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ABSTRACT 

  

 This dissertation presents some challenging problems in power system operations. 

The efficacy of a heuristic method, namely, modified discrete particle swarm 

optimization (MDPSO) algorithm is illustrated and compared with other methods by 

solving the reliability based generator maintenance scheduling (GMS) optimization 

problem of a practical hydrothermal power system. The concept of multiple swarms is 

incorporated into the MDPSO algorithm to form a robust multiple swarms-modified 

particle swarm optimization (MS-MDPSO) algorithm and applied to solving the GMS 

problem on two power systems. Heuristic methods are proposed to circumvent the 

problems of imposed non-smooth assumptions common with the classical approaches in 

solving the challenging dynamic economic dispatch problem. The multi-objective 

combined economic and emission dispatch (MO-CEED) optimization problem for a 

wind-hydrothermal power system is formulated and solved in this dissertation. This MO-

CEED problem formulation becomes a challenging problem because of the presence of 

uncertainty in wind power. A family of distributed optimal Pareto fronts for the MO-

CEED problem has been generated for different scenarios of capacity credit of wind 

power. A real-time (RT) network stability index is formulated for determining a power 

system‘s ability to continue to provide service (electric energy) in a RT manner in case of 

an unforeseen catastrophic contingency. Cascading stages of fuzzy inference system is 

applied to combine non real-time (NRT) and RT power system assessments. NRT 

analysis involves eigenvalue and transient energy analysis. RT analysis involves angle, 

voltage and frequency stability indices. RT Network status index is implemented in real-

time on a practical power system. 
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SECTION 

1. INTRODUCTION 

 

1.1. OVERVIEW 

An overview of issues addressed in this dissertation leading towards obtaining a 

secured power system operation is shown in Fig. 1.1. The benefits resulting from 

addressing these issues for a modern power system (consisting of thermal, hydro and 

wind generation sources) include: 

 Secured maintenance schedules and generation dispatch. 

 Feasible maintenance schedules and dispatch for practical implementation. 

 Increased power system efficiency and reliability. 

 Optimal power system operation. 

 Efficient dynamic optimization. 

 Better power quality and reduction in transmission line losses. 

 Saving in fuel cost needed for power system operation. 

 Emission reduction. 

 

1.2. POWER SYSTEM MAINTENANCE 

The purpose of maintenance is to extend equipment lifetime, or at least the mean 

time to the next failure whose repair may be costly. It is expected that effective 

maintenance policies can reduce the frequency of service interruptions and the many 

undesirable consequences of such interruptions. Maintenance clearly affects components 

and system reliability: if too little is done, this may result in an excessive number of 

costly failures and poor system performance, and hence reliability is degraded, when 

done too often, reliability may improve but the cost of maintenance will sharply increase. 

In a cost-effective scheme, the two expenditures must be balanced.  Maintenance is just 

one of the tools for ensuring satisfactory component and system reliability, others include 

system capacity, reinforcing redundancy and employing more reliable components.  

 

 

 

 



 2 

 

 

 

Secure operations:

Real-time stability
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Power system operations:

Gen. maintenance scheduling

Static and dynamic economic dispatch

Combined economic and emission dispatch

 

Optimization:

Single objective and

Multi-objective (with Pareto fronts)

Optimization algorithms:

Heuristic methods namely, GA,

DE and MDPSO

Real-time simulation platform

Modern power system (Thermal, hydro and wind) 

 
 

 

 

Fig. 1.1. An Overview of Issues Addressed in this Dissertation 
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However, when these approaches are heavily constrained, electric utilities are 

forced to get the most out of the devices they already own through more effective 

operating policies, including an improved maintenance program [1]. 

Figure 1.2 shows maintenance as part of the overall asset management effort [1]. 

Maintenance policy is part of the operating policies and, in a given setting, it is selected 

to satisfy both technical requirements and financial constraints. Maintenance programs 

range from the very simple to the quite sophisticated, the oldest replacement schemes 

been the age and bulk replacement policies. Within the age maintenance policy, 

components are replaced at a certain age or when they fail while the bulk replacement 

program ensures that all devices in a given class are replaced at predetermined intervals, 

or when the fail.  
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Fig. 1.2. Classification of the Various Maintenance Approaches 

 

Rigid maintenance schedule schemes are pre-defined activities carried out at fixed 

time intervals. Whenever the component fails, it is repaired or replaced. Both repair and 

replacement are assumed to be much more costly than a single maintenance job. The 

maintenance intervals are selected on the basis of long-time experience (not necessarily 

an inferior alternative to mathematical models). To this day, this is the approach most 

frequently used.  
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The reliability-centered maintenance (RCM) is a program under the predictive 

maintenance routines. In RCM approach, various alternative maintenance policies can be 

compared and the one most cost-effective for sustaining equipment reliability is selected. 

RCM programs have been installed by several electric utilities as a useful management 

tool, and those utilities using the RCM are expecting to gain the following benefits: 

longer up-times, lower costs, better control and decisions, and better use of labor.  

Preventive maintenance optimization (PREMO) is claimed to be more efficient than 

RCM. It is based on extensive task analysis rather than system analysis and has the 

capability of drastically reducing the required number of maintenance tasks in a plant. 

RCM and PREMO have been very useful in ensuring economic operation of power 

stations, but do not provide the full benefits and flexibility of programs based on 

mathematical models. For a complete evaluation of the effects of a maintenance policy, 

one had to know by how much its application would extend the life of a component.  To 

find this out, a mathematical model (MM) of the component deterioration process is 

required, which is then combined with a model describing the effects of maintenance. 

The MM provides a quantitative link between the reliability and maintenance. This 

connection is missing in earlier approaches of RCM and PREMO. Once MM is 

constructed, the process can be optimized with regard to changes in one or more of the 

variables. The simpler mathematical models are essentially still based on fixed 

maintenance intervals, and the optimization will result in identifying the least costly 

maintenance frequency. More complex models incorporate the idea of condition 

monitoring, where decisions with regard to the timing and amount of maintenance are 

dependent on the actual condition (stage of deterioration) of the device. MMs may be 

deterministic or probabilistic.   

The most often used device to establish the need for maintenance is periodic 

inspection. This is known as the predictive (as needed) maintenance. The inspection 

intervals vary widely and are also different for different tasks. Another device for 

detecting maintenance needs is continuous monitoring (such as oil leakage, vibration, 

bearing temperature, tap changer condition, corrosion and discharge voltage). Most 

effective diagnostic tools are gas and oil analysis, power factor test, surge testing, 

vibration monitoring and contact resistance. 
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Probabilistic models probabilistic approaches are not used in maintenance 

planning by most utilities.  However, many do wish to compute such indices as 

unavailability, failure frequency and duration (or MTTF). 

Present maintenance policies are primarily based on historical records and data 

requirements. These may include inspection records and maintenance data, generator 

manuals, together with experience and memory. Data such as test reports, failure 

statistics, maintenance protocols and history and operational logs are also used.  

Contracting out maintenance work is also been practiced by most utilities. Some do it on 

an ―as needed‖ basis or only for special tests, others contract out major maintenance 

work. Scheduled maintenance scheme considers both the intervals and durations for 

scheduled maintenance tasks, with typical maintenance data shown in Table 1.1 below 

[1].  

Table 1.1: Typical Maintenance Interval and Duration  

for some  Power System Equipment 

Interval Duration Interval Duration Interval Duration

Minor maintenance 1 yr 1 - 2 wks 1 yr 1 day 1 yr 1 day

Minor overhaul 5 yrs 4 - 5 wks 5 yrs 3 days 5 yrs 3 days

Major overhaul 8 - 10 yrs 6 - 8 wks 7 yrs 4 - 8 wks 8 - 10 yrs 2 wks

Generators Transformers Breakers

 

 

The simplest maintenance policies consist of a set of instructions taken from 

equipment manuals or based on long-standing experience. There are no quantitative 

relationships involved and the possibilities are very limited for making predictions about 

effectiveness of the policy or carrying out any sort of optimization. To make numerical 

predictions and carry out optimizations, mathematical models are needed which can 

represent the effects of maintenance on reliability and cost. Mathematical models can be 

deterministic or probabilistic. Both can be put to good use in appropriate maintenance 

studies [1].   

In modern power systems, the demand for electricity has greatly increased with 

related expansions in system size, which has resulted in higher number of generators and 

lower reserve margins.  Consequently, the generator maintenance scheduling (GMS) for a 

large power system has become a complex multi-objective constrained optimization 
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problem. Within the last three decades, several techniques have appeared in the literature 

that addressed such optimization problem under different scenarios. Optimization 

methods such as branch and bound technique, dynamic programming and integer 

programming were few early techniques that were used to solve simple optimization 

problems. The primary goal of the GMS is the effective allocation of generating units for 

maintenance while ensuring high system reliability, reducing production cost, prolonging 

generator life time subject to some unit and system constraints [2] - [3]. 

Power system equipment are made to remain in good operating conditions by 

regular preventive maintenance. The task of generator maintenance is often performed 

manually by human experts who generate the schedule based on their experience and 

knowledge of the system, and in such cases there is no guarantee that the optimal or near 

optimal schedule is found. The purpose of maintenance scheduling is to find the sequence 

of scheduled outages of generating units over a given period of time such that the level of 

energy reserve is maintained. This type of schedule is important mainly because other 

planning activities are directly affected by such decisions.   

 

1.3. ECONOMIC DISPATCH 

One of the options available to the utilities in order to maintain a high level of 

reliability and economy of the power system is economic dispatch (ED), and is 

considered to be one of the key functions in electric power system operations. The ED is 

essentially an optimization problem, formulated with the aim of minimizing the total 

generation cost of units while satisfying important system constraints. Previous efforts on 

solving ED problems have employed various mathematical programming methods and 

optimization techniques. These conventional methods include the lambda-iteration, the 

base point and participation factors and the gradient methods [2]. In these numerical 

methods for solution of ED problems, an essential assumption is that the incremental fuel 

cost curves of the units are monotonically increasing piecewise-linear functions. 

Unfortunately, the input-output characteristics of modern generating units are inherently 

highly nonlinear due to valve-point loading effects, ramp-rate limits, prohibited operating 

zones and so on, which tend to generate multiple local minima points in the cost function. 

Classical dispatch algorithms require that these characteristics be approximated, however 
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such approximations may lead to suboptimal operation of the generator and results in 

heavy revenue losses. Furthermore, for a large-scale mixed-generating system, the 

conventional method has oscillatory problem resulting in a large solution time [3]. A 

dynamic programming (DP) method for solving the ED problem with valve-point 

modeling has been presented in [2]. However, the DP method may cause the dimensions 

of the ED problem to become extremely large, thus requiring enormous computational 

efforts.  

Dynamic economic dispatch (DED) is a method of scheduling generator outputs 

to meet the anticipated and predicted load demand over a certain period of time in order 

to operate the power system most economically. It is therefore the most accurate 

formulation of the economic dispatch problem and also the most difficult to solve. The 

DED is a dynamic optimization problem taking into accounts the constraints imposed on 

system operation by generator ramping-rate limits. The DED is normally solved by 

dividing the entire dispatch period into a number of small time intervals, then a static 

economic dispatch (SED) generally referred to as the ED, is employed to solve the 

problem in each interval [2] - [3]. 

 

1.4. INTELLIGENT OPTIMIZATION ALGORITHMS  

Most of power system optimization, problems including GMS, ED and multi-

objective combined economic and emission dispatch (MO-CEED), have complex 

nonlinear characteristics with stringent equality and inequality constraints to be satisfied. 

Solving such nonlinear optimization problems for most cases may not be feasible because 

their numerical solutions require extensive computational efforts, which increase 

exponentially with the problem complexities. Even though deterministic optimization 

problems are formulated with known parameters, practical problems almost invariably 

include some unknown parameters. The inclusion of wind generation into the GMS, ED 

and MO-CEED problems has further added degrees of nonlinearities to the optimization 

problem due to the variability and intermittency of wind energy resources. This nonlinear 

optimization problem becomes difficult to be solved by classical methods, hence the need 

for intelligent heuristic optimization techniques. Advanced optimization techniques and 

simulation capabilities are needed to support the future modern power system planning, 
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operation and real-time implementation of the inherent dynamic optimization problems 

involving variable and intermittent wind energy resources. Intelligent optimization 

techniques are computationally fast approaches that yield optimal or near optimal 

solutions in many practical power system optimization problems. 

In order to make numerical methods more convenient for solving GMS, ED and 

MO-CEED problems, artificial intelligent techniques, such as the Hopfield neural 

networks, genetic algorithm (GA), simulated annealing (SA), differential evolution (DE) 

and particle swarm optimization (PSO) have been successfully employed to solve power 

system optimization problems [3].  

In the past decade, a global optimization technique known as GA or SA, which is 

a form of probabilistic heuristic algorithm, has been successfully used to solve power 

system optimization problems such as feeder reconfiguration and capacitor placement in 

a distribution system [3]. The GA method is usually faster than the SA method because 

the GA has parallel search techniques, which emulate natural genetic operations. Due to 

its high potential for global optimization, GA has received great attention in solving unit 

commitment and ED problems. Though the GA methods have been employed 

successfully to solve complex optimization problems, recent research has identified some 

deficiencies in GA performance. This degradation in efficiency is apparent in 

applications with highly epistatic objective functions (i.e., where the parameters being 

optimized are highly correlated). The crossover and mutation operations cannot ensure 

better fitness of offspring because chromosomes in the population have similar structures 

and their average fitness is high toward the end of the evolutionary process [3]. Also the 

premature convergence of GA degrades its performance and reduces its search capability 

that leads to a higher probability toward obtaining a local optimum.  

PSO, first introduced by Kennedy and Eberhart, is one of the modern heuristic 

algorithms. It was developed through simulation of a simplified social system, and has 

been found to be robust in solving discrete and continuous nonlinear optimization 

problems [3], such as the GMS, ED and MO-CEED problems. 
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1.5. STABILITY ASSESSMENT AND IMPROVED CONTROLS FOR A POWER 

SYSTEM  

Stability assessment (SA) deals with the analysis of a power system assuming 

credible system contingencies or sequence of events had occurred [3] - [4]. If the analysis 

indicates that a system is unstable, the stability control should provide preventive 

strategies by changing system operating conditions to a more viable and stable status, 

hence forestalling the possibility of cascading outages. A power system is said to be 

stable if it can withstand all credible contingencies without violating any of the system 

constraints. If there is at least one contingency, or sequence of probable events, which 

violates the system constraints, the system is judged to be unstable or insecure. Therefore 

the goal of SA is to determine when disruptions of service are likely to occur. The reason 

for undertaking a SA therefore is to determine the ability of the power system to continue 

providing service in case of an unforeseen, but probable, catastrophic contingency.  

A power system can become unstable for various reasons such as, major 

component failures, communication interruptions, human errors, unfavorable weather 

conditions, and sometimes sabotage.  

 

1.6. OBJECTIVES OF RESEARCH 

The objectives of this research can be classified as follows: 

 Solve the GMS problem for an interconnected power system while meeting practical 

generator and system constraints. 

 Framework developments and their application to solving the GMS and ED problems. 

 Illustrate and solve the challenging problem of economic dispatch for systems with 

dynamic load, and characterized by smooth and nonsmooth fuel cost functions. 

 Formulation and application of economic cost function based GMS and ED problems 

for hydrothermal power system while satisfying practical system constraints. 

 Formulation and solving the multi-objective combined economic and emission 

dispatch optimization problem for a wind-hydrothermal power system. 

 Formulation of the real-time network status index for a power system. 

 Demonstration of real-time stability assessment for a practical power system using 

the real-time digital simulator (RTDS). 
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1.7. CONTRIBUTIONS OF THIS DISSERTATION 

The following key contributions have been accomplished in this dissertation:  

 Developed modified particle swarm optimization (MDPSO) algorithm to achieve fast 

convergence and better quality solutions [5]. 

 Developed multiple-swarms MDPSO framework to achieve faster convergence and 

better quality solutions [6].  

 Illustrated and applied the MDPSO to solve the reliability based GMS optimization 

problem of a practical hydrothermal power system [5]. 

 Illustrated and applied the multiple-swarms MDPSO framework to solve the 

reliability based GMS optimization problem of a hydrothermal power system [6].  

 Illustrated the smooth and nonsmooth economic cost function formulation of the 

GMS optimization problem with practical generator constraints using both the 

classical and heuristic methods [8], [9]. 

 Applied heuristic methods, namely, GA, DE and MDPSO to solve the static and 

dynamic ED for generators with smooth and nonsmooth economic cost functions with 

practical constraints and transmission line losses [10]. 

 Incorporated additional practical generator constraints such as the generator 

prohibited zones and ramp-rate limits, system power loss and increased the 

dimensionality of the problem in solving the ED problem [10]. 

 Formulated stochastic MO-CEED optimization problem for a wind-hydrothermal 

power system [11]. Uncertainty in wind power was incorporated in this formulation. 

 Solved the stochastic MO-CEED problem for wind-hydrothermal power system using 

a family of optimal Pareto fronts [11]. 

 Presented platforms for which optimized energy and generation cost management in 

the presence of wind energy penetration is made possible [8], [9], [11]. 

 Quantified emission reductions as a consequence of increased capacity credit of wind 

power during GMS [8], [9], as well as after solving the MO-CEED [11]. 

 Demonstrated the potential for increased daily cost saving and emission reduction for 

a practical Nigerian power system [11].  

 Formulated the network status index for a power system and implemented in real time 

platform [12]. 
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 Demonstrated on the Nigerian hydrothermal power system for N-1, N-2, ..., N-k 

generator outages and N-1 permanent transmission line outage (topology change). 

 

1.8. DISSERTATION OUTLINE 

A brief introduction and the objectives of this research are described in this 

section. The rest of the dissertation present articles one to six that have been 

published/submitted for journal publications. Paper 1 presents a modified discrete particle 

swarm optimization (MDPSO) algorithm and its application to reliability based GMS 

problem. The paper also shows pragmatic maintenance unit scheduling framework for a 

power utility that achieved better utilization of available energy generation with 

improved reliability and reduction in energy cost. Paper 2 introduces the concept of 

multiple-swarms of particle swarm optimization (MS-PSO) and the evolution of a single 

best solution from many best solutions for solving the complex GMS constrained 

optimization problem. Paper 3 describes three heuristic methods for solving both the 

static economic dispatch (SED) and dynamic economic dispatch (DED). Multi-objective 

combined economic and emission dispatch (MO-CEED) optimization problem for a 

wind-hydrothermal power system is presented in Paper 4. In pursuance of the smart grid 

initiative, Paper 5 presents an optimal preventive generator maintenance scheduling 

(GMS) for a wind-hydrothermal power system. Paper 6 presents real-time (RT) stability 

assessment (SA) of a power system, with detail formulation of network status index for 

smart grid development. A conclusions section is provided that summarizes the work 

presented in this dissertation, including a subsection that enumerates areas of future 

research. 
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ABSTRACT: This paper presents a modified discrete particle swarm optimization 

(MDPSO) algorithm for generating optimal preventive maintenance schedule of 

generating units  for economical and reliable operation of a power system, while 

satisfying system load demand and crew constraints. Discrete particle swarm 

optimization (DPSO) is known to effectively solve large scale multi-objective 

optimization problems and has been widely applied in power system. Here, the MDPSO 

proposed for the generator maintenance scheduling (GMS) optimization problem 

generates optimal and feasible solutions and overcomes the limitations, of the 

conventional methods, such as extensive computational effort, which increases 

exponentially as the size of the problem increases. The efficacy of the proposed algorithm 

is illustrated and compared with the genetic algorithm (GA) and DPSO in two case 

studies – a 21-unit test system and a 49-unit system feeding the Nigerian national grid. 

The MDPSO algorithm is found to generate schedules with comparatively higher system 

reliability indices than those obtained with GA and DPSO.  

 

INDEX TERMS: Cost, discrete optimization, generator maintenance, genetic algorithm, 

Nigerian power system, optimal scheduling and particle swarm optimization. 

 

NOMENCLATURE  

tAM  Available manpower at period t  

c1 & c2 Cognitive and social acceleration constants respectively 

mailto:yyqh3@umr.edu
mailto:gkumar@ieee.org
mailto:uoaliyu@yahoo.com
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d Particle‘s dimension 

id        Duration of maintenance for unit i  

DPSO Discrete particle swarm optimization 

ie         Earliest period for maintenance of unit i  to begin 

ES Evolutionary strategy 

GA Genetic algorithm 

GMS Generator maintenance scheduling 

i        Index of generating units 

k Discrete time step 

I        Set of generating unit indices 

il          Latest period for maintenance of unit i  to end 

tL         Anticipated load demand for period t  

MDPSO Modified discrete particle swarm optimization 

itM       Manpower needed by unit i  at period t  

N       Total number of generating units 

Pibd i-th Particle best position for dimension d 

Pgd Swarm‘s best position for dimension d 

Pgn n-th dimension coordinate of the global best position (Pg) 

itP       Generating capacity of unit i  in period t  

PSO Particle swarm optimization 

rand1 & rand2 Random numbers with uniform distribution in the range of [0, 1] 

randn() Gaussian distributed random number with a zero mean and a variance of 1 

t         Index of period 

T         Set of indices of periods in planning horizon 

|V1|, |V2| & |V3| Amount of violations of maintenance window, crew and load 

constraints respectively 

|Vc| Amount of violation of constraint c 

Vid i-th Particle velocity in dimension d 

w Inertia weight constant  
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1 , 2  & 3  Weighting coefficients of maintenance window, crew and load 

constraints respectively  

c  Weighting coefficient 

Xid i-th Particle position in dimension d 

 

1. INTRODUCTION 

  In modern power systems, the demand for electricity has greatly increased with 

related expansions in system size, which has resulted in higher number of generators and 

lower reserve margins.  Consequently, the generator maintenance scheduling (GMS) for a 

large power system has become a complex multi-objective constrained optimization 

problem. Within the last three decades, several techniques have appeared in the literature 

that addressed such optimization problem under different scenarios [1-14]. The primary 

goal of the GMS is the effective allocation of generating units for maintenance while 

ensuring high system reliability, reducing production cost, prolonging generator life time 

subject to some unit and system constraints.  

 Basically, different optimization techniques applied so far to solving GMS can be 

classified according to the type of the search space and/or the objective function [1-13]. 

Thus, much earlier work relied on methods such as branch and bound technique [4], 

dynamic programming [5] and integer programming [6] with their performances 

demonstrated with respect to simple case studies. Depending on the problem formulation, 

the objective function could be minimization of the unit maintenance costs or some 

predefined reliability risks subject to some constraints resulting in nonlinear optimization 

as proposed in [8-11]. Solving such nonlinear optimization problems for most cases may 

not be feasible because their numerical solutions require extensive computational efforts, 

which increase exponentially with the problem complexities. Even though deterministic 

optimization problems are formulated with known parameters, real world problems 

almost invariably include some unknown parameters. 

In order to obtain approximate solution of a complex GMS, new concepts have 

emerged in recent years [12-15]. They include applications of probabilistic approach 

[12], simulated annealing [13], decomposition technique [14] and genetic algorithm (GA) 

[15].  A flexible GMS that considered uncertainties is proposed with a fuzzy 0-1 integer 
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programming technique adopted and applied to Taiwan power system [15]. The 

application of GA to GMS presented in [15] have been compared with, and confirmed to 

be superior to other conventional algorithms such as heuristic approaches and branch-

and-bound (B&B) in the quality of solutions.  However, the application of particle swarm 

optimization (PSO) and their variants to GMS have not been fully explored in the 

literature and this constitutes the main focus of this research effort.  

 In this paper, we propose a modified discrete particle swarm optimization 

(MDPSO) algorithm that is not overly affected by the size and nonlinearity of the GMS 

problem, and can converge to the optimal solution in many problems where most 

analytical methods fail to converge [16, 17]. 

The primary contributions of this paper are: 

 Enhancement of discrete particle swarm optimization (DPSO) capabilities with 

evolutionary computation techniques such as the evolutionary strategies (ESs), to 

solve complex GMS optimization problem. 

 Comparison of three algorithms – DPSO, MDPSO and GA for solving the GMS 

problem on a 21-unit test system [5].  

 Application of MDPSO to solving the GMS problem for the Nigerian power system 

which operates the traditional utility market, and where load frequently exceeds 

generation. 

 

2. PROBLEM FORMULATION  

Generally, there are two main categories of objective functions in GMS, namely, 

based on reliability and economic cost [2]. The reliability criteria of leveling reserve 

generation for the entire period of study is considered in this paper [18, 19]. The problem 

studied here is solved by minimizing the sum of squares of the reserve over the entire 

operational planning period [18, 19]. The problem has a number of unit and system 

constraints to be satisfied. The constraints include the following: 

 Maintenance window and sequence constraints - defines the starting of maintenance 

at the beginning of an interval and finishing at the end of the same interval. The 

maintenance cannot be aborted or finished earlier than scheduled. 
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 Crew and resource constraints - for each period, number of people to perform 

maintenance schedule cannot exceed the available crew. It defines manpower 

availability and the limits on the resources/tools needed for maintenance activity at 

each time period. 

 Load and spinning reserve constraints - total capacity of the units running at any 

interval should be not less than predicted load at that interval.  

Suppose Ti T is the set of periods when maintenance of unit i may start, 

1: iiii dlteTtT  for each i. 

Define 

 

otherwise0

                                         

periodinemaintenancstartsunitif1 ti

X it
                 (1) 

 

to be the maintenance start indicator for unit i in period t. Let Sit be the set of start time 

periods k such that if the maintenance of unit i starts at period k that unit will be in 

maintenance at period t, tkdtTkS iiit 1: . Let It be the set of units which are 

allowed to be in maintenance in period t, it TtiI : . 

The objective function to be minimized is given by (2) subject to the constraints 

given by (3), (4) and (5). 
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subject to the maintenance window constraint 
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the crew constraint 

t itTi

t

Sk

ikik AMMX       ,t                                            (4) 

 

and the load constraint 

t itIi Sk

tikik

i

it LPXP       ,t                                       (5) 

 

Penalty cost given by (6) is added to the objective function in (2) if the schedule 

cannot satisfy the maintenance window, crew and load constraints. The penalty value for 

each constraint violation is proportional to the amount by which the constraint is violated.  

 

VVVV
c

cctPenalty 332211

3

1

cos                             (6) 

 

3. MODIFIED DISCRETE PSO  

Particle swarm optimization (PSO) is an algorithm inspired by the social behavior 

of bird flocking or fish schooling which is used for finding optimal regions of complex 

search spaces through the interaction of individuals in a population of particles [16]. The 

following subsections describe the DPSO and enhanced modified DPSO (MDPSO) 

algorithm. 

3.1. Discrete PSO 

The general concepts behind optimization techniques initially developed for 

problems defined over real-valued vector spaces, such as PSO, can also be applied to 

discrete-valued search spaces where either binary or integer variables have to be arranged 

into particles [17].  When integer solutions (not necessarily 0 or 1) are needed, the 

optimal solution can be determined by rounding off the real optimum values to the 

nearest integer [17]. Discrete particle swarm optimization has been developed 

specifically for solving discrete problems. DPSO allows discrete steps in velocity and 

thus in position. In this version of PSO, the velocity is limited to a certain range [- Vmax, 

Vmax] such that Vid always lies in that range.  
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The new velocity and position for each particle i in dimension d is determined 

according to the velocity and position update equations given by (7) and (8). 

 

)))1(())1(()1(()( 2211 kXPrandckXPrandckVwroundkV idgdidibdidid       (7) 

)()1()( kVkXkX ididid                                               (8) 

 

DPSO has some advantages over other similar optimization techniques such as 

GA. In DPSO, every particle remembers its own previous best value as well as the 

neighborhood best; therefore, it has a more effective memory capability than the GA. 

DPSO is also more efficient in maintaining the diversity of the swarm, since all the 

particles use some information related to the most successful particle in order to improve 

themselves, whereas in GA, the worse solutions at every generation are discarded and 

only the good ones are saved for next generation. Therefore, in GA the population 

evolves around a set of best individuals in every generation. In addition, DPSO is easier 

to implement and there are fewer parameters to adjust compared to GA [17].  

3.2. Modified DPSO  

The modified discrete particle swarm optimization is a combination of DPSO and 

an evolutionary strategy enhancing the algorithm to perform optimal search under 

complex environments such as the case of the constrained GMS optimization problem 

considered in this paper. This version of MDPSO is a variant of the original formulation 

of the DPSO to solve discrete optimization problems. Supposing X = (X1, X2,…XN) is the 

particle chosen with a random number less than a predefined mutation rate (for 0 < 

mutation rate < 0.3) then the mutation result of this particle is given by (9). 

 

( () / 2) 1,2,...id gd gdX P randn P d N                (9)     

 

Herein, the mutation operator is introduced into the DPSO algorithm. The main goal is to 

increase the diversity of the population by preventing the particles from moving too close 

to each other, thus converging prematurely to local optima. This in turn improves the 

DPSO‘s search performance.  The flowchart for the MDPSO algorithm applied to GMS 

problem is illustrated in Fig. 1.  
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4. CASE STUDIES AND RESULTS   

Two case studies are considered to illustrate the effectiveness of the MDPSO 

algorithm for solving the GMS problem. First, the three algorithms are applied and 

compared on a 21 unit test system [5]. The second case study is specific to GMS for a 49-

unit system of the Nigerian power system. These case studies are described below and 

implemented in MATLAB environment.  

4.1. Case I: 21 Units Test System 

In order to investigate the performance of MDPSO for the GMS, a test system 

comprising 21 units over a planning period of 52 weeks is used, which is obtained from 

the example presented in [2, 5]. During this period, 21 units need to undergo 

maintenance, and Table 1 lists the generator ratings, allowed maintenance period, 

maintenance duration of each unit and crew required weekly for each unit. 

 

TABLE 1 

Data for the 21 Units Test System 

Unit
Capacity 

(MW)

Allowed 

period

Maintenance duration 

(weeks)
Manpower required for each week

1 555 7 10+10+5+5+5+5+3

2 180 2 15+15

3 180 1 20

4 640 3 15+15+15

5 640 3 15+15+15

6 276 10 3+2+2+2+2+2+2+2+2+3

7 140 4 10+10+5+5

8 90 1 20

9 76 2 15+15

10 94 4 10+10+10+10

11 39 2 15+15

12 188 2 15+15

13 52 3 10+10+10

14 555 5 10+10+10+5+5

15 640 5 10+10+10+10+10

16 555 6 10+10+10+5+5+5

17 76 3 10+15+15

18 58 1 20

19 48 2 15+15

20 137 1 15

21 469 4 10+10+10+10

1
-2

6
 w

e
e
k
s

2
7
-5

2
 w

e
e
k
s

 

 

The maintenance outages for the generating units are scheduled to minimize the 

sum of squares of reserves and satisfy the following constraints: 
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 Maintenance window - each unit must be maintained exactly once every 52 weeks 

without interruption. 

 Load constraint and spinning reserve - the system‘s peak load including 6.5% 

spinning reserve [20] is 5047MW. 

 Crew constraint - there are only 40 crew available each week for the maintenance 

work. 

4.1.1. GMS with GA 

In GA, real numbers are often encoded using binary numbers [21]. The GA 

domain in this study is set with 50 individuals (chromosomes) representing all possible 

schedules. The GA for this GMS problem is encoded by grouping the units for 

maintenance according to their allowed periods shown in Table 1. 13 units are scheduled 

in the first 26 weeks while the remaining 8 units are scheduled within the last 26 weeks. 

With the former, each chromosome consists of 13 unit genes, with each gene encoded as 

5 bits representing the maintenance starting period, and the length of each chromosome is 

65 bits. Similar encoding procedure is done on the 8 units resulting in chromosome 

length of 40 bits. Fig. 2 shows the chromosome representation for the 13 and 8 units 

according to the allowed maintenance periods of Table 1. Though the schedule in Fig. 2 

(b) shows week numbers within 1 to 26, this translates to weeks within 27 to 52. 

4.1.2. GMS with DPSO and MDPSO 

The integer encoding approach consists of a string of integers, each of which 

indicates the maintenance start period of a unit and the string length or particle dimension 

is equal to the number of units. Since, the maintenance period varies for every unit; the 

start period is selected within the specified maintenance window of 52 weeks. 

To implement the DPSO and MDPSO, a population size of 30 particles is chosen 

to provide sufficient diversity into the population taking into account the dimensionality 

and complexity of the problem. This population size ensured that the domain is examined 

in full but at the expense of increase in execution time.  

4.1.3. Results  

Figure 3 (a) shows fitness values, given by (2), averaged over 5000 trials for three 

different DPSO/MDPSO parameters. Cases A, B and C in Fig. 3 denotes three 

DPSO/MDPSO parameter settings, w=0.8 and c1=c2=2, w=linearly decreasing and 
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c1=c2=2, lastly w=0.729 and c1=c2=1.49 (constriction factor based PSO) [22] 

respectively. The MDPSO performs better than the DPSO. The MDPSO and DPSO 

algorithms produced best results in case A, and the worst result is in case C. In all cases, 

the MDPSO yields better fitness values compared to the DPSO and GA. The DPSO 

however, showed better fitness values than the GA. Fig. 3 (b) shows the percentage of 

feasible optimal maintenance schedules obtained for 5000 iterations over 5000 trials. The 

MDPSO is seen to produce more number of feasible solutions than the DPSO and the 

GA. Its performance can be further improved with increased number of iterations. The 

result shows the efficiency and better performance of MDPSO over the DPSO and GA. 

Both MDPSO and DPSO algorithms performed best for case A (w=0.8 and c1=c2=2) and 

worst for the case C (constriction factor based PSO) for this GMS problem.  

Figure 4 shows available generation and crew requirements for optimal 

maintenance schedules obtained from the results in Table A.1 using w=0.8 and c1=c2=2. 

Within the maintenance window, a minimum of 5047MW (with spinning reserve) is 

sustained to meet the peak demand, while the crew is limited to maximum of 40. The 

maximum generation is 5688MW. 

It is important to note from Fig. 4 that the crew demand is inversely related with 

the availability generation over the entire maintenance period. When maintenance 

activities increase in a particular week, more generators are shut down which translate to 

reduced generation.  It is worthy of note also that there is maintenance activity in every 

week throughout the 52 weeks without any interruption. All the three algorithms 

considered were able to generate optimal schedules that met all constraints. 

The ‗reliability index‘ (RI) given by (10) describes the degree of performance of 

the algorithms that results in optimal maintenance schedules. It is computed by taking the 

minimum of the ratio of available generation to load demand over 5000 trials and the 

entire operational period. The functional aspect of the reliability indices is that they show 

the generation adequacy and the ability of the system to supply the aggregate electrical 

energy and meet demand requirements of the customers at all times during maintenance 

period.  
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Figure 5 (a) shows the reliability indices of the maintenance scheduling problem 

for the three algorithms considered in this study. The MDPSO is seen to produce the most 

reliable schedule compared with DPSO and GA over 5000 trials. Figure 5 (b) shows the 

computational time for off-line execution of the DPSO, MDPSO and GA algorithms, set 

under the same conditions with w=0.8 and c1=c2=2. Each experiment is run for 5000 

iterations/ generations over 5000 trials. The result reveals that MDPSO has faster 

execution time than the DPSO, and much faster compared to the GA.  

4.2. Case II: Nigerian Power System 

The Nigerian power system consists of a total of 49 functional units distributed 

among 7 generating stations at the following locations: AFAM, DELTA, EGBIN, 

SAPELE, JEBBA, KAINJI and SHIRORO.   Table 2 summarizes the units‘ base case 

ratings.  Note that all the units at AFAM and DELTA stations as well as 8 units at 

EGBIN station are gas turbines, whilst all units at SAPELE station and other 6 units at 

EGBIN station are steam driven. The JEBBA, KAINJI and SHIRORO hydro stations are 

all sited in Northwestern Nigeria. Over 25 years of operational experience and available 

historical data on hydrological conditions reveal that inflow variation profile at each 

hydro station location, significantly impacts the generated power output of each hydro 

plant. This inflow profile also dictates the allowed periods for the maintenance of the 

three hydro plants.   

These scenarios have been taken into consideration in solving this GMS problem 

using the MDPSO-a and MDPSO-b case studies described below. MDPSO-a and 

MDPSO-b represent two case studies having different schedules for maintenance. A 

detailed description of these case studies is presented below.  

4.2.1. MDPSO-a 

Table 2 present the data for the Nigerian power system used to investigate the 

performance of the proposed MDPSO algorithm. All the hydrothermal units feeding the 

Nigerian national grid are to be scheduled for maintenance over a planning horizon of 52 
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weeks. The table shows the allowed periods for which planned preventive maintenance of 

generating units should be carried out. In this case study, GTs and steam turbines are to 

be shut down for maintenance only when the hydro plants are operating at their 

maximum generation.  This corresponds to the months of January to April and November 

to December each year. The hydro plants can then be scheduled for maintenance during 

low inflow period corresponding to the months of May to October of each year. Within 

these months no thermal plant is allowed to be shut down for maintenance. The 

maintenance duration of each unit and crew required weekly for each unit are shown in 

Table 2.  A maximum power demand of 3625MW plus 5% load increase is considered 

during the hot season of March to July every year. 

4.2.2. MDPSO-b 

In this case study, the advantage and cost benefits of appropriate combination of 

thermal and hydro plants for maintenance within the period of low water level from May 

to October is investigated. Five thermal plants, namely AFAMG 19, AFAMG 20, 

EGBINST 1, EGBINST 2 and SAPELEST 6 are scheduled for maintenance along with 

the hydro plants within the period of low water level. The remaining thermal plants are 

maintained in the months of January to April and November to December each year. 

There is 5% load variation between the months of March and July. Though the proposed 

maintenance scenario in MDPSO-b deviates from the current practice of the Nigerian 

power utility, wherein the thermal plants are expected to be operated at optimum 

generation during low inflows at all the hydro stations, the results of this comparison are 

noteworthy for good energy management and planning. 

4.2.3. Results 

Table 3 shows yearly summary of the load availability (with and without 

maintenance), load demand and the cost in Nigerian Naira to purchase energy from 

Independent Power Producers (IPPs) or possibly the West African Power Pool (WAPP) 

to supply loads that would have been suppressed as a result of maintenance activities. As 

seen from the Table 3, the annual base case generation for Nigeria cannot meet the yearly 

load demand due to inadequate generation from some generating units. Some of these 

units‘ contributions to the national grid are marginally low and are represented by a zero 
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generation output. This means that there will be persistent load shedding to be carried out 

by the utility throughout the year.  

 

TABLE 2 

Outage and Manpower Data for the 49 Units of the 

Nigerian Power System 

S/N
Plant 

number

Name of 

turbine

Type of 

turbine

Base 

case 

rating  

(MW)

Allowed 

period

Maintenance 

duration 

(Weeks)

Manpower 

required for 

each week 

1 3 EGBINST1 ST 190 5 6+5+5+4+2

2 3 EGBINST2 ST 190 5 6+5+5+4+2

3 3 EGBINST3 ST 190 5 6+5+5+4+2

4 3 EGBINST4 ST 190 5 6+5+5+4+2

5 3 EGBINST5 ST 190 5 6+5+5+4+2

6 3 EGBINST6 ST 190 5 6+5+5+4+2

7 4 EGBINGT1 GT 30 2 4+3

8 4 EGBINGT2 GT 30 2 4+3

9 4 EGBINGT3 GT 30 2 4+3

10 4 EGBINGT4 GT 30 2 4+3

11 4 EGBINGT5 GT 30 2 4+3

12 4 EGBINGT6 GT 30 2 4+3

13 4 EGBINGT7 GT 30 2 4+3

14 4 EGBINGT8 GT 30 2 4+3

15 5 SAPELST1 ST 0 4 4+3+3+2

16 5 SAPELST2 ST 0 4 4+3+3+2

17 5 SAPELST3 ST 0 4 4+3+3+2

18 5 SAPELST4 ST 0 4 4+3+3+2

19 5 SAPELST5 ST 0 4 4+3+3+2

20 5 SAPELST6 ST 85.3 4 4+3+3+2

21 6 JEBBGH1 H 88.3 4 5+4+3+2

22 6 JEBBGH2 H 88.3 4 5+4+3+2

23 6 JEBBGH3 H 88.3 4 5+4+3+2

24 6 JEBBGH4 H 88.3 4 5+4+3+2

25 6 JEBBGH5 H 88.3 4 5+4+3+2

26 6 JEBBGH6 H 88.3 4 5+4+3+2

27 7 KAING05 H 112.5 4 5+5+4+3

28 7 KAING06 H 0 4 5+5+4+3

29 7 KAING07 H 0 3 4+3+2

30 7 KAING08 H 0 3 4+3+2

31 7 KAING09 H 0 3 4+3+2

32 7 KAING10 H 76.5 3 4+3+2

33 7 KAING11 H 90 4 5+4+3+3

34 7 KAING12 H 0 4 5+4+3+3

35 8 SHIRGH1 H 140 2 4+3

36 8 SHIRGH2 H 140 2 4+3

37 8 SHIRGH3 H 140 2 4+3

38 8 SHIRGH4 H 0 2 4+3

39 1 AFAMGT19 GT 138 5 5+5+4+3+3

40 1 AFAMGT20 GT 138 5 5+5+4+3+3

41 2 DELTAG03 GT 19.6 2 4+3

42 2 DELTAG04 GT 19.6 2 4+3

43 2 DELTAG06 GT 19.6 2 4+3

44 2 DELTAG07 GT 19.6 2 4+3

45 2 DELTAG08 GT 0 4 4+4+3+3

46 2 DELTAG15 GT 85 4 4+4+3+3

47 2 DELTAG16 GT 85 4 4+4+3+3

48 2 DELTAG17 GT 85 4 4+4+3+3

49 2 DELTAG18 GT 85 4 4+4+3+3
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*GT- Gas turbine, ST- Steam turbine, H- Hydro. 

