625 research outputs found

    Intelligent power system operation in an uncertain environment

    Get PDF
    This dissertation presents some challenging problems in power system operations. The efficacy of a heuristic method, namely, modified discrete particle swarm optimization (MDPSO) algorithm is illustrated and compared with other methods by solving the reliability based generator maintenance scheduling (GMS) optimization problem of a practical hydrothermal power system. The concept of multiple swarms is incorporated into the MDPSO algorithm to form a robust multiple swarms-modified particle swarm optimization (MS-MDPSO) algorithm and applied to solving the GMS problem on two power systems. Heuristic methods are proposed to circumvent the problems of imposed non-smooth assumptions common with the classical approaches in solving the challenging dynamic economic dispatch problem. The multi-objective combined economic and emission dispatch (MO-CEED) optimization problem for a wind-hydrothermal power system is formulated and solved in this dissertation. This MO-CEED problem formulation becomes a challenging problem because of the presence of uncertainty in wind power. A family of distributed optimal Pareto fronts for the MO-CEED problem has been generated for different scenarios of capacity credit of wind power. A real-time (RT) network stability index is formulated for determining a power system\u27s ability to continue to provide service (electric energy) in a RT manner in case of an unforeseen catastrophic contingency. Cascading stages of fuzzy inference system is applied to combine non real-time (NRT) and RT power system assessments. NRT analysis involves eigenvalue and transient energy analysis. RT analysis involves angle, voltage and frequency stability indices. RT Network status index is implemented in real-time on a practical power system --Abstract, page iv

    Uncertainty evaluation of reservoir simulation models using particle swarms and hierarchical clustering

    Get PDF
    History matching production data in finite difference reservoir simulation models has been and always will be a challenge for the industry. The principal hurdles that need to be overcome are finding a match in the first place and more importantly a set of matches that can capture the uncertainty range of the simulation model and to do this in as short a time as possible since the bottleneck in this process is the length of time taken to run the model. This study looks at the implementation of Particle Swarm Optimisation (PSO) in history matching finite difference simulation models. Particle Swarms are a class of evolutionary algorithms that have shown much promise over the last decade. This method draws parallels from the social interaction of swarms of bees, flocks of birds and shoals of fish. Essentially a swarm of agents are allowed to search the solution hyperspace keeping in memory each individual’s historical best position and iteratively improving the optimisation by the emergent interaction of the swarm. An intrinsic feature of PSO is its local search capability. A sequential niching variation of the PSO has been developed viz. Flexi-PSO that enhances the exploration and exploitation of the hyperspace and is capable of finding multiple minima. This new variation has been applied to history matching synthetic reservoir simulation models to find multiple distinct history 3 matches to try to capture the uncertainty range. Hierarchical clustering is then used to post-process the history match runs to reduce the size of the ensemble carried forward for prediction. The success of the uncertainty modelling exercise is then assessed by checking whether the production profile forecasts generated by the ensemble covers the truth case

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Communication Free Robot Swarming

    Get PDF
    As the military use of unmanned aerial vehicles increases, a growing need for novel strategies to control these systems exists. One such method for controlling many unmanned aerial vehicles simultaneously is the through the use of swarm algorithms. This research explores a swarm robotic algorithm developed by Kadrovach implemented on Pioneer Robots in a real-world environment. An adaptation of his visual sensor is implemented using stereo vision as the primary method of sensing the environment. The swarm members are prohibited from explicitly communicating other than passively through the environment. The resulting implementation produces a communication free swarming algorithm. The algorithm is tested for performance of the visual sensor, performance of the algorithm against stationary targets, and finally, performance against dynamic targets. The results show expected behavior of the swarm model as implemented on the Pioneer robots providing a foundation for future research in swarm algorithms

    Simple and Adaptive Particle Swarms

    Get PDF
    The substantial advances that have been made to both the theoretical and practical aspects of particle swarm optimization over the past 10 years have taken it far beyond its original intent as a biological swarm simulation. This thesis details and explains these advances in the context of what has been achieved to this point, as well as what has yet to be understood or solidified within the research community. Taking into account the state of the modern field, a standardized PSO algorithm is defined for benchmarking and comparative purposes both within the work, and for the community as a whole. This standard is refined and simplified over several iterations into a form that does away with potentially undesirable properties of the standard algorithm while retaining equivalent or superior performance on the common set of benchmarks. This refinement, referred to as a discrete recombinant swarm (PSODRS) requires only a single user-defined parameter in the positional update equation, and uses minimal additive stochasticity, rather than the multiplicative stochasticity inherent in the standard PSO. After a mathematical analysis of the PSO-DRS algorithm, an adaptive framework is developed and rigorously tested, demonstrating the effects of the tunable particle- and swarm-level parameters. This adaptability shows practical benefit by broadening the range of problems which the PSO-DRS algorithm is wellsuited to optimize

