 62.1–63.5dB 19nW–75.4µW

[100] 1.5µm BiCMOS 100Hz–10kHz 62dB 2nW–2µW

[101] 0.5µm 700Hz–4kHz 55dB 41.12µW (1kHz)

[102] 0.35µm 30Hz–30kHz 51dB 290nW (660Hz)

[103] 0.35µm 100Hz–30kHz 62.3dB <16µW

[104] 0.8µm 100Hz–2kHz 62–78dB 2.5µW (2kHz)

4.3 Filter Bank

Our filter bank chip has been fabricated in a 0.35µm CMOS process and is shown in Fig.
4.4(f). The filter bank has 16 parallel channels, with each channel consisting of an OTA-C4

and a magnitude detector, as shown in Fig. 4.1. Details of the magnitude circuit are provided
in Chapter 5. In order to achieve precise programmability, we use floating-gate transistors to
bias the circuits [97]; this configuration is depicted in Fig. 4.1. Floating-gate transistors are
MOSFETs that have only capacitive inputs to their gates, a structure which can be formed
in standard CMOS processes. The amount of charge on the floating gate can be programmed
via Fowler-Nordheim tunneling and hot-electron injection. This programmed charge is non-
volatile and provides fine control over the drain current. In order to control Gm,H and Gm,L

using the floating-gate transistors, the floating-gate currents are copied into transistor Mb of
the OTA-C4 transconductors using both an nFET and a pFET current mirror.

4.3.1 Filter Characterization and Programming

Through the use of programmable biasing, we are able to correct for fabrication mismatch
and process variations, enabling us to set the circuit parameters with very high accuracy.
To correct for these variations after fabrication, we performed the following characterization
routine, which has three steps. First, IH (Gm,H ’s bias current) is stepped, and its associated
time constant (τh) is measured at each step to determine the mapping between IH and τh
independent of component tolerances. During this step, IL (Gm,L’s bias current) is held at a
low value so that the low corner frequency does not interfere with measuring the high corner
frequency (see Fig. 4.2(d)). Second, IH is held at a high value (so that the high corner
frequency has no effect on measurements) and IL is stepped to determine its mapping to τl.
Third, the ratio of τl/τh is swept, this time measuring the Q and gain, which are fit to the
expressions in (4.3). This routine can be optimized for speed by measuring a small number
of well-chosen data points. Characterization only needs to be performed once for each filter
to successfully cancel out fabrication mismatch.

Once a filter has been characterized, the last two steps of the design procedure are used
to determine the currents required for the desired combination of fc and Av or fc and Q.
The floating gates are then programmed to these currents [105] to achieve the desired filter
characteristics. Our programming algorithm, which has not been optimized for speed, takes

Brandon D. Rumberg Chapter 4. Programmable Filter Bank 39

10
1

10
2

10
3

10
4

-40

-30

-20

-10

0

G
a

in
(d

B
)

10
1

10
2

10
3

10
4

-40

-30

-20

-10

0

G
a

in
(d

B
)

Frequency (Hz)

10
1

10
2

10
3

10
4

10
5

-30

-20

-10

0

G
a

in
(d

B
)

10
1

10
2

10
3

10
4

10
5

-30

-20

-10

0

Frequency (Hz)

G
a

in
(d

B
)

2 4 6 8 10 12 14 16
-0.5

0

0.5

C
u

rr
e

n
t

(%
)

2 4 6 8 10 12 14 16

-1
0
1

f c
(%

)

2 4 6 8 10 12 14 16

-1

0

1

A
v

(%
)

Channel #

(c)(a)

(b) (d)

Third-Octave Spacing D-Weighting

(e)

(f)

Parameter Percent Error

A-WeightingFull Audio-Range Spacing

Figure 4.4: Measured filter bank AC responses. (a) Biased for 20Hz–20kHz with unity gain.
(b) Biased for unity gain and third-octave spacing starting at 100Hz. (c) A-weighting. (d)
D-weighting. The circles show the targeted gains and center frequencies. (e) Percentage error
results of the four filter bank biasings in parts (a)–(d). The mean and standard deviation of
the percentage error are shown for the currents, center frequency, and gain of each channel.
(f) Die photograph of our filter bank chip. The chip is 4.8mm x 1.4mm. The dimension of
a single OTA-C4 is 560µm x 237µm.

approximately 30 seconds per gate, and program times on the order of milliseconds have
previously been reported with similar algorithms [105]. Because of the independent control
of these filter parameters, the filter bank is very versatile. Independent control of each filter’s
center frequency and Q enables the user to program the filter bank to cover the frequency
range of interest or even to focus on specific frequencies if signal characteristics are known
a priori. Independent control of the gain of each channel allows the user to selectively
emphasize bands or to adopt common perceptually-derived frequency weightings, such as A-
or D-weighting, without requiring a multiplier in each band.

Brandon D. Rumberg Chapter 4. Programmable Filter Bank 40

1 1.5 2 2.5 3 3.5 4
0.9

1

1.1

In
pu

t
M

ea
su

re
d

Time (s)
1 1.5 2 2.5 3 3.5 4

50
100
200
400
800

1600
3200
6400

Figure 4.5: Time-frequency analysis performed with the filter bank. The top subplot is
the speech waveform which was streamed into the filter bank. The bottom subplot is the
resulting spectral decomposition.

4.3.2 Demonstrations

To verify the accuracy of the parameter programming and also to demonstrate the ver-
satility of the filter bank, we programmed the filter bank to the following filter spacings and
frequency weightings: 20Hz–20kHz with unity gain, third-octave spacing with unity gain,
A-weighting, and D-weighting. The resulting measured AC responses are shown in Fig.
4.4(a)–(d). The measured accuracies of the programmed currents and parameters in Fig.
4.4(a)-(d) are shown in Fig. 4.4(e). The mean absolute percentage error across all channels
is 0.087% for the currents, 0.536% for center frequency, and 0.634% for gain.

To demonstrate the filter bank performing time-frequency decomposition, we streamed
a speech waveform through the filter bank, which was biased for half-octave spacing. A
simulated version of the magnitude circuit was used to extract the magnitude of the measured
output waveforms of the filter bank. The resulting spectral magnitude is shown in Fig. 4.5.

4.4 Conclusion

We have presented a low-power and programmable analog filter bank that achieves both
high signal-path precision (>62dB) and high parameter accuracy (>99%). Thus, this fil-
ter bank meets the requirements for inclusion in today’s demanding battery-powered audio-
processing systems. Furthermore, we have illustrated the utility of using floating-gate transis-
tors for precise, programmable, and low-power systems by demonstrating the high accuracy
which can be achieved when programming arbitrary array settings.

41

Chapter 5

A Low-Power Magnitude Detector for
Analysis of Transient-Rich Signals

Magnitude detection, such as envelope detection or RMS estimation, is needed for many
low-power signal-analysis applications. In such applications, the temporal accuracy of the
magnitude detector is as important as its amplitude accuracy. We present a low-power audio-
frequency magnitude detector that simultaneously achieves both high temporal accuracy and
high amplitude accuracy. This performance is achieved by rectifying the signal with a high-
ripple peak detector and then averaging this rectified signal with an adaptive-time-constant
filter. The time constant of this filter decreases with increasing amplitude, enabling the filter
to quickly respond on a short time scale to transients, while steady-state ripple is averaged
on a longer time scale. The circuit has been fabricated in a 0.18µm CMOS process and
consumes only 1.1nW–1.08µW when tuned for operation from 20Hz–20kHz. It exhibits a
dynamic range of 70dB across typical speech frequencies.

The work in this Chapter was published in the IEEE Journal of Solid-State Circuits [106].
Variations of the magnitude detector described in this Chapter have been a major component
in all of our wireless-sensing-oriented analog processors, namely our Hibernets event detectors
in Chapters 3&9 and our Netamorph field-programmable analog arrays in Chapter 10.

5.1 Magnitude Detector Circuits

Magnitude-detection circuits—such as envelope detectors, peak detectors, and RMS-to-
DC converters—produce an estimate of a signal’s magnitude and are thus important elements
in communications transceivers [107], automatic gain control systems [108], and analog spec-
tral analyzers [27, 90–92, 97]. Since the magnitude is a time-varying quantity, the accuracy
of a magnitude detector has two components: amplitude accuracy and temporal accuracy.
Traditionally, the design emphasis of magnitude circuits has been on amplitude accuracy;
however, temporal accuracy is crucial when the magnitude changes quickly relative to the
frequencies of the underlying carrier signal, such as in speech signals [109]. Thus, tem-
poral accuracy is important in audio-processing systems, including ultra-low-power (ULP)
applications such as bionic ears [27, 95] and event detectors for wakeup applications [41].
Existing digital signal processing techniques for temporal accuracy use non-physical, non-

Brandon D. Rumberg Chapter 5. Magnitude Detector 42

Rectify
Peak Detector

Vin VPD

CPD

M2M1

M3M4

Gm,A

Gm,D

Gm,N

CN

Vout

(a)

Filter Bank

Magnitude
Detector

Magnitude
Detector

Variable Gain
Amplifier

(b)

Magnitude
Detector

Magnitude
Detector

Magnitude
Detector

Integrate
Adaptive-τ Filter

Figure 5.1: (a) Schematic of our magnitude detector. (b) Block diagram of an analog
spectral-analysis system.

causal filters that require powerful processing and non-stop data conversion, thereby limiting
their use in ULP systems. Discrete-time analog circuits have also been explored to achieve
good temporal accuracy [110]; however, the power level and the sampled-data representation
are inappropriate for many ULP signal-analysis systems. In this work, we present an ULP
continuous-time magnitude detector that has been designed with an emphasis on temporal
accuracy, while still achieving high amplitude accuracy.

Figure 5.1(a) shows our magnitude detector, wherein a rectifying nonlinearity provides
an initial estimate of the signal’s magnitude and then a lowpass filter averages this estimate
to obtain the final smooth magnitude estimate. For the rectifying nonlinearity, we have
developed a voltage-mode asymmetric integrator. This circuit’s asymmetry causes the av-
erage level of its output to shift in proportion to the input magnitude, thereby providing
a magnitude estimate that is superimposed with a ripple. This ripple is then smoothed by
a nonlinear lowpass filter with an adaptive time constant. We have designed this filter’s
nonlinearity such that its time constant shrinks in response to large input-output differ-

Brandon D. Rumberg Chapter 5. Magnitude Detector 43

ential signals, thereby reducing the integration window in order to follow transients more
closely, while maintaining a long time constant for small signals in order to retain good ripple
suppression.

The remainder of this Chapter is organized as follows. In Section 5.2, we discuss the
application-space of our circuit and describe the high-level design approach. In Sections 5.3
and 5.4, we present the asymmetric integrator and the adaptive-time-constant filter, respec-
tively. Then, in Section 5.5, we combine the subcircuits into the complete magnitude detector
and present our experimental results. We have fabricated this circuit in standard 0.18µm,
0.35µm, and 0.5µm CMOS processes. Unless otherwise noted, all plots are measurements
from the 0.18µm circuit.

5.2 Magnitude Detector Architecture

A common application environment for magnitude detectors is within audio- and vibration-
processing systems. For example, a standard first step in such systems is spectral analysis,
which can be implemented in low-power analog circuits to make an efficient real-time sensor-
processing front-end [29, 59, 111]. Such a spectral analysis front-end can be combined with
other analog processing circuits to create an entire ULP system (such as for implantable
electronics), or the front-end can be used as an event detector to wake up a higher-power
back-end, thus reducing system-level power consumption [41]. Analog spectral-analysis sys-
tems typically consist of a bank of filters that decompose the signal into frequency com-
ponents [27, 90–92] followed by subband processing blocks, such as magnitude detectors for
extracting the magnitude of the spectrum [112–114], as illustrated in Fig. 5.1(b). Adaptation
is also often used to increase the dynamic range of the system, either by using automatic
gain control on the pre-filtered signal [27] or by adapting the gain/Q in individual subbands.
Such adaptation is typically based on the signal’s magnitude, and therefore requires a magni-
tude detector. In addition to needing to respond quickly to changes in the signal, magnitude
detectors for these applications require a smooth/low-ripple magnitude estimate, since ripple
adds uncertainty to the estimate.

Magnitude detectors for these types of applications are typically peak/envelope detectors
which extract the envelope of the waveform by finding local maxima and then providing a
slow decay between individual peaks. This operation is illustrated in Fig. 5.2(a), which
shows numerical simulations of a peak detector responding to a speech input. As can be
seen in Trace (i), a peak detector with a slow decay provides a smooth envelope of the
waveform. However, the slow decay rate causes the peak detector to respond too slowly
to decreases in the input’s magnitude, thereby masking low-amplitude content that follows
high-amplitude content. This temporal masking loses information about the signal, which
is unacceptable for analysis applications. Setting a faster decay rate, as shown in Trace
(ii), enables the peak detector to track the decreases in amplitude, but the output has too
much ripple to be useful as a magnitude estimate. Consequently, a tradeoff exists between
a smooth/low-ripple response and being able to quickly track signals so that information
is not lost. To address this tradeoff, we have developed an adaptive-time-constant lowpass
filter that is able to operate on a high-ripple output of a peak detector (similar to Trace (ii))
to provide a low-ripple output with good temporal accuracy, as shown in Trace (iii). This

Brandon D. Rumberg Chapter 5. Magnitude Detector 44

Input
Low-Ripple Peak Detector

Peak Detector w/ Linear Filter

Peak Detector w/ Adaptive-τ Filter

(i)

(ii)

(iii)

(1)

(2)

(3)

(4)

Out

Out

Out
PD

PD

(a) (b)

(2)

(3)

(4)

Low Ripple

High Temporal Accuracy

Magnitude Detection

Overlayed Responses

Figure 5.2: (a) Tradeoff between a response with low ripple and a response with high tempo-
ral accuracy. (b) Comparing the temporal accuracy of three magnitude-detection architec-
tures, each with 1% ripple. “Overlayed Responses” shows the improved temporal response
achieved by our adaptive-time-constant filter. All plots in this Figure are from numerical
simulations of the equations discussed in Sections 5.3 and 5.4.

filtered output is a scaled version of the envelope, prompting the term magnitude detector
instead of peak/envelope detector.

To illustrate that an adaptive-time-constant filter is needed to simultaneously achieve a
low-ripple output and a good temporal response, we provide the numerical simulations of Fig.
5.2(b). This Figure demonstrates the “acquire times” for different magnitude architectures,
each of which provide 1% ripple. Low-ripple operation can be achieved with a standalone
peak detector by slowing down its operation and using its inherent integration; however, the
resulting response has a long acquire time and responds slowly to changes in the envelope
of the input, as shown in Trace (2). The acquire time can be improved by cascading a
lowpass filter with a peak detector, where the peak detector is biased to respond quickly
to rising/falling signals and the lowpass filter is used to smooth the ripple; this response
is shown in Trace (3). While the acquire time is improved for the downward step, the
upward step response is limited by the filter’s time constant, which is longer than the peak
detector’s attack time constant in order to achieve low ripple. To improve the acquisition
time while still achieving low ripple, we need a filter that adjusts its time constant based on
the amplitude of the signal. To accomplish this, we have developed a nonlinear filter with
an adaptive time constant. When the amplitude changes, the integration window shrinks
to track more quickly; when in the steady state, the time constant returns to a larger value
to suppress the ripple. This operation is demonstrated in Trace (4) where the increasing
amplitude is followed more quickly than for the linear filter in Trace (3). This nonlinearity
in the filter helps the magnitude circuit to achieve better temporal responsiveness and still
achieve low ripple in the steady state.

In summary, our magnitude detector (Fig. 5.1(a)) consists of an asymmetric integrator
followed by an adaptive-time-constant filter. In the remainder of this Chapter, we describe
these two subcircuits in detail and show the results of the complete magnitude detector

Brandon D. Rumberg Chapter 5. Magnitude Detector 45

circuit.

5.3 Peak Detector

In this Section, we present a voltage-mode peak detector that provides an initial estimate
of a signal’s magnitude. This circuit has tunable attack and decay integration rates, allowing
it to be used as an asymmetric integrator. By setting the attack rate faster than the decay
rate, the average level of the output shifts in proportion to the amplitude of the input signal,
thereby providing a measure of the signal’s magnitude. Due to its tunability, this circuit can
be biased to extract any fraction of the input envelope (such as the full envelope or 1/

√
2 for

RMS detection) and with any amount of ripple. In this Section, we describe the development
of this peak detector circuit, analyze its operation, and provide a design procedure to allow
it to be used in the larger magnitude-detector circuit.

5.3.1 Overview of the Peak Detector Circuit

Figure 5.3(a) shows a common voltage-mode CMOS peak detector topology [115–117]
that is based on a peak-detect-and-hold circuit [118] but with the reset transistor replaced
by the constant-current sink, M3. In this circuit, the current mirror half-wave rectifies
the output current of the operational transconductance amplifier (OTA) onto the capacitor,
causing the circuit to act as a follower when Vin > Vout (i.e. the attack phase), assuming that
the transconductance Gm,A is large; reducing Gm,A causes the circuit to act as a follower-
integrator during the attack phase with an attack time constant τA = CPD/Gm,A. When
Vin < Vout (i.e. the decay phase), no current flows through M2, and the capacitor discharges
through M3, causing the output voltage to decrease at a constant rate. The response of the
circuit to downward steps of varying sizes is shown in Fig. 5.3(c), which illustrates that the
circuit has a constant decay-rate regardless of the step size. Unfortunately, this circuit cannot
be biased for both good dynamic range and good temporal performance. For example, a
very slow decay rate must be used in order to detect small signals and provide some amount
of “holding” instead of simply following the small downward steps (see the first downward
step in Fig. 5.3(c)). However, using this same slow rate for large signals results in very long
acquire times, thereby limiting the circuit’s temporal response.

A precision magnitude detector, however, should produce a magnitude estimate that is
amplitude invariant and has low temporal error. To accomplish these requirements, we have
altered the peak detector of Fig. 5.3(a) to decay with a time constant, resulting in the circuit
of Fig. 5.3(b). The operation of the lower half of the circuit mirrors that of the top half,
causing the circuit to follow downward-going signals with time constant τD = CPD/Gm,D.
The amplitude-dependent decay is demonstrated in Fig. 5.3(c), showing that it provides an
appropriate decay over a much larger range of steps than the constant decay-rate version.
The circuit is typically biased with Gm,A > Gm,D to extract the positive magnitude, and it
can be thought of as an asymmetric integrator due to its two different time constants, as
described by the piecewise differential equation

CPD
dVout
dt

=

{
Gm,A(Vin − Vout), Vin > Vout (attack)
Gm,D(Vin − Vout), else (decay)

(5.1)

Brandon D. Rumberg Chapter 5. Magnitude Detector 46

Vin

Vout

Vdec

M1 M2

M3

Gm,A

CPD

Vin

Vout

CPD

M2M1

M3M4

Gm,A

Gm,D

5 10 15 20 25

1.5

1.55

1.6

1.65

Time (ms)

V
o

lt
a

g
e

Input

Constant decay

Time-constant decay

(b)(a) (c)

Figure 5.3: (a) Peak detector with a constant decay-rate. (b) Our peak detector with a
time-constant decay. (c) Comparing the constant decay-rate and time-constant decay peak
detectors. For a fair comparison, the measurements were taken from circuits fabricated on a
0.5µm CMOS process, since that is the only process in which we have fabricated the constant
decay-rate peak detector.

5.3.2 Peak Detector Analysis1

This peak detector can be biased for different tracking levels and ripple levels through
the choice of the transconductance values Gm,A and Gm,D. We define the tracking level,
At = Vout,DC/Vin,pk, as the DC output level normalized by the input amplitude. The tracking
level is the magnitude metric; for example, At = 1/

√
2 is used for RMS tracking. We define

the ripple ratio, RO = Vout,pk/Vin,pk, as the amplitude of the output ripple normalized by
the amplitude of the input. Typically, the peak detector is tuned for 10%–30% ripple to
achieve 1% ripple from the complete magnitude circuit, as discussed further in Section 5.5.
To design and bias this peak detector for use in the complete magnitude detector, we need
to know how to choose the biases to achieve the specified tracking levels and ripple amounts.

To derive the dependence of both the tracking level and the ripple ratio upon the peak
detector’s biases, we have used the harmonic balance method [119, 120]. This procedure
uses (5.1) modeled in the form of Fig. 5.4(a), and it assumes a sinusoidal input. First, the
output equation is written in terms of both the tracking level and the output ripple, yielding
Vout = Vin,pk(RO sin(ωt + φ) + At), where Vin,pk is the input amplitude and φ is the phase
shift from the input to the output. Next, this equation is applied to (5.1), and the terms are
balanced both at 0Hz and at the fundamental frequency to obtain equations for the tracking
level and the ripple ratio, respectively. Since the peak detector has a lowpass form, we have
neglected the harmonics of the fundamental to derive an approximation that is sufficient for
choosing biases and predicting the operation of the circuit.

By solving the loop at 0Hz, the following equations were obtained for the tracking level,
At

1

2
log

(
Gm,A

Gm,D

)
= coth−1

(
2

π

(
Re

At

√
1− A2

t

R2
e

+ sin−1
(
At
Re

)))
(5.2)

1More details on the analysis of the peak detector are provided in Appendix D.

Brandon D. Rumberg Chapter 5. Magnitude Detector 47

Vin + f(e)
e u

Nonlinearity

1/sC Vout

-

Linear
System

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
T

ra
c
k
in

g
L

e
v
e

l

Theory

Measured

10
-2

10
0

10
2

G
m,A

 / G
m,D

10
1

10
2

10
3

10
4

10
5

10
-1

10
0

Frequency (Hz)

R
ip

p
le

 (
N

o
rm

a
liz

e
d

 t
o

 V
in

,p
k
)

Theory

Measured

Target Ripple (10%)

(a)

(c)

(b)

Figure 5.4: (a) Model that is used for analyzing the peak detector. (b) Peak detector tracking
level as a function of the attack-to-decay ratio. (c) Ripple as a function of frequency for three
different biases: targeting 10% ripple at 500Hz, 5kHz, and 50kHz. The data in (b) and (c)
were measured with a peak detector fabricated on a 0.35µm CMOS process, since we did
not have direct access to the peak detector output with the 0.18µm circuit.

Brandon D. Rumberg Chapter 5. Magnitude Detector 48

Re =
√

1 +R2
O −RO cos(φ) (5.3)

Re is the amplitude at node e normalized by the input amplitude. As shown by (5.2),
the tracking level depends on the ratio of transconductances and also on the output ripple;
this was verified experimentally in Fig. 5.4(b), which shows how the tracking level varies
with the attack-to-decay-ratio for a fixed output ripple ratio (RO = 3%). As expected, the
tracking level is zero/centered when Gm,A = Gm,D, and the tracking level increases as Gm,A

is increased above Gm,D, saturating as the tracking level approaches 100%.
By solving the loop at the fundamental frequency, ω, the following equation was obtained

for the output ripple, RO

ωCPDRO

Gm,DRe

=
Rg + 1

2
+

1−Rg

π
sin−1

(
At
Re

)
+

1−Rg

π

At
Re

√
1− A2

t

R2
e

(5.4)

where Rg = Gm,A/Gm,D. In normal operation, the peak detector is tuned for a particular
operating frequency by using the transconductances to obtain the desired ripple at that
frequency. This procedure is demonstrated in Fig. 5.4(c), wherein (5.2) and (5.4) are used
to bias the circuit for RO = 0.1 (10% ripple) at three different frequencies: 500Hz, 5kHz,
and 50kHz. The ripple has a first-order lowpass dependence on frequency, since the circuit
is a first-order asymmetric integrator. The ripple increases as the frequency decreases, until
the frequency is below the corner frequency of the peak detector, at which point the peak
detector acts as a follower. In order to maintain peak detector operation, the signal frequency
must remain within the −20dB/decade slope region; if the signal frequency drops too low,
then the circuit no longer performs rectification. Thus, if the circuit is going to be used for
broadband operation, it should be biased such that the lowest frequencies of interest remain
above the corner frequency. For example, in the broadband speech demonstration of Fig.
5.11, the peak detector was biased for 30% ripple at 200Hz, which is within the range of
fundamental frequencies for speech [109]. If the circuit is used for subband operation, such
as the filter bank in Fig. 5.1(b), then each band’s detector is biased to have the desired ripple
at that subband frequency.

5.3.3 Peak Detector Biasing

The following is a procedure for using (5.2) and (5.4) to choose the attack and decay rates
required to operate the circuit at a specified tracking level, ripple level, and input frequency.

1. Specify the tracking level At, ripple level RO, and operating frequency ω. If biasing for
envelope-detector operation (i.e. tracking to the top of each peak), use At = 1−RO

2. Initialize φ = −π/2

3. Use (5.2) to solve for the attack-to-decay ratio Gm,A/Gm,D

4. Use (5.4) to solve for the decay rate Gm,D

5. Refine φ = tan−1
(
−ωCPD

Gm,D

)
and repeat steps 3-4

Brandon D. Rumberg Chapter 5. Magnitude Detector 49

Vb

Vout

V+ V-

Mb

Iout

M1 M2

M3

M4

M5 M6

M7 M8

M9 M10

M11 M12

M13 M14

M15 M16

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-4

-3

-2

-1

0

1

2

3

4

V
+
-V

-

I o
u

t (
n

A
)

Theory

Measured

1st

3rd

Vin Vout

CN

Gm,N

(a) (b) (c)

Figure 5.5: (a) The adaptive-τ filter is a follower-integrator where the transconductance
element has an expansive nonlinearity. (b) The nonlinear transconductance element is a
pFET-based OTA with bump de-linearization. (c) I–V curve for the nonlinear OTA, shown
with first- and third-order Taylor series expansions.

6. (Optional) To bias for envelope-detector operation, use Gm,A/CPD = 10ω to ensure
the output reaches the peaks with aligned phase

5.4 Adaptive-Time-Constant Filter

As discussed in the beginning of the chapter, the second stage of the magnitude detector
integrates the first stage’s initial magnitude estimate, removing the ripple that couples in
from the carrier signal to produce a smooth magnitude estimate. To obtain a response with
low ripple and high temporal accuracy, we have developed a lowpass filter with an expansive
nonlinearity to achieve an amplitude-dependent time constant. We call this filter an adaptive-
time-constant filter, or adaptive-τ filter. The expansive nonlinearity is achieved by using a
nonlinear transconductance element in a follower-integrator filter topology, as shown in Fig.
5.5(a). The transconductance element has a sinh-shaped voltage-to-current relationship.
Thus, for small differential voltages, it has a low and essentially linear transconductance,
resulting in a long time constant for suppressing ripple; for large differential voltages, the
transconductance increases, resulting in a shorter time constant to provide a better temporal
response. In this Section, we present this adaptive-τ filter.

5.4.1 Nonlinear Transconductor

We have formed the expansive nonlinearity by using a “bump circuit” within a stan-
dard OTA (see Fig. 5.5(b)) [121]. Such “bump-OTAs” have been used to create linearized
transconductors through appropriate sizing of the “bump” transistors, M3 and M4 [98, 99].
Here, we have used the bump transistors to design the cubic nonlinearity in Fig. 5.5(c) that
is used in our adaptive-time-constant filter; a similar nonlinear transconductor was used for
circuits implementing Hebbian learning [122]. In the bump-OTA, the current through the

Brandon D. Rumberg Chapter 5. Magnitude Detector 50

48 50 52 54 56 58 60 62 64
1

1.005

1.01

Time (ms)

V
o

lt
a

g
e

78 80 82 84 86 88 90 92 94

1

1.05

1.1

1.15

1.2

Time (ms)

V
o

lt
a

g
e

Large Step

Small Step

45 50 55 60 65 70 75

1.1

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.2

Time (ms)

V
o

lt
a

g
e

Input

Output

τ1 Fit

τ3 Fit

(a) (b)

Input

Output

τ1 Fit

τ3 Fit

Figure 5.6: (a) Measured step response of the adaptive-τ filter, shown with simulated first-
order linear filters which correspond to the adaptive-τ filter’s effective time constants for
small and large amplitudes. (b) Measured output of the adaptive-τ filter in response to the
peak detector’s output, shown with the same simulated first-order linear filters as in (a).

tail transistor (Mb) is shared by the input transistors (M1 and M2) and the bump transistors
(M3 and M4). The current through the bump transistors is greatest when V + = V −. By
making the bump transistors have a large W

L
ratio, they steal a significant amount of current

from the input pair, creating a low-transconductance region for small differential voltages
and generating the expansive nonlinearity. The voltage-current relationship for this circuit
is described by

Iout = Ib
sinh

(
κ
UT

(V + − V −)
)

1 + S/2 + cosh
(

κ
UT

(V + − V −)
) (5.5)

where κ is the subthreshold slope, UT is the thermal voltage, and the strength parameter
S = (W

L
)3,4/(

W
L

)1,2 is the relation between the aspect ratio of the bump transistors and the
input pair [98]. The voltage-to-current relationship for our OTA is shown in Fig. 5.5(c), and
the first two nonzero Taylor series coefficients are

a1 = Ib
κ

UT

1

2 + S/2
a3 = Ib

(
κ

UT

)3
S/2− 1

6(S/2 + 2)2
(5.6)

These coefficients are shown with the V-I sweep in Fig. 5.5(c). For small differential voltages,
the nonlinear-OTA acts as a linear transconductor with transconductance a1. Increasing the
input-output differential voltage increases the effective transconductance according to a3.

5.4.2 Demonstration of Performance

Figure 5.6(a) demonstrates the step response of the adaptive-τ filter. The response is
shown for two steps of different sizes: a small step for which the linear term dominates

Brandon D. Rumberg Chapter 5. Magnitude Detector 51

10
2

10
3

10
4

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (Hz)

G
a

in
(d

B
)

Increasing
input amplitude

0 20 40 60 80 100 120 140 160 180

10
2

10
3

Amplitude (mV
RMS

)

C
o

rn
e

r
F

re
q
u

e
n

c
y

(H
z
)

Measured

Theory

1st-Order

1st-Order
3rd-Order

3rd-Order

(a) (b)

Figure 5.7: (a) Measured frequency response of the adaptive-τ filter. Each line is a frequency
response for a different input amplitude. (b) Corner frequency of the adaptive-τ filter as a
function of the input amplitude, shown for two different OTA biases.

(top pane) and a large step for which the higher-order terms dominate (bottom pane).
Shown with the measured response of the adaptive-τ filter are the responses of two simulated
first-order linear filters: the τ1 filter has a time constant corresponding to the linearized
transconductance for small signals (i.e. τ1 = CN/a1), and the τ3 filter uses a shorter time
constant corresponding to the linearized transconductance for the large step (i.e. the adapted
time constant, τ3 = CN/(a1 + a3

3
4
V 2
step)). For the small step, the adaptive-τ filter’s response

follows the τ1 filter’s response since the first-order term dominates. For the large step, the
adaptive-τ filter initially follows the τ3 filter’s response, but it reverts to the longer time
constant of the τ1 filter as it gets close to the final value of the step. This changing time
constant helps the filter achieve a faster response for large transients.

To motivate the choice of the adaptive-τ filter for the magnitude detector, we exhibit the
experiment in Fig. 5.6(b), which compares the performance of the adaptive-τ filter with the
two simulated first-order linear filters used in the experiment of Fig. 5.6(a). The input to the
filters is the response of the peak detector to a sine wave stepped from 5mVpk to 100mVpk

and then to 10mVpk. The τ1 filter yields the same ripple as the adaptive-τ filter but cannot
follow the steps closely in time. The τ3 filter follows the steps but has more ripple than
the adaptive-τ filter. These results show that the adaptive-τ filter achieves a good tradeoff
between ripple suppression and temporal response, while also being compact and low-power.

5.4.3 Design

To design the adaptive-τ filter, we need to know how its time constant depends on
the input amplitude, bias current, and strength parameter (S). Here we develop an ap-
proximation to relate those parameters and then show how to use this approximation to
design and bias the circuit. Our approximation is based on the describing function [119]

Brandon D. Rumberg Chapter 5. Magnitude Detector 52

of the nonlinear transconductance element. The filter has the form of Fig. 5.4(a) with
f(Vin−Vout) = a1 (Vin − Vout) + a3 (Vin − Vout)3, where a1 and a3 are the Taylor series coeffi-
cients given by (5.6) and are controlled by the bias current and the strength parameter. The
sinusoidal-input-describing-function (i.e. an amplitude-dependent gain term) for this nonlin-
earity is a1 + a3

3
4
|Vin − Vout|2 [123]. Knowing that the input-output differential is related to

the input amplitude Vin,pk, the transfer function can be approximated as

H(s, Vin,pk) ≈
1

1 + sCN/(a1 + a3
3
4
V 2
in,pk)

(5.7)

where the corner frequency has a quadratic relation to the input amplitude. Equation (5.7)
gives an approximate transfer function for the circuit and is verified with real data in Fig.
5.7. Figure 5.7(a) shows the frequency response measured at different input amplitudes
and demonstrates an increasing corner frequency for increasing amplitude. Figure 5.7(b)
shows the variation in corner frequency as a function of input amplitude for two different
filter biases. The circles show the measured corner frequencies and the solid lines show
the predicted values using 2πfc = (a1 + a3

3
4
V 2
in,pk)/CN (i.e. the corner frequency in (5.7)).

This experiment verifies that the corner frequency is a function of the square of the input
amplitude.

Using (5.7) and the definitions of a1 and a3, the circuit can be designed to exhibit the
desired ripple suppression and transient response. The procedure to design and bias the
filter is:

1. Specify (a) the ripple-suppression time constant, τrip, (b) the transient-response time
constant, τtran, and (c) the amplitude that is considered a transient (and should be
followed with the transient-response time constant τtran), Atran

2. Use the ripple-suppression time constant to compute a1 = CN
τrip

3. Use a1 to find the value of a3 that yields the desired transient-response time constant

at an amplitude of Atran by using a3 =
(

CN
τtran
− a1

)
4

3A2
tran

4. Use (5.6) to find S in terms of a1 and a3 by using S = 2 (κ/UT)
2+12a3/a1

(κ/UT)2−6a3/a1

5. Use (5.6) to find the bias current Ib = a1
UT
κ

(2 + S/2)

5.5 Complete Magnitude Circuit

In this Section, we present the complete magnitude detector circuit, shown schematically
in Fig. 5.1(a). This circuit is formed by combining the peak detector of Section 5.3 with
the adaptive-τ filter of Section 5.4. Figure 5.8 shows a micrograph of the circuit, which was
fabricated in a standard 0.18µm CMOS process. The values used for capacitors CPD and
CN are 4.5pF and 3pF, respectively. The total area of the circuit is 0.019mm2.

As discussed in Section 5.2, our objective is to develop a magnitude detector with im-
proved temporal accuracy, while maintaining a low-ripple response. This tradeoff between

Brandon D. Rumberg Chapter 5. Magnitude Detector 53

Gm,A
Gm,D Gm,N

M1−4

CPD

CPD

CPD

CN

CN

1
8
5
µm

Figure 5.8: Micrograph of the magnitude circuit, which was fabricated in a standard 0.18µm
CMOS process.

Table 5.1: Tradeoff Between Ripple and Acquisition Time

ωτaq Improvement

Magnitude Structure ωτaq (1% Ripple)

PD Only 1/RT 1

PD w/ LPF
√

2/RT 7.1

PD w/ 2nd-Order LPF
√

3/ 3
√
RT 11.3

PD w/ Adaptive-τ

√√√√ 1

4RT

+
4

RT

(
1 + A2

s
3a3
4a1

)2 17.7

ripple and temporal accuracy can be understood graphically from Fig. 5.4(c). For example,
a standalone peak detector can be tuned for low ripple by biasing the circuit’s corner fre-
quency, ωc, to be much less than the operational frequency, ω, which is the frequency for
the desired target ripple. This biasing results in a long acquire time since the acquire time
constant, τaq, is given by τaq = 1/ωc and is long compared to the input signal’s period at the
operational frequency.

The ωτaq product is related to the number of cycles required to acquire transients and is
thus a good metric for temporal responsiveness. In Table 5.1, we compare ωτaq for different
magnitude-detection architectures for a given total ripple at the output, RT . The third
column states the factor of improvement for each architecture with 1% total ripple over the

Brandon D. Rumberg Chapter 5. Magnitude Detector 54

baseline case of the standalone peak detector (PD). For example, a PD combined with a
lowpass filter (LPF) is 7.1 times faster than a PD by itself. This improvement is because
adding an LPF to the PD increases the slope of the ripple-frequency relationship (i.e. the
slope of Fig. 5.4(c)), thereby moving ωc closer to ω; the best result is obtained by splitting
the ripple suppression evenly between the PD and the linear LPF (e.g. 10% suppression in
each stage to obtain 1% total suppression). Using a second-order filter further improves
the temporal accuracy by increasing the slope of the ripple-frequency relationship. However,
this technique only achieves 1.6-times improvement beyond the first-order filter, while adding
significant increases in power, area, and frequency sensitivity (due to the larger slope). With
the adaptive-τ filter, we operate the peak detector faster than with the linear filter (typically
twice as fast) which, accordingly, yields more ripple at the PD’s output. To achieve the same
total ripple at the output of the magnitude detector, the value of a1/CN in the adaptive-
τ filter is tuned to compensate for the increased PD speed. Large transients then cause
the filter’s time constant to decrease such that the PD’s speed is the main limitation to
the magnitude detector’s overall speed. As can be seen by the Table, the adaptive-τ filter
yields a 2.5-times improvement in temporal response for an amplitude step (As) of 300mV
as compared to the linear filter and without the cost of the second-order filter.

Furthermore, we have compared the acquisition times—defined as the number of cycles
to reach 99% of a step—of the adaptive-τ ripple suppression case with the first-order linear
filtering case, for steps between the minimum (200µVRMS) and maximum (630mVRMS) de-
tectable signals of this circuit. For an upward step, the acqusition time improves from 7.58
cycles with a linear filter to 1.45 cycles with the adaptive-τ filter; and for a downward step,
the acquisition time improves from 18.3 cycles with a linear filter to 14.1 cycles with the
adaptive-τ filter.

Figure 5.9 shows the measured dynamic range of the magnitude circuit for operational
frequencies of 200Hz and 2kHz (i.e. typical speech frequencies). The biasing routines dis-
cussed in Sections 5.3.3 and 5.4.3 were used to bias the circuit to track the RMS with 1%
ripple. The response remains within 1dB linearity from 200µVRMS to 630mVRMS for both
cases, yielding a dynamic range of 70dB. These two measurements are characteristic of the
performance of this circuit for typical speech frequencies, including those covering the tele-
phony frequency range (i.e. ≤5kHz). Additionally, the dynamic range was measured to be
64dB at the upper end of the audio frequency range (20kHz).

The minimum detectable signal is limited by the greater of two nonidealities: the noise
or the “deadzone” (which is created by offsets in the peak detector’s OTAs). Since the
magnitude detector can easily be designed to achieve a noise floor below typical offsets
for this type of OTA architecture, the designer should focus on the offsets. For example,
our complete magnitude detector was measured to have ≤115µVRMS for all biasings across
the audio frequency range, which is well below the minimum detectable signal of 200µVRMS,
indicating that offsets dominated our minimum detectable signal. Offsets in the peak detector
OTAs affect overall circuit operation as follows. Due to the symmetry of the peak detector,
its minimum detectable signal is not degraded when Gm,A and Gm,D have equal offsets with
the same sign. The minimum detectable signal is only degraded by a mismatch between the
offsets, which will either create a gap between the attack and decay states or will cause an
overlap of the attack and decay states; both cases compromise the accuracy of the magnitude
estimate for signals smaller than the difference between the offsets. Thus, the most critical

Brandon D. Rumberg Chapter 5. Magnitude Detector 55

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

Input RMS

O
ut

pu
t D

C

200Hz
2kHz

Figure 5.9: Dynamic range measurement of the complete magnitude circuit. The response
remains linear to within 1dB across a range of 70dB.

factors for improving the minimum detectable signal are minimizing the offsets and matching
the peak detector OTAs to ensure similar offsets with low variance.

To verify the simultaneous achievement of temporal and amplitude accuracy, we per-
formed the experiments of Figs. 5.10–5.11. In both experiments, the circuit was biased for
RMS tracking and 1% ripple. In Fig. 5.10, a sine wave with a frequency of 2kHz had its am-
plitude modulated by six Gaussian pulses with amplitudes increasing logarithmically from
2mVpk to 500mVpk. The first three pulses are shown in the left panes and the last three
pulses are shown in the right panes with different y-axis limits. The top panes show the
peak detector response and the bottom panes show the magnitude response along with the
actual RMS. Figure 5.11 shows the response of the magnitude circuit to a speech signal.
A mathematically calculated RMS is shown alongside the circuit’s response. In both Figs.
5.10 and 5.11, we see that the magnitude circuit closely follows the same shape as the RMS
calculations, and that the magnitude detector accurately follows the quickly changing RMS
across a wide dynamic range.

The characteristics of this circuit are summarized in Table 5.2 and are compared with
relevant state-of-the-art magnitude detectors. The power consumption of our circuit scales
linearly with the operational frequency (since transconductance scales linearly with current
in subthreshold operation); for typical biasing, the power varies from 1.1nW–1.08µW across
the 20Hz–20kHz audio frequency range. The figure of merit (FOM) in the table is defined as
FOM = 10DR/20fmax/P , where DR is the dynamic range, fmax is the maximum operational
frequency, and P is the power consumption. Our FOM number is given for a frequency of
200Hz, since that is the tuning condition used to operate on wideband speech signals.

Brandon D. Rumberg Chapter 5. Magnitude Detector 56

360 380 400 420 440 460 480 500 520

0.6

0.8

1

1.2

1.4

Time (ms)

V
o

lt
a

g
e

200 250 300 350

0.935

0.94

0.945

0.95

0.955

0.96

0.965

Time (ms)

V
o
lt
a

g
e

360 380 400 420 440 460 480 500 520

0.6

0.8

1

1.2

1.4

Time (ms)

V
o

lt
a

g
e

200 250 300 350

0.935

0.94

0.945

0.95

0.955

0.96

0.965

Time (ms)

V
o

lt
a

g
e

Input

Output

Actual RMS

Input

Output

Actual RMS

Input

Peak Detector

Input

Peak Detector

(a) (b)

(c) (d)

Figure 5.10: Measured transient response of the magnitude detector for logarithmically
increasing amplitude from 2mVpk to 500mVpk.

Table 5.2: Magnitude Detector Comparison

Process Vdd Freq. Range Dyn. Range Power FOM Comments

70dB (200Hz) DR <1dB

Proposed 0.18µm 1.8V 20Hz–20kHz 70dB (2kHz) 1.1nW–1.08µW 57.9 nonlin.

64dB (20kHz)

[124] 1.5µm 2.8V 100Hz–10kHz 75dB 2.8µW 20.1

[125] 1µm 3V 12MHz 54dB 10mW 0.60

[126] 0.18µm 1.8V 100Hz–1.6GHz 50dB 6.3mW 80.3

[127] 0.35µm 1V 100Hz 73dB 60nW 7.44 Rectifier

1.5V 83dB 90nW 15.7 only

Simulated;

[128] 0.35µm 1–10MHz 42dB 2.98mW 0.42 DR <1dB

nonlin.

5.6 Conclusion

In this work, we have presented a low-power magnitude detector circuit, which achieves
good temporal responsiveness through the use of a novel peak-detector-nonlinear-integrator
topology. The circuit was built in a 0.18µm CMOS process. At 200Hz, which is a typical
operating point for wideband speech signals [109], the circuit achieves a dynamic range of
70dB with a power consumption of 10.92nW. The compactness and low-power operation of
the circuit, combined with its flexible biasing, make it a good choice for applications such as
spectral analysis.

Brandon D. Rumberg Chapter 5. Magnitude Detector 57

0.4 0.6 0.8 1 1.2 1.4 1.6

0.9

0.95

1

1.05

1.1

1.15

Time (s)

V
o

lt
a

g
e

Input

Output

Actual RMS

Figure 5.11: Measured response of the magnitude circuit to a speech waveform. For com-
parison, the response is shown with a computer calculated RMS.

58

Chapter 6

Floating-Gate Transistors for
Programmable Analog Circuitry

In Chapter 3, we examined the benefits that an analog front-end can provide in a low-
power sensing application. The primary shortcoming of that front-end was the method of
controlling the circuit parameters (e.g. filter frequencies). We used a resistive divider for
parameter biasing, which prevented independent biasing of channel parameters, limited the
parameter biasing resolution to 2.5mV (≈7% deviation in center frequency), and worst of all,
the parameter biasing accounted for over 70% of the quiescent power consumption. To design
a flexible and efficient analog front-end for wireless sensor networks, we need programmable
analog parameter storage that is dense and low power. Floating-gate transistors are an
excellent option for analog storage. They have been used for assorted applications [83, 97,
129,130], and we have used them for our programmable filter bank in Chapter 4, for our new
analog front-end in Chapter 9, and for our field-programmable analog array in Chapter 10.

As an apt choice for long-term analog memory in standard CMOS processes, floating-
gate transistors are key enablers for large-scale programmable analog systems. Such systems
are often designed for battery-powered—and generally resource-constrained—applications,
which require the memory cells to program quickly with low infrastructural overhead. In
order to meet these needs, we present a new analog floating-gate memory cell in this Chapter.
Our four-transistor memory cell offers both voltage and current outputs and has linear
injection and tunneling characteristics. Furthermore, we present a simple programming
circuit that forces the memory cell to converge to voltage targets within 100ms and with
8-bit accuracy.