 

The effect of scheduling thermal units for maintenance along with the hydro units 

within the months of May to October is shown in Table 3. The MDPSO-b produced 
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optimal result that shows not only an even annual generation as seen in Fig. 6 (a), but 

also an improved energy management as there is 0.03% decline in suppressed load during 

maintenance due to 0.03% increase in annual generation, and an equivalent reduction in 

the cost of energy to be purchased when compared to the results obtained by MDPSO-a. 

Though this percentage is small, it shows that better energy management is achievable 

with proper scheduling of the generating units. 

 

TABLE 3 

Annual Load Availability, Demand and 

Cost of Purchasing Energy 

Annual 

generation - 

without 

maintenance

Annual 

generation - 

with 

maintenance 

Annual load 

demand      

Annual 

suppressed 

load - without 

maintenance

Annual 

suppressed 

load - with 

maintenance

Increase in 

suppressed 

load due to 

maintenance 

Mega watt 

hour (MWh)
29,601,936.00 27,347,930.40 31,990,896.00 2,388,960.00 4,642,965.60 94.35%

191,945,376.00 14,333,760.00 27,857,793.60 13,524,033.60

Mega watt 

hour (MWh)
29,601,936.00 27,348,720.00 31,990,896.00 2,388,960.00 4,642,176.00 94.32%

191,945,376.00 14,333,760.00 27,853,056.00 13,519,296.00

MDPSO-a

MDPSO-b

Cost of purchasing energy (X 1000 

Naira/year)

Cost of purchasing energy (X 1000 

Naira/year)  

*Cost of energy in Nigeria: 6 Naira/kWh and 234 Naira is 

  equivalent to 1 Pound Sterling 

 

Table 4 shows the cost of improving system reliability index for MDPSO-a and 

MDPSO-b with and without maintenance. Without maintenance for the two cases, there 

is 14,333,760,000.00 Naira to be expended on purchase of energy if a ‗reliability index‘ 

of 1 is required. For zero cost, there is slight improvement in system reliability for 

MDPSO-b than for MDPSO-a with maintenance. The costs for 0.89 and 1 reliability 

indices with maintenance is seen to be higher for MDPSO-a than for MDPSO-b. 
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TABLE 4 

Cost of Improving the Reliability Index (10)  

Reliability 

index
0.89 1 0.76 0.89 1

Cost  (x1000 

Naira)
0 14,333,760.00 0 13,524,033.60 27,857,793.60

Reliability 

index
0.89 1 0.78 0.89 1

Cost  (x1000 

Naira)
0 14,333,760.00 0 13,519,296.00 27,853,056.00

MDPSO-b

Without maintenance With maintenance

MDPSO-a

 

 

Table A.2 of the Appendix presents the generator schedules obtained by MDPSO-

a and MDPSO-b, whilst Fig. 6 (a) shows the available generation for MDPSO-a and 

MDPSO-b during maintenance, the maximum generation plus a 5% load increase within 

the hot season of March to July each year. For MDPSO-a, between the months of May 

and October when the hydro plants are undergoing maintenance, the bulk of the 

generation is entirely from the thermal plants as they are prevented from maintenance 

during this period.  This leads to an uneven generation over the entire maintenance 

period, resulting to an unpredictable energy profile, sharp and large variations in load 

shedding. MDPSO-b however, produced better and more even generation throughout the 

year under maintenance, with an average generation and standard deviation of 

3130.5800±68.2985MW, while MDPSO-a produces average generation and standard 

deviation of 3130.4900±117.3519MW.  

Figure 6 (b) shows the corresponding crew availability for MDPSO-a and 

MDPSO-b during maintenance. MDPSO-b scheduling produced better crew distribution 

over the maintenance period than MDPSO-a. Both cases are seen to have satisfied the 

crew constraint. MDPSO-a generates average crew requirement and standard deviation of 

12±4.9074, while MDPSO-b produces 11±4.9670. 

Figure 7 (a) presents the reliability indices for MDPSO-a and MDPSO-b during 

maintenance period, compared against the system reliability indices without maintenance. 

MDPSO-b produces better system reliability than MDPSO-a after 5000 iterations. Figure 

7 (b) shows the plots of costs of purchasing energy versus the reliability indices with the 
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solutions obtained for MDPSO-a and MDPSO-b. It can be seen from the figure that at 

any system reliability index, the corresponding energy cost for MDPSO-a solution is 

higher than that for MDPSO-b solution. Similarly, at any energy cost, MDPSO-b gives 

better reliability index than MDPSO-a. Without maintenance, the system has much 

higher reliability index than the two cases considered with maintenance, and there is no 

need to purchase energy as a result of maintenance activities. Fig. 7 (c) presents the 

elapsed computational time for the off-line execution of the MDPSO for case study I and, 

MDPSO-a and MDPSO-b for case study II. The result shows that as the number of 

generating units increased from 21 to 49 (i.e. by a factor of 2.33), the elapsed 

computational time also increased from 18250 seconds for case study I to 41975 seconds 

for case study II on Intel Pentium D personal computer with 3.4GHz speed. This implies 

a computational time increase by factor of 2.3. It is extrapolated that computational time 

is in the order of 85000 seconds for 100 generating units on the same computer platform.  

 

5. CONCLUSIONS  

The problem of generating optimal preventive maintenance schedule of 

generating units for economical and reliable operation of a power system while satisfying 

system load demand and crew constraints over one year period, has been presented for a 

21-unit test system and the Nigerian power system comprising 49 units. Three 

algorithms, namely the DPSO, MDPSO and GA were applied and compared on the 21-

unit test system. The results obtained, showed that the MDPSO performed better than 

DPSO and GA algorithms. The incorporation of the mutation operator in the MDPSO 

algorithm significantly improved the diversity of the PSO‘s population and ensured 

convergence towards satisfactory solutions.  The results offered a feasible and practical 

optimal solution that can be implemented in real time. 

Two case studies on the Nigerian electric utility hydrothermal unit system, to 

investigate and characterize the desirability of scheduling some thermal units for 

maintenance along with the hydro plants during low inflow period, were studied 

extensively via MDPSO.  Several results obtained and analyses carried out were 

presented from the standpoints of their practical applications.  The proposed method has 

evolved pragmatic maintenance unit scheduling framework for the Nigerian power utility 
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that achieved better utilization of available energy generation with improved reliability 

and reduction in energy cost. The proposed method can be flexibly modified to 

accommodate the maintenance unit requirements of emerging independent power 

producers and future generation additions as well as network constraints not considered 

in this paper. 
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APPENDIX  

 

TABLE A.1 

 Typical Generator Maintenance Schedules Obtained by  

DPSO, MDPSO and GA after 5000 Iterations for Case Study I 

DPSO MDPSO GA DPSO MDPSO GA

1 5 3,12 1,7,13 27 16 20 14

2 5 2,12 1,7,13 28 16,18 16 14

3 5 2 1,7,13 29 16 16 14

4 4 6 1,7 30 16 16 14

5 4 6,9,13 1 31 16 16 14,16,18

6 4 6,9,13 1 32 16 16 16

7 3,6 6,13 1 33 - 16 16

8 6,10,13 6,7 2 34 20 19 16

9 6,10,13 6,7,10 2 35 21 17,19 16

10 6,10,13 6,7,10 - 36 21 17 16

11 6,9,10 6,7,10 6 37 21 17 -

12 6,9 6,7,11 6 38 21 14 -

13 6 6,8,11 6 39 19 14 15

14 6,7 5 5,6 40 19 14 15

15 6,7 5 4,5,6,12 41 15 14 15

16 6,7 5 4,5,6,12 42 15 14 15

17 2,7 1 4,6 43 15 - 15

18 2,12 1 6 44 15 15 -

19 8,12 1 6 45 15 15 19,20

20 1 1 6 46 17 15 19

21 1 1 - 47 17 15 17

22 1 1 9,10 48 14,17 15 17

23 1 1 9,10,11 49 14 21 17,21

24 1 4 8,10,11 50 14 21 21

25 1 4 3,10 51 14 21 21

26 1 4 - 52 14 18,21 21

Generating units scheduled for 

maintenance

Generating units scheduled for 

maintenance
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TABLE A.2 

 Typical Generator Maintenance Schedules Obtained by  

MDPSO-a and MDPSO-b after 5000 Iterations for Case Study II  

MDPSO-a MDPSO-b MDPSO-a MDPSO-b

1 2,14,15,17 4,9,15 27 22 24,25,30

2 2,6,14,15,17 4,7,9,15 28 22 22,24,25,30,38

3 2,6,15,17,18 4,7,8,15 29 22,37,38 22,25,38,40

4 2,6,15,17,18,20 4,6,8,10,11,15 30 37,38 22,23,38,40

5 2,6,18,20 6,10,11,16 31 25,36 22,23,38,40

6 4,6,12,18,20 1,5,16 32 25,28,36 23,40

7 4,12,19,20 1,5,12,16 33 25,28 23,40

8 4,5,19 1,12,16 34 21,25,28 31,32,37

9 4,5,9,19 1,3 35 21,28,32 18,31,32,37

10 4,5,9,19 1,3 36 21,32,34 18,28,31,37

11 1,5,13 3,13 37 21,32,34 18,28,31,37

12 1,5,13 3,13 38 23,34,35 18,28,37

13 1,3,8 2,3,13 39 23,34,35 20,36

14 1,3,8,16 2,13,14,17 40 23,27 19,20,36

15 1,3,16 2,14,17 41 23,27,31 19,20,26,36

16 3,7,10,11,16 2,14,17 42 27,31 19,20,26,33,36

17 3,7,10,11,16 2,14,17 43 27,31 19,26,33,36

18 33 34 44 46,47,48,49 41,44,49

19 29,33 21,34 45 46,47,48,49 41,44,45,47,49

20 29,30,33 21,27,39 46 46,47,48,49 45,47,49

21 24,30,33 21,27,39 47 46,47,48,49 45,47,49

22 24,30 21,27,35,39 48 39,40,41 45,46,47

23 24,26 35,39 49 39,40,41,44,45 46,48

24 24,26 29,39 50 39,40,44,45 46,48

25 26 24,29,30 51 39,40,42,43 42,43,46,48

26 22,26 24,25,29,30 52 39,40,42,43 42,43,48

Generating units scheduled for 

maintenance
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Fig. 1. Flowchart of MDPSO Algorithm for GMS Problem 
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(a) 13 Units (First Six Months) 

 

 

 

 

 

(b) 8 Units (Second Six Months) 

 

Fig. 2. Example of a Chromosome Representation 
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(a) Average Fitness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Percent of Feasible Solutions 

 

Fig. 3. Average Fitness and Percent of Feasible Solutions Produced by DPSO, 

MDPSO and GA for Case Study I 
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(a) Generation Plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Crew Plots 

 

Fig. 4. Generation and Crew Plots during Maintenance Period for Case Study I 
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(a) Reliability Indices   

 

 

 

 

 

 

 

 

 

 

 

 

(b) Off-line Execution Time  

 

Fig. 5. Reliability Indices and Off-line Execution Time Plots for DPSO, MDPSO 

and GA for Fixed Number of 5000 Iterations Over 5000 Trials for Case Study I 
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(a) Generation Plots 
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(b) Maintenance crew Plots  

 

Fig. 6. Generation and Crew Plots during Maintenance for Case Study II 
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(a) Reliability Index Plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Cost versus Reliability Index Plots 

 

Fig. 7. Reliability Index, Cost versus Reliability Index Plots for MDPSO-a and MDPSO-

b for Case Study II and Off-line Execution Time Plot for MDPSO of Case Study I, 

MDPSO-a and MDPSO-b of Case Study II 
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(c) Off-line Execution Time 

 

Fig. 7. Reliability Index, Cost versus Reliability Index Plots for MDPSO-a and MDPSO-

b for Case Study II and Off-line Execution Time Plot for MDPSO of Case Study I, 

MDPSO-a and MDPSO-b of Case Study II (cont.) 
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II. OPTIMAL MAINTENANCE SCHEDULING OF GENERATORS USING  

MULTIPLE SWARMS-MDPSO FRAMEWORK 

 

Y. Yare and G. K. Venayagamoorthy   

Real-Time Power and Intelligent Systems Laboratory, Department of Electrical and 

Computer Engineering, Missouri University of Science and Technology,  

Rolla, MO 65409-0249 USA  

(E-mail: yyqh3@mst.edu & gkumar@ieee.org)  

ABSTRACT: In this paper, a challenging power system problem of effectively 

scheduling generating units for maintenance is presented and solved. The problem of 

generator maintenance scheduling (GMS) is solved in order to generate optimal 

preventive maintenance schedules of generators that guarantee improved economic 

benefits and reliable operation of a power system, subject to satisfying system load 

demand, allowable maintenance window, and crew and resource constraints. Multiple 

swarms concept is incorporated into the modified discrete particle swarm optimization 

(MDPSO) algorithm to form a robust multiple swarms-modified particle swarm 

optimization (MS-MDPSO) algorithm and is suitably applied to solve this GMS problem. 

The performance and effectiveness of the MS-MDPSO algorithm in solving the GMS 

problem is illustrated and compared with the MDPSO algorithm on two power systems, 

the 21-unit test system and 49-unit Nigerian hydrothermal power system. The GMS of 

the two power systems are considered and the results presented shows great potential for 

utility application in their area control centers for effective energy management, short and 

long term generation scheduling, system planning and operation. 

 

INDEX TERMS: Generator maintenance, multiple swarms-modified discrete particle 

swarm optimization, optimal scheduling, reliability index. 

 

NOMENCLATURE  

tAM  Available manpower at period t  

c1 & c2 Cognitive constant and social acceleration constants respectively 

mailto:yyqh3@mst.edu
mailto:gkumar@ieee.org


 42 

d Dimension of the problem 

iD        Duration of maintenance for unit i  

DPSO Discrete particle swarm optimization 

ie         Earliest period for maintenance of unit i  to begin 

ES Evolutionary strategy 

GA Genetic algorithm 

GMS Generator maintenance scheduling 

i        Index of generating units 

I        Set of generating unit indices 

il          Latest period for maintenance of unit i  to end 

j Index of  n multiple swarms 

k Discrete time step 

l Index of  particle in a swarm 

tL         Anticipated load demand for period t  

m Population size of each swarm  

MDPSO Modified discrete particle swarm optimization 

MS-MDPSO Multiple swarms–modified discrete particle swarm optimization   

itM       Manpower needed by unit i  at period t  

rM  Mutation rate 

N       Total number of generating units 

Nc Number of constraint violation 

n Number of multiple swarms  

P t
j  j-th swarm population in time t 

jgdP  j-th swarm global best position for dimension d 

jlbdP  l-th particle best position in j-th swarm for dimension d 

ikP  Generating capacity for unit i in start time period k 

itP       Generating capacity of unit i  in period t  

PSO Particle swarm optimization 

R        Spinning reserve 
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rand, rand1 and  rand2 Random numbers for a uniform distribution in the range of 

[0, 1] 

randn() Gaussian distributed random number with a zero mean and a variance of 1 

Sit Set of start time period 

t         Index of period 

T         Set of indices of periods in planning horizon 

Ti Set of periods when maintenance of unit i may start 

|V1|, |V2| & |V3| Amount of violations of load, maintenance window and crew 

constraints respectively 

Vc Amount of violation of constraint c 

V jld  l-th particle velocity in j-th swarm for dimension d 

winer Inertia weight constant which is a fixed value, linearly decreasing or 

dynamically changing 

c  Weighting coefficient 

1 , 2  & 3  Weighting coefficients of load, maintenance window and crew 

constraints respectively  

X ik  Maintenance start indicator for unit i in start time period k 

X it
 Maintenance start indicator for unit i in period t 

X jld  l-th particle position in j-th swarm for dimension d 

 

1. INTRODUCTION 

Maintenance scheduling of generating units is an important task in power system 

and plays important role in the operation and planning activities of the electric power 

utility. The simultaneous solution of all aspects of the operation and planning scheduling 

problems in the presence of system complexity at different time-scales, different order of 

uncertainties and problems dimensionality is required for the efficient economic 

operation of the utility system.    

Power system equipment are made to remain in good operating conditions by 

regular preventive maintenance. The task of generator maintenance is often performed 

manually by human experts who generate the schedule based on their experience and 
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knowledge of the system, and in such cases there is no guarantee that the optimal or near 

optimal schedule is found. The purpose of maintenance scheduling is to find the sequence 

of scheduled outages of generating units over a given period of time such that the level of 

energy reserve is maintained. This type of schedule is important mainly because other 

planning activities are directly affected by such decisions. Modern power systems have 

witnessed increased demand for electrical energy with a related expansion in system size, 

which leads to higher number of generators and lower reserve margins. The resultant 

effect is the increased complexity of the constrained generator maintenance scheduling 

(GMS) optimization problem for such large power system. Present research efforts 

toward solving the GMS constrained optimization problem can be categorized based on 

the objective function and the type of the problem hyper space [1-10]. Optimization 

methods such as branch and bound technique [3], dynamic programming [4] and integer 

programming [5] were few early techniques that were used to solve simple optimization 

problems. Approximate solution to the constrained GMS problem can be obtained using 

new problem optimization concepts [9-12]. Some of these optimization methods include 

but not limited to applications of probabilistic approach [9], simulated annealing [10], 

decomposition technique [11] and genetic algorithm (GA) [12].  

Bio-inspired and evolutionary techniques have been shown to be very effective 

optimization tools in solving power system problems [13]. Hence their application in 

solving power system optimization problems, such as GMS, unit commitment and 

economic dispatch problems. The multi-species particle swarm optimizer presented in 

[14] extends the original PSO by dividing the particle swarm spatially into a multiple 

cluster called a species in a multi-dimensional search space. Each species explores a 

different area of the search space and tries to find out the global or local optima of that 

area, hence can be used to locate all the global minima of multi-modal functions in 

parallel [14]. Particle population is split into a set of interacting swarms [15]. These 

swarms interact locally by an exclusion parameter and globally through a new anti-

convergence operator [15]. Cooperative particle swarm optimizer is presented in [16] 

where cooperative behavior is used to significantly improve the performance of the 

original PSO algorithm, achieved by using multiple swarms to optimize different 

components of the solution vector cooperatively. Three sub-swarm discrete particle 
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swarm optimization algorithm is presented in [17], where particles are divided into three 

sub-swarms. One sub-swarm flies toward global best position, the second sub-swarm 

flies in the opposite direction, while the third sub-swarm flies randomly around the global 

best position [17]. A strategy that allocates an appropriate number of swarms as required 

to support convergence and diversity criteria among the swarms is presented in [18]. The 

multiple swarms in [18] are encouraged to explore different regions, and their collective 

efforts and knowledge are shared among the swarms, thus the diversity is preserved.  

PSO approaches based on some form of implicit or explicit grouping of particles into 

sub-swarms is presented in [19]. Two main approaches of sub-swarms PSO algorithms in 

[19] are the cooperative and competitive PSO algorithms. The cooperative PSO algorithm 

has some form of cooperation existing between sub-swarms. The cooperation is mainly in 

terms of exchanging information about best positions found by the different groups. On 

the other hand, the competitive PSO algorithm is where the particles are in direct 

competition with other particles. Multi-phase PSO algorithm presented in [20-21] divides 

the main swarm of particles into subgroups, where each subgroup performs a different 

task, or exhibits a different behavior. The behavior of a group, or a task performed by a 

group usually changes over time in response to the group‘s interaction with the 

environment, different groups of particles have trajectories that proceed along trajectories 

with different goals in different phases of the algorithm [20-21]       

Capabilities of discrete particle swarm optimization (DPSO) algorithm have been 

enhanced with evolutionary strategies (ESs) to produce a modified discrete particle 

swarm optimization (MDPSO) in [22]. Detail comparison of three algorithms – DPSO, 

MDPSO and GA and their application to solving the power system GMS problem are 

also presented in [22], which showed that MDPSO produced better results compared with 

DPSO and GA on similar benchmark test systems.  

 The primary contributions of this paper are: 

 Solving the challenging GMS problem for 21-unit test system and 49-unit Nigerian 

hydrothermal power system using enhanced evolutionary algorithms.  

 Improving the quality of the maintenance schedules generated during GMS in terms 

of reliability and energy cost over what was achieved by MDPSO [22] algorithm. 

This improvement is achieved through the use of the multiple swarms concept on the 
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MDPSO algorithm referred to by the authors as the multiple swarms-modified 

discrete particle swarm optimization (MS-MDPSO). The MS-MDPSO algorithm 

takes advantage of maximizing benefits arising from a balanced trade-off of both the 

exploitation abilities of each n multiple swarms of population sizes m1, m2, …,mj, 

…,mn (where m1= m2=…=mj=…=mn =m is been used for this study) and the 

exploration of the n multiple swarms put together, and then evolving a single global 

best solution from a set of n global best solutions obtained from n multiple swarms.  

 The performance of the MS-MDPSO algorithm is illustrated and compared with the 

MDPSO [22] algorithm for solving the GMS problem of the two practical power 

systems. 

The rest of the paper is organized as follows: The mathematical problem 

formulation is presented in Section 2. Section 3 describes the concept of the multiple 

swarms-MDPSO algorithm. Implementation of MS-MDPSO for GMS and typical results 

are presented in Section 4. Finally, the conclusions are presented in Section 5.  

 

2. PROBLEM FORMULATION  

The purpose of maintenance operation is to extend equipment lifetime, or at least 

the mean time to the next failure whose repair may be costly. It is expected that effective 

maintenance policies can reduce the frequency of service interruptions and the many 

undesirable consequences of such interruptions. Maintenance clearly affects components 

and system reliability: if too little is done, this may result in an excessive number of 

costly failures and poor system performance, and hence reliability is degraded, when 

done too often, reliability may improve but the cost of maintenance will sharply increase. 

In a cost-effective scheme, reliability and cost of maintenance must be balanced. 

Suppose Ti T is the set of periods when maintenance of unit i may start, 

1: iiii DlteTtT  for each i. 

Define 

 

otherwise0

                                         

periodinemaintenancstartsunitif1 ti

X it              (1)    
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to be the maintenance start indicator for unit i in period t. Let Sit be the set of start time 

periods k such that if the maintenance of unit i starts at period k that unit will be in 

maintenance at period t, tkDtTkS iiit 1: . Let It be the set of units which are 

allowed to be in maintenance in period t, it TtiI : . 

The two main categories of objective functions in solving GMS problem are 

based on reliability and economic cost [2], [22-24]. The reliability criterion of optimizing 

generation over the entire operational period of study is considered for solving the GMS 

problem in this paper. The net reserve of the system during any period t is the total 

installed capacity from all generating units 
tIi itP  minus the reserve loss due to the pre-

scheduled outages as a result of planned generator maintenance 
t itIi Sk ikik PX  and the 

peak load forecast for that maintenance period (Lt). Hence the component 

t t itIi Ii Sk tikikit LPXP   represents the net reserve level in time period t.  Minimizing 

the sum of the squares of the reserves over the entire operational planning period 

enhances reduction in large variations of reserve and better long-term reserve capacity 

planning in the presence of unit maintenance. Therefore, the objective function to be 

minimized can be expressed by (2). 

 

t i
t

Ii
it

Sk
t

L
ik

P
ik

X
it

P

it
X
Min

2

                                    (2) 

 

The objective function in (2) is minimized subject to the following unit and 

system constraints given by (3), (4) and (5). Transmission loss and network limitations 

constraints are not considered for simplicity, but could be flexibly incorporated. 

 Load and spinning reserve constraints – this specifies that the total capacity of the 

units running at any interval should not be less than forecasted load and spinning 

reserve for that interval. 



 48 

 

t itIi Sk
tikik

i
it LPXP       ,t                                           (3) 

 

 Maintenance window and sequence constraints – this defines the starting of 

maintenance at the beginning of an interval and finishing at the end of the same 

interval. The maintenance cannot be aborted or finished earlier than scheduled. 

 

1

iTt
itX       i ,                                                           (4) 

 

 Crew and resource constraints – this specifies that for each maintenance period, the 

number of people to perform maintenance schedule cannot exceed the available crew. 

It also defines manpower availability and the limits on the resources/tools needed for 

maintenance activity at each time period. 

 

t itTi
t

Sk
ikik AMMX       ,t                                       (5) 

 

Penalty cost given by (6) is added to the objective function in (2) if the schedule 

cannot satisfy the load, maintenance window and crew constraints. The penalty value for 

each constraint violation |V1|, |V2| and |V3| is proportional to the amount by which the 

constraint is violated. 

 

332211

1

cos VVVVtPenalty
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The weighting coefficients 1 , 2  & 3  are chosen in such a way that the 

violation of harder constraints gives a greater penalty value than for softer constraints. 

Typically the weighting coefficients are in the range 0.2 to 1.2. 
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3. MULTIPLE SWARMS-MDPSO ALGORITHM  

Subsection 3.1 presents the MDPSO algorithm, while subsection 3.2 presents the 

design details of the MS-MDPSO algorithm whose flowchart is shown in Fig. 1 (a) and 

(b).  

3.1. MDPSO  

The modified discrete particle swarm optimization (MDPSO) algorithm presented 

in [19], [22] is an enhancement of DPSO algorithm with the inclusion of an evolutionary 

strategy based mutation operator similar to the one used in genetic algorithm. The 

MDPSO algorithm is applied in the update procedure of the velocities and positions of 

the particles [22]. 

Let X and V denote a particle‘s coordinates (position) and its corresponding flight 

speed (velocity) in a search space, respectively. Therefore, the lth particle is represented 

as Xld = (Xl1, Xl2,…, XlN) in the d-dimensional space. The best previous position of the lth 

particle, referred to as pbest, is recorded and represented as Plbd = (Plb1, Plb2,…, PlbN). The 

index of the best particle among all the pbest in the swarm is referred to as the gbest and 

is represented by Pgd.  The rate of the velocity for particle lth is represented as Vld = (Vl1, 

Vl2,…,VlN). The new velocity and position for each particle i in dimension d is determined 

according to the velocity and position update equations given by (7) and (8) respectively. 

The inertia weight winer is updated according to (9). 

 

  
11111)( 2211 tXtPrandctXtPrandctVwroundtV ldgbldlbdldinerld

      (7) 
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                                (8)    
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minmax
max                                  (9) 

 

A mutation operator is introduced into the DPSO algorithm above, so that the 

swarm‘s best position in dimension d is updated according to (10). Supposing 
gdP is the 

particle chosen with a random number less than a predefined mutation rate (for 

0<mutation rate<0.3), then the mutation equation is given by (10).
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)2/)(( gdgdgd PrandnPP                                               (10)  

         where d = 1, 2, …, N is the problem dimension. 

 

 3.2. MS-MDPSO  

The concept of multiple swarms in modified discrete particle swarm optimization 

(MDPSO) to explore the problem space together for the purpose of finding optimal 

solutions is considered in this paper. Multiple swarms in MDPSO select their own global 

best leaders to lead and influence their movement toward the best solution found so far. 

Information shared within a swarm and among swarms is portrayed in the multiple 

swarms‘ movement. This concepts produce an improved and efficient hybrid algorithm 

referred to in this paper, as the multiple swarms-modified discrete particle swarm 

optimization (MS-MDPSO) algorithm and is applied to solving the GMS problem as 

illustrated in the flowchart of Fig. 1 (a) and (b).  

The MS-MDPSO algorithm takes advantage of maximizing benefits arising from 

a balanced trade-off of both the exploitation abilities of each n multiple swarms of 

population sizes m1, m2, …,mj, …,mn (where m1= m2=…=mj=…=mn =m is been used for 

this study) and the exploration of the n multiple swarms put together, and then evolving a 

single global best solution from a set of n global best solutions obtained from n multiple 

swarms. It is this newly found single global best solution that is used to generate the 

optimal solution (optimal maintenance schedules) for this GMS problem as depicted in 

Fig. 1 (a) and (b). 

Particle 
k

jlX  (where j=1, 2,…, n, and l=1, 2,…, m) in each of the n multiple 

swarms of population kP1 ,  kP2 , …, k

jP , …, k

nP  with sizes m1, m2, …, mj, …, mn 

respectively can be modeled at discrete time k by (11). 
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 where m1= m2=…=mj=…=mn =m for this study.      
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The MDPSO velocity and position update equations given by (7) and (8) 

respectively are modified and used in the MS-MDPSO algorithm to update the particles‘ 

velocities and positions in each n multiple swarms as shown in (12)-(13). 
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With w =0.8, c1=2 and c2=2, the particles have good global searching abilities and 

converge to the global optimal position.  

For mutation rate that lies within the range (0 < Mr < 0.3), the mutation equation 

of the chosen particle is modified from (10) and given by (14)-(15). 

 

rMrandIf  

)/)1(()1()1( gbjgdjgdjgd kPrandnceilkPkP                      (14)                                                  

else  

                         )`1()1( kPkP jgdjgd
               (15) 

   end   

 

Where βgb can be either dynamically changing or fixed, and controls the mutation 

process. The mutation operation increases the diversity of the population by preventing 

the particles from moving too close to each other, thus converging prematurely to local 

optima. 

 

4. IMPLEMENTATION OF MS-MDPSO FOR GMS AND RESULTS   

Two case studies are presented in this section to demonstrate the application and 

performance of the MS-MDPSO algorithm compared with MDPSO algorithm for solving 

the GMS problem of two practical power systems.  
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4.1. GMS Implementation with MS-MDPSO 

The global best solution is the evolved single best solution from a set of n global 

best solutions of the n multiple swarms. The performances of the n global best solutions 

are measured by comparing their fitness evaluations against each other. The resultant 

solution with the best fitness emerges as the single global best solution of the n multiple 

swarms. The global best solution is then used to generate the optimal maintenance 

schedules for all the generating units. It is also used to determine the optimal 

maintenance start period X ik  for each generating unit i, and when applied to (3) and (5) it 

produces the optimal available generation from all running units during maintenance and 

crew requirement for generators undergoing maintenance respectively over a 

maintenance period of fifty two weeks. 

4.2. 21-Unit Test System 

A test system comprising twenty one generating units [2], [4], [22-24] with 

installed capacity, units‘ maintenance duration (weeks) and anticipated manpower 

requirement over a maintenance planning period of fifty two weeks is used to 

demonstrate the performance of the MS-MSPSO algorithm for the GMS problem. Table 

1 shows the unit rating, allowed maintenance period, maintenance duration and technical 

manpower/crew requirement by generating units during each maintenance week. The 

maintenance outages for the generating units are scheduled to minimize the sum of 

squares of reserves and meet the maintenance window constraint (each unit must be 

maintained exactly once every fifty two weeks without interruption), the system peak 

load demand (4739MW), and manpower/crew requirements to carry out maintenance 

tasks (there is maximum of thirty five in total of technical manpower/crews available 

each week for the maintenance work). 

4.2.1. Test, Results and Discussion 

Figures 2 (a) and (b) show typical available generation and maintenance crew 

plots respectively for the 21-unit test system using the MDPSO and MS-MDPSO 

algorithms. 
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TABLE 1 

 Data for the 21-Unit Test System 

Unit
Capacity 

(MW)

Allowed 

maintenance 

period

Maintenance 

duration 

(weeks)

Manpower required by units 

for each maintenance week

1 555 7 10+10+5+5+5+5+3

2 180 2 15+15

3 180 1 20

4 640 3 15+15+15

5 640 3 15+15+15

6 276 10 3+2+2+2+2+2+2+2+2+3

7 140 4 10+10+5+5

8 90 1 20

9 76 2 15+15

10 94 4 10+10+10+10

11 39 2 15+15

12 188 2 15+15

13 52 3 10+10+10

14 555 5 10+10+10+5+5

15 640 5 10+10+10+10+10

16 555 6 10+10+10+5+5+5

17 76 3 10+15+15

18 58 1 20

19 48 2 15+15

20 137 1 15

21 469 4 10+10+10+10

1-
26

 w
ee

ks
27

-5
2 

w
ee

ks

 

 

It can be deduced from these figures and the typical maintenance schedules 

presented in Table A.1 of the Appendix that using the MDPSO algorithm, weeks 23 and 

35 indicate periods with low maintenance task (no unit is scheduled for maintenance) 

resulting in comparatively high available generation on same weeks 23 and 35. Similarly, 

using the MS-MDPSO algorithm, weeks 30 and 36 indicate periods with low 

maintenance activity (no unit is scheduled for maintenance) resulting in comparatively 

high available generation on same weeks 30 and 36. The weekly manpower requirement 

depicted in Fig. 2 (b) using the MS-MDPSO algorithm clearly satisfies the crew 

constraint expressed in (5). This is not the case with the MDPSO algorithm, the 8th week 

experienced lowest drop in available generation (shown in Fig. 2(a)) due to heightened 

maintenance activities carried out simultaneously on units 3, 6 and 11 (shown in Table 

A.1 of the Appendix), which also violated the manpower/crew constraint in (5). 

However, both the MDPSO and MS-MDPSO algorithms produced available generation 

that satisfies the constraint given by (3) as shown in Fig. 2 (a).  
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Figure 2 (c) shows typical convergence of the objective function given in (2) for 

the 21-unit test system using MDPSO and MS-MDPSO algorithms, obtained after 100 

iterations. The figure shows that the minimization of the objective function converged to 

13863021.02 and 13749264.32 using the MDPSO and MS-MDPSO algorithms 

respectively. A lower value of the objective function is preferable for better economic 

benefit, and is also a guarantee for more effective maintenance schedules produced by the 

MS-MDPSO algorithm.  

Table 2 presents the statistical comparison of convergence of the objective 

function for the 21-unit test system using the MDPSO and MS-MDPSO algorithms, 

obtained after 100 iterations of 5000 trials. The table shows optimal numerical values of 

the objective function produced by MDPSO and MS-MDPSO to be 13863021.02 and 

13749264.32 respectively, representing 113756.70 (0.82%) reduction. This indicates 

improvement in minimizing the objective function given by (2) using MS-MDPSO 

compared with MDPSO algorithm, especially in cases with large variations of system net 

reserve. It also represents improvement in the quality of maintenance schedules generated 

by the MS-MDPSO algorithm compared with the MDPSO algorithm. The statistical 

results presented in Table 2 for the 21-unit test system shows, generally, that the MS-

MDPSO algorithm produced better maintenance schedules compared with the MDPSO 

algorithm for the same GMS problem. 

  

TABLE 2  

Statistical Comparison of Convergence of the 

Objective Function for the 21-Unit Test System 

MDPSO MS-MDPSO

Minimum 13863021.02 13749264.32

Maximum 14132336.49 14015289.69

Mean 13984883.84 13870778.81

Standard deviation ±11943 ±11429

Algorithm

 

 

Table 3 and Fig. 2 (d), (e), and (f) further illustrates the design and application of 

MS-MDPSO algorithm for solving the GMS problem by presenting typical evolution of 

single global best solution (Gbest) from a set of five global best solutions (gbest1, gbest2, 
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gbest3, gbest4 and gbest5) obtained from five multiple swarms (n=5) over five trials for 

the 21-unit test system presented in subsection 4.2.  Table 3 and Fig. 2 (e) shows that for 

the 21-unit test system, the Gbest (consisting of an array of 100 global best solutions) 

obtained for 100 iterations over the first trial is primarily composed of gbest1  (33 global 

best solutions from swarm #1), gbest2  (28 global best solutions from swarm #2), gbest3  

(22 global best solutions from swarm #3), gbest4  (14 global best solutions from swarm 

#4) and gbest5  (2 global best solutions from swarm #5). Further, Gbest feasible solutions 

obtained over five trials are presented in Table 3 and depicted in Fig. 2 (f). 

 

TABLE 3 

 Gbest Solution for the 21-Unit Test System  

using MS-MDPSO 

#1             

(Iterations)

#2             

(Iterations)

#3             

(Iterations)

#4             

(Iterations)

#5             

(Iterations)

Total        

(%)

gbest 1 33 2 4 48 8
95                

(19.0%)

gbest 2 28 55 19 24 61
187             

(37.4%)

gbest 3 22 40 4 14 16
96               

(19.2%)

gbest 4 15 2 2 10 12
41                 

(8.2%)

gbest 5 2 1 71 4 3
81                 

(16.2%)

Gbest 100 100 100 100 100
500 

(100%)

Number of trials

21-unit test system

 

 

4.3. Nigerian Grid System 

Table 4 presents data of the Nigerian grid system comprising a total of forty nine 

functional generating units spread across seven generating stations located at: AFAM, 

DELTA, EGBIN, SAPELE, JEBBA, KAINJI and SHIRORO [22] as depicted in Fig. 3. 

The table shows the type of power station, name of power station, plant number, name of 

turbine unit, type of turbine, unit‘s actual base case rating, allowed maintenance period, 

maintenance duration and technical manpower/crew requirement by generating unit for 

each maintenance week.  All the generating units at AFAM and DELTA stations as well 

as eight generating units at EGBIN station are gas turbines (GTs), while all generating 



 56 

units at SAPELE station and other six generating units at EGBIN station are steam 

turbines (STs). Also the four thermal plants utilize natural gas supplied from the Nigerian 

Gas Company (NGC) as their raw material input. The three hydro stations (Hs) namely 

JEBBA, KAINJI and SHIRORO are located in Northwestern Nigeria. Well over two 

decades of operational experience and available historical data on hydrological conditions 

reveal that inflow variation profile at each hydro station location, by and large affects the 

generated power output of each hydro plant [22]. The maintenance window and sequence 

constraints of the three hydro plants are greatly influenced by the trend of the inflow into 

these hydrological areas. This result in two distinct case studies namely, case a: MDPSO-

a and MS-MDPSO-a and case b: MDPSO-b and MS-MDPSO-b described below. 

4.3.1. Case a: MDPSO-a and MS-MDPSO-a 

The operational data for the Nigerian grid system used to illustrate the 

effectiveness and performance of the proposed MS-MDPSO algorithm and compared 

with MDPSO algorithm is shown in Table 1. The 49 generating units of the Nigerian data 

need to be scheduled for maintenance over a 52 week maintenance planning period. The 

allowed period for maintenance, maintenance duration and the manpower required for 

each maintenance week are also shown in Table 1. Thermal and steam turbines could be 

shut down for maintenance only when the hydro plants are operating at their maximum 

generation, which tallies with the months of January to April and November to December 

each operational year. On the other hand, the hydro plants can be scheduled for 

maintenance during low water level corresponding to the months of May to October, the 

thermal plants supports the hydro generation within these periods and should therefore 

not be scheduled for  shutdown maintenance. 5% increased load variation is allowed 

during the hot season of March to July each operational year. 

  4.3.2. Case b: MDPSO-b and MS-MDPSO-b 

The economic implication in terms of reduced energy cost and increased 

reliability is enhanced by a logical and appropriate combination of thermal and hydro 

plants for maintenance within the period of low water level from May to October. 
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TABLE 4 

 Power Station, Maintenance and Manpower Data for the 49 Generating  

Units in the Nigerian Grid System 

Name of 

power station
S/N

Plant 

number

Name of 

turbine unit

Type of 

turbine

Base case 

rating 

(MW)

1 3 EGBINST1 ST 190.0 5 6+5+5+4+2

2 3 EGBINST2 ST 190.0 5 6+5+5+4+2

3 3 EGBINST3 ST 190.0 5 6+5+5+4+2

4 3 EGBINST4 ST 190.0 5 6+5+5+4+2

5 3 EGBINST5 ST 190.0 5 6+5+5+4+2

6 3 EGBINST6 ST 190.0 5 6+5+5+4+2

7 4 EGBINGT1 GT 220.0 2 4+3

8 4 EGBINGT2 GT 30.0 2 4+3

9 4 EGBINGT3 GT 30.0 2 4+3

10 4 EGBINGT4 GT 30.0 2 4+3

11 4 EGBINGT5 GT 30.0 2 4+3

12 4 EGBINGT6 GT 30.0 2 4+3

13 4 EGBINGT7 GT 30.0 2 4+3

14 4 EGBINGT8 GT 30.0 2 4+3

15 5 SAPELST1 ST 0.0 4 4+3+3+2

16 5 SAPELST2 ST 0.0 4 4+3+3+2

17 5 SAPELST3 ST 0.0 4 4+3+3+2

18 5 SAPELST4 ST 0.0 4 4+3+3+2

19 5 SAPELST5 ST 0.0 4 4+3+3+2

20 5 SAPELST6 ST 85.3 4 4+3+3+2

21 6 JEBBGH1 H 88.3 4 5+4+3+2

22 6 JEBBGH2 H 88.3 4 5+4+3+2

23 6 JEBBGH3 H 88.3 4 5+4+3+2

24 6 JEBBGH4 H 88.3 4 5+4+3+2

25 6 JEBBGH5 H 88.3 4 5+4+3+2

26 6 JEBBGH6 H 88.3 4 5+4+3+2

27 7 KAING05 H 112.5 4 5+5+4+3

28 7 KAING06 H 0.0 4 5+5+4+3

29 7 KAING07 H 0.0 3 4+3+2

30 7 KAING08 H 0.0 3 4+3+2

31 7 KAING09 H 0.0 3 4+3+2

32 7 KAING10 H 76.5 3 4+3+2

33 7 KAING11 H 90.0 4 5+4+3+3

34 7 KAING12 H 0.0 4 5+4+3+3

35 8 SHIRGH1 H 249.0 2 4+3

36 8 SHIRGH2 H 249.0 2 4+3

37 8 SHIRGH3 H 140.0 2 4+3

38 8 SHIRGH4 H 249.0 2 4+3

39 1 AFAMGT19 GT 138.0 5 5+5+4+3+3

40 1 AFAMGT20 GT 138.0 5 5+5+4+3+3

41 2 DELTAG03 GT 19.6 2 4+3

42 2 DELTAG04 GT 19.6 2 4+3

43 2 DELTAG06 GT 19.6 2 4+3

44 2 DELTAG07 GT 19.6 2 4+3

45 2 DELTAG08 GT 0.0 4 4+4+3+3

46 2 DELTAG15 GT 85.0 4 4+4+3+3

47 2 DELTAG16 GT 85.0 4 4+4+3+3

48 2 DELTAG17 GT 85.0 4 4+4+3+3

49 2 DELTAG18 GT 85.0 4 4+4+3+3
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*PS- Power station, GT- Gas turbine, ST- Steam turbine, H- Hydro. 

