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Abstract

As the military use of unmanned aerial vehicles increases, a growing need for novel

strategies to control these systems exists. One such method for controlling many unmanned

aerial vehicles simultaneously is the through the use of swarm algorithms. This research ex-

plores a swarm robotic algorithm developed by Kadrovach implemented on Pioneer Robots

in a real-world environment. An adaptation of his visual sensor is implemented using stereo

vision as the primary method of sensing the environment. The swarm members are pro-

hibited from explicitly communicating other than passively through the environment. The

resulting implementation produces a communication free swarming algorithm. The algo-

rithm is tested for performance of the visual sensor, performance of the algorithm against

stationary targets, and finally, performance against dynamic targets. The results show ex-

pected behavior of the swarm model as implemented on the Pioneer robots providing a

foundation for future research in swarm algorithms.

iv
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Communication Free

Robot Swarming

I. Introduction and Overview

Future conflicts will see an increased role for Unmanned Vehicles (UVs) as we strive to

improve the safety, accuracy, and robustness of our weapons systems while limiting

the risk to service personnel. The development of Unmanned Aerial Vehicles (UAVs) is

one focus of the United States Air Force (USAF) striving to meet this difficult military

requirement. Additionally, Congress has mandated that one third of the deep strike force

of the USAF be unmanned by 2010 [50]. To meet this ambitious goal requires a large

effort in the field of autonomous control to make these vehicles better military options for

commanders.

Contemporary operations in both the Iraq and Afghanistan theaters have demon-

strated the effectiveness of the current UAV capability. The successes of the Predator UAV

have been well documented including reconnaissance and limited strike capabilities. By

2010, the USAF plans to extend these capabilities to include suppression of energy air

defenses (SEAD) using unmanned combat aerial vehicles (UCAV) [50].

Currently, UAVs are operated remotely by a ground controller. This is sufficient if

the number of UAVs is small; however, as the siz e of our unmanned force increases the

demand for well-trained support personnel and equipment will increase. One solution to this

problem is to reduce this dependency by incorporating autonomous control behaviors. By

allowing the UAVs to handle low-level details such as navigation, a single human controller

can monitor several UAVs simultaneously.

This research focuses on the control of a large group of UAVs by a single user. The

user control consists of communicating a mission plan (telling the system where to go), and

the vehicles follow this mission plan without communicating between one another.

1



1.1 Problem Statement

The goal of this research is to design a physical swarm robotic controller based on the

simulation model presented in [30] and to evaluate the performance of the implementation.

The target platform is the Active Media Pioneer P2-AT8 robotic platform running the

ARIA software package. Our sensor for this work is a Videre STH-MDCS-C Stereo Camera

system. Since we are interested in military applications we further restrict the problem by

not allowing communication between the swarm members and restrict sensing to the passive

camera system only. The only information available to any member of the swarm is what

is provided through its vision sensor.

1.1.1 Goal. The primary goal of this research investigation is to design, implement,

and evaluate the performance of a ”swarm” of robots controlled by Kadrovach’s algorithm

on a Pioneer P2-AT8 robot. The objectives outlined in the next section yield define the

approach for achieving these goals.

1.1.2 Objectives. In order to achieve the goal of this investigation, the effort is de-

composed into three objectives. These objectives are further decomposed into research tasks

to ensure completion. The first objective is the understand the design and implementation

of Kadrovach’s swarm model on the Pioneer robot. The next objective is to understand

the Videre camera hardware and software and to model the visual sensor in [30]. The final

objective is to design experiments and to analyze the performance of the physical swarm

implementation.

1.1.2.1 Objective 1: Design and Implement Kadrovach’s Swarm Model.

The design of the physical implementation of the Kadrovach’s swarm behavior is the focus

of the first portion of this research. To that end, Table 1.1 outlines the sub-objectives nec-

essary to satisfy the first objective. Several tasks are needed to support the first objective.

The first task requires understanding the fundamentals of Kadrovach’s swarm model, the

Videre cameras and software, and the ARIA robotic system. With that knowledge the vi-

sual sensor is implemented and is tested. After settling on a visual sensor design the swarm

factors are decomposed into behaviors, implemented and tested.

2



Table 1.1: Swarm Model Design and Implementation Objective.
Objective 1: Design and Implement Kadrovach’s Swarm Model.
- Understand the swarm model
- Understand the Videre camera hardware and software
- Implement the visual sensor model
- Test the visual sensor implementation
- Understand the ARIA robot control system
- Decompose the swarm factors into independent behaviors
- Implement the swarm behaviors
- Test the swarm behaviors on a single robot

1.1.2.2 Objective 2: Design and Implement Kadrovach’s Visual Sen-

sor. The design of the physical implementation of the Kadrovach’s swarm behavior

requires an implementation of his visual sensor for sensing the environment around swarm

members. Table 1.2 outlines the sub-objectives necessary to satisfy the second objective.

To begin, the visual sensor assumptions of the design presented in [30] are reviewed and un-

derstood. Similarly, the camera system and software provided must be understood. Next,

the interactions and integration of the swarm vision sensor into the ARIA robot control

architecture must be understood. Armed with a fundamental understanding of the model,

hardware, and software the method of identifying swarm members is selected. Finally, the

visual sensor is implemented and tested.

Table 1.2: Visual Sensor Model Design and Implementation Objective.
Objective 2: Design and Implement Kadrovach’s Visual Sensor Model.
- Understand the Kadrovach’s visual sensor model
- Understand the Videre camera hardware and software
- Understand the ARIA robot control system
- Identify method of identifying swarm members
- Implement the visual sensor model
- Test the visual sensor implementation

1.1.2.3 Objective 3: Performance Evaluation of the Robotic Swarm.

The third objective of this research is to evaluate the performance of the implemented robotic

swarm. Table 1.3 outlines the sub-objectives necessary to satisfy the third objective. The

evaluation of the swarm begins with designing a set of experiments to evaluate the visual

sensor. Once the performance of the visual sensor is understood, parameters are set to test

3



the performance of the swarm model in a variety of situations. Once the experiments are

designed and conducted, the results are analyzed and conclusions presented.

Table 1.3: Performance Evaluation Objective.
Objective 3: Evaluation of the Robotic Swarm.
- Design experiments to evaluate visual sensor
- Design experiments to test performance vs static target
- Design experiments to test performance vs dynamic target
- Conduct the experiments
- Analyze the results

This section outlined the three objectives used to ensure the completion of the goal

outlined above. First, the swarm model described in [30] is designed. Then it is implemented

on the Pioneer P2-AT8 robots. The second objective supports the first by designing, imple-

menting and testing the visual sensor composed of the Videre cameras. The final objective

conducts a performance evaluation of the entire system in static and dynamic scenarios.

The next sub section describes the assumptions of this research.

1.1.3 Assumptions. The robots are not allowed to communicate explicitly except

through the environment. This simulates the operation in a hostile environment where

emitting energy into the environment could compromise one’s location and ultimately mis-

sion success. Furthermore, this research assumes the robots are provided with an a priori

mission plan, and assumes is that the robots may only move in a two dimensional (2D)

environment. This means that the research focuses on a team of ground vehicles or a static

altitude team of aerial vehicles. This reduces our motion models.

1.1.4 Risks. The Pioneer P2-AT8 robots have limited processing, memory, and

sensing capabilities which poses risks to the successful fielding of a swarm behavior in real-

time with visual sensing. The computational requirements of the visual sensor poses the

greatest risk to the completion of this work. Other risks include the integration and capa-

bility of the various vendor provided software packages and the refinement of the notional

swarm vision model of [30] to the actual hardware. A fundamental risk is the lack of a

telemetry data for the evaluation of performance of the implemented system.
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1.1.5 Contributions. This work provides two main contributions. The first is

a physical platform for future swarm robotics research and applications at the Air Force

Institute of Technology (AFIT). The second is a performance analysis of the implemented

system.

1.2 Research Sponsor

This research is sponsored by the Sensors Directorate, Air Force Research Laboratory

(AFRL/RY) Wright Patterson Air Force Base (AFB), Ohio. AFRL/RY strives to be the

”Eyes and Ears of the Warfighter.” The mission of the Sensors directorate is ”is to ensure

unequaled reconnaissance, surveillance, precision engagement and electronic warfare capa-

bilities for Americas air and space forces, by conceiving, demonstrating and transitioning ad-

vanced sensors and sensor technologies.” [1] Its core technology areas include: radar, active

and passive electro-optical targeting systems, navigation aids, automatic target recognition,

sensor fusion, threat warning and threat countermeasures. This thesis supports the this

mission by researching methods to improve the control of autonomous vehicles and explor-

ing methods of visually sensing one’s environment. This work provides the warfighter with

the ability to extend his own eyes and ears into the battlefield gathering critical information

with minimal risk.

1.3 Thesis Outline

The remainder of this thesis is presented in four subsequent chapters. Chapter 2

presents relevant background information on swarm algorithms and computer vision. Ad-

ditionally, Chapter 2 discusses in detail Kadrovach’s swarm algorithm. Chapter 3 discusses

the hardware platform and software platforms in detail and continues with a detailed de-

scription the software design of the implementation. Chapter 4 outlines the design of the

experiments and provides the results and analysis of the experiments. Chapter 5 presents

conclusions and recommendations for future research.
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1.4 Summary

This chapter provides an overview of and necessary background information for un-

derstanding the research conducted. It formulated the problem statement. An outline of

the goals, assumptions, objectives, risks, and contributions is presented. A discussion of the

sponsoring organization is provided. The chapter concludes by outline the structure of the

remaining document.
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II. Background

This chapter outlines the background information necessary to establish the research

foundation for the work presented. This research draws from two main areas: swarm

robotics and computer vision. The first section discusses the area of swarm robotics, its

foundations, related research in the field and culminates in a detailed description of the

robotic swarm control algorithm used in this work. The second section outlines the foun-

dations of computer vision as they apply to this thesis stressing image formation, image

segmentation, and stereo vision. This chapter concludes with a summary of key points from

this chapter leading into the discussion of the implementation hardware and software design

in Chapter 3.