The work in this Chapter was published in the Proceedings of the International Midwest
Symposium on Circuits and Systems [131]. Furthermore, these developments have been
incorporated into our FPAA in Chapter 10.

6.1 Floating-Gate Transistors

In addition to their role as nonvolatile memory elements in Flash memory, floating-gate
(FG) transistors are used for programmable voltage/current references, precision analog
device matching, and adaptive/learning circuits [132]. An FG transistor [schematic repre-

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 59

Vs VdId
Vw

Substrate

N-well

P-Diffusion

Polysilicon 1

Polysilicon 2

0 0.5 1 1.5 2 2.5

10
-10

10
-8

10
-6

10
-4

V
cg

 (V)

I d
 (

A
)

Vcg

Vs

Vd

Vtun
Itun

Iinj Id

Vfg

MfgMtun

Cg

Vw

(a)

(c)
(b)

Vfg

Iinj

N-Diffusion

Itun Vtun

Metal 1

Vcg

Figure 6.1: Overview of floating-gate (FG) transistors. (a) Circuit symbol. (b) 3-D layout
of an FG transistor. The first polysilicon layer is used for the floating gate, and the second
polysilicon layer is used for the control gate. Electrons are injected onto the FG from from the
drain and are tunneled from the FG to Vtun. (c) Measured gate sweeps of an FG transistor.
The sweep was performed three times for three different programmed values in order to
demonstrate the ability to shift the threshold voltage.

sentation shown in Fig. 6.1(a)] is a MOSFET (Mfg) that has no resistive connection to its
gate; instead, a “control gate” (Vcg) couples capacitively onto the transistor’s “floating gate”
(Vfg). As a result, the FG’s charge, which can be modified using Fowler-Nordheim tunneling
and hot-electron injection, creates a programmable and nonvolatile threshold-voltage shift
from the perspective of the control gate. Figure 6.1(c) shows sweeps of the control-gate
voltage for three different levels of programmed charge, thus illustrating the programmable
shift in threshold voltage.

Figure 6.1(b) shows a three-dimensional view of an FG transistor in a standard CMOS
process. The floating gate is the first layer of polysilicon, and the second layer of polysilicon is
used for the control gate. To reduce the size and layers, the control gate may be formed using
a MOS capacitor, but the linear characteristics of poly-insulator-poly capacitors simplifies
the incorporation of FGs into analog circuitry.

As in a standard MOSFET, the drain current of an FG transistor is determined primarily
by the voltage difference between the source and the polysilicon gate over top of the channel.
The unique characteristics of an FG transistor result from the fact that the dc gate voltage,
Vfg, is determined simultaneously by the charge on the gate and by the voltages which

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 60

couple through capacitive division onto the gate. If the charge on the FG is Q and the total
capacitance on the FG is CT , then

Vfg =
Q+ CgVcg + CdVd + CsVs + CtunVtun + CwVw

CT
(6.1)

where Cg, Cd, Cs, Ctun, and Cw are the capacitances that couple from Vfg to Vcg, Vd, Vs, Vtun,
and Vw, respectively. Typically, the control-gate capacitance Cg is designed to dominate the
coupling terms and most of the voltages are constant. So a simpler equation

Vfg =
Q+ CgVcg

CT
(6.2)

is often sufficient.
Once the expression for Vfg is known, then the operating region and drain current of Mfg

can be determined in the same manner as for any MOSFET. Using (6.1), the current for a
MOSFET in the subthreshold region1 is

Id = I0
W

L
exp

(
κ (Q+ CgVcg + CdVd + CsVs + CtunVtun)

CTUT

)[
exp

(
− Vs
UT

)
− exp

(
− Vd
UT

)]
(6.3)

This equation illustrates that the difference between an FG transistor and a standard tran-
sistor is the addition of a linear transformation on the input voltage(s). This quality adds
three unique capabilities.

1. The charge on the floating gate, Q, creates a programmable nonvolatile offset.

2. The superposition of multiple voltages onto the gate allows the use of multiple inputs
to the transistor.

3. The scaling of input voltages via capacitive division allows manipulation of the relative
weighting of voltages onto the gate.

6.2 Applications of Floating-Gate Transistors

The unique capabilities of FG transistors that were described in the previous section
have led to various applications. The most common application is Flash memory wherein
quantized data is stored as a charge on the gates [133]. FGs have also been adapted into Ion-
Sensitive FETs (ISFETs), a type of chemical sensor that benefits from CMOS scaling [134].
Below, we describe the fundamental ways that FG transistors have been applied to analog
circuit design.

6.2.1 Programmable Parameters

Most non-trivial analog circuits require the ability to vary circuit parameters. Examples
include individual circuits such as programmable filters and programmable-gain amplifiers,

1See Appendix A for more on MOSFET modeling.

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 61

MidrailVin

Iout

Vfg

Mfg

(a)

Programmable parameter

CMFBVout
− Vout

+

Vin
−Vin

+

Vb

M1 M2

Mismatch correction

(b)

Midrail

γ0

bit0

Midrail

γ1

bit1

Midrail

γ2

bit2

Vin

(c)

Adaptation

Figure 6.2: Applications of charge manipulation in floating-gate transistors. (a) Mfg used as
a programmable current source to create a voltage-to-current converter with programmable
transconductance. (b) Nulling the offset of an op-amp by using FG transistors for the input
transistors. (c) Adaptation of quantization levels in a flash ADC as seen in [130].

as well as larger circuits and systems such as transceivers and field-programmable analog ar-
rays. Traditional methods of creating programmable parameters have used digital-to-analog
converters (DACs) or resistor/capacitor arrays. These methods use a large amount of chip
area to obtain precise programming. As a result, these methods are inappropriate for systems
with large numbers of parameters. FG transistors can provide programmable parameters by
designing circuits with parameters that depend upon the charge on the floating-gate. Their
small size makes FG transistors a good choice for programmable parameters. Figure 6.2(a)
illustrates the use of an FG transistor in a programmable circuit. Mfg provides a pro-
grammable bias current to an OTA that is being used as a voltage-to-current converter. The
OTA’s transconductance, Gm = f(Vfg), is programmable since it is a function of the FG
voltage, which is set by programming the charge. In this same manner, we have used FGs to
create programmable reference voltages, reference currents, gains, time constants, and pulse
lengths.

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 62

6.2.2 Precision Mismatch Correction

To achieve levels of precision that exceed the precision of device fabrication, all non-trivial
analog circuits rely on the relative matching of devices, which is better than the absolute
precision of the device parameters. Examples of circuit building blocks that rely on match-
ing include current mirrors, differential pairs, and resistor/capacitor ratios. Nevertheless,
device mismatch is one of the primary limitations in analog circuit performance. The use
of FG transistors can improve precision because the threshold voltages of transistors that
the designer wishes to match can be trimmed after fabrication. Figure 6.2(b) illustrates this
concept. FG transistors are used for the input pair of an op-amp. By programming the
relative charge on the two FGs, the threshold voltages of M1 and M2 can be adjusted to
simultaneously cancel both the input pair mismatch and the NMOS current sink mismatch.
This enables greater circuit precision.

6.2.3 Parameter Adaptation

Local parameter adaptation, such as is found in neural networks, allows efficient imple-
mentation of associative/perceptual processing applications. FG transistors are excellent
for these applications since they combine memory storage and processing in a single device.
Figure 6.2(c) illustrates how FG transistors can be used for parameter adaptation. In the
Figure, FGs are used to adapt the quantization levels in a flash ADC [130]. The quantization
level of each converter is stored as an FG charge. After each sample, the charge on an FG is
incremented if the local bit is high, or decremented if the local bit is low. The quantization
levels thus adapt over time to achieve a uniform distribution of output codewords, which
maximizes the conversion entropy for a given signal. FGs have also been used for weight
adaptation in neural networks.

6.2.4 Input Scaling

In the subthreshold region, the gate-to-source voltage increases by approximately 85mV
for each decade of drain current.2 It is sometimes desirable to scale this relationship, e.g. to
increase the linear range of a differential pair. With an FG transistor, this input voltage can
be scaled onto the floating gate using capacitive division. Then, the control-gate-to-source
voltage will increase Cg

CT
85mV for each decade of drain current. Figure 6.3(a) illustrates an

application of this concept. In the Figure, an OTA is used as a voltage-to-current converter
similar to Fig. 6.2(a); the bias Vb may be controlled by a separate FG transistor. But in
Fig. 6.3(a), an FG transistor (M1) has been used to scale down the input voltage so that
the linear range is increased by approximately C1+C2

C1
. Other methods for increasing the

linear range of an OTA can achieve higher SNR when the amplifier’s precision is noise-
limited. But in wireless sensors that are small and low-cost, the amplifier’s precision will
typically be mismatch-limited because of the use of small transistors. In such applications,
FG transistors can substantially increase the SNR by simulataneously increasing the linear
range and reducing the mismatch (as described in Subsection 6.2.2).

2The precise relation depends upon the κ of the device.

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 63

Vin
+

Vb

M1 M2

C1

C2

Midrail

Iout

(a)

Scaled input range

I1

I2

I3

(I1 I2 I3)1/3

ln(I1)

ln(I2)

ln(I3)
ln(I1)+ln(I2)+ln(I3)

3

(b)

Multiple inputs

Figure 6.3: Applications of capacitive coupling in floating-gate transistors. (a) An extended
range voltage-to-current converter achieved by scaling down the input with capacitive divi-
sion. (b) A geometric mean function implemented using superposition of capacitively divided
inputs to add and multiply in the log-domain.

6.2.5 Multiple-Input Transistors

Although addition operations are easy to construct in the current domain by simply
summing currents on a node, voltage addition typically requires resistors or transconductors
to perform voltage-to-current conversion prior to adding the currents. With floating-gate
transistors, voltages can be summed onto the FG with multiple control-gate capacitors.
Figure 6.3(b) illustrates this concept in a circuit that calculates the geometric mean of an
array of currents. The circuit is essentially a current mirror with three inputs. The voltages
from each input sum onto the floating gate. This sum is in the log-domain, so it will be
transformed into a multiplication of the currents at the output. Additionally, the scaling
from capacitor ratios divides each input by three. Again, this operation is performed in
the log-domain, so at the output this scaling becomes a cube root. This class of circuits is
known as MITE (multi-input translinear element) circuits and they are capable of compactly
synthesizing a wide range of functions [135].

6.2.6 Summary of FG Transistor Applications

In this work, we have used FGs exclusively for programmable parameters. However, the
research on FGs that is described in this Chapter and the subsequent Chapters—including
continuous-time programming, charge manipulation characteristics, and high-voltage gener-
ation for charge manipulation—is relevant to all of these applications.

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 64

6.3 Overview of Floating-Gate Programming

Two phenomena are typically used to program FG transistors: hot-electron injection and
Fowler-Nordheim tunneling.3 Injection occurs when a large source-to-drain potential (Vsd
> 3.5V for 0.35µm) is applied to the FG transistor, thus causing high-energy carriers to
impact-ionize at the drain. A fraction of the resulting ionized electrons disperse toward the
surface with enough energy to overcome the oxide barrier and inject onto the FG. In the
subthreshold region, which is our target operational region, the injection current from Vfg
to Vd can be approximated as

Iinj ≈ βIs
αeVsd/Vinj (6.4)

where Is is the source current, and β, α, and Vinj are device-dependent fits [136]. Tunneling,
on the other hand, requires high voltages (Vox > 8V for 0.35µm). In order to avoid write
disturbs during tunneling, unselected array elements must either be disconnected from the
tunneling voltage using high-voltage switches or the FGs of the unselected elements must
be raised to a sufficient voltage that tunneling does not occur [137]. Due to this difficulty
in isolating tunneling within an array, tunneling is typically only used for global erasure in
analog memory arrays, while injection is used to write to individual elements. Consequently,
we focus mainly on injection in this work.

In order to modify the charge on the FG, high voltages are applied to the FG transistor’s
terminals. The charge can be programmed to a desired amount by using either pulsed or
continuous methods, as illustrated in Fig. 6.4. Pulsed methods operate by applying short
programming pulses and then measuring the FG after each pulse. In contrast, continuous
methods continuously apply the programming voltage and use feedback to force the FG to
converge to the target. Such continuous programming promises to be faster and require less
peripheral circuitry than pulse-based programming.

Due to their ability to provide dense, low-power, analog biases, FGs are elemental in large-
scale programmable analog systems—such as filter banks, classifiers, and field-programmable
analog arrays. In these systems, circuit parameters (e.g. corner frequencies) are controlled by
the charge on the FGs; as a result, system performance depends strongly on the programming
accuracy. Prior pulse-based programming techniques have achieved high accuracy [105,138].
One advantage that pulse-based techniques have in terms of accuracy is that the FG is
measured in a state that is similar to run-mode: with no high program voltages applied to
the cell, and with the same current levels that will be used in run-mode. Unfortunately,
pulsing is inherently slow due to the time spent reading, during which the high program
voltages are stepped down and the FG is allowed to settle before the measurement is taken; if
measuring low currents, then the read time further increases due to the long integration time
that is necessary for accurate measurement. Methods to increase the programming speed
rely on precise knowledge of each FG’s characteristics, so that each pulse can move more
aggressively towards the target [105]; but this adds to the complexity. Additionally, pulsing
techniques require high-precision data conversion and pulse timing, and possibly large-range
current measurement, all of which complicate the inclusion of analog FG memory into simple,
resource-constrained, systems. Thus, there is a need for fast, compact, low-overhead, and
accurate programming: we posit that continuous-time programming is more appropriate for

3These charge-manipulation mechanisms are described in detail in Chapter 7.

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 65

−A
Is

Vs

Vd
Vd

Vs

Vtun

Vtun

Vfg
Vfg

Vcg
Vcg

Pulsed
Programming

Continuous
Programming

Read

Program

Vsd

Is

Figure 6.4: Pulsed programming and continuous programming. In pulsed programming,
the source-to-drain potential is alternately pulsed high for injection, and then placed at a
nominal value to measure the floating gate. In continuous programming, injection occurs
constantly, and a terminal (in this case the source current) is adjusted to decrease—and
eventually shut off—injection as the target is approached.

resource-constrained systems.
In the next Section, we describe our benchtop pulsed-programming system. This system

was used as a sandbox for exploring programming dynamics, which led to the development
of our integrated continuous-programming system that is presented later in the Chapter.

6.4 Pulse-Based Programming

Since FGs are used to create programmable circuit parameters (e.g. corner frequencies),
system performance depends strongly on the programming accuracy. The standard technique
for programming is the pulse-based technique, which is illustrated in Fig. 6.4(a). In this
pulsed programming method, the source-to-drain voltage is alternately read at the nominal
run-mode voltage and then pulsed to high programming voltages in order to inject charge.

We have developed a benchtop pulsed programmer for use within our lab. This program-
mer has been used to perform the FG programming in Chapters 4 and 9, but has since been
phased out in favor of the low-overhead programming method in Section 6.6. A block diagram
of the FG programmer is shown in Fig. 6.5. The programmer is controlled using Matlab,
and as a result, programming algorithms can be quickly prototyped. The data-acquisition
(DAQ) card in the setup is the PCI-6259. One digital output is used to switch tunneling
on or off. Three analog outputs are used to control Vcg, Vd, and the FG transistor’s Vdd.
These outputs are streamed out synchronously at 300kHz, thus allowing near-microsecond
resolution of pulse characteristics. The picoammeter is the Keithley 6485, which can perform
up to 1000 readings per second and is interfaced to a PC using a GPIB cable. Below we
discuss the two programming modes: coarse programming and fine programming.

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 66

Tunneling Switch

15V

Vtun

Digital Output

A

Analog Outputs

2N7000

BS250100k

DAQ

Floating-Gate Under Test

Picoammeter

Matlab

Vcg Vd Vdd Id

Figure 6.5: Block diagram of our benchtop floating-gate programmer.

6.4.1 Coarse Programming Mode

The coarse programming method is used to quickly inject the FG to the desired range.
This is accomplished by continuously injecting rather than pulsing. The reason for continu-
ously injecting is as follows. Although the picoammeter can perform up to 1000 readings per
second, pulsing requires the picoammeter to switch to a high-current measurement range for
each pulse so that the ammeter’s voltage burden does not limit the source-to-drain voltage
(and thus limit injection). This switching can cause up to one second of overhead for each
pulse depending on the current level. In contrast, continuous injection allows a constant
drain current and thus does not require any time-consuming ammeter range changes.

The coarse programming method has two feedback loops: one to linearize the injection
characteristics and the other to make the programmer converge to a target. The control
portions of these loops are shown in Fig. 6.6.

The injection linearization loop works by adjusting Vcg in order to maintain a constant Id
and thus to achieve a linear injection rate. This is accomplished as follows. Id is compared to
the user-specified programming current Id,prog in order to obtain an error value. This error
value is clamped and then input into a proportional-integral-derivative (PID) controller in
order to obtain the updated Vcg. Figure 6.7 shows the measured characteristics of this
programmer. The top subplot shows the current, which in this case was held to a target
value of 1µA. The bottom subplot shows how the control gate was adjusted in order to
maintain a constant current while programming.

The convergence loop in Fig. 6.6 causes the injection rate to decrease as the control gate
approaches its target value, Vcg,target. The error Vcg − Vcg,target is scaled by a user-defined
“Rate” parameter, which controls the rate of programming. Based upon (6.4), the injection
rate is exponentially dependent on Vsd, so we take the log of our desired injection rate in

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 67

Id

Id,prog log

log
+

-
PID Vcg

Vcg

Vcg,target

+
-

x

Rate

log +

CR0

x

CR1

-
Vsd

Linearized Injection Loop

Convergence Loop

Figure 6.6: Coarse programming mode block diagram. The linearization loop is used to
maintain a constant injection current and thus a constant injection rate. The convergence
loop is used to slow down the linearized injection rate as the target is approached.

Figure 6.7: Programming a single FG in coarse programming mode. Vg is adjusted to
maintain a constant current of 1µA. The charge that is injected onto the FG causes Vg to
rise. As Vg approaches its target value, Vd is increased to slow down injection, as can be seen
from the decreasing slope of Vg.

order to obtain the updated value of Vsd. Parameters CR0 and CR1 are measured curve fits
that relate Vsd to log(Iinj). Combining these pieces, the controller adjusts Vsd such that the

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 68

rate of injection decreases linearly as the distance from the target decreases. As a result,
the target is approached with a linear time constant that is proportional to 1/Rate. This
operation is shown in Fig. 6.7.

6.4.2 Fine Programming Mode

Figure 6.8: Programming a single FG in fine programming mode. Notice how the source-
to-drain voltage is reduced as the current approaches its target, thus causing the current to
converge more slowly.

The coarse programmer does not achieve a high enough accuracy because the FG is mea-
sured in a state that is dissimilar to its run-mode state—with high program voltages applied
to the FG, and with different current levels. To obtain higher accuracy, the programmer
switches to a more traditional pulse-based mode once the FG is near its target. In this
fine programming mode, the FG’s current is measured under the same conditions as will be
applied during run mode, i.e. the same Vdd and the same Vcg. The fine-programming control
algorithm works as follows. The difference between the measured current and the target
current is used to determine the Vsd value for the next programming pulse, similar to the
convergence loop in Fig. 6.6. Furthermore, in order to linearize injection, Vcg is updated to
maintain a constant drain current for each programming pulse; this is done by calculating
Vcg using the capacitive coupling relationship in (6.1) and also using the gate voltage/drain
current relation for a MOSFET. The results of the fine programming mode are shown in Fig.

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 69

6.8. Here we can see how the source-to-drain voltage is reduced as the current approaches
its target value.

Our benchtop pulsed-programming systems attains excellent accuracy, but is unusable for
in-the-field programming in resource-constrained applications such as sensor networks. Con-
sequently, we have focused more on building the low-overhead continuous-time programming
system that is described in the remainder of this Chapter.

6.5 Continuous-Time Floating Gate Programming

Continuous-time FG programming is accomplished by using feedback to stop program-
ming when the memory cell reaches its target value. A variety of continuous programming cir-
cuits have been presented: ranging from a single-transistor circuit [136] which self-converges
due to the negative feedback of injection current from the FG to the drain, to more complex
circuits with improved speed and accuracy. In order to linearize the characteristics of injec-
tion/tunneling, most programming circuits use feedback to maintain a constant FG voltage,
though the details vary from circuit to circuit: [139] presents a three-transistor memory cell
plus a comparator to stop injection once the target is reached; [140] presents a programming
circuit which uses a differential FG amplifier to achieve linear tunneling and also to cancel
out the tunneling junction’s capacitive coupling; [141] builds upon the basic cell in [139] to
create a fully integrated continuous-time FG programming system; [142] presents a memory
cell which uses both hot-electron and hot-hole injection in order to converge bidirection-
ally toward the target. In these prior linearized techniques, the programming rate is held
constant, and once the target is reached, programming is stopped; such programming faces
a severe tradeoff between programming speed and accuracy [141]. In contrast, we adjust
the source current to reduce the programming rate as the target is approached in order to
achieve a better tradeoff between programming speed and accuracy.

Figure 6.9 shows four fundamental continuous programming configurations. The two
circuits shown in Fig. 6.9(a) and (b) do not have feedback to linearize programming, but
they do have inherent feedback that causes them to self-converge. In both circuits, the
injection of electrons onto the FG causes Vfg to decrease, which decreases Vsd and thereby
decreases Iinj according to (6.4). The circuit in Fig. 6.9(a) [136] can be programmed to
different targets either by using different values of I1 for a constant Vcg, or by using different
values of Vcg for a constant I1. While this circuit is very compact and produces repeatable
results, its convergence time depends on the initial condition: if the initial Vfg is too high to
supply I1, then the small initial drain current yields little injection. As a result, convergence
can take several seconds. The circuit in Fig. 6.9(b) has the opposite problem: whereas the
circuit in (a) begins slow and finishes fast, the circuit in (b) begins fast and then takes
minutes to slowly converge.

The long convergence times of the simple configurations can be addressed by using nega-
tive feedback to Vcg—shown in Fig. 6.9(c) and (d)—so that all terminals of Mfg are constant,
and thus the rate of injection/tunneling is held constant; however, these memory cells no
longer converge on their own, but require additional programming circuitry. In both of these
circuits, Vfg is constant and Vcg ramps linearly up during injection, or down during tunnel-
ing, to compensate for the change in charge on the FG—see Fig. 6.9(e) and (f). Vcg thus

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 70

Vfg

Vd

Mfg

I1

Vcg

Vtun

(a)

Vtun

MfgVfg

VdT I1

Vd

Vcg

(c)

Vtun

Vfg
Mfg

Vcg

Vs

I1

(b)
Vtun

VsT

Vcg

I1

Vs

Mfg

Vfg

(d)

Programming Cells w/ Linear Injection/TunnelingBasic Self-Converging Programming Cells

0 0.04 0.08 0.12 0.16 0.2
0

0.5

1

1.5

V
c
g

0 0.04 0.08 0.12 0.16 0.2
4.5

5

5.5

6

Time

V
c
g

Tunneling

Injection

(e)

(f)

Figure 6.9: Canonical forms of programming cells. (a) and (b) are single-branch circuits
without explicit feedback to keep all of the terminals of Mfg constant, thereby permitting
situations that result in slow injection. (c) and (d) employ negative feedback to the gate
to hold the terminals and current of Mfg constant, thus resulting in linear injection and
tunneling. (e) and (f) demonstrate the linear programming characteristics of the circuit in
(d).

provides our measure of the charge on the FG. We have found the high gain around the loop
of the circuit in (c) to cause stability problems, and so we will not consider it any further.
The source follower circuit in (d) is the same configuration that has been used in pulse-
based source-feedback injection to achieve 13-bit precision with program times on the order
of 50sec/200mV [138]. This circuit has good stability and offers good control over injection
and tunneling through the manipulation of both VsT (which sets Vs) and I1. Our memory
cell has the same basic characteristics as this circuit, but is smaller, which is important for
large array applications.

6.6 Current-Conveyor-Based Memory Cell

We present a compact FG cell for continuous programming, which, when combined with
our simple programmer circuit, converges to target voltages with 8-bit accuracy within
100ms.

Our basic memory cell uses the FG transistor in a source-follower configuration and

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 71

4.4 4.5 4.6 4.7 4.8
Current

1.8 2 2.2 2.4 2.6 2.8 3
(a)

Tunneling Rate Control

(b)

(c) (d)

Sweeping I1
Sweeping I2

101

100

10-1

10-2

I in
j
/

C
g

10-9 10-8 10-7 10-6

100

10-1

10-2

I in
j
/

C
g

Vx

Vx

I t
u

n
 /
 C

g

101

100

10-1

Vtun

Vfg

Vs

Mfg

I1

Vcg

I2

Vx

M1

Injection Rate Control

Figure 6.10: (a) Our floating-gate memory cell, which is based on the current-controlled
current conveyor circuit. (b) Measured dependence of tunneling current on terminal VX . (c)–
(d) Measured dependence of injection current on the three control terminals of the circuit:
VX , I1, and I2.

linearizes injection via negative feedback to the control gate, as in Fig. 6.4. Such linear
source-feedback injection has been used previously in [138], but we accomplish the same
characteristics with the smaller current conveyor circuit that we introduce in Section 6.6. In
addition to being smaller, this current conveyor memory cell also offers more flexible control
over the injection rate since Vs can be modified using either a voltage or a current input.

In order to achieve the good characteristics of the circuit in Fig. 6.9(d), but reduce the
size, we have developed the circuit in Fig. 6.10(a). For simplicity, current sources are shown
for I1 and I2, but in the actual implementation, each source is implemented by a single
transistor. In this memory cell, the inverting amplifier M1–I2 replaces the op-amp in Fig.
6.9(d). The resulting circuit structure is the current-controlled current conveyor, the details
of which can be found in [143]. In this circuit, the negative feedback adjusts Vcg in order to
force both Vfg and Vs to fixed voltages. The equilibrium point for Vs is controlled by both
the voltage VX and the current I2. The equilibrium point of Vfg depends on both Vs and I1.
Thus we maintain independent control of the source current and drain-to-source potential
(the two main injection parameters) with this four-transistor circuit. The memory cell also
has linear tunneling characteristics, as illustrated in Fig. 6.10(b). In this Figure, VX and
I1 were held fixed, while I2 was swept from 800nA to 16µA. As a result of the increasing
current, Vs, and therefore, Vfg, are reduced. Lowering Vfg causes an increased tunneling
oxide voltage, and therefore an increased tunneling rate, which can be seen from the slope

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 72

of Vcg.
This memory cell offers three control terminals for modifying injection: two currents (I1

and I2) and one voltage (VX). Using the subthreshold injection approximation in (6.4), we
can solve for the injection current as a function of the control terminals in subthreshold
operation

Iinj ≈ βI1
α

(
I2
I0

)− UT
κVinj

e
Vx−(1−κ)Vdd

κVinj (6.5)

where I0 is the pre-exponential current scaler for M1, κ is the subthreshold slope for M1, and
UT is the thermal voltage. Figure 6.10(c)–(d) shows measured injection rates as a function
of each of these control terminals. The floating-gate transistor was fabricated in a 0.35µm
standard CMOS process, and has dimensions W

L
=1.6µm

0.6µm
and Cg=60fF . All other transistors

were ALD1105 FETs. The injection rate was measured by determining the slope of Vcg dur-
ing injection experiments that were similar to Fig. 6.9(f); this slope is equal to the injection
current normalized by the control gate capacitance Cg. When not being swept, VX , I1, and
I2 were held fixed at 5V, 860nA, and 2nA, respectively. Additionally, since the feedback
holds Vfg constant, this cell has linear tunneling characteristics. Figure 6.10(b) shows the
dependence of the tunneling current on VX while all other terminals were held fixed. The
experiments shown in Fig. 6.10(b)–(d) demonstrate the ability to adjust the cell’s program-
ming rate over a large range using either voltage or current inputs. Additionally, the weak
dependence on I2—approximately an inverse fifth root dependence—makes I2 appropriate
for fine rate adjustment. Furthermore, the cell works well in the subthreshold region, where
power consumption is low and (6.5) holds true.

6.7 Programmer Circuit

The combination of control terminals makes the memory cell very flexible in terms of
programming circuits. Figure 6.11(a) illustrates one possible programming circuit, which
uses I1 as the control terminal. The transconductor converts the difference between Vcg and
the target value, Vtarg, into a current. This current is rectified by the current mirror M2–M3

and is forced into the source terminal of the FG transistor. As the target is approached, the
injection rate is reduced, and eventually stopped, by the reducing I1. Figure 6.11(b) shows a
timing diagram of the programming process. During the pre-injection interval (i), the supply
voltage is at the run-level value (3V), and the FG has been tunneled to the point that Vcg
is at ground. When the injection interval (ii) first starts, the supply voltage is ramped up
(5.4V), which pulls Vcg up, and there is a short time during which the capacitance of node
Vcg is discharged through I2; the significant duration of this discharge time is due to the fact
that the circuit was prototyped on a breadboard with significant parasitic capacitance. Once
Vcg is discharged, we observe linear injection while the transconductor’s output current is
saturated. As Vcg approaches the target, I1 is reduced (see the bottom pane of the plot), and
once Vcg reaches the target, I1 is zero. During interval (iii), the current conveyor structure
has stopped operating due to I1 being shut off, and as a result, Vcg is pulled high. Then
for the read mode interval (iv), the supply is ramped down to run level, and the cell is
configured as a voltage reference. The cell’s voltage output is read from Vcg, and the cell is

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 73

(c)

(b)(a)

Vtun

Vfg

Vs

Mfg

I1

Vcg

I2

M1

Vtarg

M2 M3

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

2

4

V
o

lt
a

g
e

Vtarg

VcgVs

0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

-10

10
-5

Time

C
u

rr
e

n
t

1 1.2 1.4 1.6 1.8 2 2.2

1

1.5

2

V
d

d
,r

u
n
-V

c
g

1 1.2 1.4 1.6 1.8 2 2.2
-5

0

5

V
dd,prog

-V
targ

D
e

v
ia

ti
o

n
 f

ro
m

L

in
e

a
r

(m
V

)

(i) (iv)(ii) (iii)

Figure 6.11: (a) Our memory cell programming circuit. (b) Measured timing diagram of the
programming circuit, showing the control gate, source, and target voltages as well as the
source current. While Vtarg is greater than Vcg, the floating-gate injects and Vcg rises. As the
target is approached, I1 is reduced, slowing injection until the target is reached, at which
point the current is shut off. Afterwards, the supply voltage is reduced to a run-mode level, a
constant current is applied for I1 in order to bias the current conveyor, and the programmed
value can then be read from Vcg. (c) Measured programming accuracy.

configured by removing the transconductor from the loop and supplying a constant voltage
to the gate of M2 (I2 remained constant throughout the experiment). Alternatively, the FG
can be disconnected from the memory cell and placed into a separate circuit for a current
output.

Figure 6.11(c) shows the results of performance experiments on the memory cell and
programmer combination. A standard wide output-range transconductor was used. The
memory cell was programmed to linearly spaced values of Vtarg, and the value of Vcg was
measured after the circuit was placed in read mode—for which the supply voltage was ramped
down, the transconductor was disconnected, and a fixed current was applied for I1. The top
pane shows that the memory cell has a linear relationship between Vtarg and the ramped

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 74

down Vcg (with a slope of 1.003 and an offset of 122mV). The deviation from a straight line
is shown in the bottom pane. For every fourth data point, the memory cell was programmed
100 times in order to verify repeatability; from these data are derived the error bars which
show maximum and minimum values. Over a range of 1.36V, the maximum deviation is
4.2mV, thus yielding an accuracy of over 8-bits. Note that this prototype was built on a
breadboard with discrete components, and for the low current levels that were used, a noise
floor on the order of millivolts was observed.

The current values used for run mode were I1=20nA and I2=2nA, yielding a power
consumption of 66nW/cell when configured as a voltage reference. These currents do not
need to be exact and do not require precise matching across cells—but the currents should
be stable. During programming, the transconductor bias is set to 2µA, and the maximum
program power consumption is 43µW/cell.

6.8 Array Architecture

Since an advantage of FGs is that they allow for dense analog memory arrays, an FG
memory cell should be suitable for placement within an array. In Fig. 6.12, we show a
two-by-two array of our memory cell. In order to save space, the program control circuit is
shared amongst the cells in a column; this facilitates simultaneous programming of all cells
in a row.

The procedure for programming row 0 is as follows. The programming circuits are
connected to the array by setting PROG to high; voltage output is selected by setting
VO to high; and row 0 is selected by setting “Row 0 Select” to high, thus connecting row
0’s voltage output and control input (gate of MI1) to the column programming circuit. For
the unselected rows, the gate of MI1 is pulled to Vdd to prevent injection. In run mode, the
memory cell can be used either with voltage outputs or with optional current outputs. The
current outputs are accessed by pulling VO low so that the drain of MFG goes out through
the current output and also by pulling the source of MFG up to Vdd by lowering the Column
I1 lines. With Vs high, MX is off and the control gates of the cells are connected to VA by
raising the I2 biases.

6.9 Conclusion

We have presented a compact analog FG memory cell. We have also presented a
continuous-time programmer circuit for the memory cell which achieves 8-bit accuracy with
100ms program times. An integrated implementation of this programming scheme with 300
memory cells is used in our FPAA that is described in Chapter 10. Details on that integrated
programmer are provided in Section 10.3.

Brandon D. Rumberg Chapter 6. Programming Floating-Gate Transistors 75

Row 1
Select

Row 0
Select

Row 0

I2

Row 1

I2

PROG

Column 0

I1

Column 0

Vtarg

PROG

Column 1

I1

Column 1

Vtarg

MI1

Mfg

MS1Vtun

MS2

VO

Current
Output

VA

MI2

MX

Voltage
Output

Vs

MI1

Mfg

MS1Vtun

MS2

VO

Current
Output

VA

MI2

MX

Voltage
Output

Vs
MI1

Mfg

MS1Vtun

MS2

VO

Current
Output

VA

MI2

MX

Voltage
Output

Vs

MI1

Mfg

MS1Vtun

MS2

VO

Current
Output

VA

MI2

MX

Voltage
Output

Vs

Figure 6.12: Array architecture for the memory cell and programmer.

76

Chapter 7

Modeling of Charge Manipulation in
Floating-Gate Transistors

Due to the widespread use of floating-gate (FG) transistors in Flash memory, much re-
search on improving the density and reliability of FGs has been incorporated into highly
customized Flash-memory fabrication processes. But as Systems-on-Chips scale to increased
complexity, and as analog systems include greater numbers of tunable parameters, the need
for on-chip nonvolatile memory has made it necessary to port FG transistors from cus-
tom memory processes into generic CMOS processes. Accordingly, we have performed de-
tailed characterizations of the charge manipulation processes—Fowler-Nordheim tunneling
and hot-electron injection—in CMOS FG transistors. These characterizations have helped
us to optimize the design of individual FG transistors, and have also helped us to improve
the accuracy of our FG simulation model [144], which is crucial for designing floating-gate
transistor circuits. In this Chapter, we present our methodology and results, and apply these
results to FG transistor design.

Section 7.1 examines the mask design of the floating-gate’s tunneling junction, where
erasure and/or writing occur. Aided by static and transient tunneling current measurements
for a variety of tunneling junctions, we present recommendations for constructing tunneling
junctions to minimize the duration, power consumption, and oxide degradation of program-
ming. This work was published in Electronics Letters [145].

Section 7.2 presents characterization of hot-electron injection. These characterizations
are used to extract parameters for a compact equation that models injection in FG transistors
with different dimensions and in different processes.

7.1 Efficiency and Reliability of Fowler-Nordheim Tun-

neling in CMOS Floating-Gate Transistors

In FG transistors, erasure—and often writing—is achieved by tunneling electrons through
the tunneling junction, Ctun. The design of this junction has significant implications on the
speed, efficiency, and long-term reliability of writing and erasure. In this Section, the charac-
teristics of the two basic tunneling junction structures in standard CMOS are compared, and
the junction size that achieves minimal tunneling duration and oxide degradation is derived.

Brandon D. Rumberg Chapter 7. Floating-Gate Modeling 77

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1
10

-14

10
-12

10
-10

1/E
ox

, nm/V

J
tu

n
,

A
/µ

m
2

n+, 0.35µm, 3.3V tox

n+, 0.5µm, 5V tox

p+, 0.35µm, 3.3V tox

p+, 0.35µm, 5V tox

p+, 0.5µm, 5V tox

185.5 exp(−32.8 tox/Vox)

Vtun

d

n+

Vfg
Vtun Vtun

n-
n+

p+ Tunnelling
Junction

a

Vfg

Ctun

Vtun

Itun

Vfg

Vtun

Itun

Ctun

CT − Ctun

b c

p+p+ n+

Vfg
Vtun

Vtun

n-

n+ Tunnelling
Junction

Figure 7.1: Fowler-Nordheim tunneling characteristics. (a) Schematic of floating-gate tran-
sistor. (b) Equivalent tunneling circuit. (c) Structure of tunneling junctions. (d) Fowler-
Nordheim voltage-current measurements.

7.1.1 Fowler-Nordheim Tunneling Current

Fowler-Nordheim tunneling occurs when the electric field across the Ctun dielectric is
sufficiently high to distort the energy band such that the effective barrier thickness is re-
duced to 5nm [146]. An electric field (Eox) of 0.64V/nm is required to initiate tunneling for
the 3.2eV Si-SiO2 interface (from the floating gate to the oxide dielectric) [146]. The com-
plete expression for Fowler-Nordheim tunneling into SiO2 is derived in [147]. By neglecting
temperature dependence, by neglecting oxide barrier-lowering from image charge (which is
small at moderate fields in SiO2 [148]), and by dropping the pre-exponential electric field
term (which, within the region of interest, only has an affect on the curve fit values), the
tunneling current expression can be approximated by [149]

Jtun = α exp (−βtox/Vox) (7.1)

where tox is the thickness of the oxide barrier, Vox is the voltage across the barrier, and α
and β are constants related to the fabrication process and junction type. A thin oxide is
desired to minimize the tunneling voltage. In standard CMOS, the gate oxide is typically
used because it is thin and also of high quality, which benefits reliability and predictability.
Oxides thinner than 5nm should be avoided to deter direct tunneling; consequently, higher
voltage I/O devices for 2.5V (5nm), 3.3V (7–8nm), or 5V (14–15nm) operation are typically

Brandon D. Rumberg Chapter 7. Floating-Gate Modeling 78

used in fine-geometry processes [137]. Thus, our results using 3.3V and 5V devices from
0.35µm and 0.5µm processes provide a relevant insight into tunneling in new processes, as
well.

To remove electrons from the FG, Vtun is raised to a high voltage, typically higher than
the reverse breakdown voltage of the source/drain diffusions, but less than the breakdown of
the well-to-substrate junction. To avoid reverse breakdown, tunneling junctions are generally
placed within a well. Fig. 7.1(c) shows the two basic types of tunneling junctions: a p+

MOS capacitor formed as a standard pFET and an n+ MOS capacitor formed with n+

diffusions along the gate. The n+ junctions have traditionally been favoured for analog
memory applications [149], but p+ junctions are becoming common for standard CMOS
Flash applications [137]. In this Section, the static and transient characteristics of p+ and
n+ junctions are compared to determine recommendations for junction design.

FG programming characteristics can be engineered via the design of the tunneling junc-
tion: the width, length, tox, and diffusion type. Fig. 7.1(d) shows measured Fowler-Nordheim
tunneling characteristics for a variety of junction designs. Each trace was obtained by reading
Vfg through a buffer during a pulse to Vtun (i.e. typical tunneling conditions). All terminals
except Vtun and Vfg were held fixed, so the circuit can be modeled by Fig. 7.1(b). By reading
Vfg, we obtain Eox = (Vtun − Vfg)/tox and Itun = CT

d
dt

(Vfg), where CT is the total capaci-
tance connected to the node. Four different Ctun dimensions were used on a 0.5µm process
(µm×µm): 1.5×0.6, 3×0.6, 1.5×1.2, and 3×1.2. Five dimensions were used for the 0.35µm
p+ junctions (µm×µm): 0.5×0.5, 0.5×1, 0.5×2, 1×0.5, and 2×0.5. The 0.35µm n+ junction
was 0.4µm×0.35µm.

The p+ junction curves in Fig. 7.1(d) all align and are excellently described by the values
α=185.5A/µm2 and β=32.8V/nm. The traces align when normalized by area (i.e. plotted as
current density), which illustrates that, at least for large enough Vox to achieve fast tunneling,
the current comes from the full junction area rather than from the edges [149].

The curves for the n+ junctions correspond to the time after which the junctions have
recovered from depletion and have begun to tunnel (more details in the next Subsection).
For 0.5µm, the difference between the p+ and n+ junctions is likely caused by their different
flat-band voltages. The low current and Vtun-dependence of the 0.35µm n+ junction may be
explained by variations in the effective oxide thickness due to finite charge depth [150].

In summary, p+ junctions are more consistent from process to process and the p+ tun-
neling current is significantly higher in the 0.35µm process.

7.1.2 Temporal Dynamics of Tunneling Junctions

In addition to the Fowler-Nordheim tunneling traces, the temporal dynamics of the junc-
tions must also be considered. The variable capacitance of the MOS capacitor structures
can cause complex transient characteristics. Fig. 7.2a shows measured transient responses
of 0.5µm FGs for 20V Vtun pulses. This experiment is analogous to block erasure in which
all FGs, regardless of their initial value, should tunnel to approximately the same value.
The pulse duration for the p+ junctions is 340µs and the durations for the n+ junctions
have been adjusted to achieve an approximately equal amount of tunneling. Based on the
equivalent circuit in Fig. 7.1(b), Vfg will rise as electrons tunnel through Ctun. As Vfg rises,
the tunneling rate decreases due to a decreasing Vox. As a result, FGs with different ini-

Brandon D. Rumberg Chapter 7. Floating-Gate Modeling 79

tial voltages approach the same final voltage [see the p+ junctions in Fig. 7.2(a)]. The p+

junctions perform as expected given (7.1). The n+ junctions, however, experience a voltage-
dependent delay before they begin to tunnel. This delay is a result of the depletion region
that is formed underneath the gate in response to the Vtun pulse. Most of the tunneling
voltage is dropped across the depletion capacitance, resulting in a small oxide voltage and
thus no tunneling current. The depletion region collapses slowly as carriers are generated
from thermal generation and band-to-band tunneling, after which tunneling begins [151]. In
both processes, the p+ junctions had no measurable delay.

0 1 2
0

1

2

3

4

time, ms

fl
o

a
ti
n

g
-g

a
te

 v
o

lt
a

g
e

,
V

0.7 0.8 0.9 1 1.1

10
-1

10
0

(V
tun

 − V
fg

)/t
ox

, V/nm

d
e

p
le

ti
o

n
 r

e
c
o

v
e

ry
,

s
n+, 0.5V
n+, 1V
p+, 0.5V
p+, 1V

1.5 0.6
3 0.6
1.5 1.2
3 1.2

Ctun, µm µm
0.5µm

0.35µm

0.4 0.35
Ctun, µm µm

a b

Figure 7.2: Tunneling junction transient characteristics. (a) Transient characteristics of n+

and p+ junctions with different initial voltages. (b) Depletion recovery time of n+ junctions.

Fig. 7.2(b) shows that the depletion recovery time of the n+ junctions (duration between
the beginning of the tunneling pulse and the start of tunneling) is independent of the junction
area when plotted in terms of Vtun−Vfg. However, larger junctions have a smaller Vtun−Vfg
due to the capacitive division [Fig. 7.1(b)]; as a result, the delay time increases with Ctun.
Another result of the voltage-dependence is that the delay time is exponentially related to
the initial FG voltage. This is problematic for memory arrays because, for short erase times,
the post-erase distribution of FG values can have a complex and non-monotonic relation to
the initial distribution of FG voltages. These transient depletion characteristics are more
pronounced for typical tunneling voltages in the 0.5µm process than in the 0.35µm process.
But in both processes, the p+ junctions achieve faster tunneling times because of their higher
Itun in 0.35µm and because of their lack of a depletion recovery delay.

Overall, we suggest that p+ junctions are the best choice because they are faster, less
power to operate (since they are faster, the high-voltage generation circuitry operates for
less time), more consistent from process to process, and always available in CMOS process
design kits.

To verify reliability using high-voltage tunneling pulses, we have performed 100k write/
erase cycles on a 0.35µm FG with a p+ tunneling junction and a 200fF gate capacitor. The
FG’s threshold voltage was shifted 1V up and down in each cycle, transferring an accumulated
20nC of charge through Ctun. We observed only a 30% reduction in tunneling current.

Brandon D. Rumberg Chapter 7. Floating-Gate Modeling 80

7.1.3 Sizing of Tunneling Junctions for Speed and Reliability

Tunneling junctions are often made to be minimum size to minimize the coupling from
Vtun to Vfg. However, we will derive the optimal Ctun/CT ratio that minimizes the time to
tunnel to the post-erasure FG voltage, Vfg,e. Increasing the junction size has two opposing
trends: larger area increases the tunneling current, but it also increases the coupling onto
the FG which reduces the final voltage when Vtun steps down. To find the junction size that
tunnels to the final voltage in the shortest duration, we first write the tunneling current in
terms of Ctun and Vfg,e as

Itun = α(Ctun/γ) exp

− βtox(
1− Ctun

CT

)
Vtun − Vfg,e

 (7.2)

where γ is the unit capacitance (aF/µm2) of Ctun. By taking the derivative with respect
to Ctun and setting the LHS to ‘0’, we find that tunneling is maximized for the following
coupling ratio.