 

These are investigated in this case study. Only five of the thermal plants, namely 

AFAMG 19, AFAMG 20, EGBINST 1, EGBINST 2 and SAPELEST 6 are allowed to be 

scheduled for maintenance along with the hydro plants within the period of low water 
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level.  There is 5% increased load variation allowed during the hot season of March to 

July each operational year 

4.3.3. Test, Results and Discussion 

Table A.2 in the Appendix presents the generator schedules obtained by case a: 

MDPSO-a and MS-MDPSO-a, while the schedules produced by case b: MDPSO-b and 

MS-MDPSO-b are shown in Table A.3. Notice that both MDPSO-b and MS-MDPSO-b 

of case b in Table A.3 generate similar maintenance schedules for weeks 14, 15, 16 and 

17. 

Table 5 presents the annual generation, load demand and the cost in Nigerian 

Naira for purchasing energy form Independent Power Producers (IPPs). The resultant 

suppressed loads as a consequence of scheduled maintenance work are also shown in 

Table 5. The suppressed loads can be catered for by purchase of additional energy from 

IPPs, or other sources. The annual base case generation for Nigeria cannot meet the 

annual load demand due to inadequate generation from some generating units. These 

units‘ energy contributions to the national grid are marginally low and are represented 

with a zero generation as shown in Table 4. This scenario translates to frequent load 

shedding over the entire maintenance planning period of fifty two weeks. Table 5 shows 

94.35% and 94.30% increases in suppressed loads due to scheduled maintenance 

planning using MDPSO-a and MS-MDPSO-a respectively. These translates to 

13,524,336,000.00Naira/year and 13,517,280,000.00Naira/year as costs of purchasing 

additional energy from IPPs to supplement and meet the rising energy demand 

occasioned by  the increases in suppressed loads due to scheduled maintenance. Table 5 

shows that case MS-MDPSO-a produces a 0.05% reduction in suppressed load increase 

compared to case MDPSO-a under scheduled shutdown maintenance.  

Similarly, Table 5 also shows 94.32% and 94.27% increases in suppressed load 

occasioned by scheduled maintenance planning using MDPSO-b and MS-MDPSO-b 

respectively. These infer 13,520,304,000.00Naira/year and 13,513,248,000.00Naira/year 

as costs of purchasing additional energy from IPPs to satisfy the rising energy demand 

caused by increases in suppressed loads due to scheduled maintenance. Case MS-

MDPSO-b produces a 0.05% reduction in suppressed load increase compared to case 

MDPSO-b under scheduled maintenance. These reductions translate to a huge annual 
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savings of energy to be purchased in order to service the suppressed loads. The 

percentages may be small, but they are worth noting considering their impacts over an 

entire operational year, and could form basis for good planning and better energy 

management. Saved cost of fuel for units scheduled for maintenance was not considered 

in this study. 

 

TABLE 5 

 Annual Generation, Load Demand and Cost of  

Purchasing Energy 

Annual 

generation - 

without 

maintenance

Annual 

generation - 

with scheduled 

shutdown 

maintenance 

Annual load 

demand      

Annual 

suppressed load 

- without 

maintenance

Annual 

suppressed 

load - with 

scheduled 

shutdown 

maintenance

Increase in 

suppressed load 

due to 

maintenance 

Mega watt 

hour (MWh)
29,601,936.00 27,348,048.00 31,990,896.00 2,388,960.00 4,643,016.00 94.35%

191,945,376.00 14,333,760.00 27,858,096.00 13,524,336.00

Mega watt 

hour (MWh)
29,601,936.00 27,349,056.00 31,990,896.00 2,388,960.00 4,641,840.00 94.30%

191,945,376.00 14,333,760.00 27,851,040.00 13,517,280.00

Mega watt 

hour (MWh)
29,601,936.00 27,348,552.00 31,990,896.00 2,388,960.00 4,642,344.00 94.32%

191,945,376.00 14,333,760.00 27,854,064.00 13,520,304.00

Mega watt 

hour (MWh)
29,601,936.00 27,349,728.00 31,990,896.00 2,388,960.00 4,641,168.00 94.27%

191,945,376.00 14,333,760.00 27,847,008.00 13,513,248.00

Case MS-MDPSO-b

Cost of purchasing energy (X 1000 Naira/year)

Case MDPSO-a

Cost of purchasing energy (X 1000 Naira/year)

Case MDPSO-b

Cost of purchasing energy (X 1000 Naira/year)

Case MS-MDPSO-a

Cost of purchasing energy (X 1000 Naira/year)

 

*Cost of energy in Nigeria: 6 Naira/kWh and 150 Naira is equivalent to 1 US Dollar 

 

Figure 4 (a) shows the available generation for case a: MDPSO-a and MS-

MDPSO-a, while the available generation for case b: MDPSO-b and MS-MDPSO-b are 

presented in Fig. 4 (b). Presented in the two figures are also the maximum generation of 

3388MW and a 5% load variation within the hot season of March to July each year. For 

cases MDPSO-a and MS-MDPSO-a, between the months of May and October when the 

hydro plants are undergoing maintenance, the major energy generation is supplied from 

the thermal plants since they are not scheduled for maintenance within this period. Their 

energy generation curves are not spread evenly over the entire maintenance period, which 

is interpreted as resulting to an unpredictable energy profile which causes large and 

sudden variations in loads requiring shedding. Cases MDPSO-b and MS-MDPSO-b 
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however, generate evenly distributed generation throughout the year under maintenance, 

with an average generation and standard deviation of 3130.557±79.781MW and 

3130.692±78.125MW respectively. While cases MDPSO-a and MS-MDPSO-a produce 

average generation and standard deviation of 3130.500±121.075MW and 

3130.610±119.559MW respectively.  

Figures 4 (c) and (d) presents the corresponding crew availability needed to 

carryout the scheduled shutdown maintenance of the generating units for case a: 

MDPSO-a and MS-MDPSO-a, and case b: MDPSO-b and MS-MDPSO-b respectively. 

Case b: MDPSO-b and MS-MDPSO-b scheduling generate more even crew distribution 

over the maintenance period compared with case a: MDPSO-a and MS-MDPSO-a. Both 

cases however satisfied the crew constraint placed at thirty. Cases MDPSO-a and MS-

MDPSO-a have an average crew requirement and standard deviation of 12±5.438 and 

12±4.769 respectively, while cases MDPSO-b and MS-MDPSO-b require 12±3.658 and 

12±3.567 respectively. 

Table 6 presents the cost of improving ‗reliability index‘ (RI) for case a: MDPSO-

a and MS-MDPSO-a and case b: MDPSO-b and MS-MDPSO-b without maintenance and 

with scheduled shutdown maintenance. The RI is computed by taking the minimum of 

the ratio of available generation to load demand over 5000 trials and the entire 

operational period [22] as given by (16).  
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                  (16) 

 

Table 6 shows that case MS-MDPSO-a produces schedules with better RI 

compared with case MDPSO-a, while case MS-MDPSO-b produces improved RI over 

case MDPSO-b under scheduled shutdown maintenance for 100 iterations of 5000 trials. 

Further experiments for 5000 iterations of 5000 trials reveals RIs of 0.76, 0.769, 0.78 and 

0.786 for cases MDPSO-a, MS-MDPSO-a, MDPSO-b and MS-MDPSO-b respectively. 

The costs for 0.89 and 1 RIs under maintenance is seen to be the least for case MS-

MDPSO-b and the highest for case MDPSO-a. These numerical RIs suggest that the 
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Nigerian power system is more reliable when this long-term maintenance planning is 

based on MS-MDPSO algorithm compared with MDPSO algorithm. It also imply 

enhanced capability of long-term predictability of generation and manpower/crew 

requirement needed for maintenance over the entire maintenance horizon using MS-

MDPSO algorithm compared with MDPSO algorithm. 

 

TABLE 6 

 Cost of Improving the Reliability Index   

Reliability index 0.89 1 0.752 0.89 1

Cost  (x1000 Naira) 0 14,333,760.00 0 13,524,336.00 27,858,096.00

Reliability index 0.89 1 0.761 0.89 1

Cost  (x1000 Naira) 0 14,333,760.00 0 13,517,280.00 27,851,040.00

Reliability index 0.89 1 0.766 0.89 1

Cost  (x1000 Naira) 0 14,333,760.00 0 13,520,304.00 27,854,064.00

Reliability index 0.89 1 0.772 0.89 1

Cost  (x1000 Naira) 0 14,333,760.00 0 13,513,248.00 27,847,008.00

Case MS-MDPSO-b

Case MDPSO-b

Case MS-MDPSO-a

Without maintenance With scheduled shutdown maintenance

Case MDPSO-a

 

 

Figures 5 (a) and (b) show the plots of RIs versus iterations for case a: MDPSO-a 

and MS-MDPSO-a, and case b: MDPSO-b and MS-MDPSO-b respectively during 

shutdown maintenance period, compared against the maximum RI of 0.89 representing a 

case without any ongoing maintenance work taking place over a period of fifty two 

weeks. The plots show that case MS-MDPSO-b generate the best RI of 0.772 while case 

MDPSO-a produce the worst RI of 0.752 after 100 iterations of 5000 trials.  

Figures 5 (c) and (d) present the plots of cost of purchasing energy versus the RI 

for case a: MDPSO-a and MS-MDPSO-a, and case b: MDPSO-b and MS-MDPSO-b 

respectively. It can be seen from the figure that at any RI, the corresponding energy cost 

for case MS-MDPSO-a is lower compared with case MDPSO-a, and similarly case MS-

MDPSO-b produce lower energy cost to be purchased compared with case MDPSO-b.  

On the overall, at any energy cost case MS-MDPSO -b gives the best RI compared with 

either MDPSO-b, MS-MDPSO-a or MDPSO-a. Without maintenance for the two cases, 

there is 14,333,760,000.00 Naira to be spent on purchase of energy if a RI of 1 is 
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desirable, otherwise the RI simply remains at 0.89 with zero cost with no purchase of 

energy as shown in Table 6.  In the absence of any ongoing maintenance work, the 

system has higher RI than the two cases considered during scheduled shutdown 

maintenance, and there may not be need to spend financial resources on energy purchases 

as a consequence of maintenance actions. 

Figs. 6 (a) and (b) shows typical convergence of the objective function for the 

Nigerian power system obtained after 100 iterations of 5000 trials. The converged results 

clearly present minimization of the objective function given by (2). The minimized 

objective function produced using Case a: MDPSO-a and MS-MDPSO-a are 

33000504.15 and 32913169.25, respectively, as shown in Fig. 6 (a). Similarly, the 

minimized objective function produced using Case b: MDPSO-b and MS-MDPSO-b are 

31550689.31 and 31416025.42 respectively as shown in Fig. 6 (b). The optimization 

process demonstrates the capabilities of the MDPSO and MS-MDPSO algorithms in 

minimizing large variations of system net reserve in case they occur.    

Table 7 shows the statistical comparison of convergence of the objective function 

given by (2) for the Nigerian power system using Case a: MDPSO-a and MS-MDPSO-a 

and Case b: MDPSO-b and MS-MDPSO-b described in subsections 4.3.1 and 4.3.2, 

respectively, obtained after 100 iterations of 5000 trials.  The table shows that for Case a, 

the minimized numerical values of the objective function produced by MDPSO-a and 

MS-MDPSO-a are 33000504.15 and 32913169.25, respectively, representing 87334.90 

(0.26%) reduction. Similarly, for Case b, the minimized numerical values of the objective 

function produced by MDPSO-b and MS-MDPSO-b are 31550689.31 and 31416025.42 

respectively, representing 134663.89 (0.42%) reduction. The results indicate that better 

and enhanced optimization is achieved with the MS-MDPSO compared with MDPSO for 

both Cases a and b. The best optimization result of 31416025.00 is obtained with the MS-

MDPSO-b while the worst optimization result of 33000504.00 is obtained with the 

MDPSO-a. The results also imply that better maintenance schedules are generated by the 

MS-MDPSO-b. Both MDPSO and MS-MDPSO algorithms however, produce optimal 

schedules that utilizes every allowable maintenance week of the entire fifty two weeks as 

shown in Tables A.2 and A.3 of the Appendix.  
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The results presented for this 49-unit Nigerian hydrothermal power system shows, 

generally, that the MS-MDPSO algorithm produces better maintenance schedules 

compared with the MDPSO algorithm for this GMS problem.  

 

TABLE 7 

 Statistical Comparison of Convergence of the Objective Function 

for the Nigerian Power System 

MDPSO-a MS-MDPSO-a MDPSO-b MS-MDPSO-b

Minimum 33000504.15 32913169.25 31550689.31 31416025.42

Maximum 33163777.44 33068250.25 31686766.81 31591144.36

Mean 33106214.39 32996982.49 31597889.45 31477710.25

Standard deviation ±45580 ±42710 ±42630 ±41890

Algorithm

Case a Case b

 

 

Table 8, Fig. 2 (d), Fig. 6 (c) and (d) further illustrates the design and application 

of MS-MDPSO algorithm for solving the GMS problem by presenting typical evolution 

of single global best solution (Gbest) from a set of five global best solutions (gbest1, 

gbest2, gbest3, gbest4 and gbest5) obtained from five multiple swarms (n=5) over five 

trials for the 49-unit Nigerian power system presented in subsection 4.3. Table 8 and Fig. 

6 (c) shows that for the 49-unit Nigerian power system, the Gbest (consisting of an array 

of 100 global best solutions) obtained for 100 iterations over the first trial is composed of 

gbest1  (34 global best solutions from swarm #1), gbest2  (11 global best solutions from 

swarm #2), gbest3  (9 global best solutions from swarm #3), gbest4  (5 global best 

solutions from swarm #4) and gbest5  (41 global best solutions from swarm #5). Gbest 

feasible solutions obtained over five trials are also presented in Table 8 and depicted in 

Fig. 6 (d). 
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TABLE 8 

 Gbest Solution for the 49-Unit Nigerian Power System  

using MS-MDPSO 

#1             

(Iterations)

#2             

(Iterations)

#3             

(Iterations)

#4             

(Iterations)

#5             

(Iterations)

Total             

(%)

gbest 1 34 45 1 46 49
175                      

(35%)

gbest 2 11 9 24 5 35
84                          

(16.8%)

gbest 3 9 29 2 32 13
85                               

(17.0%)

gbest 4 5 6 48 9 1
69                               

(13.8%)

gbest 5 41 11 25 8 2
87                                 

(17.4%)

Gbest 100 100 100 100 100
500 

(100%)

49-unit Nigerian hydrothermal power system

Number of trials

 

 

5. CONCLUSIONS  

The problem of generating optimal preventive maintenance schedules of 

generating units for the purpose of maximizing economic benefits and improving reliable 

operation of a power system, subject to satisfying system load demand, allowable 

maintenance window, and crew and resource constraints over fifty two weeks 

maintenance and operational period has been presented for 21-unit test system and 49-

unit Nigerian hydrothermal grid system.  

Improvement in the quality of the maintenance schedules generated by MS-

MDPSO algorithm in terms of reliability and energy cost curtailment over what was 

achieved by MDPSO algorithm has been presented. This improvement is achieved 

through the use of the multiple swarms‘ idea on the MDPSO algorithm. The eventual 

evolution of a single best solution forms the optimal maintenance schedules as applied to 

the respective two power systems considered in this paper. The better solutions obtained 

by the MS-MDPSO algorithm for the two GMS problems are achieved at the expense of 

more computational time, which is not a problem since the simulation is done off-line.   

With respect to the 49-unit Nigerian hydrothermal power system, two possible 

case studies have been investigated and compared. The logical and optimal placements of 

some thermal plants for maintenance along with hydro plants during low water level have 

been illustrated using the MDPSO and the proposed MS-MDPSO algorithms, and their 
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results compared. The MS-MDPSO algorithm demonstrates better performance over the 

MDPSO algorithm for this GMS problem, and produce optimal maintenance unit 

scheduling framework for the Nigerian power utility that achieved better utilization of 

available energy generation with improved reliability and reduction in energy cost. 

The studies and analysis presented in this paper provides potential for practical 

implementation and enhancement of effective planning strategies that incorporates other 

short-term generation scheduling measures, such as unit commitment and economic load 

dispatch, and the integration of renewable energy resources.  
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APPENDIX  

 

TABLE A.1 

 Typical Generator Maintenance Schedules Obtained by  

MDPSO and MS-MDPSO for the 21-Unit Test System 

MDPSO MS-MDPSO MDPSO MS-MDPSO

1 1 12,13 27 19 17,20

2 1 12,13 28 19,20 17,19

3 1 4,13 29 16 17,19

4 1 4 30 16 -

5 1 4 31 16 14

6 1 2,6 32 16 14

7 1,6 2,6 33 16 14

8 3,6,11 6 34 16 14

9 2,6,11 6 35 - 14

10 2,6 6,7,8 36 17 -

11 6 6,7 37 17 21

12 6 6,7 38 17 21

13 6,13 6,7,11 39 14 21

14 6,10,13 6,11 40 14 21

15 6,10,13 6 41 14 18

16 6,7,10 6 42 14 16

17 7,10 5 43 14 16

18 7,9,12 5,9 44 21 16

19 7,9,12 5,9 45 18,21 16

20 4 1 46 21 16

21 4 1 47 21 16

22 4 1,10 48 15 15

23 - 1,10 49 15 15

24 5 1,10 50 15 15

25 5 1,10 51 15 15

26 5,8 1 52 15 15

Generating units scheduled 

for maintenance

Generating units scheduled 

for maintenance

W
e
e
k
 n

o
.

W
e
e
k
 n

o
.
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TABLE A.2 

 Typical Generator Maintenance Schedules Obtained by  

MDPSO-a and MS-MDPSO-a for the Nigerian Power System  

MDPSO-a MS-MDPSO-a MDPSO-a MS-MDPSO-a

1 1,9,11,17 1,4,15 27 26,31,32,33 20,22,27,29

2 1,9,11,14,16,17 1,4,15 28 26,32 20,22,27,34

3 1,3,14,16,17 1,4,15 29 22,26 20,22,27,34

4 1,3,16,17 1,4,15 30 22,26 34,35

5 1,3,10,16 1,4,16 31 19,22,24,38 32,34,35

6 3,4,10 3,5,16 32 19,22,24,38 32,37

7 3,4 3,5,16 33 19,24,27 32,37

8 2,4 3,5,16 34 19,24,27 25,33

9 2,4,7 3,5 35 27 25,33

10 2,4,7,8 3,5 36 27 25,33,40

11 2,6,8,12 2,8,10,11,14 37 35 25,33,40

12 2,6,12 2,8,10,11,14 38 21,30,35 36,40

13 5,6,15 2,6 39 21,30 36,40

14 5,6,15 2,6,17 40 21,25,30,34 23,26,40

15 5,6,15 2,6,17 41 21,25,34 23,26

16 5,13,15 6,7,9,12,13,17 42 25,34,37 23,26

17 5,13 6,7,9,12,13,17 43 25,34,37 23,26

18 20,23,29,39 18,19,21,39 44 48,49 47,48

19 20,23,29,39 18,19,21,39 45 44,48,49 44,47,48

20 18,20,23,29,39 18,19,21,39 46 44,48,49 44,47,48

21 18,20,23,28,39 18,19,21,30,39 47 41,48,49 41,47,48

22 18,28,36,39,40 24,30,39 48 41,43 41,42

23 18,28,36,40 24,28,30,38 49 43,45,46,47 42,45,46,49

24 28,33,40 24,28,31,38 50 45,46,47 45,46,49

25 31,33,40 24,28,29,31 51 42,45,46,47 43,45,46,49

26 31,32,33,40 20,22,27,28,29,31 52 42,45,46,47 43,45,46,49

W
e
e
k 

n
o
.

Generating units scheduled for maintenance

W
e
e
k 

n
o
.

Generating units scheduled for 

maintenance
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TABLE A.3 

 Typical Generator Maintenance Schedules Obtained by  

MDPSO-b and MS-MDPSO-b for the Nigerian Power System 

MDPSO-b MS-MDPSO-b MDPSO-b MS-MDPSO-b

1 3,11,12,16 3,7,9,13,16 27 18,26,39 21,26,27,29,30

2 3,9,11,12,16 3,7,9,13,16 28 18,26,39 19,26,27,29,30

3 3,6,9,15,16 3,5,12,13,16 29 18,23,29 19,26,29,30

4 3,6,15,16 3,5,12,13,16 30 23,29,40 19,24,36

5 1,3,15 3,6 31 23,27,29,40 19,24,28,36

6 1,7,8,13,15 1,6 32 22,23,27,40 24,28,36

7 1,7,8,13,14 1,8,10 33 22,27,40 24,28,31,36

8 1,2,13,14 1,8,10 34 22,40 31,36,37

9 1,2,13,14 1,2 35 22,34,36,38 18,31,37,38

10 2,10,14 1,2,14,15 36 34,36,38 18,31,37,38

11 2,10 2,11,14,15 37 32,36,38 18,37,38

12 2,5 2,11,14,15 38 32,36,38 18,37,38

13 4,5 2,4,14,15 39 20,25,36,37 39,40

14 4,17 4,17 40 20,24,25,37 39,40

15 4,17 4,17 41 20,24,25,37 35,39,40

16 4,17 4,17 42 20,24,25,37 35,39,40

17 4,17 4,17 43 24,37 39,40

18 19,30,35 22,25,32 44 47,49 42,43,48

19 19,30,35 22,25,32 45 47,49 42,43,46,48

20 19,21,28,30,31 20,22,23,25 46 47,49 46,48

21 19,21,28,30,31 20,22,23,25 47 43,47,49 41,46,48

22 21,28,31,33 20,23 48 42,43,46 41,44,46

23 21,33 20,23 49 42,45,46,48 44,45,46,47,49

24 39 21,33 50 45,46,48 45,47,49

25 39 21,33,34 51 41,44,45,46,48 45,47,49

26 18,26,39 21,27,30,34 52 41,44,45,48 45,47,49

Generating units scheduled for 

maintenance
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e
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o
.

Generating units scheduled for 

maintenance
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POWER SYSTEM 

GMS PROBLEM

n multiple swarms of population P1, P2, …, Pj,…,Pn 

with sizes m1, m2, …, mj,…,mn respectively in discrete 

time k

Print results and stop

Swarm #: 1

Population: P1

Swarm size: m1 

Swarm #: 2

Population: P2

Swarm size: m2 

Swarm #: n

Population: Pn

Swarm size: mn 

A A A

B B B

Compare: Gbest=[gbest1 gbest2  . . .  gbestn]

Evolve single best solution Gbest from a set of gbest (1 to n)

Optimal maintenance schedules

gbest1 gbest2 gbestn

. . .

. . .

 

 

(a) n Multiple Swarms-MDPSO 

 

Fig. 1. MS-MDPSO Algorithm Framework for Power System GMS Problem 
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Initialize particle population Pj of size mj 

set iteration=1 and discrete time k=1

A

B

Set k=k+1

Update particles’ velocities and positions using (12)-(13)

Perform mutation using (14)-(15)

gbestj

Have stopping 

conditions been met?

Encode particles according to (11)

Evaluate the objective function given by (2)

Update mj pbest and gbestj 

Is 

rand<mutation rate?

Is termination 

condition satisfied?

No

Yes

No

Yes

No

Yes

 

 

 

(b) MDPSO Implementation for Multiple Swarms Application 

 

Fig. 1. MS-MDPSO Algorithm Framework for Power System GMS Problem (cont.) 
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(a) Available Generation versus Maintenance Period for MDPSO and MS-DPSO 
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(b) Crew Requirement versus Maintenance Period for MDPSO and MS-MDPSO 

 

Fig. 2. Generation, Technical Crew, Typical Convergence, Five Multiple Swarms and 

Gbest Plots for the 21-Unit Test System using MDPSO and MS-MDPSO Algorithms  
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(c) Typical Convergence of the Objective Function given by (2) 
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Swarm size: m1 =30
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(d) Five Multiple Swarms-MDPSO 

 

Fig. 2. Generation, Technical Crew, Typical Convergence, Five Multiple Swarms and 

Gbest Plots for the 21-Unit Test System using MDPSO and MS-MDPSO Algorithms 

(cont.) 



 74 

 

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Iterations

G
b
e
s
t 

=
[g

b
e
s
t 1

 g
b
e
s
t 2

 g
b
e
s
t 3

 g
b
e
s
t 4

 g
b
e
s
t 5

]

Trial #1

gbest 
5
 (2)

gbest 
4
 (15)

gbest 
3
 (22)

gbest 
2
 (28)

gbest 
1
 (33)

 

 

(e) Gbest versus Iterations for Five Multiple Swarms (Trial #1) 

 

 

 

 

0 50 100
0

1

2

3

4

5

6

Iterations

G
b
e
s
t=

[g
b
e
s
t 1

 g
b
e
s
t 2

 g
b
e
s
t 3

 g
b
e
s
t 4

 g
b
e
s
t 5

] Trial #1

0 50 100
0

1

2

3

4

5

6

Iterations

G
b
e
s
t=

[g
b
e
s
t 1

 g
b
e
s
t 2

 g
b
e
s
t 3

 g
b
e
s
t 4

 g
b
e
s
t 5

] Trial #2

0 50 100
0

1

2

3

4

5

6

Iterations

G
b
e
s
t=

[g
b
e
s
t 1

 g
b
e
s
t 2

 g
b
e
s
t 3

 g
b
e
s
t 4

 g
b
e
s
t 5

] Trial #3

0 50 100
0

1

2

3

4

5

6

Iterations

G
b
e
s
t=

[g
b
e
s
t 1

 g
b
e
s
t 2

 g
b
e
s
t 3

 g
b
e
s
t 4

 g
b
e
s
t 5

] Trial #4

0 50 100
0

1

2

3

4

5

6

Iterations

G
b
e
s
t=

[g
b
e
s
t 1

 g
b
e
s
t 2

 g
b
e
s
t 3

 g
b
e
s
t 4

 g
b
e
s
t 5

] Trial #5

 

 

 

(f) Gbest versus Iterations for Five Multiple Swarms (Five Different Trials) 

 

Fig. 2. Generation, Technical Crew, Typical Convergence, Five Multiple Swarms and 

Gbest Plots for the 21-Unit Test System using MDPSO and MS-MDPSO Algorithms 

(cont.) 
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Fig. 3. Nigerian 330KV Grid showing 7 Power Generating Stations 
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(a) Available Generation versus Maintenance Period for Case a: MDPSO-a  

and MS-MDPSO-a 

 

 

Fig. 4. Generation and Crew Plots during Maintenance Period  
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(b) Available Generation versus Maintenance Period for Case b: MDPSO-b  

and MS-MDPSO-b 

 

Fig. 4. Generation and Crew Plots during Maintenance Period (cont.) 
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(c) Crew Requirement versus Maintenance Period for Case a: MDPSO-a  

and MS-MDPSO-a 

 

 

Fig. 4. Generation and Crew Plots during Maintenance Period (cont.) 
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(d) Crew Requirement versus Maintenance Period for Case b: MDPSO-b 

and MS-MDPSO-b 

 

Fig. 4. Generation and Crew Plots during Maintenance Period (cont.) 
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(a) Reliability Index versus Iterations for Case a: MDPSO-a and MS-MDPSO-a 

 

0 10 20 30 40 50 60 70 80 90 100
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Iterations

R
e
lia

b
ili

ty
 I
n
d
e
x

Max. Reliability Index

                  Case b: MDPSO-b

                  Case b: MS-MDPSO-b

 

(b) Reliability Index versus Iterations for Case b: MDPSO-b and MS-MDPSO-b 

 

Fig. 5. Reliability Index and Cost of Energy Plots  
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(c) Cost requirement versus Reliability Index for Case a: MDPSO-a  

and MS-MDPSO-a 

 

 

Fig. 5. Reliability Index and Cost of Energy Plots (cont.) 
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(d) Cost Requirement versus Reliability Index Plots for Case b: MDPSO-b  

and MS-MDPSO-b 

 

Fig. 5. Reliability Index and Cost of Energy Plots (cont.) 
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(a) Typical Convergence of the Objective Function given by (2) 

for Case a: MDPSO-a and MS-MDPSO-a 
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Fig. 6. Typical Convergence of the Objective Function given by (2) and Gbest Plots for 

the 49-Unit Nigerian Power System using MDPSO and MS-MDPSO Algorithms  
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(c) Gbest versus Iterations for Five Multiple Swarms (Trial #1) 
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(d) Gbest versus Iterations for Five Multiple Swarms (Five Different Trials) 

 

Fig. 6. Typical Convergence of the Objective Function given by (2) and Gbest Plots for 

the 49-Unit Nigerian Power System using MDPSO and MS-MDPSO Algorithms (cont.) 
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III. HEURISTIC METHODS FOR STATIC AND DYNAMIC ECONOMIC 

DISPATCH WITH PRACTICAL GENERATOR CONSTRAINTS 
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Real-Time Power and Intelligent Systems Laboratory, Department of Electrical and 

Computer Engineering, Missouri University of Science and Technology,                    

Rolla, MO 65409-0249 USA                                                                                              
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ABSTRACT: Static economic dispatch (SED) problem is solved in order to 

economically determine output powers of generating units in such a manner that the total 

generation (fuel) cost is minimized while load demand and all practical operating 

constraints are satisfied. Dynamic economic dispatch (DED) is an enhancement of SED 

and has the objective of dynamically determining the optimal outputs of generating units 

with predicted load demand over a certain period of time. Classical optimization methods 

assume generator cost curves to be continuous and monotonically increasing, whereas 

practical generators have a variety of nonlinearities in their cost curves making this 

assumption inaccurate. Hence, heuristic methods are proposed in this paper to circumvent 

the problems of imposed non-smooth assumptions. This paper presents three heuristic 

methods,  namely, genetic algorithm (GA), differential evolution (DE) and modified 

particle swarm optimization (MPSO) for solving both the SED and DED problems for 

three test systems. Results and convergence performances of these three heuristic 

methods are presented and compared as a way of validating such methods in solving SED 

and DED problem characterized by practical and non-smooth generator constraints.   

 

INDEX TERMS: Computational intelligence; Economic dispatch; Generation cost; 

Prohibited operating zone; Ramp-rate limit. 

 

NOMENCLATURE  

ia , ib  & ic  Fuel cost coefficients for unit i 

gb
  Global best strategic learning parameter 

mailto:yyqh3@ieee.org
mailto:gkumar@ieee.org
mailto:aysaber@ieee.org
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c1 & c2 Cognitive and social acceleration constants respectively 

CR Crossover constant 

d Particle‘s dimension 

Di Decimal integer value of binary string of the ith generating unit 

ei & fi Fuel cost coefficients for unit i considering valve-point loading effect 

F Scaling factor for mutation 

G Generation 

i        Index of running generating units 

Iter & Itermax Current and maximum iteration number 

t Continuous time step 

Kpb  Penalty factor coefficient for ED real power balance constraint 

l lth particle 

MR Mutation rate 

n Number of bits representing each unit power output 

np Number of population in a generation 

N       Total number of generating units 

Pgd Swarm‘s best position for dimension d 

Plbd lth Particle best position for dimension d 

Pld Position vector of the particle l in dimension d 

iP       Generating capacity of unit i   

lossP  System loss 

DP         Total real load demand  

r, rand , rand1 & rand2  Random numbers with uniform distribution in the range of 

[0, 1] 

randn Gaussian distributed random number with a zero mean and a variance of 1 

 Vld lth particle velocity in dimension d 

winer, wmax and wmin Current, final and initial inertia weights 

X 
o
 Initial random population 

X1,G, X2,G & X3,G          Randomly selected parent population vectors 
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Xi,G , Xt,G+1 & Xi,G+1  Target vector, trial vector and best fit vector for the next 

generation respectively 

 

1. INTRODUCTION 

Economic dispatch (ED) of generating units is an important optimization task and 

is performed in order to supply electricity economically while minimizing the total 

generation cost. Modern power system is experiencing increased demand for electricity 

with related expansions in system size, which has resulted in higher number of generators 

and lower reserve margins making the ED problem more challenging and complicated 

[1]. Conventional dispatch methods employ Lagrangian multipliers and require 

monotonically increasing cost curve approximations. Unfortunately, the input-output 

characteristics of modern generating units are inherently highly nonlinear due to valve-

point loading effects, ramp-rate limits, prohibited operating zones and so on, which tend 

to generate multiple local minima points in the cost function [2, 3]. Classical dispatch 

methods require that these characteristics be approximated. However, such 

approximations may lead to suboptimal operation of the generator and results in heavy 

revenue losses.  

One of the options available to the utilities in order to maximize economic 

benefits through minimization of total generation cost is the ED. The ED allocates total 

power demand among the online generating units in order to minimize the cost of 

generation while satisfying important system constraints. Some factors that influence ED 

of a power system are operating efficiency of generating units, fuel and operating costs, 

and transmission losses [1, 2].  

Dynamic economic dispatch (DED) is a method of scheduling generator outputs 

to meet anticipated and  predicted load demand over a certain period of time in order to 

operate the power system most economically [4]. It is therefore the most accurate 

formulation of the economic dispatch problem and also the most difficult to solve. The 

DED is a dynamic optimization problem taking into account the constraints imposed on 

system operation by generator ramping-rate limits. The DED is normally solved by 

dividing the entire dispatch period into a number of small time intervals, then a static 
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economic dispatch (SED) which is generally referred to as the ED, is employed to solve 

the dispatch problem in each interval [4].  

The ED problem is in general non-smooth optimization problem with many local 

minima. Numerous classical techniques such as Lagrange based methods, linear 

programming, non-linear programming, quadratic programming and dynamic 

programming methods have been reported in the literature [5, 6].  

Most of the power system optimization problems, including ED, have complex 

and non-linear characteristics with stringent equality and inequality constraints to be 

satisfied. Different optimization techniques applied so far for solving these problems can 

be classified according to the type of the search space and/or the objective function [5 - 

7]. Depending on the problem formulation, the objective function could be minimization 

of the units‘ generation and maintenance costs, or some pre-defined reliability risks 

subject to some constraints, resulting in non-linear optimization as proposed in [5 - 7]. 

Solving such non-linear optimization problems for most cases may not be feasible 

because their numerical solutions require extensive computational efforts, which increase 

exponentially with the problem complexities. Even though deterministic optimization 

problems are formulated with known parameters, real world problems almost invariably 

include some unknown parameters [7, 8]. 

In this paper, genetic algorithm (GA), differential evolution (DE) and modified 

particle swarm optimization (MPSO) heuristic methods are applied to solve this 

challenging ED problem of three test systems, whose generating units are characterized 

by smooth and non-smooth operational features. Solving this practical optimization 

problem leads to a minimized total generation cost of operating the respective power 

systems in the presence of generator constraints.  

The main contributions of this paper are: 

 Application of heuristic methods to solve the static economic dispatch (for smooth 

and non-smooth fuel cost functions) and dynamic economic dispatch (for non-smooth 

fuel cost function with valve-point loading effects) problems on three test systems.  

 Demonstrate the capability of heuristic methods for solving the non-smooth ED 

problem where the classical Lagrange based method cannot be directly applied. 



 89 

 Solving ED problem considering practical generator constraints, namely, load 

balance, generator ramp-rate limits, prohibited operating zones and spinning reserve 

using heuristic methods. 

 Comparison of performances of three heuristic methods (GA, DE and MPSO) for 

minimization of economic cost objective function. 

 

2. ECONOMIC DISPATCH PROBLEM FORMULATION  

The ED problem is to find the optimal combination of power generations that 

minimizes the total generation cost while satisfying some constraints. The ED problem is 

commonly formulated as costs optimization problem, with the aim of minimizing the 

total generation cost of the power system but still satisfying equality and inequality 

constraints. The inclusion of ramp-rate limits, prohibited operating zones, and other 

practical constraints results in non-smooth ED of generating units.  

The problem objective is to minimize the economic cost function expressed as 

second order function of each unit‘s output Pi subject to satisfying practical generator 

constraints, and can be expressed as 

 

Min 

2

1

N

i
loss

D
ipb PPPKFf                         (1) 

   

  where, 

 

N

i

iiiiiiiii PPfePcPbaF
1

min2 ))(sin(              (2) 

 

where α =1 if valve-point loading effect is taken into account (for non-smooth fuel cost 

functions), otherwise α=0 (for smooth fuel cost functions).   
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 The minimization of (1) is subject to the following constraints:  

 Load balance   

The generated power from all the running units must satisfy the load demand and 

system losses given by (3). The loading constraint in (3) is incorporated and enforced 

once in the objective function. 

 

loss
D

N

i
i PPP

1

                                (3) 

 

To calculate system losses, methods based on penalty factors and constant loss formula 

coefficients or the B-coefficients are in use [1, 9]. System loss expression based on the 

B-coefficients is used in this paper, and is given by (4). 
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                           (4) 

 

 Generator ramp-rate  limits  

The power output of a practical generator cannot be adjusted instantaneously without 

limits. The operating range of all online units is restricted by the unit‘s ramp-rate limits 

during each dispatch period. Therefore, subsequent dispatch output of a generator 

should be limited between its up and down ramp-rate limits constraint [1, 2, 9]. Hence 

the generator operating limits given by (5) are modified according to (6). 

 

maxmin
iii PPP                                             (5) 

),min(),max( maxmin
i

pre
iiii

pre
ii URPPPDRPP                     (6) 

 

 Prohibited operating zone 

Each generator has its generation capacity, which cannot be exceeded at any time. It is 

common for a typical thermal unit to have a steam valve in operation, or a vibration in 

shaft bearing, which may result in interference and discontinuous input-output 
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performance curve sections [1], known as the prohibited operating zones. Practically, 

adjusting the power output of a unit must avoid all capacity limits and unit‘s operation 

in prohibited zones [9]. The acceptable operating zones of a generating unit can be 

formulated as shown in (7).  

 

max
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1,
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,...,3,2

ii
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pzi

i
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jii

upper
ji
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iii
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i

                                  (7) 

 

 Spinning reserve constraint 

Sufficient spinning reserve is required from all running units to maximize and maintain 

system reliability. 

 

RPP D
N

i
i

1

max
                                        (8) 

 

3. HEURISTIC METHOD BASED ED  

The load demand is distributed among the running units in ED. The generation 

output of each unit should lie between the minimum and maximum power limits for good 

ED [1]. While minimizing the total generation cost, the total generation from running 

units should be equal to the total system demand plus the transmission network loss.  The 

ED consists of finding the optimum operating policy and distribution of power among the 

running units while satisfying constraints (3) - (7) [1].  

The evaluation function f (which is also called the fitness function in evolutionary 

and swarm intelligence), is defined for evaluating the fitness of each individual (or 

particle) in a generation (or swarm). The penalty function method uses functions to 

penalize the objective function or the fitness of the individual (or particle) in proportion 

to the magnitude of the constraint violation [1]. The penalty function parameter is 

selected to distinguish between infeasible and feasible solutions.  

In order to emphasize the ‗best‘ solution and speed up convergence of the 

iterative procedure, the evaluation function f is defined to minimize the economic cost 
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function given by (1) for a specified load demand DP  while satisfying the constraints in 

(3) - (8). 

In order to limit the evaluation value of a potential solution within a feasible 

range, the generators‘ real output power operating limits constraint in (5) - (7) should be 

satisfied. If a potential solution satisfies this constraint, then it is a feasible solution and f 

has a relatively minimal evaluation value. Otherwise, the f value of this potential solution 

is penalized. 