2.1 Swarm Robotics

Nature provides several models for cooperative behavior researchers study and build

upon. A colony of ants, a flock of birds, a school of fish, and swarms of locusts all exhibit

what researchers term swarm behavior. A swarm behavior refers to the globally observable

shape or formation of individual emerging from local decisions by members of the swarm [9].

This section presents the foundations of swarm robotics, ongoing current research in

swarm control algorithms stressing physical implementations, and finally presents a detailed

description of the swarm control algorithm of Kadrovach which is the foundation for this

work.

2.1.1 Foundations. Swarm robotics finds its inspiration from flocks of birds,

schools of fish, colonies of ants, and hives of bees. Nature provides many examples of social

animals and insects cooperating together with many benefits including protection, hunt-

ing, foraging and migration [9]. Swarm robotics, swarm intelligence and swarm algorithms

all harness these observations in nature to produce mimicry in robotic and computer sys-

tems. These systems all exhibit a desired collective behavior which emerges from simple

interactions between robots or agents and their environment.

Reynolds [44] noted swarms have two overarching diametrically opposite behaviors

governing their interaction, separation and cohesion. In other words, swarms seek to re-

main a small closely knit grouping while at the same time avoiding collisions with other
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members during motion. To model this, Reynolds proposed three characteristics of swarms:

collision avoidance, velocity matching and flock centering. In demonstrating his ’boids flock-

ing simulation Reynolds seeded both swarm robotics and artificial life research fields.

Swarm robotics focuses heavily on large numbers of entities. The benefits of this

approach are scalability, robustness, and ease of design [3]. Swarm algorithms seek to be

scalable. That is adding more robots, agents, etc is expected to increase effectiveness of the

swarm as whole. In the application of mine clearance [13, 14] for example, the scalability

property allows more area to searched by simply increasing the number of robots performing

the task without complex communication or other behaviors. Another beneficial aspect of

swarms is that they tend to be extremely fault tolerant. A failure of one robot does not

hinder mission success as the members are highly interchangeable. This is an extremely

beneficial result for applications in complex, hostile or remote environments [41]. Finally,

due to the large numbers of robots required to form a swarm the design of the individual

robots is usually much more simple than an individual robot design to accomplish the same

task. This speeds the design process for solutions.

The next section discusses the taxonomy which is used to guide the development of the

related work. This is important for comparing and contrasting the current swarm robots,

algorithms and applications found in literature.

2.1.2 Robotic Systems Taxonomy. For the discussion which follows, it is meaning-

ful to define a taxonomy for the purposes of comparing different robotic systems. Dudek

et al. [21] proposed a taxonomic system which he uses to characterize the assumptions and

engineering tradeoffs when determining which system is best suited for a specific task. The

Dudek system defines seven dimensions: size, communication range, communication topol-

ogy, communication bandwidth, reconfigurability, processing ability, and composition. A

summary of the taxonomy is shown in Table 2.1. Each of these axes is briefly discussed in

the following paragraphs.

Size is the first category and essentially refers to the number of agents operating co-

operatively in an environment. There are four size classifications namely: SIZE-ALONE,

SIZE-PAIR, SIZE-LIM, and SIZE-INF [21]. A single robot acting alone within the environ-

ment is an example of a SIZE-ALONE system. Similarly, two robots acting cooperatively in
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Table 2.1: Summary of Dudek’s Taxonomy for Multi-Agent Robotic Systems.
Axis Description

Size Number of autonomous agents in the system.
Comm Range Maximum sustainable comm distance.
Comm Topology Number of in-range robots one can communicate with.
Comm Bandwidth How much information can they transmit to each other?
Reconfigurability How fast can the organization be changed?
Processing Ability Computation model used by the agents.
Composition Are all elements of the collective the same?

an environment constitutes a SIZE-PAIR system. A SIZE-LIM system contains more than

two robots but the overall size of the collective is small when compared to the overall envi-

ronment. Finally, the SIZE-INF descriptor indicates a system with a large number of robots

when compared to the size of the overall environment. The distinction between SIZE-LIM

and SIZE-INF classification is a property of the task . SIZE-INF refers to collectives in

which the number of robots dedicated for the task is unbounded while SIZE-LIM indicates

a bounded number of robots in the collective [21].

Communication range limitations are an important consideration when classifying

robotic systems. Range is a function of the communication medium, equipment and the

robot location. The are three classes in this dimension: COMM-NONE, COMM-NEAR

and COMM-INF. If the robots do not communicate with other members explicitly they

have a COMM-NONE communication range. Conversely, if the range of communication

is limited to a local area (either in the Euclidean sense or network topological sense) the

communication range is in the COMM-NEAR class. COMM-INF refers to systems which

any robot may communicate with any other robot regardless of their separation.

The way in which the collective communicates with the other members is captured

by Dudek’s third dimension, Communication Topology. The classes of this dimension are:

TOP-BROAD, TOP-ADD, TOP-TREE and TOP-GRAPH. TOP-BROAD captures the

classic broadcast network in which any member may communicate with any other member

but prohibits communication with a specific member only. TOP-ADD allows for both the

communication to any robot and to a specific robot in the collective through the robot

naming or network addressing. The TOP-TREE communication topology limits the com-

munication flows to neighbors in the communications hierarchy. Systems in this class are
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more prone to problems when a communication link fails than the previous two categories.

TOP-GRAPH provides a measure of robustness by connecting members of the collective in

a general graph structure in which redundancy can improve robustness.

Communication Bandwidth is another critical resource in multi-robotic systems and

thus an important dimension in Dudek’s taxonomy. BAND-INF, BAND-MOTION, BAND-

LOW, and BAND-NONE make up the four classes in this dimension. In a BAND-INF

system, the cost and overhead of communication is small enough to be ignored entirely.

BAND-MOTION captures systems in which the cost of moving the robot is equal to the

cost of communication but is limited or in which the communication is signaled through the

environment as is observed in bee collectives [21]. BAND-LOW indicates a system where

the cost of communication is higher than the cost of moving the robot. A BAND-NONE

system has no communication between members and members an incapable of sensing one

another in the environment.

The fifth axis is Reconfigurability. This dimension captures the collectives speed

and ability to change shape, formation or structure. The three classes in this dimension

are ARR-STATIC, ARR-COMM and ARR-DYN. If the structure of the collective is fixed

throughout the task, the system displays ARR-STATIC reconfigurability. Systems which

change structure or shape in predetermined systematic procedures display ARR-COMM

reconfigurability. Finally, systems which adapt their structure arbitrarily are ARR-DYN.

The computational model which a collective uses is an important classification cap-

tured with the sixth axis, Processing Ability. The categories of processing ability are PROC-

SUM, PROC-FSA, PROC-PDA, and PROC-TME. PROC-SUM refers to the simple linear

summation unit as in [21]. PROC-FSA allows for finite state automaton computation,

PROC-PDA systems have push-down automaton computation models, while PROC-TME

is the most predominant form of computation model used in contemporary research, Turing

Machine Equivalent.

The final taxonomic dimension, composition, is used to characterize the diversity of the

system much like social entropy [7]. Social entropy is a numeric metric based on Shannon’s

Information theory which captures the diversity of a robot system. The three labels of com-

position are COMP-IDENT, COMP-HOM and COMP-HET. In a COMP-IDENT system
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all members have the same physical and behavioral characteristics. COMP-HOM members

possess the same physical characteristics; however, the programmed behaviors may differ.

COMP-HET systems have members of diverse physical and behavioral characteristics.

The remainder of the discussion uses this taxonomy to describe and contemporary

systems in swarm algorithms and formation control. For the purpose of organization, it is

necessary to define the ordering of the axes in the taxonomy. Systems are first classified

by the primary axis, the secondary axis, and so on down the ordering. The primary axis is

the Reconfigurability, followed by Communication Bandwidth, Communication Topology,

Communication Range, Size, and Composition. Since most of the contemporary literature

have PROC-TME characteristics, the Processing Ability dimension is eliminated.

2.1.3 Related Work. Das et al. [18], developed a visual controller algorithm for

maintaining rigid relative positions of a group of Clodbuster robots, see Figure 2.1. They

address a related area of research known as formation control. The fundamental difference

between a swarm of robots and formation of robots is the rigid relative location. Swarm

robotics does not concern itself with the precise definition of relative positions of the swarm

members while in formation control this is the objective. Their algorithm assumes an a

priori leader whose motion defines the motion of the entire formation.

Figure 2.1: Clodbuster Robot. [18].

The Clodbuster is a modified commercial radio-control truck kit. The modifications

have been made to improve shock absorption and to house an omnidirectional vision system,
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a 2.4 GHz wireless video transmitter, and a battery pack. The robot has a servo controller on

board for steering and a digital proportional speed controller for forward/backward motion.

Up to eight Clodbuster robots are controlled remotely by a computer for experiments. Off

board image processing allows for 30 Hz visual frame rates yielding real-time performance.

An omnidirectional camera consisting of a parabolic mirror and a lens assembly mounted

on a color CCD camera is used for navigation and control.

Each of the members have four controllers control theory based controllers. Only

one controller is active at a time and the arbitration of these controllers is defined by an

overall control graph. Although this work is similar in the overall goal of controlling the

group robots, the methods differ considerably. First, all of the computation is handled by a

centralized computer which communicates the heading and velocity changes to the robots

via a wireless network. Secondly, inter-robot communication is allowed. The final difference

is the sensor for this endeavor is an omnidirectional camera rather than the limited field

of view camera on the physical system of our research. The classification of this work is

COMM-INF,BAND-INF,ARR-COMM,SIZE-LIM,COMP-INDENT,TOP-ADD.

Hayes and Martinoli [26, 27] describe a swarm control algorithm designed to seek out

an simulated chemical or ”odor” source. The ”odor” source problem explored here is a basic

search application. Their focus is on the fusion of traditional sensing techniques to locate

odor sources using moorebots, see Figure 2.2. In this work they demonstrate their plume

odor detection algorithm up to 8 meters away as well as detect the source of the plume

using low-level behaviors. Furthermore, they found that the integration of individual robot

information increases the efficiency of the robotic system’s performance.