Ctun
CT

=
βtox
2Vtun

(
1 + 2

Vtun − Vfg,e
βtox

−

√
1 + 4

Vtun − Vfg,e
βtox

)
(7.3)

This equation is verified in Fig. 7.3 for 0.5µm FGs. For Vtun=20V, Vfg,e=2.5V, tox ≈14nm,
and β=32.8V/nm, the optimal coupling ratio is calculated to be approximately 3.1%. It
can be seen that the junction with 3.2% coupling reaches the final voltage 23% faster than
the larger junction (which suffers from excessive coupling) and 44% faster than the smaller
junction (which suffers from insufficient tunneling area, thus limiting Itun). In addition to
reducing the duration compared to a minimum-sized tunneling junction, the larger sizing
also increases the long-term reliability. This is because oxide degradation is related to the
charge-density that has passed through the junction [152]. By using a larger junction, the
charge-density is reduced, which contributes to an increase in long-term reliability. For
digital Flash applications, CT may not be large enough to achieve such a ratio, but analog
FG applications use large control-gate capacitors, often 100fF or more, and so will benefit
from this sizing.

-100 0 100 200 300 400 500 600

1

2

3

4

time, µs

V
fg

,
V

Ctun/CT = 5.7%

Ctun/CT = 3.2%

Ctun/CT = 2%

Figure 7.3: Optimal tunneling junction sizing.

Brandon D. Rumberg Chapter 7. Floating-Gate Modeling 81

7.1.4 Conclusion of Tunneling-Junction Study

Non-volatile memory is increasingly being included in standard CMOS products. Tun-
neling is used in most of these non-volatile memories, and so design methods for tunneling
junctions are of interest if they can improve speed, reliability, and/or energy efficiency. We
have presented answers to tunneling junction design decisions that offer improvement in all
three categories.

7.2 Characterization of Hot-Electron Injection Across

Varying Transistor Dimensions

CMOS FGs, particularly analog FGs, are often programmed using hot-electron injection.
In non-FG transistors, injection can still occur and is undesirable because of the damage that
constant injection can cause to the gate oxide. As a result, extended drain implants are added
to nFETs to minimize injection by reducing the electric field at the drain. Such prevention
measures are not added to pFETs, because the lower mobility and shorter mean-free path
of holes already inhibits injection in pFETs [153]. Nevertheless, pFETs are preferred for
injection in CMOS FGs because they do not have extended drains.

Modeling of injection is more complex than modeling of tunneling because injection is a
multivariate phenomena (i.e. it depends upon both the channel current and the channel-to-
drain electric field) and because injection is defined by a larger number of process parameters.
Most injection modeling has focused on nFETs, which further complicates injection modeling
for CMOS FGs wherein pFETs are preferred over nFETs. To improve modeling of CMOS
FGs, we present injection data from 30 FGs with varying widths, lengths, oxide thicknesses,
and junction depths. We show that two extracted parameters are sufficient to describe these
data.

7.2.1 Injection Measurement

Figure 7.4(a) shows our setup for measuring injection. The FG transistor is placed in
a linearized loop, as described in Chapter 6. The loop maintains constant Id and constant
Vsd; consequently, Iinj is constant. To obtain Iinj, the voltage at Vcg is measured during the
experiment. Electrons injected onto the floating gate give the FG voltage a more negative
charge, which the linearization loop counteracts by raising Vcg. As a result, Iinj = Cg

dVcg
dt

.
Figure 7.4(b) shows the measurement of one value of Iinj. The slope of Vcg is used to ob-

tain Iinj for one pair of Id and Vsd values. A full injection characterization of a FG transistor
is obtained by repeating this measurement for multiple values of Id and Vsd, which are con-
troled by V1 and V2, respectively. An ammeter is used to measure Id at each value of V1. The
op-amp forces Vsd = V2. The full injection characterization for one FG transistor is shown
in Fig. 7.4(c). In the remainder of this Section, we describe a method for parameterizing
injection in pFETs.

Brandon D. Rumberg Chapter 7. Floating-Gate Modeling 82

A

V1

V2

Iinj

Id

Vcg

Vs

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

Time (s)

V
o

lt
a

g
e

V
cg

 (Measured)

V
cg

 (Fit)

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Drain Current (A)

d
/d

t
V

c
g

(V
/s

)

(b)(a)

(c)

Vds = 3.5V

Vds = 5.5V

Figure 7.4: Methodology for characterizing injection. (a) Measurement setup. The injection
current is obtained by measuring the change in Vcg under constant drain current and source-
to-drain voltage. (b) Measurement of the change in Vcg. The slope is extracted to obtain the
injection current. (c) Measured injection rate at various drain currents and source-to-drain
voltages.

7.2.2 Injection Parameterization

Hot-electron injection in pFETs is a multi-event process [149]. First, a hole crossing the
channel is accelerated in the high-field region of the drain. Second, this hot hole impacts

Brandon D. Rumberg Chapter 7. Floating-Gate Modeling 83

the lattice and thus releases a hot electron. And third, this hot electron is swept over the
gate-oxide potential-barrier to the more positive voltage of the gate. Each event relies on
the previous and has a limited probability of occurring.

Various models of the injection process have been developed [154, 155]. We have ob-
tained the best matching to experimental data using the “lucky-electron model,” which was
developed by Shockley in 1961 for p-n junctions [156], applied to hot-carrier gate current in
nFETs by Hu in 1979 [157,158], and then extended to pFETs by Ong in 1990 [154].

In the lucky-electron interpretation, each carrier has a limited probability of causing the
chain of events that lead to an electron being injected onto the gate. Therefore, increasing the
channel current increases the injection current by simply increasing the number of injection
opportunities. Additionally, increasing the source-to-drain voltage will increase the electric
field near the drain (while the device remains in saturation) and will thus increase the
probability that a hole will create a hot electron. The last key to facilitate injection is
that the gate-to-drain voltage should be high enough to sweep the hot electrons over the
gate-oxide potential barrier.

Before we introduce the lucky-electron equation, let us revisit the subthreshold-region
injection approximation that we used to simplify hand calculations in Chapter 6:

Iinj ≈ βIs
αeVsd/Vinj (7.4)

where Is is the source current, and β, α, and Vinj are device-dependent fits [136,159]. In Fig.
7.4(c), the subthreshold region is approximately the range where Id < 1µA. Since the slope,
α, is a weak function of Vsd in the subthreshold region, (7.4) is valid if Vsd is constrained
to a limited range. This equation is consistent with the interpretation of injection that was
described above: greater current tranlates to more opportunities for injection and greater
source-to-drain voltage translates to higher probability of injection. However, (7.4) is clearly
not sufficient for all operating regions.

The equation that we use for lucky-electron injection, shown below in (7.8), comes from
[160]; here we summarize the elements that make up the equation. The form of the lucky-
electron equation is [154]

Iinj = γIdEm exp

(
− δ

Em

)
(7.5)

where γ and δ are fits that are invariant to the fabrication process and to the dimensions of
the device, and Em is an approximation for the maximum field at the drain. The maximum
field can be calculated as [160]

Em =
Vsd − Vsd,sat

l
=
Vgd + VT0

l
(7.6)

where Vsd,sat is the saturation voltage, VT0 is the threshold voltage, and l is the length of the
velocity saturation region near the drain, which can be calculated as [160]

l = 0.22t1/3ox x
1/2
j (7.7)

where tox is the gate oxide thickness and xj is the diffusion-area junction depth, both of
which can be obtained from simulation model files. Combining these yields the expression

Brandon D. Rumberg Chapter 7. Floating-Gate Modeling 84

10
-8

10
-7

10
-6

10
-5

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

I
d

I in
j

0.35µm, 3V

0.35µm, 5V

0.5µm, 5V

(b) (c)

(a)

2.5 3 3.5 4 4.5 5

x 10
-8

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

(0.22 t
ox

0.33
 X

j

0.5
)/(V

gd
+V

t
)

I in
j/[

I d
 (

V
g
d
+

V
t)]

0.35µm, 3V

0.35µm, 5V

0.5µm, 5V

Fit

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
10

-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

1/(V
gd

+V
t
)

I in
j/[

I d
 (

V
g
d
+

V
t)]

0.35µm, 3V

0.35µm, 5V

0.5µm, 5V

Figure 7.5: Extraction of injection parameters. (a) Raw injection current data for 30 FG
transistors with various dimensions and in different processes. (b) Injection curves normal-
ized for transistor W and L and also for Vsd. (c) Injection curves further normalized for
oxide thickness and junction depth. The fit uses (7.8) with γ = 3 and δ = 4.9× 108.

that we use to model injection

Iinj = γId
Vgd + VT0

0.22t
1/3
ox x

1/2
j

exp

(
−
δ0.22t

1/3
ox x

1/2
j

Vgd + VT0

)
(7.8)

To extract the parameters γ and δ, we characterized 30 FG transistors:

1. In a 0.35µm CMOS process: Seven different transistor dimensions (W/L) were used
for the FGs (µm/µm): 2/0.5, 2/1, 2/2, 1/0.7, 4/0.7, 8/0.7, and 8/2. For each size,

Brandon D. Rumberg Chapter 7. Floating-Gate Modeling 85

both a thin-oxide (3V) and a thick-oxide (5V) device are included for a total of 14
devices.

2. In a 0.5µm CMOS process: Sixteen different transistor dimensions (W/L) were used
for the FGs (µm/µm): 3/0.6, 6/0.6, 12/0.6, 24/0.6, 3/1.2, 6/1.2, 12/1.2, 24/1.2, 3/2.4,
6/2.4, 12/2.4, 24/2.4, 3/4.8, 6/4.8, 12/4.8, and 24/4.8. The 0.5µm FGs were all thin-
oxide (5V) devices.

The 0.5µm devices were measured at Vsd=5V. The 0.35µm devices were measured for six
linearly spaced Vsd values from 4.6V to 5.5V.

All of the measured data are shown in their raw form in Fig. 7.5(a). These data are
first normalized by transforming them into the form of (7.8), but without normalizing for l.
This normalization is achieved by plotting the data using 1/ (Vgd + VT0) for the x-axis and
using Iinj/ [Id (Vgd + VT0)] for the y-axis. The result is shown in Fig. 7.5(b). Each of the
three device types cluster into straight lines, regardless of the source-to-drain voltage and
regardless of the width (W) and length (L) of the transistor. If Vsd and Id are held fixed,
then increasing W/L will increase the injection current because a smaller value of Vsg will
be required, which will thus increase Vgd. However, when the data are visualized in terms of
Vgd, then the dependence on W/L disappears.

The final step in extracting the injection parameters is to normalize across device types.
In Fig. 7.5(b), the two 0.35µm devices have the same junction depth xj, and the two 5V
devices have approximately the same oxide thickness tox. By further normalizing the data by
l, all three devices cluster on a single line. Consequently, devices with varying size and across
different processes can be described by a single equation, (7.8), and by two parameters, γ = 3
and δ = 4.9 × 108. The only other parameters (tox, xj, and VT0) can be obtained from the
device model. As a result, it is simple to incorporate injection into floating-gate simulation
models, such as [144].

7.3 Conclusion and Future Work

In this Chapter we have presented detailed characterization of the charge-manipulation
mechanisms in FG transistors. These mechanisms are not modeled in circuit simulators, so
our results can help circuit designers to more accurately simulate FGs. Additionally, these
results are beneficial for designing the dimensions of FG transistors.

An important characteristic that will be studied in future work is the accuracy of injection-
based programming. High levels of programming accuracy can be obtained by applying ever
smaller injection pulses as the programming target is approached. However, future work
should examine the accuracy limitations at various injection rates by determining the noise
component of the injection current at arbitrary operating points.

86

Chapter 8

A Regulated Charge Pump for
Programming Floating-Gate
Transistors

In Chapter 6, we presented a nonvolatile analog memory cell that is based upon floating-
gate transistors, and which can be used to create low-power programmable analog systems
for embedded applications. This memory cell, as well as any other memory cell that is based
upon floating-gate transistors, requires write and erase voltages that exceed the nominal
supply voltage. To use analog floating-gate transistors in resource-constrained applications,
such as wireless sensor networks, these program voltages should be generated within the
analog signal processor, and should be impervious to the unstable supply voltages that are
often found in such applications. To accommodate these needs, we present a regulated
charge-pump step-up converter in this Chapter. This charge pump is used to generate
tunneling (i.e. erasure) voltages in our field-programmable analog array in Chapter 10.

8.1 Floating-Gate Programming Voltages in Standard

CMOS

The most common form of solid-state nonvolatile memory is the floating-gate transistor—
a CMOS-compatible device that is the basis of Flash memory [133], and that can also be used
to create dense, low-power, programmable analog parameters [161]. Floating-gate transistors
store information in the form of a trapped charge on an electrically-floating polysilicon gate.
Under nominal operating voltages, this charge will remain on the gate. To program a different
amount of charge onto the gate, higher voltages are used to induce channel hot-electron
injection and Fowler-Nordheim tunneling, both of which enable electrons to pass to and from
the gate via the gate oxide. These processes require voltages that exceed the chip’s nominal
operating voltage, but which should be generated on-chip “as needed” to minimize power
and complexity in embedded systems. Figure 8.1 illustrates the generation of programming
voltages for a floating-gate memory array. The programming voltages are greater than the
rated voltage of the core devices—even greater than the source/drain breakdown voltages.
Consequently, the voltage generators must be designed to ensure reliability, in addition to

Brandon D. Rumberg Chapter 8. Charge Pump 87

High-Side
Switch

Charge Pump

High-Voltage
Charge Pump

Vtun

Vdd

Vdd,prog

Figure 8.1: The use of charge-pump step-up converters to generate write (Vdd,prog) and erase
(Vtun) voltages for a nonvolatile memory array.

minimizing the energy consumption and size.
As described in Chapter 7, the efficacy of the charge-manipulation processes (i.e. hot-

electron injection and Fowler-Nordheim tunneling) are functions of the gate-oxide thickness
(tox) and the source-/drain-junction depth (Xj). Figure 8.2(a) shows how these features scale
in standard CMOS [162]. Charge retention in floating-gate transistors is compromised by
direct tunneling when tox < 5nm [146]. This fact is born out by the continued use of 6–7nm
gate oxides in bleeding-edge NAND Flash processes while logic processes have continued
scaling to 0.8nm gate oxides [163]. Consequently, floating gates that are built in standard
logic processes below the 250nm node should use thick-oxide I/O devices (tox,FG) that are
rated for operation at 2.5V or greater.

Figure 8.2(b) shows the scaling of floating-gate programming voltages in standard CMOS.
The tunneling voltage (Vtun) was calculated for 1ms erase times using (7.1). Vtun stops
scaling at the 250nm node because of the transition to thick-oxide devices to maintain low-
leakage operation. The injection supply voltage (Vdd,prog) was calculated for 50ms write
times using (7.8). Despite the stagnant oxide thickness, Vdd,prog continues to scale because
of Xj. Note that Vtun is always greater than the drain-to-body breakdown voltage (Vjbkdn),
which indicates the difficulty of generating Vtun using the available devices in a given CMOS
process.

To generate the programming voltages, step-up converters must be used. To minimize
energy consumption, these converters should only be enabled when they are needed. The
step-up converters will typically be powered by the chip Vdd. The step-up ratios for tunneling
and injection are shown in Fig. 8.2(c). The step-up ratio is lowest for the 250nm through
600nm nodes because 1) below the 250nm node, higher-voltage I/O devices are used to make
low-leakage floating gates and 2) above the 600nm node, devices are operated at 5V even
though they can accommodate much higher voltages. However, the rated Vdd of a technology

Brandon D. Rumberg Chapter 8. Charge Pump 88

 90nm 130nm 180nm 250nm 350nm 600nm 1600nm

10
−8

Technology

M
et

er
s

 90nm 130nm 180nm 250nm 350nm 600nm 1600nm
0

5

10

15

20

Technology

V
ol

ta
ge

 90nm 130nm 180nm 250nm 350nm 600nm 1600nm
0

5

10

Technology

R
at

io

(a)

(c)

V
dd,prog

/V
dd

V
tun

/V
dd

V
tun

/V
dd

 (practical)

(b)

V
dd

V
dd,prog

V
jbkdn

V
tun

t
ox

t
ox,FG

X
j

Figure 8.2: Scaling of write and erase voltages in standard CMOS. (a) Scaling of junction
depth (Xj) and oxide thickness (tox) [162]. To minimize leakage in floating-gate transistors,
thicker oxide I/O devices are used to keep tox,FG > 5nm. The programming voltages are
determined by these parameters. (b) Scaling of critical programming voltages: the core
supply voltage (Vdd), the write (i.e. injection) voltage (Vdd,prog), the drain-to-body breakdown
voltage (Vjbkdn), and the erase (i.e. tunnel) voltage (Vtun). (c) Ratio of the write (Vdd,prog)
and erase (Vtun) voltages to the core supply voltage.

node causes too much hot-electron injection for stable floating-gate operation. Consequently,
the 250nm through 600nm nodes must use lower supply voltages in practice, so the ratios
for these nodes are essentially one integer value higher than shown in the Figure.

Brandon D. Rumberg Chapter 8. Charge Pump 89

In summary, Fig. 8.2 provides some constraints on the design of voltage step-up converters
for floating-gate programming. Additional constraints that are specific to embedded analog
applications include small size with minimal external components, fast start-up and shut-
down, and consistent voltage generation in the presence of potentially noisy supply voltages.
Voltage consistency is especially important since it affects the programming accuracy. In
the remainder of this Chapter, we describe our design of an integrated high-voltage charge
pump for generating the tunneling voltage. The charge pump is regulated to generate a
consistent voltage for accurate programming. This charge pump has been fabricated in a
0.35µm standard CMOS process without high-voltage add-ons. This charge pump can easily
be adapted to generate the injection voltage; we have focused on generating the tunneling
voltage because the high step-up ratio and the operation beyond the junction-breakdown
voltage makes it more difficult to generate tunneling voltages.

8.2 Overview of Charge Pump Circuitry

8.2.1 Charge Pump Topologies

A “charge pump,” sometimes called a “voltage multiplier,” is a type of switched-capacitor
circuit that is used for voltage conversion. To step up a voltage Va, a charge pump first
samples Va onto a capacitor and then raises the bottom plate of the capacitor by Vb, at
which point the voltage of the top plate of the capacitor is Va + Vb. By alternately sampling
voltages onto multiple capacitors, the voltage can be increased in a succession of stages.

Some charge pump topologies have exponential voltage growth as the number of stages
increases [164], but the charge-transfer switches in these topologies are subjected to exponen-
tially higher voltages in each stage. This voltage stress is a limitation, and as a result, charge
pump topologies with linear voltage growth are more common [165]. The Cockcroft-Walton
charge pump (which Cockcroft and Walton built for their Nobel-prize winning experiments in
which they disintegrated the atomic nucleus [166]) has linear voltage growth and is commonly
used for charge pumps that are built from discrete parts. However, the Cockcroft-Walton
topology connects the capacitors in series, making it highly sensitive to stray capacitance on
the bottom plates, which can be large in integrated circuits—the Cockcroft-Walton topology
is thus inappropriate for integration [167].

Figure 8.3(a) shows an idealized Dickson charge pump [167], which is the standard charge
pump topology for integrated circuits because of its linear voltage growth and its insensitivity
to stray bottom-plate capacitance. The charge pump shown in the Figure has two stages
that are clocked by alternating clock phases φ1 and φ2. The sequential operation of the
charge pump is illustrated in Fig. 8.3(b). In the first stage, when φ1 is open and φ2 is closed,
node V1 is charged to Vdd. Since φ1 is low at this time, the voltage across the first pumping
capacitor (Cp1) is Vdd. Then φ2 opens and φ1 goes high, thus raising the bottom terminal
of Cp1 to Vdd. Since Cp1 has sampled Vdd, V1 is raised to 2Vdd. This process repeats in the
second stage, where Cp2 is charged by Cp1 while φ1 is closed. Although Cp1 and Cp2 form
a capacitive divider that attenuates the voltage that was sampled onto Cp1 in the previous
cycle, in steady-state, Cp2 has charge from the previous cycle such that V2 is sampled at

Brandon D. Rumberg Chapter 8. Charge Pump 90

Cp2Cp1

φ1 φ2

φ1V1 V2Vdd

Vout

CL IL

φ2 φ2

(a)

φ1

φ2

V1

V2

Vout

Vdd

2Vdd

3Vdd

(b)

Figure 8.3: (a) Ideal charge pump. (b) Operation of the ideal charge pump.

2Vdd.
1 Then φ2 goes high and V2 is raised to 3Vdd. The final output voltage is obtained

by sampling the last stage onto the load capacitor CL. Higher voltages can be generated
by cascading more stages (N). Each stage adds Vdd to obtain a total open-circuit output
voltage of Vout = (N + 1)Vdd.

When a load current (IL) is drawn from the charge pump, Vout is reduced. In equilibrium,
the load draws a charge of ILT during each cycle of duration T . During a cycle, each pumping
capacitor replenishes this charge to its successor. As a result, the voltage to which each
capacitor pumps is reduced by ILT/Cp. This lost voltage accumulates for each capacitor
and yields a total voltage of

Vout = (N + 1)Vdd −N
IL
Cpf

(8.2)

where f = 1/T is the pumping frequency [168]. A nonideal charge pump will have additional
sources of voltage loss caused by the “on” resistance of the switches and also caused by
the stray capacitance of the switches, which forms a capacitive divider with the pumping
capacitors. However, these losses can be minimized by designing the switches to have a small
voltage drop for the expected load current and by designing the pumping capacitors to be
much larger than the stray capacitance.

8.2.2 Charge Pump Regulation

When a charge pump is used to generate write/erase voltages, Vout must be stable and
consistent to facilitate accurate floating-gate programming. However, it is evident from (8.2)
that Vout has an amplified dependence on the supply voltage Vdd, which may be inconsis-
tent and noisy in a battery-powered sensor node with a duty-cycled radio. Vout also has a

1For example, on the j-th cycle of φ1, the voltage at V2 is the superposition of the voltage that is sampled
at V1 on the previous half-cycle (which is raised by Vdd when the bottom plate goes high) and the voltage
at V2 on the previous cycle

V2(j) =
Cp1 (V1(j − 1/2) + Vdd) + Cp2V2(j − 1)

Cp1 + Cp2
(8.1)

The circuit is designed with Cp1 = Cp2 and V1 equals Vdd on the half cycles. If the circuit is in equilibrium,
then V2(j) = V2(j − 1) = 2Vdd.

Brandon D. Rumberg Chapter 8. Charge Pump 91

(b)

ROL

Ctot

(N+1) Vdd

Vtun

IL

Charge Pump

Current-
controlled
oscillator

Vtarg R1

R2

clk Clock
Driver

Vdd

IL

Vout

+
−

(a)

Vfb

ROL

IL

Vout

RF

(c)

+-

+- (N+1) Vdd

K (r Vtarg−Vout) Ctot

Figure 8.4: (a) Block diagram of a regulated charge pump. (b) Linear model of an unregu-
lated charge pump. (c) Small-signal model of a regulated charge pump.

dependence on the load current IL, which may vary as memory cells begin and finish pro-
gramming. Furthermore, Vout is set to integer multiples of Vdd, which is a limitation for
setting the sensitive program voltages to optimal values. To achieve reliable programming,
the charge pump should be regulated to a constant output voltage.

Examining (8.2), only two quantities can be adjusted at runtime to regulate the output
voltage: Vdd and f . Regulation using Vdd does not actually modulate the supply voltage, but
instead modulates the clocking voltages φ1 and φ2 [169, 170]. These clocking voltages con-
tribute the NVdd portion of Vout. These variable-pump-voltage regulators have the advantage
of reducing the level of clock-feedthrough ripple on Vout, which must otherwise be removed
with a large load capacitor. However, variable-pump-voltage regulators have the disadvan-
tage that they constantly operate at their maximum frequency, which results in wasted power
from unnecessarily charging and discharging all parasitic capacitances. Variable-frequency
regulators are thus a more efficient alternative. The simplest type of variable-frequency reg-
ulator is the “skip” regulator, which “turns on” a constant-frequency oscillator when Vout is
less than the desired voltage and otherwise turns the oscillator off [171]. Some regulators
have used a combination of variable-voltage and skip-mode [172,173]. Skip regulators exhibit
sporadic bursts of pumping which create large ripple on the output. A better alternative
is a true “variable-frequency” regulator that linearly increases or decreases the frequency to
regulate Vout. Aaltonen and Halonen previously used this method of regulation [174], and
we have used the same basic method. Our charge pump achieves higher efficiency, smaller
size, and better load regulation.

A generic block diagram for a variable-frequency regulated charge pump is shown in

Brandon D. Rumberg Chapter 8. Charge Pump 92

Fig. 8.4(a). A voltage-divider (R1,2) reduces the output voltage to the chip’s rated voltage
range. The difference between this reduced voltage and the desired voltage (Vtarg) is used to
modulate the pumping frequency until the output voltage locks onto the desired value. In
addition to setting the output voltage, regulation also reduces the output resistance, increases
the power-supply rejection, and shortens the start-up time compared to an open-loop charge
pump.

The performance of an open-loop charge pump can be obtained by modeling it as the
RC circuit shown in Fig. 8.4(b). From (8.2), the open-circuit voltage is (N + 1)Vdd and
the open-loop output resistance is ROL = N/(Cpf). The total capacitance at the output
(Ctot) combines the true load capacitance (CL) with the distributed charge pump capacitance
Ceq = NCp/3 [168]. The open-loop performance parameters are summarized in Table 8.1.

Table 8.1: Charge Pump Performance

Open loop Closed loop

Output resistance ROL = N/(Cpf) RCL = ROL/K

Power supply rejection PSRROL = 1/(N + 1) PSRRCL = KPSRROL

Start-up time constant τOL = ROLCtot τCL = τOL/K

It is more difficult to determine the closed-loop regulation performance because of ROL’s
dependence on the operating point (i.e. ROL depends upon f , which is a function of Vout and
IL), which makes the regulation loop nonlinear. To simplify the analysis, the small-signal
model from [174] is adapted and shown in Fig. 8.4(c). The variables are all defined in Table
8.2. The dc voltage source has been replaced by two small-signal dependent sources. The
bottom source models the circuit’s sensitivity to Vdd. The top source models the effect of
the frequency-modulating feedback. The loop gain, K, is the product of 1) the attenuation
due to the voltage divider (1/r), 2) the voltage-to-frequency conversion gain KF of the error
amplifier and oscillator, and 3) the frequency-to-voltage conversion gain of the charge pump

KCP =
dVout
df

=
ILN

f 2Cp
(8.3)

Also, the resistor RF models the resistance of the voltage divider, which may consist of linear
resistors or may be implemented with a chain of diode-connected pFETs to save space.

To solve for the regulation performance, first equate the currents at Vout

1

ROL

[(N + 1)Vdd +K (rVtarg − Vout)− Vout] = Vout

(
sCtot +

1

RF

)
+ IL (8.4)

Then solve for Vout, noting that by design K
ROL
� 1

ROL
+ 1

RF

Vout =
rVtarg + N+1

K
Vdd − ROL

K
IL

sCtotROL
K

+ 1
=
rVtarg + 1

PSRRCL
Vdd −RCLIL

sτCL + 1
(8.5)

The output consists of a superposition of three components: the scaled-up target voltage,
which is the desired output, as well as unwanted contributions from the supply voltage and

Brandon D. Rumberg Chapter 8. Charge Pump 93

Table 8.2: Charge Pump Variables

N number of stages

Vtarg target voltage

IL load current

ROL output resistance of open-loop charge pump

RF resistance of voltage divider

Ctot = CL + Ceq total output capacitance

CL load capacitance

Ceq = NCp/3 distributed charge pump capacitance

K = KFKCP/r loop gain

KF voltage-to-frequency gain of the error amplifier and oscillator

KCP = ILN/(f
2Cp) frequency-to-voltage gain of the charge pump

r value of voltage division

the load current, which are both suppressed by the loop gain. The closed-loop performance
parameters, which are summarized in Table 8.1, are all improved by a factor of the loop gain
compared to the open-loop performance. It should be noted that the regulation circuitry
adds little area and power compared to the charge pump. In Section 8.5, we will connect
these performance parameters to actual circuit parameters.

In the remainder of this Chapter, we describe the subcircuits and the measured perfor-
mance of the regulated charge pump.

8.3 The Charge Pump Stages

The primary challenge when designing a charge pump that approaches the ideal charac-
teristics in (8.2) is the design of the charge-transfer switches (CTS). Early integrated charge
pump designs used diodes or diode-connected transistors to implement the CTS [167]. Such
designs rely upon the uni-directional current flow of diodes to only allow charge transfer
onto a pumping capacitor when its voltage is exceeded by the voltage of the preceding stage.
These designs suffer from poor voltage gain and poor efficiency because of the accumulation
of diode voltage drops. As a result, several charge pump circuits have been developed over
the past two decades to dynamically control the on/off state of the CTS and thus achieve
superior performance.

As illustrated in Fig. 8.2(b), Fowler-Nordheim tunneling requires voltages so large that
the drain-to-body junction will break down. To avoid break down, transistors in the CTS
must inhabit isolated wells so that all voltage differentials within the CTS are at safe values.
Since it is not always possible to isolate nFETs in CMOS processes, it is best for high-voltage
charge pumps to use pFETs exclusively.

Most all-pFET CTS circuits are based upon the circuit shown in Fig. 8.5(b) [175]. The
CTS is shown within the dashed line and consists of 1) Msw, the switch that transfers
charge between neighboring stages; 2) Mbt, a “boosting” switch that enforces the correct dc

Brandon D. Rumberg Chapter 8. Charge Pump 94

operating point onto the otherwise capacitively-coupled gate of Msw; and 3) Cbt, a capacitor
that ac-couples the on/off clock (φ1b) up to the higher local voltage of the CTS.

(a) (b)

Msw

Mbt
Vx

Cbt CpCp

φ1 φ2φ1b

V2V1

CpCp

φ1 φ2

φ1V1 V2

φ1, V1

φ2, V2

φ1b, Vx

(c)

Figure 8.5: (a) Charge-transfer switch. (b) A common all-pFET charge-transfer switch. (c)
Non-overlapping clock scheme for the all-pFET charge-transfer switch in (b).

Figure 8.5(c) shows the clock sequence that yields correct operation of the all-pFET CTS.
First, φ1 goes high to prepare for charge transfer. When φ1 goes high, it shuts off Mbt, thus
sampling the source of Msw (V2) onto the gate of Msw (Vx), which keeps Vx at the correct dc
operating point (i.e. the gate is referenced to the source). Next, φ2 is taken low to prepare
for charge transfer. φ2 goes low after φ1 goes high so that the correct voltage is sampled onto
node Vx. To transfer charge, φ1b is taken low to turn on Msw. After charge transfer, φ1b is
raised to disconnect V2 from V1. φ1b goes high before φ2 so that no charge leaks backwards
from V2 to V1.

The charge pump circuit that we use is based upon the charge pump presented by Li et
al in [176] (simulation results only). The charge pump’s CTS is similar to the all-pFET CTS
in Fig. 8.5(b), but has modifications (described below) that reduce the voltage stress on the
transistors and also to reduce the ripple on the output voltage. This charge pump is shown
in Fig. 8.6(a).

Each stage has two parallel paths—a top path through Msw1 and Msw3, and a bottom
path through Msw2 and Msw4. The parallel paths conduct in opposite phases, which helps
to reduce the ripple. Furthermore, the opposing phases of the parallel paths offers a low-
complexity means for clocking the second set of switches (Msw3 and Msw4). This second
set of switches reduces the voltage stress on the transistors in the off-phase. In a standard
charge pump, the voltage across an off switch is 2Vdd. By adding the extra switches in this
charge pump, the off voltage is divided across the series switches so that no pair of terminals
on the transistors is exposed to a voltage higher than Vdd [176].

To provide the correct voltage for the transistor wells, the active well-biasing technique is
used [177]. This technique is implemented by “bulk-biasing” transistors Mbb∗. Each pair of
Mbb∗ transistors connects the well to the higher voltage terminal of the source or the drain.
In the original implementation of this charge pump [176], active well-biasing was not used
for switches Msw3 and Msw4, but instead the wells were connected to Vstage,out. In steady-
state, this was acceptable because they included a grounded capacitor at Vstage,out to hold the
higher of Vm1 and Vm2. However, we have removed this capacitor and included well-biasing
on these switches to avoid activating the parasitic vertical BJT during startup. Reducing

Brandon D. Rumberg Chapter 8. Charge Pump 95

φ1b

φ2

φ2b

φ1

φ2 φ1bφ1 φ2b

clk

(b)

Msw1

Mbt1

Mbb1 Mbb2

Cbt1 Cp1

Msw3

Mbb5 Mbb6

Vx1

Vm1

Msw2

Mbt2

Mbb3 Mbb4

Cbt2 Cp2

Msw4

Mbb7 Mbb8Vx2

Vm2

Vstage,in Vstage,out

φ1b φ2

φ2b φ1

Charge
Pump
Stage

Vdd

φ1
φ1b
φ2
φ2b

Charge
Pump
Stage

Charge
Pump
Stage

Vout

(a)

Figure 8.6: (a) The all-pFET charge pump stage [176] that is used throughout this work.
(b) Our 4-phase non-overlapping clock generator circuit. Feedback of all outputs via NAND
gates has been added to guarantee that φ1 and φ2 do not overlap.

the startup power is important for charge pumps that are used for tunneling because the
startup energy dominates the overall energy for the short tunneling pulses.

We have fabricated this charge pump in a standard 0.35µm CMOS process. The size of
the charge pump, including all regulation circuitry, is 230µm × 300µm (a die photograph
is shown in Fig. 8.7). The design specifications are summarized in Table 8.3. The area-
optimization routine in [168] was used to obtain initial values for the number of stages and
Cp, which were further optimized via simulation.

Although the charge pump contains many devices, its size is dominated by the pumping
capacitors Cp∗. Each Cp in a double-branch charge pump is only half of the value that
it would be in a single-branch charge pump with commensurate performance, so the total
capacitance is no more than for a single-branch charge pump.

The clock generator circuit is shown in Fig. 8.6(b). In contrast to the clock generator
in the previous implementation [176], which used a non-overlapping clock to trigger the two

Brandon D. Rumberg Chapter 8. Charge Pump 96

Figure 8.7: Die photograph of the complete regulated charge pump circuit. The size is
230µm × 300µm.

non-overlapping paths, we have enclosed the left and right halves of the clock generator
circuit into a global loop to ensure that φ1 and φ2 are non-overlapping. Most of the area of
the clock generator is consumed by the clock drivers for φ1 and φ2, which are necessary for
all charge pumps.

In summary, this all-pFET charge pump fulfills the requirements of reliably and efficiently
generating high voltages for Fowler-Nordheim tunneling. Measured open-loop performance
is shown alongside the closed-loop performance in Section 8.5.

8.4 The Current-Controlled Oscillator and the Edgifier

In Section 8.2.2, we explained why variable-frequency regulation is a good choice for low-
power, low-ripple regulation. To modulate the frequency in our variable-frequency regulator,
we have designed a current-controlled oscillator. In comparison to voltage-controlled oscilla-
tors, current-controlled oscillators naturally offer linear input-to-frequency gain over a wide
operating range, and are also easily limited so that the maximum frequency of the charge
pump is not exceeded during transients. Our current-controlled oscillator, shown in Fig. 8.8,
is based upon a three-stage current-starved ring oscillator. The frequency increases linearly
with Iin. The current-to-frequency gain has been measured to be approximately 2kHz/nA
over a range of 100Hz to 10MHz.

One of the primary attractions of variable-frequency regulation is that under light load
conditions, the clock frequency reduces so that power consumption is minimized. However,
the clock signals that are generated by low-frequency oscillators have long rise and fall times.
These slow-moving edges create excessive short-circuit current when they are connected
directly to a logic gate. Unlike the dynamic current that charges fan-out gates, this short-

Brandon D. Rumberg Chapter 8. Charge Pump 97

Table 8.3: Charge Pump Specifications

Technology 0.35µm CMOS

Vdd 2.5V

Stages 6

Cbt 110fF

Cp 1.5pF

Mbb 3µm x 0.35µm

Mbt 3µm x 0.35µm

Msw 5µm x 0.35µm

Iin

0

1

Edgifier Vout

enable

Edgifier

Vbp

Vbn

Vin Vout

enable

Iin
Vout

(a)

(b)

Figure 8.8: Our three-stage current-controlled oscillator with low-power edge-sharpening.
(a) Block diagram. (b) Schematic.

circuit current performs no useful function and should not be allowed to dominate the power
consumption.

Techniques to minimize short-circuit power dissipation include 1) equalizing the rise/fall
times between the input and the output [178], which is not an option when buffering the
output of an oscillator, or 2) setting the supply voltage below the sum of the threshold
voltages so that the “push” and “pull” branches are not simultaneously “on” [179], which
creates system-compatibility issues (e.g. multiple supply voltages and level translation) that,
in some scenarios, may negate any advantages. The other way to minimize short-circuit
power dissipation is to control the “push” and “pull” branches with separate non-overlapping
signals. This technique is most commonly used when driving large loads—such as in clock
buffers [180] or in buck converters [181]—for which it is difficult to equalize the input and
output rise/fall times, and for which the consequences of short-circuit current are dire because
large transistors with large current-sourcing capabilities are used. Our contribution in this
oscillator is to adapt this non-overlapping gate-drive concept for use with slowly-varying

Brandon D. Rumberg Chapter 8. Charge Pump 98

Vin Vout

Vbn

Vbp

M8B

M8T

M1B

M1T

M2B

M2T

M3B

M3T

M4B

M4T

M5B

M5T

M6B

M6T

M7B

M7T

M9T

M9B

n-drive

p-drive

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

In
p

u
t

(V
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

2

G
a

te
 D

ri
v
e

 (
V

)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

2

O
u

tp
u

t
(V

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

Time (ms)

S
u

p
p

ly
 C

u
rr

e
n

t
(µ

A
)

Edgifier

Inverter

Edgifier

Inverter

n-drive

p-drive

(a)

(b)

(c)

(d)

(e)

Figure 8.9: (a) Our “edgifier” circuit drives inverter M8B,T with non-overlapping gate signals
to minimize the short-circuit current that would otherwise result from slowly rising/falling
input signals. (b–e) Simulation comparing the edgifier to a single inverter. (b) Input gen-
erated by ring oscillator. (c) Non-overlapping gate drive signals generated by the edgifier.
(d) Output signals of an edgifier and an inverter in response to the slowly rising/falling
input in (b). (e) Supply current of an edgifier and an inverter. Non-overlapping gate drive
significantly reduces the energy of each edgifier transition.

input signals. We call this the “edgifier” concept.
Our edgifier circuit, which is shown in Fig. 8.9(a), is based upon the CMOS buffer with

non-overlapping gate drive presented by Yoo [180]. Yoo’s circuit consists of a push/pull
buffer (M8T,B), the gates of which are driven by the logical AND of a) the input and b) the
delayed and inverted version of the complementary gate signal. As a result, one transistor is
always “turned off” before the other is “turned on.” This technique helps to minimize the
short-circuit current of a buffer for which the load is not pre-determined [180]. However, the
problem that we wish to solve is the short-circuit current that is caused by slow rise/fall times
at the input. The front-end gate-drive circuitry in Yoo’s circuit uses standard complementary
logic gates, which also suffer from the problem of short-circuit current caused by slow rise-
/fall-times.

To minimize the short-circuit current that is caused by slow rise and fall times, we have
added current-starving transistors M3T,B and M7T,B to the circuit’s gate-drive front-end. The

Brandon D. Rumberg Chapter 8. Charge Pump 99

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−7

10
−6

10
−5

10
−4

Frequency (Hz)

P
ow

er
 (

W
)

W/ Edgifier, Measured
W/ Edgifier, Simulation
W/o Edgifier, Simulation

Figure 8.10: Power versus frequency of our current-controlled oscillator. The placement of
an edgifier prior to any digital logic allows the power to reduce with frequency over a much
larger range. The supply voltage is 2.5V.

current-starving transistors limit the short-circuit current in the front-end, while allowing
inverter M8T,B to be driven with non-overlapping signals. To enable transistors M8T,B to be
strongly turned off, the current-starving transistors have only been used on one side of the
logic ladder.

Figure 8.9(b–e) shows simulation results that compare the operation of our edgifier to
the operation of a CMOS inverter; both circuits are un-loaded. In this example, the current-
starving bias in the edgifier is 1nA. We used the simulated output of the ring oscillator as
a realistic input to the circuits [Fig. 8.9(b)]. Figure 8.9(c) shows the non-overlapping gate
drive signals that are generated by the edgifier. The output of the edgifier is shown in Fig.
8.9(d), and is compared to the output of an inverter in response to the same input. This
inverter has the same dimensions as M9T,B. The slow transitions of the inverter output are
indicative of high levels of short-circuit current. Indeed, Fig. 8.9(e) shows that the inverter
draws supply current over a long duration on each transition. In comparison, the edgifier’s
supply current is only a short impulse.

The edgifier’s reduction in the short-circuit current of succeeding logic gates can sig-
nificantly reduce the overall power consumption of a circuit that contains a low frequency
oscillator. This power reduction is shown in Fig. 8.10. Measured and simulated power con-
sumption values are shown over a wide range of frequencies. The power consumption “w/
edgifier” includes the oscillator, edgifier, and one subsequent logic gate. The power consump-
tion “w/o edgifier” includes the oscillator and one subsequent logic gate. The oscillator’s
rise and fall times are a constant percentage of the clock period, which results in constant
power consumption for the logic gate “w/o edgifier” below 1MHz. In contrast, the power
consumption of the oscillator “w/ edgifier” continues to reduce by almost three decades.
Although the edgifier power consumption levels off at 1kHz in the Figure, recent simulations
indicate that better sizing optimization in the gate-drive circuity can extend the line to even

Brandon D. Rumberg Chapter 8. Charge Pump 100

lower power consumption values.
In addition to its use in low-frequency oscillators, we have found the edgifier circuit to

be a useful general building block in low-frequency, continuous-time, mixed-signal circuitry.
In our field-programmable analog array that is described in Chapter 10, we have used the
edgifier to minimize power consumption in comparator circuits (which were the main power
consumers in our earlier Hibernets 2.0 system in Chapter 9), and have also used the edgifier
to serve as a translator between the low-frequency analog front-end and the digital/mixed-
signal back-end. In these applications, bias currents are already generated (e.g. the bias
current of a comparator), so there is no extra cost to generate the current-starving bias for
the edgifier.

8.5 The Complete Charge Pump

Figure 8.11(a) shows our complete regulated charge pump, which includes all of the
circuitry that was discussed earlier in this Chapter. Instead of using linear resistors in the
voltage divider, we use eight diode-connected pFETs, each in their own well. Figure 8.11(c)
shows measurements of the current draw of the divider branch at different voltages. The
divider branch is designed to draw 100nA–1µA over the typical operating range (10V–12.5V).
This current is enough to maintain stable regulation without unnecessarily wasting power.
The well-to-substrate breakdown current can be seen in the top-right of Fig. 8.11(c). This
breakdown occurs at a much higher voltage than the operating voltage of the circuit, so it
is not a concern.

By dividing Vout by a factor of eight in Fig. 8.11(a), Vout is thus regulated to 8Vtarg. The
measured transfer curve from Vtarg to Vout is shown in Fig. 8.11(b). It can be seen that
the output voltage is well-regulated from approximately 8V to 15V. Deviation at the high
voltages is caused by the charge pump’s limited maximum voltage (N + 1)Vdd = 17.5V . In
Fig. 8.11(a), error amplification is achieved by using an OTA to convert the the error into
a current. Deviation at the low voltages in Fig. 8.11(b) is caused by the error-amplification
OTA’s bias transistor being pushed out of the saturation region.

Now that the complete details of the regulated charge pump have been elaborated, we
can calculate the loop gain K that was described in Section 8.2.2. Starting from Vout: Vout is
divided by r = 8, then converted to a current with transconductance Gm, a current mirror
scales this current by a factor of 4, the current-controlled oscillator then converts this current
to a frequency with a gain of KRO = 2kHz/nA, and finally, the charge pump converts this
frequency to the output voltage with a gain of KCP . The total loop gain is the product of
all of these components

K =
4GmKROKCP

r
(8.6)

The transconductance Gm provides a way to tune the charge pump for the desired loop gain,
which changes the load-regulation characteristics and the start-up time. Using K and (8.2),
we can obtain the closed-loop output resistance from Table 8.1

RCL =
ROL

K
=

r

4CpGmKRO

N

(N + 1)Vdd − Vout
(8.7)

Brandon D. Rumberg Chapter 8. Charge Pump 101

Charge Pump

Current-Controlled
Ring Oscillator

Vtarg

1"=7R2

2"

clk 4-Phase
Clk Gen

2.5V

Iload

(a)

Vfb

Vout

4x
IF

Edgifier

(b)

0.8 1 1.2 1.4 1.6 1.8 2 2.2
6

8

10

12

14

16

V
targ

 (V)

V
o

u
t (

V
)

8*V
targ

Measured

0 5 10 15 20 25 30 35
10

-12

10
-10

10
-8

10
-6

10
-4

Vout (V)

I F
 (

A
)

(c)

Figure 8.11: (a) Block diagram of our complete regulated charge pump. (b) Measured dc-
dependence of the charge-pump output on Vtarg. (c) Measured current–voltage sweep of the
pFET-divider circuit.