Flowchart illustrating the implementation of GA, DE and MPSO based ED 

methods is shown in Fig. 1. 

 3.1. GA Based Economic Dispatch 

Genetic algorithm is a search method based on the modeling of natural genetics 

and natural selection [6]. In GA, solutions to the problem are coded to mimic the genetic 

make-up of biological organisms. Each chromosome in the population represents a 

possible solution to the problem. A ―fitness‖ value, derived from the problem‘s objective 

function is assigned to each member of the population. The GA searches for better 

solutions by letting the fitter chromosomes take over the population through a combined 

stochastic process of selection and recombination. Recombination is an operation 

whereby an old chromosome is copied into ―mating pool‖ according to its fitness value. 

More highly fitted chromosomes (i.e. with better values of the objective function) receive 

a higher number of copies in the next generation. Copying chromosomes according to 

their fitness values have a higher probability of contributing one or more offspring in the 

next generation. Crossover is a structured recombination operation. This operation is 

similar to two scientists exchanging information. Although, reproduction and crossover 

effectively search and recombine existing chromosomes, they do not create any new 

genetic material in the population. Mutation is capable of overcoming this shortcoming. 

Mutation is a random alternation of a chromosome position that provides variation and 

occasionally introduces beneficial materials into the population.  

Implementation of a problem in GA starts from the parameter encoding (that is, 

the representation of the problem). The encoding must be carefully designed to utilize the 

GA‘s ability to efficiently transfer information between chromosome strings and 

objective function of the problem. The GA for this ED problem is encoded by grouping 
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the on-line units for ED according to Fig. 2. Each chromosome consists of maximum 

number of units called genes, with each gene encoded as n bits. As shown in Fig. 2, each 

generating unit power output is concatenated and encoded in a binary based string 

normalized over its operating range. Each generating unit string is assigned by n bits, thus 

a string individual has n × N bits [10]. 

Evaluation of a chromosome is accomplished by decoding the encoded 

chromosome string and computing the chromosome‘s fitness value using the decoded 

parameter. To obtain the actual power output of each generating unit for fitness 

evaluation, each string is decoded to the decimal value using (9) [10]. 

 

12

minmax
min

n

iii
ii

PPD
PP ,    for i=1, 2, …, N                         (9) 

 

In this paper, the number of bits (n) representing each unit power output is 16. 

The more the number of bits per unit power output the better the resolution.  

The following steps outline the GA implementation process for solving the ED 

problem presented in this paper: 

Step 1: Read in data (unit data, load demand, …) 

Step 2: Initialize a population of chromosomes using the approach shown in Fig. 2 

Step 3: Evaluate each chromosome in the population using (9) 

Step 4: Compute fitness f of each chromosome using (1) 

Step 5: Rank chromosomes according to their fitness f values 

Step 6: Select the ―best‖ parents for reproduction 

Step 7: Apply crossover and mutation 

Step 8: Evaluate new chromosomes and insert best into population displacing weaker 

chromosomes 

Step 9: Stop and output results if convergence occurred (or maximum number of 

iterations is reached), otherwise go to Step 3 and repeat the process. 

 3.2. DE Based Economic Dispatch 

Differential evolution is an optimization method that solves real-valued problems 

based on the principles of natural evolution [6]. Like other evolutionary algorithms, DE 
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also relies on initial random population generation, which is then improved using 

selection, mutation, and crossover operations, repeated through generations until the 

convergence criterion is met [6]. 

Although the canonical form of differential evolution solves optimization 

problems over continuous spaces, minor adjustments to the code allow DE to solve mixed 

integer optimization problems [6]. This is achieved with the use of operator that rounds 

the variable to the nearest integer value, when the value lies between two integers. 

An initial population composed of vectors,
o

GiX , ,i=1,2,…np, is randomly 

generated within the parameter space. In each generation, np competitions are held to 

determine the composition of the next generation. Every pair of randomly chosen vectors 

X1,G and X2,G defines a vector differential (X1,G - X2,G). Their weighted differential is used 

to perturb another randomly chosen vector X3,G according to (10). 

 

)( ,2,1,3

'

1,3 GGGG XXFXX                                (10) 

 

Typically, F lies within the range (0 ≤ F ≤ 1.0), and it controls the speed and 

robustness of the search; a lower value increases the rate of convergence but also the risk 

of being stuck at the local optimum. The crossover is a complimentary process for DE. It 

aims at reinforcing the prior successes by generating the offspring vectors. In every 

generation, each primary array vector Xi,G, is targeted for crossover with a vector like 

'

1,3 GX  to produce a trial vector Xt,G+1 according to (11).  

 

otherwiseX

CrandifX
X

Gi

RG

Gt

,

'

1,3

1,                                (11) 

 

Typically, CR is in the range (0 ≤ CR ≤ 1.0). The newly created vector is evaluated 

by the objective function and the corresponding value is compared with the target vector. 

The best fit vector is kept for the next generation as determined by (12). The best 

parameter vector is evaluated for every generation in order to track the progress made 

throughout the minimization process; thus making the DE elitist method. 
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otherwiseX

XfitXfitifX
X

Gi

GiGtGt
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,

,1,1,

1,

)()(
                     (12)  

 

The DE implementation process in this paper is as follows: The control or the 

decision variables for the ED problem are real power outputs of all committed 

generations, and are therefore used to form the individuals in the population. A 

population of individuals is initialized using the approach shown in Fig. 2 and each 

individual is decoded and evaluated in the population using (9). An initial population 

composed of vectors Nijiii
o
Gi PPPPX ,,2,1,, ,...,,...,,  is randomly generated within the 

parameter space (where i=1,2,…np,  j is index of generating units in this DE formulation 

and N is number of committed generating units). In each generation, np competitions are 

held to determine the composition of the next generation. Randomly chosen vectors 

(individuals) X1,G , X2,G and X3,G drawn from the population are defined by 

NjG PPPPX ,1,12,11,1,1 ,...,,...,,  , NjG PPPPX ,2,22,21,2,2 ,...,,...,,
 and NjG PPPPX ,3,32,31,3,3 ,...,,...,, . 

The elements of X1,G , X2,G and X3,G are real power outputs of the committed N generating 

units, which are subjected to the capacity constraints in (5) - (6). For N generators, an 

individual is represented as a vector of length N. Each element of the population is 

initialized randomly within the effective real power operating limits. The initialization is 

either based on (5) for generators without ramp-rate limits, or on (6) for generators with 

ramp-rate limits. The DE step by step process in evaluating the best parameter vector 

Xi,G+1  in (12) for every generation in order to track the progress made throughout the 

minimization process is accomplished by executing (10) - (12). The best parameter vector 

evaluated for the latest generation produces the optimal economic dispatch generation 

with the minimum generation cost.   

The most common method used to select control parameters is parameter tuning. 

Parameter tuning adjusts the control parameters through experimentation until the best 

settings are determined. To avoid premature convergence of the DE algorithm, it is 

crucial that F be of sufficient magnitude. On the other hand, the scaling factor F should 

not be chosen too large, since the number of function evaluations increases as F 
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increases. F is made adaptive in this paper. The crossover constant CR controls the 

diversity of the population. Relatively high values of CR result in higher diversity and 

improved convergence speed. However, beyond certain threshold value, the convergence 

rate may decrease or the population may converge prematurely. On the other hand, small 

values of CR increase the possibility that the algorithm stagnates in local minima. The 

population size plays an important role in the algorithm convergence rate. Small 

population may cause a poor searching performance and stagnations in local minima. 

Large populations increase the possibility for finding optimal solutions at the expense of 

a large number of function evaluations. 

 3.3. MPSO Based Economic Dispatch 

The modified PSO is a combination of PSO and an evolutionary strategy 

enhancing the method to perform optimal search under complex environments [12]. This 

version of MPSO is a variant of the original formulation of the continuous particle swarm 

optimization (CPSO) to solve continuous optimization problems such as the ED problem 

considered in this paper. 

Let X and V denote a particle‘s position and its corresponding flight speed or 

velocity respectively in a search space. Therefore, the lth particle is represented as Xld = 

(Xl1, Xl2,…, XlN) in the d-dimensional space. The best previous position of the lth particle 

is recorded and represented as Plbd =(Plb1, Plb2,…, PlbN). The index of the best particle 

among all the particles in a group is represented by Pgd.  The rate of the velocity for lth 

particle is represented as Vld = (Vl1, Vl2,…,VlN).  In this version of PSO, the velocity is 

limited to a certain range [-Vmax, Vmax], such that Vld always lies within this range [12]. 

The new velocity and position for each particle i in dimension d are determined according 

to the velocity and position update equations given by (13) and (14), while the inertia 

weight is updated according to (15). 

 

))1()1(())1()1(()1()( 2211 tXtPrandctXtPrandctwVtV ldgbldlbdldld         (13)   

)()1()( tVtXtX ldldld                              (14) 

 iter
iter

ww
ww

max

minmax
max                                           (15) 
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Supposing Pgd is the swarm‘s global best particle chosen with a random number 

less than a predefined mutation rate (for 0 < MR < 0.2), then the mutation result of this 

particle is given by (16). 

 

rMrandIf  

)/)1(()1()1( gbgdgdgd tPrandnceiltPtP                 (16) 

else  

)`1()1( tPtP gdgd                                                 (17) 

end  

d=1, 2, …, N 

 

Where βgb is global best strategic learning parameter for mutation that can be 

either dynamically changing or fixed, and controls the mutation process introduced in this 

MPSO method. The main goal is to increase the diversity of the population by preventing 

the particles from moving too close to each other, thus converging prematurely to local 

optima. This eventually improves the CPSO‘s search performance.   

The MPSO implementation process for solving the ED problem in this paper is as 

follows: The control or the decision variables for the ED problem are real power 

generations, and are therefore used to form the swarm. The real power outputs of all on-

line generators are represented as the positions of the particles in the swarm [13 - 17]. For 

N generators, the particle‘s position is represented as a vector of length N. If there are 

Npar particles in the swarm, the lth particle in the swarm can be represented as a matrix 

shown in (18). 

 

lNlillld PPPPP ,...,,...,, 21                                (18) 

  d=1, 2, …, i, …, N 

 

Where Pld is the position vector of the particle l in dimension d, and a feasible Pld 

represents a potential solution to the optimization problem. The element Pli of the vector 
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Pld is the lth position component of particle l, and it represents the real power generation 

of on-line generator i of the possible solution. 

Each element of the swarm matrix is initialized randomly within the effective real 

power operating limits. The initialization is either based on (5) for generators without 

ramp-rate limits, or on (6) for generators with ramp-rate limits.  

The ith dimension of the lth particle is assigned a value of Pli determined by (19) 

while satisfying the constraints given by (5) or (6) depending on whether ramp-rate limits 

are considered or not. Constraint (7) should also be satisfied if the units‘ prohibited 

operating zones are known.  

 

)( minmaxmin

lililili PPrPP                                 (19) 

 

The fitness values obtained from (1) for the initial particles of the swarm are set 

as the initial pbest values of the particles. The best value among all the pbest values 

becomes the gbest. Mutation operator is introduced into the method using (16).  

The new velocity is computed using (13). To control excessive roaming of the 

particles, the velocity is limited to a certain range [-Vmax, Vmax], such that Vld always lies 

only within this range. The maximum velocity is limited to between 10% - 20% of the 

dynamic range of the variable on each dimension.  

The swarm is updated by updating the particle‘s position vector using (14). The 

pbest and gbest values are subsequently updated. The latest gbest position produces the 

optimal economic dispatch generation with the minimum generation cost. 

 

4. CASE STUDIES, NUMERICAL RESULTS AND ANALYSIS  

  4.1. Case Studies 

 Three case studies are presented in this paper. Solving the static economic 

dispatch problem using heuristic methods for smooth and non-smooth fuel cost functions 

are demonstrated in Cases I and II, while Case III applies heuristic methods to solve the 

dynamic economic dispatch problem for a non-smooth fuel cost function with valve-point 

loading effects. 
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 4.1.1. Case I  

The test system in this case study consists of 6 thermal units, 26 buses and 46 

transmission lines [16 - 18]. The generation limits, smooth fuel cost coefficients (α =0), 

ramp-rates limits and prohibited operating zones of these thermal units are shown in 

Tables A.1 and A.2 of the Appendix. The system real power loss is also considered in 

this case. The loss coefficients on 100MVA base capacity are presented in (20) - (22). 

The total load demand is 1263MW. There is 207MW of total spinning reserve accruable 

from the 6 thermal units, amounting to 14.08% of total generation, thus satisfying the 

constraint in (8). 

Using the data presented in Tables A and B, the total generation cost resulting 

from the online units can be evaluated based on their economic dispatch generation after 

minimization of the objective function in (1) subject to satisfying constraints (3) - (8).  

 

0150.00002.00008.00006.00001.00005.0

0002.00129.00006.00010.00006.00005.0

0008.00006.00024.00000.00001.00001.0

0006.00010.00000.00031.00009.00007.0

0001.00006.00001.00009.00014.00012.0

0005.00005.00001.00007.00012.00017.0

ijB

                          (20) 

 

6635.02161.00591.07047.01297.03908.00.1 03eBoi                    (21) 

 0056.0ooB                                                    (22) 

 

 4.1.2. Case II 

The test data for this case is taken from a real power system consisting of 19 

generating units characterized by smooth fuel cost coefficients (α =0), drawn from two 

industrial parks located in Bintan and Batam in Indonesia [19]. Table A.3 of the 

Appendix presents the output power ratings and fuel cost coefficients of the 19 

generating units, from which the total generation cost is evaluated as described under 

Case I. 
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4.1.3. Case III 

The test system for this case is a 10-unit system with valve-point loading effects 

(α =1) whose data is shown in Table A.4 of the Appendix. The hourly and dynamic load 

demand is divided into 24-hour intervals [4], and presented in Table A.5 of the Appendix. 

4.2. Numerical Results and Analysis 

All numerical results are obtained based on Matlab programs ran on PC with 

2.2GHZ CPU speed and 1.5GB of RAM. The parameters shown in Table A.6 of the 

Appendix are used by the three heuristic methods and described as follows: 50 

chromosomes, 50 individuals and 30 particles corresponding to the population sizes for 

the GA, DE and MPSO methods respectively are empirically determined values to 

produce the best convergence rates and computation times for Cases I, II and III. The 

population size plays an important role in the algorithms‘ convergence rates, in the sense 

that small population may cause a poor searching performance and stagnations in local 

minima. Large populations on the other hand, increase the possibility for finding optimal 

solutions at the expense of a large number of function evaluations and computation time. 

Maximum generations/iterations of 150, 500 and 500 for Cases I, II and III, respectively, 

are used for fair comparison among the three algorithms (GA, DE and MPSO). Figs 3 - 4 

and 6 on pages 26 and 28, respectively, shows that the three algorithms converged before 

their maximum generations/iterations are reached. For Case III (10-unit test system), due 

to partly the ramping rate limits and valve-point loading effects imposed on the 

generating units, there are additional complexities and computations which incurred 

relatively more number of generations/iterations compared with Case I (6-unit test 

system) to converge to the best solution. Crossover rates of 0.7 and 0.8 for the GA and 

DE respectively are empirically determined to yield the best results. The GA method is 

adaptive with the mutation rate linearly varied from 0.07 to 0.01. This range produces the 

best result for the problems presented and solved in this paper. The MPSO‘s mutation 

rate of 0.15 is empirically determined during simulation to result in the best solutions. 

Higher values resulted in over exploration of the search space by the particles and 

consequent non-optimal solutions. The DE is adaptive with the scaling factor for 

mutation F linearly varied from 0.08 to 0.02. The best results are obtained within this 

range for the problems presented in this paper. MPSO‘s βgb is dynamically varied but did 
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yield good results. A fixed value of 2 however, is empirically determined to produce the 

best result. Kpb of 1000 is experimentally determined power balance weighting 

coefficients which serves as penalty for power balance constraint violation. A suitable 

value of 1000 is empirically determined to enforce the power balance constraint and 

produce best results for the three cases considered in this paper. The MPSO is adaptive 

with the inertia weight linear varied from 0.9 to 0.4. These are experimentally determined 

best limits during simulation. MPSO‘s c1 and c2 with values of 2 each, so that their total 

sum is 4 are empirically determined standard values to produce the best result. MPSO‘s 

Vmax of 20% of the dynamic range of the variables on each dimension is empirically 

determined standard value to produce the best result. It controls the excessive roaming of 

the particles, and ensures that the particles are confined within some predetermined 

boundaries based on the problem dimension. Too large Vmax may cause some particle‘s 

velocities to be too high and affects convergence rate. 

Results of the three cases are presented below. 

4.2.1. Case I 

Table 1 shows the ED schedules generated by each of the six thermal units. The 

table also presents the total generation, total power loss and total generation costs 

produced by GA, DE and MPSO based ED methods. The table shows the amount of 

power generation economically dispatched to meet the load demand of 1263 MW while 

satisfying constraints (3) - (8). Total minimum generation costs in meeting load demand, 

as produced by GA, DE and MPSO based ED methods are $15445, $15445 and $15444 

respectively. Dispatch result from MPSO based ED method is seen to result in the best 

minimum generation cost and real power loss compared with the GA and DE based ED 

methods. This result demonstrate MPSO based ED method better capability in solving 

the ED problem compared with the GA and DE based ED methods for units characterized 

by ramp-rate limits and prohibited operating zones.  

Table 2 shows the comparison of the generation costs among all the ED methods 

considered in this paper. The table shows that MPSO performs better than the GA and 

DE based ED methods in terms of the best minimum generation costs and standard 

deviations. 
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TABLE 1 

 Power Generation and Generation Costs Data for Case I (6-Unit Test System) 

100 Tria ls  [17]

GA DE MPSO GA [16] PSO [16] NPSO-LRS [17] PSO [18] MPSO [18]

P1 439.7774 440.3697 438.9866 474.8066 447.4970 446.9600 451.2741 444.8882

P2 179.6234 190.2445 162.9011 178.6363 173.3221 173.3944 162.4633 168.1455

P3 261.5945 299.4663 267.0032 262.2089 263.4745 262.3436 262.6419 265.0000

P4 133.5927 108.4497 138.7787 134.2826 139.0594 139.5120 130.3146 129.4751

P5 151.3102 130.5306 158.3033 151.9039 165.4761 164.7089 173.8361 173.0299

P6 109.4452 106.3589 109.0412 74.1812 87.1280 89.0162 95.1188 95.0435

12.6448

15446

1276.0300 1276.0100

1263.0000 1263.0000

12.9584

50 Tria ls  [18]

12.6411

15444

Methods

12.9361

15450

1275.5823

1263.0000

100 Tria ls  (Proposed) 50 Tria ls  [16]

1275.9351 1275.6488

1263.0000 1263.0000

15459 15450
Total  min. generation 

cost over an hour ($)
15444

Ploss over an hour (MW)

Load suppl ied over an 

hour (MW)

15450

1275.4197
Total  generation over 

an hour (MW)

15445

1275.0141

1263.0000

12.014112.3434 13.0217

1263.0000

12.4197

Generating units

1275.3434

1263.0000

 

 

The results presented in Tables 1 and 2 shows a reduction in both the total 

minimum generation costs and transmission losses produced by GA, DE and MPSO 

(after 150 iterations of 100 trials) in this paper compared with the results obtained in [16 - 

18] on the same test system using GA and PSO (after 50 and 100 trials). The significant 

power loss reductions with the MPSO presented in this paper has the potential benefits of 

energy saving, fuel cost curtailment and CO2 emission reduction. The loss reductions are 

reflections of improvements in the performances of the GA, DE and MPSO presented in 

this paper.  

Table 3 shows the statistical comparison of computation efficiency for the GA, 

DE and MPSO methods considered in this paper. The MDPSO based ED method 

demonstrates faster computation time in finding the minimum generation cost compared 

with GA and DE based ED methods, as numerically shown in Table 3 for various 

scenarios of maximum generations/iterations. The GA however, converged to global 

solutions at faster rates than the DE under similar operating conditions as shown in Table 

3. 
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TABLE 2 

 Statistical Comparison of Generation Costs for Case I (6-Unit Test System) 

Min. ($) Max. ($) Ave. ($) Std

GA 15450 15498 15478 25.2104

DE 15445 15500 15480 26.1426

MPSO 15444 15496 15457 24.8425

GA [16] 15459 15524 15469 -

PSO [16] 15450 15492 15454 -

100 Tria ls  [17] NPSO-LRS [17] 15450 - - -

PSO [18] 15446 15538 15477 -

MPSO [18] 15444 15504 15460 -

Methods

100 Trials 

(Proposed)

50 Trials [16]

Total generation cost over an hour

50 Trials [18]

 

 

TABLE 3 

 Comparison of Computation Efficiency for Case I (6-Unit Test System) 

150 500 1000 3000 5000

GA 3.82 11.58 23.88 84.85 175.32

DE 13.78 44.71 92.11 284.96 510.68

MPSO 0.89 1.63 3.05 8.55 14.29

Generations/Iterations

Total  CPU time 

(sec)

Description Methods

 

 

Figure 3 shows the convergence of the minimum generation costs for GA, DE and 

MPSO based ED methods over 150 iterations. The figure shows converged minimum 

generation costs of $15445, $15445 and $15444 for GA, DE and MPSO methods 

respectively. The converged result also conforms to the minimum generation costs 

presented in Tables 1 and 2. 

4.2.2. Case II 

The ED schedules generated by each of the 19 online generating units using GA, 

DE and MPSO based ED methods are presented in Table 4. The table shows the units‘ 

generations economically dispatched to balance up the supplied load as shown in Table 4, 

while meeting the system constraints. The result shows that the DE and MPSO performed 

comparably well in terms of finding the most economical dispatch generation, total 

generation and minimum generation costs. Percent deviation errors in perfectly matching 

the supplied load of 70.2 MW produced by GA, DE and MPSO based ED methods are 

0.062%, 0.066% and 0.00% respectively.  
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TABLE 4 

Power Generation and Generation Costs Data for 

Case II (19-Unit Test System) 

GA DE MPSO GA DE MPSO

P1 5.8720 2.6138 4.1000 P14 7.1800 6.8565 6.0000

P2 1.7407 1.7425 3.6000 P15 2.5943 1.7425 2.1000

P3 5.8214 3.4850 6.1000 P16 1.0058 1.3018 1.1000

P4 4.5662 4.3563 3.1000 P17 1.7053 1.2026 2.1000

P5 4.9589 4.2275 3.1000 P18 0.8738 1.3009 2.1000

P6 4.7991 4.3830 6.1000 P19 5.3010 5.0987 2.1000

P7 2.8216 5.2787 6.1000

P8 1.9510 3.4860 5.1000

P9 3.8598 3.6570 2.1000

P10 5.9470 5.1998 3.4000

P11 2.6318 4.5713 2.4000

P12 1.7762 2.7428 4.4000

P13 4.8375 6.9993 5.1000

Generating 

units

Generation (MW)

Total 

generation 

cost over a 

week ($)

Total gen. over 

a week (MW)

Load supplied 

over a week 

(MW)

Generating 

units

70.2000 70.2000 70.2000

242220 242240 242210

Generation (MW)

70.2434 70.2460 70.2000

 

 

Table 5 shows the statistical comparison of the generation costs among all the ED 

methods considered in this paper. The table shows DE and MPSO methods performing 

fairly better than the GA method in terms of the statistical variation of the generation 

costs arrived at, and its corresponding standard deviations.  

 

TABLE 5 

 Statistical Comparison of Generation Costs for  

Case II (19-Unit Test System) 

Min. ($) Max. ($) Ave. ($) Std

GA 242220 242310 242300 28.4032

DE 242240 242350 242330 40.6283

MPSO 242210 242350 242280 40.0371

Methods
Total generation cost over a week

 

 

Table 6 shows the statistical comparison of computation efficiency for the GA, 

DE and MPSO based ED methods for the 19 units test system for different maximum 

generations/iterations. The MPSO method is shown to possess faster computation time 

compared with the GA and DE. In the contrary, the DE method exhibits the slowest 

computation time as presented in Table 5. 
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TABLE 6 

 Comparison of Computation Efficiency for Case II (19-Unit Test System) 

150 500 1000 3000 5000

GA 52.41 87.63 136.52 509.10 999.32

DE 105.76 199.29 330.2 815.31 1363.96

MPSO 3.42 7.57 14.33 39.72 67.66

Generations/Iterations

Total CPU time 

(sec)

Description Methods

 

 

The convergence performances over 500 iterations of the GA, DE and MPSO 

based ED methods for the 19-unit test system are presented in Fig. 4. The figure shows 

the minimum generation costs convergence behavior for each of the three methods 

considered in this paper, which simply corresponds to the best generation costs desired, 

and conforms to the result presented in Tables 4 and 5. The MPSO generated better 

minimum generation costs of $242210 compared with $242220 and $242240 generated 

by the GA and DE methods respectively as shown in Fig. 4 and Tables 4 and 5.  

4.2.3. Case III 

Figure 5 shows the best DED schedules for the 10-unit test system using the GA, 

DE and MPSO methods. The generating units‘ outputs are adapting to the hourly real 

power demand. The units‘ output are dynamically adjusted and allocated to meet the 

hourly dynamic load changes whose demand pattern is shown in Table A.5 of the 

Appendix, while satisfying the up and down ramp-rate limits constraint in (6) and 

presented in Table A.4 of the Appendix for Case III (10-unit system), as well as meeting 

other DED constraints. The best results depicted in Fig. 5 indicate that GA, DE and 

MPSO are all capable of solving the DED of a power system.  

Figure 6 shows the DED convergence performances over 500 iterations using the 

GA, DE and MPSO methods for the 10-unit test system. The figure shows the minimum 

generation costs convergence behavior in hour 1 for each of the three methods considered 

in this paper. The GA, DE and MPSO methods generated in hour 1 the minimum 

generation costs of $29998, $29996 and $29995 respectively as shown in Fig. 6. These 

minimum generation costs represent the best DED generation costs obtained in hour 1. 

Similar convergence performance analysis can be made for the entire 24-hour dispatch 

period.  
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Table 7 shows the statistical comparison of the total daily generation costs among 

GA, DE and MPSO methods applied to solving the DED problem for the 10-unit test 

system obtained over 500 iterations of 100 trials. The MPSO result shows better 

performance in terms of the minimum (best) total daily generation cost of $103520 

compared with total daily generation costs of $104530 and $104540 produced by GA and 

DE respectively. A minimum total daily generation cost of $103520 produced by the 

MPSO is also seen to outperform the $1035748 obtained in [4]. 

 

TABLE 7 

 Statistical Comparison of Total Daily Generation Costs  

for the DED of Case III (10-Unit Test System) 

Min. ($) Max. ($) Ave. ($) Std

GA 104530 104820 104720 200.9821

DE 104540 105050 104800 226.3501

MPSO 103520 104730 104140 201.1200

Methods
Total daily generation cost 

 

 

Table 8 shows the comparison of computation efficiencies of GA, DE and MPSO 

methods in solving the DED for Case III (10-unit test system) over 24-hour dispatch 

period obtained in 500 iterations. The table shows that MPSO method has faster 

computation time than GA and DE methods. The MPSO is 6.85 and 28.30 times faster 

than the GA and DE respectively, while the GA is 4.13 times faster than the DE for the 

DED problem of the 10-unit test system presented in this paper as deduced from Table 8. 

The GA and DE are slower than MPSO mainly because the number of bits (n) 

representing each unit power output used in this paper is 16. The more the number of bits 

per unit power output the better the quality and resolution of result, though at the expense 

of more computation time.  
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TABLE 8 

 Comparison of Computation Efficiency for the DED of 

Case III (10-Unit Test System) over 500 Iterations 

GA DE MPSO GA DE MPSO

Hour 1 19.26 77.64 2.78 Hour 13 18.57 77.86 2.72

Hour 2 19.00 77.83 2.81 Hour 14 18.90 77.48 2.76

Hour 3 18.83 78.19 2.75 Hour 15 19.01 77.72 2.73

Hour 4 18.69 77.69 2.75 Hour 16 19.01 78.02 2.75

Hour 5 18.69 77.22 2.72 Hour 17 18.81 78.39 2.77

Hour 6 18.78 78.32 2.77 Hour 18 18.76 78.50 2.76

Hour 7 18.84 78.09 2.75 Hour 19 19.13 78.55 2.77

Hour 8 18.66 77.16 2.73 Hour 20 18.95 78.28 2.78

Hour 9 18.73 78.06 2.73 Hour 21 18.79 77.82 2.73

Hour 10 18.87 77.79 2.73 Hour 22 18.92 77.73 2.76

Hour 11 18.85 77.51 2.79 Hour 23 18.81 78.14 2.74

Hour 12 19.00 77.66 2.72 Hour 24 18.84 78.50 2.75

452.69 1870.20 66.06

18.86 77.92 2.75

 ± 0.16  ± 0.39  ± 0.02

Total

Mean

Std

CPU time over 24-hour (sec)

Methods Methods

C
P

U
 t

im
e

 (
se

c)

C
P

U
 t

im
e

 (
se

c)

Dispatch 

period

Dispatch 

period

 

 

5. CONCLUSIONS  

The power system challenges of efficiently and economically solving the static 

economic dispatch and dynamic economic dispatch problems for generators exhibiting 

practical and non-smooth characteristic behavior with heuristic methods have been 

presented. System losses have been incorporated to test the robustness of the heuristic 

methods. The heuristic methods for solving the static economic dispatch and dynamic 

economic dispatch problems have been compared on three test systems. The modified 

particle swarm optimization method shows better performance in terms of the quality of 

results, loss reduction and computational efficiency in locating optimal solution when 

compared with the genetic algorithm and differential evolution methods under similar 

operating conditions. Curse of dimensionality is seen not to have limitation on the 

methods‘ performances and in the quality of results obtained for the three power systems 

considered in this paper. The results offer good alternative for power system operation, 

control and planning activities in control centers desiring optimized energy management, 

generation costs curtailment and transmission loss reduction, in the face of continuously 

increasing global fuel costs and the irreplaceable depletion of conventional raw fuel 

resources.  
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Future work will investigate if results from re-coding purely real-valued GA and 

DE have comparable performances with the already real-coded MPSO method 

(especially in their computation times, ability to satisfy all constraints and quality of 

results) on similar test systems. Also, dynamic economic dispatch for a conventional 

power system integrating wind power is also planned for future work. 
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APPENDIX  

 

TABLE A.1 

Generating Units Data for Case I (6-Unit Test System) 

 

Pi
min Pi

max a i ($) b i ($/MW) ci ($/MW
2
)

P1 100 500 240 7.0 0.0070

P2 50 200 200 10.0 0.0095

P3 80 300 220 8.5 0.0090

P4 50 150 200 11.0 0.0090

P5 50 200 220 10.5 0.0080

P6 50 120 190 12.0 0.0075

Generating 

unit

Power limits (MW) Fuel cost coefficients

 

 

TABLE A.2 

 Ramp-Rate Limits and Prohibited Zones of Generating Units  

for Case I (6-Unit Test System) 

Generating 

unit

Pi
pre 

(MW)

UR I 

(MW/h)

DR I 

(MW/h)

Prohibited zones  

(MW)

P1 440 80 120 [210 240] [350 380]

P2 170 50 90 [90 110] [140 160]

P3 200 65 100 [150 170] [210 240]

P4 150 50 90 [80 90] [110 120]

P5 190 50 90 [90 110] [140 150]

P6 110 50 90 [75 85] [100 105]   

 

TABLE A.3 

 Generating Units Data for Case II (19-Unit Test System) 

ai ($) bi ($/MW) ci ($/MW
2
)

P1 6.1 52.6 5.44 0.0038

P2 6.1 52.6 5.44 0.0038

P3 6.1 52.6 5.44 0.0038

P4 6.1 52.6 5.44 0.0038

P5 6.1 52.6 5.44 0.0038

P6 6.1 52.6 5.44 0.0038

P7 6.1 52.6 5.44 0.0038

P8 6.1 53.7 6.34 0.0046

P9 6.1 51.5 5.34 0.005

P10 6.4 51.5 5.34 0.005

P11 6.4 52.5 5.34 0.0057

P12 6.4 52.5 5.34 0.0057

P13 8 76.5 8.06 0.0346

P14 8 76.5 8.06 0.0346

P15 2.1 55.4 7.1 0.0076

P16 2.1 55.4 7.1 0.0076

P17 2.1 55.4 6.95 0.0076

P18 2.1 55.4 7.3 0.0076

P19 6.1 59.3 7.1 0.0079

Fuel cost coefficients
Generating 

unit

Generating units' 

maximum output 

power (MW)
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TABLE A.4 

 Generating Units Data for Case III (10-Unit Test System) 

P
min

P
max ai              

($)

bi                 

($/MW)

ci        

($/MW
2
)

ei           

($)

fi             
(rad/MW)

P1 150 470 958.20 21.60 0.00043 450 0.041 80 80

P2 135 460 1313.60 21.05 0.00063 600 0.036 80 80

P3 73 340 604.97 20.81 0.00039 320 0.028 80 80

P4 60 300 471.60 23.90 0.00070 260 0.052 50 50

P5 73 243 480.29 21.62 0.00079 280 0.063 50 50

P6 57 160 601.75 17.87 0.00056 310 0.048 50 50

P7 20 130 502.70 16.51 0.00211 300 0.086 30 30

P8 47 120 639.40 23.23 0.00480 340 0.082 30 30

P9 20 80 455.60 19.58 0.10908 270 0.098 30 30

P10 55 55 692.40 22.54 0.00951 380 0.094 30 30

Gen. 

Unit

Power limits (MW) Fuel cost coefficients
URi                    

(MW/h)

DRi                   

(MW/h)

 

 

TABLE A.5 

 24-Hour Dynamic Load Demand for Case III (10-Unit Test System) 

Time (Hour) 1 2 3 4 5 6 7 8 9 10 11 12

Load demand 

(MW)
1036 1110 1258 1406 1480 1628 1702 1776 1924 2072 2146 2220

Time (Hour) 13 14 15 16 17 18 19 20 21 22 23 24

Load demand 

(MW)
2072 1924 1776 1554 1480 1628 1776 2072 1924 1628 1332 1184

 

 

TABLE A.6 

 Parameters for GA, DE and MPSO Methods 

GA DE MPSO

Population size 50 chromosomes 50 individuals 30 particles

Max. generation/ 

max. iteration

 150 (Case I), 500 (Case II) 

and 500 (Case III)

 150(Case I), 500 (Case II) 

and 500 (Case III)

 150(Case I), 500 (Case II) 

and 500 (Case III)

C R 0.7 0.8 -

M R 

Adaptive mutation      

(linearly decreasing from 

0.07 to 0.01)

- 0.15

F -

Adaptive scaling factor      

(linearly decreasing from 

0.08 to 0.02)

-

β gb - - 2

K pb 1000 1000 1000

w iner - -

Adaptive inertia weight 

(linearly decreasing from 

0.9 & 0.4)

c 1 & c 2 - - 2 (each)

V max - -

20% of the dynamic 

range of the variable on 

each dimension  
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Start

Specify the generation power limits, ramp-rate 

limits and prohibited operating zones of each unit

Set all parameters

Initialize randomly the individuals 

to lie within the specifications

Initialize randomly the 

chromosomes to lie within 

the specifications

Evaluate fitness of 

chromosomes 
Evaluate fitness of individuals 

Perform selection, crossover 

and mutation to determine 

the best fit chromosome

Perform competition and 

crossover to determine the 

best fit individual

Determine the best 

chromosome
Determine the best individual

Initialize randomly the 

particles to lie within the 

specifications

Evaluate fitness of  

particles 

Determine particle’s best 

and global best positions.  

Perform mutation 

operation on global best 

position

Update the velocity and 

position of each particle 

Again, determine the 

resulting global best

Is  

max. generations 

reached ?

Print results and stop

GA DE MPSO

Yes

NoIs  

max. generations 

reached ?

Is  

max. iterations 

reached ?

Yes Yes

No No

GA or DE or 

MPSO ?

 

 

Fig. 1. A Flowchart Illustrating GA, DE and MPSO Based ED Methods 
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Fig. 2. The 16 × N bits Concatenated Binary Coding Scheme 
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Fig. 3. Average Generation Cost Plots for Case I (6-Unit Test System) 
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Fig. 4. Average Generation Cost plots for the Case II (19-Unit Test System) 
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Fig. 5. Dynamic Economic Dispatch Schedules Plots for Case III 

(10-Unit Test System) 
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Fig. 6. Average Generation Cost Plots in Hour 1 for Case III 

(10-Unit Test System) 
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ABSTRACT: This paper presents multi-objective combined economic and emission 

dispatch (MO-CEED) optimization problem for a wind-hydrothermal power system. This 

MO-CEED problem formulation becomes a challenging problem because of the presence 

of uncertainty in wind power (due to uncertain wind speed). Another aspect of the 

challenge is the integration/mixing of the wind power with the hydrothermal grid system 

for the purposes of economically meeting dynamic load demand while minimizing 

emission. The MO-CEED optimization process for this wind-hydrothermal power system 

while satisfying practical constraints, must also find trade-off solutions between multiple 

objectives (minimizing both fuel cost and emission simultaneously). A modified particle 

swarm optimization (MPSO) algorithm is used to solve this MO-CEED problem. Results 

are presented to show the benefits from integrating wind power with conventional 

hydrothermal power system including cost saving, emission reduction and the positive 

impact of capacity credit of wind power. A family of distributed optimal Pareto fronts for 

the MO-CEED problem has been generated for different scenarios of capacity credit of 

wind power. The potential for practical application of this approach in dispatch centers of 

wind-hydrothermal power system is demonstrated. A platform for achieving increased 

integration of renewable/sustainable energy is presented. 

 

INDEX TERMS: Combined economic and emission dispatch, cost saving, emission 

reduction, multi-objective function, uncertainty in wind power. 

 

IV. MULTI-OBJECTIVE COMBINED ECONOMIC AND EMISSION  

DISPATCH WITH UNCERTAINTY IN WIND POWER  

FOR A WIND-HYDROTHERMAL SYSTEM  
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NOMENCLATURE 

Aw  Swept area of the wind turbine‘s blade 

ia , ib  & ic  Fuel cost coefficients (coeffs) of the ith thermal unit 

αi, βi, δi, σi & λi  Emission coeffs of the ith thermal unit 

gb
  Global best strategic learning parameter for mutation 

c1 & c2 Cognitive and social acceleration constants respectively 

CD,w & CE,w Penalty cost coeffs for calling reserves to cover for deficit wind-generated 

power and for not using all available wind power respectively from wth wind 

plant  

Ch & Cw  Cost functions for hth hydro unit and wth wind plant respectively  

Cp          Performance coeff 

d Particle‘s dimension 

ie  & if  Fuel cost coeffs of the ith thermal unit with valve-point effect 

ET Total CO2 emission (tCO2/h) 

FT, FH & FW  Total costs derived from thermal, hydro and wind plants respectively ($/h) 

 FTotal Multi-objective function 

Iter & Itermax   Current and maximum iteration number respectively 

l lth particle 

LFk      Apparent power flow (MVA) in line k 

max

kLF  Maximum limit for apparent power flow 

rM  Mutation rate 

N Number of dimensions 

εi Price penalty factor for the ith thermal unit ($/tCO2) 

Nc      Total number of constraints 

nd & Nprob Index and total number of discrete probability step of a normal distribution 

respectively 

NH & NT Total number of running (or on-line) hydro and thermal units respectively  

NW Total number of wind-powered plants (or wind farms) 

NB Total number of PQ buses 

NE Total number of transmission lines 
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Preference,wt Actual production of wind power from the wth wind-powered plant (wind 

farm) in period t 

dnerrorP ,
 Probability of error (

dnError ) at each ndth discrete probability step of a normal 

distribution 

Pexp,wt Expected wind power from the wth wind-powered plant (wind farm) in period t 

Pforecast,nd Wind power forecast at each ndth discrete probability step of a normal 

distribution 

Pgd Swarm‘s best position for dimension d 

Pht & Pit Scheduled generations from the hth hydro and ith thermal units respectively in 

period t 

min

iP  & max

iP  Minimum and maximum power limits respectively for thermal unit i 

Ploss System loss 

Plbd lth particle best position for dimension d 

Pld Position vector of the particle l in dimension d 

D
tP         Total real load demand for period t  

Pw Wind turbine output power 

R System reserve 

ρ Density of air 

r, rand , rand1 & rand2  Random numbers with uniform distribution in the range of 

[0, 1] 

randn Gaussian distributed random number with a zero mean and a variance of 1 

t         Index of period 

T         Set of indices of periods in dispatching horizon 

Uht & Uit On-line status of hth hydro and ith thermal units respectively in time t 

Vi Voltage magnitude at bus i 

min

iV  & max

iV  Minimum and maximum voltage limits at bus i 

Vw Wind speed 

Vld & Vmax lth particle velocity in dimension d and maximum particle velocity 

respectively 

ω Weighting factor for multi-objective function  
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inerw , 
min

inerw  & max

inerw  Current, initial and final inertia weights respectively 

 

1. INTRODUCTION 

Economic load dispatch (ELD) of generating units is an important optimization 

task and is performed in order to supply electricity economically to meet demand while 

minimizing the total generation cost and satisfying system constraints [1 - 3]. Modern 

power system is experiencing increased demand for electricity with related expansions in 

system size, which has resulted in higher number of generators and lower reserve margins 

making the ELD problem more challenging and complicated [1 - 3].  