Moorebots were originally designed by Owen Holland at the University of West Eng-

land, Bristol, U.K. The robot is 24 cm in diameter and is equipped with two DC motor-

driven wheels, a castor wheel, a 2 Mbit wireless LAN transceiver, and 12-bit A/D and D/A

converters. See [2] for a more detailed robot description. Modifications from the basic con-

figuration include: four infra-red range sensors for collision avoidance, a single odor sensor

for plume detection, and a hot wire anemometer for wind speed. On-board high-level control

is provided by a PC104 based Intel 386 processor running Linux. Low level control such as

motor speed regulation is executed by dedicated hardware interfaced to the PC104 bus.

12



Figure 2.2: Moorebot Robot [27].

In [25], Hayes describes a leaderless flocking behavior with simulated sensor inputs to

moorebots due to the lack of hardware implementation. The algorithm uses the perceived

flock center to determine the alignment behavior of the flock without explicit knowledge

of robot headings. They successfully demonstrated the leaderless flocking algorithm with

simulated sensory inputs. The classification of this work is COMM-INF,BAND-INF,ARR-

DYN,SIZE-LIM,COMP-INDENT, TOP-ADD.

Mataric and Fredslund [23] explore formation control with minimal communication

and local sensing. Using the Pioneer AT DX similiar to the robots used in this work(see

Section 3.1.1, they demonstrate formation control that is a predetermined geometric shape

relative to one another. To accomplish this emergent behavior each robot is given an

unique identification and a leader or conductor is assigned. The conductor’s motion defines

the heading for all other robots. Each robot communicates their heartbeats to everyone.

The conductor communicates the current formation and its ID. Every other robot follows

a partner robot called its friend maintain a distance and bearing to it. It does this by

panning its camera to a known angle based on the position and maintaining its friend in

the center of the image. Formations are then defined by the chain of friendships. Mem-

bers are prohibited from communicating heading and velocities to members. In this work,

they demonstrate a formation following algorithm that is very robust. Angles around 90
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degree; however, proved troublesome. The classification of this work is COMM-INF,BAND-

LOW,ARR-COMM,SIZE-LIM,COMP-HOMO,TOP-BROAD.

A group, from the Middle East Technical University has built kobots for use in their

swarm robotic research. Shown in Figure 2.3, each kobot is 12 cm in diameter and weighs 350

grams. Its uses differential drive DC motors for locomotion. The basic short range IR sens-

ing system provides both swarm member detection and obstacle avoidance through 8 senors

equally distributed around the circular body. Kobots also possess wireless support through

the IEEE 802.15.4/ZigBee protocol. This protocol provides a low-power networking capa-

bility that can support point-to-point, point-to-multipoint and peer-to-peer communication.

This protocol, was preferred to IEEE 802.11 over its power efficiency, and to Bluetooth over

its ability to address 65536 modules instead of 7 as supported by Bluetooth. Kobot’s also

are able to have a basic omnidirectional vision system comprised of a camera facing an

omnidirectional mirror. This system provides range information up to 0.9m radius around

the robot.

Figure 2.3: Kobot. A group of seven kobots designed by a group from the Middle East
Technical University in Ankara, Turkey [3].

14



In [4], Ali Emre Turgut et al. explore the self-flocking behavior using kobots. Using a

novel sensing system called the virtual heading system (VHS) which uses a digital compass

and a wireless communication module for sensing the relative headings of neighboring robots

they demonstrate the flocking behavior based on heading alignment and proximity control

behaviors. Furthermore, they investigate the performance of their algorithm when subjected

to variations in the VHS parameters. Their system is robust for noise perturbations of

their VHS and increases with the swarm size. The classification of this work is COMM-

INF,BAND-INF,ARR-DYN,SIZE-LIM,COMP-INDENT,TOP-ADD.

A group at the Massachusetts Institute of Technology has produced a swarm of over

100 iRobot SwarmBots like the one shown in Figure 2.4. The iRobot SwarmBot is a

five inch cube with a 32-bit RISC ARM Thumb microprocessor. It possesses a wide array

of sensors including bump sensors, light sensors, a camera, drive-wheel encoders, and the

ISIS infrared location and communication system. Robots in close proximity (less than

three feet) can communicate through ISIS. Additionally, through ISIS swarm members are

able to determine the locations and headings of those around them. Each robot has an

array of twelve IR emitters, grouped into four quadrants. Data can be transmitted from

these quadrants independently or in any group. There are four receivers on each robot,

which allow it to determine neighbor positions by comparing the signal strengths of one

message that is received on two different receivers. Messages are passed through a gradient-

based multi-hop messaging protocol. All of these features create a platform ideal for swarm

robotics researchers.

Each robot is equipped with the Swarm Operating System (SwarmOS) which provides

an API for swarm researchers writing applications for the robots. It controls low-level input

and output, motor control, ISIS, power management, sensor drivers, and wireless software

updates [36].

Finally, these robots are supported by HIVE and the Robot Ecology. This system

takes much of the maintenance burden off the swarm researcher. The system charges all of

the robots and provides a hands-free interface to the swarm for software development, de-

bugging, and analysis. This greatly reduces the amount of management needed to maintain

the swarm. Thus, allowing for rapid algorithm development and experimentation.
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Figure 2.4: iRobot SwarmBot [36].

Using the SwarmBots, see Figure 2.5, McLurkin et al has produced algorithms and

has explored the application of swarm disperson [40]. The goal of his dispersion algorithm

is to disperse a large group of autonomous mobile robots efficiently throughout an indoor

environment. This could be used to in any search and rescue, exploration, or map building

application. McLurkin has also explored dynamic task assignment for large robotic swarms

in [37, 38]. In [39] McLurkin explores the question of accuracy of communications within a

swarm. He evaluates several multi-robot algorithms which rely on broadcast spanning trees

against the speed of configuration changes in the swarm. He found the accuracy of these

algorithms decrease as the robot speed, and the rate of topology change increases. This

results confirms the interrelation of communications bandwidth, mobility, and algorithm

accuracy. The classification of this work is COMM-NEAR,BAND-INF,ARR-DYN,SIZE-

INF,COMP-INDENT, TOP-TREE.

Rothermich et al. [45], using the iRobot Swarm, devised an application for swarms

in a distributed localization and mapping scenario. They constrain the swarm’s movement

to ensure no communication links are lost among any members. Robots uses local odome-

try readings to determine localization. As with single robot implementations this is often

inaccurate and loses credibility with time. Rothermich proposes using swarm members as

mobile beacons to improve localization. As the swarm moves anchor robots are formed at
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Figure 2.5: Sample iRobot Swarm - The iRobot Swarm consists of over 100 robots working
together to accomplish common goals. In the upper right hand corner you can see the
HIVE and Robot Ecology which allow the researcher to eliminate the maintenance tasks or
recharging and allows for rapid code dispersion to the swarm [36].

the front on the swarm and releases anchors from the rear of the swarm. In this manner

the swarm leap frogs its way through the environment while maintaining map accuracy.

This behavior emerges from three basic low-level controller decisions. Each controller

is either, mapping, beacon or returning to mapping. Mapping means move with in the

general swarm direction while maintaining a relative position (X,Y) based on local beacons.

In beacon mode, the robot senses the number of beacons in the area. If that beacon number

falls below a threshold the swarm member becomes a beacon broadcasting its position

information to the swarm. The final behavior senses when the number of dependent swarm

members goes below a threshold at which time the robot returns to the mapping behavior

described above.

While moving through the environment each robot generates individual maps. Since

each member is using the sample frame of reference, all maps are the same scale and ori-

entation allowing for simple superimposing to reveal the overall swarm map. This method
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has advantages over single robot mapping. First, since multiple viewpoints are used corners

and edges are accurately captured. A second advantage is since the swarm maintains the

same reference frame as it moves the localization problem is greatly reduced. The classi-

fication of this work is COMM-NEAR,BAND-INF,ARR-DYN,SIZE-INF,COMP-INDENT,

TOP-TREE.

A group from the Universite Libre de Bruxelles [20] has built a large swarm project

entitled, swarm-bots [49]. This research group has built a robotic swarm platform of small

S-bots. Smaller than MIT’s iRobots discussed earlier, these robots possess strong gripper

with allow them to be physically linked.

Figure 2.6: s-Bot. s-Bots are autonomous robots which can perform simple tasks [20].

Each s-bot (see Figure 2.6) is a fully autonomous robot capable of performing simple

tasks including autonomous navigation, perception of the environment, and gripping objects.

A differential drive system allows for efficient rotation and improves mobility. Each robot

is also equipped with sensors and communication devices to detect and communicate with

other s-bots, such as an omnidirectional camera, colored LEDs around the robots turret, and

sound emitters and receivers. In addition to a large number of sensors for perceiving the

environment, several sensors provide each s-bot with information about physical contacts,

forces, and reactions at the interconnection joints with other s-bots. These include torque

18



sensors on most joints as well as traction sensors to measure the pulling/pushing forces

exerted on the s-bots turret.

The ability to physically connect to other members is a unique feature of this system.

When connected Dorigo refers to the collective as a forming a swarm-bot. An example is

shown in Figure 2.7. A swarm-bot can perform tasks in which a single s-bot has major

problems, such as exploration, navigation, and transportation of heavy objects on rough

terrain.

Figure 2.7: Swarm-Bot. - A swarm-Bot working together to navigate rough terrain [20].

Using these s-bots, this group has produced a wide-variety of algorithms stressing

emergent behavior rather than complex control algorithms. They have demonstrated suc-

cessful swarms in applications of hole-avoidance [49], pattern formation [17], search and

rescue [42], object transportation [24], and chain-based path formation [43]. The classifica-

tion of this work is COMM-NEAR,BAND-INF,ARR-COMM,SIZE-LIM,COMP-INDENT,

TOP-ADD.

This section presented an overview of physical swarm robotics. In the next sec-

tion Kadrovach’s simulation swarm model is described. Following this description, a basic

overview of computer vision is given.