    A review of artificial intelligence applied to path planning in UAV swarms

    Get PDF
    This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/ s00521-021-06569-4This is the accepted version of: A. Puente-Castro, D. Rivero, A. Pazos, and E. Fernández-Blanco, "A review of artificial intelligence applied to path planning in UAV swarms", Neural Computing and Applications, vol. 34, pp. 153–170, 2022. https://doi.org/10.1007/s00521-021-06569-4[Abstract]: Path Planning problems with Unmanned Aerial Vehicles (UAVs) are among the most studied knowledge areas in the related literature. However, few of them have been applied to groups of UAVs. The use of swarms allows to speed up the flight time and, thus, reducing the operational costs. When combined with Artificial Intelligence (AI) algorithms, a single system or operator can control all aircraft while optimal paths for each one can be computed. In order to introduce the current situation of these AI-based systems, a review of the most novel and relevant articles was carried out. This review was performed in two steps: first, a summary of the found articles; second, a quantitative analysis of the publications found based on different factors, such as the temporal evolution or the number of articles found based on different criteria. Therefore, this review provides not only a summary of the most recent work but it gives an overview of the trend in the use of AI algorithms in UAV swarms for Path Planning problems. The AI techniques of the articles found can be separated into four main groups based on their technique: reinforcement Learning techniques, Evolutive Computing techniques, Swarm Intelligence techniques, and, Graph Neural Networks. The final results show an increase in publications in recent years and that there is a change in the predominance of the most widely used techniques.This work is supported by Instituto de Salud Carlos III, grant number PI17/01826 (Collaborative Project in Genomic Data Integration (CICLOGEN) funded by the Instituto de Salud Carlos III from the Spanish National plan for Scientific and Technical Research and Innovation 2013–2016 and the European Regional Development Funds (FEDER)—“A way to build Europe.”. This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia ED431D 2017/16 and “Drug Discovery Galician Network” Ref. ED431G/01 and the “Galician Network for Colorectal Cancer Research” (Ref. ED431D 2017/23). This work was also funded by the grant for the consolidation and structuring of competitive research units (ED431C 2018/49) from the General Directorate of Culture, Education and University Management of Xunta de Galicia, and the CYTED network (PCI2018_093284) funded by the Spanish Ministry of Ministry of Innovation and Science. This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia “PRACTICUM DIRECT” Ref. IN845D-2020/03.Xunta de Galicia; ED431D 2017/16Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/23Xunta de Galicia; ED431C 2018/49Xunta de Galicia; IN845D-2020/0

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    Multi-Objective UAV Mission Planning Using Evolutionary Computation

    Get PDF
    This investigation purports to develop a new model for multiple autonomous aircraft mission routing. Previous research both related and unrelated to this endeavor have used classic combinatoric problems as models for Unmanned Aerial Vehicle (UAV) routing and mission planning. This document presents the concept of the Swarm Routing Problem (SRP) as a new combinatorics problem for use in modeling UAV swarm routing, developed as a variant of the Vehicle Routing Problem with Time Windows (VRPTW). The SRP removes the single vehicle per target restraint and changes the customer satisfaction requirement to one of vehicle on location volume. The impact of these alterations changes the vehicle definitions within the problem model from discrete units to cooperative members within a swarm. This represents a more realistic model for multi-agent routing as a real world mission plan would require the use of all airborne assets across multiple targets, without constraining a single vehicle to a single target. Solutions to the SRP problem model result in route assignments per vehicle that successfully track to all targets, on time, within distance constraints. A complexity analysis and multi-objective formulation of the VRPTW indicates the necessity of a stochastic solution approach leading to the development of a multi-objective evolutionary algorithm. This algorithm design is implemented using C++ and an evolutionary algorithm library called Open Beagle. Benchmark problems applied to the VRPTW show the usefulness of this solution approach. A full problem definition of the SRP as well as a multi-objective formulation parallels that of the VRPTW method. Benchmark problems for the VRPTW are modified in order to create SRP benchmarks. These solutions show the SRP solution is comparable or better than the same VRPTW solutions, while also representing a more realistic UAV swarm routing solution
    corecore