Utilities have been forced to modify their design and operational strategies to 

enhance de-carbonization as a consequence of increased public awareness of the relevant 

environmental protection laws and the passage of the Clean Air Act Amendments of 

1990. To this effect, many strategies have been proposed, such as, installation of 

pollutant cleaning equipment, switching to low emission fuels, replacement of the aged 

fuel-burners with cleaner ones, and emission dispatching [4]. The first three strategies 

involve considerable long-term investment in the form of modification of existing 

equipment or simply installation of new equipment. The latter option of emission 

dispatching is a short-term approach in which a bi-objective fuel cost and emission 

functions are minimized simultaneously. A number of methods have been reported in the 

literature regarding economic and emission dispatch problem. One such work reduces 

this multi-objective problem to a single objective problem by converting the emission 

into constraint to be met while minimizing the economic cost function [4 - 7]. This 

approach however exposes weakness in establishing trade-off relations between the two 

conflicting objectives. Another optimization technique minimizes the economic and 

emission objectives alternately at different stages of the optimization process [4 - 7].  

Worldwide interest in reducing environmental pollution and the increasing 

concern over possible energy shortage has led to fruitful increasing interest in generation 

of renewable electrical energy. Wind power has become the fastest growing energy 

sources in the world and the leading source among various renewable energy sources in 

the power industry. New concepts for cluster management include the aggregation of 

geographically dispersed wind farms according to various criteria, for the purpose of an 
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optimized network management, maintenance and generation scheduling. These clusters 

are operated and controlled like large conventional power plants [8 - 14]. 

This paper addresses the stochastic multi-objective combined economic and 

emission dispatch (MO-CEED) optimization problem for a wind-hydrothermal power 

system with uncertainty in wind power. A modified particle swarm optimization (MPSO) 

algorithm that is suitable for large scale optimization [15] is applied to solve this MO-

CEED problem.  Further challenges imposed on this MO-CEED optimization problem is 

the uncertainty in wind power factored into the problem formulation to effectively and 

practically represent integration issues of a practical wind-hydrothermal power system.  

The main contributions of this paper are: 

 Formulation of a stochastic MO-CEED optimization problem for a wind-

hydrothermal power system.  

 Handling of uncertainty in wind power.  

 Solving the stochastic MO-CEED problem for wind-hydrothermal power system 

using a family of optimal Pareto fronts. 

 Demonstration of potential for increased daily cost saving and emission reduction for 

a practical Nigerian power system. 

 

2. PROBLEM FORMULATION 

2.1. Objective Functions 

Normally, a wind turbine creates mechanical torque on a rotational shaft, while an 

electrical generator on the same rotating shaft is controlled to produce an opposing 

electromagnetic torque. In steady operation, the magnitude of the mechanical torque is 

converted to the real power given by (1) and is delivered to the grid [8].  

 

3

2

1
wpww VCAP             (1)  

 
  

Multiple wind turbines in the wind farm are required to generate aggregated MW 

for bulk delivery to the power grid system. From the simulation point of view, an 
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aggregated model is sufficient to represent the entire wind farm at the point of common 

coupling [8]. 

FT expresses the traditional sum of the fuel costs of the conventional thermal 

generators to be minimized, expressed by quadratic function with sine component for 

each unit‘s output Pit as given by (3). The emission dispatch problem is formulated as 

atmospheric pollutants emission minimization problem, with the aim of minimizing the 

total emission of the system. The problem is formulated as a quadratic polynomial with 

the total emission ET given by (4). From (6) - (8), Ch and Cw are the direct costs for the 

power derived from the hydro units and wind farms (wind-powered plants) respectively. 

The existence and size of these terms will depend on the ownership of the hydro units and 

wind-powered plants. If the hydro generators and wind-powered plants are owned by the 

system operator (or utility owned, such as in vertically integrated power networks), these 

terms may not even exist if it accounts only for the incremental fuel cost, which is zero 

for the hydro and wind. The penalty cost CE,w for not using all available wind may be set 

to zero. The last term in (7) relates to the price that must be paid for overestimation of the 

available wind power. Without regard to ownership of the wind-powered plants, the 

model must account for the possibility that a reserve would need to be drawn on if all the 

available wind power is inadequate to cover the amount of the wind power schedule in a 

given time period.  

To model the uncertainty in wind power, the expected wind farm power output 

Pexp,wt is formulated as a probabilistic function of the wind forecast as expressed by (8). 

The error (
dnError ) of wind power forecast at each discrete step nd of a normal distribution 

of wind power forecast is taken to be within the range ±10%. This probability of 

occurrence of the error in wind power forecast (
dnerrorP ,
) is in the range (0≤

dnerrorP , ≤1). The 

reference wind power generation (Preference,wt) is the amount of wind power demanded by 

the network  operator from the wind farm operator. It is the ―firm‖ capacity of a wind 

farm power output that can be counted on as a reliable contribution to the sum of all grid 

capacity for the wind-hydrothermal power system to meet the load demand and losses. 

The expected wind farm power output (Pexp,wt) must therefore seek to balance the 

reference  wind power  (Preference,wt), otherwise penalty cost is placed according to (9). 

Active power balancing comes at a cost. The capacity credit of wind power refers to the 
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capability of wind power to increase the available capacity and hence increase reliability 

of the power system [8]. If wind power is introduced into the system, the available 

capacity is increased. This amount of wind power results in a decrease in the number of 

hours with a capacity deficit, thus increasing the reliability of the power system as a 

result of the wind power integration. Therefore to implicitly represent the capacity credit 

of wind power and to further handle the uncertainty of wind power, probability of 

unavailability of wind power γ is defined and added to the objective function in (2) using 

(7) - (9). This probability of unavailability of wind power lies within the range (0 ≤ γ ≤ 

1). Probability of unavailability of wind power γ=1 signifies there is no wind power from 

the wind farm (this can represent a scenario with insufficient wind speed to turn the 

turbine blades in the wind farm as wind may not be available all the time and hence 

insignificant capacity credit of wind power), while γ=0 indicates that there is significant 

wind power from the wind farm (this can represent a scenario with maximum wind speed 

to turn the turbine blades in the wind farm and hence significant capacity credit of wind 

power is added to the grid). 
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00,

00,

00,

,,,exp,

,,,exp,

,,,exp,

wDwEwtreferencewt

wDwEwtreferencewt

wDwEwtreferencewt

CandCthenPP

CandCthenPP

CandCthenPP

If                                             (9) 

  

where τ = 1 if valve-point loading is taken into account (for nonconvex fuel cost 

functions), otherwise  τ = 0 (for convex fuel cost functions). Uit and Uht can take values of 

0 or 1 (0: if the thermal or hydro unit is off-line, 1: if the thermal or hydro unit is on-line). 

In this paper, however, Uit and Uht are given the value of 1. 

2.2. Constraints 

The multi-objective function in (2) is minimized to satisfy the MO-CEED 

constraints (10) - (18).  

 Load balance constraint  

The generated power from all the running units must satisfy the load demand and the 

system losses.  

 

T H WN

i

N

h

N

w
loss

D
twththtitit PPPPUPU

1 1 1
exp,)1( , for all Tt                   (10) 

 

Ploss calculation: A common approach to model transmission losses in the system is to 

use Kron‘s approximated loss formula in terms of B-coefficients [1] given by (11). 
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 Thermal units generation and ramp-rate limits  

The operating range of all online units is restricted by the unit‘s ramp-rate limits during 

each dispatch period [1 - 3]. Hence the generator operating limits is given by (12) and 

modified according to (13). 

 

maxmin

iiti PPP , for all Tt                                   (12) 
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iiiti
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ii URPPPDRPP           (13) 
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 Thermal units’ prohibited operating zone 

Practically, adjusting the power output of a unit must avoid all capacity limits and 

unit‘s operation in prohibited zones [1 - 3]. The acceptable operating zones of a 

generating unit can be formulated as shown in (14).  

 

max

,

,1,

1,
min

,...,3,2

iit
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pzi

i
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iiti
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PPP

i

                            (14) 

      (i = 1, 2, …, NT) 

 

 Hydro units generation and ramp-rate  

Each thermal generating unit must not exceed lower and upper generation limits. Hence 

the generator operating limits are given by (15). 

  

maxmin

hhth PPP , (h = 1, 2, …, NH)   for all Tt                 (15) 

 

 Spinning reserve constraint 

Sufficient spinning reserve is required from all running units to maximize and maintain 

system reliability. 

 

T HN

i

N

h

loss

D

thhtiit RPPPUPU
1 1

maxmax ,  for all Tt                            (16) 

 

 Security constraints 

These comprise the inequality constraints of voltages at load buses (17) and 

transmission line loadings (18).  

 

maxmin

iii VVV ,    for all NBi                                     (17) 

max

kk PFPF  ,   for all NEk                                         (18) 
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3. MULTI-OBJECTIVE OPTIMIZATION  

Generally, simultaneous optimization of several objective functions is explicitly 

associated with lots of engineering and real-world problems. This type of optimization 

process leads to set of optimal solutions rather than a single optimal solution, since no 

one solution can be presumed to be of superior quality than any other with respect to all 

the objective functions. The purpose is to determine a trade-off surface, which is a set of 

non-dominated optimal solutions points known as Pareto-optimal solutions [4 - 7].  

 Weighted-sum method 

In this approach, the generation (fuel) cost function FT in (3) and the total emission 

function ET in (4) are aggregated using a weight coefficient ω (0 ≤ ω ≤ 1), whose value 

varies according to the relative importance of the two objective functions FT and ET 

expressed in (19).  

 

     Minimize TiT EFf 1                               (19) 

 

ω = 1.0 implies minimum fuel cost, and ω = 0.0 implies minimum emission. Using (19) 

the trade-off between the fuel cost and the emission can be evaluated and their Pareto-

optimal front established over the range of admissible values of ω.  

 Non-linear constrained multi-objective optimization method  

The MO-CEED problem seeks to minimize two objective functions, generation (fuel) 

cost FT and emission ET simultaneously, while meeting the constraints shown in (21) 

and (22). By aggregating the objectives and constraints, the problem can be formulated 

mathematically as a nonlinear constrained multi-objective optimization problem 

expressed in (20) - (22). 

 

     Minimize      TT EF ,

      

                                         (20) 

     Subject to: g(Pi) = 0                                                   (21) 

      h(Pi)  ≤ 0                                     (22) 
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Mathematically, a general multi-objective function can be formulated to consist of a 

number of objective functions simultaneously optimized to satisfy certain number of 

equality and inequality constraints as presented in (23) - (25). 

 

    Minimize   Fi (x)

      

    i=1, 2, …, Nobj                                   (23) 

    Subject to: gj(x) = 0       j=1, 2, …, M                                   (24) 

     hk(x)  ≤ 0      k=1, 2, …, M                                   (25) 

 

Any two optimal solutions to a multi-objective optimization problem represented by x
1
 

and x
2
 can be classified into two possibilities, one dominates/covers the other or none 

dominates the other. Mathematically, a solution x
1
 dominates/covers x

2
 if the conditions 

expressed by (26) - (27) are satisfied.  

 

    Fi (x
1
) ≤ Fi (x

2
)

        
objNi ...,,2,1                                (26) 

     Fj (x
1
) < Fj (x

2
)

        
objNj ...,,2,1                                (27) 

 

Conditions (26) and (27) must be met for solution x
1
 to dominate/cover x

2
. If this 

happens, then x
1
 and x

2 
are called the non-dominant and dominated solutions 

respectively. The non-dominated solutions within the problem space are the Pareto-

optimal solutions and can be referred to as Pareto-optimal set/front [4 - 6].   

 

4. MPSO FOR SOLVING THE MO-CEED PROBLEM 

Bio-inspired and evolutionary techniques have been shown to be very effective 

optimization tools in solving power system problems [15, 16]. Hence their application in 

solving the MO-CEED problem for a wind-hydrothermal power system presented in this 

paper. 

The modified PSO is a combination of PSO and an evolutionary strategy 

enhancing the method to perform optimal search under complex environments [15, 16]. 

This version of MPSO is a variant of the original formulation of the continuous particle 

swarm optimization (CPSO) to solve continuous optimization problems such as the one 

considered in this paper.  
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The new velocity and position for each particle i in dimension d is determined 

according to the velocity and position update equations given by (28) and (29) 

respectively [15]. The inertia weight winer is updated according to (30). 

 

))1()1(())1()1(()1()( 2211 tXtPrandctXtPrandctVwtV ldgbldlbdldinerld    (28)  

            )()1()( tVtXtX ldldld
                                          (29)  

 iter
iter

ww
ww ineriner

ineriner
max

minmax
max

                     (30) 

 

A mutation operator is introduced into the MPSO algorithm, so that the swarm‘s 

best position in dimension d is updated according to (31). 

 

rMrandIf  

)/)1(()1()1( gbgdgdgd tPrandnceiltPtP                         (31) 

else  

                                    )`1()1( tPtP gdgd
                                                (32) 

end   

   d = 1, 2, …, N 

  

The control or the decision variables for the MO-CEED problem are real power 

generations, and are therefore used to form the swarm. The real power outputs of all on-

line generators are represented as the positions of the particles in the swarm [6, 16]. For N 

generators, the particle‘s position is represented as a vector of length N. If there are Npar 

particles in the swarm, the lth particle in the swarm can be represented as a matrix shown 

in (33). 

lNlillld PPPPP ,...,,...,, 21                                (33) 

d=1, 2, …, i, …, N 

 

The element Pli of the vector Pld is the lth position component of particle l, and it 

represents the real power generation of on-line generator i of the possible solution. A 
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feasible Pld represents a potential solution to the optimization problem. Each element of 

the swarm matrix is initialized randomly within the effective real power operating limits. 

The initialization is either based on (12) and (15) for generators without ramp-rate limits, 

or on (13) and (16) for generators with ramp-rate limits. The ith dimension of the lth 

particle is assigned a value of Pli determined by (34) while satisfying the constraints 

given by (12) and (15) or (13) and (16) depending on whether ramp-rate limits are 

considered or not. Constraint (14) should also be satisfied if the units‘ prohibited 

operating zones are known.  

 

)( minmaxmin

lililili PPrPP                                           (34) 

 

The fitness values obtained from (2) for the initial particles of the swarm are set 

as the initial pbest values of the particles. The best value among all the pbest values 

becomes the gbest. Mutation operator is introduced into the method using (31).  

The new velocity is computed using (28). To control excessive roaming of the 

particles, the velocity is limited to a certain range [-Vmax, Vmax], such that Vld always lies 

only within this range. The maximum velocity is limited to between 10% - 20% of the 

dynamic range of the variable on each dimension.  

The swarm is updated by updating the particle‘s position vector using (29). The 

pbest and gbest values are subsequently updated. 

 

5. CASE STUDY AND DISCUSSION 

5.1. The Nigerian Wind-Hydrothermal Power System 

The test data for this case is taken from a real power system whose thermal 

generating units are characterized with convex fuel cost coefficients (τ = 0, σi = 0 & λi = 0 

in (3) - (4)) for simplicity. The Nigerian conventional grid system comprises a total of 49 

functional generating units spread across 7 generating stations located at: AFAM, 

DELTA, EGBIN, SAPELE, JEBBA, KAINJI and SHIRORO [15] as shown in Fig. 1. 

Table A.1 of the Appendix presents Nigeria‘s power stations data, units‘ minimum and 

maximum power outputs limits, and is a modification of the data presented in [15]. A 9% 

spinning reserve is used to improve the system reliability and provide sufficient ramping 
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capacity for balancing wind power variability in addition to existing load variations. 

Table A.2 of the Appendix presents the Nigerian thermal stations‘ fuel cost and emission 

coefficients. All the generating units at AFAM and DELTA stations as well as 8 

generating units at EGBIN station are gas turbines (GTs), while all generating units at 

SAPELE station and other 6 generating units at EGBIN station are steam turbines (STs). 

Also the four thermal plants utilize natural gas supplied from the Nigerian Gas Company 

(NGC) as their raw material input. The three hydro stations (Hs) namely JEBBA, KAINJI 

and SHIRORO are located in Northwestern Nigeria. The anticipated wind farm/plant for 

integration with the hydrothermal power system is located at Ikeja-Lagos in Area 1 of 

Fig. 1. 

Forecasted hourly load demand for Nigeria [16] presented in Table A.3 of the 

Appendix is considered and used to illustrate the implementation and potential benefits in 

solving the MO-CEED optimization problem for a wind-hydrothermal power system. 

The transmission losses (Ploss) for the Nigerian grid system is computed using 

(11), with the loss coefficients obtained via parametric estimation based on several power 

flow scenarios [18, 19] for its largely radial network structure. The estimated loss 

formula coefficients for the thermal and hydro generating stations are given in matrix 

form in [18, 19]. Equations (17) and (18) are relaxed in the solution due to line data 

unavailability. But can be easily incorporated with line data availability by solving the 

optimal power flow (OPF) and checking for violation in network constraints.  

5.2. Numerical Results and Analysis 

All numerical results are obtained based on programs developed in the matlab 

environment on a PC with 2.2GHz CPU speed and 1.5GB of RAM.  

The following MPSO and wind-powered plant parameters are used in this paper: 

population size of 30, min

inerw  and max

inerw  of 0.4 and 0.9, respectively, c1 and c2 of 2, Vmax is 

20% of the dynamic range of the variable on each dimension, Mr of 0.15, Itermax of 100, 

βgb of 2, ρ of 1.2kgm
-2

, Aw of 5024m
-2

, and Cp of 0.59 [8]. The penalty cost coefficients, 

CE,w and CD,w are empirically tuned to values between 0 and 1000 according to (9), to 

effectively enforce the constraints in (9). The values are also in accordance with 

maximum wind power available. The costs Ch and Cw paid to hydro and wind plants 

owners respectively for the generated power actually used from hydro units and wind 
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units are each set to 0, since both are owned by common utility operator (Nigerian 

government holds ownership of both plants).  

The electricity generated by a utility-scale wind turbine is normally collected and 

fed into utility power lines, where it is mixed with electricity from other power plants and 

delivered to utility customers. The output of a wind turbine depends on the turbine's size 

and the wind's speed through the rotor. Most manufacturers of utility-scale wind turbines 

offer machines in the 700KW to 2.5MW range [8].  

A daily wind average output power of 130.12MW in Lagos-Nigeria [20, 21] 

represents only about 13.01% capacity factor for a wind farm facility of 500 wind 

turbines, each rated at 2MW. A wind plant is "fueled" by the wind, which blows steadily 

at times and not at all at other times. Although modern utility-scale wind turbines 

typically operate 65% to 90% of the time, they often run at less than full capacity [8]. 

Therefore, a capacity factor of less than 40% is common, although they may achieve 

higher capacity factors during windy periods. A capacity factor of 40% to 80% is typical 

for conventional plants. The forecasted wind farm power output (Pforecast) is drawn from 

the wind speed data shown in Table A.4 of the Appendix [20, 21]. To handle the 

uncertainty in wind energy at each hour of generation, the expected wind farm power 

output (Pexp,wt) is a probabilistic function of the forecasted wind farm power output 

(Pforecast) and the forecast error (
dnError ) as expressed by (8), and  is used for illustrating 

the MO-CEED optimization problem for the wind–hydrothermal power system presented 

in this paper. The reference wind power generation Preference,wt anticipated from the wind 

farm for the power system to meet load demand must balance the expected generation 

Pexp,wt given by (8), otherwise penalty cost is incurred  in the objective function in (2) 

using (9). 

The MO-CEED problem is handled as a multi-objective optimization problem 

where both generation cost and carbon dioxide (CO2) emission are optimized 

simultaneously using MPSO. Convergence of the combined multi-objective function 

given by (2) is shown in Fig. 2, where the total cost FTotal is seen to converged to 

275490.00Naira/h. Typical convergence plots of generation cost and CO2 emission 

objectives are presented in Fig. 3 using MO-CEED weight factor (ω) of 0.6 under the 

probability of uncertainty in wind power (γ) of 0.8 for illustration. From Fig 3, it can be 
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seen that the generation cost and CO2 emission converged to 270.57Naira/h and 

16.29tCO2/h respectively, as shown in Table 1 when the MO-CEED weight factor (ω) is 

0.6.  Similar analyses using eleven different MO-CEED weight factors (ω) of 0.1 

intervals for simplicity in the range [0, 1] under probability of uncertainty in wind power 

(γ) of 0.8 are shown in Table 1. It is also worth noting that 101, 1001 or 10001 different 

MO-CEED weight factors (ω) of 0.01, 0.001 or 0.0001 intervals respectively in the range 

[0, 1] will also work, though at the expense of more number of multi-objective function 

evaluations and more computation time.   

To generate the eleven non-dominated solutions, the MPSO algorithm is applied 

eleven times over the range of admissible values of MO-CEED weight factors (ω), under 

probability of uncertainty in wind power (γ) of 0.8 for illustration as presented in Table 1 

during hour 1. The table also shows the best solutions in hour 1 for optimized units‘ 

dispatch and total generation output, load demand, power loss, generation cost and CO2 

emission. A similar table can be obtained and drawn for each of the 24-hour dispatch 

periods. Only one type of pollutant (CO2) is considered for simplicity. The CO2 emission 

conversion factors according to reference values of the fuel characteristics are shown in 

Table A.5 of the Appendix [22, 23]. The CO2 emission is generally taken to be 

proportional to the generator‘s fuel consumption using similar form of the fuel cost 

function with appropriately derived CO2 emission coefficients from Tables A.2 and A.5 

of the Appendix [22, 23].  

The diversity of the Pareto optimal fronts over the trade-off surfaces under 

different levels of capacity credits of wind power (with probabilities of uncertainty in 

wind power (γ) of 0.8, 0.6, 0.4 and 0.2) are shown in Fig. 4. Each Pareto optimal set has 

11 non-dominated solutions. The Pareto optimal front produced under γ = 0.2 presents the 

best trade-off surface while minimizing the generation cost and emission, compared with 

the Pareto optimal fronts generated under γ = 0.8, 0.6 and 0.4. This indicates that with 

increased capacity credit of wind power, the generation cost and CO2 emission can be 

effectively curtailed and reduced respectively. This consequently increases the total cost 

savings.  
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TABLE 1 

 The Best Solutions of Optimized Generation Cost and CO2 Emission 

Considering Uncertainty in Wind Power during Hour 1 

ω =1 ω =0.9 ω =0.8 ω =0.7 ω =0.6 ω =0.5 ω =0.4 ω =0.3 ω =0.2 ω =0.1 ω =0

P 1 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00

P 2 80.00 80.00 80.00 80.00 80.00 80.00 144.00 80.00 80.00 190.00 80.00

P 3 80.00 80.00 128.02 80.00 80.00 119.00 80.00 184.00 122.00 80.00 80.00

P 4 80.00 80.00 80.00 110.00 80.00 80.00 80.00 80.00 80.00 80.00 190.00

P 5 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00

P 6 80.00 80.00 80.00 82.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00

P 7 160.00 160.00 160.00 160.00 160.00 160.00 140.43 133.08 160.00 160.00 167.00

P 8 20.00 20.00 20.00 20.00 30.00 20.00 30.00 20.00 30.00 20.00 20.00

P 9 20.00 20.00 25.00 20.00 20.00 20.00 20.00 26.00 20.00 30.00 30.00

P 10 20.00 30.00 20.00 21.00 20.00 30.00 20.00 20.00 21.00 30.00 20.00

P 11 20.00 30.00 30.00 21.00 30.00 20.00 20.00 24.00 30.00 30.00 20.00

P 12 20.00 30.00 20.00 30.00 20.00 20.00 25.00 20.00 27.00 30.00 30.00

P 13 30.00 30.00 20.00 20.00 28.00 30.00 30.00 28.00 20.00 22.00 21.00

P 14 20.00 28.00 20.00 20.00 30.00 20.00 30.00 20.00 20.00 23.00 30.00

P 15 10.00 10.00 10.00 6.00 10.00 5.00 5.00 7.00 10.00 10.00 5.00

P 16 5.00 5.00 5.00 5.00 10.00 10.00 9.00 10.00 10.00 5.00 5.00

P 17 10.00 5.00 6.00 5.00 5.00 5.00 5.00 9.70 5.00 10.00 5.00

P 18 10.00 5.00 9.00 7.00 5.00 10.00 5.00 10.00 9.00 6.00 7.00

P 19 6.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 7.00 8.00 5.00

P 20 85.30 50.00 40.92 81.30 85.30 85.30 85.30 64.30 83.30 41.33 40.00

P 21 115.85 97.80 138.00 90.85 137.00 104.00 90.85 90.85 100.85 90.85 115.85

P 22 100.00 90.85 115.85 85.00 115.85 115.85 85.00 90.00 85.00 85.00 109.92

P 23 10.00 10.00 10.00 19.60 10.00 10.00 10.00 19.60 19.60 10.00 19.60

P 24 10.00 10.00 10.00 19.60 10.00 19.60 19.60 10.00 17.00 10.00 12.00

P 25 10.00 19.60 19.60 19.60 10.00 15.00 10.00 10.00 13.00 10.00 10.00

P 26 18.60 10.00 10.00 10.00 10.00 19.64 10.00 19.60 19.60 10.00 13.00

P 27 5.00 5.00 10.00 5.00 5.00 10.00 5.00 5.00 5.00 5.00 5.00

P 28 52.50 85.00 40.00 85.00 40.00 85.00 71.00 40.00 85.00 40.00 40.00

P 29 85.00 79.00 85.00 85.00 40.00 58.00 40.00 44.00 40.00 40.00 40.00

P 30 65.00 40.00 40.00 48.00 40.00 40.00 40.00 85.00 40.00 85.00 40.00

P 31 52.00 85.00 43.00 40.00 85.00 4.00 85.00 40.00 42.00 40.00 40.00

P 32 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30

P 33 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30

P 34 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30

P 35 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30

P 36 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30

P 37 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30 88.30

P 38 112.51 112.50 112.50 112.50 112.50 112.50 112.50 112.50 112.50 112.50 112.50

P 39 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

P 40 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

P 41 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

P 42 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

P 43 76.50 76.50 76.50 76.50 76.50 76.50 76.50 76.50 76.50 76.50 76.50

P 44 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00

P 45 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

P 46 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00

P 47 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00

P 48 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00 140.00

P 49 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

27.92 27.92 27.92 27.92 27.92 27.92 27.92 27.92 27.92 27.92 27.92

2756.98 2756.97 2757.11 2757.67 2757.87 2757.11 2756.90 2751.85 2758.07 2757.90 2757.09

2750.00 2750.00 2750.00 2750.00 2750.00 2750.00 2750.00 2750.00 2750.00 2750.00 2750.00

6.98 6.97 7.11 7.67 7.87 7.11 6.90 6.85 8.07 7.90 7.09

266.93 267.85 268.38 268.50 270.57 271.80 272.49 273.04 273.44 274.99 277.81

16.64 16.51 16.46 16.45 16.29 16.26 16.18 16.15 16.13 16.07 15.99

 Probability of uncertainty in wind power γ=0.8 
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Th
er

m
al

 u
ni

ts 
ge

ne
ra

tio
n 

in
 h

ou
r 1

 (M
W

)
H

yd
ro

 u
ni

ts 
ge

ne
ra

tio
n 

in
 h

ou
r 1

 (M
W

)

Wind power  gen. in 

hour 1 (MW) 

Total generation in 

hour 1 (MW)

Power loss, P loss  in 

hour 1 (MW)

CO2 emission, E T                    

(tCO2/h)

Gen. cost, F T                                   

(x10
3
 Naira/h)

Power demand, P
D 

in hour 1 (MW)

 



 133 

Table 2 shows the statistical comparison of total generation cost and CO2 

emission over a 24-hour dispatch period. The table further explores the impact of 

capacity credit of wind power (modeled as probability of uncertainty in wind power) on 

the total generation cost and CO2 emission over a 24-hour dispatch period. The statistical 

results are obtained after 100 iterations of 100 trials over the entire 24-hour dispatch 

period. The results show relative daily generation cost reductions of 8600.00Naira 

(0.13%), 6100.00Naira (0.09%) and 6500.00Naira (0.10%) for MO-CEED weight factors 

(ω) of 0.8, 0.5 and 0.2 respectively under MO-CEED #2 (γ=0.6) scenario compared with 

MO-CEED #2 (γ=0.6) scenario. The best reduction in the relative daily generation cost is, 

therefore, obtained when MO-CEED weight factor (ω) is 0.8 under the MO-CEED #2 

(γ=0.6) scenario. Similarly, under the MO-CEED #3 (γ=0.4) and MO-CEED #4 (γ=0.2) 

scenarios, the best reductions in the relative daily generation cost obtained are 

11300.00Naira (0.17%) and 24800.00Naira (0.38%) respectively, corresponding to MO-

CEED weight factors (ω) of 0.2 and 0.5 respectively. The result shows corresponding 

reductions in the relative daily CO2 emission of 0.443tCO2 (0.11%), 0.620tCO2 (0.16%), 

and 0.890tCO2 (0.23%) under the MO-CEED #2 (γ=0.6), MO-CEED #3 (γ=0.6) and MO-

CEED #4 (γ=0.2) scenarios respectively.  

Table 3 shows the total daily cost savings derived from the relative daily 

generation and CO2 emission cost savings for MO-CEED #2, #3 and #4 compared with 

MO-CEED #1. A maximum total daily cost savings of 41733Naira is obtained under 

MO-CEED #4 (γ=0.2) scenario while a minimum total daily cost saving of 

16383.333Naira is obtained under MO-CEED #2 (γ=0.6) scenario. This result shows that 

with further increases in capacity credit of wind power, the total daily cost savings can be 

significantly improved. With this approach, the total daily cost savings can be predicted 

(or extrapolated) into the future in the case of long-term planning of wind-hydrothermal 

power system. The result also shows how the capacity credit (modeled as probability of 

uncertainty in wind power) can positively impact decision making through proper 

evaluation of amount of total daily cost savings accruable from reductions in both fuel 

consumption and CO2 emission. 
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TABLE 2 

 Statistical Comparison of Optimized Daily Generation Cost (FT) and CO2 Emission (ET) 

Considering Uncertainty in Wind Power 

min max mean std min max mean std min max mean std

6495.500 6530.300 6503.200 ±13.654 6487.700 6511.400 6493.500 ±13.921 6478.600 6505.200 6483.700 ±13.670

388.518 391.112 389.419 ±1.020 388.662 391.684 389.610 ±0.933 388.727 392.815 390.193 ±0.881

6486.900 6521.200 6496.400 ±13.823 6481.600 6515.000 6503.000 ±13.744 6472.100 6511.000 6497.100 ±13.305

8.600                            

(0.13%)
- - -

6.100                            

(0.09%)
- - -

6.500                            

(0.10%)
- - -

388.075 390.274 389.785 ±1.069 388.195 390.901 390.182 ±0.985 388.267 391.201 389.826 ±1.058

0.443                          

(0.11%)
- - -

0.467                                                   

(0.12%)
- - -

0.46                                        

(0.12%)
- - -

6485.100 6498.300 6490.400 ±12.689 6477.200 6494.500 6484.500 ±12.281 6467.300 6493.400 6484.100
±12.812

2

10.000                            

(0.16%)
- - -

10.500                            

(0.16%)
- - -

11.300                            

(0.17%)
- - -

387.84 390.103 389.646 ±0.909 388.035 390.150 389.767 ±0.857 388.107 391.000 389.800 ±0.915

0.678                           

(0.17%)
- - -

0.627                                                   

(0.16%)
- - -

0.620                                         

(0.16%)
- - -

6475.500 6488.500 6483.100 ±12.509 6462.900 6486.100 6482.600 ±12.032 6456.400 6485.900 6481.500 ±12.993

20.000                            

(0.31%)
- - -

24.800                            

(0.38%)
- - -

22.200                            

(0.34%)
- - -

387.502 390.072 388.793 ±1.039 387.772 390.086 388.959 ±1.021 387.900 390.472 389.306 ±0.991

1.016                           

(0.26%)
- - -

0.890                                                   

(0.23%)
- - -

0.827                                         

(0.21%)
- - -

Relative generation cost 

reduction over 24hrs (x10
3 

Naira)

Total CO2 emission over 24hrs 

(tCO2)

Relative CO2 emission reduction 

over 24hrs (tCO2)

ω =0.8 ω =0.5 ω =0.2

Total generation cost, F T  over 

24hrs (x10
3
 Naira)

Total generation cost, F T  over 

24hrs (x10
3
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Relative generation cost 

reduction over 24hrs (x10
3 
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Total CO2 emission over 24hrs 

(tCO2)

Relative CO2 emission reduction 

over 24hrs (tCO2)
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TABLE 3 

 Total Daily Cost Saving Considering  

Uncertainty in Wind Power 

S/N
Relative daily generation 

cost saving (Naira)

Relative daily CO2 emission 

cost saving  (Naira)

Total daily cost saving 

(Naira)

1 8600.000 7783.333 16383.333

2 11300.000 11300.000 22600.000

3 24800.000 16933.333 41733.333

MO-CEED #3 with γ=0.4

MO-CEED #4 with γ=0.2

Probability of uncertainty (γ) 

in wind power 

MO-CEED #2 with γ=0.6
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6. CONCLUSION 

In this paper, the problem of multi-objective combined economic and emission 

dispatch (MO-CEED) for a wind-hydrothermal power system has been formulated and 

solved using a modified particle swarm optimization (MPSO) algorithm. Handling of 

uncertainty in wind power has been formulated as a stochastic optimization and part of 

the MO-CEED optimization problem formulation, and solved using a family of optimal 

Pareto fronts for different scenarios of capacity credit of wind power. Capacity credit of 

wind power is demonstrated to impact the generation cost curtailment, carbon dioxide 

(CO2) emission reduction and the total daily cost savings. Results show that further 

increases in capacity credit of wind power have potential of substantially improving long-

term total cost savings. It is shown that an important benefit related to the wind power 

integration is the additional MW capacity added to the hydrothermal power system. It is 

demonstrated that the wind power displaces portions of electricity produced from thermal 

units, thus the quantity of fuel burnt by the thermal units is reduced and the wind power 

provides a fuel saving, and also enhances CO2 emission reduction. The MO-CEED 

optimization result presented in this paper provides enabling platforms and potential for 

optimizing short and long term system planning, operations and energy management.    

Limitations are not imposed on the number of trade-off objectives that can be 

optimized, hence further work could flexibly incorporate more objectives (such as 

stability, security or system losses etc). 

 

ACKNOWLEDGMENT 

The financial support from the National Science Foundation (NSF), USA under 

the grant ECCS # 0348221 is gratefully acknowledged by the authors. The Authors are 

also grateful to Prof. U. O. Aliyu from Abubakar Tafawa Balewa University, Bauchi, 

Nigeria for providing some relevant data for the studies carried out. 

 

REFERENCES 

1 Wood, A. J. and Wollenberg, B. F.: ‗Power generation operation and control‘, ISBN 

9814-12-664-0, John Wiley and Sons, New York, NY, 2004 



 136 

2 Wang, C. and Shahidehpour, S. M.: ‗Effects of ramp-rate limits on unit commitment 

and economic dispatch‘, IEEE Transactions on Power Systems, August 1993, 8, (3), 

pp. 1341-1349 

3 Victoire, T. A. A. and Jeyakumar, A. E.: ‗Reserve constraint dynamic dispatch of 

units with valve-point effects‘, IEEE Transactions on Power Systems, August 2005, 

20, (3), pp. 1273-1282 

4 Abido, M. A.: ‗Environmental/economic power dispatch using multiobjective 

evolutionary algorithms‘, IEEE Transactions on Power Systems, November 2003, 

18, (4), pp. 1529-1537 

5 Coello Coello, C. A., Pulido, G. T. and Lechuga, M. S.: ‗Handling multiple 

objectives with particle swarm optimization‘, IEEE Transactions on Evolutionary 

Computation, June 2004, 8, (3), pp. 256-279 

6 Lee, K. Y. and El-Sharkawi, M. A.: ‗Modern heuristic optimization techniques: 

theory and applications to power systems‘, ISBN 978-0471-45711-4, IEEE Press, 

445 Hoes Lane, Piscataway, New Jersey, 2008 

7 Momoh, J. A.: ‗Electric Power system applications of optimization‘, ISBN 0-8247-

9105-3, Marcel Dekker, Inc, 270 Madison Avenue, New York, NY 10016, 2001 

8 Ackermann, T.: ‗Wind Power in Power Systems‘, ISBN 10: 0-470-85508-8 (H/B), 

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 

8SQ, England, 2005. 

9 Li, Shuhui and Wunsch, D. C.: ‗Using neural networks to estimate wind turbine 

power generation‘, IEEE Transactions on Energy Conversion, September 2001, 16, 

(3), pp. 276-282 

10 Denny, E. and O‘Malley, M.: ‗Quantifying the total net benefits of grid integrated 

wind‘, IEEE Transactions on Power Systems, May 2007, 22, (2), pp. 605-615 

11 Jabr, R. A. and Pal, B. C.: ‗Intermittent wind generation in optimal power flow 

dispatching‘, IET Generation, Transmission & Distribution, 2008, 3, (1), pp. 66-74 

12 Chompoo-inwai, C., Yingvivatanapong, C., Methaprayoon, K. and Lee, W.: 

‗Reactive compensation techniques to improve the ride-through capability of wind 

turbine during disturbance‘, IEEE Transactions on Industry Applications, May/June 

2005, 41, (3), pp. 666-672 

13 Chompoo-inwai, C., Lee, W., Fuangfoo, P., Williams, M. and Liao, J. R.: ‗System 

impact study for the interconnection of wind generation and utility system‘, IEEE 

Transactions on Industry Applications, January/February 2005, 41, (1), pp. 163-168 

14 Chen, C.-L.: ‗Simulated annealing-based optimal wind-thermal coordination 

scheduling‘, IET Generation, Transmission & Distribution, 2007, 1, (3), pp. 447-455 

15 Yare, Y., Venayagamoorthy, G. K. and Aliyu, U. O.: ‗Optimal generator 

maintenance scheduling using a modified discrete PSO‘, IET Generation, 

Transmission & Distribution, November 2008, 2, (6), pp. 834-846 



 137 

16 del Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J. and Harley, 

R. G.: ‗Particle swarm optimization: Basic concepts, variants and applications in 

power system‘, IEEE Transactions on Evolutionary Computation, April 2008, 12, 

(2), pp. 171-195 

17 Adepoju, G. A.,  Ogunjuyigbe, S.O. A. and Alawode, K. O.: ‗Application of neural 

network to load forecasting in Nigeria electrical power system‘, The Pacific Journal 

of Science and Technology, May 2007, 8, (1), pp. 68-72 

18  Wudil,  T. S. G., Ajiboye, I. O., Jiya, J. D. and Aliyu, U. O.: ‗Development of 

transmission loss formula for Nigerian electric power system‘, 6th International 

Conference on Power Systems Operation and Planning – VI (ICPSOP), Universidade 

Jean Piaget, Praia, Cape Verde, South Africa, May 2005, pp. 93-97 

19 Bakare, G. A.,  Aliyu, U.O., Venayagamoorthy, G. K. and Shu‘aibu, Y. K.: ‗Genetic 

algorithms based economic dispatch with application to coordination of Nigerian 

thermal power plants‘, IEEE PES General Meeting, June 2005, 1, pp. 551-556 

 20 Okoro, O. I. and Chikuni, E.: ‗Prospects of wind energy in Nigeria‘, International 

Conference on the Domestic Use of Energy, Cape Peninsula University of 

Technology, Cape Town, South Africa, April 2007 

21 http://www.timeanddate.com/weather/nigeria/lagos/hourly, accessed March 2010 

22 Simopoulos, D. N., Giannakopoulos, Y. S., Kavatza, S. D. and Vournas, C. D.: 

‗Effects of emission constraints on short-term unit commitment‘, IEEE 

Mediterranean Electrotechnical Conference Melecon 2006, Benalmadena (Malaga), 

Spain, May 2006 

23 http://vlex.com/vid/guidelines-reporting-greenhouse-emissions-36467981, accessed 

August 2007 

 

 

 

 

 

 

 

 

 

 

 

http://www.timeanddate.com/weather/nigeria/lagos/hourly
http://vlex.com/vid/guidelines-reporting-greenhouse-emissions-36467981


 138 

APPENDIX 

 

TABLE A.1 

 Nigerian Hydrothermal Units‘ Data  

Name of 

power 

station

S/N
Plant 

number

Name of 

turbine unit

Type of 

turbine
Pmin Pmax Ppre 

(MW)

UR 

(MW/h)

DR 

(MW/h)

1 3 EGBINST1 ST 80.0 190.0 120.0 50.0 90.0

2 3 EGBINST2 ST 80.0 190.0 120.0 50.0 90.0

3 3 EGBINST3 ST 80.0 190.0 120.0 50.0 90.0

4 3 EGBINST4 ST 80.0 190.0 120.0 50.0 90.0

5 3 EGBINST5 ST 80.0 190.0 120.0 50.0 90.0

6 3 EGBINST6 ST 80.0 190.0 120.0 50.0 90.0

7 4 EGBINGT1 GT 90.0 220.0 200.0 60.0 100.0

8 4 EGBINGT2 GT 20.0 30.0 25.0 20.0 25.0

9 4 EGBINGT3 GT 20.0 30.0 25.0 20.0 25.0

10 4 EGBINGT4 GT 20.0 30.0 25.0 20.0 25.0

11 4 EGBINGT5 GT 20.0 30.0 25.0 20.0 25.0

12 4 EGBINGT6 GT 20.0 30.0 25.0 20.0 25.0

13 4 EGBINGT7 GT 20.0 30.0 25.0 20.0 25.0

14 4 EGBINGT8 GT 20.0 30.0 25.0 20.0 25.0

15 5 SAPELST1 ST 5.0 10.0 7.0 5.0 6.0

16 5 SAPELST2 ST 5.0 10.0 7.0 5.0 6.0

17 5 SAPELST3 ST 5.0 10.0 7.0 5.0 6.0

18 5 SAPELST4 ST 5.0 10.0 7.0 5.0 6.0

19 5 SAPELST5 ST 5.0 10.0 7.0 5.0 6.0

20 5 SAPELST6 ST 40.0 85.3 70.0 40.0 60.0

21 1 AFAMGT19 GT 60.0 138.0 100.0 60.0 70.0

22 1 AFAMGT20 GT 60.0 138.0 100.0 60.0 70.0

23 2 DELTAG03 GT 10.0 19.6 15.0 10.0 12.0

24 2 DELTAG04 GT 10.0 19.6 15.0 10.0 12.0

25 2 DELTAG06 GT 10.0 19.6 15.0 10.0 12.0

26 2 DELTAG07 GT 10.0 19.6 15.0 10.0 12.0

27 2 DELTAG08 GT 5.0 10.0 7.0 5.0 6.0

28 2 DELTAG15 GT 40.0 85.0 70.0 40.0 60.0

29 2 DELTAG16 GT 40.0 85.0 70.0 40.0 60.0

30 2 DELTAG17 GT 40.0 85.0 70.0 40.0 60.0

31 2 DELTAG18 GT 40.0 85.0 70.0 40.0 60.0

32 6 JEBBGH1 H 50.0 88.3 - - -

33 6 JEBBGH2 H 50.0 88.3 - - -

34 6 JEBBGH3 H 50.0 88.3 - - -

35 6 JEBBGH4 H 50.0 88.3 - - -

36 6 JEBBGH5 H 50.0 88.3 - - -

37 6 JEBBGH6 H 50.0 88.3 - - -

38 7 KAING05 H 55.0 112.5 - - -

39 7 KAING06 H 5.0 10.0 - - -

40 7 KAING07 H 5.0 10.0 - - -

41 7 KAING08 H 5.0 10.0 - - -

42 7 KAING09 H 5.0 10.0 - - -

43 7 KAING10 H 35.0 76.5 - - -

44 7 KAING11 H 55.0 90.0 - - -

45 7 KAING12 H 5.0 10.0 - - -

46 8 SHIRGH1 H 50.0 140.0 - - -

47 8 SHIRGH2 H 50.0 140.0 - - -

48 8 SHIRGH3 H 50.0 140.0 - - -

49 8 SHIRGH4 H 5.0 10.0 - - -

Delta                        

PS

T
he

rm
al

Type of 

power 

station

Power station 

Egbin               

PS

Sapele                  

PS

Power limits (MW) Ramp rate limits
H

yd
ro

Jebba                 

PS

Kainji                    

PS

Shiroro                  

PS

Afam                    

PS

 

*GT - Gas turbine, ST - Steam turbine and H - Hydro. 