2.2 Kadrovach’s Swarm Model

Kadrovach designed his novel swarm model primarily to provide a foundation for

his research on optimal communication protocols for a swarm of UAVs. While this thesis

investigation is not concerned with the structure of the swarm for communication purposes;
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it is interested in the performance of this algorithm using an physical visual sensor on actual

hardware. This subsection discusses the general algorithm including parameters, the vision

sensor model, and the swarm entity models.

2.2.1 General Algorithm. The general algorithm is based on the foundations

provide by Reynolds in [44] and Crombie in [16]. Essentially, the motion of swarm particles

are defined by three main interaction factors or rules illustrated in Figure 2.8,

1. Alignment. Each agent’s motion should match the average direction of its neighbors.

2. Cohesion. Each agent moves to the average location of its neighbors.

3. Separation. Each model should move to avoid collisions between members by main-

taining a minimum separation distance.

Figure 2.8: Illustration of the basic swarm/flocking rules. From left to right: alignment,
cohesion, and separation [44].

These basics rules produce the emerging behavior akin to flocks of birds or schools of

fish. The removal of one of these interactions destroys the emergent behavior [16].

The general algorithm for local motion control is given in Figure 2.9 and definitions

of variables in Table 2.2. For each mobile particle, a new velocity vector is calculated based

on the three rules described above and the basic interactions of the entities.

Table 2.2: Swarm Algorithm Variable Definitions [30].
Variable Description

S The set of all mobile entities
N The number of swarm members, ‖S‖
pi The ith particle of S
Ni The number of particles in the neighborhood of pi
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Loop ∀pj ∈ Si, j = 1 : Ni

Process boundary objects
Loop ∀pj ∈ Si, j = 1 : Ni

Process neighbor pj

Calculate direction vector
End Loop
Move for a time step

End Loop

Figure 2.9: General Motion Algorithm for Mobile Particle. The descriptions of the vari-
ables can be found in Table 2.2 [30].

2.2.2 Vision Sensor Model. This section discusses the visual sensor model assumed

by Kadrovach, its assumptions, and its effects. The adaptation of this model to the physical

sensor on the Pioneer P2-AT8 robots is discussed in Section 3.2.1.

The purpose of Kadrovach’s visual sensor is two-fold. First, it is used to define the

entity’s neighbors which ultimately define its motion. Secondly, it ensures the scalability

of his control algorithm by limiting the size of the neighborhood thus producing an upper

bound on the computational complexity of his algorithm. The key concepts of his visual

model are shadow, blocking, and visibility. These concepts are defined in the following three

paragraphs.

The shadow of a particle is the set of points which lie in a particle’s visual field of

view. Mathematically, the shadow of a particle is shown in Figure 2.10 and is defined by

the following equations.

vis(cos θab) =











true, cos θab < cos θvis

false, cos θab ≥ cos θvis

(2.1)

va = pj − pi (2.2)

vb = pk − pj (2.3)

θab = cos−1(
va · vb

‖va‖ · ‖vb‖.
) (2.4)

A particle pi is said to be blocked by particle pj if it lies in the shadow (field of view)

of pj. A particle pi is visible if it is not blocked.
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Figure 2.10: Visibility Model [30].

Figure 2.10 depicts a situation in which particle pk is not visible by pi because it lies

in the field of view of the pj and pj is not blocked. This makes pj a member of Si while pk

is not a member. The net effect of this visual model is the only the nearest particles in the

field of view determine the motion of the swarm particle. This behavior requires knowledge

of other swarm members neighborhoods. Our limitation on communication makes this

behavior impossible without a method for estimating the neighborhoods of other swarm

members. This is ignored for the purposes of this thesis.

Figure 2.11: Visibility Model Example. The neighborhood of P1 consists of P2 and P3.
P4 is no included because it is blocked by particle P3. Similarly, particles P5 and P6 are
blocked from P1 although all three blocked particles lie within P1 field of view, +/ − θvis.
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Figure 2.11 illustrates further the net effect of the visual model. That is only the

nearest swarm particles become elements of the neighborhood sets, Si, which determine the

overall motion of the swarm particle. In Figure 2.11, P1’s neighborhood SP1 consists of only

P2 and P3 because each of the remaining particles is blocked from P1’s view by either P2 or

P3.

Kadrovach’s motivation for selecting θvis, (for his work θvis = π
3
), is based on the ideal

separation distance for his communication models and the goal of maintaining scalability of

the swarm control algorithm by reducing the size neighboring set, that is ‖Si‖. Furthermore,

he assumes each vision sensor has infinite range. That is a particle is visible without

regard to separation distance. This assumption proves invalid when attempting a physical

implementation of a vision sensor since all have a limited range of accuracy; however, it is

safe to a assume a maximum distance, dmax, of influence for swarm particles.

2.2.2.1 Peripheral Vision Model. In effort to improve the fidelity of his

simulation model Kadrovach modeled the notional vision sensor as one which weighted the

estimates based on location in the field of view. Objects lying directly in front of the

swarm particle have more influence on the motion of that particle than do ones to the

periphery. This effect is captured by the wperiph weight given in equation 2.7. The formula

for computing this weight is given by,

wperiph(θ) = Cperiph cosn(
θ

2
), n = 1, 2, 3, . . . . (2.5)

The value of Cperiph was chosen to be unity in Kadrovach’s simulations. Figure 2.12 shows

the graph of this function.

Kadrovach gives an alternative form of equation 2.5 through trigonometric manipulation it

is given by,

wperiph(θ) = Cperiph[.5(1 + cos θ]n/2. (2.6)

2.2.3 Swarm Entity Model. This subsection discusses the swarm entities model

derived and used by Kadrovach. Including his three main entities, their parameters and the
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Figure 2.12: Peripheral Weight Illustration [30].

control equations. The overall motion of an entity is determined through the interaction

of particles in a neighborhood of influence surrounding each mobile particle. The result

is a distributed control algorithm for each member without explicit communication. The

goal of Kadrovach’s model is to approximate the flocking of birds with the three main

control rules of alignment, cohesion, and separation. The biological process is a continuous

phenomena with instantaneous feedback; however, the approximation model of Kadrovach

is a discrete-time model which lends itself well to implementation in simulation.

Table 2.3: Swarm Member Parameter Definitions [30].
Parameter Scope

Max Speed Local
Turning Radius Local
Separation Distance Local
Neighborhood Size Local
Swarm Size Global
Environment Size Global
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2.2.3.1 Positional and Velocity Updating. All of the entities in Kadrovach’s

model are assumed to be points with negligible size with respect to the separation distance.

The classes of entities can further decomposed into mobile (swarm member) and static

particles (waypoints and boundaries). Swarm particles sense their environment through

the notional vision sensor with peripheral vision modelings. This vision sensor allows the

swarm particles to update their position based on the update equation given in equation 2.7.

(vupdate)i gives the positional update for swarm particle i. The vattract vector component of

equation 2.7 encapsulates the separation and cohesion rules. The valign vector encapsulates

the alignment rule.

(vupdate)i =
∑

pj∈Si

[(wperiph)ij(wd)ij((wattract)ij(vattract)ij + Calign(valign)ij)]. (2.7)

The indices of equation 2.7 are to clearly identify the quantities are computed with

respect to particles pi and pj where pj is a neighbor of pi and thus a member of Si. wperiph

is the weighting coefficient for the Kadrovach’s peripheral vision model described in Section

2.2.2.1. Similarly, wd is the distance weighting coefficient. The vattract is computed by the

following equation.

(vattract)ij = pj − pi. (2.8)

Where pj is a neighbor of pi. Mathematically, pj ∈ Si. The Calign quantity is a constant

which determines the weighting of the alignment rule. The (valign)ij component is computed

by the following equation.

(valign)ij = (vdir)j. (2.9)

where (vdir)j is the heading of the particle pj which is a neighbor of pi. This is global

knowledge in Kadrovach’s simulation; however, for our physical implementation requires

the vision sensor to estimate these headings.

The particle direction and position vectors are updated by the following two equations.

Note the value of ∆t is assumed to be unity for the purposes of simulation implementation.

v′

dir =
vdir + vupdate

‖vdir + vupdate‖
. (2.10)
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p′

i = pi + (vdir + vupdate)∆t. (2.11)

v′

dir and p′

i are the updated positions of the particle. To more accurately model

the behavior of physical swarm members, Kadrovach bounds the positional and direction

updates by bounding the maximum distance and heading changes in a time step.

2.2.3.2 Neighborhood Model. The neighborhood model defines the influence

of other swarm members on the current member’s motion. Figure 2.13 illustrates this model.

The neighborhood model partitions the space surrounding a particle into four regions. The

resulting effect is that the particle’s effect on another particle is dependent on the region

the particle resides in during the update cycle. The neighborhood models for each particle

effect the the distance weight, wd, and the attraction weight, wattract, of equation 2.7.

Figure 2.13: Neighborhood Model [30].

The first region represents the close region. The region is defined to be a measured

separation distance, d, between zero and dmin. Kadrovach’s value for dmin is unity.

The second region is the comfort zone or no effect region. This region is the ideal

distance for dynamic particles to reside in Kadrovach’s model. The value d2 is specified

by the parameter czone. As this value increases the region of no effect increases providing
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a larger R2. Kadrovach uses this parameter to allow more freedom in the velocity and

directional controls of the swarm particles in this region.

The third region is the far region. Particles in this region have a scaled effect and tend

to pull their neighbors towards the comfort zone defined above.

Finally the fourth region limits the effect on the neighbors if a particle is too far away.

This region contains everything beyond d3 and the next section shows that particles in this

region have much less effect on a swarm members motion than the previous three regions.

This subsection introduced the neighborhood model. The neighborhood is subdivided

into four distinct regions and the effect on the swarm members motions is defined by the

regions it falls in. In the next section the attraction and repulsion weights in Kadrovach’s

model are discussed.