To verify this expression, we have measured the open-loop and closed-loop load regulation
in Fig. 8.12(a&b). The improvement afforded by regulation is clearly evident. Indeed, it
would be very difficult to precisely generate an arbitrary high voltage without regulation.
The output impedance is extracted from this data and is shown in Fig. 8.12(c&d). Good
agreement is found between the measured results and the theoretical values for ROL and RCL.
This agreement confirms that, when the charge pump is designed to sufficiently approach
ideal characteristics, this simple analysis can be used to confidently design a high-voltage
charge pump.

In a circuit, such as our charge pump, that operates beyond the rated voltage of the pro-
cess, the designer should ensure that the local voltage differentials for each device are within
the rated voltage range. One reason that compelled us to choose the charge pump circuit in
Fig. 8.6(a) is that the use of two series switches in each stage protects the devices from any

Brandon D. Rumberg Chapter 8. Charge Pump 102

10
5

10
6

10
3

10
4

10
5

10
6

10
7

10
8

Clock Frequency (Hz)

O
u

tp
u

t
R

e
s
is

ta
n

c
e

 (
Ω

)

Measured

Theory

20 40 60 80
10

3

10
4

10
5

10
6

10
7

10
8

Transconductance (µA/V)

O
u

tp
u

t
R

e
s
is

ta
n

c
e

 (
Ω

)
Measured - Fresh

Measured - 1M cycles

Theory

(c) (d)

10
-7

10
-6

10
-5

10
-4

6

8

10

12

14

16

Load Current (A)

V
o

u
t (

V
)

10
-7

10
-6

10
-5

10
-4

6

8

10

12

14

16

Load Current (A)

V
o

u
t (

V
)

(a) (b)

clock = 1 MHz

clock = 20 MHz

Vtarg = 7V

Vtarg = 16V

Open Loop Closed Loop

Figure 8.12: Measured load regulation characteristics of our charge pump. (a) Open-loop
with clock frequency ∈ [1MHz, 2MHz, 5MHz, 10MHz, 20MHz]. (b) Closed-loop with Vtarg
varied from 7V to 16V in increments of 1V. Measured DC output impedance of our charge
pump. (c) Open-loop as a function of clock frequency. (d) Closed-loop as a function of Gm.
To validate reliability, the measurement was performed with a fresh charge pump, as well
with a charge pump that had previously generated 106 12.5V-pulses.

voltage stress greater than Vdd [176]. To verify that this protection ensures reliable perfor-
mance under typical operating conditions, we measured the charge pump’s output resistance
before and after the charge pump had generated 106 12.5V-pulses of 1ms duration. These
pulses are typical of the way the charge pump is used to program floating-gate transistors.
The before-and-after measured output resistance is shown in Fig. 8.12(d). The “burned in”
charge pump consistently has a slightly higher output resistance. However, the variation is

Brandon D. Rumberg Chapter 8. Charge Pump 103

0 200 400 600 800 1000 1200
0

5

10

V
ou

t (
V

)

0 200 400 600 800 1000 1200
0

5

10

P
ow

er
 (

m
W

)

0 200 400 600 800 1000 1200
10

5

10
6

10
7

F
re

qu
en

cy
 (

H
z)

Time (µs)

Figure 8.13: Measured transient characteristics of our closed-loop charge pump. (Top)
Output voltage. (Middle) Supply current. (Bottom) Closed-loop adapted clock frequency.

small, and the number of cycles is greater than the typical rating for Flash memory, which
confirms that this charge pump has great long-term reliability for our application.

The prominent characteristic of a frequency-regulated charge pump is that the frequency
varies, which helps to minimize the power consumption once the target output voltage is
reached. Figure 8.13 shows a measurement of the charge pump generating a 1ms, 12.5V
tunneling pulse. The measured frequency over time is shown in Fig. 8.13(c). During startup,
the OTA is saturated and the clock pumps at a maximum frequency of approximately 30MHz.
Once the target voltage is reached, the clock is relaxed to approximately 300kHz. The
resulting mitigation in supply current while the voltage is held is seen in Fig. 8.13(b). The
overall energy that was used to generate this pulse was 1.45µJ.

The efficiency of a charge pump is the power delivered at the output of the charge pump
divided by the total power going into the circuit. For our regulated charge pump, this input
power includes the power consumed by all components, not just the charge pump. We have
not emphasized efficiency because it is not a crucial specification when generating short
tunneling pulses for tunneling junctions that draw a very small load current. As can be seen
in Fig. 8.13, most of the energy is consumed while starting up the charge pump. However, we
will briefly discuss efficiency because it is a standard comparison point for voltage converters
and because it will be of interest for modifying this charge pump to generate injection-level
supply voltages.

From [168], the supply current of an ideal charge pump with bottom-plate stray capaci-
tance is

Ivdd =

[
(N + 1) + α

N2

(N + 1)Vdd − Vout
Vdd

]
IL (8.8)

Brandon D. Rumberg Chapter 8. Charge Pump 104

where α is the ratio of the bottom-plate stray capacitance to the pumping capacitance, which
is fixed for a given CMOS process and is in the range of 0.1–0.15 for our process [162]. The
first additive term accounts for the current that is pumped toward the load. The second term
accounts for the current that charges and discharges the stray capacitance. The theoretical
maximum efficiency is

γ =
ILVout
IvddVdd

=
Vout[

(N + 1) + α N2

(N+1)Vdd−Vout
Vdd

]
Vdd

(8.9)

For Vout = 12V, N = 6, and Vdd = 2.5V, the maximum theoretical efficiency is approximately
52%. Figure 8.14 shows the measured efficiency of the open-loop and closed-loop charge
pump. The regulated charge pump was measured with Vout = 12V. The charge pump achieves
approximately 64% of the theoretical efficiency. Furthermore, the overhead of regulation has
not significantly decreased the efficiency of the unregulated charge pump. In fact, variable-
frequency regulation is able to achieve better regulation across a wider range of load currents.

10
-6

10
-5

10
-4

20

22

24

26

28

30

32

34

36

38

Load Current (A)

E
ff

ic
ie

n
c
y
 (

%
)

Closed loop

Open loop

20 MHz

10 MHz

5 MHz

2 MHz

1 MHz

Figure 8.14: Measured efficiency of the charge pump.

Since the charge pump is designed for use in wireless sensor networks, where the supply
voltage is supplied by batteries or energy harvesting and may be unstable, power-supply
rejection is an important concern. Figure 8.15 shows the measured power supply rejection
of the open-loop and closed-loop charge pumps. The use of regulation improves the power-
supply rejection by 68dB. The regulated charge pump was measured with Vout = 12V.

Table 8.4 compares our charge pump with other high-voltage charge pumps. Aaltonen’s
charge pump [174] is the only regulated high-voltage charge pump that we are aware of that
presents quantitative performance specifications. As a point of comparison, we have also
included Li’s charge pump [176], which is unregulated, but which is the circuit upon which
we have based our charge pump stages [Fig. 8.6(a)]. Applying our regulation loop to that
charge pump would improve many of its performance parameters by a factor of the loop
gain.

Brandon D. Rumberg Chapter 8. Charge Pump 105

10
1

10
2

10
3

10
4

10
5

−20

−10

0

10

20

30

40

50

60

Frequency (Hz)

P
ow

er
 S

up
pl

y
R

ej
ec

tio
n

(d
B

)

Regulated
Unregulated

Figure 8.15: Measured power-supply rejection of our charge pump. Closed-loop regulation
improves power-supply rejection by 68dB.

Table 8.4: Comparison of High-Voltage Charge Pumps

Tech Vdd Vout N Total C Size RO γ IL FOM

Ours 0.35µm 2.5V 12.5V 6 18pF 0.069mm2 6.8kΩ 33% 25µA 4.08×107

Aaltonen [174] 0.35µ HV 2.5V 10V 9 14.4pF 0.14mm2 23kΩ 18% 29µA 1.21×107

Li [176] 0.18µm 1.8V 7V 4 80pF sims only 93kΩ 70% 13µA 0.05×107

In the Table, IL is the load current at which the parameters are specified. RO is the
closed-loop output resistance for the first two entries, and is the open-loop output resistance
for the last entry, since it was unregulated. For easy comparison, we suggest the following
figure-of-merit

FOM =
Vout

VddCCPRO

(8.10)

where CCP is the total pumping capacitance. A higher FOM value is better. This figure-
of-merit definition rewards large voltage step-up ratios, low output resistance, and small
size—all of which are important for generating tunneling voltages. However, we should
note that the comparison charge pumps were not designed for generating tunneling voltages:
Aaltonenen’s charge pump was designed for an electrostatic actuator for MEMS and Li’s
charge pump had no specific design purpose.

Brandon D. Rumberg Chapter 8. Charge Pump 106

8.6 How to Adapt the Charge Pump to Generate the

Injection Voltage

Although the charge pump described in this Chapter was designed to generate the erase
(tunneling) voltage, the architecture of this regulated charge pump is also appropriate for
generating the write (injection) voltage. To adapt this charge pump design for injection, we
should first consider the different requirements of tunneling and injection voltages.

Tunneling requires a short pulse (<1ms) with a small load current (only the current
flowing through the feedback resistors), and the voltage magnitude is large (greater than
the source/drain breakdown voltage). Consequently, a tunneling charge pump has a large
number of high-voltage-tolerant stages, and efficiency is not a major concern because the
charge pump only supplies a small amount of current for a short time. On the other hand,
the injection voltage is supplied for a longer time (>1s) with a larger load current (up to
100µA if many cells are programmed in parallel), but the voltage magnitude is moderate (less
than the breakdown voltage). As a result, an injection charge pump will have fewer stages,
and the efficiency is a more important specification because the injection charge pump offers
the largest opportunity for reducing the total programming energy.

To design an injection charge pump for efficiency, the power-minimization routine in [168]
should be used to select the number of stages and the values of the capacitors. In contrast,
the tunneling charge pump in this Chapter was designed with the area-optimization routine.
Essentially, the size of a charge pump can be minimized by using more stages than necessary
to reduce the capacitance-per-stage. However, these excess stages reduce the efficiency of
the charge pump, so this method is not desirable for an injection charge pump. Note that
an area-optimized charge pump with excess stages will tend to supply (N + 1)Vdd, which is
greater than the desired voltage since N is greater than necessary. Regulation is thus needed
to operate an area-optimized charge pump.

The output ripple is also a critical specification for an injection charge pump because it
directly affects the programming accuracy. Therefore, the load capacitance must be designed
to minimize this ripple. If the necessary load capacitance is impractically large, then a
subsequent linear regulator can suppress the ripple.

8.7 Conclusion

In this Chapter, we have presented the design and results of a high-voltage charge pump
for generating tunneling voltages. This charge pump has proven effective and reliable for
erasing floating-gate transistors in our field-programmable analog array in Chapter 10. This
charge pump can easily be modified to generate a supply voltage for writing floating-gate
transistors.

107

Chapter 9

Improving the Hibernets Signal
Processor

Large-scale systems of networked sensors offer a real-time understanding of the complex
environments that they monitor. Since sensors must be deployed in close proximity to the
phenomena of interest, often in inaccessible locations, several constraints are placed upon
these sensor nodes in terms of energy efficiency and programmability. In order to be usable,
they must have long lifetimes (i.e. months to years) while operating on batteries and energy-
harvesting technologies. They must also be reprogrammable in the field, post-deployment,
to accommodate changes in tasks.

Commercially available sensor platforms, called “motes,” exist for wireless sensor net-
works and consist of a low-power microcontroller, a radio, and a variety of sensors [13].
These motes allow for ease of programming, even from a remote location, but they strug-
gle to achieve the energy efficiency necessary to last for the required durations in the field.
Therefore, to conserve energy, motes are often operated in a duty-cycling mode where they
switch between low-power sleep states and active states, but this increases the likelihood of
missing events of interest [65].

Low-power hardware can be used to detect events while the mote is in a low-power
state. In Chapter 3, we introduced our Hibernets technique for sensor platforms, which
complements the digital motes with a low-power analog signal processor (ASP). This ASP is
capable of detecting critical events at extremely low power, and by doing so, it can selectively
wake up a mote when an event of interest has been detected. In this Chapter, we present
an analog signal processor (ASP) that improves upon our first Hibernets. Similar to the
Hibernets 1.0 design, this Hibernets 2.0 analog signal processor (ASP) wakes a wireless
sensor node when an event is detected. Events are detected by matching the quantized
magnitude of the spectrum against patterns that are stored in a programmable logic array.
In this ASP, we have added floating-gate-transistor-based biasing, as described in Chapter
6, which reduces the power consumption and improves the degree of programmability. We
have also included the high-performance bandpass filter and magnitude detector circuits
that are described in Chapters 4 and 5. Additionally, we have doubled the number of
frequency channels, added multi-level quantization, and integrated the programmable logic
array. All in all, the improvements made to Hibernets 2.0 have reduced the system-level
power consumption from 214µW to 46.7µW, thus further illustrating the validity of analog

Brandon D. Rumberg Chapter 9. Hibernets 2.0 108

Magnitude
Detector

Magnitude
Detector

Input 1

BPF0

BPF7

Mag0

Mag7

D0,0

D0,1

D7,0

D7,1

Filter Bank

P
ro

g
ra

m
m

a
b

le

L
o

g
ic

 A
rr

a
y

Magnitude
Detector

Magnitude
Detector

Input 2

BPF8

BPF15

Mag8

Mag15

D8,0

D8,1

D15,0

D15,1

Filter Bank

Signal Analysis Classification

Analog Event Detector

Sensor Node

S
e

ttin
g
s

B
P

F
o

u
t

M
a

g
o

u
t

In
te

rru
p

t /
C

la
s
s
ific

a
tio

n

D
e

te
c
tio

n
 R

u
le

Figure 9.1: Block diagram of our analog event detector, showing how it interfaces with sens-
ing nodes. The filter bank and subband magnitude detectors perform spectral decomposition
for use by the classifier. Classification is performed with double-threshold quantization in
each band followed by a programmable logic array that compares the spectral inputs with
stored detection rules.

signal processing in wireless sensor networks.
The work in this Chapter was published in the Proceedings of the IEEE International

Midwest Symposium on Circuits and Systems [182].

9.1 Hibernets 2.0 Architecture

Figure 9.1 shows a block diagram of our Hibernets 2.0 architecture. The analog signal
processor performs event detection by comparing the spectrum of the input signal against
stored templates. Spectral decomposition is performed with two 8-channel filter banks.
These two 8-channel filter banks can be used separately by multiple sensors (e.g. using two
microphones for directional processing) or by combining different sensing modalities like
acoustic and seismic. The inputs to the filter banks can also be shared to form one 16-
channel filter bank. Magnitude detectors are used in each subband to measure the signal
energy. The outputs of the filters and magnitude detectors are multiplexed to output pins,
which are available to the mote’s analog-to-digital converter as needed. The output of each
magnitude detector is connected to two compararators, allowing multi-level quantization
of each band. The thirty-two digital outputs of the comparator bank are then fed into a
programmable logic array (PLA) that performs template matching and generates a wake-up
interrupt for the mote.

Brandon D. Rumberg Chapter 9. Hibernets 2.0 109

Vref

Vin
Vout

C1

C2

CL

CW

Gm,H

Gm,L

VA

V+ V-

Iout

M1,a M1,b

M2,b

M2,a

M3

M4

M5 M6

Vtun

Vgate

sel I runrun

sel U run

MFG

To pin

M7

M8 M9

M10

Transconductor Floating Gate Biasing

10
2

10
3

10
4

-45

-40

-35

-30

-25

-20

-15

-10

-5

Frequency (Hz)

G
a

in
(d

B
)

Vin

VPD

CPD

M2M1

M3M4

Gm,A

Gm,D

Gm,N

CN

Vout

Peak Detector

Adaptive-Time-Constant
Filter

0 0.5 1 1.5 2 2.5 3
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Time (sec)

V
o

lt
a

g
e

(a) (b)

(d) (e)

(c)

Figure 9.2: (a) The OTA-based C4 bandpass filter circuit. (b) The linearized OTA that
is used in the bandpass filter and peak detector. The bias current is set by floating-gate
transistor MFG, and is mirrored into the transconductor in run mode. In program mode,
the drain of the selected floating-gate transistor is pinned out for programming. (c) The
magnitude detector circuit. (d) Frequency response of the filter bank, which is programmed
to third-octave spacing starting at 100Hz. (e) Response of the magnitude detector circuit to
a speech waveform.

A two-stage uncompensated op-amp topology is used for the comparators. The PLA con-
sists of four 32-input NAND gates that feed a 4-input NAND gate. The PLA configuration
is held in SRAM, which is set via an SPI interface.

Figure 9.1 shows how the ASP is interfaced with a mote. The sensor node’s digital I/O
pins are used to load detection rules into the PLA and to select frequency channels. Either
a digital potentiometer or the digital-to-analog converter on the mote can be used to set and
adapt comparator thresholds.

9.2 Spectral Analysis Block

For Hibernets 2.0, we have used the bandpass filter and the magnitude detector that we
presented in Chapters 4 and 5, respectively. These circuits are shown in Fig. 9.2(a) and (c).
The bandpass filter was designed—using the design procedure in Chapter 4—for a dynamic
range of 50dB and a maximum quality factor of 4.3 (corresponding to third-octave spacing).

9.2.1 Transconductor

When biased in subthreshold, the linear range of the standard differential pair is ex-
tremely limited. For increased linearity, we have used the transconductor shown in Fig. 9.2(b)

Brandon D. Rumberg Chapter 9. Hibernets 2.0 110

[183]. Linearization is accomplished through source degeneration by the symmetric diffu-
sors M2,a–b. When the width-to-length ratio (W/L) of the input pair is twice the W/L of
the diffusors, this transconductor topology achieves twice the linear range of the standard
differential pair.

In contrast to the symmetric bump transconductor that was used in Chapter 4, this
symmetric diffusor transconductor does not achieve as high performance—the linear range
is halved and the noise is somewhat higher. However, this symmetric diffusor does enable a
more compact layout, as well as lower input capacitance, since its two additional transistors
are half the size of the input transistors, whereas the symmetric bump adds four transistors
that are the same size as the input transistors.

9.2.2 Floating-Gate Biasing

Programmable nonvolatile biases for the analog circuits are provided by floating-gate
(FG) transistors [161]. As shown in Chapter 4, FGs allow the center frequency, gain, and
bandwidth of each filter to be biased separately, thus enabling arbitrary frequency spacing
and weighting of bands. Figure 9.2(b) shows the FG biasing circuit. The transconductor
is biased by mirroring the drain current of the FG transistor MFG into the bias transistors
M1,a–b.

The bias value is stored as a charge on the gate of MFG. Biases are globally erased by
tunneling electrons off of the FG using Vtun. Biases are then programmed by pinning out the
drain of an individual FG transistor and applying a large source-to-drain voltage to MFG

in order to inject electrons onto the gate. Bias currents are typically programmed to 0.5%
accuracy, though higher accuracy is achievable if necessary. Accurate measurement of the
circuit parameters sets the limit to how accurately the parameters can be programmed. For
this chip, all parameters are time constants.

Figure 9.2(d) shows the 16-channel filter bank biased for third-octave spacing starting at
100Hz, which is the biasing used throughout the remainder of this Chapter.

9.3 System Operation

The input signal range of the spectral analysis block was measured by sweeping the input
amplitude and recording the magnitude detector output of the 1kHz band (Fig. 9.3). This
experiment was done first with just the magnitude detector, and then again for the whole
column, i.e. the bandpass filter and the magnitude detector combined. The Figure shows
that the signal range is limited by the bandpass filter, which has a noise floor of 1.4mVpk

and a 1dB compression point of 157mVpk. The input dynamic range, measured from the
noise floor to 2.5% THD at the filter’s output, is 50dB.

To verify and demonstrate the operation of the entire integrated circuit, we performed the
experiment illustrated in Fig. 9.4. The input signal, shown in the top subplot, is a logarithmic
chirp with pulses of tones at 200Hz and 635Hz. The full decomposition performed by the
filter bank and envelope detectors is visualized in the spectrogram in the second subplot.
The third and fourth subplots show the outputs of the channels corresponding to 635Hz and
200Hz, with the magnitude detector output overlayed on the bandpass filter output. To test

Brandon D. Rumberg Chapter 9. Hibernets 2.0 111

10
−3

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

Input Amplitude

O
ut

pu
t V

ol
ta

ge

Magnitude Detector
Column

Figure 9.3: Dynamic range of the analog circuits at 1kHz. “Column” is the combined
bandpass filter and magnitude detector.

Table 9.1: ASP Specifications

Specification Value Device Power

Chip Area 2.25mm2 Filter bank 1.49µW

Channels 16 Comparators & PLA 10.5µW

Chip Power 27.8µW Read-out buffering 15.78µW

Supply Voltage 3V External biasing 18.9µW

Technology 0.5µm ASP + Biasing 46.7µW

Frequency Range 20Hz-100kHz Mote (sleep) 25µW

Dynamic Range 50dB Mote (awake) 1.5mW

Mote (transmitting) 60mW

the detection part of the system, the PLA was programmed to perform the logical AND of
channels four and nine. In the bottom subplot we see that the PLA output correctly asserts
a high value when the outputs of both channels’ magnitude detectors are simultaneously
greater than the user-defined threshold level.

The performance of the IC is summarized in Table 9.1. All power numbers are actual
measurements. The power consumption of the ASP+biasing is 46.7µW, which is better
than a fourfold improvement over our previous less-integrated ASP in Chapter 3 [41], which
used digital potentiometers instead of FG transistors and consumed 214µW. For the vehicle-
detection scenario in the following Section, the expected lifetime (for 1500mAh battery
capacity) of our analog-augmented mote is approximately 7 years. In contrast, the expected
lifetime of a mote-only implementation is just 4 months.

Brandon D. Rumberg Chapter 9. Hibernets 2.0 112

0 0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

C
ha

nn
el

 4

0 0.2 0.4 0.6 0.8 1
1.4

1.5

1.6

C
ha

nn
el

 9

0 0.2 0.4 0.6 0.8 1
1.2
1.4
1.6
1.8

In
pu

t

0 0.2 0.4 0.6 0.8 1
0

0.5

1

P
LA

 O
ut

pu
t

Time (sec)

F
re

qu
en

cy
 (

H
z)

0 0.2 0.4 0.6 0.8
100
126
159
200
252
317
400
504
635
800

1008
1270
1600
2016
2540
3200

Figure 9.4: Demonstration of the event detector IC.

9.4 Vehicle-Classification Application

To evaluate the event detector in the context of a remote-sensing application, we used
the same acoustic automobile-classification scenario that was used in Chapter 3. The exper-
iment was performed using a dataset of forty 10-second audio recordings of vehicles. The
objective was to detect the presence of a vehicle and classify it as either a car or a truck.
Training software was implemented which used half of the recordings to learn the comparator
thresholds and PLA settings that best classified an input signal as either a car, a truck, or
no vehicle. The event detection IC was tested by streaming the other half of the vehicle
recordings from a digital-to-analog converter into the filter bank input. Two PLA output
pins were used, one to indicate vehicle presence and one to indicate vehicle type. The mote’s
microntroller woke up when the “vehicle presence” pin was asserted. Upon waking, the mote
implemented a state machine that used the sequence of outputs from the PLA to make the
final decision.

The objective of the training algorithm is to choose the front-end configuration that
achieves the best detection performance. The front-end, which is shown in Fig. 9.1, has
the following configurable parameters: a 132-bit logic configuration for the programmable
logic array (PLA), as well as 82 analog parameters that control the center frequency and

Brandon D. Rumberg Chapter 9. Hibernets 2.0 113

gain/quality factor of each of the filters, the speed and tracking level of each of the magnitude
detectors, and also the two quantization levels. For simplicity, we only consider the quantiza-
tion levels and the logic templates; however, as we will discuss later, detection performance
might be improved by incorporating more of the analog parameters into the training routine.

The training algorithm operates with a set of time-indexed training samples. All time
instances of the training samples have class labels associated with them; for example, in this
vehicle detection scenario, the classes are “nothing,” “car,” and “truck.” The first step is
to obtain the feature vectors—i.e. the 16-dimensional output of the ASP’s spectral analyzer
(Mag0–15 in Fig. 9.1). These feature vectors are obtained by passing all training samples
either through a Matlab model of the ASP or through the ASP itself; we have done so both
ways and have achieved similar results.

Using an idealized ASP model1 to obtain the feature vectors may be more realistic for
most in-the-field reconfiguration scenarios, wherein a basestation uses an ideal model to
train off-line and then distributes the new configuration data to in-the-field sensor nodes.
However, using the the real ASP to obtain the feature vectors may have some advantages:
first, the training mode will be similar to the operating mode—i.e. with the same sensor,
the same ASP, and potentially the same background environment—thus enabling better
training, and second, inclusion of the ASP into the training routine is an important step
towards achieving in-network learning. Presently, our method of obtaining feature vectors
using the real ASP is to stream the samples out of Matlab via a data-acquisition card (PCI-
6259) while simultaneously reading in the ASP outputs using the same acquisition card.
In principal, the mote could be used to acquire the features, and potentially perform the
training routine as well.

Once we have obtained the time-indexed feature vectors, we then proceed with training.
Figure 9.5 illustrates the detector training problem. Our detection architecture subdivides
the feature space via the subband quantizers. These subdivisions are then labeled using
PLA detection rules. Our front-end has two quantization levels: γ1 and γ2. To train, we
sweep these quantization levels across 25 logarithmically spaced values from 20mV to 1V. For
each combination of quantization levels, we find the subspace labelings that provide the best
classification accuracy. This is done by labeling each region with the class that it produces
most frequently; for example, if a region contains 100 instances, and 90 of those instances
were for “truck,” then that region is labeled as belonging to the class “truck.” Based on
this labeling, we then determine what percentage of instances were correctly classified. After
sweeping through all values of quantization levels, we then choose the values which resulted
in the highest percentage of correct classifications. Those quantization values and their
corresponding detection labels are then used as our chosen configuration. Since our on-chip
PLA only has room for four labels, we are limited to using only the most discriminitive
labels. However, the individual input bits of the PLA can be set to don’t care so that some
labels can be combined. This combination step is done by combining labels with a small
intra-class Hamming distance but a large inter-class Hamming distance.

After the training routine has finished, the configuration values are passed to the mote,

1The model uses ideal linear filters for the filter bank and ideal nonlinear differential equations for the
magnitude detector. The model is implemented in Matlab for convenience, but could easily be implemented
in a different programmaing language so that it could be performed on a basestation.

Brandon D. Rumberg Chapter 9. Hibernets 2.0 114

Mag1γ1 γ2

γ1

γ2

[0000] −> [0100] −> [1100] −>

[0001] −> [0101] −> [1101] −>

[0011] −> [0111] −> [1111] −>

x

o

o o

o

o

o o

oo o

o

o

o

x

x x

x
xx

x

x

x
x

x x

Mag2

Figure 9.5: Two-dimensional illustration of the detector training problem. The goal is to
find the best way to subdivide and label the feature vector space ~Mag using two quantization
levels: γ1 and γ2. The o’s and x’s represent observations of cars and trucks, respectively.

Table 9.2: Vehicle Classification Results

NULL Car Truck

Missed 20% 0%

Car 0 false alarms 70% 10%

Truck 0 false alarms 10% 90%

which sets the quantization levels using digital potentiometers and also loads the detection
rules into the PLA. Otherwise, all aspects of the training algorithm are implemented in
Matlab for the sake of simplicity.

The results of the vehicle classification demonstration are shown in Table 9.2. Out of
twenty incidents, 80% were correctly classified and there were no false alarms in 200 seconds
of noise. For the same experiment, our previous implementation in Chapter 3 [41] had two
fewer misclassifications and four more false alarms. The reason that the classification results
are not better than our previous system—in spite of doubling the number of channels, adding
multi-level quantization, and significantly improving the circuitry and biasing precision—is
due to the reduced logic capabilities of the PLA. Previously, all of the detection rules that
were learned by the training algorithm were loaded into an external CPLD. However, for
this implementation, only the highest-certainty detection rules could fit into the PLA. This

Brandon D. Rumberg Chapter 9. Hibernets 2.0 115

PLA limitation is mainly an area limitation, and increasing the PLA size would have little
impact on the system power. However, transitioning to a soft classifier is expected to be a
more effective use of both space and power.

As mentioned earlier, the ASP’s detection performance may be improved by including
more of its parameters during the training process. For example, the spectral analysis
parameters can be adjusted to perform more discriminative feature extraction. First, the
individual feature dimensions can be scaled by adjusting the filter gains and/or magnitude
detector tracking levels, thus enabling independent control over each band’s quantization
levels. Second, a greater number of quantization levels can be obtained in an important
frequency band by tuning multiple filters to that same frequency, but with different gains.
And third, temporal information can be obtained by tuning two filters to the same frequency,
but tune their magnitude detectors to operate at different speeds so that, for example, an
exclusive-or of their outputs would assert upon an onset or an offset. In summary, the training
algorithm does not use the full capabilities of this spectral template-matching architecture.
Consequently, much higher performance may be achievable with this simple architecture.
On the other hand, additional parameters would further complicate the ability to train the
ASP in the field; we will consider this further in the next Section.

In addition to improving the detection performance via the training algorithm, we can
also improve the performance with a better detection architecture. For example, consider a
soft classifier where an array of parameterized transconductance functions is used to synthe-
size decision boundaries. This classifier may be trained using a boosting-type algorithm [184]
that can iteratively select and train the best transconductor, and in each iteration add to the
previously trained transconductors. Such a scheme may be useful for refining the decision
rules in the field, since unused transconductors can be trained and added to the classifier as
better information is obtained, without needing to retrain the entire classifier.

9.5 Discussion of In-Network Training

We will now consider the role of an ASP in creating adaptive sensor networks. First, we
will discuss this question from an application perspective, then we will discuss the question
from a front-end perspective.

9.5.1 Towards In-the-Field Training

In-the-field training can use either artificial or natural training samples. Artificial training
samples are acquired off-line and might be administered to the front-end either manually
or by streaming from a basestation. By administering the training samples, the network
architect has control over selecting and labeling the samples.

On the other hand, natural training samples occur “naturally” within the sensor net-
work’s environment. Training with such samples is an excellent path toward learning from
the environment. From an application perspective, the primary obstacle for training with
natural samples is to segment/label those samples. We will first consider a few ways in which
the labeling can be closely supervised. This close supervision only occurs during a “training
mode,” in which power consumption is not a limitation.

Brandon D. Rumberg Chapter 9. Hibernets 2.0 116

Labeling can be performed off-line. This approach would have an initial data-collection
phase, and then would send the data to a basestation so that the events can be labeled off-
line. After the data has been labeled, the remainder of training would proceed as if artificial
training samples were used, i.e. train off-line and then send the detection configuration to
the nodes. Note that the network would collect both the sensor data as well as the ASP’s
decomposition of that data, so that no ASP model would be required for training.

Ideally, the network can be deployed with little prior knowledge of the objects that it
will observe. The network can then proceed to identify and label those objects, all at low
power-consumption levels. The guiding principle of low-power design is that computational
resources should only be used to the extent that they are needed. In our “Hibernets”
approach, we have used the ASP to detect events and to direct the mote’s attention to those
events, thus saving power by keeping the mote turned off. If the network is to identify the
initial appearance of a phenomena, and then to learn more about that phenomena, then the
ASP’s role will be to perform bottom-up “novelty” or “saliency” detection,2 and to direct
the mote’s attention to the conspicuous time-frequency regions associated with the novel
object.

In this bottom-up detection of new objects, the mote will collect features of the object
and share those features with other nodes. Then the network will cluster these observations
to learn how to better identify the object. Afterwards, top-down instructions can inform de-
tection. For instance, if the object is determined to be important, then the ASP’s detection
configuration can be trained to identify that specific object, or the nodes can more actively
share and fuse their observations about that object in order to make better decisions. Al-
ternatively, if the object is determined to be unimportant, then the ASP can be configured
to ignore that type of object in order to reduce the power that is wasted by directing the
mote’s attention to an unimportant object.

Additionally, the scenario described above could be a starting point for compressing
data within the network. For example, visual saliency has previously been used in video
compression to reduce the resolution of regions on which viewers are not likely to focus [188].
A similar scheme could be applied at various hierarchical levels within a sensor network. For
instance, instead of using the ASP to make a binary decision to identify conspicuous time-
frequency regions, the ASP could instead compress data by using continuous-valued “saliency
measures” to adapt the sampling rate and resolution at which the mote acquires different
frequency channels. At a higher level, the network could compute a distributed saliency map
to determine which regions of the network have important information to share.

9.5.2 Steps to Achieve In-the-Field Training

Our Hibernets front-end is trained using a desktop computer. Let us examine how
training can be done in-the-field.

The first step to achieve in-the-field training is to perform training on the mote. There are
two fundamental ways to approach this step. Either the training algorithm can be performed
by the mote, or the mote can be used to try different ASP settings to effectively “search”

2Computational saliency models have previously been presented: primarily for imaging [185, 186], but
also for audio [187].

Brandon D. Rumberg Chapter 9. Hibernets 2.0 117

Filter Bank

Magnitude Detectors

Comparators

Programmable Logic Array

SPI Interface
F

G
 C

o
n

tro
l

Figure 9.6: Die photograph of the 2.25mm2 analog event detector IC.

for a good configuration.
One obstacle to porting the training algorithm to the mote is to streamline the training

algorithm. There are two clear ways to streamline the algorithm. First, as the feature vectors
(Mag0–15 in Fig. 9.1) are obtained, we should reduce them to a parametric description, such
as with a Gaussian mixture model. This is necessary to reduce the memory requirements
of the mote. Second, we should adopt a better optimization approach than performing a
brute-force sweep through the quantization levels. Assuming that these two obstacles can be
overcome, training on the mote should be achievable using our current ASP and present-day
higher-performance motes.

Alternately, the mote can vary the ASP’s parameters until it finds parameters that yield
good detection performance. For example, if the mote has a parametric description of the
feature vectors, then it can generate representative feature vectors and present them directly
to the ASP’s classifier, bypassing the analysis block. As the mote presents these feature
vectors to the ASP, it will record the classifier’s output and train the classifier by altering
the classifier’s settings until converging on the desired detection accuracy. Such an approach
may help to reduce the computational requirements of the mote.

Once training can be performed on the mote, the next step is to train on the ASP. One
of the original thrusts for the analog use of floating-gate transistors was to build learning
circuits [189]. Floating-gate learning circuits have struggled to find an application. However,
ASP-training may be a good application for floating-gate-based learning circuits. Using such
techniques, we could, for example, train the analysis block to whiten the feature vectors, or
train the classifier in a manner similar to the method described in the previous paragraph.

9.6 Conclusion

We have presented a low-power programmable analog event detection IC that was fab-
ricated in a 0.5µm process (Fig. 9.6). In comparison with state-of-the-art audio-frequency

Brandon D. Rumberg Chapter 9. Hibernets 2.0 118

Table 9.3: Comparison of Low-Power, Audio-Frequency Detector ICs

Power Application Algorithm

This 46.7µW Vehicle Spectral template

work Classification matching

[41] 214µW Vehicle Spectral template

Classification matching

[22] 835nW Vehicle Periodicity

(DSP core only) detection estimation

[190] Isupply=20µA Glass break Linear discriminator:

(simulation) (processing detection zero-crossing rate

circuits only) and two energies

[191] 465µW Speech Phoneme-band

(144µW detection energy modulation

w/o mic) rate

detector ICs (Table 9.3), our ASP has the highest degree of configurability and also has
one of the lowest power consumption levels. Additionally, since most audio applications
use spectral analysis, our ASP’s applications extend beyond mere event detection to include
pre-digital signal processing. Future ASPs for resource-constrained sensing will offer higher
levels of configurability, and will include more signal analysis options and better classifiers.
These features will aid in developing adaptive networks.

119

Chapter 10

Netamorph: Simplifying the Design of
Low-Power Sensor Networks with
Reconfigurable Analog Circuitry

The limited power budgets of sensor networks necessitate in-network pre-processing to
minimize communication costs. In the preceding chapters, we have shown that the low
power consumption of analog signal processing (ASP) is well-suited for this task. However,
the long development time of custom ASPs impedes their incorporation into sensor network
applications. By equipping ASPs with greater reconfiguration capabilities in the form of a
field-programmable analog array (FPAA), sensor network developers can more easily take
advantage of ASP capabilities. Similar to reconfigurable digital processors, FPAAs allow
applications developers to quickly synthesize new designs using high-abstraction-level de-
scriptions. In this way, developers can customize ASPs to their needs and also redefine ASP
operation in the field.

This chapter documents our work on designing and using FPAAs for wireless sensor
networks. Section 10.1 presents our FPAA-enabled sensor node architecture. Section 10.2
presents the design evolution of our FPAA’s signal path architecture. Section 10.3 presents
our low-overhead reprogramming infrastructure. Section 10.4 describes how our FPAA in-
terfaces with sensor nodes as well as how it is used. And in Section 10.5, we demonstrate
our FPAA in several applications.

The work in this Chapter has been presented in a conference paper and a conference
demonstration. Our first FPAA was published in the Proceedings of the International Mid-
west Symposium on Circuits and Systems [192]. Our first FPAA was also shown in the
demonstration session at the International Conference on Information Processing in Sensor
Networks [193].

10.1 A Sensor Node Architecture Incorporating Re-

configurable Analog Circuitry

Wireless sensor networks are capable of a myriad of tasks, from monitoring critical infras-
tructure such as bridges to monitoring a person’s vital signs in biomedical applications. One

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 120

Field-Programmable Analog Array

Connection Box
Switch

Box

Computational
Analog Block

Circuit Biasing

Sensor Conditioning
S

e
n

s
o

r N
o

d
eSPI

Settings

Pre-processed
Sensor Data

Wake-up
Signal

ADC

Interrupt
PinS

e
n

s
o

rs

Connection Box
Switch

Box

Computational
Analog Block

Circuit Biasing

Connection Box
Switch

Box

Computational
Analog Block

Circuit Biasing

Connection Box
Switch

Box

Computational
Analog Block

Circuit Biasing

Analog Pre-processing Event Detection

Figure 10.1: A field-programmable analog array (FPAA) used as a reconfigurable sensor
interface in a wireless sensor node. The FPAA may be used for conditioning a variety of
sensor outputs, to perform low-power event detection to wake up the rest of the sensor node,
or to extract relevant features of the signal to reduce the bandwidth requirements of the
data converter and processor.

of the primary challenges in these applications is to maximize the network’s knowledge of
its environment while using only the energy available within that environment. This limited
energy is mostly spent on communication [7, 194], which illustrates the need for in-network
pre-processing to reduce the data locally and thereby minimize this communication overhead.

In the signal path of a data acquisition system, all environmental information initially
passes through the analog sensor interface, so the interface plays a critical role in efficiently
collecting environmental information. A sensor interface that is optimized for the application
can minimize the overall energy consumption by extracting only the necessary information—
since this information is extracted early in the signal chain, minimal additional processing is
required prior to transmission. For example, we demonstrated in [41] how an interface that
uses analog signal processing can reduce power consumption by providing event detection for
wake-up scenarios. On the other hand, a sensor interface that poorly matches the application
will waste energy by capturing unneeded data, or worse, will limit the bandwidth/precision
of the data so as to be unusable. Thus, an application-optimized interface is crucial for
maximizing the knowledge that can be collected with the available energy. Custom analog
signal processing devices are too application-specific to be a universal solution to the “efficient
information collection” problem.

To enable applications developers to create interfaces that are optimized for their appli-
cations, we present a reconfigurable version of our Hibernets paradigm shown in Fig. 10.1.
Here, a sensing-oriented FPAA efficiently performs sensor interfacing and information ex-
traction. By utilizing an FPAA locally at individual nodes, an application developer can
easily morph the sensor interface to the dynamic needs of the network—hence “Netamorph.”

FPAAs have received increasing attention in attempts to bring the advantages of FPGAs
(e.g. rapid prototyping) to traditional analog applications, such as filtering and sensor inter-

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 121

Computational
Analog Block

(CAB)

C
o

n
n

e
c
ti
o

n

B
o

x
 (

C
B

)

Switch
Box (SB)

Connection Box
Switch

Switch Box Switch

(b)

(c)

Field-programmable
analog array

Events Settings

Sensors

Logic & Memory

Timing

Sensor interfacing

Discriminant
functions

Signal
decomposition

Continuous
to discrete

Data

(a)

Channels

Stages

Signal flow

Figure 10.2: (a) Parallelized FPAA architecture for sensor networks. (b) Structure of a single
computational block and its associated routing infrastructure. The computational analog
block (CAB) contains a collection of circuits that are suited for the type of computation
done in that stage. The connection box (CB) is used to connect the terminals of circuits
within the CAB. The switch box (SB) is used to connect nodes in the CB to other CBs.
(c) CB switches make a single connection between crossing lines. SB switches make any
combination of six connections between four converging lines for flexible routing.

facing [195–197]. Further work has exploited the complex large-signal behavior of transistors
to efficiently map signal processing and classification algorithms into analog circuits [198,199].
This potential convergence of rapid sensor-interface design with low-power signal processing
makes FPAAs an enticing choice for resource-constrained sensing applications.

Prior FPAAs have not been designed for low-resource applications such as sensor net-
works, nor have they been streamlined to provide functionality spanning from sensor inter-
facing to event detection. Consequently, we have focused on developing an FPAA that meets
these specific needs of sensor networks. With event detection applications in mind, we have
developed a parallelized architecture, which is shown abstractly in Fig. 10.2(a). Sensor data
propagates through stages from sensor interfacing through to the final extracted data, and
in the process, the data morphs from a continuous-time/continuous-valued representation to
a mixed-domain and then fully discrete representation. Signal decomposition is performed
early in the chain, after which, data are processed in parallel channels, which allows the
remaining processing to be low bandwidth and low power.

Circuits in the FPAA are located in computational analog blocks (CABs), which are
similar to computational logic blocks in FPGAs, and are arranged in a grid of channels
and stages as shown in Fig. 10.2(a). Each stage has an intended computational role, and

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 122

the circuits contained in the CABs reflect this role. For example, the stages devoted to
discriminant functions contain a variety of voltage-to-current circuits with different shapes,
which can be summed together to synthesize discriminant functions. For a given stage, the
same type of CAB is included in each channel so that the same programmable functions can
be implemented in parallel.

CAB circuits are connected using the switch structure shown in Fig. 10.2(b&c), which is
essentially the “island-style” switch structure used in most FPGAs [200]. The terminals of
CAB circuits are available in the connection box, where these terminals can be connected to
other circuits using simple switches. Connections to adjacent stages and channels are made
via the switch box, which contain “4-point switches” that can make connections between
all pairs of converging tracks. This is known as a “disjoint” switch box, because it allows
any connection within a track, but does not allow connections to other parallel tracks [200].
These “4-point switches” allow many types of connections; for example, connections can
be opened to keep a net local to a block, nets can pass through the switch point using
straight or right-angle connections, or two nets can pass through the same switch point (e.g.
one net can pass vertically while a separate net passes horizontally). This “island-style”
structure—with local connections in the connection box and higher-level connections in the
switch box—enables flexible routing while reducing the parasitics caused by routing nets on
long wires with many switches.

Compared to a fixed-purpose ASP, FPAAs suffer some performance degradation from
routing nets through switches. Therefore, minimizing switch parasitics is one of the primary
concerns of FPAA research. Figure 10.3 illustrates the parasitics in a switch matrix. If the
switch is unbuffered—such as a transmission gate, a pass transistor, or a voltage-controlled
resistor [201]—then the parasitics of each switch consist of four basic components. These
components include 1) a switch resistance, Rswitch, that is not zero when “on” nor infinite
when “off,” 2) a capacitance across the switch, Ccouple, that causes nets in the switch matrix to
interfere, 3) a capacitance to ac ground, Cpar, that loads the nets (thus requiring more power),
and 4) a leakage current, Ipar, that limits the ability to route nets with long time constants
in the switch matrix. Every net that passes through the switch matrix encounters a network
of switches as the parasitics. Most of the switches are “off.” If the “on” switch resistance
is small enough that the net is not segmented by the resistance, and if the “off” switch
resistance and coupling capacitance are sufficiently large/small to isolate the net from other
lines, then the total parasitics on a net can be modeled as the parallel combination of Cpar

and Ipar. These parasitics require extra power to achieve a given performance. Minimizing
the parasitics is therefore of concern when designing FPAAs for low-power sensor nodes, and
in Section 11.2 we examine how FPAA architecture choices impact the amount of parasitics
encountered by a typical net.

From the above discussion, it is clear that reconfigurability adds many new optimization
tradeoffs to the design of a processor. In Chapter 11, we deal with these tradeoffs in more
detail—particularly in the context of wireless sensors. In the remainder of this Chapter, we
describe the implementation and application of our two Netamorph FPAAs.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 123

CAB

NR = 3

NT = 4

Ipar

Ccouple

Rswitch

CparCparIpar

Ipar(2NR+NT)Cpar(2NR+NT)

Switch symbol A possible switch
implementation

Switch parasitics

(a)

(b)

Figure 10.3: (a) Whether a switch is implemented with a complementary transmission gate
(as shown), a pass transistor, or voltage-controlled resistors [201], the parasitics can be
modeled the same. (b) For a net that is routed in a switch matrix, most of the switches
connected to the line are “off.” If Rswitch is small enough for “on” switches and large enough
for “off” switches, then the parasitics for the line can be modeled as the parallel combination
of the capacitance and leakage to ground.