Nigerian Naira=0.008US$ at 2003 
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TABLE A.2 

 Nigerian Thermal Stations‘ Fuel Cost  

and Emission Coefficients 

a i                           

(Naira/h)

b i                                           

(Naira/MWh)

c i                            

(Naira/MW
2
h)

α i                           

(tCO2/h)

β i                                           

(tCO2/MWh)

ζ i                                           

(tCO2/MW
2
h)

Sapele 6929.000 7.840 0.130 0.416 0.000470 0.0000078

Delta 525.740 6.130 1.200 0.032 0.000368 0.0000720

Afam 1998.000 56.000 0.092 0.120 0.003360 0.0000055

Egbin 12787.000 13.100 0.031 0.767 0.000786 0.0000019

Power 

station

Fuel cost coefficients Emission coefficients

 

 

 

 

TABLE A.3 

 Nigerian Hourly Load Demand Forecast [17] 

Time (Hour) 1 2 3 4 5 6 7 8 9 10 11 12

Load demand (MW) 2750 2700 2700 2600 2650 2840 2950 3050 2930 2810 2710 2690

Time (Hour) 13 14 15 16 17 18 19 20 21 22 23 24

Load demand (MW) 2680 2675 2670 2672 2676 2750 2950 3096 3094 3093 3000 2960
 

 

 

TABLE A.4 

 Hourly Wind Speed in Nigeria - Lagos [20, 21] 

Time (Hour) 1 2 3 4 5 6 7 8 9 10 11 12

Wind speed (mph) 12 11 10 10 9 8 7 8 8 8 8 8

Time (Hour) 13 14 15 16 17 18 19 20 21 22 23 24

Wind speed (mph) 8 8 9 9 10 11 12 12 12 11 11 11
 

 

 
 

TABLE A.5 

 Emission Conversion Factors [22, 23] 

Net calorific value Emission factor Oxidation factor Fuel supply cost 

(KJ/m
3
) (tCO2/TJ) (%) ($/m

3
) (tCO2/$) (tCO2/Naira) 

Oil 41031 77.4 0.995 157.00 0.02013 0.00016

Gas 31736 56.1 0.995 0.23 0.00800 0.00006

Coal 29308 98.3 0.990 51.30 0.05560 0.00045

Emission conversion factor                    Unit 

type
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Fig. 1. Nigerian Wind-Hydrothermal 330-KV, 25-Bus Grid System 
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Fig. 2. Convergence of the Multi-Objective Function (FTotal) given by (2) 

with γ=0.8 and ω=0.6 
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Fig. 3. Convergence of Generation Cost (FT) and CO2 Emission (ET)  

Objective Functions with γ=0.8 and ω=0.6 
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Fig. 4. Family of Pareto Optimal Fronts of the MO-CEED Problem  

with γ=0.8, 0.6, 0.4 and 0.2 
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V. GENERATOR MAINTENANCE SCHEDULING FOR A WIND-

HYDROTHERMAL POWER SYSTEM WITH UNCERTAINTY 

IN WIND POWER GENERATION  

 

Y. Yare, Student Member, IEEE, G. K. Venayagamoorthy, Senior Member, IEEE, and 

A. Y. Saber, Member, IEEE 

 

ABSTRACT— Smart grid delivers electricity from suppliers to consumers using 

intelligent technology to save energy, reduce cost, accommodate variety of generation 

options, increase reliability, efficiency and transparency etc. In pursuance of the smart 

grid initiative, this paper presents an optimal preventive generator maintenance 

scheduling (GMS) for a wind-hydrothermal power system. GMS problem is solved with 

the aim of maximizing economic benefits subject to satisfying system constraints. This 

GMS formulation becomes a stochastic problem because of the uncertainty in wind 

power and its incorporation into the hydrothermal power system. The objective is to 

perform GMS in such a manner that the annual cost saving is increased, annual 

generation cost is minimal and the potential for carbon dioxide (CO2) emission reduction 

is enhanced, while all operating constraints are satisfied in the presence of uncertainty in 

wind generation. A modified discrete particle swarm optimization (MDPSO) algorithm is 

used to solve this GMS problem. Results are presented to show the benefits accruable 

from integrating wind power into conventional hydrothermal power system even for the 

purpose of GMS and the positive impact of increasing wind penetration. 

 

INDEX TERMS—Cost saving, economic cost function, CO2 emission, generator 

maintenance scheduling, smart grid, uncertainty in wind power.  

 

NOMENCLATURE 

Aw  Swept area of the wind turbine‘s blade 

ia , ib  & ic  Fuel cost coefficients for unit i 

tAM  Available crew/labor at period t  

gb
  Global best strategic learning parameter for mutation 
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c1 & c2 Cognitive and social acceleration constants respectively 

CD,w & CE,w Penalty cost coefficients (coeffs) for calling reserves to cover for deficit 

wind-generated power and for not using all available wind power respectively 

from wth wind plant  

Ch & Cw Cost functions for hth hydro unit and wth wind plant respectively 

jkC       Technical crew/labor needed by unit j  at week k  

Cp          Performance coeff 

d Particle‘s dimension 

djk      Maintenance start indicator and state of unit j in week k  

Djt       Maintenance downtime for unit j in period t 

jep         Earliest period for maintenance of unit j to begin 

γ Probability of unavailability of wind power and lies in the range of [0, 1] 

Iter & Itermax   Current and maximum iteration number respectively 

k Discrete time step 

l lth particle 

jl          Latest period for maintenance of unit j  to end 

rM  Mutation rate 

MRjk & TMRt    Maintenance resources/budgets needed by unit j  at week k and 

producer‘s total available resources/budgets at period t respectively 

N Number of dimensions 

nd & Nprob Index and total number of discrete probability step of a normal distribution 

respectively 

NH & NT Total number of running (or on-line) hydro and thermal units respectively  

Nm      Total number of generating units in maintenance 

NW Total number of wind-powered plants (or wind farms) 

Preference,wt Actual production of wind power from the wth wind-powered plant (wind 

farm) in period t 

dnerrorP ,
 Probability of error (

dnError ) at each ndth discrete probability step of a normal 

distribution 

Pexp,wt Expected wind power from the wth wind-powered plant (wind farm) in period t 
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Pforecast,nd Wind power forecast at each ndth discrete probability step of a normal 

distribution 

Pgd Swarm‘s best position for dimension d 

Pht & Pit Scheduled generations from the hth hydro and ith thermal units respectively in 

period t 

min
iP  & max

iP  Minimum and maximum power limits respectively for thermal unit i 

Ploss System loss 

Plbd lth particle best position for dimension d 

Pld Position vector of the particle l in dimension d 

D
tP         Total real load demand for period t  

Pw     Wind turbine output power 

l
tPF & lPFmax

 
Power flow and maximum power flow limit in transmission line l 

respectively 

R System reserve 

ρ Density of air 

r, rand , rand1 & rand2  Random numbers with uniform distribution in the range of 

[0, 1] 

randn Gaussian distributed random number with a zero mean and a variance of 1 

t         Index of period 

T         Set of indices of periods in planning horizon 

Uht & Uit Scheduled maintenance state of hth hydro and ith thermal units respectively in 

time t 

Vw Wind speed 

Vld & Vmax lth particle velocity in dimension d and maximum particle velocity 

respectively 

Vjt Unit‘s maintenance cost per week 

inerw , 
min

inerw  & max

inerw  Current, initial and final inertia weights respectively 
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I. INTRODUCTION 

Vision of the smart grid is presented by the U.S. Department of Energy‘s (DOE‘s) 

National Energy Technology Laboratory in ―A vision for the Modern Grid‖ [1]. A smart 

grid delivers electricity from suppliers to consumers using intelligent technology to 

provide high quality power that save energy, reduce cost, accommodate wide variety of 

generation options, increase reliability and transparency, be able to heal itself, resist 

attack, run more efficiently, and enable electricity market to flourish [1]. Such a 

modernized electricity network is being promoted as a way of addressing energy 

independence, global warming and emergency resilience issues. One of the visions of the 

smart grid is that it optimizes assets and operates efficiently. Today‘s grid has minimal 

integration of limited operational data with asset management processes and 

technologies. Grid technologies that are effectively integrated with asset management 

processes leads to effectively managed assets and costs [1]. Maintenance scheduling is 

part of asset management functions. Hence, this paper presents and solves the GMS 

problem for a wind-hydrothermal (accommodating multiple generation options) power 

system in accordance with the functions of the smart grid. 

Maintenance scheduling of generating units is an important task in power system 

and plays important role in the operation and planning activities of the electric power 

utility. The simultaneous solution of all aspects of the operation, planning and scheduling 

problems in the presence of system complexity at different time-scales, different order of 

uncertainties and problem‘s dimensionality is required for the efficient economic 

operation of the utility system [2]-[4].  Power system equipment are made to remain in 

good operating conditions by regular preventive maintenance. Modern power system is 

experiencing increased demand for electricity with related expansions in system size, 

which has resulted in higher number of generators and lower reserve margins making the 

generator maintenance scheduling (GMS) problem more complicated. The aim of 

maintenance scheduling is to determine the optimized timing and duration for scheduled 

planned maintenance overhauls for generating units while maintaining high system 

reliability, reducing production cost, prolonging generator life time subject to some unit 

and system constraints [2]-[4]. 
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A new approach for establishing power systems scheduled generators outages for 

maintenance purposes in short-term operations planning horizon is presented in [5]. This 

paper focused on modeling grid operation constraints and the resulting large-scale 

optimization problem is solved by mixed-integer programming techniques aided by 

Benders decomposition strategy. Maintenance scheduling problem that solved several 

uncertainties associated with it is presented in [6]. Fuzzy model for the integrated 

generation and transmission maintenance scheduling problem accounts for such 

uncertainties and introduces a solution technique to solve for the optimal schedule [6]. A 

new approach to maintenance scheduling of generating units in competitive electricity 

markets is presented in [7]. This paper focused on modeling a game-theoretic framework 

for the maintenance scheduling units‘ problem to analyze strategic behaviors of 

generating companies. An analytic foundation to assess the maintenance needs in a 

competitive environment is discussed in and presented in [8]. A stochastic optimization 

model is proposed in [8] that consider the trade-off among short and long-term objectives 

to determine the optimal maintenance profile for generating units over the life of the 

assets. A method designated as the maintenance coordination technique to coordinate 

composite system maintenance scheduling in a deregulated utility system is proposed in 

[9]. A technically sound coordinating mechanism based on incentives /disincentives 

among producers and the operator is presented in [10]. This mechanism allows producers 

to maximize their respective profits while the operator ensures an appropriate level of 

reliability. A new approach to security coordinated maintenance scheduling in 

deregulation is presented in [11], wherein the independent system operator (ISO) does 

not generate a maintenance schedule by itself, but calls for maintenance scheduling plans 

from individual generation companies (GENCOs). Stochastic mid-term risk-constrained 

hydrothermal scheduling algorithm in a generation company is proposed in [12] as the 

schedule is used by the GENCO for bidding purposes to the ISO. The optimization 

method in [12] is based on stochastic price-based unit commitment. A stochastic model 

for the optimal risk-based generation maintenance outage scheduling based on hourly 

price-based unit commitment in a GENCO is present in [13], wherein the maintenance 

outage schedules is submitted by GENCOs to the ISO for approval before 

implementation. A unit maintenance scheduling problem formulation for a generation 
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producer is presented in [14], to maximize its benefit while thoroughly considering the 

risk associated with unexpected unit failures. A mechanism for unit maintenance 

scheduling in the deregulated environment, based on the different functions of power 

producers and ISO is proposed in [15]. The proposed scheme aims to achieve a trade-off 

between ensuring the producers‘ benefits and maintaining the system reliability, 

providing satisfactory maintenance windows and cost-reflective reward/charge to 

individual producers.       

Worldwide interest in reducing environmental pollution and the increasing 

concern over possible energy shortage has led to fruitful increasing interest in generation 

of renewable electrical energy. Wind power has become the fastest growing energy 

sources in the world and the leading source among various renewable energy sources in 

the power industry. 

Wind turbines are usually placed in clusters (wind farms), with sizes ranging from 

a few MW up to several MW. Therefore, a large wind farm typically consists of hundreds 

of individual WTGs running simultaneously. The pooling of several large wind farms 

into clusters (in the GW range) will make new options feasible for an optimized 

integration of variable-output generation into electricity supply systems. Wind power 

fluctuates over time, mainly under the influence of meteorological fluctuations. The 

variations occur on all time scales: seconds, minutes, hours, days, months, seasons and 

years. Understanding these variations and their predictability is of key importance. New 

concepts for cluster management include the aggregation of geographically dispersed 

wind farms according to various criteria, for the purpose of an optimized network 

management, maintenance and generation scheduling. These clusters are operated and 

controlled like large conventional power plants [16]-[22]. 

Capabilities of discrete particle swarm optimization (DPSO) algorithm have been 

enhanced with evolutionary strategies (ESs) to produce a modified discrete particle 

swarm optimization (MDPSO) in [23]. Detail comparison of three algorithms – DPSO, 

MDPSO and GA and their application to solving a hydrothermal power system GMS 

problem are also presented in [23], which showed that MDPSO produced better results 

compared with DPSO and GA on a benchmark test system and practical power system. 
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The main contributions of this paper are: 

 Formulation of GMS as a stochastic optimization problem for a wind-hydrothermal 

power system. 

 Solving a stochastic GMS problem for a wind-hydrothermal power system. 

 Handling of uncertainty in wind power generation over the entire maintenance 

horizon.  

 Increased annual cost saving in a stochastic GMS. 

 Enhanced CO2 emission reduction in a stochastic GMS. 

 

II. PROBLEM FORMULATION 

The societal benefits of wind generation include the capacity value of wind 

generation, the emissions savings and the reduction in the fuel bill resulting from 

reduction in outputs of combustion plants in the system. Normally, a wind turbine creates 

mechanical torque on a rotational shaft, while an electrical generator on the same rotating 

shaft is controlled to produce an opposing electromagnetic torque. In steady operation, 

the magnitude of the mechanical torque is converted to the real power given by (1) and is 

delivered to the grid [16].  

 

     

3

2

1
wpww VCAP                            (1) 

 

  

Multiple wind turbines in the wind farm are required to generate aggregated MW 

for bulk delivery to the power grid system. From the simulation point of view, an 

aggregated model is sufficient to represent the entire wind farm at the point of common 

coupling [16]. The control value of wind power considers the capability of wind power to 

participate in balancing production and consumption in the power system. Since electric 

power cannot be stored it is necessary to produce exactly as much power as is consumed, 

all the time. The balancing problem is handled differently depending on the time frame. 

The availability of balancing solutions (generation capabilities, load management, energy 

storage) in power systems is an important factor for the integration of wind power in 

power systems. Even though power system balancing is not a new problem, wind power 
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does provide a number of new challenges which needs to be addressed if the amount of 

wind power increases above certain levels [16]-[24]. With increasing wind power 

penetration the demands of the grid operators are changing. In response to these 

demands, besides energy generation, modern wind turbines and wind farms are 

developing towards the concept of so-called WEPP (wind energy power plant) [16]. 

In general, there are two main categories of objective functions in GMS, namely, 

based on reliability and economic cost [4], [23]. The economic cost function is 

considered in this paper. The costs that need to be minimized for this optimal 

maintenance scheduling of generators are the generation and maintenance costs, while 

penalty cost is added to the objective function for violation of any of the constraints [4], 

[23].  

Suppose Tj T is the set of periods when maintenance of unit j may start, 

1: jtjjj DltepTtT  for each j. Define maintenance start indicator of unit j in 

period k represented by djk as 0 or 1 (0: if unit j starts maintenance at week k, 1: if unit j is 

on-line in week k). Let Sjt be the set of start time periods k such that if the maintenance of 

unit j starts at period k that unit will be in maintenance at period t, 

tkDtTkS jtjjt 1: . 

The GMS problem is commonly formulated as costs optimization problem, with 

the aim of minimizing the total maintenance cost of the power system but still satisfying 

some equality and inequality constraints. The input-output characteristics of a generator 

are approximated using quadratic or piecewise quadratic functions with the assumption 

that the incremental cost curves of the units are monotonically increasing piecewise-

linear functions [3], [4]. However, real input-output characteristics display higher-order 

nonlinearities and discontinuities due to valve-point loading effect which is modeled as a 

recurring rectified sinusoidal function [3], [4]. The valve-point loading effects introduce 

ripples in the heat-rate curves and make the objective function nonsmooth (nonconvex) 

with multiple minima [3], [4]. However, the valve-point loading has little or no effect on 

the system performance when considering long-term generation scheduling. Hence it can 

be neglected with reasonable accuracy for the long-term GMS problem presented in this 

paper.   
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The objective function given in (2) is for the minimization of the economic cost 

function which consists of the generation (thermal, hydro and wind) and maintenance 

costs. The generation cost of a thermal unit is expressed as second order function of each 

unit output itP . Since the equations for the generation cost of units are expressed on a per 

hour basis, a multiplier of 168 is used to get the total cost for generation in one week. F1 

defines the traditional sum of the fuel costs of the conventional thermal generators as 

given by (3), while F2 defines the cost for generating hydro power as expressed by (4). Ch 

and Cw are the direct costs for the power derived from the hydro units and wind farms 

(wind-powered plants) respectively as shown in (4) and (5). The existence and size of 

these terms will depend on the ownership of the hydro units and wind-powered plants. If 

the hydro generators and wind-powered plants are owned by the system operator (or 

utility owned, such as in vertically integrated power networks), these terms may not even 

exist if it accounts only for the incremental fuel cost, which is zero for the hydro and 

wind. The penalty cost CE,w for not using all available wind may be set to zero. The last 

term in (5) relates to the price that must be paid for overestimation of the available wind 

power. Without regard to ownership of the wind-powered plants, the model must account 

for the possibility that a reserve would need to be drawn on if all the available wind 

power is inadequate to cover the amount of the wind power schedule in a given time 

period. 

To model the uncertainty in wind power, the expected wind farm power output 

Pexp,wt is formulated as a probabilistic function of the wind forecast as expressed by (6). 

The error (
dnError ) of wind power forecast at each discrete step nd of a normal 

distribution of wind power forecast is taken to be within the range ±10%. This probability 

of occurrence of the error in wind power forecast (
dnerrorP , ) is in the range (0≤

dnerrorP , ≤1). 

The reference wind power generation (Preference,wt) is the amount of wind power demanded 

by the network  operator from the wind farm operator. It is the ―firm‖ capacity of a wind 

farm power output that can be counted on as a reliable contribution to the sum of all grid 

capacity for the wind-hydrothermal power system to meet the load demand and losses. 

The expected wind farm power output (Pexp,wt) must therefore seek to balance the 

reference  wind power  (Preference,wt), otherwise penalty cost is placed according to (7). 

Active power balancing comes at a cost. The capacity credit of wind power refers to the 
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capability of wind power to increase the available capacity and hence increase reliability 

of the power system [16]. If wind power is introduced into the system, the available 

capacity is increased. This amount of wind power results in a decrease in the number of 

hours with a capacity deficit (especially during GMS), thus increasing the reliability of 

the power system as a result of the wind power integration. Therefore to implicitly 

represent the capacity credit of wind power and to further handle the uncertainty of wind 

power, probability of unavailability of wind power γ is defined and added to the objective 

function in (2) using (5) - (8). This probability of unavailability of wind power lies within 

the range (0 ≤ γ ≤ 1). Probability of unavailability of wind power γ=1 signifies there is no 

wind power from the wind farm (this can represent a scenario with insufficient wind 

speed to turn the turbine blades in the wind farm as wind may not be available all the 

time and hence insignificant capacity credit of wind power), while γ=0 indicates that 

there is significant wind power from the wind farm (this can represent a scenario with 

maximum wind speed to turn the turbine blades in the wind farm and hence significant 

capacity credit of wind power is added to the grid). 

The maintenance cost for all units in maintenance is represented by each unit‘s 

fixed maintenance cost per week Vjt times the downtime Djt of each unit on maintenance 

as expressed by (8). 

From (2) - (8), the input variables are: Pit, Pht, dnforecastP , , Vjt and Djt, output 

variable are: Uit, Uht, F1, F4 and objective function (2), while the decision variables are: γ, 

Preference, 
dnError  and 

dnerrorP , . 

 

         

T

t
jtjtnforecasthtit DVFPFPFPF

d

1
4,321 ),()()()(min

                              (2) 

 

where, 

 

    

TN

i
itiitiiit PcPbaUF

1

2
1 168                                       (3) 

HN

h

hthht PCUF
1

2
             (4) 



 153 

WN

w

wtwtreferencewDwtreferencewtwEwtw PPCPPCPCF
1

exp,,,,exp,,exp,3 )()1(
              (5) 

prob

d

dndd

N

n

Errornnforecastwt PErrorPP ,exp,                                     (6) 

00,

00,

00,

,,,exp,

,,,exp,

,,,exp,

wDwEwtreferencewt

wDwEwtreferencewt

wDwEwtreferencewt

CandCthenPP

CandCthenPP

CandCthenPP

If                           (7)  

mN

j
jtjt DVF

1
4                                                     (8) 

 

Uit and Uht take values of 0 or 1 (0: if the thermal or hydro unit is scheduled for 

maintenance, 1: if the thermal or hydro unit is running/on-line) depending on the 

generated schedule. 

The objective function in (2) is minimized to satisfy the GMS constraints (9) - 

(20).  

 Technical crew/labor constraint 

This defines the crew/labor availability for maintenance task. The number of people 

required to perform maintenance task cannot exceed the available crew/labor within 

each period. 

 

m jtNj Sk
tjkjk AMdC )1( ,     for all Tt                     (9) 

 

 Maintenance window and duration constraint 

This defines the possible times and duration of maintenance for each generating unit. It 

specifies the starting of maintenance at the beginning of an interval and finishing at the 

end of the same interval. With commencement of maintenance task, the maintenance 

start indicator djk is 0, and remains 0 for the entire duration of maintenance represented 

by Djt as expressed by (10). 

 

m jtNj Sk

jtjk Dd )1( ,      for all Tt                           (10) 
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 Continuous maintenance constraint 

The following constraint in (11) ensures that the maintenance of each unit should not be 

interrupted once it begins. 

 

)1()1()1( )1(,1,, , tjDtjkjkj ddd ,   for all mNj , jtSk ,  Tt    (11) 

 

 Maintenance resource and budget constraint 

Due to limitations on total resources/budgets available to units for maintenance, several 

units should not be scheduled to be on maintenance simultaneously beyond allowable 

total resources/budgets. 

 

     
m jtNj Sk

tjkjk TMRdMR )1( , for all Tt           (12) 

 

 Load balance constraint  

The generated power from all the running units must satisfy the load demand and the 

transmission losses expressed by (13).  

 

T H WN

i

N

h

N

w

loss

D

twththtitit PPPPUPU
1 1 1

exp,)1( , for all Tt         (13) 

 

Ploss calculation: A common approach to model transmission losses in the system is to 

use Kron‘s approximated loss formula in terms of B-coefficients [3] given by (14). 
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 Thermal units generation and ramp-rate limits 

Each thermal generating unit must not exceed lower and upper generation limits. The 

operating range of all online units is restricted by the unit‘s ramp-rate limits during 

each dispatch period.  
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Therefore, subsequent dispatch output of a generator should be limited between its up 

and down ramp-rate limits constraint [3]. Hence the generator operating limits given by 

(15) are modified according to (16). 

 

        maxmin

iiti PPP , (i = 1, 2, …, NT)   for all Tt                  (15) 
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 Thermal units’ prohibited operating zones 

Each thermal generator has its generation capacity, which cannot be exceeded at any 

time. It is common for a typical thermal unit to have a steam valve in operation, or a 

vibration in shaft bearing, which may result in interference and discontinuous input-

output performance curve sections [3], known as prohibited operating zones. 

Practically, adjusting the power output of a unit must avoid all capacity limits and 

unit‘s operation in prohibited zones [3]. The acceptable operating zones of a generating 

unit can be formulated as shown in (17).  
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     (i = 1, 2, …, NT) 

 

 Hydro units generation limits   

Constraint (18) limits power scheduling from hydro generating units depending on 

water availability in the reservoir over a given period of time. It is a simpler 

representation that avoids detailed reservoir balance constraints for simplicity. 

  

maxmin

hhth PPP , (h = 1, 2, …, NH) for all Tt                        (18) 

 

 

 



 156 

 Spinning reserve constraint 

Sufficient spinning reserve margin is required from all running units to ensure high 

level of system reliability. 
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 Line capacity constraint  

The power flows on transmission lines are constrained by line capacities which depend 

on the transmission line voltage. 

 

ll
t PFPF max  ,    for all Tt                                 (20) 

 

III. MDPSO FOR SOLVING THE GMS PROBLEM 

Bio-inspired and evolutionary techniques have been shown to be very effective 

optimization tools in solving maintenance scheduling problems [4], [24]. Hence their 

application in solving the wind integrated-hydrothermal GMS problem presented in this 

paper. 

The general concepts behind optimization techniques initially developed for 

problems defined over real-valued vector spaces, such as PSO, can also be applied to 

discrete-valued search spaces where either binary or integer variables are used [24].  

When integer solutions (not necessarily 0 or 1) are needed, the real values of the 

particles‘ velocity or position are truncated to the nearest integer values [24]. Results 

obtained using integer PSO indicate that the performance of the method is not affected 

when the real values of the particles‘ velocity or position are truncated [24]. 

MDPSO is a combination of DPSO and an evolutionary strategy to enhance the 

standard DPSO algorithm to perform better search for optimal solutions under complex 

environments. The MDPSO is a newer variant of the original formulation of the DPSO to 

solve discrete optimization problems as explained below [23], [24]. A mutation operator 

is introduced into the MDPSO algorithm. The main goal is to increase the diversity of the 

population. In DPSO, the particles tend to cluster into local region after few iterations of 
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search, emphasizing on exploitation rather than exploration of the entire search space. 

Increased diversity brings about a balance in exploitation as well as exploration. This 

leads to a better search performance by MDPSO compared with DPSO. In addition, the 

inertia weight is dynamically adjusted. 

Let X and V denote a particle‘s coordinates (position) and its corresponding flight 

speed (velocity) in a search space, respectively. Therefore, the lth particle is represented 

as Xld = (Xl1, Xl2,…, XlN) in the d-dimensional space. The best previous position of the lth 

particle, referred to as pbest, is recorded and represented as Plbd = (Plb1, Plb2,…, PlbN). The 

index of the best particle among all the pbest in the swarm is referred to as the gbest and 

is represented by Pgd.  The rate of the velocity for particle lth is represented as Vld = (Vl1, 

Vl2,…,VlN).  In this version of PSO, the velocity is limited to a certain range [- Vmax, Vmax] 

such that Vld always lies in that range. The new velocity and position for each particle i in 

dimension d are determined according to the velocity and position update equations given 

by (21) and (22) respectively. The inertia weight winer is updated according to (23). 
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A mutation operator is introduced into the MDPSO algorithm, so that the swarm‘s 

best position in dimension d is updated according to (24). 
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end   
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where d = 1, 2, …, N and βgb can be either dynamically changing or fixed.   

The pseudocode for GMS implementation using the MDPSO is given below: 

Step 1: Initialize randomly a population of particles to lie within specified maintenance 

window of each unit over entire maintenance period.  

Step 2: Set all parameters c1, c2, min

inerw , max

inerw , Itermax and Vmax. 

Step 3: Evaluate the fitness value of each particle using (2). 

Step 4: Determine pbest and gbest.  

Step 5: Update velocity and position of each particle using (21) and (22) respectively. 

Step 6: Perform mutation using (24) if a random number < Mr and then output resulting 

optimal maintenance schedule. Otherwise simply output optimal maintenance 

schedule.  

Step 7: Terminate and print results if GMS‘s maximum number of trials is reached. 

Otherwise go to Step 3 and repeat. 

 

IV. CASE STUDY AND DISCUSSIONS 

A. Nigerian Grid System 

The test data for this case is taken from a real power system whose thermal 

generating units are characterized with convex fuel cost coefficients for simplicity. In 

addition, valve-point loading effect is not considered for long-term generation 

scheduling. The Nigerian conventional grid system comprises a total of 49 functional 

generating units spread across seven generating stations located at: AFAM, DELTA, 

EGBIN, SAPELE, JEBBA, KAINJI and SHIRORO [15] as shown in Fig. 1. Table A of 

the Appendix is a modification of similar table in [23] to accommodate the weekly 

maintenance cost (Naira) for each generating unit which participates in maintenance for 

the entire maintenance horizon of 52 weeks. The table presents generating units‘ 

minimum and maximum power outputs (with a total maximum generation of 

4145.5MW), technical crew/manpower requirement during maintenance, allowed 

maintenance duration and downtime. A 12% spinning reserve is used to improve the 

system reliability and provide sufficient ramping capacity for balancing wind power 

variability and generation lost from units‘ shutdown/undergoing maintenance, in addition 

to balancing existing load variations. Table B of the Appendix presents the Nigerian 
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thermal stations fuel cost coefficients. All the generating units at AFAM and DELTA 

stations as well as 8 generating units at EGBIN station are gas turbines (GTs), while all 

generating units at SAPELE station and other 6 generating units at EGBIN station are 

steam turbines (STs). Also the four thermal plants utilize natural gas supplied from the 

Nigerian Gas Company (NGC) as their raw material input. The three hydro stations (Hs) 

namely JEBBA, KAINJI and SHIRORO are located in Northwestern Nigeria. The 

anticipate wind farm/plant for integration with the hydrothermal power system is located 

in wind farm Area 3 as shown in Fig. 1. 

Well over two decades of operational experience and available historical data on 

hydrological conditions reveal that inflow variation profile at each hydro station location, 

by and large affects the generated power output of each hydro plant [23]. The 

maintenance window and sequence constraints of the three hydro plants are greatly 

influenced by the trend of the inflow into these hydrological areas. 
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Fig. 1. Nigerian Wind Integrated-Hydrothermal 330-KV, 24-Bus Grid System 
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Available historical studies indicate that Nigeria experiences a seasonal load 

variation profile. To model this load variation, a weekly peak load demand of 3625MW 

[23] plus a 5% load increase is considered during the seasonally hot period (March to 

July annually) in Nigeria which also associates with the peak demand period as depicted 

in Fig. 2. Weekly peak demand for periods outside of the March to July is relatively 

constant due to the predominantly residential-based electricity consumers in Nigeria. On 

the other hand, substantial industrial loads are supplied with electricity from distributed 

generation (DG).   

 

10 20 30 40 50
3000

3500

4000

Period (weeks)

L
o
a
d
 d

e
m

e
n
d
 (

M
W

)

 

 

Fig. 2. Annual Load Demand Pattern 

 

The transmission losses (Ploss) for the Nigerian grid system is computed using 

(14), with the loss coefficients obtained via parameter estimation based on several power 

flow scenarios [25], [26] for its largely radial network structure. The estimated loss 

formula coefficients for the thermal and hydro generating stations are given in matrix 

form in [25], [26]. Equation (20) is relaxed in the solution due to line data unavailability. 

But can be easily incorporated with line data availability by solving the optimal power 

flow (OPF) and checking for violation in network constraints. 

B. Numerical Results and Analysis 

 All numerical results are obtained based on programs developed in the Matlab 

environment on a PC with 2.2GHz CPU speed and 1.5GB of RAM. 

The following MDPSO and wind-powered plant parameters are used for GMS 

calculation: population size of 30, 
min

inerw  and max

inerw  of 0.4 and 0.9 respectively, c1 and c2 of 

2, Vmax is 20% of the dynamic range of the variable on each dimension, Mr of 0.15, Itermax 

of 500, βgb of 2, ρ of 1.2kgm
-2

, Aw of 5024m
-2

, and Cp of 0.59 [16]. The penalty cost 

coefficients, CE,w and CD,w are empirically tuned to values between 0 and 1000 according 
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to (7), to effectively enforce the penalty conditions in (5). The values are also in 

accordance with maximum wind power available. The costs Ch and Cw paid to hydro and 

wind plants owners respectively for the generated power actually used from hydro units 

and wind units are each set to 0, since both are owned by common utility operator 

(Nigerian government holds ownership of both plants).  

The electricity generated by a utility-scale wind turbine is normally collected and 

fed into utility power lines, where it is mixed with electricity from other power plants and 

delivered to utility customers. The output of a wind turbine depends on the turbine's size 

and the wind's speed through the rotor.  

Figure 3 shows the seven Nigerian forecasted wind farms‘ generation patterns 

[27], while Table I presents the statistical variation of these seven forecasted wind farms‘ 

power outputs used for illustration in this paper. The seven wind farms are geographically 

dispersed across various regions of Nigeria, representing areas with significant amount of 

wind gusts and speed. From Fig. 3 and Table I it can be seen that wind farm cited in Jos 

area projects the highest wind power output with a relatively low standard deviation and 

hence low level of wind variability and intermittency, compared with the remaining six 

wind farms. The Jos wind farm located in wind farm area 3 of Fig. 1 is therefore used as 

the only viable wind generation source that can effectively participate in the wind 

integrated-hydrothermal maintenance scheduling. An annual mean output power of 

408.34MW represents about 40.83% capacity factor for a wind farm facility of 500 wind 

turbines, each rated at 2MW. The Jos wind turbine‘s actual maximum power output is 

1.585MW, while the wind farm‘s total actual maximum power generation is 

792.474MW, assuming all the turbines are operating at their actual maximum power 

output capabilities. A wind plant is "fueled" by the wind, which blows steadily at times 

and not at all at other times. Although modern utility-scale wind turbines typically 

operate 65% to 90% of the time, they often run at less than full capacity [16]. Therefore, 

a capacity factor of 25% to 40% is common, although they may achieve higher capacity 

factors during windy weeks or months. A capacity factor of 40% to 80% is typical for 

conventional plants. The 52 weeks forecasted wind farm generation pattern for Jos, 

shown in Fig. 3 represents the wind farm power output forecast Pforecast used for 

illustrating the GMS problem for wind integrated–hydrothermal power system. The 
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reference wind power generation Preference,wt anticipated from Jos wind farm for the power 

system to meet load demand must balance the expected generation Pexp,wt given by (6), 

otherwise penalty cost is incurred  in the objective function in (2) using (5). 
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Fig. 3. Wind Farms‘ Generation Forecasts [27] 

 

 

TABLE I 

Statistical Variation of Seven  

Wind farms Power Output Forecasts [27] 

No. Location Annual mean Standard deviation

1 Abuja 12.03 6.22

2 Calabar 36.05 12.96

3 Enugu 41.97 16.97

4 Ikeja 56.54 19.96

5 Jos 408.34 56.55

6 Sokoto 309.86 115.04

7 Warri 51.4 18.11

Wind farm Wind farm output power (MW)

 

 

 

Figure 4 shows the convergence of annual generation costs presented in Table II 

for four different GMS and corresponding probabilities of unavailability of wind power 

for 100 iterations of 100 trials using the MDPSO algorithm. The converged annual 

generation costs are 1068000000Naira, 1055800000Naira, 1046100000Naira and 

1036700000Naira corresponding to GMS #1 (γ=0.8), GMS #2 (γ=0.6), GMS #3 (γ=0.4) 
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and GMS #4 (γ=0.2) respectively as shown in Table II. The result indicates that relative 

reduction in fuel consumption cost is obtained with increasing capacity credit of wind 

power. 
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Fig. 4. Convergence of Annual Generation Cost for Different GMS Scenarios 

 

Table II shows maintenance schedules generated by MDPSO algorithm for the 49 

generating units over a period of 52 weeks obtained over 100 trials. The results are 

obtained for four different probabilities of unavailability of wind power γ. The table 

shows the units scheduled for maintenance on weekly basis over 52 weeks and also 

presents the weekly maintenance costs, with an annual maintenance cost of 41120000 

Naira over the entire maintenance horizon. A unit‘s maintenance cost in Naira/week is 

provided as a fixed quantity for each of the 49 generating units presented in Table A of 

the Appendix. The maintenance cost is calculated by multiplying the fixed maintenance 

cost per week times the maintenance downtime of each unit in maintenance. Once a 

unit‘s maintenance is started it cannot be aborted, and each unit must undergo scheduled 

maintenance once per year. Table II also shows the annual transmission losses, annual 

generation, annual generation costs and annual carbon dioxide (CO2) emission 

concentrations under different probabilities of unavailability of wind power. The annual 

generation cost (fuel consumption cost) and the annual CO2 emission decreases with 
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decreasing probability of unavailability of wind power. Only one type of pollutant (CO2) 

is considered for simplicity. The CO2 emission conversion factors according to reference 

values of the fuel characteristics are shown in Table C of the Appendix. The CO2 

emission is generally taken to be proportional to the generator‘s fuel consumption using 

similar form of the fuel cost function with appropriately derived CO2 emission 

coefficients from Tables B and C of the Appendix [28], [29]. 