2.2.3.3 Attraction and Repulsion. Attraction and repulsion behaviors are

necessary to ensure the swarm members do not collide and maintain their positions relative

to each other. Kadrovach’s neighborhood model defines the weights, wd and wattract which

control the attraction and repulsion of particles. In Kadrovach’s swarm calculations for

attraction and repulsion are made with the following equations.

wd =











































√
1 − d, pjεR1(d < dmin)

0, pjεR2(dmin ≤ d < d2)

( d−d2
d3−d2

)2, pjεR3(d2 ≤ d < d3)

e
−(d−d3)

d3 , pjεR4(d ≥ d3)

(2.12)

wattract =











































−Crepulse, pjεR1(d < dmin)

0, pjεR2(dmin ≤ d < d2)

Cattract, pjεR3(d2 ≤ d < d3)

Cattract, pjεR4(d ≥ d3).

(2.13)
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The values of Crepulse and Cattract control the coherent behavior or incoherent behavior

of the global swarm. Coherent behavior refers to a swarms tendency to move as a unit. Thus,

incoherent swarm would tend to favor spreading out. Coherent and incoherent behavior is

favored depending on the application of the swarm. For example, a coherent swarm is

well suited for formation type activities. Incoherent swarms are better used in search type

activities where spreading out through one’s environment is desirable.

Recalling from equation 2.7 the total attraction weight is given by wd∗wattract. Figure

2.14 shows this aggregate weighting coefficient. The neighborhood regions are labelled R1

through R4.
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Figure 2.14: Attraction Weight [30].

2.3 Computer Vision

The goal of computer vision is to reverse the imaging process so we can reason about

objects in the real world. The task is complicated by the fact that a given 2D image can

arise from a number of 3D scenes. Every vision task begins with the acquisition of images

from a camera. This process results in an unavoidable loss of information. Traditionally,

the goal of vision, as far as robotics or artificial intelligence is concerned, is construction

of a symbolic representation of the surrounding environment so that the entity can reason

about the world. This task has proven to be very difficult for researchers to tackle. The

shear volume of information is staggering [28].
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Consider the information contained in a single black and white camera with a resolu-

tion of 512 by 512 pixels. Each of these pixels are eight bits encoding 256 intensity levels.

If these images are processed at a normal frame rate of 30 Hz, the arrival data rate is in

excess of 7 megabytes per second. The situation is three times worse when the images are

color because of the three color bands.

With the wealth of information available in the context of an image, how does one

extract the pertinent information? Moreover, the how does one use the information to

construct a high level model of the world around you? Indeed these have proved to be

difficult problems. Tanimoto identifies several barriers to computer vision to reason about

the world in [48]:

1. The inherent loss of information from the transformation of the 3D world to a 2D

image.

2. Each pixel’s value is a product of many interacting phenomena which are difficult to

decouple.

3. The shear size of the data in a single image frame is large.

While vision holds the most promise, computational complexity of vision algorithms

limits their effectiveness in mobile robotics. Computational resources available on most

robotic platforms are not yet capable of processing streams of images in real-time. In many

cases algorithms reduce the size of images which reduces the quantity and accuracy of the

information that can be extracted.

Using computer vision to solve problems in robotics has advantages over more tra-

ditional perception methods such as sonar, radar, infrared, and lasers. First, vision is

inherently passive. It does not emit anything into the environment and is thus advanta-

geous in applications requiring a level of stealth. Second, given proper optics vision has

no range limitations unlike lasers, infrared and sonar. Thirdly, biological vision systems

provide researchers goals and examples to mimic and learn. Finally, the information yield

is larger from vision sensors than from sonar, radar, infrared and lasers.

This section provides the basics of computer vision as they apply to the application.

Image formation, image segmentation, and stereo vision are stressed. The image formation
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section provides a foundation of the overall process of computer vision. This provides a

good solid foundation for understanding the algorithms in Chapter 3. Image segmentation

is important in this application because a color segmentation algorithm provides the abil-

ity to locate other members of the swarm. Finally, the stereo vision section provides the

background on the method for extracting distance and velocity estimates of the neighboring

swarm members.

2.3.1 Image Formation. Whether it is our eyes or a computer’s cameras, vision

works by gathering light information from the objects in a 3-dimensional (3D) world, or

scene, and creating a 2-dimensional (2D) representation called an image. An image is sim-

ply a 2D pattern of brightness. To properly study any image algorithm one must understand

the factors which govern image formation. This section provides an overview of the process

addressing two important issues. First, the geometric model of the correspondence of bright-

ness patterns of an image with points in the scene. Second, the properties which govern the

brightness of a point in a image are addressed. For further development see [28, 31, 46].

2.3.1.1 Geometric Model For Image Formation. Figure 2.15 depicts the

pinhole camera model for image formation. The model is composed of an ideal pinhole at a

constant observation distance,f , in front of an image plane. The perpendicular line from the

image plane to the pinhole aperture defines the optical axis. Since light travels in straight

lines each point in the image corresponds to a point in the scene by the line through the

pinhole connecting the two points. Imagine a normal right-handed coordinate system with

an origin at the pinhole with the positive z-axis in front of the camera.

Using this model, the relationship between an object point Po, with coordinates

(xo, yo, zo) and the point on the image plane Pi, with coordinates (xi, yi, zi) is derived.

Using similar triangles the projection equations are discovered.

xi =
−fxo

zo
and yi =

−fyo

zo
. (2.14)

The Depth Range of a scene is the range of distances of surfaces from the camera.

Objects at different distances have different magnifications in the image. If the depth range

of the scene is small compared to the average distances of the surfaces to the camera then
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Figure 2.15: Pinhole Camera Model Illustration [35].

the projection equations simplify. That is if the depth, Z, of points on an object lie in

a range Z0 ± )Z with )Z * Z0, then the scaling factor f
Zo

in 2.14 with the constant

s = f
Z0

[46].

Some limitations of the pinhole camera should be discussed. First the pinhole model

assumes an aperture of zero diameter. This is a purely theoretical construct as all physical

apertures have some non-zero diameter. Secondly, the pinhole camera model assumes light

through a small aperture travels only in straight lines and thus ignores wave nature of light

namely, diffraction.

2.3.1.2 Lenses. Cameras make use of lenses. In humans, the eyes change

their shape to focus on objects in the scene. Cameras, however, change the focal length

of the camera to bring objects into focus. An ideal lens produces the same projection on

the image plane as the pinhole camera; however, it captures only a finite quantity of light.

Moreover, the entire scene is not in focus. An image of an object a distance Zobject in front

of the lens is projected on a fixed distance Zpro. The two are related by the lens equation:

1

Zobject
+

1

Zpro
=

1

f
. (2.15)
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where f is the focal length of the lens system. If the image plane is located at Zpro then

the object is in focus. If not the objects’ points are imaged as blur circles instead of points.

The Depth of Field is the range of distances which are focused such that their blur circles

are less than the image resolution of the device. Figure 2.16 illustrates this process.

Figure 2.16: Lens Illustration [28].

2.3.1.3 Brightness Factors. The brightness is an ambiguous term to describe

two distinct concepts: image brightness and scene brightness [28]. Image brightness or

irradiance is defined as the power per unit area of falling on a surface, in our case the image

plane. It is light received by a detector. Scene Brightness or radiance is defined as the

power per unit foreshortened area emitted by a surface into a unit solid angle cone by a

surface. It is light emitted from a source in a give direction. Surfaces emit light into a

hemisphere of angles thus, in general, the radiance will vary with the observation position.

The definition of radiance allows us to capture only the light emitted in a finite cone in the

direction of observation.

2.3.1.4 Image Sensing. As discussed above cameras acquire a tremendous

amount of information. This subsection discusses the basics of the imaging devices which

capture the images. The most popular digital imaging device is the Charge-Coupled Device

(CCD). A CCD is a matrix of photoelements connected to metal oxide semiconductor (MOS)

capacitors. When light hits the matrix a number of the incidental photons are transformed

into electrons. Electrons are stored in the MOS capacitors. An analog to digital (A/D)

converter then quantifies a number of electrons into a value to be read into a computer.

32



2.3.2 Stereo Vision. Stereo Vision attempts to extract 3D information about

a scene from using multiple 2D images taken from different known locations. Using the

information from different viewpoints allows us to extract some depth clues about the ob-

served scene. This section describes the basics of stereo vision. For more information

see [22, 28, 31, 46]. For surveys of contemporary techniques see [8, 19, 29, 34, 47].

To interpret a pair of images obtained from two different viewpoints one must first

recover the transformation between the two camera coordinate systems. There are two

fundamental problems in stereo vision. First, one must establish a relationship between

the pixels in the two images. This is called correspondence. After the correspondence has

been established the next step is to use the disparity between the images to establish an

estimation for the depth of the point. This is called reconstruction. We discuss each of these

problems in the next two paragraphs.

2.3.2.1 Correspondence Problem. For a point P1 in image I2, determine its

corresponding point P2 in image I2. The term correspond means that they are the im-

ages of the same physical point M. This is what is commonly known as the correspondence

problem. Approaches to solving this problem are normally grouped into two categories:

Correlation Based and Feature Based. Researchers have begun exploring stereo vision with-

out correspondence [5, 15]; however, correspondence is used here to solve the reconstruction

problem.

Correlation based or matching methods for establishing correspondence use correlation

among brightness patterns in the local neighborhood of a pixel in the other image. Since,

these methods use the intensity values directly they are sensitive to changes in the intensity

values due to ambient lighting and perspective. Finally, the presence of occlusions in the

scene present problems which lead to erroneous distance estimates.

Feature based techniques use features derived from the images rather than the image

intensities directly. This makes them less susceptible to changes in image intensities. The

features most commonly are edges, edge points, or edge segments. Additionally, feature

based techniques are typically faster than correlation based methods because the compar-

isons tend to be simpler [8, 19].
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2.3.2.2 Reconstruction Problem. After correspondence has been established,

the reconstruction problem must be solved. Given two corresponding points, P1 and P2, the

problem is to estimate the 3-D coordinates of the object point, Pobj . Suppose a basic two

camera system with parallel optical axes and separated by a distance, b. The line connecting

the connecting the two lens centers is the baseline. For simplicity, assume the baseline lies

perpendicular to the optical axes and parallel to the image planes. Let the global camera

coordinate system have origin at the midpoint of the baseline. Figure 2.17 depicts this

situation.