10.2 Parallelized FPAA Architecture for Embedded Sig-

nal Processing

Previous FPAA designs have demonstrated the ability to synthesize complex analog cir-
cuitry [198]; our goal is to establish their viability in embedded systems such as wireless
sensor networks. Specifically, we would like to establish the use of FPAAs within energy-
constrained systems that monitor phenomena such as audio, vibration, and motion, which
have sufficiently high bandwidths (>100Hz) to challenge the throughput of typical wireless
sensor networks.

We have developed two versions of FPAAs which have evolved out of our Hibernets
designs. Netamorph 1.0 was small, with just 4 CABs, and its purpose was to resolve the
details of the reconfigurable infrastructure before scaling up to a larger FPAA. Netamorph
2.0 has been scaled up to 80 CABs, has a higher level of integration, and has better software
tools for creating FPAA designs, all of which make this second version very usable. Both

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 124

A
c
c
e

le
ro

m
e

te
r

G
y
ro

s
c
o

p
e

M
ic

ro
p

h
o

n
e

A
u

x
ili

a
ry

2
.5

V

1
.2

5
V

Field-programmable
analog array

4 analog
2 digital

SPI
config

Digital

Mixed-signal

Transistors

Sensor interfacing

Transconductors

Spectral analysis

G
y
ro

s
c
o

p
e

M
ic

ro
p

h
o

n
e

 2

A
u

x
ili

a
ry

3V 11 biases

Field-programmable
analog array

Analog
out

SPI
config

Transconductors

Spectral analysis

M
ic

ro
p

h
o

n
e

 1

(a)

(b)

(c)

Netamorph 1.0 Netamorph 2.0

Netamorph 1.0

Netamorph 2.0

Figure 10.4: (a) Processing architecture of Netamorph 1.0. Two spectral analysis CABs are
followed by two general purpose CABs for subband processing. (b) Processing architecture
of Netamorph 2.0. The CABs are arranged into eight parallel channels, each with ten stages.
(c) Die photos showing the relative size of the two generations of FPAAs.

versions use SRAM-controlled switches; more details on the switches are provided in Section
11.3.

10.2.1 Netamorph 1.0

Netamorph 1.0 was made in a standard 0.5µm CMOS process and was 2.25mm2. An
abstract view of the processing architecture is shown in Fig. 10.4(a) and the die photo is
shown in Fig. 10.4(c). This FPAA consists of four computational analog blocks (CABs),
including two for spectral analysis and two for subband processing. The spectral-analysis
CABs include filters and magnitude detectors. These circuits all have tunable biases, al-
lowing the user to perform several common types of analysis on a range of signals before
further processing. Further processing takes place in the subband processing CABs, which
provide access to elements of a smaller granularity, such as OTAs, capacitors, and individual
transistors. The computational elements are listed in Table 10.1. Demonstrations are given
in Section 10.5.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 125

Table 10.1: Computational Elements in Netamorph 1.0

2 C4’s 2 envelope detectors 2 LPFs

16 FETs 8 capacitors 10 OTAs

Reconfiguration is achieved via programmable switches in the connection box (which is
used for intra-CAB routing) and the switch box (which is used for inter-CAB routing). The
connection box consists of a crossbar configuration for flexible local routing. To facilitate ease
of integration with a sensor node, we implemented these switches using SRAM-controlled
transmission gates. Each switch had an SRAM memory cell that set it to “on” or “off.” To
load values, we used a row-by-row method that would load the state of all 16 switches in
a given row. The configuration was written into the SRAM array using an on-chip serial
peripheral interface (SPI). In total, the FPAA had 1436 switches, with the potential to route
40 unique nets. Netamorph 1.0 had no internal biasing so an external DAC was used.

Some of the ways in which Netamorph 1.0 influenced the design of Netamorph 2.0 are
described below.

1. Switch box. In the switch box, we implemented a variety of connection types (such as
crossbar, crossover, and four-way switch points) to evaluate their value within sensor
networks. We found that the four-way switches allow the best use of routing lines, so
Netamorph 2.0 primarily uses four-way switches.

2. Number of routing lines. The connection boxes had 14 routing lines that were available
for connecting terminals of CAB circuits (excluding lines dedicated for ground and
Vdd). The “Transconductors” CAB had 34 terminals while the “Spectral analysis”
CAB only had 9 terminals. We found that 14 routing lines was too few for a CAB
with 34 terminals, while it was excessive for a CAB with 9 terminals. This influenced
two design decisions for Netamorph 2.0. First, all CABs should have the same number
of terminals to avoid a mismatch between the number of terminals and the number of
routing lines. Second, a connection box should have at least one routing line for every
two terminals (we used 9 routing lines for 16 terminals in Netamorph 2.0).

3. Global connections. Netamorph 1.0 contained a large number of global connections:
ground, Vdd, two global lines, and four global channel lines. The global supply nets
(ground and Vdd) were useful. But the rest of the global connections were excessive.
In Netamorph 2.0, we used one global line for a midrail reference, as well as one global
stage/channel line in each stage/channel.

10.2.2 Netamorph 2.0

Netamorph 2.0, shown in Fig. 10.4(b), was fabricated in a standard 0.35µm CMOS
process and was 25mm2. This FPAA consists of 80 computational blocks arranged in an
8-channel by 10-stage signal flow. A crossbar switch matrix connects the 16 terminals of
the computational elements at the block level, and a switch box connects 6 routing tracks
between neighboring blocks. Additionally, a long track in each stage/channel routes signals

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 126

globally. All 20,380 switches are implemented using a transmission gate controlled by a local
SRAM bit.

We have included high-granularity computational elements in the FPAA to reduce the
number of switches in the signal path. Our FPAA’s computational elements are listed
in Table 10.2; these elements represent a variety of granularity and function to improve
performance and application fit. The elements are applicable to most signal-processing
applications and are grouped by function into stages to streamline audio and vibration
applications. These groups are described below.

Table 10.2: Computational Elements in Netamorph 2.0

8 C4’s 56 OTAs 8 inverters 16 envelope detectors

8 LPFs 8 multipliers 32 comparators 48 current sources/sinks

56 caps 8 op-amps 8 bump circuits 16 pulse generators

8 PNPs 16 resistors 8 time-to-voltage 16 asymmetric integrators

16 S/Hs 144 FETs 32 JK flip flops 16 6-input 2-output LUTs

1. Spectral analysis: Contains programmable filters, envelope detectors, and OTAs with
reconfigurable bias terminals to synthesize frequency decomposition algorithms.

2. Transconductors: Contains a variety of linear and nonlinear transconductance elements
for synthesizing Gm–C networks and discriminant functions.

3. Sensor interfacing: Contains op-amps and resistors to build reconfigurable sensor in-
terfaces.

4. Transistors: Used to synthesize computational elements that are too specialized to
include as dedicated elements.

5. Mixed-signal: Contains comparators, S/Hs, programmable-width pulse generators, etc.
Designed with current-starved and non-overlapping push/pull logic to nullify short-
circuit current caused by interfacing with slow signals from the preceding stages.

6. Digital: Contains flip flops and lookup tables. Used to add digital control to analog
circuits and to generate event-detection and data-ready interrupts for the application
processor. Connected to the FPAA’s SPI pins for run-time writing/reading of synthe-
sized registers.

10.3 Memory Programming

The benefits of reconfigurable sensor interfacing and reconfigurable analog signal process-
ing makes FPAAs enticing for resource-constrained sensing applications. However, the cost
of dense analog parameter storage—either high quiescent power to refresh volatile storage
or high infrastructure overhead to write nonvolatile storage—limits the use of large-scale
FPAAs in low-power systems. To make large-scale reprogrammable analog circuits a reality

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 127
S

P
I

C
o

n
tr

o
l

296-element
nonvolatile

current-source
array

Memory
write control

10-bit DAC

Vdd,NVM

Vtarg

Vtun

Off-chip

Current
reference

Regulated
charge pump

High-side
switch

Boost
converter

Vcg Vfb

(a)

Vtun

Vtarg

Vdd,NVM

Write switchesWrite NVMClear
switches
& NVM

Time (s)
-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

1

2

0

5

0

2

4

6

8

10

C
h
ip

S
e

le
c
t

(V
)

S
u

p
p
ly

C
u
rr

e
n

t
(m

A
)

V
o

lt
a

g
e

(b)

Figure 10.5: (a) Block diagram of the FPAA’s analog nonvolatile memory (NVM) program-
ming system. (b) Measurement of the process of loading a design into Netamorph 2.0. The
supply current is measured flowing into the FPAA board. The SPI “chip select” pin indicates
data transfers from the application processor.

for low-power sensing systems, we have developed a low-overhead, highly-integrated FPAA-
programming infrastructure. This programming infrastructure is used in Netamorph 2.0.
Only 1–48mJ is required to reprogram, depending on the design which is loaded into the
FPAA, thus enabling Netamorph 2.0 to be used in low-resource systems.

10.3.1 Memory Programming Infrastructure

The programmable characteristics of Netamorph 2.0’s computational elements—e.g. time
constants, Gm’s, pulse widths—are controlled by 296 analog nonvolatile memory (NVM)
elements. These memory elements consist of programmable current sources that are based
upon floating-gate transistors, as described in Chapter 6. Floating-gate transistors have no
resistive connection to their gate; instead, a “control gate” couples capacitively onto the
transistor’s “floating gate.” As a result, the floating-gate charge, which can be modified
using Fowler-Nordheim tunneling and hot-electron injection, creates a programmable and
nonvolatile threshold-voltage shift from the perspective of the control gate.

We have developed a highly integrated, energy-optimized system—Fig. 10.5(a)—for pro-
gramming analog values onto floating gates. The NVM elements and write control circuit
are extensions of our continuous-time floating-gate programmer in Chapter 6, and are shown
in detail in Fig. 10.6. The reprogramming process is shown in Fig. 10.5(b) and is described
below.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 128

Vcg

Vdd,NVM

Iref

Vcg Reference

Vtun

M7M6

M5M4

Example computational
element

MFG

Mtun

Cg

M1

M2

M3

Vdd,NVM

Vfg

Nonvolatile current source cell

S1

S2

S3 S4

S5

S6

Run mode

Md

Ma

Mb

Mc

Vdd,NVM

Vtarg

Gm,W

Memory write control

Ib

Vcg

Vtun

MFG

Mtun

Cg

M1

M2

M3

Vdd,NVM

Vfg

Nonvolatile current source cell

To circuit

S2

S3
S4

S5

S6 Vfb

I1 I2

Write mode

Figure 10.6: Detail of the NVM cell. In write mode, a local feedback loop (M1,3) around the
floating-gate transistor MFG linearizes the exponential injection characteristics. NVM cells
are individually connected to a write control circuit which modifies the current injected onto
Vfg (by modifying I1) until the charge on Vfg causes Vcg to match Vtarg. The regulated-cascode
current mirror, Ma–d, replicates the memory cell structure to improve matching between I1
and I2. In run mode, each NVM cell is connected as a current source to its respective
computational element.

10.3.1.1 Clear Switches & NVM

First, the FPAA is reset by clearing the SRAM that controls the switches and by block
erasing the analog floating-gate memory. The SRAM is cleared globally with a reset com-
mand. As described in Chapter 11.3, a global clear significantly reduces the overhead of SPI
transfers. Block erasure of the analog memory is performed by applying a 10.5V pulse on
Vtun to tunnel electrons off of all floating gates. This voltage pulse is generated by an on-chip
high-voltage charge pump.

10.3.1.2 Write NVM

Next, analog values are written to the NVM. Writing is performed by first raising the
memory supply voltage, Vdd,NVM, to 6V to facilitate injection, and then by sequentially
connecting individual elements to the write-control circuit to store Vtarg into the NVM. Vtarg
is set to the desired value for each element by an on-chip DAC. During the write process, Vtun
is set to 4.5V using the on-chip regulated charge pump to avoid reverse tunneling through
Mtun.

10.3.1.3 Write Switches

Finally, switches are set so as to wire the FPAA for the desired functionality. We have
written a PC program to translate a user-generated netlist into a list of switches to be
programmed.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 129

FPAA
Vdd

Vdd,FG

Boost
output

M1 M2

M3 M4

M5 M6

M7 M8 M9 M10

boost boost

FPAA
Vdd

Vdd,FGBoost
output

M8M7
M6M5

M4M3

M2M1

(a) (b)

Figure 10.7: (a) Schematic of the high-side switch developed for the NVM programming
system in 10.5. (b) An improvement upon the switch.

10.3.2 High-Side Switch

In run mode, the floating-gate supply voltage Vdd,FG should have a low-impedance con-
nection to the chip supply voltage. During programming, Vdd,FG is raised to a higher voltage
by the off-chip boost converter. Making these connections requires a high-side switch (i.e.
the connection is made at the positive supply rail) that operates at varying voltages beyond
the battery voltage. Demand for such switches is increasing as electronics include more
sophisticated power management—that is, multiple supply voltages receiving power from
multiple sources (such as batteries and energy harvesting) and aggressive gating of unused
subsystems.

Such switches are typically nFET-based because the lower mobility for electrons com-
pared to holes results in a better tradeoff between “on” resistances and device size. However,
since the gate voltage that is required to turn on the nFET will be higher than the circuit’s
voltages, a charge pump is required to generate a higher gate voltage. In low-current ap-
plications, the area cost of a charge pump will negate the advantages of lower mobilities in
nFETs. The other advantage of nFETs is that the bulk terminal is easier to bias since it
need only be less than the voltages that are switched. In contrast, pFETs require dynamic
biasing of the bulk terminals since they must always connect to the highest voltage. Our
high-side switch simplifies the dynamic biasing of the pFET bulk terminals.

For our memory programming system, we have developed a simple high-side switch shown
in Fig. 10.7(a) that has broad applications. Transistors M5 and M6 are the switches that
connect Vdd,FG either to the boost converter or the FPAA Vdd. Transistors M1–4 form a
standard level shifter, which shifts the selection signal boost and its complement to the
necessary voltage to turn off the unselected switch (e.g. turn off M5 if Vdd,FG is connected
to FPAA Vdd). Additionally, well-selection transistors M7–8 and M9–10 bias the wells of the
switch transistors at the highest voltage so that the source/drain junctions do not forward
bias.

The switch in Fig. 10.7(a) has one disadvantage: it is only able to connect Vdd,FG to the
higher voltage. This is because the selection signal is level shifted to Vdd,FG, and if Vdd,FG
is connected to the lower voltage, then the selection signal is not level-shifted high enough

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 130

to turn off the opposite switch. In our programming system it is never necessary to connect
to the lower voltage, but to improve the switch for a wider range of applications we present
the improved switch in Fig. 10.7(b). Here, a single well-selection transistor pair M7–8 biases
the wells of all pFETs, as well as the voltage to which the selection signals are level-shifted,
to the highest voltage in the circuit. This ensures that the deselected switch can always be
turned off.

In summary, by designing appropriate gate- and bulk-biasing circuitry, pFETs are easy
to use as high-side switches in low-current applications. Furthermore, because of the high
breakdown voltage of the pFET’s well-to-substrate junction, which is approximately 35V in
0.35µm, our switch design can be extended to safely pass voltages far in excess of what an
nFET switch can handle.

10.3.3 Summary of FPAA Programming

Analog memory writes are controlled by an on-chip feedback loop, and the only interac-
tion from the application processor is to specify the memory address and DAC code-word.
As a result, we incur significantly less overhead than systems which require a processor in
the feedback loop [202]. The entire process in Fig. 10.5(b) consumed 2.35mJ, 33% of which
is consumed while starting the external boost converter and can be largely eliminated by
generating Vdd,NVM with an on-chip charge pump (similar to our Vtun charge pump).

In Fig. 10.5(b), 10 NVM and 33 switches were written. The energy breakdown is ap-
proximately 0.12mJ per NVM, 6.4µJ per switch, and a constant 0.94mJ each reconfiguration
cycle. These data are used to estimate the energy to load larger designs into the FPAA. For
example, the design in Fig. 10.16 uses 478 switches, 29 LUT bits, and 52 analog NVM, at a
total reconfiguration energy of 10.42mJ.

10.4 Using the FPAA

10.4.1 Interface PCBs

Our end goal with this FPAA work is to integrate the Netamorph FPAAs into a wireless
sensor node in a way that enables us to easily monitor a range of phenomena. To that end,
we created a printed circuit board (PCB), as shown in Fig. 10.8, for each FPAA version.

10.4.1.1 Netamorph 1.0 Interface PCB

The PCB, shown in Fig. 10.8(a), includes a variety of sensors, two FPAAs to enable
scalability, a TelosB mote connector, a digital-to-analog converter (DAC) for providing bias
voltages, as well as a complex programmable logic device (CPLD). For the sensors, we chose
to focus on the relatively high-frequency phenomena that are traditionally very taxing on a
wireless sensor network’s power budget, including motion, audio signals, and various forms
of simple harmonic motion. To monitor these phenomena, we equipped the board with
a gyroscope, two microphones placed at opposite ends of the board to enable directional
sensing, and a mini-stereo port to enable future expansion.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 131

FPAA Mote

ADC

Interrupt

Digital I/O

Sensor
Block

Input

Interrupt Signal

SPI Block

Mixed Output

Bias

CPLD
DAC

FPAA Mote

ADC

Interrupt

Digital I/O

Boost
Converter

Enable

Output

Sensor
Block

Input

Interrupt Signal

SPI

Mixed Output

Inject Vdd

Output Register

FPAA 2

FPAA 1

TelosB Connector

CPLD

MIC 1 MIC 2
Gyroscope Audio Port

FPAA

TelosB Connector

MIC

Audio Port

Gyroscope

Accelerometer

(a) (b)

Figure 10.8: (a) PCB for interfacing Netamorph 1.0 to a wireless sensor node. This board
incorporates a variety of sensors, a CPLD, a DAC (on the underside of the PCB), and a
socket for connecting a TelosB mote. The PCB measures 3.4” x 2.8”. (b) PCB for interfacing
Netamorph 2.0 to a wireless sensor node. As a result of the higher level of integration in
version 2.0, the DACs and the CPLD are no longer included. The PCB measures 3.1” x 2.6”

By including two FPAAs on the same board, we were able to scale up our architecture
and build more sophisticated ASP designs. The FPAAs include SPI blocks that can be
programmed directly through the attached TelosB mote’s general purpose input/output
(GPIO) pins. The on-board CPLD was used to minimize the number of TelosB pins that
were used for digital I/O, thus freeing up more pins to be configured as ADCs. Additionally,
the CPLD was used to define even more complex wake-up events. We also simplified setting
individual bias points for all of the ASP blocks by including DACs which can be set and
adjusted directly by the mote.

10.4.1.2 Netamorph 2.0 Interface PCB

The PCB, shown in Fig. 10.8(b), includes the FPAA, a variety of sensors, a shift regis-
ter for enabling/disabling sensors, a boost converter for programming nonvolatile memory,
a current reference for temperature compensation, 2.5V regulators for analog and digital
supplies, a 1.25V reference, and comprehensive power probing.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 132

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

Programmability (bits)

Q
ui

es
ce

nt
 P

ow
er

 (µ
W

)

Netamorph 2.0

Netamorph 1.0

Hibernets 2.0

Hibernets 1.0

Figure 10.9: Comparison of the level of programmability and the “quiescent power consump-
tion of the programming infrastructure” for each of our ASP systems. The second iterations
of the Hibernets and Netamorph systems use floating-gate biasing which aid in achieving
dense, low-power programmability. High integration of the programming infrastructure en-
ables Netamorph 2.0 to achieve very low quiescent power consumption.

The quiescent current draw of the PCB is just 1.35µA: 276nA for the analog supply,
85nA for the digital supply, and the rest is drawn by the 2.5V regulators and 1.25V reference.
Despite the increased size and programmability of Netamorph 2.0, the system-level quiescent
current is much lower than our previous Hibernets and Netamorph designs because of the
increased attention to the design of the biasing infrastructure. A comparison is shown in Fig.
10.9. In the Figure, “Programmability (bits)” combines the bits of all switches and PLAs,
as well as the biasing resolution (in bits) for all analog biases.

For sensors, we have included the Knowles SPW0430 low-power microphone (240µW), the
STMicro LIS352 3-axis accelerometer (900µW), and the STMicro LY3200 1-axis gyroscope
(12.6mW)—all of which can be completely turned off using on-board switches. Additional
sensor inputs can be provided using a 3.5mm stereo audio jack and a 2-pin female header.
This combination of sensors makes the PCB useful for prototyping wearable electronics as
well as audio/vibration applications.

The PCB includes a header for connecting a TelosB mote. Additionally, we have made
a cable for connecting the PCB to Arduino-compatible devices, which softens the learning
curve for building applications with the FPAA.

10.4.2 Development Environment

We have developed a two versions of software user interface to aid in the reconfiguration
and tuning of the FPAA. The first implementation of the user interface allowed users to wire
circuits together in a spreadsheet. Once the user completed the design, the configuration,
consisting of the switch settings and the bias values, was converted to a header file by a

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 133

Matlab script. This header file was then uploaded to the base-station mote running TinyOS,
and then wirelessly transmitted to the remote nodes. The remote node then applied the new
configuration to its FPAA. This spreadsheet-based user interface was not practical to scale
to the larger Netamorph 2.0 FPAA.

The current implementation of the user interface uses a netlisting language to specify
circuits. Subcircuits can be defined and instantiated, thus allowing developers to design
hierarchically using a library of circuits. Based upon the netlist, a heuristic-based routing
algorithm decides which switches to set in order to connect the circuit. Currently, the user
must specify which CAB to use for each primitive device (e.g. when instancing a C4 bandpass
filter, the user must specify which channel to use).

The routing algorithm begins with the CAB with the greatest number of unconnected
nets. This CAB will be the most congested, and will therefore be the most susceptible to
starting conditions. Within this CAB, the net with the longest connection is routed first so
that it does not have to detour around other nets.

This simple development environment has enabled us to be much more productive at cre-
ating designs in the FPAA. However, several improvements are envisioned. The path-routing
algorithm described above can be improved by including the ability to identify congested
areas and choose alternate paths to avoid congestion. The routing algorithm can also be
improved by including the ability to separate sensitive hi-impedance nets away from aggres-
sive low-impedance nets. However, coupling between lines in a connection box is primarily
through the capacitance across “off” switches, so physical proximity between lines does
not factor into the degree of coupling. As a result, sensitive lines are best separated from
aggressors by routing them in separate CABs, which is best addressed by automatically
placing devices into the CABs as opposed to leaving this responsibility to the user. Beyond
implementing automatic placement and improving the routing capabilities, the development
environment can be further improved by making it more intention based by, for example, au-
tomatically inserting buffers where they will be helpful or using state-machine specifications
to synthesize the contents of the lookup tables and the routing in the digital stages.

10.4.3 Compression of FPAA Configuration Files

When designing an FPAA for use in a wireless sensor network, the size of the FPAA
is a critical design choice. While it is desirable to have an FPAA that is large enough to
create sophisticated ASP designs, care must be taken to minimize the overhead of delivering
and storing large configuration files within the network. The näıve approach for handling
configuration files is to simply transmit the raw bits that will eventually be shifted into
the FPAA. For example, the configuration file for the switch configuration in Fig. 10.10(a)
will consist of 64 bits, only three of which are “on,” which implies that the configuration
is redundant. If this method were scaled to large FPAAs that have 74,000 switches [198],
for example, then significant energy would be wasted transmitting and receiving redundant
bits.

To address this problem, we have developed a compression method that is inspired by
entropy coding, but that is informed by our observations about typical FPAA configurations.
Configuration files tend to be small. Therefore, traditional methods which utilize a codebook
would have too much overhead (e.g. Huffman coding). Even when considering FPAAs

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 134

Row 3
Row 2
Row 1
Row 0

C
ol
 3

C
ol
 7

C
ol
 1

2

0
R
ow

 0

1 0111 0
R
ow

 1

0 1 0011 1 1100 0
R
ow

 2

R
ow

 3

C
ol
 7

C
ol
 3

C
ol
 1

2

(a)

(b)

Figure 10.10: (a) Example of a configuration of switches. (b) Implementation of how this
configuration would be transmitted using our compression scheme.

of larger scale, ASP algorithms tend to have a parallel nature and are still amenable to
compression. An example of this is a large filter bank which utilizes the same operation in
each sub-band. This identical operation means that the switch settings are the same in all
channels; therefore, it is only necessary to transmit the settings for one channel and then
apply those settings to the remaining channels, as we describe below.

Due to redundancies in the switch matrix, most rows tend to have no switch set. There-
fore, we begin our row-by-row compression scheme by delineating whether or not any switches
are set within a given row. Only if a switch is set in the row do we specify the location of
the switch within the row using a four bit identification number. An example compression
is shown in Fig. 10.10(b), where the 64-bit configuration of Fig. 10.10(a) is reduced to 19
bits. The size of the compressed configuration depends upon the number of “on” switches
Non, and is equal to 5Non+Nrows, where Nrows is the number of rows in the FPAA. We
have determined experimentally—Fig. 11.7(c)—that the energy for the mote to decode the
configuration is 34.1µJ, while the reduction in transmitted data saves 3.5mJ.

We have expanded the compression scheme described above for our larger Netamorph 2.0
FPAA by compressing redundancy in parallel channels and adding compression of floating-
gate values. The updates to the compression scheme include:

1. To accommodate the fact that unused terminals will typically be grounded rather than
being left to float, a “write mask” is determined. The “write mask” is the most common
row word, and all rows are encoded as the XOR with the mask to minimize the number
of rows that must be encoded. The mask is the first word in the compressed bitstream.

2. Redundancy across channels is removed. This is accomplished by identifying which

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 135

channels in a stage have matching switch settings. These CABs will be encoded once
as opposed to encoding each CAB separately.

3. The floating-gate values are compressed. Since biases in a parallel architecture will
typically vary linearly or be constant from channel to channel, the biases are taken
channel by channel so that the biases can be compressed by only encoding the deltas.
If the delta is less than four bits, then only the delta is encoded, otherwise the full
value is encoded.

Algorithm 1 shows the decompression process. In this algorithm, the settings can be written
into the FPAA as they are extracted, so it is not necessary to hold the entire expanded
configuration in the mote’s memory. This is important, because the TelosB only has 10KB
of RAM.

0 100 200 300 400 500 600 700
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of switches

S
iz

e
of

 c
om

pr
es

se
d

co
nf

ig
ur

at
io

n
(b

its
)

Full address for each switch
0’s for empty rows
With parallel redundancy removal

Temperature
sensor

Heart−rate
monitor

Spectrum
normalization

Figure 10.11: Results of applying the compression algorithm to large FPAA designs.

The results of this compression algorithm are shown in Fig. 10.11. The solid and dashed
lines show the compression levels which would be obtained either by coding the address of
each switch or by using the compression routine in Fig. 10.10, respectively. The circles show
bitstream sizes for actual designs (described in the next Section) that were compressed using
the routine described above. This new routine has two advantages. First, by only encoding
occupied CABs (as opposed to having long runs of ‘0’s for the entire FPAA) we achieve more
aggressive compression for small designs, such as the temperature sensor, while minimizing
the growth of the configuration size as the number of switches increases, such as for the
heart-rate monitor. Second, by removing redundancy from parallelized designs, such as in
the spectrum normalization, large designs can be highly compressed.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 136

Algorithm 1 Decompressing the FPAA configuration Bitstream

Bitmask ← first 12 bits of Bitstream
while “Terminator for Switches” not encountered do

Channels ← next 8 bits of Bitstream
while “Terminator for current block of channels” not encountered do

Stage ← next 4 bits of Bitstream
Check Stage for “Termination codewords”
for all Switch rows do

Word ← 0
while Next bit of Bitstream = ‘1’ do

SwitchID ← next 4 bits of Bitstream
Place ‘1’ at bit SwitchID in Word

end while
Word ← Word XOR Bitmask
Write Word to current row in stage Stage in each channel in Channels

end for
end while

end while
while “Terminator for Biases” not encountered do

Floating-Gate ID ← next 6 bits of Bitstream
Check Floating-Gate ID for “Termination codeword”
for all Channels do

if Next bit of Bitstream = ‘1’ then
if Next bit of Bitstream = ‘0’ then

Bias ← PreviousBias + next 5 bits of Bitstream
else

Bias ← next 10 bits of Bitstream
end if
Write Bias to floating-gate number Floating-Gate ID in the current channel
PreviousBias ← Bias

end if
end for

end while

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 137

10.5 Applications

10.5.1 Demonstrations of Netamorph 1.0

To illustrate the functionality of FPAA-based ASP designs in wireless sensor networks,
we connected our Netamorph 1.0 interface board to a TelosB mote and synthesized several
signal-processing circuits on the FPAA. Each of these circuits can be used to generate wake-
up signals to turn on the TelosB mote. In each scenario, all reconfiguration commands were
sent over the radio through another TelosB mote, which acted as the base station.

10.5.1.1 Rising Frequency Detector

The first system that we demonstrate is the ability of Netamorph 1.0 to perform basic
spectral analysis (Figs. 10.12). Here, the FPAA has been configured to analyze a signal’s
frequency content and detect a rising frequency in the 2-4kHz range. The signal is first
filtered through parallel bandpass filters set to center frequencies of 2kHz and 4kHz. The
lower-frequency signal (x0) is then delayed. A cascade of OTAs computes the product of
the delayed low-frequency signal with the instantaneous high-frequency signal (x1), thus
providing a measure of simultaneity, reminiscent of the motion-analysis system in [203]. To
ensure that static wideband signals do not trigger the detector, the final portion of the circuit
pulls the output low when x0 is high. The resulting output is high only when the x1 and the
delayed version of x0 are high and the x0 is not high. As a result, a pulse is generated when
the signal is rising in the correct frequency range.

10.5.1.2 Voice-Activity Detector

The next system demonstrates the ability of Netamorph 1.0 to implement a voice-activity
detector, based upon the scheme presented in [191] (Fig. 10.13). Audio signals were first
passed through the spectral analysis CAB where they were filtered from 10 Hz to 2kHz using
a bandpass filter. The envelope of this speech band was then found and passed through an-
other bandpass filter, with corner frequencies at 2Hz and 12Hz corresponding to the phoneme
band. The magnitude of the phoneme band was then used to trigger a time-to-voltage con-
verter that would create a ramping voltage when the phoneme band exceeded a specified
threshold. The time-to-voltage converter then triggers an event when this ramped voltage
exceeded a threshold. While the inclusion of the time-to-voltage converter and the subse-
quent comparator stage may seem redundant at first, it allowed the device to operate in
noisy, non-idealized conditions. The signal at each stage is shown in Fig. 10.13, and it is
shown that the speech portion of the input signal was correctly identified in the presence of
noise. The overall output can be used to identify to the rest of the sensor node that a signal
of interest has been found.

10.5.2 Demonstrations of Netamorph 2.0

The following demonstrations validate Netamorph 2.0 in a variety of sensing applica-
tions. All power consumption values (Table 10.3) were obtained by measuring the supply
current of the entire FPAA board (at 3V); these values include the power of output buffers,

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 138

Vpulldown

Output

Threshold

Inhibition

Correlation

Gm2

Gm1

Threshold

Delay

x0

x1

Mag

Mag

BPF
2kHz

BPF
4kHz

Input

0 0.1 0.2 0.3 0.4
0.5

1

1.5

2

2.5

In
p

u
t

(V
)

S
p

e
c
tr

o
g
ra

m

o
f

In
p

u
t

(H
z
)

0 0.1 0.2 0.3 0.4
250
500

1000
2000
4000
8000

16000
32000

0 0.1 0.2 0.3 0.4
0

1

2

3

D
e

te
c
ti
o

n
 (

V
)

Time (s)

(a) (b)

Figure 10.12: (a) Top-level schematic of the rising frequency detector synthesized in Neta-
morph 1.0. The circuit detects portions of the signal where the frequency content rises in the
2–4kHz range. The “Correlation” stage detects the simultaneous presence of content in the
high-frequency band and the delayed low-frequency band. The “Inhibition” stage nulls the
output when content is present in the low-frequency band to avoid triggering on wideband
signals. Gm2 is biased by the gate of the attached pFET while the output current of Gm1 is
mirrored through the diode connected FET. Also note that Vpulldown is a constant bias used
to weakly pull down the output when Gm2 is shutoff by Gm1. (b) Spectral analysis performed
by the analog IC. (Top, Middle) The transient plot and the spectrogram plot of the input
signal, respectively. The sinusoidal signal, which includes Gaussian noise, varies from 1kHz
to 8kHz and concludes with a steady input of ten sine waves ranging from 2kHz to 4kHz.
(Bottom) The output stage successfully detects portions of the signal where the frequency
content rises in the 2–4kHz range.

BPF
Input

Mag BPF

T
h

re
s
h

o
ld

Vb1

Vb2

Output

T
h

re
s
h

o
ld

Speech Band:
10-2kHz

Phoneme Band:
2-12Hz

Time-to-Voltage Converter

0 1 2 3 4 5 6 7
0.5

1

1.5 Input

Time (s)
0 1 2 3 4 5 6 7

0

2

4 Voice Activity Detector Output

0 1 2 3 4 5 6 7

1.4

1.6
Speech Band (10Hz-2kHz)

0 1 2 3 4 5 6 7
1

1.5 Phoneme Band (2Hz-12Hz)

0 1 2 3 4 5 6 7
0

2

4
Time-to-Voltage ConverterV

o
lt
a

g
e

 (
V

)

(a) (b)

Figure 10.13: (a) Schematic of the voice-activity detection algorithm implemented in Neta-
morph 1.0. The device triggers an event when the amplitude modulation in the speech band
occurs at a rate that is typical of speech. (b)

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 139

1.1MΩ

M1

M3

M2

M4

M5

M6

1.1MΩ

M7 M8

M9 M10

Vout

1.2MΩ

200kΩ

x1 x7

(a) (b)

240 260 280 300 320 340

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Temperature (K)

V
o

u
t (

V
)

Figure 10.14: (a) Temperature sensor which was synthesized using devices in Netamorph
2.0. (b) Measured output response of the temperature sensor across a 100K temperature
range.

regulators, and references, and are thus representative of the power cost to add the FPAA
to an embedded system.

Table 10.3: Demonstration results for Netamorph 2.0

Circuit Run power Nets NVMs Config energy

Temp. sensor 12µW 23 3 (readout buffer) 1.97mJ

Heart-rate 20µW 55 18 5.52mJ

Audio 17.25µW 89 52 10.42mJ

10.5.2.1 Temperature Sensor

Netamorph 2.0 includes a large number of device-level elements to synthesize circuits
that are too specialized to include in the computation blocks. The temperature sensor in
Fig. 10.14(a) was synthesized as a demonstration. The ratios of the BJTs and resistors were
chosen to yield a 1mV/K output. The circuit’s measured temperature response is shown in
Fig. 10.14(b). Due to second-order temperature dependencies in the BJTs, the output is
actually 1.16mV/K. The power consumption is 12µW.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 140

10.5.2.2 Heart-Rate Monitor

Netamorph 2.0 was designed to meet the needs of the first three stages in sensor systems:
sensor interfacing, signal analysis, and event detection. These capabilities are demonstrated
by synthesizing the heart-rate monitoring system shown in Fig. 10.15(a). The difference
amplifier is based on [28] and the system’s back-end was inspired by [116]. Each symbol
directly maps to a single computational element (with the exception of the shift register,
which is a collection of flip flop elements). As a result of the FPAA’s mixed granularity, this
relatively large system was mapped onto a small number of elements.

The system takes a differential input from ECG probes (in this demonstration the input is
generated by a multi-channel DAC). The sensor input is conditioned with two amplification
stages and a lowpass filter which removes residual 60Hz noise. The heart rate is extracted
by detecting the R wave with a maxima detector, which triggers a time-to-voltage converter,
thus yielding the heart period. The system generates an alarm when the heart rate deviates
from an acceptable range of 60–110bpm. A windowing operation is used to minimize false
alarms by only triggering if multiple recent heart rates are out of range. Measured operation
is shown in Fig. 10.15(b). The total power consumption is 20µW.

10.5.2.3 Audio Spectrum Normalization

The architecture of Netamorph 2.0 is amenable to audio and vibration signal processing
using an analog filter bank. Information in filter channels is highly correlated and requires
subsequent processing to prepare for classification. In Fig. 10.16, we present a circuit imple-
mentation of the decorrelation algorithm in [204], which was synthesized in the FPAA. The
algorithm’s nonlinear inhibition of parallel channels maps efficiently into analog circuitry.
The circuit sharpens the filter bank frequency responses and normalizes the channels to
create scale-invariant features for classification. The power consumption is 17.25µW. For
comparison, [198] describes an FPAA implementation of a single channel of a comparable
filter bank algorithm which consumed 34.5µW.

10.6 Conclusion and Future Work

A commonly cited application of FPAAs is sensor interfacing. As the Internet of Things
continues to emerge, the quantity of sensing devices will increase while the energy per device
will need to decrease. With this in mind, we have developed a large-scale, low-overhead
FPAA for systems which have severe power constraints.

To be used in a sensor network, the FPAA’s reprogramming infrastructure has been
designed to be simple enough to be controlled with 8-/16-bit microcontrollers with minimal
impact on microcontroller resources. A tradeoff study of this aspect of the design is given in
the following Chapter.

To facilitate the synthesis of large signal-processing systems, we have designed Netamorph
2.0 with a mixture of computational elements and a parallelized signal-flow topology. The
system in Fig. 10.16 has 52 analog parameters and 89 nets (a synthesized channel readout
scanner is not shown). To our knowledge, this is the largest-scale published system to be
implemented in reconfigurable analog fabric.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 141

No consistent figure of merit exists for FPAAs. This is understandable because the
intended usage of FPAAs is also not consistent. We will suggest a path toward developing
a figure of merit that may allow comparison of a wide variety of FPAAs and may also allow
automatic optimization of FPAAs. One recurring figure of merit is bandwidth, which is
limited by the switch fabric parasitics. Bandwidth measurements in FPAAs have previously
been performed on either synthesized filters or on local lines. Such measurements do not
capture the performance of a nontrivial system synthesized in an FPAA. For example, the
bandwidth of a local line may be very high but the design of the FPAA may prevent most nets
from being routed on local lines; as a result, the typical bandwidth limitations of the switch
fabric will be much more severe than the limitations indicated by the specified bandwidth.

A figure of merit that is representative of real designs can be acquired by extracting
statistics about parasitics from a corpus of designs, similar to the distribution that we shown
in Fig. 11.4 in the next Chapter. Combining such information with modeling of the parasitics
of a single switch, it is possible to estimate the typical full-system power cost of maintaining a
given bandwidth and signal resolution within the switch matrix. Such a metric is independent
of the performance of the CAB elements, but instead combines all of the design tradeoffs
that are inherent to FPAA design: parasitics of the switch fabric, number of devices and
routing tracks per CAB, organization of CABs by function, and place-and-route algorithms.
Further development of this metric can be used to compare FPAAs and to automatically
optimize FPAA design parameters.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 142

Differential-to-
single-ended
amplifier

1.25V

In−

In+

Second gain
stage

Lowpass
filter

Sensor interfacing/conditioning

Conditioned

R-to-R interval

Time-to-voltage
converter

Asym.
Integ.

Inverter w/
nonoverlap
gate drive

Debouncing

Peak
Detector

Maxima detector

Heart-rate extraction

Period

1.25V

1.25V

Out of
range

Shift Reg

AND
(LUT)

OR
(LUT)

Alarm

Window

Heart-rate alarm

0 5 10 15 20 25 30 35 40
-1

0
1
2
3

In
+ −

In
−

(m
V

)

0 5 10 15 20 25 30 35 40
0.92

0.94

0.96

C
o

n
d

it
io

n
e

d
 (

V
)

0 5 10 15 20 25 30 35 40
0

1

2

P
e

ri
o

d
 (

V
)

0 5 10 15 20 25 30 35 40
0

1

2

Time (s)

A
la

rm
 (

V
)

OR
(LUT)

(a)

(b)

72 bpm 50 bpm 72 bpm 110 bpm

VH

VL

VL

VH

Figure 10.15: (a) Heart-rate monitoring system which was synthesized in Netamorph 2.0.
After passing through the conditioning block, a time-to-voltage converter is clocked by the
peaks of the R wave to extract the period. The period is compared with user-defined high/low
thresholds. If two recent periods are outside of the safe range, then an alarm is generated.
(b) Measured response of the heart-rate monitoring system. The input is a 2mV differential
cardiac signal with varying heart rate and 200mV 60Hz common-mode noise. The outputs
of the conditioning, extraction, and alarm subsystems are plotted. The bottom plot shows
successful detection of out-of-range heart rates.

Brandon D. Rumberg Chapter 10. Netamorph: FPAAs for WSNs 143

1.25V

x0
2

Σxi
2

Σxi
2−x0

2

x0
2

Out0=
x0

2

Σxi
2−x0

2+σ2
BPF

Envelope
Detector

LPF
x0 Gilbert

Multiplier
x

y

1.25V

x1
2

Σxi
2

Σxi
2−x1

2

x1
2

BPF
Envelope
Detector

LPF
x1 Gilbert

Multiplier
x

y

In

σ2

σ2

Out1=
x1

2

Σxi
2−x1

2+σ2

(b)

(c)

Time (s)
0 0.5 1 1.5 2 2.5 3

F
re

q
u

e
n

c
y
 (

H
z
) 800

635
504
400
317
252
200

0 0.5 1 1.5 2 2.5 3

F
re

q
u

e
n

c
y
 (

H
z
) 800

635
504
400
317
252
200

(a)

Figure 10.16: (a) Audio spectrum normalization system which was synthesized in Netamorph
2.0. Only 2 of 7 channels are shown for clarity. (b & c) Measured response of the system to a
500Hz tone and chirp combination. (b) Without normalization: xi. (c) With normalization:
Outi. Note that normalization reduces leakage of the 500Hz tone into neighboring bands,
and observe how the 500Hz band is inhibited during the chirp.

144

Chapter 11

Tradeoffs in Designing Reconfigurable
Analog Sensor Interfaces for Wireless
Sensing Applications

In the previous Chapter, we described the implementation and application of two “Neta-
morph” FPAAs (field-programmable analog array) for wireless sensor networks. We showed
that these FPAAs extend the range of applications and improve the ease of use of our
Hibernets paradigm (Chapter 3), wherein sensor nodes are augmented with analog signal
processing.

In this Chapter, we examine the tradeoffs for designing FPAAs for wireless sensors.
Section 11.1 describes the background of FPAAs. Section 11.2 analyzes FPAA architecture
tradeoffs. Section 11.3 studies the cost of reconfiguring analog circuitry and Section 11.4
examines the implications of the cost of reconfiguration in the higher-level context of wireless
sensor networks.

The study of reconfiguration costs in this Chapter was published in the Proceedings of
the International Midwest Symposium on Circuits and Systems [205].

11.1 FPAA Trends

D’Mello and Gulak provide an excellent account of FPAA development prior to 1998 [206].
They attribute the emergence of programmable analog circuits to the GAP-01 made by
Precision Monolithics in 1982. The GAP-01 (some applications details in [207]), and its
sibling peak-detection version the PKD-01 [208], were essentially single-chip computational
analog blocks (CABs) containing a comparator, a follower-connected op-amp, a diode (only
in the PKD-01), and two transconductance amplifiers that could be switched on or off for
field programming. Since then, FPAAs have grown in size and programmability. We have
surveyed approximately 30 FPAA designs (including [192,195,196,198,199,201,202,209–226]
as well as our two Netamorph designs in this Chapter) for the following illustrations of FPAA
trends.

The intended use of FPAAs has changed over time, as illustrated in Fig. 11.1. Two of
the earliest FPAAs were designed primarily for synthesizing analog neural networks [201,

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 145

1990 1995 2000 2005 2010 2015
0

5

10

15

Year

C
um

ul
at

iv
e

S
um

Conditioning Only

Computing

Mixed
Signal

Figure 11.1: The number of FPAAs designed for a given purpose over time. Until recently,
most FPAAs were designed only for signal conditioning. But most recent FPAA research
has focused on analog signal processing and decision making (i.e. computing) as well as
mixed-signal arrays.

209]. Afterwards, approximately ten years passed in which all FPAAs were developed for
traditional analog conditioning applications, such as filtering, rectifying, and modulating. In
the following discussion and figures, we refer to such FPAAs as “conditioning FPAAs.” Two
mixed-signal FPAAs were developed during this time and they placed a sharp divide between
analog and digital by using two separate analog and digital arrays in which the analog
portion was used exclusively for conditioning-type operations [195, 212]. Recent mixed-
signal FPAAs have interleaved analog and digital blocks for synthesis of data converters
and digitally-assisted analog circuits [224, 225]. We refer to both types as “mixed-signal
FPAAs.” Recently, work on FPAAs for conditioning is decelerating, while a significant
amount of work has focused on reconfigurable analog signal processing ICs that use the
dense, low-power computational capabilities of nonlinear analog circuitry to perform highly
efficient computing ([72] estimates 10,000-fold improvement over low-power DSPs for certain
operations). We refer to such FPAAs as “computing FPAAs,” which are not mutually
exclusive from mixed-signal FPAAs—in fact, most of the recent computing FPAAs have
been mixed-signal: [202,225] and this work.