Figure 5 shows the system reliability indices (RIs) plots during generator 

maintenance under GMS #1 (γ=0.8), GMS #2 (γ=0.6), GMS #3 (γ=0.4) and GMS #4 

(γ=0.2) scenarios. The converged results are obtained after 100 iterations of 100 trials 

using the MDPSO algorithm. The converged RIs are 0.934, 0.936, 0.939 and 0.951 

corresponding to GMS #1 (γ=0.8), GMS #2 (γ=0.6), GMS #3 (γ=0.4) and GMS #4 

(γ=0.2) respectively. The high RI value of 0.951 is obtained at the expense of significant 

capacity credit of wind power introduced into the grid (when probability of unavailability 

of wind power is γ=0.2). The RI shows an increasing trend as the contribution of the 

capacity credit of wind power to the grid increases. The result also shows the capability 

of introducing wind power to increase reliability of the power system since the available 

capacity is increased. If the reliability was acceptable before the installation/introduction 

of wind power, wind power integration will enable the power system to meet a higher 

demand (or offset capacity deficit due to GMS) at the same reliability level.     
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Fig. 5. Convergence of Reliability Indices for Different GMS Scenarios 
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TABLE II 

Annual Maintenance Schedules, Transmission Losses, Maintenance, Generation Costs 

and CO2 Emissions Considering Uncertainty in Wind Generation 

Generating units scheduled 

for maintenance 

Weekly 

maintenance 

cost (Naira)

Generating units scheduled 

for maintenance 

Weekly 

maintenance 

cost (Naira)

Generating units scheduled 

for maintenance 

Weekly 

maintenance cost 

(Naira)

Generating units scheduled 

for maintenance 

Weekly 

maintenance 

cost (Naira)

1 18 280000 - 0 8,11 280000.00 4,8 420000

2 18 280000 1 280000 8,11,20 560000.00 2,4,5,8 980000

3 18 280000 1,6,10 700000 16,18,19,20 1120000.00 2,4,5,13,18 1260000

4 2,3,8,18 980000 1,6,7,10 840000 16,18,19,20 1120000.00 2,4,5,13,18 1260000

5 2,3,8,12 840000 1,6,7,11,17 1120000 12,14,16,18,19,20 1400000.00 2,4,5,10,12,18,20 1680000

6 2,3,5,12 980000 1,6,11,17 980000 12,14,16,18,19 1120000.00 2,5,7,10,12,14,17,18,20 1960000

7 2,3,5,14,19 1260000 5,6,17,19,20 1400000 3,7 420000.00 7,14,17,19,20 1120000

8 2,3,5,14,15,19 1540000 5,15,17,19,20 1400000 2,3,7,13,15 1120000.00 3,15,17,19,20 1400000

9 4,5,7,15,19,20 1540000 3,5,8,12,15,19,20 1680000 2,3,6,13,15 1260000.00 3,11,15,17,19 1260000

10 4,5,7,9,13,15,19,20 1820000 3,4,5,8,12,15,19,20 1960000 1,2,3,6,9,15 1540000.00 3,11,15,19 980000

11 4,6,9,13,15,16,20 1680000 3,4,5,15 1120000 1,2,3,4,6,9,15 1820000.00 3,9,15 700000

12 1,4,6,11,16,17,20 1820000 2,3,4,13,16,18 1540000 1,2,4,5,6,17 1680000.00 1,3,6,9 980000

13 1,4,6,11,16,17 1540000 2,3,4,13,16,18 1540000 1,4,5,6,10,17 1540000.00 1,6,16 840000

14 1,6,16,17 1120000 2,4,16,18 1120000 1,4,5,10,17 1260000.00 1,6,16 840000

15 1,6,10,17 980000 2,9,14,16,18 1120000 4,5,17 840000.00 1,6,16 840000

16 1,10 420000 2,9,14 560000 5 280000.00 1,6 840000

17 - 0 - 0 - 0.00 - 0

18 36,40,41 690000 35,42,45 720000 48 200000.00 49 200000

19 36,40,41 690000 35,42,45 720000 43,48 420000.00 49 200000

20 36,40,41 690000 35,42,45 970000 34,43 470000.00 33 250000

21 36,37 500000 35,44,45 750000 34,43 470000.00 33,40 470000

22 37,42 470000 41,44 470000 34,39 500000.00 33,40 470000

23 37,42 470000 41,44 470000 34,39 500000.00 33,40 470000

24 37,42 470000 41,43 440000 39,44 500000.00 47 200000

25 45,48 450000 36,43 470000 35,39,44 750000.00 47 200000

26 43,45,48 670000 36,43 470000 35,42,44 720000.00 38,39,42 720000

27 32,34,43,45 970000 36,48 450000 35,42,44 720000.00 38,39,42 720000

28 32,34,43,45 970000 36,48 450000 32,35,42 720000.00 38,39,42,44 970000

29 32,34 500000 46 200000 32,38 500000.00 38,39,44 750000

30 32,34 500000 46 200000 32,38 500000.00 34,44 500000

31 47 200000 47 200000 32,38 500000.00 34,44 500000

32 47 200000 47 200000 38 250000.00 32,34 500000

33 46 200000 32,33 500000 46 200000.00 32,34,41,43 940000

34 39,46 450000 32,33,38 750000 46 200000.00 32,41,43 690000

35 39,44 500000 32,33,38 750000 49 200000.00 32,41,43 690000

36 35,39,44 750000 32,33,38 750000 49 200000.00 48 450000

37 33,35,39,44 1000000 38,39,40 720000 33,37 500000.00 36,48 450000

38 33,35,44 750000 34,37,39,40 970000 33,36,37 750000.00 35,36 500000

39 33,35 500000 34,37,39,40 970000 33,36,37 750000.00 35,36 500000

40 33,38 500000 34,37,39 750000 33,36,37,45 1000000.00 35,36,37,45 750000

41 38,41 450000 34,37 500000 36,40,41,45 940000.00 35,37,45 750000

42 38,41 450000 49 200000 40,41,45,47 890000.00 37,45,46 700000

43 38 250000 49 200000 40,41,45,47 890000.00 37,45,46 700000

44 24,29 420000 22 280000 31 280000.00 24,26 280000

45 22,24,25,29 840000 22,27,29,31 1120000 26,28,30,31 980000.00 24,26,28 560000

46 22,25,26,28,29,31 1400000 22,26,27,29,31 1260000 26,27,28,29,30,31 1540000.00 21,22,27,28,29 1400000

47 21,22,26,28,29,30,31 1820000 21,22,26,27,28,29,31 1820000 21,22,27,28,29,30,31 1960000.00 21,22,27,28,29 1400000

48 21,22,27,28,30,31 1680000 21,22,25,27,28,29,30,31 2100000 21,22,27,28,29,30 1680000.00 21,22,23,27,28,29,30,31 2100000

49 21,22,27,28,30,31 1680000 21,24,25,28,30 1120000 21,22,25,27,29 1260000.00 21,22,23,27,29,30,31 1820000

50 21,23,27,30 980000 21,23,24,28,30 1120000 21,22,23,24,25 980000.00 21,22,25,30,31 1260000

51 21,23,27 700000 21,23,30 700000 21,22,23,24 840000.00 25,30,31 700000

52 - 0 - 0 - 0.00 - 0

41120000 - 41120000 - 41120000 - 41120000

241.944 - 227.592 - 212.004 - 198.588

190675.000 - 190675.000 - 190675.000 - 190675.000

190916.944 - 190902.592 - 190887.004 - 190873.588

1068000000 - 1055800000 - 1046100000 - 1036700000

61818 - 61662 - 61350 - 61110

GMS #4: Probability of unavailability of wind 

power γ=0.2

Annual power loss (MW)

Annual generation cost from 

thermal units only (Naira)

Annual load demand (MW)

Annual CO2 emission (tCO2)

Annual maintenance cost (Naira)

Annual power generation (MW)
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k GMS #1: Probability of unavailability of 

wind power γ=0.8

GMS #2: Probability of unavailability of wind 

power γ=0.6

GMS #3: Probability of unavailability of wind 

power γ=0.4
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Figures 6 and 7 show typical maintenance cost and maintenance crew plots 

respectively for the 49-unit Nigerian hydrothermal system using the MDPSO algorithm. 

It can be deduced from these figures that weeks 5, 14, 50-51 indicate periods with heavy 

maintenance work resulting in large maintenance costs, compared with weeks 18-19, 32-

33 and 43 representing periods with relatively low maintenance tasks. The weekly 

manpower requirement depicted in Fig. 7 clearly satisfies the crew/labor constraint in (9), 

and shows a mean and standard deviation of 12±6.20. 
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Fig. 6. Typical Maintenance Cost Plot for the 49-Unit Nigerian  

Hydrothermal System with MDPSO Solution 
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Fig. 7. Typical Maintenance Crew/Labor Plot for the 49-Unit Nigerian 

Hydrothermal System with MDPSO Solution 
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Figure 8 shows at a glance the impact of capacity credit of wind power on the 

annual generation cost and annual generation cost saving. As wind power from the wind 

farm becomes more available to increase the capacity credit of wind power, compensate 

and effectively displace portions of thermal generation supplying load, the generation 

from more expensive thermal-based units ramps down and results in lowering the overall 

annual cost of generation. The four different GMS scenarios (with their probabilities of 

unavailability of wind power) drawn from Table II are shown plotted in Fig. 8. It is seen 

from the figure that decreasing the probability of unavailability of wind power translates 

to significant fuel cost savings, since the capacity credit of wind power will be increased 

as well. This can help the utility operators in making qualitative and logical long-term 

planning that ensures cost effective system operation. 
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Fig. 8. Annual Generation Cost and Saving for Different GMS and  

Probabilities of Unavailability of Wind Power 

 

Figure 9 shows the annual CO2 emission concentrations plotted against the annual 

generation costs for four GMS scenarios considered in this paper. Implementation of 

GMS #1 (γ=0.8), GMS #2 (γ=0.6), GMS #3 (γ=0.4) and GMS #4 (γ=0.2) produce 

61818tCO2, 61662tCO2, 61350tCO2 and 61110tCO2  respectively in annual CO2 

emission, which translates to 0%, 0.25%, 0.76% and 1.15% respectively in annual CO2 

emission reduction benefits. These annual CO2 emission reduction benefits can be 
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significantly improved with increased capacity credit of wind power through vigorous 

wind penetration initiatives.  
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Fig. 9. Annual CO2 Emission versus Annual Generation Cost for Different 

GMS and Probabilities of Unavailability of Wind Power 

 

Table III presents the statistical comparison of the annual generation cost and 

annual CO2 emission cost for different probabilities of unavailability of wind power. The 

results are obtained after 100 iterations of 500 trials over the entire maintenance period of 

52 weeks. The results show minimum, maximum and average percent in annual energy 

cost savings of 2.93%, 3.01% and 2.73% respectively, while the minimum, maximum 

and average percent in annual CO2 emission cost savings are 1.15%, 1.05% and 1.09% 

respectively. These results are achieved by choosing to implement GMS #4 (γ=0.2) 

compared with GMS #1 (γ=0.8). Similar analysis can be made for GMS #2 (γ=0.6) and 

GMS #3 (γ=0.4) compared with GMS #1 (γ=0.8). The best annual generation cost and 

annual CO2 emission cost obtained are 1036700000Naira and 1018500000Naira 

respectively corresponding to GMS #4 (γ=0.2) as shown in Table III. 

Table IV shows the minimum and maximum limits of the total relative annual 

cost savings derived from the relative annual generation cost and relative annual CO2 

emission cost savings that can be obtained when implementing GMS #1, #2, #3 or #4 for 

the different probabilities of unavailability of wind power considered in this paper. A 
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maximum total relative annual cost saving of 47800000 Naira is achievable using GMS 

#4 (γ=0.2) compared with GMS #1 (γ=0.8), while a minimum total relative annual cost 

saving of 14800000 Naira is obtainable using GMS #2 (γ=0.6) compared with GMS #1 

(γ=0.8). The result also shows how the capacity credit of wind power can be translated 

into knowing the amount of total annual cost savings accruable from both reductions in 

fuel consumption and CO2 emission. 

 

TABLE III 

Statistical Comparison of Annual Generation and CO2 Emission Costs 

 Considering Probability of Unavailability of Wind Power 

Minimum  

(Naira)

Maximum 

(Naira)

Mean 

(Naira)

Standard 

deviation

Minimum  

(Naira)

Maximum 

(Naira)

Mean 

(Naira)

Standard 

deviation

1 10680 10787 10701 ±15.567 10303 10344 10316 ±10.508

2 10558 10627 10590 ±13.907 10277 10308 10289 ±13.380

3 10461 10566 10501 ±14.142 10225 10258 10238 ±12.837

4 10367 10429 10409 ±14.330 10185 10224 10204 ±14.860

2.93% 3.01%

Annual CO2 emission cost (x100000)  

1.15% 1.05% 1.09%- -

S/N

Probability of 

unavailability of wind 

power (γ) 

Annual generation cost (x100000)

GMS #1: γ=0.8 

GMS #2: γ=0.6

2.73%

GMS #3: γ=0.4

GMS #4: γ=0.2

Percent of annual cost saving 

between implementing GMS #1 

(γ=0.8) and GMS #4 (γ=0.2)
 

   

 

TABLE IV 

Total Relative Annual Cost Saving Considering  

Probability of Unavailability of Wind Power  

Minimum Maximum Minimum Maximum Minimum Maximum 

1 122 177 26 36 148 213

2 219 221 78 86 297 307

3 313 358 118 120 431 478

GMS #2: γ=0.6

GMS #3: γ=0.4

GMS #4: γ=0.2

Relative annual CO2 

emission cost saving 

(x100000 Naira)

Total relative annual 

cost saving                                              

(x100000 Naira)S/N

Probability of 

unavailability of 

wind power (γ) 

Relative annual 

generation cost saving 

(x100000 Naira)

 

 

V. CONCLUSIONS 

One of the smart grid visions of effectively integrating asset management 

processes into the grid which leads to effectively managed assets and costs have been 

demonstrated and presented. The problem of optimal preventive generator maintenance 
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scheduling (GMS) for a wind-hydrothermal power system has been shown and solved 

using a modified discrete particle swarm optimization (MDPSO) algorithm. Handling 

uncertainty in wind power associated with solving the stochastic GMS problem has been 

formulated and demonstrated using probabilistic method. One of the key benefits 

associated with the wind power integration is the capacity credit of wind power added to 

the wind-hydrothermal power system. It is demonstrated that the wind generation 

displaces electricity produced from thermal units (that is, ramps down thermal 

generation), thus the quantity of fuel burnt by the thermal units is reduced and the wind 

generation provides a fuel saving, and also enhances carbon dioxide (CO2) emission 

reduction. Even though CO2 emission reduction is not explicitly modeled into the cost 

function, the proposed model results in CO2 emission reduction benefits with increased 

capacity credit of wind power. This GMS stochastic optimization result present useful 

platforms for long-term planning and optimized energy management in the presence of 

uncertainty in wind power generation.  

Future work will incorporate short-term planning schemes such as unit 

commitment and economic dispatch on smaller time-frames (minutes to hours). This 

multi-period (short and long-term) generation scheduling problem for wind-hydrothermal 

power system is carried out in future work. Future work will also explicitly incorporate 

environmental pollution (CO2 emission) in the objective function and the problem solved 

as multi-objective constrained optimization. Also, to re-optimize the maintenance 

schedules in an event of forced generator outage during a normal preventive 

maintenance, a dynamic optimization technique such as adaptive dynamic programming 

can be used to automatically generate optimal GMS. Otherwise, one has to manually 

trigger an MDPSO based GMS whenever needed. 
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VI. APPENDIX 

 

TABLE A 

Nigerian Hydrothermal Units‘ and Maintenance Data 

Name of 

power 

station

S/N
Plant 

number

Name of 

turbine unit

Type of 

turbine
Pmin Pmax Ppre (MW)

UR 

(MW/h)

DR 

(MW/h)

Allowed 

maint. 

Period

Maint. 

duration 

(Weeks)

Manpower 

required for 

each week 

Maint. 

cost per 

week 

(Naira)

1 3 EGBINST1 ST 80.0 190.0 120.0 50.0 90.0 5 6+5+5+4+2 280000

2 3 EGBINST2 ST 80.0 190.0 120.0 50.0 90.0 5 6+5+5+4+2 280000

3 3 EGBINST3 ST 80.0 190.0 120.0 50.0 90.0 5 6+5+5+4+2 280000

4 3 EGBINST4 ST 80.0 190.0 120.0 50.0 90.0 5 6+5+5+4+2 280000

5 3 EGBINST5 ST 80.0 190.0 120.0 50.0 90.0 5 6+5+5+4+2 280000

6 3 EGBINST6 ST 80.0 190.0 120.0 50.0 90.0 5 6+5+5+4+2 280000

7 4 EGBINGT1 GT 90.0 220.0 200.0 60.0 100.0 2 4+3 140000

8 4 EGBINGT2 GT 20.0 30.0 25.0 20.0 25.0 2 4+3 140000

9 4 EGBINGT3 GT 20.0 30.0 25.0 20.0 25.0 2 4+3 140000

10 4 EGBINGT4 GT 20.0 30.0 25.0 20.0 25.0 2 4+3 140000

11 4 EGBINGT5 GT 20.0 30.0 25.0 20.0 25.0 2 4+3 140000

12 4 EGBINGT6 GT 20.0 30.0 25.0 20.0 25.0 2 4+3 140000

13 4 EGBINGT7 GT 20.0 30.0 25.0 20.0 25.0 2 4+3 140000

14 4 EGBINGT8 GT 20.0 30.0 25.0 20.0 25.0 2 4+3 140000

15 5 SAPELST1 ST 5.0 10.0 7.0 5.0 6.0 4 4+3+3+2 280000

16 5 SAPELST2 ST 5.0 10.0 7.0 5.0 6.0 4 4+3+3+2 280000

17 5 SAPELST3 ST 5.0 10.0 7.0 5.0 6.0 4 4+3+3+2 280000

18 5 SAPELST4 ST 5.0 10.0 7.0 5.0 6.0 4 4+3+3+2 280000

19 5 SAPELST5 ST 5.0 10.0 7.0 5.0 6.0 4 4+3+3+2 280000

20 5 SAPELST6 ST 40.0 85.3 70.0 40.0 60.0 4 4+3+3+2 280000

21 1 AFAMGT19 GT 60.0 138.0 100.0 60.0 70.0 5 5+5+4+3+3 280000

22 1 AFAMGT20 GT 60.0 138.0 100.0 60.0 70.0 5 5+5+4+3+3 280000

23 2 DELTAG03 GT 10.0 19.6 15.0 10.0 12.0 2 4+3 140000

24 2 DELTAG04 GT 10.0 19.6 15.0 10.0 12.0 2 4+3 140000

25 2 DELTAG06 GT 10.0 19.6 15.0 10.0 12.0 2 4+3 140000

26 2 DELTAG07 GT 10.0 19.6 15.0 10.0 12.0 2 4+3 140000

27 2 DELTAG08 GT 5.0 10.0 7.0 5.0 6.0 4 4+4+3+3 280000

28 2 DELTAG15 GT 40.0 85.0 70.0 40.0 60.0 4 4+4+3+3 280000

29 2 DELTAG16 GT 40.0 85.0 70.0 40.0 60.0 4 4+4+3+3 280000

30 2 DELTAG17 GT 40.0 85.0 70.0 40.0 60.0 4 4+4+3+3 280000

31 2 DELTAG18 GT 40.0 85.0 70.0 40.0 60.0 4 4+4+3+3 280000

32 6 JEBBGH1 H 50.0 88.3 - - - 4 5+4+3+2 250000

33 6 JEBBGH2 H 50.0 88.3 - - - 4 5+4+3+2 250000

34 6 JEBBGH3 H 50.0 88.3 - - - 4 5+4+3+2 250000

35 6 JEBBGH4 H 50.0 88.3 - - - 4 5+4+3+2 250000

36 6 JEBBGH5 H 50.0 88.3 - - - 4 5+4+3+2 250000

37 6 JEBBGH6 H 50.0 88.3 - - - 4 5+4+3+2 250000

38 7 KAING05 H 55.0 112.5 - - - 4 5+5+4+3 250000

39 7 KAING06 H 5.0 10.0 - - - 4 5+5+4+3 250000

40 7 KAING07 H 5.0 10.0 - - - 3 4+3+2 220000

41 7 KAING08 H 5.0 10.0 - - - 3 4+3+2 220000

42 7 KAING09 H 5.0 10.0 - - - 3 4+3+2 220000

43 7 KAING10 H 35.0 76.5 - - - 3 4+3+2 220000

44 7 KAING11 H 55.0 90.0 - - - 4 5+4+3+3 250000

45 7 KAING12 H 5.0 10.0 - - - 4 5+4+3+3 250000

46 8 SHIRGH1 H 100.0 249.0 - - - 2 4+3 200000

47 8 SHIRGH2 H 100.0 249.0 - - - 2 4+3 200000

48 8 SHIRGH3 H 75.0 140.0 - - - 2 4+3 200000

49 8 SHIRGH4 H 100.0 249.0 - - - 2 4+3 200000
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*GT - Gas turbine, ST - Steam turbine and H - Hydro. Most units requiring higher 

number of manpower and longer duration are typically aged. Nigerian Naira=0.008US$ 

at 2003. 
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TABLE B 

Nigerian Thermal Stations‘ Fuel Cost coefficients 

ai                           

(Naira/h)

bi                                           

(Naira/MWh)

ci                            

(Naira/MW
2
h)

Sapele 6929.000 7.840 0.130

Delta 525.740 6.130 1.200

Afam 1998.000 56.000 0.092

Egbin 12787.000 13.100 0.031

Power 

station

Fuel cost coefficients

 

 

TABLE C 

Emission Conversion Factors [28], [29] 

Net calorific value Emission factor Oxidation factor Fuel supply cost 

(KJ/m
3
) (tCO2/TJ) (%) ($/m

3
) (tCO2/$) (tCO2/Naira) 

Oil 41031 77.4 0.995 157.00 0.02013 0.00016

Gas 31736 56.1 0.995 0.23 0.00800 0.00006

Coal 29308 98.3 0.990 51.30 0.05560 0.00045

Emission conversion factor                    Unit 

type
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VI. REAL-TIME STABILITY ASSESSMENT 

OF A POWER SYSTEM  

 

Y. Yare, Student Member, IEEE, and G. K. Venayagamoorthy, Senior Member, IEEE 

ABSTRACT— The real-time (RT) stability assessment (SA) is to determine a power 

system‘s ability to continue to provide service (electric energy) in a RT manner in case of 

an unforeseen catastrophic contingency. Credible contingencies are analyzed using non 

real-time (NRT) and RT stability assessment indices (SAIs). Cascading stages of fuzzy 

inference system is applied to combine the different NRT and RT SAIs to determine the 

network status. The network status reflects the effect that each credible contingency has 

on the system and the distance to stability/security limit. In this paper, a practical 

Nigerian power system modeled on the real-time digital simulator (RTDS) platform is 

used as case study to implement and simulate in RT generator maintenance scheduling 

(GMS). GMS reflects power generation loss due to scheduled shutdown maintenance. 

Under the implementation of the GMS, the system is subject to load shedding, three-

phase short circuit fault on the tie-line and permanent transmission line outage (N-1 

contingency and topology change). Results show that the network status has potential for 

use by system operators to take preventive real-time decisions. 

 

INDEX TERMS — Electromechanical oscillations, energy management, generator 

maintenance scheduling, real-time stability assessment. 

 

I. INTRODUCTION 

Real-time stability assessment (RT-SA) deals with the analysis of a power system 

assuming credible system contingencies or sequence of events had occurred in RT. To 

assess the level of system strength or weakness relative to the occurrence of an undesired 

event, a quantitative measure based on stability index is often considered. If the analysis 

indicates that a system is unstable, the stability control should provide preventive 

strategies by changing system operating conditions to a more viable status, hence 

forestalling the possibility of cascading outages. A power system is said to be stable if it 

can withstand all credible contingencies without violating any of the system constraints. 
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If there is at least one contingency, or sequence of probable events, which violates the 

system constraints, the system is judged to be unstable or insecure [1], [2]. An 

interconnected power system, depending on its size, has hundreds to thousands of modes 

of oscillations. In the analysis and control of system stability, two distinct types of system 

oscillations are usually recognized [1], [2]. One type is associated with units at a 

generating station swinging with respect to the rest of the power system. Such oscillations 

are referred to as ―local plant mode‖ oscillations. The frequencies of these oscillations are 

typically in the range 0.8 to 2.0 Hz. The second type of oscillations is associated with the 

swinging of many machines in one part of the system against machines in other parts. 

These are referred to as ―inter-area mode‖ oscillations, and have frequencies in the range 

0.1 to 0.7 Hz [1], [2]. 

In a deregulated environment, increased interconnections and unforeseen changes 

in the system topology and load can cause system instability [1], [2] which needs to be 

addressed in RT. In monopolistic environment, however, utilities could afford increased 

security margins, which is no longer probable under the smart grid environment. Because 

of this and the limited investments in the construction of new power plants, the system is 

required to operate closer to its stability boundary. This, in turn, requires the industry to 

develop better methods of quantifying the RT stability status of their systems. The reason 

for undertaking a stability assessment therefore is to determine the ability of the power 

system to continue providing service in case of an unforeseen, but probable, catastrophic 

contingency. A power system can become unstable for various reasons such as, major 

component failures, communication interruptions, human errors, unfavorable weather 

conditions, and sometimes sabotage.  

Some key challenges associated with RT-SA are [1], [2]: the large numbers of 

contingencies and sequence of events that are typically needed to provide accurate SA, 

the wide range of operating conditions and topology of the power system makes the 

operating space very complex, the speed by which the SA can be assessed in real-time, 

the large number of measurements available in the power system, and the lack of 

methods to enhance the correlations between measurements and SA, and the lack of 

effective assessment index. 
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A development in the area of contingency screening for static security analysis is 

presented in [3]. Neural networks application to dynamic security contingency screening 

and ranking is summarized in [4]. The paper presents the use of information on the 

prevailing operating condition and directly provides contingency screening and ranking 

using a trained neural network. Several indices are proposed in [5] for contingency 

screening in an on-line dynamic security assessment. These indices are based on the 

concepts of coherency, transient energy conversion between kinetic energy and potential 

energy, and three dot products of system variables. An integrated scheme to study power 

system vulnerability considering protection system failures is proposed in [6]. The paper 

establishes a new protection system reliability model including two major failure modes 

to demonstrate their effects on power system reliability. Application of trajectory 

sensitivity analysis of power systems containing FACTS compensators is discussed in 

[7]. The paper presents the effect of the use of various FACTS devices on the system 

transient stability by applying trajectory sensitivity analysis. A new model describing the 

uncertainty of fault clearing time for probabilistic transient stability assessment of power 

systems is presented in [8]. The paper uses a corrected transient energy function-based 

strategy to evaluate the probabilistic instability index of systems. In [9], the concept of 

angle radius is developed to introduce projection energy function, which in turn allows 

for the assessment of critical clearing time and generation limit of system.     

 This paper addresses the real-time stability assessment of a power system during 

energy generation as a smart grid initiative toward achieving better energy stability and 

security, efficiency and emergency resilience in the presence of generator maintenance 

scheduling (generator outages reflecting N-1, N-2, ..., N-k contingencies), load shedding 

(load outage), three-phase short circuit fault on the tie-line (major system perturbation) 

and permanent transmission line outage (N-1 contingency and topology change). In the 

smart grid sense, the case studies of generation outages can also viewed as generation 

additions when going from N-2 generation sources to N-1 generation sources. 

The main contributions of this paper can be summarized as: 

 Formulation of a power system stability index, also known as the network status, 

based on real-time and non-RT analysis of the system parameters and operating 

condition.  
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 Implementation of the network status index in real-time. 

 Illustration of the usefulness of network status index on a practical Nigerian power 

system implemented on a real-time digital simulator. Case studies presented include 

N-k generator outages resulting from generator maintenance scheduling, and N-1 

permanent transmission line outage (topology change). 

 

II. POWER SYSTEM STABILITY ASSESSMENT     

The following subsections describe the non real-time (NRT) and RT stability 

assessment indexes (SAIs) used in the development of a network stability index for a 

power system.  

A. NRT-SAI 

A methodology to be added to the power system dispatch problem in order to 

evaluate and improve voltage stability margin by optimizing generators and synchronous 

condensers reactive power injection is presented in [10].  Contingency screening and 

ranking method for voltage stability assessment is discussed and presented in [11], 

wherein the method is capable of selecting contingencies that lead to voltage insecurities. 

A new Hilbert-Huang based approach for on-line modal identification from power system 

measurements compared with the Prony analysis has been presented in [12]. 

The NRT-SAI presented in this paper comprises of the Prony and transient energy 

function (TEF) methods for investigating and carrying out quasi-RT stability assessment 

(SA) of a power system modeled on the real-time digital simulator (RTDS) platform. 

1. Prony Analysis 

Prony analysis is a technique of analyzing a signal obtained from power system 

simulation programs for the purpose of extracting (determining) the modal content in that 

signal. The content may include mode, damping, phase and magnitude information 

contained in the signal [13]. In this paper, eigenvalue indexes (EVIs) presented in Section 

III are used in the composition of NRT-SAI and are based on normalized damping ratios 

that lie in the range [0, 1]. These damping ratios derived from the Prony analysis are used 

because they explicitly relate to the dynamic behavior of the system and are useful for 
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investigating and determining how the system damping affects its stability and hence 

network status, in addition to the transient energy of the system.  

  2. Transient Energy Function  

The primary purpose for the application of the TEF method is for the analysis of 

power system stability. Initially the system is operating at a stable equilibrium point. If a 

fault occurs, the equilibrium is disturbed and the synchronous machines accelerate. To 

avoid instability, the system must be capable of absorbing the kinetic energy at a time 

when the forces on the generators tend to bring them toward new equilibrium positions 

[14]. With the operation of power systems closer to limits, SA of the power system is 

becoming increasingly important. An inherent advantage of the TEF method is the 

availability of the degree of stability (or instability) in terms of the transient energy 

margin in (1) [14]. Transient energy indexes (TEIs) presented in Section III are used in 

the composition of NRT-SAI and are obtained after normalizing the total transient 

energies derived from the TEF analysis, to lie in the range [0, 1]. 
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GGG HTE 25.0                                                  (1) 

 

where G is the generator; HG is the inertia constant of generator G; and 
G

is the speed 

deviation of generator G. 

B. RT-SAI 

The RT-SAIs presented in this paper encompasses six useful indexes for real-time 

assessment of power system undergoing scheduled shutdown generator maintenance, 

while subjected to credible contingencies. The RT-SAIs quantifies the magnitude or 

degree in which power system parameters are affected by each credible contingency on a 

given operating state. They will also reflect the effect that each individual credible 

contingency causes to parameters of the system, and in addition will indicate the distance 

to the security limit taking into consideration the specific criterion of evaluation that may 

be defined [1], [2], [15]. In this paper, credible contingencies are simulated in real-time 

and the dynamic states of the power system captured immediately following each 
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contingency, while the stability assessment indexes are evaluated in real-time. Each 

contingency can be screened to be either secure or insecure. 

The criterion to define the RT-SAIs is based on two important aspects related to 

the post-disturbance transition: i) an unacceptable performance is related to large 

variations of system parameters, particularly voltage and frequency and ii) the resultant 

post-disturbance system trajectory will converge to an acceptable steady-state condition. 

The RT-SAIs given by (2) - (7) are implemented on the RTDS platform for the purpose 

of carrying out RT-SA. These RT-SAIs are combined in Section III into a new index, 

called a real-time stability assessment index (RTSAI), which satisfies the definition and 

classification of power system stability presented in [1], [2]. 

1. Angle index (AI) 

Generators usually have protection to avoid asynchronous operation. The 

maximum slip of the load angle offers a suitable security margin since, in case this is not 

exceeded, the generator may regain its synchronism. The AI is defined by (2) [1], [2], 

[15].   
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                                 (2) 

 

where δc,i,max is the maximum deviation of the load angle of ith generator during the 

simulation time, δc,max,adm is the maximum admissible load angle given by the protection 

relay, and NG is the number of generators operating in the system. 

2. Maximum frequency deviation index (MFDI) 

The maximum frequency deviation from its nominal value is an indication of 

dynamic effect produced by the contingency analyzed on the system. The higher the 

maximum frequency deviation, the bigger the disturbing effect produced by the 

contingency and vice versa. The MFDI is defined by (3) [1], [2], [15].  
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where NG is the number of generators operating on the system, 
max,if  

is the maximum 

frequency deviation and  
admif max,,

 is the  maximum admissible frequency deviation. 

3. Dynamic voltage index (DVI) 

An important requirement that must be satisfied for voltage transients is that at no 

point in the power system except during application of the fault in the case of short circuit 

analysis should the voltage level remain below certain limit [3]. The DVI is defined by 

(4) [2], [15]. 
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where vi,min is the minimum instantaneous voltage on ith node during the transient, 

vi,min,adm is the minimum admissible voltage value (0.7pu used in [20]), N is the number of 

nodes of the system and Vn is the rated voltage. 

4. Quasi-stationary voltage index (QSVI) 

This index takes into account the recovery and control of the node voltage at the 

end of the transient period following the contingency. The QSVI is defined by (5) [2], 

[15]. 
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where 
,limiv  is a percentage of the rated voltage (3%Vn for 500kv nodes and 5%Vn for 

220kv nodes), 
aftiv ,

is the post-contingency voltage deviation on the ith node at the end of 

the transient period and 
,limiv is the maximum voltage deviation limit. 
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5. Power flow index (PFI) 

Transmission lines (TLs) power flow after contingency should not exceed the 

maximum admissible value since an excess of power flow through the TLs in the post-

contingency steady-state may activate lines protections, thus impairing the system 

security. The PFI is defined by (6) [2], [15]. 
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where Pi,aft is the power flow through the ith line at the end of the transient period 

following the contingency, Pi,lim is the power flow limit taking into account the strictest 

restriction (thermal, voltage, or stability limits), n is the norm (used to reduce the 

contribution to the PFI of TLs that have not reached their limits or to amplify the 

contribution of TLs that have exceeded their limits), wi is a weight factor (which stands 

for the relative importance of the TLs in the system) and NL stands for the number of TLs 

in the power system. 

6. Load shedding index (LSI) 

When an unexpected generator outage occurs, or a generation area is lost due to 

an unexpected line outage, in order to compensate the unbalance between the generated 

power and the load demand, in some extreme cases it is necessary to disconnect load so 

that the system integrity may be kept. The LSI is defined by (7) [2], [15]. 

  

     total

shed

P

P
LSI

                                                           (7) 

 

where Pshed is the total disconnected load and Ptotal is the total demand of the system 

before the contingency. 
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III. NETWORK STABILITY INDEX COMPOSITION 

In this section, the NRT-SAIs and RT-SAIs are composed to generate a single 

stability index for the power network. The combination of these stability indices shown in 

Fig. 1, adheres to the definition and classification of power system stability defined by 

the IEEE/CIGRE Joint Task Force on Stability Terms and Definitions [2]. 

 

Power system

Pool of RT-SAIs

 (Angle, power/load flow, voltage, frequency, load shedding) 

PFIAI

Network status

Voltage stability index 

(VSI)

Non real-time (NRT) and real-time (RT) simulation 

of power system modeled on real-time digital 

simulator (RTDS) platform

Real-time stability assessment index (RTSAI)

Frequency stability 

index

 (FSI)

DVI QSVI MFDI LSIEVI

                Network stability index (NSI):

 If (NRTASI is available)

NSI=Fuzzy combination of NRTASI and RTSAI

 Else

NSI=RTSAI 

 End

Angle stability index 

(ASI)

TEI

Non real-time angle 

stability index

 (NRTASI)

Pool of NRT-SAIs       

(Transient energy, eigenvalue)

 

 

Fig. 1. Cascading Stages for Obtaining Network Status (Network Stability Index) 

 

Use of fuzzy inference system is adopted in this paper to provide mathematical 

framework for modeling the uncertainty associated with models of power system 

parameters used and for inferring information from a given set of numerical NRT-SAIs 

and RT-SAIs. Fig. 1 shows cascading stages of fuzzy inference system applied to capture 
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the different effects of the power system parameters, in order to reflect the impact that 

each credible contingency have on the system parameters and indicates the distance to 

security/stability limit taking into consideration the specific criterion of evaluation for 

each assessment indices.  It also presents the overall network status that could easily be 

used by power system operators. 

A. Non Real-Time Angle Stability Index (NRTASI) 

The effect of the considered contingency on the angle stability in NRT scenario is 

represented through the non real-time angle stability index (NRTASI), which is generated 

from the composition of the transient energy index (TEI) and eigenvalue index (EVI). The 

universe of the input and output variables has been partitioned into three linguistic values 

of LOW, MEDIUM and HIGH. Each variable is equally distributed along the interval [0, 

1]. Triangular fuzzy sets are used for modeling each linguistic value for simplicity [16]. 

Fig. 2 shows the term set and membership functions for the inputs and for the output. The 

rule base for the TEI, EVI and NRTASI are shown in Table I. Each rule has two fuzzy 

inputs (TEI and EVI) and one fuzzy output (NRTASI). The closer the normalized TEI or 

EVI is to one, the greater its influence on the NRTASI. Conversely, the closer the 

normalized TEI or EVI is to zero, the smaller its influence on the NRTASI.  

 

MEDIUM HIGHLOW

1.00

0.00

0.00
1.000.50

Degree of 

membership

Normalized TEI, EVI, NRTASI  

 

Fig. 2. Fuzzy Sets Characterizing TEI, EVI and NRTASI 
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TABLE I 

Rule Base of TEI, EVI and NRTASI 

Fuzzy output

TEI EVI NRTASI

1 LOW LOW LOW

2 LOW MEDIUM MEDIUM

3 LOW HIGH HIGH

4 MEDIUM LOW MEDIUM

5 MEDIUM MEDIUM MEDIUM

6 MEDIUM HIGH HIGH

7 HIGH LOW HIGH

8 HIGH MEDIUM HIGH

9 HIGH HIGH HIGH

Fuzzy InputsRule 

No.

 

 

B. Angle Stability Index (ASI) 

The effect of the considered contingency on the angle index (AI) and power flow 

index (PFI) is represented through the angle stability index (ASI), which is generated 

from the fuzzy composition of the AI and PFI. The fuzzy composition and rule base for 

ASI are similar to the one for the NRTASI, explained above.  

C. Voltage Stability Index (VSI) 

The effect of the considered contingency on the system voltage is represented 

through the voltage stability index (VSI), which is generated from the fuzzy composition 

of the dynamic voltage index (DVI) and quasi-stationary voltage index (QSVI). The fuzzy 

composition and rule base for VSI are similar to the one for the NRTASI, explained above.  

D. Frequency Stability Index (FSI) 

The effect of the considered contingency on the maximum frequency deviation 

index (MFDI) and load shedding index (LSI) is represented through the frequency 

stability index (FSI), which is generated from the fuzzy composition of the MFDI and 

LSI. The fuzzy composition and rule base for FSI are similar to the one for the NRTASI, 

explained above. 

E. Real-Time Stability Index (RTSI) 

The effects of the angle stability index (ASI), voltage stability index (VSI) and 

frequency stability index (FSI) are combined to generate the RTSAI. The universe of the 

fuzzy input and output variables has been partitioned into three linguistic values of LOW, 
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MEDIUM and HIGH. Each variable is equally distributed along the interval [0, 1]. The 

form of the fuzzy set characterizing ASI, VSI, FSI and RTSI are similar to the ones 

presented in Fig. 2. The rule base for the ASI, VSI, FSI and RTSAI are shown in Table II.  

 

TABLE II 

Rule Base of ASI, VSI, FSI and RTSAI 

 Fuzzy output

ASI VSI FSI RTSAI

1 LOW LOW LOW LOW

2 LOW LOW MEDIUM MEDIUM

3 LOW LOW HIGH HIGH

4 LOW MEDIUM LOW MEDIUM

5 LOW MEDIUM MEDIUM MEDIUM

6 LOW MEDIUM HIGH HIGH

7 LOW HIGH LOW HIGH

8 LOW HIGH MEDIUM HIGH

9 LOW HIGH HIGH HIGH

10 MEDIUM LOW LOW MEDIUM

11 MEDIUM LOW MEDIUM MEDIUM

12 MEDIUM LOW HIGH HIGH

13 MEDIUM MEDIUM LOW MEDIUM

14 MEDIUM MEDIUM MEDIUM MEDIUM

15 MEDIUM MEDIUM HIGH HIGH

16 MEDIUM HIGH LOW HIGH

17 MEDIUM HIGH MEDIUM HIGH

18 MEDIUM HIGH HIGH HIGH

19 HIGH LOW LOW HIGH

20 HIGH LOW MEDIUM HIGH

21 HIGH LOW HIGH HIGH

22 HIGH MEDIUM LOW HIGH

23 HIGH MEDIUM MEDIUM HIGH

24 HIGH MEDIUM HIGH HIGH

25 HIGH HIGH LOW HIGH

26 HIGH HIGH MEDIUM HIGH

27 HIGH HIGH HIGH HIGH

Rule No.
Fuzzy Inputs

 

 

F. Network Stability Index (NSI) 

The effects of the non real-time angle stability index (NRTASI) and RTSAI are 

composed together to obtain the network stability index (NSI). If the non real-time data 

(that is NRTASI) is not available or the system can significantly changed, the NSI takes 

only the assessment from real-time simulation (that is RTSAI) until NRTASI is computed 

and available for use. The universe of the fuzzy input variables has been partitioned into 

three linguistic values similar to the ones shown in Fig. 2, while the fuzzy output variable 

has been partitioned into five linguistic values of LOW, MEDIUM-LOW, MEDIUM, 

MEDIUM-HIGH and HIGH. Each variable is equally distributed along the interval [0, 1]. 
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Fig. 3 shows the fuzzy set characterizing the NSI. The rule base for the NRTASI, RTSI 

and NSI are shown in Table III.  