Figure 2.17: Stereo Camera Model Illustration [28].

It should be noted that a more general model exists for stereo vision allowing for

cameras of different focal lengths and any orientation. In this more complex case one defines

a so called fundamental matrix to handle transformations between the two cameras [19, 28].

However, since the camera in the implementation is of fixed geometry it is discussed here.
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Let (x1, y1) correspond to the object point’s Pobj(x, y, z) projection onto image plane

I1, and (x2, y2) be the projection onto I2. The relationships between the two points are

given by,

x1

f
=

x + b
2

z
and

x2

f
=

x − b
2

z
. (2.16)

while

y1

f
=

y2

f
=

y

z
. (2.17)

where f is the focal length of the two cameras and (x, y, z) are the unknown coordinates of

Pobj . To solve for these coordinates note,

x1 − x2

f
=

b

z
. (2.18)

The difference in the image coordinates (x1 − x2) is known as the disparity, d.

Finally, solve for the object points,

x = b
x1+x2

2

x1 − x2

=
b(x1 + x2)

2d
(2.19)

y = b
y1+y2

2

x1 − x2

=
b(y1 + y2)

2d
(2.20)

z =
bf

x1 − x2

=
bf

d
. (2.21)

Distance is inversely proportional to disparity. The accuracy of distance measurements

is therefore better for near objects than far ones. Disparity is also directly proportional to

the baseline distance, b. Thus, the accuracy of distance measurements increases with an
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increased baseline. This effect is bounded however, because as one increases the baseline of

the cameras less and less of the scene overlaps. That is the disparity field of view decreases.

Finally, disparity is also directly proportional to f . This is because images are magnified

with increased focal length.

Another important aspect of reconstruction is epipolar geometry. The epipolar ge-

ometry is a function of the relative orientation of the two cameras. A point in the scene

which is visible in both cameras gives rise to a pair of corresponding image points called a

conjugate pair. The conjugate pairs must lie on a line between the two images because they

have the same y-coordinate by convention. This line is known as the epipolar line. For this

particular geometry all epipolar lines are parallel to the x-axis; however, this is not true in

the general camera model. The important thing to note is that if a point in the right image

has a conjugate pair it must lie on the epipolar line; it cannot lie elsewhere [46].

Stereo algorithms do not in general search the entire image for a correspondence match

as described above due to the computational complexity of such a process. Instead, they

search a small local search of around a pixel. The result of this process is that the disparity

values are bounded to a three dimensional space known as the horopter. Figure 2.18 depicts

this situation. The correspondence match must lie in the horopter or it will not be found.

Figure 2.18: 16-pixel Horopter Illustration. The nearest plane corresponds to the highest
disparity value(15) while the farthest plane corresponds to the lowest disparity value (0) [33].

The placement and size of the horopter depends on the application. Typically, the

search space is limited to 16 or 32 pixel disparities for computational reasons. For this
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thesis’ implementation the range will be 32 pixels. The horopter size can be increased by

the following methods,

1. Decrease the camera baseline.

2. Decrease camera focal length.

3. Increase pixel width

4. Increasing the disparity bounds.

The first three of these options deal with changing the camera geometry itself which has a

effect of the range resolution of the algorithm. Only, changing the disparity search range

increases the horopter size without an adverse effect of range resolution.

Range resolutions refers to the minimum change in range that the stereo algorithm

can differentiate. This is different from range accuracy which is the measure of how well

the range estimates correspond to the actual ranges. Range resolution is governed by the

following function,

∆r = r2/bf · ∆d. (2.22)

where ∆r is the range resolution, r is the range, b is the camera baseline, f is the focal length,

and d is the disparity. This equation show that range resolution degrades quadratically with

increasing range. Camera geometry (focal length and camera baseline) also have an inverse

effect. That is increasing either results in better (smaller) image resolution. Finally, the

pixel size of the imaging devices has a proportional influence on the range resolution. Smaller

pixel sizes yield better resolution.

2.4 Summary

This chapter presents background information necessary to establish the foundation

for the work herein. The first section discusses the area of swarm robotics, its founda-

tions, related research in the field and culminated in a detailed description of the robotic

swarm control algorithm used in this work. The second section outlines the foundations of

computer vision as they apply to this thesis investigation stressing image formation, image

segmentation, and stereo vision. Having discussed this background information the next

Chapter outlines the implementation of a physical swarm model.
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III. System Design and Implementation

The development of any complex software system requires a structured, well-defined

development plan. The robotic software system of this effort is no exception. A

bottom-up behavior based approach [6] is used in the system beginning with the camera

controller. The tight coupling of sensory inputs to motor outputs is the defining character-

istic of this design paradigm which lends itself to the design and implementation of highly

reactive systems.

This chapter covers the hardware and software components of the swarm model. Sec-

tion 3.1 discusses the hardware components in the system. The details of the software

components of the robotic system are presented in Section 3.2.

3.1 Hardware

This section discusses the hardware systems and robotic platforms used in this re-

search. Section 3.1.1 the ActivMedia Pioneer 2TM-AT8 robotic platform is discussed. Next,

the Videre stereo camera is discussed. Figure 3.1 depicts the hardware and the intercon-

nections between the hardware for a single implemented swarm controller. The swarm

controller is implemented in two algorithms as described in Chapter 2.

Figure 3.1: Swarm Controller High Level Hardware with interconnections.

3.1.1 Pioneer Robotic System. The ActivMedia Robotics Pioneer P2-AT8 is the

platform used to conduct this research. The Pioneer P2-AT8 has an onboard 400Mhz

Pentium processor and 64MB of onboard RAM. This onboard computing power proved to

be insufficient for doing onboard segmentation and disparity processing so for this thesis the
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onboard processor handles only the updates to the motor controllers defined by the swarm

behaviors. The onboard behaviors take position information from the video processing

laptop and use it to update heading and velocity of the robot.

Figure 3.2: The Active Media Robotics Pioneer 2TM-AT8.

3.1.2 Videre Stereo Camera System. For image capture and stereo processing, the

STH-MDCS Stereo Camera System by Videre Design is used. As can be seen in Figure 3.2

the camera sits a atop a pan-tilt head; however, for this implementation the pan-tilt head is

in a fixed position looking forward because of the assumptions of Kadrovach’s visual sensor

model. The complexity of the stereo vision processing lead to implementing the vision

sensor on a 1Ghz Pentium P4 laptop which connects to the Pioneer robot via a standard

ethernet connection. The laptop’s specifications are listed in Table 3.1. The stereo head

contains two CMOS imagers with a resolution of 1280x1024 pixels with a maximum frame

rate of 12 megapixels per second. The camera interfaces with a laptop computer over a
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Table 3.1: Summary of the Computational Specifications of the Vision Laptop.
Spec Description

Processor Clock 1GHz
Memory 512 MB
Ethernet Speed 100 Mbs

IEEE 1394 ”firewire” serial bus. This bus is capable of transferring the information over

the bus without the need for buffering on the PC side. The lenses have a focal length of 6mm

which gives the imagers a field of view of 65.2 degrees in the horizontal and 51.3 degrees

in the vertical. The largest image size supported by the camera is 1280x960; however, for

this thesis the application is a real-time implementation. Because a reduction in the image

size results in faster run time performance of all algorithms, the image size is reduced from

1280x960 to 320x240 by ”binning.” Binning averages adjacent pixels into one pixel. The

’x4’ binning technique averages every four pixels is into a single pixel. The result of this

process is an image of H/4 x V/4 where H is the original width of the image in pixels and V

is the original height of the image in pixels. A summary of the STH-MDCS stereo camera

specifications is given in Table 3.2.

Table 3.2: Summary of the Specifications for the STH-MDCS Stereo Vision Camera.
Spec Description

Size 1.5X5X1in
Focal Length 6mm
Baseline 9mm
Horizontal Field of View 65.2◦

Vertical Field of View 51.3◦

Max Image Resolution 1280X960
Frame Rate at Max Res 7.5Hz
Implementation Resolution 320x240
Implementation Frame Rate 30Hz

3.2 Software

This section discusses the software components of the system. First the general algo-

rithm of the visual sensor implementation is presented. This is followed by the segmentation

algorithm used to identify swarm members. Finally, the method of determining estimated

distances is outlined. Then, the low-level swarm behaviors are described.
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3.2.1 Visual Sensor Model Implementation. The physical implementation of the

notional visual sensor model of outlined in Section 2.2.2 begins by recalling its requirements.

The visual sensor is required to provide positional and velocity estimates for the neighbors

of the swarm member and pass this information to the controller for velocity updating. To

do that requires a method to identify the other swarm members, to estimate their velocities,

and to return this information to the controller for motion and positional updating. The

vision sensor is implemented through the use of several classes which are discussed beginning

with fast color segmentation which provides a means to locate the swarm members in the

camera image. The fast color segmentation bounds the search space for the stereo processing

algorithm. Using the SRI smallv Stereo Vision API [33] classes the visual sensor calculates an

average estimated distance for the segmented area. This information is passed to the ARIA

robot via a TCP/IP connection for motor control input. Figure 3.3 shows the pseudocode

for this process.

Capture Color Stereo Images
Segment the Color Image to ID Orange cone
Build Regions Data Structure (Areas of Orange)
For Each Region

Compute Disparity Image
Estimate Distance from Disparity
End Loop
Pass Distance Estimate and Neighbors to ARIA Robot

Figure 3.3: High Level Algorithm for the Visual Sensor.

3.2.2 Fast Color Segmentation. The segmentation algorithm used in this research

is an implementation of the Balch et al. fast color segmentation algorithm described in [12].

The main benefit of using this algorithm is its speed. Balch has tested the system on robots

obtaining close to real-time performance (30 frames per second) on nominal computational

hardware [12]. The overall algorithm is depicted in Figure 3.4. Only monocular vision,

using the left camera, is used in segmentation.