All of the surveyed FPAAs were designed using the principle of segmenting circuitry into
CABs, although other terminology (e.g. “leafs”) may have been used. Figure 11.2 examines
the CAB design choices that were made in the surveyed FPAAs. Separate lines are used for
“computing” FPAAs and “conditioning” FPAAs because these types clearly follow different
trends. For reference, our Netamorph designs are denoted by circles. In general, our group’s
trend is toward smaller CABs with higher granularity of computational elements.

Although all FPAAs have utilized CABs, a dichotomy exists in the interpretation and

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 146

1990 2000 2010
0

5

10

15

Year
C

om
pu

ta
tio

na
l E

le
m

en
ts

 p
er

 C
A

B

1990 2000 2010
0

500

1000

1500

Year

S
w

itc
he

s
pe

r
C

A
B

1990 2000 2010
0

2

4

6

8

10

Year

N
um

be
r

of
 U

ni
qu

e
C

A
B

 T
yp

es

Computing
Conditioning
Netamorph

Figure 11.2: Trends in CAB designs. The solid line shows FPAAs designed for computing and
the dashed line shows FPAAs designed for conditioning. The circles show our two Netamorph
FPAAs. (a) Variety of CAB types. (b) Average number of computational elements in each
CAB. (c) Average number of switches used to reconfigure each CAB.

design of CABs.

1. In one interpretation, a CAB is a single “universal cell,” such as an adjustable-gain
integrator, that can be combined with other like cells in a homogeneous array to syn-
thesize the desired functionality. This approach mimics the mostly homogeneous arrays
of latched lookup tables that constitute FPGAs. While this approach simplifies the
decomposition of high-level design specifications into circuitry, we argue that the ef-
ficient usage of energy and die space that is demanded by low-power, low-cost sensor
networks is better served by a more application-customized approach to CAB design.

2. In the other interpretation, a CAB is a collection of different computational elements
that can be connected arbitrarily. The elements may be of mixed complexity (or
“granularity”) to reduce the overall number of switches that are necessary to synthesize
more complex designs in the FPAA. Furthermore, some CABs in the FPAA may have
a different collection of computational elements to accommodate the expected spatial
distribution of processing functions throughout the FPAA.

To facilitate efficient implementation of sensor network functionality, we have adopted the
second interpretation of CAB design and have used a mixture of computational granularity
ranging from individual transistors and capacitors to filters and timers. By including nine
CAB types with a mixture of purposes, as illustrated in Fig. 10.2(a), we are able to ac-
commodate sensor network functionality that ranges from sensor interfacing to information
extraction. Figure 11.2(a) compares the number of CAB types that different FPAAs have
used. Our use of nine CAB types is a significant shift in FPAA design. Quantifying the value
of an increased number of CAB types is a subject of future work, but this design choice has
enabled us to synthesize full “sensor interfacing through mixed-signal event detection” sys-
tems in one FPAA (e.g. the heart-rate monitor in Section 10.5.2.2), which has not previously
been done.

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 147

Another issue that arises in FPAA design is the number of computational elements in each
CAB. If a small number of elements are used, then a small number of switches are sufficient
to connect the elements, which lowers the parasitics of excessive switches. However, with a
small number of elements in the CAB, more nets will need to connect to multiple CABs,
which will add more switches to the nets and thus negate the benefits. Figure 11.2(b) shows
how the number of elements per CAB has varied across FPAAs. We analyze this tradeoff
in Section 11.2 and show that most “computing FPAAs” have used too many elements per
CAB.

To sufficiently connect the elements in a CAB, the number of switches must increase
as the number of elements increases. In the worst case, the number of switches increases
quadratically, but in Section 11.2 we show this to be unnecessary. Figure 11.2(c) shows how
the number of switches per CAB has varied across FPAAs. The potentially high cost of
placing many computational elements in a CAB is clearly evident.

11.2 FPAA Architecture Tradeoffs

As Mead showed in [36], an important consideration for building efficient computing sys-
tems is to minimize the connection lengths between computing elements. In general-purpose
computing architectures, the memory and processing components are highly separated, thus
limiting efficiency because of long connection lengths. Connection lengths can be minimized
by adopting a signal-flow architecture with the necessary memory located near the processing
elements. Although reconfigurable ICs such as FPGAs and FPAAs are ideal for signal-flow
architectures, the high parasitics of the switch fabric significantly increase the cost of wiring.
In this Section, we examine how the number of switches per CAB and the number of com-
putational elements per CAB can be chosen to maximize efficiency. Table 11.1 defines the
variables that are used in this Section.

Table 11.1: Variables Used in FPAA Analysis

C Total # of CABs in FPAA

ECAB Average # of computational elements per CAB

Etotal = CECAB Total # of computational elements in FPAA

NT,E Average # of terminals per computational element

NT = ECABNT,E # of terminals per CAB

NR # of routing lines for intra- and inter-CAB connections (per CAB)

R Rent exponent

SCAB ≥ NTNR # of switches per CAB

Stotal = CSCAB Total # of switches in FPAA

Smin Minimum # of parasitic switches connected to a net

Savg Average # of parasitic switches connected to a net

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 148

11.2.1 Applying Rent’s Rule to FPAA Design

One crucial issue in FPAA design is balancing the number of CAB terminals, connection-
box switches, and routing lines. Too few switches and routing lines will limit the ability
to connect many nets in a small region of the FPAA. Designs will therefore span extra
CABs because one CAB cannot accomodate enough nets, this results in underutilization of
computing elements within the CABs and excessive parasitics from unnecessarily long nets.
On the other hand, too many switches wastes space and adds unnecessary parasitics to short
nets. In both cases, improper balancing of the number of CAB terminals, connection-box
switches, and routing lines results in excessive parasitics and underutilization of chip space.

This issue can be better understood using Rent’s rule [227] (previously applied to FPAA
design in [209]), which describes the relationship between the number of communication
terminals of a subblock (i.e. the number of routing lines for intra- and inter-CAB connec-
tions, NR) and the number of computing elements within that subblock (i.e. the number of
computational elements in each CAB, ECAB). Rent’s rule is an empirical observation that
the number of communication terminals scales with the number of computing elements as
follows

NR = NT,EE
R
CAB (11.1)

where NT,E is the average number of terminals per element and R is the Rent exponent. If
R = 1, then the number of routing lines equals the number of CAB terminals, which implies
that none of the gates within the block connect to each other. In an FPAA connection box,
we would then require a routing line for each terminal of each computational element. For
each terminal to connect to a unique routing line, this case requires a switch matrix with
NRNT = N2

T,EE
2
CAB switches—the number of switches grows with the square of the number

of terminals, which is known as a “full-crossbar” switch matrix. If the design contains any
placement optimization, then we expect connections beween neighboring elements to be
most common, so the number of routing lines is less than the number of CAB terminals and
R < 1. The value of R depends on the computing architecture and the wiring capabilities
of the process, with typical empirical values for ICs ranging from 0.5 to 0.75 [209].

In Table 11.2 we compare the Rent exponents of our FPAA designs. We found that
Netamorph 1.0 had excessive routing, which is illustrated by R = 0.82 being outside of
the typical range of 0.5 to 0.75. In Netamorph 2.0, the routing was further optimized with
R in the typical range, and the CAB-level routing has generally been found to be neither
excessive nor insufficient. However, the numbers in the Table are averages and we have found
the digital-stage CAB to be an outlier. With three computational elements and an average
of 5.33 terminals per element, the digital-stage CABs have a Rent exponent of R = 0.48,
which is consistent with the fact that the digital stages are the worst choke point for routing.
This illustrates an important issue when designing FPAAs with a mixture of CAB types:
not only should the number of CAB terminals be constant throughout the FPAA, but the
Rent exponent should also be constant throughout the FPAA.

In summary, it is recommended to use (11.1) to determine the number of routing lines.
The routing lines are the lines that are not fixed to nets—i.e. not ground, Vdd, or midrail.

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 149

Table 11.2: Rent Exponents of Netamorph FPAAs

Elements/CAB Terminals/Element Routing/CAB Rent exponent

ECAB NT,E NR R

Netamorph 1.0 9 2.39 14 0.82

Netamorph 2.0 6.1 2.62 9 0.68

11.2.2 Designing CAB Size

A crucial parameter in FPAA design is the number of computational elements in each
CAB. If a small number of elements are used, then a small number of switches are sufficient
to connect the elements, which reduces the parasitics from excessive switches. However, with
a small number of elements in the CAB, more nets will need to connect to multiple CABs,
which will add more switches to the nets and thus negate the benefits of small CABs. We
will examine how the average number of parasitic switches per net depends upon the CAB
size.

First, consider the effect that the number of elements per CAB, ECAB, has on the total
number of switches in the FPAA, Stotal. In our FPAA, approximately 60% of the area is
devoted to switches, and other recent FPAAs have devoted greater portions of their area to
switches, so variations in switch count contribute significantly to the overall FPAA size. In
this thought experiment, we will maintain a constant value for the total number of computa-
tional elements in the FPAA, Etotal, so the variation in the overall size of the FPAA is only
due to a variation in the number of switches.

Since the total number of computational elements in the FPAA is constant, the number
of CABs in the FPAA is C = Etotal/ECAB. The total number of switches in the FPAA is
then Stotal = SCABEtotal/ECAB. The number of switches in a CAB is the sum of three types
of switch:

1. The switches in the connection box that are used to route between computational
elements within one CAB—illustrated in Fig. 10.3(b). This is the number of routing
lines multiplied by the total number of terminals per CAB. Using (11.1) yields NRNT =
N2

T,EE
1+R
CAB.

2. The switches in the connection box that are used to connect the computational elements
to ground, Vdd, and midrail. This is three switches per terminal: 3NT,EECAB.

3. The switches in the switch box of an “island-style” archiecture, which typically have
six switches—illustrated in the 4-point switch in Fig. 10.2(c). One 4-point switch is
needed for each routing line, so the number of switch box switches is 6NT,EE

R
CAB.

Combining these provides the number of switches in a CAB:

SCAB = N2
T,EE

1+R
CAB + 3NT,EECAB + 6NT,EE

R
CAB (11.2)

The total number of switches in the FPAA is then

Stotal = SCAB
Etotal

ECAB

= EtotalNT,E

(
NT,EE

R
CAB + 3 + 6ER−1

CAB

)
(11.3)

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 150

0 10 20
1

1.5

2

2.5

3

3.5
x 10

4

Elements per CAB

T
ot

al
 N

um
be

r
of

 S
w

itc
he

s

0 10 20
0

50

100

150

200

Elements per CAB
A

ve
ra

ge
 S

w
itc

he
s

pe
r

N
et

0 10 20
1.5

2

2.5

3

3.5
x 10

6

Elements per CAB

A
re

a−
P

ar
as

iti
cs

 P
ro

du
ct

Minimum

Average

Figure 11.3: Effect of CAB size on FPAA size and performance. The circles show Netamorph
2.0. (a) Increasing the number of computational elements per CAB increases the total
number of switches in the FPAA, even though the total number of computational elements
in the FPAA is constant. (b)“Average” and “Minimum” number of parasitic switches on a
net as a function of the CAB size. (c) The best tradeoff between the “Area” (total number of
switches) and the “Parasitics” (average number of switches per net) occurs at approximately
five computational elements per CAB.

Figure 11.3(a) shows how the total number of switches depends upon CAB size. We used
Etotal = 480, NT,E = 2.62, and R = 0.68, which are the values in our FPAA. The size of the
FPAA grows significantly as the CAB size increases, despite the fact that the total number
of computational elements is constant. This illustrates one disadvantage of large CAB sizes.

Now, consider how the CAB size affects the number of parasitic switches. Referring to
Fig. 10.3(b), a basic connection between two terminals in a CAB will have

Smin = NT +NR + 12 (11.4)

parasitic switches. The constant “12” incorporates 3 switches on each horizontal line for
ground, Vdd, and midrail, as well as 3 switches on the top and bottom of the vertical line
for the 4-point switches in the switch boxes. Smin is the minimum number of parasitic
switches for a connection. For FPAAs with small CABs, many nets will make connections
in multiple CABs and thus incur parasitics of multiples of this minimum. The number
of CABs that various nets connect to depends on the design that is synthesized in the
FPAA, but by examining an ensemble of designs we can extract representative statistics.
We have extracted empirical statistics on the number of CABs each net connects to from the
three demonstrations in Section 10.5.2 and also from an accelerometer double-click detection
design. A total of 183 nets are represented. Figure 11.4 shows a histogram of the number
of nets that connect to different numbers of CABs. We have found that this empirical data
matches a geometric distribution with probability that a net connects to c CABs of

Pc = p(1− p)c−1 (11.5)

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 151

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

of CABs Connected to Net

P
ro

ba
bi

lit
y

D
is

tr
ib

ut
io

n

Figure 11.4: Number of CABs per net.

and p = 0.43. An interpretation of this distribution is that for a given number of CABs, the
net has probability p of finishing its connections and probability 1− p of needing additional
CABs. The expected number of CABs that a net will connect to is 1/p = 2.33. So the
average number of parasitic switches on a net is Smin/p ≈ 107.

p is the probability that a net will only connect elements in a single CAB. If the CABs
have six computational elements and one computational element is removed, then it becomes
5/6-times less likely that a net will only connect to computational elements in a single CAB,
so p is scaled by the amount that the CAB size is scaled. Our empirical data shows that
p = 0.43 when ECAB,0 = 6.1. Combining this information with the above reasoning, we can
obtain how the average net parasitics varies with ECAB.

Savg = Smin
ECAB,0

pECAB

(11.6)

which becomes

Savg =
ECAB,0

pECAB

(
NT,EECAB + 2NT,EE

R
CAB + 12

)
(11.7)

Figure 11.3(b) shows how Savg and Smin vary with CAB size. If we co-consider the area of
the FPAA (i.e. total number of switches) and the average parasitics (i.e. average number
of parasitic switches on each net), then we obtain the “Area-Parasitic Product” shown in
Fig. 11.3(c). Minimizing the “Area-Parasitic Product” provides the best tradeoff between
FPAA size and performance. The minimal value occurs when the number of computational
elements per CAB is approximately five. This result is supported by [228], which simulated
benchmark tests on FPGAs with different sized logic blocks and found that a cluster of four
to six LUTs minimized the area-delay product.

Future work on this analysis should take into account the heterogeneous structure of
a parallelized FPAA architecture, wherein CAB types are the same in each channel but
different in each stage, and connections between different channels are rarer than connections

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 152

amongst different stages in one channel. Also, future work should develop a corpus of
benchmark tests from which to extract statistics about connectivity within FPAAs.

11.3 The Cost of Analog Reconfiguration

The optimal design and usage of FPAAs for wireless sensing depends upon the cost of
reconfiguration, which raises tradeoffs such as the universality and power consumption of the
FPAA, as well as the volatility of the configuration. General FPAA design choices were pre-
viously outlined in [206]. This Section studies the circuit-level and node-level costs of FPAA
reconfiguration and what these costs imply for using FPAAs within wireless sensing, where
energy consumption is of paramount importance. To aid this study, we have fabricated two
1280-switch FPAAs in 0.35µm CMOS—one with volatile switches and one with nonvolatile
switches—and measured the energy while reconfiguring with an off-the-shelf sensor platform.
Throughout this Section, we assume a 3V supply voltage as is typical in battery-operated
sensor nodes.

In an FPAA, reconfiguration is achieved via programmable connections in the connection
box and the switch box (Fig. 10.1), which are used for local routing and global routing, re-
spectively. Programmable connections can be created using unbuffered conductive switches
(such as pass transistors) or buffered switches (such as current mirrors or voltage followers).
We will focus on unbuffered switches since they are more versatile and have no run-mode
power consumption. Two previously used unbuffered switches that achieve rail-to-rail op-
eration are a transmission gate (T-gate) controlled by an SRAM cell [Fig. 11.5(a)] and a
floating-gate (FG) pass transistor controlled by the nonvolatile charge that is stored on its
gate [Fig. 11.5(b)] [198]. The FG transistor’s gate is not constrained to be within the supply
rails and so can be programmed with enough overdrive to achieve a low resistance across
the range of operation [229]. In both FPAAs, an SPI block selects the column to write, and
then data bits are either latched into the SRAM memory cells or are used to select the FGs
to program.

11.3.1 Equivalent Switch Resistance

The simulated resistance of T-gate and FG switches is shown in Fig. 11.5(d). For both
switch types, the resistance varies with the common-mode voltage due to the body effect. In
the T-gate, the nFET is minimum size and the pFET is sized for symmetric drive strength.
The pFET in the FG is the same size as in the T-gate. Note that the kΩ-range switch
resistance does not create a significant voltage drop for the nA-range currents that are
common in ultra-low-power analog computation systems. Wider switches may be used for
resistance-sensitive circuitry; matching resistance between T-gates and FGs is not impacted
by changes in dimension when their relative size remains constant.

We define the switches to have equivalent resistance when they have the same average
resistance across the supply rails. Under the sizing conditions specified above, the T-gate
has an average resistance of 1.8kΩ. The ratio of the FG’s mean resistance to the T-gate’s
mean resistance is shown in Fig. 11.5(e); Vfg = −1.48V is required to match the T-gate’s
average resistance. Therefore, in this paper, we specify the FG voltage for an “on” switch to

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 153

row

column

Row data

Col

Col

rowcolumn

row
drain

Vtun

Msw

Mprog

Mtun

Cg

Vfg

(b)

Msel

Vcg

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

Common-mode voltage

R
e

s
is

ta
n

c
e

(W
)

-1.6 -1.5 -1.4 -1.3 -1.2 -1.1
0.5

1

1.5

2

V
fg

R
fg

,a
v
g
/R

T
-g

a
te

,a
v
g

T-gate

V
fg =-0.98V

V
fg =-1.48V

V
fg =-1.98V

(d)

(e)

Vcg

Cgnd
Cd

Cs

Vd

Vs

(c)

Cvdd

Cg

Vdd

(a)

Mprog

Figure 11.5: (a) Example SRAM-controlled transmission-gate switch. Col (Col’) selects a
column of switches to be rewritten. Switch on/off settings are loaded in parallel through
Row data. Row and column are the analog routing paths which may be connected through
the switch. (b) Example floating-gate transistor switch. Cg=45fF. Mtun=0.4µm x 0.4µm.
(c) Capacitive coupling of terminals onto the floating gate. (d) Simulated comparison of
the resistance of T-gate switches and FG switches. (e) Simulated comparison of the mean
resistance of a T-gate switch to the mean resistance of an FG switch.

be Vfg,on = −1.5V and the voltage for an “off” switch to be Vfg,off = 3V. However, despite
having equal mean resistance, the FG’s sharply increasing resistance near ground may be
unacceptable for some applications.

11.3.2 Erasing a Floating-Gate Switch Matrix

Since the majority of switches in an FPAA switch configuration will be “off,” an efficient
way to program an FG matrix is to globally erase all switches (by removing electrons from
the FGs), and then write only the switches that must be turned on. In the cell in Fig.
11.5(b), elecrons are removed by raising Vtun to a sufficient voltage to cause electrons to
tunnel through the thin oxide of Mtun. This mechanism is described by the Fowler-Nordheim
tunneling equation

Itun = αWLe
−βtox

Vtun−Vfg (11.8)

where Itun is the tunneling current through Mtun, α = 185.5 A
µm2 and β = 32.8 V

nm
are para-

metric fits, tox (7.7nm for 0.35µm) is the oxide thickness, and W and L are the width and
length of the tunneling junction. Using (11.8), we determined that Vtun = 12.5V is sufficient
to tunnel all switches to the off state (Vfg,off ≈ 3V) within 100µs. This high-voltage pulse
was generated using an on-chip regulated charge pump; measurements of the voltage pulse
and supply current are shown in Figs. 11.6(a)&(b), respectively. The total energy to erase
the entire switch matrix is 183nJ. Since the power of the high-voltage generator significantly
exceeds the power delivered to the tunneling junction, minimizing the duration of the pulse

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 154

run

prog

Positive
Charge
Pump

run

prog

Negative
Charge
Pump

Msel

Mprog

Msw

Vfg

Vs

Vd

Vcg

M1 M2

M3

M4

M5 M6

14 14.5 15 15.5
0

5

10

V
tu

n

14 14.5 15 15.5
0

100

200

300

400

Time (ms)

I d
d
 (

µA
)

(a)

(b)

(c) 0.5 1 1.5 2
-5

-4

-3

-2

-1

0

1

2

3

4

Time (ms)

V
o

lt
a

g
e

V
dd

V
d

V
fg

V
cg

(d)

Pre-injection

Injection

Vfg ~ 3V

Post-injection

Vfg ~ -1.5V

Vcg

Figure 11.6: (a) Measured high-voltage pulse from the on-chip tunneling charge pump. (b)
Measured supply current during the high-voltage pulse. The total erase energy was 183nJ. (c)
Illustrative injection circuit for “turning on” FG switches. Transistors M1–M5 implement
negative feedback from Vs to Vcg, thus holding Vs and Vfg at the desired voltages during
injection. (d) Simulation of the illustrative injection circuit. The simulation was performed
with device-level implementations of the charge pumps. The total program energy, including
the charge pumps’ ring oscillators and regulation circuitry, was 152nJ.

is crucial to minimizing the energy consumption.

11.3.3 Writing a Floating-Gate Switch

After tunneling has been used to remove electrons from all FGs, hot-electron injection
is typically used to place electrons onto, and thus “turn on,” selected FGs. Injection is
commonly used to selectively program standard CMOS FGs because, unlike tunneling, the
programming voltages are low enough that standard devices can be used to isolate FGs.
Regardless, programming the switches to Vfg,on presents a challenge since the FG must be
programmed very far below ground to achieve low “on” resistance.

Injection can be modeled using [160]

Iinj = αIs(Vgd + VT)e
−β

Vgd+VT (11.9)

where α = 9 and β = 80 are parametric fits for 0.35µm, and VT is the threshold voltage.
A large Vgd (≥4.5V) is necessary to achieve fast and efficient injection. To accommodate
this high Vgd voltage, the supply voltage is typically raised during injection. With the drain
connected to ground, the FG will need to be ≥4.5V to program quickly. After injecting,
the FG must be shifted down 6V to reach Vfg,on = −1.5V so that the switch has low “on”
resistance. This FG voltage shift corresponds to a Vcg-referenced shift of CT

Cg
6V, which is

approximately 8.5V for typical capacitance values. This number illustrates that raising the
supply voltage for injection is an inefficient method to program negative FG values—to
maintain safe supply voltages, we will be limited to low Vgd at the end of the injection cycle,
and thus slow programming. For our estimate of the energy to write a switch, we will assume
the use of negative drain voltages.

Using the FG switch capacitive-coupling model shown in Fig. 11.5(c), we can determine
the FG terminal voltages during injection that will correspond to an “on” switch. In run

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 155

mode, Vcg = 0V, Vs = Vd = Vdd, and Vfg = −1.5V. We can solve for the necessary program-
mode FG voltage,

Vfg,p =
Vfg,on + Vdd(

Cg
CT
− Cs

CT
− Cd

CT
) + Cs

CT
Vsg,p − Cd

CT
Vgd,p

1− Cs
CT
− Cd

CT

(11.10)

were Vsg,p and Vgd,p are the program-mode source-to-gate and gate-to-drain voltages. If
we use Vgd = 5V for fast and efficient programming and want to program the FG within

1ms, then (11.9) gives Is ≈ 7µA (which yields Vsg,p ≈ 1V). Using (11.10) with Cg
CT

=0.7

and Cd
CT

= Cs
CT

=0.02, we obtain the following program-mode approximate terminal voltages:
Vfg,p = 0.41V, Vd,p = −4.59V, and Vs,p = 1.41V.

Figure 11.6(c) shows a complete demonstrative circuit for writing switches using this
method. The circuit was designed to hold the FG terminals at the above-mentioned values
during injection. A regulated negative charge pump generates the drain voltage. Since the
FG is initially “off” at 3V, a positive charge pump is used to generate a short pulse (10µs) on
the supply line to start up injection. A full transistor-level simulation for this switch-writing
scheme is shown in Fig. 11.6(d). The total energy to turn on a single switch, including the
voltage generation circuits, is 152nJ.

11.3.4 Energy Costs of Volatile and Nonvolatile Switches

To determine the reconfiguration cost of an SRAM-based FPAA, we measured the supply
current of an FPAA while it was being reconfigured by a sensor platform. Figure 11.7(a)
shows this measurement. The total energy is 80.4nJ, or≈ 1nJ/write. This energy is primarily
from the SPI block that decodes the incoming serial stream.1 The FG FPAA will incur the
same cost to interpret the serial stream.

In the previous Section, we determined the cost of erasing an FG switch matrix and the
cost of writing a single switch. The total cost to reconfigure an FG switch matrix depends
upon the number of “on” switches. The percentage of switches that are “on” depends upon
the complexity of the circuit being synthesized and the design of the FPAA. In our 1280-
switch FPAA, we have found that few configurations use more than 5% of the switches.
Additionally, although the overhead of generating high injection voltages can generally be
amortized through parallel programming, the sparse distribution of “on” switches within a
switch matrix confounds the energy reduction of parallel programming. The energy costs for
the switches are summarized in Table 11.3. In Section 11.4, we will interpret these results
in the context of wireless sensing.

11.3.5 Other Considerations Regarding Switches

Density: Although the SRAM cell has more devices in the cell, the FG cell requires a
dedicated n-well for Mtun (which consumes space), and also requires that Cg is large enough

1An approximate calculation of the SPI energy shows that this measurement is reasonable: The SPI shift
register hasNstages=23 stages. Each stage has four logic gates, which we will estimate to have 50% probability
of switching on each clock cycle, so the number of switching gates is Nswitching=2. The capacitance of a logic
gate is C ≈5fF. The energy estimate for an SPI transfer is thus E = NstagesNswitchingCV

2
dd ≈2nJ/write.

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 156

to dominate the capacitance on the floating node. Consequently, our layouts for the cells
were the same size (20.4µm x 8.8µm).

Scaling: Charge leakage is a concern for FGs in deeply scaled standard CMOS, particu-
larly when the FG voltages exceed the supply rails. Thick-oxide devices may retain charge
longer, but lose the benefits of scaling. Low-leakage SRAM circuits will be needed for deeply
scaled SRAM FPAAs; however, the small number of switches, low density, and low write
speeds that are acceptable for an FPAA (compared to a memory array) make leakage less of
a challenge.

Reliability: Much more stress is placed upon FGs in switch matrices than in Flash mem-
ory or analog circuit trimming. Much more charge is passed through the oxide on each
programming iteration and the “on” switches have a high electric voltage across the oxide
in run mode (4.5V).

Computation: The tunable conductance of FG switches allows them to be used as com-
putational elements, thus improving the die utilization of FPAAs [230].

Capacitance: Since the T-gate’s nFET is much smaller than the pFET, an equivalent
pFET FG switch does not have significantly less capacitance than an equivalent T-gate.
However, an equivalent nFET-based FG switch would achieve significantly less capacitance.
The problem with nFET-based FG switches is that tunneling/injection turns them on/off.
So we have to program all of the off switches, which is a larger number than the on switches,
and so has high energy cost.

Summary: SRAM FPAAs have clear advantages in terms of reliability, CMOS scaling,
and reconfiguration energy (≈123x less than FG FPAAs). However, we will show in the
next Section that the switch reconfiguration cost is a small part of the system’s overall
reconfiguration cost, meaning that FG switches are viable when nonvolatility and/or switch
computation are beneficial.

11.4 System-Level Implications of Reconfiguration

To place the FPAA’s configuration energy into the system context, we measured the
energy of a standard low-power wireless sensing platform (Telos mote [13]) as it received a
1280-bit FPAA configuration over the radio and then programmed the configuration into
an SRAM-based FPAA. The results are shown in Fig. 11.7(b). The energy for the mote
to wirelessly receive the configuration was 5.3mJ and the energy for the mote to transfer
the configuration serially into the FPAA was 0.331mJ (Eser = 4.1µJ/column). This serial
transfer energy (≈1.4µJ/byte) is high because the microcontroller’s SPI modules are engaged
by the mote’s radio and external memory, so we had to implement SPI in software using the
general I/O pins. In contrast, [231] reports 84nJ/byte for an optimized serial transfer using
the same microcontroller. The node-level reconfiguration energy is dominated by the receive
energy and by the serial transfer energy. The FG FPAA has lower serial costs in Table 11.3
since only the “on” switches (typically 5%) require a serial transfer after the global erasure.
Similarly, a global reset would reduce the serial cost for an SRAM FPAA.

Since the primary energy cost is wireless reception of the configuration, we developed an
entropy-coding algorithm to compress the configuration file (details in Section 10.4.3). For
typical FPAA configurations, we achieve a compression factor of >4. Since many large-scale

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 157

Table 11.3: Summary of Reconfiguration Costs

Switches Typ. Sw. Usage Mote Serial Trans.

1280 5% Eser=4.1µJ/column

FG Erase FG Write SRAM Write

Efg,tun=183nJ Efg,w=152nJ/sw Esram,w=1nJ/column

FPAA Type Total Reconfiguration Energy

FPAA-only FPAA w/ Mote Serial

FG 9.9µJ 276µJ (only prog. “on” columns)

SRAM 80.4nJ 331µJ (prog. all columns)

analog signal-processing systems have identical parallel channels, higher levels of compression
are achievable in larger systems. Figure 11.7(c) shows the measured supply current while
receiving the compressed configuration (1.8mJ) and then decompressing the configuration in
the mote (34.1µJ). The energy was reduced by approximately 65%

Many wireless sensors are powered by unreliable energy sources, thus volatile FPAAs
will incur a cost for restoring configurations. In contrast to SRAM-based switches, FG
switches are nonvolatile and therefore do not need to be reprogrammed after a power loss.
The lower cost of reprogramming SRAM compared to FGs implies that volatile switches
are preferable when the frequency of power outages, fp, is rare compared to the frequency
of fresh reconfigurations, fr. Assuming that the energy to write SRAM (Esram,w) is much
smaller than the energy to write a floating-gate (Efg,w) and assuming block erasure for both

types, SRAM will be lower cost when
Efg,w
Eser

> fp
fr

. For our implementations, the SRAM
FPAA is lower energy when power drop-outs are at least 27-times less likely than fresh
reconfigurations. However, a dedicated SPI port should reduce the serial transfer cost to
Eser ≈120nJ/column [231], which would favor SRAM FPAAs when no more than 1.2 power
dropouts occur for each fresh reconfiguration.

For the system developer, knowledge of the reconfiguration energy is important for bud-
geting the overall system energy. The data in Table 11.3 can be used for this purpose. As an
example, we can project the maximum acceptable frequency for reconfiguration of an SRAM
FPAA based on the number of switches Nsw, the compression factor CF , and the percentage
of reconfigurations that are initiated over-the-air (RX=%). The results are summarized in
Table 11.4. We assume that the system should last 5 years on AA batteries, that only 5%
of the system’s energy budget is available for reconfiguration, and that compression is not
used. For a 1k-switch FPAA, we can receive and program 2.6 configurations per hour. For a
100k-switch FPAA, the allowable frequency of configurations reduces to approximately once
every two days, which illustrates the importance of compressing the configuration for large
FPAAs. Excluding the communication costs, the allowable frequency of reconfiguration for
a 1k-switch FPAA is over two per minute, which is sufficient to allow local adaptation of the
FPAA settings.

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 158

0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
0

10

20

S
y
s
te

m
 I

d
d
 (

m
A

) 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

0

1

2

3

F
P

A
A

 I d
d
 (

µA
)

Resistive Drop

Picoammeter

0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
0

10

20

Time (s)

S
y
s
te

m
 I

d
d
 (

m
A

)

(a)

(b)

(c)

Configuring
the FPAA

Configuring
the FPAA

Receiving the
configuration

Receiving the compressed
configuration

Decompressing
the configuration

Figure 11.7: Measurements of reconfiguration energy for the 1280-switch 0.35µm SRAM-
based FPAA. The supply currents were determined by measuring the voltage drop across
suitably sized series resistors. (a) Supply current of the SRAM-based FPAA while being
reconfigured. (b) Supply current of the sensor node while receiving and writing a configu-
ration to an SRAM-based FPAA. (c) Supply current of the sensor node while receiving and
decompressing a compressed FPAA configuration file.

Table 11.4: Maximum Frequency of Reconfiguration

RX=100% RX=10%

Nsw CF=1 CF=3.3 CF=50 CF=1

103 2.6/hr 7.7/hr 33/hr 17/hr

104 6.3/day 18/day 3.3/hr 1.7/hr

105 0.63/day 1.8/day 8/day 4/day

11.5 Discussion of Reconfiguration Costs

In this Chapter, we have examined the costs of reconfiguring analog circuits in wireless
sensors networks. We have investigated the sources of energy expenditure for both SRAM-
and FG-based switch matrices and have introduced a new lower-energy mechanism for pro-
gramming FG switches. SRAM-based switches are preferable in terms of speed, reconfigura-
tion energy, device reliability, and scaling. However, FG switches offer lower reconfiguration
costs when power drop-outs are more frequent than user-scheduled reconfigurations. Either
way, our measurements of reconfiguration energy at the system level highlight the impor-
tance of optimizing node-to-node and IC-to-IC communications to reduce the total energy.
We have shown that a simple method of compressing the FPAA configuration reduces the

Brandon D. Rumberg Chapter 11. FPAA Design Tradeoffs 159

total energy by 65%.

160

Chapter 12

Conclusions and Future Work

An infrastructure is currently being built around the world that will connect an un-
precedented number of “physical” devices (i.e. devices with sensors and actuators). This
infrastructure may eventually make the development of applications for networks of “phys-
ical” devices as simple as the development of web pages. Ultimately, the efficacy of this
sensing infrastructure will depend upon the ability to handle data from diverse sensors at
sustainable power levels. In this work, we have studied programmable analog signal process-
ing as a solution to this data/power problem, and the results are very compelling.

This work has been guided by the notion that wireless sensor networks—because of
the ultra-low energy budgets and the need to process sensor data locally—are a “killer
app” for low-power analog signal processing (ASP). An “always-on” ASP can save power
by monitoring sensor data while the network hibernates—hence our name for the paradigm,
“Hibernets.” Another appeal for applying ASP to wireless sensor networks is that the barrier
to evaluating an ASP in a sensor network is relatively low, at least compared to the barrier
for evaluating in medical implants, which are often cited as a target application for low-power
ASP.

In the initial phase of this work, we focused on low-power analog processing circuits: a
bandpass filter, a magnitude detector, and a hardware-based event detector. After initially
applying these circuits to a wireless sensor network in an automobile-detection application,
we found great potential for extending the battery life of sensor nodes. However, analog
biasing was observed to be a major obstacle: first, the limited control over biasing was a
constraint on the range of applications and usability of the ASP, and second, the power
consumption of the biasing infrastructure was 40× larger than the power consumption of
the processing circuitry. Although advancements in ASP circuits and algorithms were still
needed, the significance of these advancements would have been questionable until the ob-
stacles to analog biasing were overcome. As a result, much of this work has focused on
the programmability of analog biases in sensor networks, although these contributions are
valuable to all areas of analog signal processing.

The problem of programmable analog biasing is essentially the problem of analog memory,
and the primary choice for nonvolatile analog memory in standard CMOS is the floating-gate
transistor. While significant advancements have been made in analog floating-gate transistor
research, these advancements have come from a small number of groups. As a result, a lot of
knowledge about floating gates is experiential and word of mouth, which is a barrier for new

Brandon D. Rumberg Chapter 12. Conclusions & Future Work 161

research. To address this barrier, we have studied the characterization, modeling, and design
of floating-gate transistors, and have contributed several analytical and empirical findings,
such as the optimal sizing of tunneling junctions, the tradeoffs between different types of
tunneling junctions, and a step-by-step method for characterizing and parameterizing hot-
electron injection current. These contributions remove a lot of “guess work” from the design
of floating-gate transistors.

Prior methods for programming analog floating-gates have required too much overhead
to be feasible for an ASP in a wireless sensor network. To solve this, we have investigated
continuous-time programming techniques to develop a fast and efficient integrated program-
ming system. Additionally, we have contributed the design of an integrated step-up converter
for floating-gate programming, which is necessary for low-resource systems.

Our work on programmable analog biasing in wireless sensor networks has payed off, as
embodied by our Netamorph 2.0 FPAA (field-programmable analog array), in which biasing
is highly flexible and the power consumption of the biasing infrastructure has been reduced
to a fraction of the power consumption of the processing circuitry. However, more obstacles
exist. Primarily, the reliability of analog floating gates in standard CMOS is still an open
question. We do have some anecdotal results: we have observed negligible shift in the
center frequency of a bandpass filter during the first 48 hours after programming, and we
have programmed a single floating gate 100k times and observed a relatively minor 50%
reduction in programming speed. However, we still have questions about charge leakage
over device lifetime and charge leakage in other processes. But our group now has much of
the capabilities in place to answer many of these questions and results are expected to come
soon.

After largely overcoming the obstacles to analog biasing in sensor networks, we repack-
aged the Hibernets processor into a reconfigurable architecture, and rebranded it “Neta-
morph.” Joining the two research areas of FPAAs and wireless sensor networks led to
contributions that would otherwise not be obvious, such as the importance of, as well as
a method for, compressing FPAA configurations prior to transmission. Although we have
made some contributions to the rigorous design of FPAA architectures, such as our studies
of reconfiguration costs, average net lengths, and optimizing the number of terminals, much
work is left to be done. Of great interest is the development of behavioral descriptions for
FPAAs and tools that can decompose these descriptions into FPAA configurations. Such
tools, in addition to making FPAAs easier to use, will aid in verifying our work on FPAA
architecture tradeoffs, as well as enable quick exploration of new FPAA architectures and
CAB elements.

Finally, whereas this work has focused on using analog signal processing for event detec-
tion to wake up a microcontroller, an alternate paradigm of using analog signal processing
and digital signal processing in tandem may open many new possibilities, and is a line of
research that is essentially unexplored.

162

References

[1] M. Weiser, “The computer for the 21st century,” Scientific American, vol. 265, no. 3,
pp. 94–104, 1991.

[2] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal, H. Cao,
M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam, M. Nesterenko, A. Vora,
and M. Miyashita, “A line in the sand: A wireless sensor network for target detection,
classification, and tracking,” Computer Networks, Special Issue on Military Commu-
nications Systems and Technologies, vol. 46, pp. 605–634, Dec. 2004.

[3] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Kulathumani,
H. Zhang, H. Cao, M. Sridharan, S. Kumar, N. Seddon, C. Anderson, T. Herman,
N. Trivedi, C. Zhang, R. Shah, S. Kulkarni, M. Aramugam, and L. Wang, “Exscal:
Elements of an extreme scale wireless sensor network,” in Proceedings of the IEEE
International Conference on Embedded and Real-Time Computing Systems and Appli-
cations, Hong Kong, 2005, pp. 102–108.

[4] T. He, S. Krishnamurthy, J. Stankovic, T. Abdelzaher, L. Luo, R. Stoleru, T. Yan,
L. Gu, G. Zhou, J. Hui, and B. Krogh, “Vigilnet: An integrated sensor network system
for energy-efficient surveillance,” ACM Transactions on Sensor Networks, vol. 2, pp.
1–38, Feb. 2006.

[5] M. Duarte and Y. Hu, “Vehicle classification in distributed sensor networks,” Journal
of Parallel and Distributed Computing, vol. 64, pp. 826–838, July 2004.

[6] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and
D. Estrin, “A wireless sensor network for structural monitoring,” in Proceedings of the
International Conference on Embedded Networked Sensor Systems, Baltimore, MD,
2004, pp. 13–24.

[7] V. Raghunathan, C. Schurgers, S. Park, M. Srivastava, and B. Shaw, “Energy-aware
wireless microsensor networks,” IEEE Signal Processing Magazine, vol. 19, pp. 40–50,
March 2002.

[8] L. Nachman, J. Huang, J. Shahabdeen, R. Adler, and R. Kling, “Imote2: Serious com-
putation at the edge,” in Proceedings of the International Wireless Communications
and Mobile Computing Conference, 2008, pp. 1118–1123.

REFERENCES 163

[9] O. Berder and O. Sentieys, “PowWow: Power optimized hardware/software framework
for wireless motes,” in International Conference on Architecture of Computing Systems,
2010, pp. 1–5.

[10] K. Nose and T. Sakurai, “Optimization of VDD and VTH for low-power and high
speed applications,” in Proceedings of the Asia and South Pacific Design Automation
Conference, 2000, pp. 469–474.

[11] J. Ko, K. Klues, C. Richter, W. Hofer, B. Kusy, M. Bruenig, T. Schmid, Q. Wang,
P. Dutta, and A. Terzis, “Low power or high performance? A tradeoff whose time has
come (and nearly gone),” in Wireless Sensor Networks. Springer, 2012, pp. 98–114.

[12] J. Hill and D. Culler, “Mica: A wireless platform for deeply embedded networks,”
IEEE Micro, vol. 22, no. 6, pp. 12–24, 2002.

[13] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power wireless
research,” in Proceedings of the International Symposium on Information Processing
in Sensor Networks, Los Angeles, CA, 2005, pp. 364–369.

[14] R. Jurdak, K. Klues, B. Kusy, C. Richter, K. Langendoen, and M. Brunig, “Opal: A
multiradio platform for high throughput wireless sensor networks,” IEEE Embedded
Systems Letters, vol. 3, no. 4, pp. 121–124, 2011.

[15] J. Lee, Y. Su, and C. Shen, “A comparative study of wireless protocols: Bluetooth,
UWB, ZigBee, and Wi-Fi,” in Conference of the IEEE Industrial Electronics Society,
2007, pp. 46–51.

[16] M. Jayalaksmi and K. Balasubramanian, “Simple capacitors to supercapacitors – an
overview,” International Journal of Electrochemical Science, pp. 1196–1217, Oct. 2008.

[17] L. Yerva, B. Campbell, A. Bansal, T. Schmid, and P. Dutta, “Grafting energy-
harvesting leaves onto the sensornet tree,” in Proceedings of the International Con-
ference on Information Processing in Sensor Networks, 2012, pp. 197–208.

[18] M. Gorlatova, J. Sarik, G. Grebla, M. Cong, I. Kymissis, and G. Zussman, “Movers
and shakers: Kinetic energy harvesting for the Internet of Things,” in The 2014 ACM
International Conference on Measurement and Modeling of Computer Systems, 2014,
pp. 407–419.

[19] S. Bandyopadhyay and A. Chandrakasan, “Platform architecture for solar, thermal,
and vibration energy combining with MPPT and single inductor,” IEEE Journal of
Solid-State Circuits, vol. 47, no. 9, pp. 2199–2215, Sept. 2012.

[20] S. Jevtic, M. Kotowsky, R. Dick, P. Dinda, and C. Dowding, “Lucid dreaming: Reli-
able analog event detection for energy-constrained applications,” in Proceedings of the
International Conference on Information Processing in Sensor Networks, Cambridge,
MA, 2007, pp. 350–359.

REFERENCES 164

[21] M. Malinowski, M. Moskwa, M. Feldmeier, M. Laibowitz, and J. Paradiso, “Cargonet:
A low-cost micropower sensor node exploiting quasi-passive wakeup for adaptive asyn-
chronous monioring of exceptional events,” in Proceedings of the ACM Conference on
Embedded Networked Sensor Systems, Sydney, Australia, 2007, pp. 145–159.

[22] D. Goldberg, A. Andreou, P. Julian, P. Pouliquen, L. Riddle, and R. Rosasco, “A
wake-up detector for an acoustic surveillance sensor network: Algorithm and VLSI
implementation,” in Proceedings of the International Symposium on Information Pro-
cessing in Sensor Networks, Berkeley, CA, 2004, pp. 134–141.

[23] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design of ion-
implanted MOSFET’s with very small physical dimensions,” IEEE Journal of Solid-
State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[24] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein, “Scaling,
power, and the future of CMOS,” in IEEE International Electron Devices Meeting,
2005, pp. 7–15.

[25] B. Marr, B. Degnan, P. Hasler, and D. Anderson, “Scaling energy per operation via an
asynchronous pipeline,” IEEE Transactions on Very Large Scale Integration Systems,
vol. 21, no. 1, pp. 147–151, 2013.

[26] J. Koomey, S. Berard, M. Sanchez, and H. Wong, “Implications of historical trends
in the electrical efficiency of computing,” IEEE Annals of the History of Computing,
vol. 33, no. 3, pp. 46–54, 2011.

[27] R. Sarpeshkar, C. Salthouse, J.-J. Sit, M. Baker, S. Zhak, T.-T. Lu, L. Turicchia, and
S. Balster, “An ultra-low-power programmable analog bionic ear processor,” IEEE
Transactions on Biomedical Engineering, vol. 52, no. 4, pp. 711–727, April 2005.

[28] R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural record-
ing applications,” IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 958–965,
June 2003.

[29] P. Hasler and D. Anderson, “Cooperative analog-digital signal processing,” in Pro-
ceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing, vol. 4,
Orlando, FL, May 2002, pp. 3972–3975.

[30] R. Genov and G. Cauwenberghs, “Kerneltron: Support vector “machine” in silicon,”
IEEE Transactions on Neural Networks, vol. 14, no. 5, pp. 1426–1434, Sept. 2003.

[31] P. Smith, M. Kucic, R. Ellis, P. Hasler, and D. Anderson, “Mel-frequency cepstrum
encoding in analog floating-gate circuitry,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, 2002.