 

MEDIUM

 

HIGHLOW

1.00

0.00

0.00 1.000.50

Degree of 

membership

Normalized NSI

MEDIUM-

LOW

MEDIUM-

HIGH

0.750.25

 

Fig. 3. Fuzzy Sets Characterizing NSI 

 

TABLE III 

Rule Base of NRTASI, RTSAI and NSI 

Fuzzy output

NRTASI RTSAI NSI

1 LOW LOW LOW

2 LOW MEDIUM MEDIUM-LOW

3 LOW HIGH MEDIUM

4 MEDIUM LOW MEDIUM-LOW

5 MEDIUM MEDIUM MEDIUM

6 MEDIUM HIGH MEDIUM-HIGH

7 HIGH LOW MEDIUM

8 HIGH MEDIUM MEDIUM-HIGH

9 HIGH HIGH HIGH

Rule 

No.

Fuzzy Inputs

 

 

IV. CASE STUDY: GMS OF THE NIGERIAN POWER SYSTEM 

The aim of generator maintenance scheduling is to determine the optimized 

timing and duration for scheduled planned maintenance overhauls for generating units 

while maintaining high system reliability, reducing production cost, prolonging generator 

life time subject to some unit and system constraints [11]. In this section, GMS is carried 

out on a practical Nigerian power system and the NSI is implemented to evaluate the 

system status during the weeks of maintenance and disturbance. 

A. The Nigerian Power System 

The Nigerian 330-KV, 25-bus grid power system presented in Fig. 4 is modeled 

on five Racks of the real-time digital simulator (RTDS) [17]. It consists of 49 units 
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positioned in 7 generating plants (AFAM, DELTA, EGBIN, SAPELE, JEBBA, KAINJI 

and SHIRORO plants) located in 2 distinct areas as shown in Fig. 4. The generating 

units‘ data with a total generation of 3718.50MW (excluding spinning reserve) and total 

load demand of 3627.00MW are presented in [18]. A 9% spinning reserve is used to 

improve the system reliability during implementation of the scheduled generator 

maintenance. Table IV shows the load buses with their connected load demand (MW). 

AFAM, DELTA and 8 units of EGBIN thermal plants are gas fired, while SAPELE and 6 

units of EGBIN thermal plants are steam driven. JEBBA, KAINJI and SHIRORO hydro 

plants are water driven [18]. 
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Fig. 4. Nigerian Hydrothermal 330-KV, 25-Bus Grid System 
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TABLE IV 

Load Buses With Connected Load Demand (MW) 

Bus 

number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Total supplied 

load (MW)

Load 

supplied 

(MW) 1
4

7
.0

0

-

9
5

.0
0

1
5

6
.0

0

6
3

.0
0

- -

1
9

8
.0

0

1
2

.0
0

5
8

5
.0

0

2
9

4
.0

0

2
2

4
.0

0

7
2

.0
0

1
9

9
.0

0

1
3

1
.0

0

1
0

6
.0

0

1
3

5
.0

0

2
0

4
.0

0

1
0

6
.0

0

1
2

0
.0

0

3
1

.0
0

3
3

7
.0

0

2
4

6
.0

0

1
6

6
.0

0

-

3
6

2
7

.0
0

 

 

B. NRT-SA of Nigerian Power System 

All numerical results are obtained based on 50µs real-time simulation carried out 

on the RTDS platform, in conjunction with Prony and TEF programs developed using 

matlab environment and ran on PC with 2.2GHz CPU speed and 3.0GB of RAM. 

Table V shows five cases with different maintenance schedules drawn from the 

optimal solutions presented in [18]. Cases I to V are feasible generator maintenance 

implementation scenarios selected from [18] to investigate and carry out the SA of the 

Nigerian power system. The five cases are arranged in increasing order of generation loss 

due to GMS tasks carried out on maintenance weeks 6, 47, 4 and 2 corresponding to (N-

3), (N-4), (N-6) and (N-5) contingencies respectively. The Table also presents the loads 

that must be shedded in the course of maintenance tasks to ensure reliable system 

operation through reasonable generation and demand power balance. A 9% spinning 

reserve is used to improve the system reliability as shown in Table V. 

In this paper, three-phase short circuit fault considered as a severe credible 

contingency is applied at the tie-line Bus 25 of Fig. 4. The fault is clear after 200ms. 

Two case studies are presented below namely: with PSS and no SVC, and with PSS and 

SVC. 

  1. Case study 1: system with PSS and no SVC 

Studies have shown that the Nigerian system is potentially unstable when 

experiencing major system perturbations according to the results presented in [19], there 

is therefore the need for two PSSs to be located in both Areas 1 and 2 for purpose of 

implementing Cases I to V in order to effectively damp out the inter-area and local mode 

oscillations of the system under consideration without compromising the stability of other 

modes in the system.  

 



 190 

TABLE V 

Five Cases Considering Scheduled Maintenance, Generation Loss  

and Shedded Load for the 49-Unit Nigerian Power System 

Bus 

number

Toatal 

load loss 

(MW)

I - - 0.00 - - 4044.93 3627.00

II Week 6
6,7,18                 

(N-3 )
220.00 - - 3824.93 3627.00

III Week 47
40,44,46,49                               

(N-4 )
327.00 - - 3717.93 3627.00

IV Week 4
2,3,10,14,15,17                                       

(N-6 )
440.00 8,23 117.00 3604.93 3510.00

V Week 2
2,3,8,15,17                             

(N-5 )
600.00 10,21 289.00 3444.93 3338.00

With load 

shedding

With 

maintenance

Cases
Units scheduled 

for maintenance

Generation 

loss due to 

scheduled 

maintenance 

(MW)

Load shedded

Total 

available 

generation 

including 

9% 

spinning 

reserve 

(MW)

Supplied 

load 

demand 

(MW)

Maintenance 

week

Without maintenance

No load 

shedding

 

 

PSSs were tuned using the procedure described in [19]. The PSS parameters for 

Egbin (thermal Area 1) and Shiroro (hydro Area 2) plants are KSTAB=25.830, T1=0.380s, 

T2=0.990s, T3=0.35s and T4=0.005s, and KSTAB=28.210, T1=0.690s, T2=0.770s, 

T3=0.230s and T4=0.005s respectively. The stabilizer outputs are limited between -0.05 

and 0.2 to ensure the maximum contribution of the stabilizer. TE and modal analysis are 

used for screening generators on which to add PSS in Areas 1 and 2. The influence of 

simultaneous location of PSS each in Areas 1 and 2, their effects on the local and inter-

area modes, as well as on the overall TE of the system are summarized in Table VI under 

Case I scenario.  

The main observations from Table 11 are given below. PSS each located at Egbin 

and Shiroro plants results in: 

 Improved damping of the local modes in Areas 1 and 2 (frequency and damping ratio in 

Areas 1 and 2 are 1.644Hz and 0.164, and 1.630Hz and 0.126 respectively). 

 Improved damping of the inter-area mode (frequency and damping ratio of 0.406Hz 

and 0.252 respectively). 

 Enhanced overall TE of the system of 32.67KJ (indicates a 14.86% reduction in TE of 

the system). 
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TABLE VI 

Effect of PSS at Various Locations on Transient Energies, Eigenvalues, Frequencies 

and Damping Ratios for the Nigerian Power System under Case I Scenario   

Area 1                                              

Local mode

Area 2                                              

Local mode
Inter-area mode

Eigenvalue                                      

(frequency-Hz, damping ratio)

Eigenvalue                                      

(frequency-Hz, damping ratio)

Eigenvalue                                      

(frequency-Hz, damping ratio)
Unit

Units' TE 

(KJ)

Total 

system 

TE (KJ)

Afam 10.79

Delta 5.66

Egbin 4.95

Sapele 6.13

Jebba 2.89

Kainji 3.18

Shiroro 4.77

Afam 10.40

Delta 5.21

Egbin 4.86

Sapele 5.70

Jebba 3.53

Kainji 2.72

Shiroro 4.15

Afam 9.21

Delta 5.28

Egbin 4.61

Sapele 5.67

Jebba 2.62

Kainji 2.95

Shiroro 4.42

Afam 9.05

Delta 5.22

Egbin 4.56

Sapele 5.63

Jebba 2.59

Kainji 2.90

Shiroro 4.37

Afam 10.10

Delta 5.20

Egbin 4.62

Sapele 5.70

Jebba 2.55

Kainji 2.97

Shiroro 4.45

Afam 10.80

Delta 5.10

Egbin 4.86

Sapele 6.09

Jebba 2.78

Kainji 3.18

Shiroro 4.68

Afam 10.40

Delta 5.08

Egbin 4.74

Sapele 6.12

Jebba 2.78

Kainji 3.13

Shiroro 3.66

Afam 9.89

Delta 5.16

Egbin 4.20

Sapele 5.58

Jebba 2.50

Kainji 2.92

Shiroro 4.40

Afam 9.80

Delta 5.00

Egbin 3.28

Sapele 5.46

Jebba 2.50

Kainji 2.89

Shiroro 4.38

Afam 8.64

Delta 5.02

Egbin 4.02

Sapele 5.42

Jebba 2.50

Kainji 2.80

Shiroro 4.27

Afam 9.66

Delta 5.29

Egbin 5.03

Sapele 4.36

Jebba 2.57

Kainji 2.96

Shiroro 4.41

Afam 10.30

Delta 5.67

Egbin 4.80

Sapele 4.69

Jebba 2.79

Kainji 3.13

Shiroro 4.66

Afam 10.10

Delta 5.50

Egbin 4.66

Sapele 4.52

Jebba 2.71

Kainji 3.05

Shiroro 4.62

  -1.6969± 10.1919i                                    

(1.644, 0.164)

  -1.2944± 10.1581i                                    

(1.630, 0.126)

35.16

Transient energy (TE)   

35.91

34.65

33.31

32.67

34.28

36.04

  -1.2078 ±10.0613i                                    

(1.613, 0.119)

  -1.2651± 10.1963i                                    

(1.635, 0.123)

  -1.0483 ± 10.0869i                                    

(1.614, 0.103)

  -1.2393±10.2313i                                    

(1.640, 0.120)

38.37

36.57

34.76

34.32

35.59

37.49
  -1.2276 ± 10.2952i                                    

(1.650, 0.118)

  -1.4695 ± 9.9621i                                    

(1.603, 0.146)

  -1.4404 ± 10.2477i                                    

(1.647, 0.139)

  -0.9176± 10.2260i                                    

(1.634, 0.090)

  -1.0572 ± 10.1434i                                    

(1.623, 0.104)

  -1.2418 ± 10.2036i                                    

(1.636, 0.121)

  -0.5987± 10.0262i                                    

(1.599, 0.060)

  -1.1522± 10.0636i                                    

(1.612, 0.114)

  -1.4198± 10.0320i                                    

(1.613, 0.140)

  -0.9765± 10.2367i                                    

(1.637, 0.095)

  -0.6426 ± 2.4658i                                    

(0.406, 0.252)

  -0.5417 ± 2.4336i                                    

(0.397, 0.217)

  -0.4910± 2.1985i                                    

(0.359, 0.218)

  -0.4743± 2.1880i                                    

(0.356, 0.212)

  -1.5830 ±9.9513i                                    

(1.604, 0.157)

  -1.2541 ± 10.2156i                                    

(1.638, 0.122)

  -1.2754 ± 10.2143i                                    

(1.638, 0.124)

  -0.6571± 10.2710i                                    

(1.638, 0.064)

  -0.9392 ± 10.2198i                                    

(1.633, 0.092)

  -0.9403 ± 10.2251i                                    

(1.634, 0.092)

  -0.5181 ± 2.4728i                                    

(0.402, 0.205)

  -0.5570 ± 2.3745i                                    

(0.388, 0.228)

  -0.5036 ±2.3871i                                    

(0.388, 0.206)

  -0.5046 ±2.3916i                                    

(0.389, 0.207)

  -0.5798 ±9.9480i                                    

(1.586, 0.058)

  -0.9214±10.0373i                                    

(1.604, 0.090)

  -0.8223 ± 10.2304i                                    

(1.634, 0.080)

  -1.1569± 10.9950i                                    

(1.759, 0.105)

  -0.4879 ± 2.2213i                                    

(0.362,0.214)

  -0.5468 ± 2.4342i                                    

(0.397, 0.219)

  -0.4904± 2.1911i                                    

(0.357, 0.218)

Area 1: Sapele                            

Area 2: Kainji

Area 1: Sapele                            

Area 2: Shiroro

Area 1: Egbin                            

Area 2: Kainji

Area 1: Egbin                            

Area 2: Shiroro

Area 1: Sapele                            

Area 2: Jebba

  -0.5697 ± 2.4674i                                    

(0.403, 0.225)

  -0.4934 ± 2.2394i                                    

(0.365, 0.215)

Area 1: Afam                            

Area 2: Shiroro

Area 1: Egbin                            

Area 2: Jebba

Area 1: Afam                            

Area 2: Kainji

PSS location

No PSS

Area 1: Afam                            

Area 2: Jebba

Area 1: Delta                            

Area 2: Jebba

Area 1: Delta                            

Area 2: Kainji

Area 1: Delta                            

Area 2: Shiroro
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Further, the TE for Cases I to V with and without PSS are presented in Table 12. 

Table 13 also shows the percent reductions in total system TE for Cases I to V after 

stability enhancement with PSS located each at Egbin and Shiroro plants. A maximum of 

66.58% in total system TE reduction is obtained for Case V compared with a minimum of 

14.86% for Case I.  

 

TABLE VII 

Effect of PSS each at Egbin and Shiroro on Transient Energy  

Reductions for Cases I to V 

No PSS With PSS No PSS With PSS No PSS With PSS No PSS With PSS No PSS With PSS

Jebba              

(G21 - G26)
2.89 2.50 4.36 3.44 6.24 4.81 3.59 2.62 14.83 4.00

Kainji                           

(G27 - G34)
3.18 2.80 4.69 3.82 6.54 5.17 3.91 2.73 15.05 4.39

Shiroro                 

(G35 - G38)
4.77 4.27 6.46 5.49 8.15 6.70 5.49 4.91 16.18 5.92

Sapele          

(G15 - G20)
6.13 5.42 9.40 7.67 14.05 11.11 7.72 5.87 16.48 8.77

Egbin          

(G1 - G14)
4.95 4.02 8.46 6.48 12.65 9.34 7.35 6.14 29.06 8.28

Delta               

(G41 - G49)
5.66 5.02 8.92 7.26 12.74 10.13 7.40 6.22 29.97 8.57

Afam       

(G39 - G40)           
10.79 8.64 14.97 12.89 25.75 21.97 12.39 10.21 43.37 15.19

Total TE (KJ) 38.37 32.67 57.26 47.05 86.13 69.23 47.86 38.70 164.94 55.12

Percent 

reduction in 

TE using 

PSS (%)

66.58

Case I

Transient energy (KJ)

Case V

Transient energy (KJ)

Case II

Transient energy (KJ)

Case III

Transient energy (KJ)

Case IV

Transient energy (KJ)

19.14

Generating 

unit

14.86 17.83 19.62

 

 

Table VIII on the other hand, shows the modal analysis with and without the PSS. 

The table presents the effect of PSS on the system eigenvalues, frequencies and damping 

ratios for Cases I to V. With PSS located each at Egbin and Shiroro plants, it is seen from 

Table VIII that the system damping is improved for Cases I to V compared with the 

scenario without the PSS. The inter-area and local mode frequencies of Table VIII for 

Cases I to V shows that the stability of other modes in the system is not compromised. A 

number of time domain simulations were performed to confirm the results of the TE and 

modal analysis with and without PSS. 
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TABLE VIII 

Effect of PSS each at Egbin and Shiroro on Eigenvalue, Frequency  

and Damping Ratio for Cases I to V 

No PSS With PSS No PSS With PSS No PSS With PSS No PSS With PSS No PSS With PSS

Thermal              

area 1               

(G1 - G20, 

G39 - G40)   

Intra-area
  -1.1815 ± 9.9312i      

(1.592, 0.118)

  -1.6969 ± 10.1919i      

(1.644, 0.164)

  -1.0939 ±10.2049i  

(1.634, 0.107)

  -1.3429 ±9.6606i  

(1.552, 0.138)

  -0.5579 ± 9.7682i 

(1.557, 0.057)

  -1.3290 ± 9.6817i 

(1.555, 0.136)

  -0.5893 ±10.1317i 

(1.615, 0.058)

  -1.1777 ±10.9545i 

(1.753, 0.107)

  -0.6132 ±10.6069i 

(1.691, 0.058)

  -1.3758 ±10.2388i 

(1.644, 0.133)

Hydro          

area 2                           

(G21 - G38)

Intra-area
  -0.9118 ±10.0197i    

(1.601, 0.091)

  -1.2944±10.1581i    

(1.630, 0.126)

  -1.0234 ± 8.1119i  

(1.301, 0.125)

  -1.1421± 8.1704i  

(1.313, 0.138)

  -0.6983 ± 9.6206i 

(1.535, 0.072)

  -1.1820 ± 9.9735i 

(1.598, 0.118)

  -0.9695 ± 8.3763i 

(1.342, 0.115)

  -1.1601± 8.3917i 

(1.348, 0.137)

  -0.8003 ± 10.0458i 

(1.604, 0.079)

  -1.3584 ± 10.2497i 

(1.645, 0.131)

Case IV

Eigenvalue                                                                        

(frequency-Hz, damping ratio )

  -0.5467 ±2.5373i 

(0.413, 0.211)

Case V

Eigenvalue                                                             

(frequency-Hz, damping ratio )

  -0.5927 ±2.6258i 

(0.428, 0.220)

  -0.6087 ±2.3979i 

(0.394, 0.246)

  -0.5487 ±2.3034i 

(0.377, 0.232)

Case II

Eigenvalue                                                                        

(frequency-Hz, damping ratio )

Case III

Eigenvalue                                                                        

(frequency-Hz, damping ratio )

  -0.5348 ± 2.3606i 

(0.385, 0.221)

  -0.6426 ± 2.4658i                                    

(0.406, 0.252)

  -0.6036± 2.2159i 

(0.366, 0.263)

  -0.6134 ±2.4483i      

(0.402, 0.243)

No maintenance

Case I

Eigenvalue                                                                 

(frequency-Hz, damping ratio )

Mode
Generating 

unit

3-Phase short circuit fault applied for 200ms at Tie-line Bus 25

With scheduled shutdown generator maintenance

Inter-area
  -0.5181 ± 2.4728i                                    

(0.402, 0.205)

  -0.4790 ±2.4646i      

(0.400, 0.191)

 

 

 A permanent transmission line outage (N-1 contingency) is applied between 

buses 8 and 11 in Fig. 4, in addition to the (N-5) generation loss contingency of Case V 

which results in (N-6) credible contingencies simulated on the system. The permanent 

transmission line outage is a major system perturbation where the transmission line 

between buses 8 and 11 is permanently removed. Again, the speed deviations of Afam 

and hydro plants been the worst affected plants in Areas 1 and 2 respectively following 

this type of major system upset are shown in Fig. 5 with and without the PSS. Without 

the PSS, the system instability grows leading to loss of synchronism and eventual system 

collapse compared with the case having PSS installed each at Egbin and Shiroro plants. 

Similar analysis can be carried out for (N-7), (N-8)… contingencies to investigate the 

effect of PSS in stabilizing a system subjected to multiple topology changes. 
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Fig. 5. Afam and Shiroro Speed Deviations for Topology Change 
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 2. Case study 2: system with PSS and SVC  

It is a known fact that the steady-state transmittable power can be increased and 

the voltage profile along the line controlled by appropriate reactive shunt compensation 

[1], [20]. It is obvious that for a radial line, the end of the line, where the largest voltage 

variation occurs is the best location for the reactive compensator [1], [20]. In order to 

investigate the impact on the power system to SVC placement, bus voltage profiles were 

obtained after simulating maintenance Cases II to V as shown in Table IX. For all the 

cases considered, Bus 18 exhibits the largest voltage variations of 0.0997 pu, 0.0996 pu, 

0.0995 pu and 0.0993 pu for Cases II, III, IV and V respectively. To further investigate, 

the SVC is alternately sited at two different system buses that exhibit the largest voltage 

deviation from nominal value; namely, Buses 18 (with voltage deviation > 0.05 pu) and 

19 (with voltage deviation approximately 0.05 pu) in Area 2 of Fig. 4. Buses 18 and 19 

are high-tension buses located at the end of transmission lines that feed loads of 204 MW 

and 106 MW respectively as shown in Table IV. Locating SVC at 18 and 19 is motivated 

by the fact that reactive support is considerably needed for voltage profile improvement 

drawing from the results in Table IX under no SVC scenario. The system voltage 

deviation metric is used to evaluate the voltage deviation of the entire power system. The 

system voltage deviation metrics obtained after alternately siting SVC of size 100MVar 

at Buses 18 and 19 under Case III maintenance scenario are presented in Table IX. 

Placing SVC at Bus 18 produced system voltage deviation metric of 0.0781 pu compared 

with SVC at Bus 19 which generated a higher system voltage deviation metric of 0.0805 

pu. 

Further analyses reveal that locating SVC at Bus 18 yields the minimal voltage 

deviation for all GMS cases presented in [18]. Bus 18 is therefore the best location for 

placing the SVC for the Nigerian grid system shown in Fig. 4 planned for yearly GMS. 
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TABLE IX 

Effect of SVC at Various Locations on System 

 Voltage Deviation Metric 

Bus number
Case II      

(No SVC)

Case III   

(No SVC)

Case IV   

(No SVC)

Case V   

(No SVC)

Case III                                           

(SVC at Bus 18) 

Case III                                  

(SVC at Bus 19) 

1 0.9912 0.9921 0.9923 0.9940 0.9926 0.9929

2 0.9992 0.9971 1.0050 1.0050 1.0010 1.0010

3 0.9976 0.9958 1.0010 1.0000 0.9987 0.9987

4 1.0060 0.9857 1.0070 1.0070 1.0070 1.0070

5 1.0200 1.0200 1.0210 1.0210 1.0330 1.0320

6 1.0210 1.0200 1.0210 1.0210 1.0220 1.0220

7 1.0060 1.0060 1.0070 1.0070 1.0070 1.0070

8 0.9986 0.9964 1.0060 1.0050 1.0010 1.0010

9 1.0080 1.0080 1.0090 1.0090 1.0100 1.0100

10 0.9704 0.9734 0.9717 0.9919 0.9751 0.9750

11 0.9981 0.9980 1.0030 1.0040 1.0010 1.0010

12 0.9851 0.9850 0.9854 0.9854 1.0180 1.0170

13 0.9620 0.9620 0.9623 0.9623 0.9939 1.0070

14 1.0020 0.9829 1.0040 1.0030 1.0030 1.0030

15 0.9889 0.9760 0.9932 0.9930 0.9902 0.9903

16 0.9960 0.9942 1.0010 1.0000 0.9980 0.9973

17 0.9754 0.9626 0.9796 0.9794 0.9766 0.9766

18 0.9003 0.9004 0.9005 0.9007 1.0000 0.9735

19 0.9502 0.9502 0.9505 0.9505 0.9825 1.0000

20 0.9888 0.9886 0.9894 0.9894 0.9906 0.9905

21 1.0170 1.0150 1.0240 1.0270 1.0200 1.0200

22 0.9590 0.9620 0.9603 0.9803 0.9659 0.9655

23 0.9883 0.9893 0.9924 0.9911 0.9900 0.9900

24 0.9724 0.9759 0.9746 0.9858 0.9770 0.9763

25 1.0050 1.0050 1.0080 1.0090 1.0070 1.0070

System voltage 

deviation metric (pu) 
0.1407 0.1442 0.1396 0.1313 0.0781 0.0805

System bus voltages under maintenance scenario (pu)             

 

 

C. RT-SA of Nigerian Power System 

Figure 6 shows the real-time plots of AI, MFDI, DVI, QSVI, PFI and LSI for 

Cases I to V. AI and MFDI are compared for scenarios with and without PSS, while DVI, 

QSVI and PFI are compared for scenarios with and without SVC installed in the system. 

The presented RT-SAIs in Fig. 6 are evaluated in real-time for a power system during 

energy generation shortfall (maintenance scheduling/generator outage), subjected to load 

shedding (load outage) and three-phase short circuit fault (severe disturbance) applied at 

the tie-line Bus 25 of Fig. 4. In order to compensate the imbalance between the generated 

power and the load demand in Cases IV and V, 117MW and 289MW loads are 

disconnected respectively resulting in LSI greater than zero as shown in Fig. 6.    

Table X shows the RT-SAI matrix for the Nigerian power system obtained from real-

time simulations on the RTDS platform. The states of the power system security are 

deduced from the real-time simulation results shown in Fig. 6 and the RT-SAIs 
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definitions presented in Section II. It can be emphasized that the addition of PSS and 

SVC impacted positively in enhancing and improving stability, voltage profile and 

transmittable power, based on the RT-SAIs plots of Fig. 6 and the RT-SAI matrix shown 

in Table X. 

 

TABLE X 

NRT-SAI and RT-SAI Matrix of Nigerian Power System  

Incorporating PSS and SVC 

No          

PSS

With 

PSS

No             

PSS

With 

PSS

No 

PSS

With 

PSS

No 

PSS

With 

PSS

No 

SVC

With 

SVC

No 

SVC

With 

SVC

No 

SVC

With 

SVC

I 38.370 32.670 0.205 0.252 0.166 0.165 0.453 0.430 1.000 1.000 0.106 0.104 0.525 0.513 0.000

II 57.260 47.050 0.191 0.243 0.179 0.178 0.455 0.447 1.000 1.000 0.119 0.116 0.533 0.514 0.000

III 86.130 69.230 0.221 0.263 0.171 0.170 0.459 0.448 1.000 1.000 0.137 0.122 0.539 0.515 0.000

IV 47.860 38.700 0.211 0.246 0.182 0.181 0.467 0.459 1.000 1.000 0.168 0.147 0.544 0.519 0.030

V 164.940 55.120 0.220 0.232 0.209 0.208 0.469 0.465 1.000 1.000 0.196 0.165 0.549 0.524 0.080

DVI QSVI PFI
Cases

Eigenvalue

LSI

Without maint.

NRT-SAI

Total TE (KJ)

With 

maint.

No load 

shedding

With load 

shedding

RT-SAI

AI MFDI

 

 

In order to obtain numeric values from the fuzzy sets as a result of the fuzzy 

inferences presented in Section III, the fuzzy centroid method is used for defuzzification 

[16] and is not repeated here for reason of space limitation. However, Tables XI and XII 

show the results of defuzification for two scenarios, viz; No PSS and SVC, and another 

With PSS and SVC. The numeric values present the impacts of introducing PSS and SVC 

into the system to improve security and stability.  

 

TABLE XI 

Indices with No PSS and SVC for Cases I to V 

Cases TEI EVI AI PFI DVI QSVI MFDI LSI NRTASI ASI VSI FSI RTSAI NSI

I 0.233 0.932 0.794 0.956 1.000 0.541 0.966 0.000 0.537 0.619 0.517 0.501 0.441 0.499
1                                          

(Least insecured/unstable)

II 0.347 1.000 0.856 0.970 1.000 0.607 0.970 0.000 0.575 0.669 0.590 0.620 0.564 0.570 2

III 0.522 0.864 0.818 0.981 1.000 0.699 0.979 0.000 0.586 0.721 0.679 0.698 0.692 0.642 3

IV 0.290 0.905 0.871 0.990 1.000 0.857 0.995 0.375 0.598 0.767 0.752 0.876 0.784 0.713 4

V 1.000 0.868 1.000 1.000 1.000 1.000 1.000 1.000 0.650 0.837 0.837 0.937 0.897 0.821
5                                                          

(Most insecured/unstable)

Network status:                                   

security/stability 

assessment

Without maint.

With 

maint.

No load 

shedding

With load 

shedding

Fuzzy inputs (Normalized indices) Fuzzy outputs
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TABLE XII 

Indices With PSS and SVC for Cases I to V 

 
Cases TEI EVI AI PFI DVI QSVI MFDI LSI NRTASI ASI VSI FSI RTSAI NSI

I 0.233 0.932 0.794 0.956 1.000 0.541 0.966 0.000 0.537 0.619 0.517 0.501 0.441 0.499
1                                          

(Least insecured/unstable)

II 0.347 1.000 0.856 0.970 1.000 0.607 0.970 0.000 0.575 0.669 0.590 0.620 0.564 0.570 2

III 0.522 0.864 0.818 0.981 1.000 0.699 0.979 0.000 0.586 0.721 0.679 0.698 0.692 0.642 3

IV 0.290 0.905 0.871 0.990 1.000 0.857 0.995 0.375 0.598 0.767 0.752 0.876 0.784 0.713 4

V 1.000 0.868 1.000 1.000 1.000 1.000 1.000 1.000 0.650 0.837 0.837 0.937 0.897 0.821
5                                                          

(Most insecured/unstable)

Network status:                                   

security/stability 

assessment

Without maint.

With 

maint.

No load 

shedding

With load 

shedding

Fuzzy inputs (Normalized indices) Fuzzy outputs

 

 

In each of the five GMS cases considered in this paper, Case I is observed to be 

the least insecure/unstable compared with Cases II, III, IV or V. Case I has NSIs of 0.499 

(with No PSS and SVC) and 0.386 (With PSS and SVC). Conversely, Case V is the most 

insecure/unstable case with NSIs of 0.821 (with No PSS and SVC) and 0.764 (With PSS 

and SVC). The order of security/stability ranking and hence the network status can easily 

be seen and drawn from Tables XI and XII. 

 

V. CONCLUSION 

In this paper, the non real-time (NRT) and real-time (RT) stability assessment 

(SA) of a power system are demonstrated on a real-time digital simulator (RTDS) 

platform. A practical Nigerian power system modeled on the RTDS platform is used as 

case study to implement and simulate in RT generator maintenance scheduling (GMS) 

which is a reflection of power generation loss due to scheduled shutdown maintenance 

(N-1, N-2, ..., N-k contingencies) while subjecting the system to load shedding (load 

outage), three-phase short circuit fault on the tie-line (major disturbance) and permanent 

transmission line outage (N-1 contingency and topology change). Five GMS cases of the 

Nigerian power system have been illustrated for simplicity. Cascading stages of fuzzy 

inference system is used to compose the different effects of the NRT and RT power 

system parameters, in order to reflect the effect that each credible contingency have on 

the system parameters and indicates the distance to stability/security limit. The NRT and 

RT stability assessment indexes (SAIs) presented in this paper are demonstrated to be 

effective tools in assessing the overall stability of a power system under different and 

most probable practical operating conditions.  
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Fig. 6. Plots of Real-Time AI, MFDI, DVI, QSVI, PFI, and PFI for Cases I to V for the 

Nigerian Power System 
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They also show great potential for use as tools for energy management. This 

overall network status information can easily be used by power system operators and 

energy control centers. Many utilities are currently adding synchrophasor measurement 

capability to their systems. This capability can provide real-time information about the 

system current state and used to improve the accuracy of state estimation. 
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SECTION 

2. CONCLUSIONS 

 

2.1. INTRODUCTION 

This section summarizes the work presented in this dissertation. It has been 

shown in this dissertation how to obtain a secured power system operation that has the 

following benefits desirable of a modern power system: secured maintenance schedules 

and generation dispatch, feasible maintenance schedules and dispatch for practical 

implementation, increased power system efficiency and reliability, optimal power system 

operation, efficient dynamic optimization, better power quality and reduction in 

transmission line losses, saving in fuel cost needed for power system operation and 

emission reduction. 

 

2.2. DISSERTATION SUMMARIES 

This dissertation presents six articles that have been published/submitted for 

journal publications as follows:  

Paper I presents a modified discrete particle swarm optimization (MDPSO) 

algorithm for generating optimal preventive maintenance schedule of generating units  

for economical and reliable operation of a power system, while satisfying system load 

demand and crew constraints. Discrete particle swarm optimization (DPSO) is known to 

effectively solve large scale multi-objective optimization problems and has been widely 

applied in power system. Here, the MDPSO proposed for the generator maintenance 

scheduling (GMS) optimization problem generates optimal and feasible solutions and 

overcomes the limitations, of the conventional methods, such as extensive computational 

effort, which increases exponentially as the size of the problem increases. The efficacy of 

the proposed algorithm is illustrated and compared with the genetic algorithm (GA) and 

DPSO in two case studies – a 21-unit test system and a 49-unit system feeding the 

Nigerian national grid. The MDPSO algorithm is found to generate schedules with 

comparatively higher system reliability indices than those obtained with GA and DPSO. 

In Paper II, a challenging power system problem of effectively scheduling 

generating units for maintenance is presented and solved. The problem of generator 
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maintenance scheduling (GMS) is solved in order to generate optimal preventive 

maintenance schedules of generators that guarantee improved economic benefits and 

reliable operation of a power system, subject to satisfying system load demand, allowable 

maintenance window, and crew and resource constraints. Multiple swarms concept is 

incorporated into the MDPSO algorithm to form a robust multiple swarms-modified 

particle swarm optimization (MS-MDPSO) algorithm and is suitably applied to solve this 

GMS problem. The performance and effectiveness of the MS-MDPSO algorithm in 

solving the GMS problem is illustrated and compared with the MDPSO algorithm on two 

power systems, the 21-unit test system and 49-unit Nigerian hydrothermal power system. 

The GMS of the two power systems are considered and the results presented shows great 

potential for utility application in their area control centers for effective energy 

management, short and long term generation scheduling, system planning and operation. 

The problem of static and dynamic economic dispatch are presented and solved in 

Paper III. Static economic dispatch (SED) problem is solved in order to economically 

determine output powers of generating units in such a manner that the total generation 

(fuel) cost is minimized while load demand and all practical operating constraints are 

satisfied. Dynamic economic dispatch (DED) is an enhancement of SED and has the 

objective of dynamically determining the optimal outputs of generating units with 

predicted load demand over a certain period of time. Classical optimization methods 

assume generator cost curves to be continuous and monotonically increasing, whereas 

practical generators have a variety of nonlinearities in their cost curves making this 

assumption inaccurate. Hence, heuristic methods are proposed in this paper to circumvent 

the problems of imposed non-smooth assumptions. This paper presents three heuristic 

methods, namely, GA, differential evolution (DE) and MPSO for solving both the SED 

and DED problems for three test systems. Results and convergence performances of these 

three heuristic methods are presented and compared as a way of validating such methods 

in solving SED and DED problem characterized by practical and non-smooth generator 

constraints. 

Paper IV presents multi-objective combined economic and emission dispatch 

(MO-CEED) optimization problem for a wind-hydrothermal power system. This MO-

CEED problem formulation becomes a challenging problem because of the presence of 
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uncertainty in wind power (due to uncertain wind speed). Another aspect of the challenge 

is the integration/mixing of the wind power with the hydrothermal grid system for the 

purposes of economically meeting dynamic load demand while minimizing emission. 

The MO-CEED optimization process for this wind-hydrothermal power system while 

satisfying practical constraints, must also find trade-off solutions between multiple 

objectives (minimizing both fuel cost and emission simultaneously). A modified particle 

swarm optimization (MPSO) algorithm is used to solve this MO-CEED problem. Results 

are presented to show the benefits from integrating wind power with conventional 

hydrothermal power system including cost saving, emission reduction and the positive 

impact of capacity credit of wind power. A family of distributed optimal Pareto fronts for 

the MO-CEED problem has been generated for different scenarios of capacity credit of 

wind power. The potential for practical application of this approach in dispatch centers of 

wind-hydrothermal power system is demonstrated. A platform for achieving increased 

integration of renewable/sustainable energy is presented. 

In pursuance of the smart grid initiative of delivering electricity from suppliers to 

consumers using intelligent technology to save energy, reduce cost, accommodate variety 

of generation options, increase reliability, efficiency and transparency etc, Paper V 

presents an optimal preventive generator maintenance scheduling (GMS) for a wind-

hydrothermal power system. GMS problem is solved with the aim of maximizing 

economic benefits subject to satisfying system constraints. This GMS formulation 

becomes a stochastic problem because of the uncertainty in wind power and its 

incorporation into the hydrothermal power system. The objective is to perform GMS in 

such a manner that the annual cost saving is increased, annual generation cost is minimal 

and the potential for carbon dioxide (CO2) emission reduction is enhanced, while all 

operating constraints are satisfied in the presence of uncertainty in wind generation. A 

modified discrete particle swarm optimization (MDPSO) algorithm is used to solve this 

GMS problem. Results are presented to show the benefits accruable from integrating 

wind power into conventional hydrothermal power system even for the purpose of GMS 

and the positive impact of increasing wind penetration. 

Paper VI presents the real-time (RT) stability assessment (SA) of a power system. 

The real-time (RT) stability assessment (SA) is to determine a power system‘s ability to 



 204 

continue to provide service (electric energy) in a RT manner in case of an unforeseen 

catastrophic contingency. Credible contingencies are analyzed using non real-time (NRT) 

and RT stability assessment indices (SAIs). Cascading stages of fuzzy inference system is 

applied to combine the different NRT and RT SAIs to determine the network status. The 

network status reflects the effect that each credible contingency has on the system and the 

distance to stability/security limit. In this paper, a practical Nigerian power system 

modeled on the real-time digital simulator (RTDS) platform is used as case study to 

implement and simulate in RT generator maintenance scheduling (GMS). GMS reflects 

power generation loss due to scheduled shutdown maintenance. Under the 

implementation of the GMS, the system is subject to load shedding, three-phase short 

circuit fault on the tie-line and permanent transmission line outage (N-1 contingency and 

topology change). Results show that the network status has potential for use by system 

operators to take preventive real-time decisions. 

 

2.3. MAIN CONCLUSION 

The following are main conclusions of this dissertation:  

 Developed modified particle swarm optimization (MDPSO) algorithm to achieve fast 

convergence and better quality solutions. 

 Developed multiple-swarms MDPSO framework to achieve faster convergence and 

better quality solutions.  

 Illustrated and applied the MDPSO to solve the reliability based GMS optimization 

problem of a practical hydrothermal power system. 

 Illustrated and applied the multiple-swarms MDPSO framework to solve the 

reliability based GMS optimization problem of a hydrothermal power system.  

 Illustrated the smooth and nonsmooth economic cost function formulation of the 

GMS optimization problem with practical generator constraints using both the 

classical and heuristic methods. 

 Demonstrated and applied heuristic methods, namely, GA, DE and MDPSO to solve 

the static and dynamic ED for generators with smooth and nonsmooth economic cost 

functions with practical constraints and transmission line losses. 

 Incorporated additional practical generator constraints such as the generator 
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prohibited zones and ramp-rate limits, system power loss and increased the 

dimensionality of the problem in solving the ED problem. 

 Formulated stochastic MO-CEED optimization problem for a wind-hydrothermal 

power system [11]. Uncertainty in wind power was incorporated in this formulation. 

 Solved the stochastic MO-CEED problem for wind-hydrothermal power system using 

a family of optimal Pareto fronts. 

 Presented platforms for which optimized energy and generation cost management in 

the presence of wind energy penetration is made possible. 

 Quantified emission reductions as a consequence of increased capacity credit of wind 

power during GMS, as well as after solving the MO-CEED. 

 Demonstrated the potential for increased daily cost saving and emission reduction for 

a practical Nigerian power system.  

 Formulated the network status index for a power system and implemented in real time 

platform. 

 Demonstrated on the Nigerian hydrothermal power system for N-1, N-2, ..., N-k 

generator outages and N-1 permanent transmission line outage (topology change). 

 

2.4. FUTURE RESEACH 

The proposed optimization algorithms can be flexibly modified to accommodate 

the maintenance unit requirements of emerging independent power producers and future 

generation additions as well as network constraints not considered in this dissertation. 

 Future research can investigate if results from re-coding purely real-valued GA 

and DE have comparable performances with the real-coded MPSO algorithm (especially 

in their computation times, ability to satisfy all constraints and quality of solutions) on 

similar test systems. Also, dynamic economic dispatch for a conventional power system 

integrating wind power is another area for future work. 

 Limitations are not imposed on the number of trade-off objectives that can be 

optimized in the MO-CEED optimization problem, hence further work could flexibly 

incorporate more objectives (such as stability, security or system losses etc). 

 Future research can incorporate short-term planning schemes such as unit 

commitment and economic dispatch on smaller time-frames (minutes to hours) into the 
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long-term power system optimization problem, such as the GMS. This multi-period 

(short and long-term) generation scheduling problem for wind-hydrothermal power 

system can be looked into in future work. Also, to re-optimize the maintenance schedules 

in an event of forced generator outage during a normal preventive maintenance, a 

dynamic optimization technique such as adaptive dynamic programming can be used in 

future research to automatically generate optimal GMS.  

 Real-time phasor measurement unit (PMU) data deployment in the power system 

network and the introduction of the flexible integrated phasor system (FIPS) technology 

in the future will provide a robust on-line platform for easy implementation of the RT-SA 

of a power system presented in this dissertation, which enhances smart grid development. 
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