The basic approach of this segmentation algorithm is to segment the image by defining

up to 32 colors using thresholds in three dimensional color space. These thresholds define
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For all pixels
Project the Color Space
Classify each pixel as one of up to 32 colors
Run Length Encode the Classified Image
Group runs into regions of like color
Collect Regions Statistics
Sort by Color and Size

Figure 3.4: Algorithm for Fast Color Segmentation [12].

volumes of the specified color in the color space. Three color spaces are popular in computer

vision namely, Hue Saturation Intensity (HSI), YUV, and Red Green Blue (RGB). The

selection of color space depends on the utility of the color space for the particular application

and the color space provided by the vision hardware. Since the Videre imager produces

(RGB) images, the RGB color space is used in this work.

The RGB color space is popular in many image processing fields; however, Balch et

al [12] notes that for robust segmentation in robotic vision applications the RGB color

space suffers from a major disadvantage. Ideally, robust performance of the segmentation

algorithm in a wide range of lighting conditions is desirable. This leads to defining colors

as ratios of the intensities of red, green, and blue bands in the color scheme. While this

can be done in the RGB color space quite easily, the resulting volume in the color space is

conical and thus cannot be represented by simple thresholds in each of the color bands [12].

The HSI and YUV color spaces encoded color information in two bands and intensity in the

third. The relationships between the three are given by the following equations,
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Y =
R + G + B

3
(3.1)

U = R −
G + B

2
(3.2)

V =
(B − G)

√
3

2
(3.3)

I =
R + G + B

3
(3.4)

S =
√

U2 + V 2 (3.5)

H =











Arc cos(V
S ), Y ≥ 0

2π − Arc cos(V
S ), Y < 0.

(3.6)

To mitigate this problem, the algorithm begins by modifying the RGB color space

by subtracting the monochromatic intensity and storing the absolute difference back into

the color bands. This transformation allows for a better color approximation by a defin-

ing rectangular region in the color space [12]. This decision sacrifices some computation

time in order to improve the robustness of the segmentation algorithm in variable lighting

conditions.

if((Rij >= RLOW ) AND
(Rij <= RHIGH) AND
(Gij >= GLOW ) AND
(Gij <= GHIGH) AND
(Bij >= BLOW ) AND
(Bij <= BHIGH))

pcolorij = color;

Figure 3.5: Naive Approach to Thresholding. Rij, Gij ,and Bij represent the pixel color
values in each of the Red, Green, and Blue color bands respectively for the pixel located in
row i and column j. RLOW , GLOW , and BLOW are the low thresholds. RHIGH , GHIGH ,
and BHIGH are the high thresholds [12].

As stated the segmentation algorithm relies on simple thresholds to define the colors

for segmentation. The naive approach to define colors in this manner would use an if-then

construct to test for a color. This approach is illustrated in Figure 3.5. After compiling, this

approach proves inefficient due to each pixel requiring up to six conditionals to be evaluated
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before the pixel’s classification is determined. Furthermore, each additional color requires

six additional conditionals.

Balch et al., instead, decompose the multidimensional thresholds into three boolean

valued functions along each axis of the color space. The decomposition is stored in three

static arrays one for each color component. Thus class memberships are determined using

a bitwise AND of the elements in each color band. The result of the operation is a boolean

with a true value representing the pixel is a member of the color class and false value if

it is not a member of the color class. The resulting algorithm is much faster on modern

processors.

The process becomes clearer when considering an example. Consider a 10 level dis-

crimination of the each of the 256 value color values. Assume that the color of interest

is defined by the following ranges in each color band (6-2,7-3,0-1). The class membership

arrays for this case would be,

RedClass = {0, 0, 1, 1, 1, 1, 1, 0, 0, 0} (3.7)

GreenClass = {0, 0, 0, 1, 1, 1, 1, 1, 0, 0} (3.8)

BlueClass = {1, 1, 0, 0, 0, 0, 0, 0, 0, 0}. (3.9)

Suppose now that a pixel has color values of (6,4,1). Determining, this pixel’s membership

in the defined pixel class requires the evaluation of the following.

pixelclass(6, 4, 1) = RedClass[6] AND GreenClass[4] AND BlueClass[1]. (3.10)

For this example the result would be true indicating this pixel’s membership in the notional

class.

The main advantage of this approach, although not used in this investigation, is

simultaneous pixel membership. To handle multiple colors the algorithm uses each of the

n bits of an integer of the membership arrays to denote membership in n different classes.

For example, to add a second color with the following ranges in the membership arrays
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(2-1,5-3,8-9) requires the modification of membership arrays.

RedClass = {00, 10, 11, 01, 01, 01, 01, 00, 00, 00} (3.11)

GreenClass = {00, 00, 00, 11, 11, 11, 01, 01, 00, 00} (3.12)

BlueClass = {01, 01, 00, 00, 00, 00, 00, 00, 10, 10}. (3.13)

Recall the example pixel has the color values of (6,4,1). The evaluation of the pixelclass

function yields ’01’. The most significant bit denotes that the pixel is not the second color

but is the first color. This method can be extended to n bits where n is determined by the

computational architecture.

After each of the pixels in the image has been classified into one of the pixel classes, the

images are grouped into connected regions under the four-connectedness heuristic. This is

accomplished in two stages. First, the image is run length encoded Red Green Blue (RLE).

This accomplishes merging under horizontal connectedness. Then, the second stage must

determine only vertical connectedness. This is accomplished in place in the RLE image.

This is done by having each of the runs have a pointer to a parent run in the image. That

is each run stores the length of the run, the run pixel, and pointer to the parent run. The

parent is the upper-left most run of a region. The merging procedure is a tree-based union

find with path compression [12]. It scans each pair of adjacent rows and merges runs which

are the same color class and overlap vertically. The result of this is a disjoint forest with

each run pointing upward in the image towards the global parent of the region. A second

path compresses the paths so that all runs point directly to the global parent. Figure 3.6

illustrates this procedure.

The next step in the segmentation is the region statistic extraction. In this stage,

the algorithm constructs a region table which includes a bounding box, centroid, and size

of each region. This requires a single pass over the run length encoded image as each of

the statistics can be calculated incrementally. After the statistics have been calculated the

regions are divided into separate color regions sorted by decreasing size.

For this effort, the algorithm needs to recognize the color ”orange.” An orange cone

marks the location of a swarm member. The first step of this implementation is to define

45



Figure 3.6: Example of Union Find Path Compression [12].

the color ”orange” in each of the color bands. First, images are taken of the orange cones

in two different lighting conditions, one indoor and one outdoor. After the subtracting the

intensity information as described above the images are loaded into a graphics editor (MS

Paint) and samples of the images are taken in different locations.. Ten samples from each

image (20 samples in total) are loaded into Microsoft Excel and the mean (µ) and standard

deviation (σ) of the samples are calculated. The summary results are listed in Table 3.3.

The color orange is defined as µ + /− σ. Figure 3.7 shows a sample pair of images with the

fast segmentation.

Table 3.3: Summary of Orange Sampling Data.
metric Red Green Blue

µ 112.10 20.80 72.40
σ 24.58 7.93 14.17
µ + σ 136.68 27.73 86.66
µ − σ 87.52 12.86 58.13

After segmenting the image the algorithm calculates a bounding box of the segmented

image to pass to the stereo vision algorithm to estimate the distance to the target.
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Figure 3.7: Sample Segmentation Pair. The image on the right shows the left color
image obtained from the Videre camera. The image on the right shows the resulting color
segmented ”orange” image. This segmented region is the primary method of identification
of swarm members.

3.2.3 Recovering Distance Measurements with Stereo Vision. The SRI Small

Vision system [33] provides C++ classes and API for calculating distance estimates of

objects with the stereo cameras. Recall from the background discussion Stereo algorithms

compute range information using triangulation. Two images at different viewpoints see

the object at slightly different positions: this difference in location of in the two imagers

is called disparity. Furthermore, the range they can determine is also restricted by the

disparity search range or horopter. For our process the horopter was set to 32 for maximum

information. A sample image with disparity and point cloud is show in Figure 3.8.

As stated in the previous section the fast color segmentation algorithm passes a bound-

ing box to the stereo vision algorithm. Using this information the smallv classes allow us

to estimate the distance the object is by averaging the distances returned by querying the

stereo processor over all points in the bounding box. Points without disparity information

are ignored in this process. This information is stored in the neighbors data structure and

passed to the motor controllers described in the next section to calculate the velocity and

heading update for the swarm member.

3.2.4 Behavior-Based Swarm Robotic Control Implementation. This subsection

outlines the behavior-based robotics controller implementation on the Pioneer robot. It

begins with general discussion of behavior based robotics. A high-level design model is then
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Figure 3.8: Sample Small Vision System Stereo Processing Class Output
[33].
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presented in which the Kadrovach swarm model is decomposed into two behaviors which are

implemented on the robot. Finally, a detailed discussion of the separation and alignment

behaviors concludes the subsection.

3.2.5 Introduction to Behavior Based Robotics. Championed initially by Rodney

Brooks, the behavior based robotics field focuses on design robots whose macro behavior

is an aggregation of several, often simple, behaviors [11]. These systems tend to be very

reactive in nature and contain very little state information. Furthermore, behavior based

approaches rarely have complex models to define objects in their environment for the purpose

of reasoning. Rather these systems take the robots sensor information and perform quick

almost reflex reactions to their environment. Interested readers are referred to [6, 10, 11] for

more development.

3.2.6 High-Level Design. The system for implementing this swarm controller

begins with a high-level model. The swarm controller is decomposed into two behaviors

separation and alignment behaviors. These behaviors are implemented in the ARIA robot

control architecture [32]. Figure 3.9 shows a high-level design diagram. Figure 3.9 A shows

the overall design paradigm. While Figure 3.9 B shows the two behaviors necessary to

implement the swarm model described by Kadrovach. The stimuli are provide by the vision

sensor described above and the responses are given sent to the ARIA controller for execution.

The behaviors alignment and separation are implemented in ARIA as Actions derived from

the ArAction class provided in ARIA. They are then combined using vector addition to

produce the overall action by the two behaviors. In the instantiation of the ARIA control

environment requires that the priorities of the two behaviors be specified. Since there is no

preference given in the simulation model the behaviors are given equal priorities of 100.