[32] G. Cauwenberghs and V. Pedroni, “A low-power CMOS analog vector quantizer,”
IEEE Journal of Solid-State Circuits, vol. 32, pp. 1278–1283, 1997.

REFERENCES 165

[33] J. Lazzaro, J. Wawrzynek, and R. Lippmann, “A micropower analog circuit implemen-
tation of hidden Markov model state decoding,” IEEE Journal of Solid-State Circuits,
vol. 32, pp. 1200–1209, 1997.

[34] R. Sarpeshkar, J. Kramer, G. Indiveri, and C. Koch, “Analog VLSI architectures for
motion processing: From fundamental limits to system applications,” Proceedings of
the IEEE, vol. 84, pp. 969–987, 1996.

[35] M. Kucic, J. Dugger, P. Hasler, and D. Anderson, “Programmable and adaptive ana-
log filters using arrays of floating-gate circuits,” in Proceedings of the Conference on
Advanced Research in VLSI, Atlanta, GA, March 2001, pp. 148–162.

[36] C. Mead, “Neuromorphic electronic systems,” Proceedings of the IEEE, vol. 78, no. 10,
pp. 1629–1636, Oct. 1990.

[37] ——, Analog VLSI and neural systems. Boston, MA, USA: Addison-Wesley, 1989.

[38] E. Vittoz, “Future of analog in the VLSI environment,” in IEEE International Sym-
posium on Circuits and Systems, vol. 2, May 1990, pp. 1372–1375.

[39] R. Sarpeshkar, “Analog versus digital: Extrapolating from electronics to neurobiology,”
Neural Computation, vol. 10, pp. 1601–1608, Oct. 1998.

[40] B. Murmann, “A/D converter trends: Power dissipation, scaling and digitally assisted
architectures,” in IEEE Custom Integrated Circuits Conference, Sept. 2008, pp. 105–
112.

[41] B. Rumberg, D. Graham, V. Kulathumani, and R. Fernandez, “Hibernets: Energy-
efficient sensor networks using analog signal processing,” IEEE Journal on Emerging
and Selected Topics in Circuits and Systems, vol. 1, no. 3, pp. 321–334, Sept. 2011.

[42] R. Cristescu, B. Beferull-Lozano, and M. Vetterli, “Networked Slepian-Wolf: Theory,
algorithms and scaling laws,” IEEE Transactions on Information Theory, vol. 51, pp.
4057–4073, Dec. 2005.

[43] S. Pradhan, J. Kusuma, and K. Ramchandran, “Distributed compression in a dense
microsensor network,” IEEE Signal Processing Magazine, vol. 19, pp. 51–60, March
2002.

[44] M. Gastpar, P. L. Dragotti, and M. Vetterli, “The Distributed Karhunen-Love Trans-
form,” IEEE Transactions on Information Theory, vol. 52, pp. 5177–5196, Dec. 2006.

[45] D. Chu, A. Deshpande, J. Hellerstein, and W. Hong, “Approximate data collection
in sensor networks using probabilistic models,” in Proceedings of the International
Conference on Data Engineering, April 2006, pp. 3–7.

[46] R. Wagner, R. Baraniuk, S. Du, D. Johnson, and A. Cohen, “An architecture for
distributed wavelet analysis and processing in sensor networks,” in Proceedings of the
International Conference on Information Processing in Sensor Networks, Nashville,
TN, 2006, pp. 243–250.

REFERENCES 166

[47] J. Acimovic, B. Beferull-Lozano, and R. Cristescu, “Adaptive distributed algorithms
for power-efficient data gathering in sensor networks,” in Proceedings of the Inter-
national Conference on Wireless Networks, Communications and Mobile Computing,
vol. 2, 2005, pp. 946–951.

[48] A. Ciancio, S. Pattem, A. Ortega, and B. Krishnamachari, “Energy-efficient data rep-
resentation and routing for wireless sensor networks based on a distributed wavelet
compression algorithm,” in Proceedings of the International Conference on Informa-
tion Processing in Sensor Networks, Nashville, TN, 2006, pp. 309–316.

[49] G. Shen and A. Ortega, “Joint routing and 2D transform optimization for irregular sen-
sor network grids using wavelet lifting,” in Proceedings of the International Conference
on Information Processing in Sensor Networks, St. Louis, MO, 2008, pp. 183–194.

[50] S. Pattem, B. Krishnamachari, and R. Govindan, “The impact of spatial correlation on
routing with compression in wireless sensor networks,” ACM Transactions on Sensor
Networks, vol. 4, no. 4, pp. 60–66, Sept. 2008.

[51] S. Pattem, G. Shen, Y. Chen, B. Krishnamachari, and A. Ortega, “SenZip: An archi-
tecture for distributed en-route compression in wireless sensor networks,” in Workshop
on Sensor Networks for Earth and Space Science Applications, April 2009.

[52] P. von Rickenbach and R. Wattenhofer, “Gathering correlated data in sensor net-
works,” in Proceedings of the Joint Workshop on Foundations of Mobile Computing,
Philadelphia, PA, 2004, pp. 60–66.

[53] G. Shen, S. Pattem, and A. Ortega, “Energy-efficient graph-based wavelets for dis-
tributed coding in wireless sensor networks,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2009, pp. 2253–2256.

[54] R. Cristescu, B. Beferull-Lozano, M. Vetterli, and R. Wattenhofer, “Network corre-
lated data gathering with explicit communication: NP-completeness and algorithms,”
IEEE/ACM Transactions on Networking, vol. 14, pp. 41–54, Feb. 2006.

[55] S. Servetto, “Sensing LENA - massively distributed compression of sensor images,” in
Proceedings of the IEEE International Conference on Image Processing, vol. 1, 2003,
pp. 613–616.

[56] J. Gao, L. Guibas, N. Milosavljivec, and J. Hershberger, “Sparse data aggregation
in sensor networks,” in Proceedings of the International Conference on Information
Processing in Sensor Networks, Cambridge, MA, 2007, pp. 430–439.

[57] R. Sarkar, X. Zhu, and J. Gao, “Hierarchical spatial gossip for multi-resolution rep-
resentations in sensor networks,” in Proceedings of the International Conference on
Information Processing in Sensor Networks, Cambridge, MA, 2007, pp. 420–429.

[58] V. Kulathumani and A. Arora, “Distance sensitive snapshots in wireless sensor net-
works,” in Proceedings of the International Conference on Principles of Distributed
Systems, Guadeloupe, French West Indies, 2007, pp. 143–158.

REFERENCES 167

[59] P. Hasler, P. Smith, D. Graham, R. Ellis, and D. Anderson, “Analog floating-gate, on-
chip auditory sensing system interfaces,” IEEE Sensors Journal, vol. 5, pp. 1027–1034,
Oct. 2005.

[60] B. Greenstein, C. Mar, A. Pesterev, S. Farshchi, E. Kohler, J. Judy, and D. Estrin,
“Capturing high-frequency phenomena using a bandwidth-limited sensor network,” in
Proceedings of the International Conference on Embedded Networked Sensor Systems,
Boulder, CO, 2006, pp. 279–292.

[61] C. T. Inc., “Stargate Gateway (SPB400),” http://www.willow.co.uk/.

[62] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System architecture
directions for networked sensors,” in Architectural Support for Programming Languages
and Operating Systems, vol. 35, Nov. 2000, pp. 93–104.

[63] J. Frigo, V. Kulathumani, S. Brennan, and E. Raby, “Sensor network based vehicle
classification and license plate identification system,” in Proceedings of the Interna-
tional Conference on Networked Sensing Systems, Pittsburgh, PA, 2009, pp. 224–227.

[64] B. Malhotra, I. Nikolaidis, and J. Harms, “A simple vehicle classification framework
for wireless audio-sensor networks,” Journal of Telecommunications and Information
Technology, pp. 43–50, Jan. 2008.

[65] P. Dutta, M. Grimmer, A. Arora, S. Bibyk, and D. Culler, “Design of a wireless sensor
network platform for detecting rare, random, and ephemeral events,” in Proceedings
of the International Symposium on Information Processing in Sensor Networks, Los
Angeles, CA, 2006, pp. 497–502.

[66] V. Ekanayake, C. Kelly IV, and R. Manohar, “An ultra low-power processor for sensor
networks,” in Proceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, Boston, MA, 2004, pp. 27–36.

[67] B. Zhai, S. Pant, L. Nazhandali, S. Hanson, J. Olson, A. Reeves, M. Minuth,
R. Helfand, T. Austin, D. Sylvester, and D. Blaauw, “Energy-efficient subthreshold
processor design,” IEEE Transactions on Very Large Scale Integrated Systems, vol. 17,
pp. 1127–1137, Aug. 2009.

[68] M. Sheets, F. Burghardt, T. Karalar, J. Ammer, Y. Chee, and J. Rabaey, “A power-
managed protocol processor for wireless sensor networks,” in Proceedings of the IEEE
Symposium on VLSI Circuits, 2006, pp. 262–263.

[69] M. Hempstead, N. Tripathi, P. Mauro, G.-Y. Wei, and D. Brooks, “An ultra low
power system architecture for sensor network applications,” in Proceedings of the In-
ternational Symposium on Computer Architecture, 2005, pp. 208–219.

[70] B. Linares-Barranco, E. Sanchez-Sinencio, A. Rodriguez-Vazquez, and J. Huertas, “A
CMOS analog adaptive BAM with on-chip learning and weight refreshing,” IEEE
Transactions on Neural Networks, vol. 4, pp. 445–455, 1993.

REFERENCES 168

[71] H. Loeliger, F. Lustenberger, M. Helfenstein, and F. Tarkoy, “Probability propagation
and decoding in analog VLSI,” IEEE Transactions on Information Theory, vol. 47,
pp. 837–843, 2001.

[72] T. Hall, C. Twigg, P. Hasler, and D. Anderson, “Application performance of elements
in a floating-gate FPAA,” in Proceedings of the International Symposium on Circuits
and Systems, vol. 2, Vancouver, Canada, 2004, pp. 589–592.

[73] Y. Taur, “CMOS design near the limit of scaling,” IBM Journal of Research and
Development, vol. 46, pp. 213–222, 2002.

[74] A. van Schaik, E. Fragnière, and E. Vittoz, “Improved silicon cochlea using compatible
lateral bipolar transistors,” in Advances in Neural Information Processing Systems 8,
Cambridge, MA, 1996, pp. 671–677.

[75] R. Sarpeshkar, R. Lyon, and C. Mead, “An analog VLSI cochlea with new transconduc-
tance amplifiers and nonlinear gain control,” in Proceedings of the IEEE International
Symposium on Circuits and Systems, vol. 3, Atlanta, GA, 1996, pp. 292–296.

[76] D. Graham and P. Hasler, “Capacitively-coupled current conveyer second-order sec-
tions for continuous-time bandpass filtering and cochlea modeling,” in Proceedings of
the IEEE International Symposium on Circuits and Systems, vol. 5, Scottsdale, AZ,
May 2002, pp. 485–488.

[77] American National Standard Specification for Octave-Band and Fractional-Octave-
Band Analog and Digital Filter, ANSI S1.11-1986 ed., American National Standards
Institute.

[78] B. Rumberg, D. Graham, and V. Kulathumani, “Hibernets: Energy-efficient sensor
networks using analog signal processing,” in Proceedings of the International Confer-
ence on Information Processing in Sensor Networks, Stockholm, Sweden, 2010, pp.
129–139.

[79] D. Graham, P. Hasler, R. Chawla, and P. Smith, “A low-power, programmable band-
pass filter section for higher-order filter applications,” IEEE Transactions on Circuits
and Systems I, vol. 54, no. 6, pp. 1165–1176, June 2007.

[80] J. Rice, K. Mechitov, F. Spencer Jr., and G. Agha, “Autonomous smart sensor network
for full-scale structural health monitoring,” in Proceedings of the SPIE Conference
on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace
Systems, vol. 7647, 2010.

[81] W. Hu, V. Tran, N. Bulusu, C. Chou, S. Jha, and A. Taylor, “The design and eval-
uation of a hybrid sensor network for cane-toad monitoring,” in Proceedings of the
International Symposium on Information Processing in Sensor Networks, 2005.

[82] R. Edwards and G. Cauwenberghs, “Mixed-mode correlator for micropower acoustic
transient classification,” IEEE Journal of Solid-State Circuits, vol. 34, no. 10, pp.
1367–1372, Oct. 1999.

REFERENCES 169

[83] T. Yamasaki and T. Shibata, “Analog soft-pattern-matching classifier using floating-
gate MOS technology,” IEEE Transactions on Neural Networks, vol. 14, no. 5, pp.
1257–1265, Sept. 2003.

[84] S. Peng, P. Hasler, and D. Anderson, “An analog programmable multidimensional
radial basis function based classifier,” IEEE Transactions on Circuits and Systems I,
vol. 54, no. 10, pp. 2148–2158, Oct 2007.

[85] T. Hall, C. Twigg, J. Gray, P. Hasler, and D. Anderson, “Large-scale field-
programmable analog arrays for analog signal processing,” IEEE Transactions on Cir-
cuits and Systems I, vol. 52, no. 11, pp. 2298–2307, Nov. 2005.

[86] B. Rumberg and D. Graham, “A low-power and high-precision programmable analog
filter bank,” IEEE Transactions on Circuits Systems II, vol. 59, no. 4, pp. 234–238,
April 2012.

[87] G. Strang and T. Nguyen, Wavelets and filter banks. Wellesley-Cambridge Press,
1996.

[88] M. Kucic, A. Low, P. Hasler, and J. Neff, “A programmable continuous-time floating-
gate Fourier processor,” IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 48, no. 1, pp. 90–99, Jan. 2001.

[89] W. Liu, M. Goldstein, Jr., and A. Andreou, “Multiresolution speech analysis with an
analog cochlear model,” in Proceedings of the IEEE-SP International Symposium on
Time-Frequency and Time-Scale Analysis, Victoria, BC, Oct. 1992, pp. 433–436.

[90] B. Wen and K. Boahen, “A 360-channel speech preprocessor that emulates the cochlear
amplifier,” in IEEE ISSCC Digest of Technical Papers, Feb. 2006, pp. 2268–2277.

[91] E. Fragnière, “A 100-channel analog CMOS auditory filter bank for speech recogni-
tion,” in IEEE ISSCC Digest of Technical Papers, vol. 1, Feb. 2005, pp. 140–141.

[92] S.-C. Liu, A. van Schaik, B. Minch, and T. Delbrück, “Event-based 64-channel binaural
silicon cochlea with Q enhancement mechanisms,” in Proceedings of IEEE International
Symposium on Circuits and Systems, May 2010, pp. 2027–2030.

[93] R. Sarpeshkar, R. Lyon, and C. Mead, “A low-power wide-dynamic-range analog VLSI
cochlea,” Analog Integrated Circuits and Signal Processing, vol. 16, no. 3, pp. 245–274,
1998.

[94] A. Katsiamis, E. Drakakis, and R. Lyon, “A biomimetic, 4.5 µw, 120+ dB, log-domain
cochlea channel with AGC,” IEEE Journal of Solid-State Circuits, vol. 44, no. 3, pp.
1006–1022, March 2009.

[95] J. Georgiou and C. Toumazou, “A 126-µw cochlear chip for a totally implantable
system,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 430–443, Feb. 2005.

REFERENCES 170

[96] M. Baker, T. Lu, C. Salthouse, J. Sit, S. Zhak, and R. Sarpeshkar, “A 16-channel analog
VLSI processor for bionic ears and speech-recognition front ends,” in Proceedings of
the IEEE Custom Integrated Circuits Conference, 2003, pp. 521–526.

[97] D. Graham, P. Smith, R. Chawla, and P. Hasler, “A programmable bandpass array
using floating-gate elements,” in Proceedings of the IEEE International Symposium on
Circuits and Systems, vol. 1, Vancouver, BC, Canada, May 2004, pp. I–97–100.

[98] R. Sarpeshkar, R. Lyon, and C. Mead, “A low-power wide-linear-range transconduc-
tance amplifier,” Analog Integrated Circuits and Signal Processing, vol. 13, pp. 123–151,
1997.

[99] P. Furth and H. Ommani, “Low-voltage highly-linear transconductor design in sub-
threshold CMOS,” in Proceedings of the IEEE Midwest Symposium on Circuits and
Systems, vol. 1, Sacramento, CA, Aug. 1997, pp. 156–159.

[100] C. Salthouse and R. Sarpeshkar, “A practical micropower programmable bandpass
filter for use in bionic ears,” IEEE Journal of Solid State Circuits, vol. 38, no. 1, pp.
63–70, Jan. 2003.

[101] K. Odame, D. Anderson, and P. Hasler, “A bandpass filter with inherent gain adapta-
tion for hearing applications,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 55, no. 3, pp. 786–795, April 2008.

[102] O. Omeni, E. Rodŕıguez-Villegas, and C. Toumazou, “A micropower CMOS
continuous-time filter with on-chip automatic tuning,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 52, no. 4, pp. 695–705, April 2005.

[103] L. Pylarinos and K. Phang, “Low-voltage programmable gm-C filter for hearing aids
using dynamic gate biasing,” in Proceedings of the IEEE International Symposium on
Circuits and Systems, vol. 3, May 2005, pp. 1984–1987.

[104] E. Rodriguez-Villegas, A. Yùfera, and A. Rueda, “A 1.25-V micropower Gm-C filter
based on FGMOS transistors operating in weak inversion,” IEEE Journal of Solid-State
Circuits, vol. 39, no. 1, pp. 100–111, Jan. 2004.

[105] A. Bandyopadhyay, G. Serrano, and P. Hasler, “Adaptive algorithm using hot-electron
injection for programming analog computational memory elements within 0.2% of ac-
curacy over 3.5 decades,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp.
2107–2114, Sept. 2006.

[106] B. Rumberg and D. Graham, “A low-power magnitude detector for analysis of
transient-rich signals,” IEEE Journal of Solid-State Circuits, vol. 47, no. 3, pp. 676–
685, March 2012.

[107] F. Yuan, “Design techniques for ASK demodulators of passive wireless microsystems:
a state-of-the-art review,” Analog Integrated Circuits and Signal Processing, vol. 63,
pp. 33–45, 2010.

REFERENCES 171

[108] M. Baker and R. Sarpeshkar, “Low-power single-loop and dual-loop AGCs for bionic
ears,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp. 1983–1996, Sept. 2006.

[109] J. Picone, “Signal modeling techniques in speech recognition,” Proceedings of the IEEE,
vol. 81, no. 9, pp. 1215–1247, Sept. 1993.

[110] J. Alegre, S. Celma, B. Calvo, and J. Garćıa del Pozo, “A novel CMOS envelope
detector structure,” Proceedings of the IEEE International Symposium on Circuits
and Systems, 2007.

[111] X. Arreguit and E. Vittoz, “Perception systems implemented in analog VLSI for real-
time applications,” in Proceedings of the Perception to Action Conference, Lausanne,
Switzerland, 1994, pp. 170–180.

[112] R. Edwards and G. Cauwenberghs, “Log-domain circuits for auditory signal process-
ing,” in IEEE Midwest Symposium on Circuits and Systems, vol. 2, Aug. 1999, pp.
968–971.

[113] S. Haddad, J. Karel, R. Peelers, R. Westra, and W. Serdijn, “Ultra low-power analog
Morlet wavelet filter in 0.18µm BiCMOS technology,” in Proceedings of the European
Solid-State Circuits Conference, Sept. 2005, pp. 323–326.

[114] R. Ellis, H. Yoo, D. Graham, P. Hasler, and D. Anderson, “A continuous-time speech
enhancement front-end for microphone inputs,” in Proceedings of the IEEE Interna-
tional Symposium on Circuits and Systems, vol. 2, May 2002, pp. II–728–731.

[115] S. Ravindran, C. Demiroglu, and D. Anderson, “Speech recognition using filter-bank
features,” in Proceedings of the IEEE Asilomar Conference on Signals, Systems, and
Computers, vol. 2, Pacific Grove, CA, Nov. 2003, pp. 1900–1903.

[116] H. Abdalla and T. Horiuchi, “An analog VLSI low-power envelope periodicity detec-
tor,” IEEE Transactions on Circuits and Systems I, Regular Papers, vol. 52, no. 9, pp.
1709–1720, Sept. 2005.

[117] S.-B. Park, J. Wilson, and M. Ismail, “Peak detectors for multistandard wireless re-
ceivers,” IEEE Circuits and Devices Magazine, vol. 22, no. 6, pp. 6–9, Nov.-Dec. 2006.

[118] M. Kruiskamp and D. Leenaerts, “A CMOS peak detect sample and hold circuit,”
IEEE Transactions on Nuclear Science, vol. 41, no. 1, pp. 295–298, Feb. 1994.

[119] J. Taylor, “Describing functions,” Electrical and Electronics Engineering Encyclopedia,
vol. Supplement 1, pp. 77–98, 2000.

[120] R. Gilmore and M. Steer, “Nonlinear circuit analysis using the method of harmonic
balance – A review of the art. Part I. Introductory concepts,” International Journal
of Microwave and Millimeter-Wave Computer-Aided Engineering, vol. 1, no. 1, pp.
22–37, 1991.

REFERENCES 172

[121] T. Delbrück, ““Bump” circuits for computing similarity and dissimilarity of analog
voltages,” in Proceedings of the International Joint Conference on Neural Networks,
Seattle, WA, USA, July 1991, pp. I–475–479.

[122] M. Cohen and A. Andreou, “MOS circuit for nonlinear Hebbian learning,” Electronics
Letters, vol. 28, no. 9, pp. 809–810, 1992.

[123] A. Gelb and W. Vander Velde, Multiple-input describing functions and nonlinear sys-
tem design. New York: McGraw-Hill, 1968.

[124] S. Zhak, M. Baker, and R. Sarpeshkar, “A low-power wide dynamic range envelope
detector,” IEEE Journal of Solid-State Circuits, vol. 38, no. 10, pp. 1750–1753, Oct.
2003.

[125] M. Steyaert, W. Dehaene, J. Craninckx, M. Walsh, and P. Real, “A CMOS rectifier-
integrator for amplitude detection in hard disk servo loops,” IEEE Journal of Solid-
State Circuits, vol. 30, no. 7, pp. 743–751, July 1995.

[126] Y. Zhou, G. Huang, S. Nam, and B.-S. Kim, “A novel wide-band envelope detector,” in
Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, June 2008,
pp. 219–222.

[127] E. Rodriguez-Villegas, P. Corbishley, C. Lujan-Martinez, and T. Sanchez-Rodriguez,
“An ultra-low-power precision rectifier for biomedical sensors interfacing,” Sensors and
Actuators A: Physical, vol. 153, no. 2, pp. 222–229, 2009.

[128] J. Alegre, S. Celma, J. Garćıa del Pozo, and N. Medrano, “Fast-response low-ripple
envelope follower,” Integration, the VLSI Journal, vol. 42, no. 2, pp. 169–174, 2009.

[129] P. Sarkar and S. Chakrabartty, “Compressive self-powering of piezo-floating-gate me-
chanical impact detectors,” IEEE Transactions of Circuits and Systems – I, vol. 60,
no. 9, Sept. 2013.

[130] Y. Wong, M. Cohen, and P. Abshire, “A 750-MHz 6-b adaptive floating-gate quantizer
in 0.35-µm CMOS,” IEEE Transactions on Circuits and Systems—I, vol. 56, pp. 1301–
1312, July 2009.

[131] B. Rumberg and D. Graham, “A floating-gate memory cell for continuous-time pro-
gramming,” in Proceedings of the IEEE Midwest Symposium on Circuits and Systems,
Boise, ID, August 2012, pp. 214–217.

[132] P. Hasler, B. Minch, and C. Diorio, “Floating-gate devices: They are not just for
digital memories anymore,” in Proceedings of the IEEE International Symposium on
Circuits and Systems, 1999, pp. 388–391.

[133] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—an overview,” Pro-
ceedings of the IEEE, vol. 85, no. 8, pp. 1248–1271, 1997.

REFERENCES 173

[134] Y. Hu and P. Georgiou, “A robust ISFET pH-measuring front-end for chemical reaction
monitoring,” IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 2, pp.
177–185, April 2014.

[135] B. Minch, P. Hasler, and C. Diorio, “Multiple-input translinear element networks,”
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,
vol. 48, no. 1, pp. 20–28, 2001.

[136] C. Diorio, “A p-channel MOS synapse transistor with self-convergent memory writes,”
IEEE Transactions on Electron Devices, vol. 47, no. 2, pp. 464–472, Feb. 2000.

[137] S. Song, K. Chun, and C. Kim, “A logic-compatible embedded flash memory for zero-
standby power system-on-chips featuring a multi-story high voltage switch and a se-
lective refresh scheme,” IEEE Journal of Solid-State Circuits, vol. 48, no. 5, pp. 1302–
1314, 2013.

[138] C. Huang, P. Sarkar, and S. Chakrabartty, “Rail-to-rail, linear hot-electron injection
programming of floating-gate voltage bias generators at 13-bit resolution,” IEEE Jour-
nal of Solid-State Circuits, vol. 46, no. 11, pp. 2685–2692, Nov. 2011.

[139] C. Diorio, S. Mahajan, P. Hasler, B. Minch, and C. Mead, “A high-resolution non-
volatile analog memory cell,” in Proceedings of the IEEE International Symposium on
Circuits and Systems, vol. 3, Seattle, WA, April 1995, pp. 2233–2236.

[140] K.-H. Kim, K. Lee, T.-S. Jung, and K.-D. Suh, “An 8-bit-resolution, 360-µs write time
nonvolatile analog memory based on differentially balanced constant-tunneling-current
scheme (DBCS),” IEEE Journal of Solid-State Circuits, vol. 33, no. 11, pp. 1758–1762,
Nov. 1998.

[141] H. Román and G. Serrano, “A system architecture for automated charge modifications
of analog memories,” in IEEE Midwest Symp. Circuits Syst., Aug. 2010, pp. 1069–1072.

[142] Y.-D. Wu, K.-C. Cheng, C.-C. Lu, and H. Chen, “Embedded analog nonvolatile mem-
ory with bidirectional and linear programmability,” IEEE Transactions on Circuits
and Systems–II: Express Briefs, vol. 59, no. 2, pp. 88–92, Feb. 2012.

[143] A. Andreou, K. Boahen, P. Pouliquen, A. Pavasović, R. Jenkins, and K. Strohbehn,
“Current-mode subthreshold MOS circuits for analog VLSI neural systems,” IEEE
Transactions on Neural Networks, vol. 2, no. 2, pp. 205–213, March 1991.

[144] S. Rapp, K. McMillan, and D. Graham, “Spice-compatible modelling technique for
simulating floating-gate transistors,” Electronics Letters, vol. 47, no. 8, pp. 483–485,
April 2011.

[145] B. Rumberg and D. Graham, “Efficiency and reliability of Fowler-Nordheim tunnelling
in CMOS floating-gate transistors,” Electronics Letters, vol. 49, no. 23, pp. 1484–1486,
2013.

REFERENCES 174

[146] L. Carley, “Trimming analog circuits using floating-gate analog MOS memory,” IEEE
Journal of Solid-State Circuits, vol. 24, no. 6, pp. 1569–1575, 1989.

[147] M. Lenzlinger and E. Snow, “Fowler-Nordheim tunneling into thermally grown SiO2,”
Journal of Applied Physics, vol. 40, no. 1, pp. 278–283, 1969.

[148] Z. Weinberg, “On tunneling in metal-oxide-silicon structures,” Journal of Applied
Physics, vol. 53, no. 7, pp. 5052–5056, 1982.

[149] P. Hasler, B. Minch, and C. Diorio, “Adaptive circuits using pFET floating-gate de-
vices,” in Proc. IEEE ARVLSI, 1999, pp. 215–229.

[150] K. Yang, Y. King, and C. Hu, “Quantum effect in oxide thickness determination from
capacitance measurement,” in Proc. IEEE VLSIT, 1999, pp. 77–78.

[151] A. Kolodny, S. Nieh, B. Eitan, and J. Shappir, “Analysis and modeling of floating-gate
EEPROM cells,” IEEE Transactions on Electron Devices, vol. 33, no. 6, pp. 835–844,
1986.

[152] Y. Park and D. Schroder, “Degradation of thin tunnel gate oxide under constant
Fowler-Nordheim current stress for a Flash EEPROM,” IEEE Transactions on Electron
Devices, vol. 45, no. 6, pp. 1361–1368, 1998.

[153] B. Streetman and S. Banerjee, Solid state electronic devices. Prentice Hall, 2006.

[154] T. Ong, P. Ko, and C. Hu, “Hot-carrier current modeling and device degradation in
surface-channel p-MOSFETs,” IEEE Transactions on Electron Devices, vol. 37, no. 7,
pp. 1658–1666, 1990.

[155] P. Hasler, A. Andreou, C. Diorio, B. Minch, and C. Mead, “Impact ionization and
hot-electron injection derived consistently from Boltzmann transport,” VLSI Design,
vol. 8, no. 1-4, pp. 454–461, 1998.

[156] W. Shockley, “Problems related to p-n junctions in silicon,” Solid-State Electronics,
vol. 2, pp. 35–67, 1961.

[157] C. Hu, “Lucky-electron model of channel hot electron emission,” in International Elec-
tron Devices Meeting, vol. 25, 1979, pp. 22–25.

[158] S. Tam, P. Ko, and C. Hu, “Lucky-electron model of channel hot-electron injection in
MOSFET’s,” IEEE Transactions on Electron Devices, vol. 31, no. 9, pp. 1116–1125,
1984.

[159] P. Hasler, A. Basu, and S. Kozil, “Above threshold pFET injection modeling intended
for programming floating-gate systems,” in IEEE International Symposium on Circuits
and Systems, 2007, pp. 1557–1560.

[160] J. Chung, M. Jeng, G. May, P. Ko, and C. Hu, “Hot-electron currents in deep-
submicrometer MOSFETs,” in International Electron Devices Meeting, 1988, pp. 200–
203.

REFERENCES 175

[161] V. Srinivasan, D. Graham, and P. Hasler, “Floating-gates transistors for precision
analog circuit design: an overview,” in Proceedings of the IEEE Midwest Symposium
on Circuits and Systems, vol. 1, Covington, KY, Aug. 2005, pp. 71–74.

[162] The MOSIS Service, Wafer Electrical Test Data and SPICE Model Parameters.
http://www.mosis.com/requests/test-data, 2014.

[163] International Technology Roadmap for Semiconductors, Process Integration, Devices,
and Structures. http://www.itrs.net/Links/2013ITRS/Home2013.htm, 2013.

[164] J. Starzyk, Y. Jan, and F. Qiu, “A DC-DC charge pump design based on voltage
doublers,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 48, no. 3, pp. 350–359, 2001.

[165] O. Wong, H. Wong, W. Tam, and C. Kok, “A comparative study of charge pumping
circuits for Flash memory applications,” Microelectronics Reliability, vol. 52, pp. 670–
687, 2012.

[166] J. Cockcroft and E. Walton, “Experiments with high velocity positive ions. (I) further
developments in the method of obtaining high velocity positive ions,” Royal Society of
London Proceedings Series A, vol. 136, pp. 619–630, 1932.

[167] J. Dickson, “On-chip high-voltage generation in MNOS integrated circuits using an
improved voltage multiplier technique,” IEEE Journal of Solid-State Circuits, vol. 11,
no. 3, pp. 374–378, 1976.

[168] G. Palumbo and D. Pappalardo, “Charge pump circuits: An overview on design strate-
gies and topologies,” IEEE Circuits and Systems Magazine, vol. 10, no. 1, pp. 31–45,
2010.

[169] B. Gregoire, “A compact switched-capacitor regulated charge pump power supply,”
IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1944–1953, 2006.

[170] C. Wu and C. Chen, “A low-ripple charge pump with continuous pumping current
control,” in IEEE Midwest Symposium on Circuits and Systems, 2008, pp. 722–725.

[171] Y. Kang et al, “High-voltage analog system for a mobile NAND flash,” IEEE Journal
of Solid-State Circuits, vol. 43, no. 2, pp. 507–517, 2008.

[172] E. Bayer and H. Schmeller, “Charge pump with active cycle regulation—closing the
gap between linear and skip modes,” in IEEE Power Electronics Specialists Conference,
vol. 3, 2000, pp. 1497–1502.

[173] J. Lee, S. Kim, S. Song, J. Kim, S. Kim, and H. Yoo, “A regulated charge pump with
small ripple voltage and fast start-up,” IEEE Journal of Solid-State Circuits, vol. 41,
no. 2, pp. 425–432, 2006.

[174] L. Aaltonen and K. Halonen, “On-chip charge-pump with continuous frequency reg-
ulation for precision high-voltage generation,” in Ph.D. Research in Microelectronics
and Electronics (PRIME), San Francisco, CA, July 2009, pp. 68–71.

REFERENCES 176

[175] M. Kuriyama, S. Atsumi, A. Umezawa, H. Banba, K. Imamiya, K. Naruke, S. Ya-
mada, E. Obi, M. Oshikiri, T. Suzuki, M. Wada, and S. Tanaka, “A 5V-only 0.6µm
Flash EEPROM with row decoder scheme in triple-well structure,” in IEEE Solid-State
Circuits Conference, San Francisco, CA, Feb. 1992, pp. 152–153.

[176] N. Li, Z. Huang, M. Jiang, and Y. Inoue, “High efficiency four-phase all PMOS charge
pump without body effect,” in International Conference on Communications, Circuits
and Systems, May 2008, pp. 1083–1087.

[177] J. Shin, I. Chung, Y. Park, and H. Min, “A new charge pump without degradation in
threshold voltage due to body effect,” IEEE Journal of Solid-State Circuits, vol. 35,
no. 8, pp. 1227–1230, Aug. 2000.

[178] H. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on
the design of buffer circuits,” IEEE Journal of Solid-State Circuits, vol. 19, no. 4, pp.
468–473, 1984.

[179] A. Chandrakasan and R. Brodersen, “Minimizing power consumption in digital CMOS
circuits,” Proceedings of the IEEE, vol. 83, no. 4, pp. 498–523, 1995.

[180] C. Yoo, “A CMOS buffer without short-circuit power consumption,” IEEE Transac-
tions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 9,
pp. 935–937, 2000.

[181] C. Lee and P. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip
current-sensing technique,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp.
3–14, 2004.

[182] B. Rumberg, D. Graham, and V. Kulathumani, “A low-power, programmable analog
event detector for resource-constrained sensing systems,” in Proceedings of the IEEE
Midwest Symposium on Circuits and Systems, Boise, ID, August 2012, pp. 338–341.

[183] P. Furth and A. Andreou, “Linearised differential transconductors in subthreshold
CMOS,” Electron. Lett., pp. 545–547, 1995.

[184] R. Polikar, “Ensemble based systems in decision making,” IEEE Circuits and Systems
Magazine, vol. 6, pp. 21–45, 2006.

[185] L. Itti and C. Koch, “A saliency-based search mechanism for overt and covert shifts of
visual attention,” Vision Research, vol. 40, pp. 1489–1506, 2000.

[186] Y. Zhai and M. Shah, “Visual attention detection in video sequences using spatiotem-
poral cues,” in ACM International Conference on Multimedia, 2006, pp. 815–824.

[187] O. Kalinli and S. Narayanan, “A saliency-based auditory attention model with appli-
cations to unsupervised prominent syllable detection in speech,” in INTERSPEECH,
2007, pp. 1941–1944.

REFERENCES 177

[188] L. Itti, “Automatic foveation for video compression using a neurobiological model of
visual attention,” IEEE Transactions on Image Processing, vol. 13, no. 10, pp. 1304–
1318, Oct. 2004.

[189] C. Diorio, P. Hasler, B. Minch, and C. Mead, “A floating-gate MOS learning array with
locally computed weight updates,” IEEE Transactions on Electron Devices, vol. 44,
no. 12, pp. 2281–2289, Dec. 1997.

[190] B. Gestner, J. Tanner, and D. Anderson, “Glass break detector analog front-end using
novel classifier circuit,” in Proc. IEEE Int. Symp. Circuits Syst., May 2007, pp. 3586–
3589.

[191] T. Delbrück, T. Koch, R. Berner, and H. Hermansky, “Fully integrated 500µW speech
detection wake-up circuit,” in Proceedings of the IEEE International Symposium on
Circuits and Systems, May 2010, pp. 2015–2018.

[192] B. Kelly, B. Rumberg, D. Graham, and V. Kulathumani, “Reconfigurable analog signal
processing for wireless sensor networks,” in Proceedings of the International Midwest
Symposium on Circuits and Systems, Columbus, OH, USA, Aug. 2013, pp. 221–224.

[193] B. Rumberg, B. Kelly, D. Graham, and V. Kulathumani, “Demo Abstract: Netamorph:
Field-programmable analog arrays for energy-efficient sensor networks,” in Proceedings
of the 12th International Conference on Information Processing in Sensor Networks,
Philadelphia, PA, USA, April 2013, pp. 309–310.

[194] S. N. Pakzad, G. L. Fenves, S. Kim, and D. E. Culler, “Design and implementation of
scalable wireless sensor network for structural monitoring,” Journal of Infrastructure
Systems, vol. 14, no. 1, pp. 89–101, 2008.

[195] D. Anderson et al, “A field programmable analog array and its application,” in Pro-
ceedings of the IEEE Custom Integrated Circuits Conference, Aug. 1997, pp. 555–558.

[196] B. Pankiewicz, M. Wojcikowski, S. Szczepanski, and Y. Sun, “A field programmable
analog array for CMOS continuous-time OTA-C filter applications,” IEEE Journal of
Solid-State Circuits, vol. 37, no. 2, pp. 125–136, Feb. 2002.

[197] E. Mackensen and C. Müller, “Implementation of reconfigurable micro-sensor interfaces
utilizing FPAAs,” in IEEE Sensors, Oct. 2005, pp. 1064–1067.

[198] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre, S. Koziol, F. Baskaya,
C. Twigg, and P. Hasler, “A floating-gate-based field-programmable analog array,”
IEEE Journal of Solid-State Circuits, vol. 45, no. 9, pp. 904–922, Sept. 2010.

[199] D. Fernández, L. Mart́ınez-Alvarado, and J. Madrenas, “A translinear, log-domain
FPAA on standard CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 47,
no. 2, pp. 490–503, Feb. 2012.

[200] I. Kuon, R. Tessier, and J. Rose, “Fpga architecture: Survey and challenges,” Foun-
dations and Trends in Electronic Design Automation, vol. 2, no. 2, pp. 135–253, 2008.

REFERENCES 178

[201] E. Lee and P. Gulak, “A CMOS field-programmable analog array,” IEEE Journal of
Solid-State Circuits, vol. 26, no. 12, pp. 1860–1867, Dec. 1991.

[202] C. Schlottmann, S. Shapero, S. Nease, and P. Hasler, “A digitally enhanced dynam-
ically reconfigurable analog platform for low-power signal processing,” IEEE Journal
of Solid-State Circuits, vol. 47, no. 9, pp. 2174–2184, Sept. 2012.

[203] R. Harrison and C. Koch, “A robust analog VLSI Reichardt motion sensor,” Analog
Integrated Circuits and Signal Processing, vol. 24, pp. 213–229, 2000.

[204] O. Schwartz and E. Simoncelli, “Natural signal statistics and sensory gain control,”
Nature Neuroscience, vol. 4, pp. 819–825, 2001.

[205] B. Rumberg and D. Graham, “Reconfiguration costs in analog sensor interfaces for
wireless sensing applications,” in Proceedings of the International Midwest Symposium
on Circuits and Systems, Columbus, OH, USA, Aug. 2013, pp. 321–324.

[206] D. D’Mello and G. Gulak, “Design approaches to field-programmable analog integrated
circuits,” Analog Integrated Circuits and Signal Processing, no. 17, pp. 7–34, June 1998.

[207] F. Mims, The Forrest Mims Circuit Scrapbook, Volume 2. Eagle Rock, VA, USA:
LLH Technology Publishing, 2000.

[208] Analog Devices, “Monolithic peak detector with reset and hold mode,” in PDK01
datasheet, 2001.

[209] M. Sivilotti, “A dynamically configurable architecture for prototyping analog circuits,”
in Proceedings of the Fifth MIT Conference on Advanced Research in VLSI, Cambridge,
MA, USA, 1988, pp. 237–258.

[210] D. Vallancourt and Y. Tsividis, “Timing-controlled fully programmable analogue signal
processors using switched continuous-time filters,” IEEE Transactions on Circuits and
Systems, vol. 35, no. 8, pp. 947–954, 1988.

[211] E. Lee and G. Gulak, “MOS transconductor-based field programmable analog array,”
in 3rd International Workshop on Post-Binary ULSI Systems, Boston, MA, USA, 1994.

[212] P. Chow and G. Gulak, “A field-programmable mixed-analog-digital array,” in Pro-
ceedings of the 1995 ACM Third International Symposium on Field-programmable Gate
Arrays, 1995, pp. 104–109.

[213] E. Pierzchala, M. Perkowski, P. V. Halen, and R. Schaumann, “Current-mode ampli-
fier/integrator for a field-programmable analog array,” in IEEE International Solid-
State Circuits Conference, 1995, pp. 196–197.

[214] H. Kutuk and S. Kang, “A field-programmable analog array (FPAA) using switched-
capacitor techniques,” in IEEE International Symposium on Circuits and Systems,
vol. 4, 1996, pp. 41–44.

REFERENCES 179

[215] S. Chang, B. Hayes-Gill, and C. Paull, “Multi-function block for a switched current
field programmable analogue array,” in IEEE Midwest Symposium on Circuits and
Systems, 1996, pp. 158–161.

[216] V. Gaudet and G. Gulak, “CMOS implementation of a current conveyor-based field-
programmable analog array,” in Conference Record of the Thirty-First Asilomar Con-
ference on Signals, Systems, and Computers, vol. 2, 1997, pp. 1156–1159.

[217] X. Quan, S. Embabi, and E. Sanchez-Sinencio, “A current-mode based field pro-
grammable analog array architecture for signal processing applications,” in Proceedings
of the IEEE Custom Integrated Circuits Conference, 1998, pp. 277–280.

[218] M. Mar, B. Sullam, and E. Blom, “An architecture for a configurable mixed-signal
device,” IEEE Journal of Solid-State Circuits, vol. 38, no. 3, pp. 565–568, 2003.

[219] D. Varghese and J. Ross, “A continuous-time hierarchical field programmable analogue
array for rapid prototyping and hierarchical approach to analogue systems design,” in
Symposium on Integrated Circuits and Systems Design, 2005, pp. 248–253.

[220] C. Twigg and P. Hasler, “A large-scale reconfigurable analog signal processor (RASP)
IC,” in IEEE Custom Integrated Circuits Conference, 2006, pp. 5–8.

[221] P. Hasler and C. Twigg, “An OTA-based large-scale field programmable analog array
(FPAA) for faster on-chip communication and computation,” in IEEE International
Symposium on Circuits and Systems, 2007, pp. 177–180.

[222] J. Becker, F. Henrici, S. Trendelenburg, M. Ortmanns, and Y. Manoli, “A field-
programmable analog array of 55 digitally tunable OTAs in a hexagonal lattice,” IEEE
Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2759–2768, Dec. 2008.

[223] S. Peng, G. Gurun, C. Twigg, M. Qureshi, A. Basu, S. Brink, P. Hasler, and
F. Degertekin, “A large-scale reconfigurable smart sensory chip,” in IEEE Interna-
tional Symposium on Circuits and Systems, 2009, pp. 2145–2148.

[224] P. Lajevardi, A. Chandrakasan, and H. Lee, “Zero-crossing detector based reconfig-
urable analog system,” IEEE Journal of Solid-State Circuits, vol. 46, no. 11, pp. 2478–
2487, 2011.

[225] R. Wunderlich, F. A. P. and Hasler, “Floating gate-based field programmable mixed-
signal array,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 21, no. 8, pp. 1496–1505, 2013.

[226] X. Cheng, H. Yang, T. Yin, Q. Wu, T. Zhi, and F. Liu, “Mixed-grained CMOS field
programmable analog array for smart sensory applications,” Journal of Electronics
(China), vol. 31, no. 2, pp. 129–142, 2014.

[227] P. Christie and D. Stroobandt, “The interpretation and application of Rent’s rule,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 6, pp.
639–648, 2000.

REFERENCES 180

[228] D. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron FPGA
performance and density,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 12, no. 3, pp. 288–298, 2004.

[229] J. Gray, C. Twigg, D. Abramson, and P. Hasler, “Characteristics and programming of
floating-gate pFET switches in an FPAA crossbar network,” in Proceedings of the IEEE
International Symposium on Circuits and Systems, vol. 1, May 2005, pp. 468–471.

[230] C. Twigg, J. Gray, and P. Hasler, “Programmable floating gate FPAA switches are not
dead weight,” in Proceedings of the IEEE International Symposium on Circuits and
Systems, 2007, pp. 169–172.

[231] G. Mathur, P. Desnoyers, P. Chukiu, D. Ganesan, and P. Shenoy, “Ultra-low power
data storage for sensor networks,” ACM Transactions on Sensor Networks, vol. 5,
no. 4, pp. 33:1–33:34, Nov. 2009.

[232] E. Vittoz, “Origins of weak inversion (or sub-threshold) circuit design,” in Sub-
threshold Design for Ultra Low-Power Systems. Springer, 2006, pp. 7–9.

[233] B. Kelly, B. Rumberg, and D. Graham, “An ultra-low-power analog memory system
with an adaptive sampling rate,” in Proceedings of the IEEE Midwest Symposium on
Circuits and Systems, Boise, ID, August 2012, pp. 302–305.

[234] A. Wang and A. Chandrakasan, “A 180-mv subthreshold FFT processor using a mini-
mum energy design methodology,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1,
pp. 310–319, Jan. 2005.

[235] K. Kumagai, T. Yamada, H. Iwaki, H. Nakamura, H. Onishi, Y. Matsubara, K. Imai,
and S. Kurosawa, “A new SRAM cell design using 0.35 µm CMOS/SIMOX technol-
ogy,” in Proceedings of the IEEE International SOI Conference, 1997, pp. 174–175.

[236] M. O’Halloran and R. Sarpeshkar, “A 10-nW 12-bit accurate analog storage cell with
10-aA leakage,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 1985–1996,
Nov. 2004.

[237] D. Graham, “A biologically inspired front end for audio signal processing using pro-
grammable analog circuitry,” Ph.D. dissertation, Georgia Institute of Technology, At-
lanta, GA, 2006.

181

Appendix A

Background on Sub-Threshold Analog
Circuits

A.1 Sub-Threshold MOSFET Operation

All integrated circuits (ICs) in this work have been fabricated in standard CMOS pro-
cesses. Standard CMOS processes are the same mainline processes that are used for logic
ICs, such as microcontrollers. As a result, the developments in this work can be tightly
integrated with most ICs without any modifications to the manufacturing process.

Various circuit elements are available in standard CMOS. The primary elements used
in this work are metal-oxide-semiconductor field-effect transistors (MOSFETs) and poly-
insulator-poly (PIP) capacitors, although we have also used metal-insulator-metal (MIM)
capacitors when they are available.

Figure A.1 shows an overview of MOSFETs. Complementary N- and P-type transistors
are shown. Subplots (a) and (b) show the dependence of the drain current upon the gate
voltage for both NMOS and PMOS transistors. MOSFETs have two primary operating
regions: sub-threshold and above-threshold; within each of these regions are two sub-regions:
saturation and ohmic. In sub-threshold, the drain current is exponentially related to the gate
voltage as seen by the linear portions of the traces in the semi-log subplot (a). In above-
threshold, the drain current has a square-law relation to the gate voltage as seen by the
linear portion of the traces in the root subplot (b). Although the above-threshold region has
been the most common, the sub-threshold region has the advantage of lower current (and
therefore lower power consumption). Since our objective is low power consumption, most of
the circuits in this work operate in the sub-threshold region.

For an nFET in sub-threshold, the relationship between gate voltage and drain current
is [232]

Id = I0
W

L
e
κVg
UT

(
e
− Vs
UT − e−

Vd
UT

)
(A.1)

where I0 is a process-dependent scaler, W and L are the width and length of the channel
underneath the gate, κ = Cox

Cox+Cdep
1 is the capacitive coupling from the gate to the channel,

1Cox is the oxide capacitance from the gate to the surface and Cdep is the depletion capacitance from the
body to the channel

Brandon D. Rumberg Appendix A. Sub-threshold analog circuits 182

NMOS PMOS

Gate:
Vg

Vg

Source: Vs

Drain: Vd

Drain
Current:

Id

Vs

Vd

Id

Vs Vd

Vg

Id
VwVs

Vd

Vg

Id

Vss

Substrate

N-well

Diffusion

Polysilicon

VwVss

0 0.5 1 1.5 2 2.5

10
-10

10
-5

V
g
 (V)

I d
 (

A
)

0 0.5 1 1.5 2 2.5
0

0.005

0.01

V
g
 (V)

s
q
rt

(
I d

)

(A
1

/2
)

PMOSNMOS

PMOSNMOS

(a)

(b)

PMOS

sub-VTabove-VT

NMOS

above-VTsub-VT

Figure A.1: MOSFET background showing circuit symbols, 3-D renderings, and gate-
voltage/drain-current relations.

and UT ≈ 25.9mV is the thermal voltage. The equation is the same for a pFET, except that
all voltages are negative with respect to the transistor’s body. For both nFETs and pFETs,

when the source is connected to the body (i.e. e
− Vs
UT = 1) and the drain voltage is greater

than a few tenths of a volt (i.e. e
− Vd
UT → 0), then the expression can be approximated as

Id = I0
W

L
e
κVg
UT (A.2)

This is the saturation sub-region, which is the typical operating point for most transistors
in an analog circuit.

A.2 Electronically-Tunable Transconductors

One of the primary circuit blocks used throughout this work, and throughout analog IC
design in general, is the operational transconductance amplifier (OTA). An OTA converts
a differential voltage input into a current output. This voltage-to-current relationship, or
“transconductance,” is electronically tunable, which enables the creation of electronically-
tunable circuits. The standard symbol for an OTA is shown in Fig. A.2(b), and a basic OTA
implementation is shown in Fig. A.2(a). The differential input voltage V +−V − is converted
into the current Iout according to the following equation for sub-threshold operation

Iout = Ib tanh

(
κ(V + − V −)

2UT

)
(A.3)

Brandon D. Rumberg Appendix A. Sub-threshold analog circuits 183

Vb M1

Ib

M2 M3

M4 M5

V+ V-

Iout
Vin Vout

C

Gm

V+

V-

Iout

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

-1

-0.5

0

0.5

1

x 10
-8

V
+
 - V

-
 (V)

I o
u

t (
A

)

(a)

(b)

(d)(c)

Basic OTA OTA Symbol

1st-Order LPF

Figure A.2: Overview of operational transconductance amplifiers (OTA). (a) Schematic of
the basic OTA. (b) Symbol for an OTA. (c) Using an OTA to create an electronically tunable
lowpass filter. (d) OTA input-voltage/output-current relationship.

where Ib is the tunable bias current. This voltage-to-current relationship is plotted in Fig.
A.2(d). For small differential input voltages, the transconductance relationship is linear and
can be approximated by

Iout = Gm

(
V + − V −

)
(A.4)

where Gm = κIb
2UT

is the tunable transconductance of the OTA. Although the basic OTA in
Fig. A.2(a) has a limited linear range, many techniques exist for increasing the linear range,
and we use two of those techniques in Chapters 4 and 9.

Since the bias current Ib sets the transconductance, OTAs can be biased by programmable
current sources to create electronically-tunable circuits. For example, in Fig. A.2(c) an OTA
is combined with a capacitor to create a first-order lowpass filter with a tunable corner
frequency. Equation (A.4) is used to analyze OTA circuits. For example, equating the
currents at Vout in Fig. A.2(c) yields Gm (Vin − Vout) = sCVout, and solving for Vout yields

Vout =
Vin

sC/Gm + 1
(A.5)

Observe that the time constant is C/Gm, and that it can be tuned by adjusting Ib.

184

Appendix B

Event Detection Time-Lag and
Memory Buffers

For some wake-up applications, the time duration between the occurrence of an event and
the assertion of that event is crucial. For example, in applications that record events, the
onset of—or even the entirety of—the event may pass before a detection has been asserted.
For such situations, a memory buffer may be necessary to record the data. In [233], we
described such a memory buffer which included an adaptive sampling approach to minimize
the number of samples. In this Appendix, we discuss the detection time-lag for our Hibernets
processors and we consider the feasibility of extending our previous memory buffer to a
digital-storage format.

B.1 Time Lag to Assert Events

Before discussing the time lag of our Hibernets front-end, let us consider the time lag
of the digital back-end. Many low-power microcontrollers and analog-to-digital converters
(ADC) can transition from sleep-mode to on-mode in a few microseconds. The greatest
time lag is attributed to voltage references, which are required for accurate quantization,
and which have typical start-up times on the order of 100µs (e.g. the AD318 low-power
reference). For most phenomena, this time lag is insignificant in comparison to the front-
end’s time lag.

The time lag1 of our Hibernets front-end (Chapter 3) is primarily caused by the subband
magnitude detectors, which cause a delay that is inversely proportional to the subband
frequency, f . In Chapter 3, we measured a delay of 4/f . This result was obtained prior
to our more thorough analysis of the magnitude detector (Chapter 5), which now enables
us to bias the magnitude detector for the fastest transient response at a given ripple level.
The magnitude detector’s lag time, or “acquire time,” is amplitude dependent because of
the adaptive-time-constant filter. If a linear filter were used, the magnitude detector would
acquire any signal onset within approximately 7.5 cycles2. As described in Section 5.5, when

1To determine the time lag of the event detector, we assume that the event appears suddenly, as opposed
to slowly intensifying. This avoids any ambiguity as to the precise moment when the event “appears.”

2For this discussion, the user-defined ripple level is assumed to be 1%, and the acquisition time is defined

Brandon D. Rumberg Appendix B. Memory Buffers 185

using the adaptive-time-constant filter, the magnitude detector can acquire its maximum
detectable signal level in approximately 1.5 cycles, and acquires its minimum signals with
the same speed as a linear filter (7.5/f). In summary, the lag time of a subband is amplitude
dependent, and ranges from 1.5/f to 7.5/f , which is consistent with our previously measured
4/f .

Using this information, we can compare the lag time of the front-end to the lag time of the
back-end. If the back-end start-up time is 100µs (i.e. turn-on time of a voltage reference),
then the front-end will dominate the overall lag time when the signal frequency is below
1.5 cycles / 100µs = 15kHz. Thus the front end dominates the lag time for most audible
frequencies and for most sensor network applications.

B.2 Memory Buffering

Some applications must capture the onset of the event or even the conditions prior to
the event. For these applications, a memory buffer may be included in the system, as shown
in Fig. B.1(a). This buffer may take the form of an array of sample-and-holds (discrete-
time, continuous-value) or an ADC and RAM (discrete-time, discrete-value). During normal
operation, the memory buffer runs constantly, holding the recent signal in memory. When
an event is detected, the sensor node wakes up and reads out the content of the buffer.

Since the buffer is “always on,” power consumption is a major concern. To reduce the
number of sampling operations that are required, we have begun to work on a method of
compressing the signal as it is recorded. Our approach to this problem is based on the
knowledge that the Nyquist sampling criterion—that the sampling frequency must exceed
twice the highest frequency of the signal—is excessive for most natural signals, wherein the
highest frequencies are rarely present. Hence we have developed a memory system that
adapts its sampling rate to the signal [233]. This method is shown in Fig. B.1(b). We use
a circuit that identifies local maxima and local minima. From these maxima and minima,
time/voltage pairs are generated and stored. Thus, the sampling rate is adapted to equal
twice the instantaneous signal frequency, and the number of sampling operations is greatly
reduced.

Figure B.2 shows the adaptive-sampler operating on a speech waveform. For this 1.68-
second speech waveform, 652 samples were recorded, and the highest frequency captured was
3125Hz. If a constant-sampling-rate technique were used, a total of 10556 samples would have
been recorded. This is a 16-fold reduction in the number of sampling operations. We are still
determining the criteria for reconstructing from local maxima/minima, but initial work using
the Bézier curve equation—shown in Fig. B.2(b)—provides an intelligible reconstruction.

In our initial memory system [233], the data are stored in an array of sample-and-holds
(discrete-time, continuous-valued memory). The power consumption of the max/min locator
is 1.17µW and the power consumption of the 64-element sample-and-hold array is 2.35µW,
yielding a total power of 3.52µW. This is an acceptable power level; however, the sample-
and-hold array may not be feasible for moderate-to-high levels of precision. Although the
system infrastructure is greatly simplified by using sample-and-holds, the storage duration is
limited by leakage. Unfortunately, increasing the storage time by the use of larger capacitive

to be the time to reach 99% of the final value.

Brandon D. Rumberg Appendix B. Memory Buffers 186

Wake Up
Circuit/
Event

Detection

Sensor

Analog
Memory
Buffer

WSN
Mote

(a)

{vk, tk}

vk

tk-tk-1

Time
Memory

Timer
tk

Max/Min Locator
Max/Min
Memory

Input
v1

v3
v4
v2

t1 t4t2 t3
(b)

Figure B.1: (a) To avoid the data loss normally associated with sleep states, a low-power
memory buffer may be added in parallel with the front-end wake-up detector. This memory
system records data from the sensor while the sensor node, or “mote,” is allowed to remain in
a sleep state, thus providing access to the event onset without sacrificing the energy savings
from the sleep state. (b) Our analog memory buffer locates the local maxima and minima
in real time and stores their respective amplitudes and times separately.

storage elements or by the use of active leakage reduction comes with a high cost of area or
power, respectively. A digital memory buffer may be a better option.

The power of a digital memory buffer system includes an ADC, an impedance buffer to
drive the input of the ADC, an SRAM (static random access memory) array, and a state
machine to control writing the data to memory. To study the feasibility of a digital memory
buffer, we use the power specifications of low-power, off-the-shelf parts. We do not include
the power of the state machine that interfaces the ADC with the SRAM: when all parts of
the memory system are integrated together, the state machine will consume much less power
than the SRAM, because the state machine will have fewer transistors and shorter busses.

The following table summarizes the power consumption of the components.

Component Part # Standby Active Current Active Time
ADC AD7467 Is,adc=100nA Ia,adc=186µA T=4.7µs
SRAM 23A640 Is,sram=200nA Ia,sram=6mA T=4.7µs
Imp. buffer MCP6041 n/a Ibuff=600nA n/a

The common supply voltage is Vdd=1.8V. The total power of the memory system is

Pmem = Vdd [Ibuff + Is,adc + Is,sram + Tfs,avg (Ia,adc + Ia,sram)] (B.1)

Brandon D. Rumberg Appendix B. Memory Buffers 187

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1.1

1.2

1.3

1.4

1.5

1.6

1.7

Time (s)

V
o
lt
a

g
e

(V
)

Reconstructed Speech

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1.1

1.2

1.3

1.4

1.5

1.6

1.7

Time (s)

V
o
lt
a

g
e

(V
)

Speech Signal

(a)

(b)

Figure B.2: Adaptive sampling experiment. (a) A speech waveform, shown in gray, is used
as the input to the system. The maxima and minima that were detected by the system are
shown in black dots. (b) The speech waveform that was reconstructed using the maxima
and minima.

where fs,avg is the average sampling frequency. Based on the experiment in Fig. B.2, we
will assume fs,avg to be 652-samples / 1.68-seconds. The resulting power is Pmem=21.9µW,
which is nearly low enough to be acceptable. Approximately half of the power is attributed
to the dynamic power of the SRAM array. This dynamic power may be reduced by using a
smaller memory array (64kb enables 16.5-seconds of sampling, much more than necessary)
and by further increasing the level of compression.

In conclusion, buffering schemes are feasible. The worst-case power consumption, 21.9µW,
is less than the power of a sleeping mote. This low power consumption is primarily a result of
the adaptive sampler’s compression, without which the power consumption would be 326µW

Brandon D. Rumberg Appendix B. Memory Buffers 188

5 6 7 8 9 10 11 12
10

2

10
3

Bits of Precision

W
id

th
/L

e
n

g
th

 o
f

M
e

m
o

ry
 A

rr
a

y
 (

µm
)

SRAM: Us

SRAM:
State-of-the-art

S/H
: 1

.8V, 1
0-sec

S/H
: 3

V, 1
0-sec

S/H
: 1

.8V, 1
-sec

S/H
: 3

V, 1
-sec

Figure B.3: Size requirements of SRAM memory versus sample-and-hold (S/H) memory. We
assume a 0.35µm process. Size is given for a 400-sample memory array. The y-axis shows
the width/length (in microns) of a square array.

for the ADC-SRAM implementation, and the number of samples would be too unwieldy to
even attempt a sample-and-hold array.

It should be noted that, as a result of the system’s adaptive sampling rate, the power
consumption and memory requirements will depend upon the signal content. Thus, appli-
cations that encounter persistent high-frequency content (either in the signal or background
noise) will benefit little from this current implementation of adaptive sampling. Such applica-
tions will require processing to obtain a more sparse signal representation prior to adaptive-
sampling. Indeed, most applications will benefit from such processing, which will further
reduce the number of sampling operations.

Similar to how a digital circuit has an optimal energy-throughput operating point (which
is obtained by balancing the standby power with the active power) [234], the memory sys-
tem’s standby power and active power can be balanced by reducing the average sampling
frequency to 31Hz (yielding a total power of 3.24µW). The optimal sampling frequency will
ultimately depend upon the ADC-memory system, but the idea of a minimal energy sam-
pling frequency should provide designers with a starting point for trading between the energy
that is consumed and the lossyness of the compression routine.

In addition to power consumption, area is a major concern for the memory system. The
size of an SRAM cell is limited by the pitch of the process. We will assume a 0.35µm process,
since that is the process that we are currently using. The cell size in our previously developed
SRAM-based switch matrix is Asram,cell=160µm2. This is a very conservative size since the
switch cell contains extra transistors and also because analog signal routing was given more
than the minimum spacing. In contrast, the cell size of a state-of-the-art 0.35µm SRAM cell

Brandon D. Rumberg Appendix B. Memory Buffers 189

is approximately Asram,cell=30µm2 [235]. The size of an SRAM array scales as follows

Asram,array = Asram,cellNB (B.2)

where N is the number of samples and B is the wordlength of the samples. The red traces
in Fig. B.3 show how the size of an N=400 SRAM array scales with the wordlength.

The size of a sample-and-hold (S/H) cell depends primarily on the sampling capacitor
value that is required to maintain the necessary precision. The precision is compromised
by thermal noise and by leakage. For storage times greater approximately 10ms, error due
to leakage dominates the error due to thermal noise. Assuming that the capacitor area
dominates the cell size, the area of the S/H array will be

As/h,array =
N

β
C =

N

β

IleakT2B

Vdd
(B.3)

where β=890 aF
µm2 is the capacitance-per-area, Ileak=1fA is the leakage current for a low-

leakage passive S/H cell [236], T is the hold duration, and Vdd is both the supply voltage
and the full-scale sampling voltage range. The memory array sizes for SRAM and S/H are
compared in Fig. B.3, for different values of Vdd and T . For short-duration and low-precision,
the S/H implementation appears to offer a smaller array size; however, for this situation the
capacitor size is ≈100fF, at which point the assumption that the capacitor dominates the
cell size is not valid. So for most realistic applications, SRAM will result in a smaller array
implementation, even in a large 0.35µm process.

In summary, sleep mode buffering is feasible, and with an appropriate level of compression
should add little to the quiescent power consumption. We have seen that compression is
necessary to keep the power consumption low. However, compression may present some
obstacles in certain applications. First, the “adaptive sampling rate” form of compression
may be inappropriate for some applications. Second, the cost of reconstructing the signal
should be low enough that the signal can be reconstructed by the sensor nodes. These
obstacles will require further work.

190

Appendix C

Analysis of the OTA-Based
Capacitively-Coupled Current
Conveyor

C.1 Derivations for an OTA-based C4

What follows is a derivation of the equations describing the OTA-based C4 from Chapter
4. This analysis is based upon the analysis for transistor-based C4 [237]. In an OTA-based
C4, OTA’s replace the source follower and common-source amplifier in the transistor-based
C4. In the following sections, we will derive the transfer function, time constants, Qmax, and
the relationship between Qmax and the transconductances and capacitances.

C.1.1 Transfer Function

First we equate currents at nodes Va and Vout. At node Va we have

sC1 (Va − Vin) + sCWVa + sC2 (Va − Vout) = Gm2 (Vout − Va) (C.1)

Va (s (C1 + C2 + CW) +Gm2)− sC1Vin = Vout (Gm2 + sC2) (C.2)

C2

Vin Vout

C1

CW CL

Va

Gm1

Gm2

Figure C.1: Schematic of the OTA-C4 for transfer-function derivation.

Brandon D. Rumberg Appendix C. C4 Analysis 191

and at node Vout we have

sCLVout + sC2(Vout − Va) = −Gm1Va (C.3)

Vout(sCL + sC2) = Va(sC2 −Gm1) (C.4)

Combining equations C.2 and C.4 we get

Vout

(
s (CL + C2) (s (C1 + C2 + CW) +Gm2)

sC2 −Gm1

−Gm2 + sC2

)
= sC1Vin (C.5)

We define CT and CO as

CT = C1 + C2 + CW

CO = C2 + CL

Simplifying equation C.5 yields

Vout
Vin

=
s C1

Gm2

(
s C2

Gm1
− 1
)

s2COCT−C2
2

Gm1Gm2
+ s

(
CL
Gm1

+ C2

Gm2

)
+ 1

(C.6)

The transfer function of a generic bandpass SOS is

H(s) = Av

τ
Q
s

τ 2s2 + τ
Q
s+ 1

For the OTA-based C4

τ 2 =
COCT − C2

2

Gm1Gm2

(C.7)

τ

Q
=

CL
Gm1

+
C2

Gm2

(C.8)

Solving for Q produces

Q =
τ

CL
Gm1

+ C2

Gm2

(C.9)

=

√
COCT − C2

2

CL

√
Gm2

Gm1
+ C2

√
Gm1

Gm2

(C.10)

And the passband gain Av is

numerator = −s C1

Gm2

(
1− s C2

Gm2

)
(C.11)

Av
τ

Q
= − C1

Gm2

(C.12)

Av = − C1

Gm2

Q

τ
(C.13)

= −C1

C2

1

1 + CL
C2

Gm2

Gm1

(C.14)

Brandon D. Rumberg Appendix C. C4 Analysis 192

C2

Vin Vout

C1

CW CL

Va

Gm1

Figure C.2: Schematic of the OTA-C4 for transfer-function derivation at high frequencies.

C.1.2 C4 at High Frequencies

Now let’s consider the C4 at high frequencies. At node Vout

sCLVout + sC2 (Vout − Va) = −Gm1Va (C.15)

sCOVout = Va (sC2 −Gm1) (C.16)

and at node Va

sC1 (Va − Vin) + sCWVa + sC2 (Va − Vout) = 0 (C.17)

VaCT = C1Vin + C2Vout (C.18)

Combining gives

sCOVout
sC2 −Gm1

CT = C1Vin + C2Vout (C.19)

Vout

(
sCOCT − C2 (sC2 −Gm1)

sC2 −Gm1

)
= C1Vin (C.20)

Vout
Vin

= C1
sC2 −Gm1

s
(
COCT − C2

2
)

+ C2Gm1

(C.21)

= −C1

C2

1− s C2

Gm1

1 + sCOCT−C2
2

C2Gm1

(C.22)

= −C1

C2

1− sτf
1 + sτh

(C.23)

where

τf =
C2

Gm1

(C.24)

τh =
COCT − C2

2

C2Gm1

(C.25)

Brandon D. Rumberg Appendix C. C4 Analysis 193

C2

Vin Vout

C1

CW CL

-A
Va

Gm2

Figure C.3: Schematic for transfer-function derivation at low frequencies

C.1.3 C4 at Low Frequencies

Now let’s consider the C4 at low frequencies. At node Va

sC1Vin + sC2Vout = −Gm2Vout (C.26)

Vout

(
sC2

Gm2

+ 1

)
= −s C1

Gm2

Vin (C.27)

Vout
Vin

= −
s C1

Gm2

1 + s C2

Gm2

(C.28)

= −C1

C2

s C2

Gm2

1 + s C2

Gm2

(C.29)

= −C1

C2

sτl
1 + sτl

(C.30)

where

τl =
C2

Gm2

(C.31)

C.1.4 Capacitive Feedthrough

During normal operation we want to keep the corner caused by the capacitive feedthrough
time-constant τf at a much higher frequency than the low-pass corner caused by τh.

τf � τh (C.32)

C2

Gm1

� COCT − C2
2

C2Gm1

(C.33)

2C2
2 � COCT (C.34)

2C2
2 � (C2 + CL) (C1 + C2 + CW) (C.35)

If all capacitors are equal
2C2 � 6C2 (C.36)

Brandon D. Rumberg Appendix C. C4 Analysis 194

C.1.5 Solving for Qmax

Now let’s find the maximum Q value.

Q =

√
CTCO − C2

2

CL

√
Gm2

Gm1
+ C2

√
Gm1

Gm2

√
Gm2

Gm1√
Gm2

Gm1

(C.37)

=

√
Gm2

Gm1

√
CTCO − C2

2

C2
2

1
CL
C2

Gm2

Gm1
+ 1

(C.38)

Let

b =
Gm2

Gm1

(C.39)

a =
CL
C2

(C.40)

d =

√
CTCO − C2

2

C2
2 (C.41)

Q =
√
bd

1

ab+ 1
(C.42)

=

√
bd

1 + ab
(C.43)

= db1/2 (1 + ab)−1 (C.44)

Take the derivative

dQ

db
=

1

2
db−1/2 (1 + ab)−1 + db1/2

(
−a (1 + ab)−2

)
(C.45)

=
1
2
d
√
b

1− ab
(1 + ab)2

(C.46)

This equals zero when 1− ab = 0, which is when b = 1
a

meaning Qmax occurs when

C2

CL
=
Gm2

Gm1

(C.47)

Qmax =

√
1

a

d

1 + a 1
a

(C.48)

=
d

2
√
a

(C.49)

=
1

2

√
CTCO − C2

2

CLC2

(C.50)

Brandon D. Rumberg Appendix C. C4 Analysis 195

The gain at Qmax is

Av = −C1

C2

1

1 + a 1
a

(C.51)

= − C1

2C2

(C.52)

Qmax =
1

2

√
CTCO − C2

2

CLC2

(C.53)

(2Qmax)
2 =

CTCO − C2
2

CLC2

(C.54)

Let X = (2Qmax)
2

XC2CL = CTCO − C2
2 (C.55)

CTCO = C2 (XCL + C2) (C.56)

= XC2CO + C2
2 (1−X) (C.57)

CT = XC2 +
C2

2 (1−X)

CO
(C.58)

= C2

(
1 +

CL (X − 1)

C2 + CL

)
(C.59)

C1 + CW = C2

(
CL (X − 1)

C2 + CL
−
)

(C.60)

= C2

(
CL (X − 1)

C2 + CL

)
(C.61)

= (X − 1)
C2CL
C2 + CL

(C.62)

= (X − 1)C2||CL (C.63)

=
(
4Qmax

2 − 1
)
C2||CL (C.64)

C.2 OTA-C4 Noise Analysis

The OTA’s are the noise sources in an OTA-C4. We can determine the noise contribution
of each OTA by placing a noise source at the non-inverting terminal of that OTA, grounding
the input to the C4 and calculating the response at the output. Let’s start with a noise
source at the non-inverting terminal of the feed-forward OTA.

C.2.1 Noise Transfer Function for Gm1 Noise Source

At node Vout we have

sCOVout = Gm1v1n + Va (sC2 −Gm1) (C.65)

Brandon D. Rumberg Appendix C. C4 Analysis 196

C2

Vout

C1

CW CL

Va

Gm1

Gm2

σ2

σ2

Figure C.4: Schematic of the OTA-C4 for noise analysis.

and at node Va we have

Va (sCT +Gm2) = Vout (Gm2 + sC2) (C.66)

Combining equations C.65 and C.66 we have

Vout = v1n
s CT
Gm2

+ 1

s2COCT−C2
2

Gm1Gm2
+ s

(
CL
Gm1

+ C2

Gm2+1

)
+ 1

(C.67)

C.2.2 Noise Transfer Function for Gm2 Noise Source

Next we will look at the noise contribution for the feed-back OTA. Starting with node
Vout

sCOVout = Va (sC2 −Gm1) (C.68)

and at node Va
Vout (sC2 +Gm2) +Gm2i2n = (sCT +Gm2)Va (C.69)

Combining these equations we get

Vout = v2n
s C2

Gm1
− 1

s2CTCO−C2
2

Gm1Gm2
+ s

(
CL
Gm1

+ C2

Gm2

)
+ 1

(C.70)

Since C2

Gm1
= τf , and τf is far outside the passband, we can approximate

Vout ≈ v2n
1

s2CTCO−C2
2

Gm1Gm2
+ s

(
CL
Gm1

+ C2

Gm2

)
+ 1

(C.71)

Brandon D. Rumberg Appendix C. C4 Analysis 197

C.2.3 Integrated Noise

Now to combine and integrate the noise. The standard form for the equivalent noise
bandwidth of a bandpass filter is

∫ ∞
0

(
f
f0Q

)2
(

1−
(
f
f0

)2)2

+
(

f
f0Q

)2df =
π

2

f0
Q

(C.72)

also ∫ ∞
0

1(
1−

(
f
f0

)2)2

+
(

f
f0Q

)2df =
π

2
f0Q (C.73)

where

f0 =
1

2πτ

=
1

2π

√
Gm1Gm2

COCT − C2
2 (C.74)

Q =

√
COCT − C2

2

CL

√
Gm2

Gm1
+ C2

√
Gm1

Gm2

(C.75)

The full noise of the circuit is

V̂ 2
out =

∫ ∞
0

v1n
2(

1−
(
f
f0

)2)2

+
(

f
f0Q

)2df

+

∫ ∞
0

v1n
2Av1

2
(

f
f0Q

)2
(

1−
(
f
f0

)2)2

+
(

f
f0Q

)2df
+

∫ ∞
0

v2n
2(

1−
(
f
f0

)2)2

+
(

f
f0Q

)2df

+

∫ ∞
0

v2n
2Av2

2
(

f
f0Q

)2
(

1−
(
f
f0

)2)2

+
(

f
f0Q

)2df (C.76)

Brandon D. Rumberg Appendix C. C4 Analysis 198

where

Av1
τ

Q
=

CT
Gm2

(C.77)

Av1 =
CT
Gm2

Q

τ
(C.78)

=
CT
Gm2

Gm1Gm2

Gm2CL +Gm1C2

(C.79)

=
Gm1CT

Gm2CL +Gm1C2

(C.80)

Av2
τ

Q
=

C2

Gm1

(C.81)

Av2 =
C2

Gm1

Q

τ
(C.82)

=
C2

Gm1

Gm1Gm2

Gm2CL +Gm1C2

(C.83)

=
Gm2C2

Gm2CL +Gm1C2

(C.84)

f0Q =
1

2π

√
Gm1Gm2

COCT − C2
2

√
COCT − C2

2

CL

√
Gm2

Gm1
+ C2

√
Gm1

Gm2

(C.85)

=
1

2π

Gm1Gm2

CLGm2 + C2Gm1

(C.86)

f0
Q

=
1

2π

√
Gm1Gm2

COCT − C2
2

CL

√
Gm2

Gm1
+ C2

√
Gm1

Gm2√
COCT − C2

2
(C.87)

=
1

2π

CLGm2 + C2Gm1

COCT − C2
2 (C.88)

Using the integral results listed above

V̂ 2
out = v21n

π

2
f0Q+ v21nA

2
v1

π

2

f0
Q

+ v22n
π

2
f0Q+ v22nA

2
v2

π

2

f0
Q

(C.89)

= v21n
π

2

1

2π

Gm1Gm2

CLGm2 + C2Gm1

+v21n
π

2

(
Gm1CT

Gm2CL +Gm1C2

)2
1

2π

CLGm2 + C2Gm1

COCT − C2
2

+v22n
π

2

1

2π

Gm1Gm2

CLGm2 + C2Gm1

+v22n
π

2

(
Gm2C2

Gm2CL +Gm1C2

)2
1

2π

CLGm2 + C2Gm1

COCT − C2
2

(C.90)

Brandon D. Rumberg Appendix C. C4 Analysis 199

V̂ 2
out =

v21n
4

Gm1Gm2

CLGm2 + C2Gm1

+
v21n
4

C2
T

COCT − C2
2

G2
m1

Gm2CL +Gm1C2

+
v22n
4

Gm1Gm2

CLGm2 + C2Gm1

+
v22n
4

C2
2

COCT − C2
2

G2
m2

Gm2CL +Gm1C2

(C.91)

When Q = Qmax, Gm1 = Gm2
CL
C2

and Gm2 = Gm1
C2

CL
. This simplifies the above expression

to

V̂ 2
out =

v21n
4

Gm1

2CL
+
v21n
4

C2
T

COCT − C2
2

Gm1

2C2

+
v22n
4

Gm2

2C2

+
v22n
4

C2
2

COCT − C2
2

Gm2

2CL
(C.92)

Assuming that C2
T � C2

2 , this can be approximated as

V̂ 2
out =

v21n
4

Gm1

2CL
+
v21n
4

CTGm1

2C2CO
+
v22n
4

Gm2

2C2

+
v22n
4

Gm2C
2
2

2CTC2
L

(C.93)

The last term makes contributes very little in relation to the rest of the terms so it can be
neglected.

For an OTA the noise is

v2n =
NqV 2

L

Ib
=
NqIb
G2
m

=
NqVL
Gm

(C.94)

where N is the number of noise sources. We will assume that both OTA’s have the same
number of noise sources and linear range VL.

V̂ 2
out =

NqVL
8CL

+
NqVLCT
8C2CO

+
NqVL
8C2

(C.95)

Under normal operation, CL is very large so the first term can be neglected.

V̂ 2
out =

NqVL
8C2

(
CT
CO

+ 1

)
(C.96)

Q2
max =

1

4

CTCO − C2
2

CLC2

≈ 1

4

CTCO
CLC2

≈ 1

4

CT
C2

(C.97)

There are three cases to consider.

Case 1: CT
CO
� 1

V̂ 2
out ≈

NqVLCT
8C2CO

≈ NqVLQ
2
max

2CO
(C.98)

SNR = 10log10

(
VL√
2

)2
V̂ 2
out

 = 10log10

(
VLCO
NqQ2

max

)
(C.99)

Brandon D. Rumberg Appendix C. C4 Analysis 200

Case 2: CT
CO

= 1

V̂ 2
out ≈

NqVL
4C2

(C.100)

SNR = 10log10

(
2VLC2

Nq

)
(C.101)

Case 3: CT
CO
� 1

V̂ 2
out ≈

NqVL
8C2

≈ NqVLQ
2
max

2CT
(C.102)

SNR = 10log10

(
VLCT
NqQ2

max

)
(C.103)

201

Appendix D

Analysis of the Peak Detector

In Chapter 5, which described our magnitude detector circuit, we described the analysis
of the circuit in broad terms. In this Appendix, we provide the full analysis of the peak
detector.

The steady-state operating parameters of the peak detector are the tracking level (At)
and the ripple (RO). To bias the circuit, the tunable parameters (i.e. the transconductances
Gm,A and Gm,D) are set such that the desired operating characteristics are achieved. Thus,
biasing requires knowledge of how the operating parameters (At and RO) depend upon the
tunable parameters (Gm,A and Gm,D). As such, we have analyzed the peak detector to obtain
these relations.

D.1 Problem Setup

Vin + f(e)
e u

Nonlinearity

1/sC Vout

-

Linear
Integration

Vin

Vout

CPD

M2M1

M3M4

Gm,A

Gm,D

Nonlinearity

Linear
Integration

(a) (b)

Figure D.1: (a) Peak detector circuit. (b) First-order nonlinear model of the peak detector
circuit.

The peak detector has a lowpass form and can be modeled by the system in Fig. D.1,

Brandon D. Rumberg Appendix D. Magnitude Detector Analysis 202

where the nonlinearity is the piecewise-linear asymmetry formed by the OTAs and current
mirrors. The nonlinearity can be written in terms of the transconductances

f(e) =

{
Gm,ae, e > 0
Gm,de, else

(D.1)

As an aside, note that (D.1) can be written as

f(e) =
Gm,a +Gm,d

2
e+

Gm,a −Gm,d

2
|e| (D.2)

The rectifying nature of the system can be observed from the second term.
The harmonic balance method will be used to analyze the system’s steady-state response

to a sinusoidal input. Using this method, we will obtain approximate analytical expressions
for the dc (i.e. tracking level) and fundamental (i.e. ripple) frequency components. These
expressions are approximate because the harmonics created by the nonlinearity are ignored.
However, this approximation is justifiable because the circuit has lowpass characteristics
and is biased such that the harmonics (as well as the fundamental) are heavily suppressed.
Furthermore, our experimental results in Fig. 5.4 show excellent agreement with the derived
expressions.

D.1.1 Input/Output Definitions

The input to the system is a sine wave

Vin = Vin,pk sin(ωt) (D.3)

Within the intended application of spectral analysis, the peak detector will receive its input
from narrow-band filters. Thus, the peak detector input will be sine-like, and so performing
the analysis only for sine waves is sufficient.

For the harmonic balance method, we specify the form of the output based on the number
of frequency components that are expected. Since the peak detector has a lowpass form, the
harmonics that are created by the nonlinearity can be ignored. Thus, we write the output
as

Vout = Vout,pk sin(ωt+ φ) + Vout,dc (D.4)

Vout,dc is the magnitude estimate, which should change in proportion to Vin,pk. The sine term
is the ripple, which is suppressed by the second stage of the magnitude detector.

By defining the circuit’s operating parameters as the tracking level

At =
Vout,dc
Vin,pk

(D.5)

and the ripple proportion

RO =
Vout,pk
Vin,pk

(D.6)

we can rewrite the output in terms of those operating parameters

Vout = Vin,pk [RO sin(ωt+ φ) + At] (D.7)

A graphical illustration of these parameters is shown in Fig. D.2.

Brandon D. Rumberg Appendix D. Magnitude Detector Analysis 203

AtVin,pk

ROVin,pk

Vin,pk

Figure D.2: Illustration of the input/output definitions.

D.2 Solving the Loop

D.2.1 Node e

We begin prior to the nonlinearity, at node e. Combining (D.3) and (D.7), the signal at
node e can be written

e = Vin − Vout = Vin,pk [sin(ωt)−RO sin(ωt+ φ)− At] (D.8)

The sinusoids can be combined using the trig identity

a sinx+ b sin(x+ α) =
√
a2 + b2 + 2ab cosα sin (x+ γ) (D.9)

where

γ = tan−1
(

b sinα

a+ b cosα

)
+

{
0, a > 0
π, else

(D.10)

Using (D.9), (D.8) simplifies to

e = Vin,pk [Re sin(ωt+ γ)− At] (D.11)

where

Re =
√

1 +R2
O −RO cosφ (D.12)

To further simplify, we will define θ = ωt+ γ and write (D.11) as

e = Vin,pk [Re sin θ − At] (D.13)

Brandon D. Rumberg Appendix D. Magnitude Detector Analysis 204

D.2.2 Node u

The signal at node u can be obtained by inserting (D.13) into (D.1)

u = f(e) =

{
Gm,aVin,pk [Re sin θ − At] , θ > sin−1

(
At
Re

)
Gm,dVin,pk [Re sin θ − At] , else

(D.14)

Given the form for the output in (D.7), node u can be approximated by its first two Fourier
components

u = U0 + U1 sin(θ) (D.15)

where

U0 =
1

π

∫ π
2

−π
2

u(θ)dθ (D.16)

and

U1 =
1

π

∫ π
2

−π
2

u(θ) sin θdθ (D.17)

The nonlinearity does not present a delay, so a single in-phase component is sufficient.

D.2.2.1 Solving for DC at Node u

To solve for the dc component at node u, insert (D.14) into (D.16) to obtain

U0 =
Gm,dVin,pk

π

∫ sin−1(AtRe)

−π
2

[Re sin θ − At] dθ +
Gm,aVin,pk

π

∫ π
2

sin−1(AtRe)
[Re sin θ − At] dθ

(D.18)

=
Gm,dVin,pk

π
[−Re cos θ − Atθ]

sin−1(AtRe)
−π

2
+
Gm,aVin,pk

π
[−Re cos θ − Atθ]

π
2

sin−1(AtRe)
(D.19)

Using the identity
cos
(
sin−1(x)

)
=
√

1− x2 (D.20)

and grouping terms, we obtain

U0 =
(Gm,A −Gm,D)Vin,pk

π

(
Re

√
1− A2

t

R2
e

+ At sin−1
(
At
Re

))
− (Gm,a +Gm,d)Vin,pkAtπ

2

(D.21)

D.2.2.2 Solving for the Fundamental at Node u

To solve for the fundamental component at node u, insert (D.14) into (D.17) to obtain

U1 =
Gm,dVin,pk

π

∫ sin−1(AtRe)

−π
2

[Re sin θ − At] sin θdθ+
Gm,aVin,pk

π

∫ π
2

sin−1(AtRe)
[Re sin θ − At] sin θdθ

(D.22)

Brandon D. Rumberg Appendix D. Magnitude Detector Analysis 205

Looking at just the integral, we obtain∫ θ2

θ1

[Re sin θ − At] sin θdθ =

∫ θ2

θ1

[
Re

2
− Re

2
cos(2θ)− At sin θ

]
dθ (D.23)

=

[
Re

2
θ − Re

4
sin (2θ) + At cos θ

]θ2
θ1

(D.24)

Inserting (D.24) into (D.22) and grouping terms yields

U1 =
(Gm,A +Gm,D)ReVin,pk

4
− (Gm,A −Gm,D)Vin,pk

π

[
At cos

(
sin−1

(
At
Re

))
− Re

4
sin

(
2 sin−1

(
At
Re

))
+
Re

2
sin−1

(
At
Re

)]
(D.25)

Using the identity in (D.20) as well as the following identity

sin
(
2 sin−1 (x)

)
= 2x

√
1− x2 (D.26)

we can simplify (D.25) to

U1 =
(Gm,A +Gm,D)ReVin,pk

4
− (Gm,A −Gm,D)Vin,pk

π

[
At
2

√
1− A2

t

R2
e

+
Re

2
sin−1

(
At
Re

)]
(D.27)

D.2.3 Node Vout

The output is related to node u as

Vout =
u

sC
(D.28)

Equating the frequency components in (D.7) and (D.15) yields

Vout,dc = Vin,pkAt =
U0

|sC|
(D.29)

at dc and

Vout,pk = Vin,pkRO =
U1

|sC|
(D.30)

at the fundamental frequency.

D.3 Balancing the Terms

We can now obtain the analytical expressions that relate the operating parameters At
and RO to the tuning parameters Gm,A and Gm,D.

Brandon D. Rumberg Appendix D. Magnitude Detector Analysis 206

D.3.1 Tracking Level

To solve the loop at dc, we write (D.29) as

U0 = |sC|Vout,dc (D.31)

Since this is dc, s=0 and therefore U0=0. Setting (D.27) to zero

0 = (Gm,A−Gm,D)
Vin,pk
π

(
Re

√
1− A2

t

R2
e

+ At sin−1
(
At
Re

))
−(Gm,A+Gm,D)

Vin,pkAt
2

(D.32)

and dividing through by
Vin,pkAt

2

0 = (Gm,A −Gm,D)
2

π

(
Re

At

√
1− A2

t

R2
e

+ sin−1
(
At
Re

))
− (Gm,A +Gm,D) (D.33)

For the moment, let us define

L =
2

π

(
Re

At

√
1− A2

t

R2
e

+ sin−1
(
At
Re

))
(D.34)

Now a few manipulations

0 = (Gm,A −Gm,D)L− (Gm,A +Gm,D) (D.35)

0 = Gm,A(L− 1)−Gm,D(L+ 1) (D.36)

Gm,A(L− 1) = Gm,D(L+ 1) (D.37)

Gm,A

Gm,D

= −1 + L

1− L
=
L+ 1

L− 1
(D.38)

Take the log of both sides and multiply by 1
2

1

2
ln

(
Gm,A

Gm,D

)
=

1

2
ln

(
L+ 1

L− 1

)
(D.39)

and use the hyperbolic function identity

coth−1(x) =
1

2
ln

(
x+ 1

x− 1

)
(D.40)

to obtain
1

2
ln

(
Gm,A

Gm,D

)
= coth−1(L) (D.41)

Now reinsert (D.34) to obtain the final equation

1

2
log

(
Gm,A

Gm,D

)
= coth−1

(
2

π

(
Re

At

√
1− A2

t

R2
e

+ sin−1
(
At
Re

)))
(D.42)

Brandon D. Rumberg Appendix D. Magnitude Detector Analysis 207

D.4 Ripple

From (D.30), we can relate U1 to the ripple as

RO =
Vout,pk
Vin,pk

=
U1

|sC|
1

Vin,pk
(D.43)

ωCRO =
U1

Vin,pk
(D.44)

Inserting U1 yields

ωCRO =
(Gm,A +Gm,D)Re

4
− Gm,A −Gm,D

π

[
At
2

√
1− A2

t

R2
e

+
Re

2
sin−1

(
At
Re

)]
(D.45)

Defining Rg =
Gm,A
Gm,D

and dividing through by Gm,D

ROωC

Gm,D

=
(Rg + 1)Re

4
− Rg − 1

π

[
At
2

√
1− A2

t

R2
e

+
Re

2
sin−1

(
At
Re

)]
(D.46)

Dividing by Re

ROωC

ReGm,D

=
Rg + 1

4
+

1−Rg

π

[
At
Re2

√
1− A2

t

R2
e

+
1

2
sin−1

(
At
Re

)]
(D.47)

ωCPDRO

Gm,DRe

=
Rg + 1

2
+

1−Rg

π
sin−1

(
At
Re

)
+

1−Rg

π

At
Re

√
1− A2

t

R2
e

(D.48)

D.5 Conclusions

We have derived two equations—(D.42) and (D.48)—which enable us to purposefully
bias the peak detector circuit. The biasing procedure is described in Section 5.3.3. These
equations describe the steady-state characteristics of an asymmetric integrator in response
to a sinusoidal input. Asymmetric integration is relevant in other areas, such as in neuronal
dynamics, and so this analysis may be of broader interest than for peak detectors.

	Low-Power and Programmable Analog Circuitry for Wireless Sensors
	Recommended Citation

	tmp.1568233084.pdf.axC_z