3.2.7 Separation/Cohesion Behavior Design. The separation and cohesion behav-

ior requires two basic functions. First, the information passed to the ARIA architecture is

read in via a TCP/IP connection. The visual sensor provides information on the number

of neighbors and an estimate of the neighbors location and heading. Using this information

the separation/cohesion behavior determines the region each neighbor lays in and computes

the update vector as defined below in Figure 3.10.
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Figure 3.9: High Level View of the Stimulus/Reponse of the two swarm behaviors.

Recall, Equation 2.7 repeated here for clarity.

(vupdate)i =
∑

pj∈Si

[(wperiph)ij(wd)ij((wattract)ij(vattract)ij + Calign(valign)ij)]. (3.14)

For the behavior implementation the vupdate is split into two pieces to facilitate the

two behavior implementation described above. Namely,

(vattract)i =
∑

pj∈Si

[(wperiph)ij(wd)ij((wattract)ij(vattract)ij)]. (3.15)

and,

(valign)i =
∑

pj∈Si

[Calign(valign)ij)]. (3.16)

Recall, that,

(vattract)ij = pj − pi. (3.17)

50



Loop ∀Neighbors
Determine Neighbors Relative Location
Determine Region for the Neighbor
Calculate Wperph, Wd and Wattract

Calculate vattract

vupdate = vupdate + wperhp ∗ Wd ∗ wattract ∗ vattract

End Loop
return vupdate

Figure 3.10: Cohesion/Separation Vector update algorithm.

To simplify the position of the neighbor is defined relative to the swarm member yielding,

(vattract)ij = pj. (3.18)

Using the disparity measurements the relative location of the swarm member can be

determined. This information yields the vattract.

3.2.8 Alignment Behavior Design. Similar to the previous section the Alignment

behavior receives the same information about its neighbors and their approximate rela-

tive locations. Using this information the alignment behavior determines the region each

neighbor lays in and computes the update vector as defined below in Figure 3.11.

Loop ∀Neighbors
Determine Neighbors Relative Location
Determine Region for the Neighbor
Calculate valign

vupdate = vupdate + valign

End Loop
return vupdate

Figure 3.11: Alignment Vector update algorithm.

Recall from Chapter 2,

(valign)ij = (vdir)j. (3.19)
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Kadrovach’s swarm simulation has global knowledge of the headings of all members. The

swarm model algorithm does not have this luxury since communication is prohibited. In-

stead the equation below is used to update the heading. The old heading information is

stored for each iteration if no old heading information is available the heading is simply the

unit vector of the relative position vector.

(valign)ij = pjnew/||pjnew||. − pjold/||pjold||. (3.20)

3.3 Summary

This chapter describes the physical implementation of the swarm model for use in the

tests that follow. The Pioneer P2-AT8 robot hardware, Videre cameras, and visual process-

ing laptop are discussed providing the reader an understanding of the computation abilities

and limitations of our design. Next the software is discussed beginning with the visual sen-

sor. The fast color segmentation algorithm is described as the means of identifying swarm

members. The implementation details including the method definition of the color orange

are described. The stereo vision implementation and distance estimates are discussed. Fi-

nally, the design and implementation of the two behaviors to implement the physical swarm

are outlined. The next chapter outlines the experiments to test the performance of the

implemented swarm controller.
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IV. Experiments, Results, and Analysis

This chapter describes the design of experiments and metrics for the characterization

and evaluation of the swarm control algorithm as implemented on the Pioneer AT

robots described in Chapter 3. There are three separate experiments each designed to

evaluate a different portion of the system. First, two experiments are conducted to evaluate

the performance of the vision sensor implementation. Next, a series of stationary target tests

are conducted to evaluate the performance of the swarm controller following a stationary

target. Finally, a set of tests are conducted to evaluate the performance of the system

following a dynamic target.

4.1 Visual Sensor Experiments

This section describes the two visual sensor calibration tests conducted with the sys-

tem. The goal of these tests is to establish a baseline for the performance of the Stereo

Cameras with the SVS C++ classes and the visual sensor as a whole. This section begins

by evaluating the stereo vision cameras alone. Next, the fast color segmentation algorithm

is combined with the stereo processor and is tested.

4.1.1 Videre Camera Disparity Test. This experiment determines the performance

of the Videre cameras in the absence of the fast color segmentation algorithm. The cameras

were placed known distances ranging from [20in-128in] from another robot and 100 samples

of the estimated distance were recorded. This distance was varied as shown in Table 4.1

along with average estimated distance (mm), standard deviation, average absolute error

(mm) and standard deviation.

Table 4.1: Summary of the Videre Camera Performance Test.
Test act dist (mm) avg est dist (mm) std dev avg error (mm) std dev

1 508 N/A N/A N/A N/A
2 990.6 1009 37.7 24.6 34.0
3 1143 1153 14.3 10.9 13.4
4 1371.6 1381 8.9 11.1 6.6
5 1803.4 1842 28.4 38.5 28.4
6 2336.8 2389 22.5 52.3 22.5
7 2870.2 2898 43.3 40.5 31.7
8 3251.2 3268 19.0 20.0 15.2
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Figure 4.1: Disparity Test Results.

It is important to note the first test failed because the disparity information was too

noisy due to the target being too close to the observer to calculate an accurate estimate of

distance. That is the target fell outside 32 pixel horopter. From Figure 4.1.1 it is clear that

the SVS stereo system provides a very accurate estimate of the distance from the cameras

in the ranges tested. The target used in these tests was the entire robot outline not just the

orange cone as will be for the fast color segmentation tests described in the next subsection.

The entire robot gives a better correlation of the images in the two camera because of the

differences in intensities and colors over the entire robot body. Since a better correlation

can be established the resulting distance estimates are more accurate. This is evident in

the next section.

4.1.2 Fast Color Segmentation with Disparity Test. The second visual sensor

experiment goes a step further and evaluates the average error of the fast color segmentation

algorithm when combined with the Videre Camera’s disparity measurements. This section

begins with a discussion of the test setup used to evaluate the performance of the visual

sensor. Finally, the results of the tests are presented and analyzed.

The test is setup by placing the follower robot with orange cone swarm marker in view

at a known distance from varied [1ft - 20ft] in increments of one foot. At each test distance

100 estimated ranges are recorded. The cone is kept directly in the center of the imager

54



throughout the test series. Off-angle performance is not tested. The fast color segmentation

algorithm segments the orange regions of the image and passes the image coordinates of the

cone to the stereo processor. The stereo processor then computes the average distance of

the objects in this image region ignoring any undefined regions. This average distance is

recorded and compared the known test distance. This is a slightly different the test in

the previous subsection in that only the region returned by the fast color segmentation

algorithm is used to estimate distance. Recall, the previous test included the entire robot

as a target. The summary of the results is shown in Table 4.2 and graphically depicted in

Figure 4.2.

Table 4.2: Summary of the Visual Sensor Disparity with Fast Color Segmentation.
Test act dist (mm) avg est dist (mm) std dev avg error (mm) std dev

1 304.8 5322.2 1476.9 5017.2 1476.8
2 609.6 1512.7 914.4 903.1 198.1
3 914.4 1217.2 50.7 302.8 50.7
4 1219.2 1458.1 10.2 238.8 10.2
5 1524 1843.3 3.74 319.3 3.7
6 1828.8 2232.1 25.9 403.3 26.0
7 2133.6 2659.8 9.5 526.2 9.5
8 2438.4 3074.3 14.3 635.9 14.3
9 2743.2 3503.9 19.0 760.7 19.0
10 3048 3986.9 25.0 938.2 25.0
11 3352.8 4378.5 29.0 1025.7 29.0
12 3657.6 4907.5 38.0 1249.9 38.0
13 4572 5458.7 46.9 886.7 46.9
14 4876.8 6015.9 63.3 1139.1 63.3
15 5181.6 6521.0 62.2 1339.4 62.2
16 5486.4 7015.9 70.8 1529.5 70.8
17 5791.2 7509.73 81.7 1718.5 81.7
18 6096 8247.3 74.3 2151.3 74.3
19 6400.8 8777.6 59.2 2376.8 56.2
20 6705.6 9513.6 75.7 2808.0 75.7
21 7010.4 10095.2 72.6 3084.8 72.6
22 7315.2 11137.0 128.0 3821.8 128.1
23 7620 12081.8 133.7 4461.8 133.6
24 7924.8 12868.7 119.2 4943.9 119.2
25 8229.6 13411.7 101.5 5182.1 101.5
26 8534.4 14160.7 192.0 5626.3 192.0
27 8839.2 15480.9 228.7 6641.7 228.7
28 9144 17660.0 246.6 8516.0 246.6
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Figure 4.2: Fast Color Disparity Test Results.

From Table 4.2 and Figure 4.2 show again that objects too close to the visual sensor

present unreliable data to the swarm system. Therefore, it is important to keep Kadrovach’s

regions out of the area of poor performance. Again these objects lie outside the horopter of

the stereo processor. Around 900mm the information is reliable and scales approximately

linearly until about 3000mm. As expected, the error increases as a function of distance due

to decreased range resolution noted in Section 2.3.2.2. That is as you get further away from

the sensor the readings are less accurate due to reduced resolution.

Using these test results the neighborhood distances parameters are defined for the

subsequent tests. The parameters are selected to keep the swarm algorithm within the

range of good performance of the visual sensor. Figure 4.3 shows the neighborhood model

again for clarity. Table 4.3 shows the summary of the values defining the neighborhoods

for our swarm controller for the subsequent tests. Thus, dmin was selected to be 1200mm

giving some room for the visual sensor to detect the swarm member was in R1. The comfort

zone is defined to be 120mm wide by setting d2 = 1320mm. Finally, d3 is set to 3000mm

for the tests that follow.

Recall from Kadrovach’s model the swarm members desire to remain in the comfort

zone defined by dmin <= d <= d2 or between 1200mm and 1320mm. Therefore, in the

following tests it is expected the swarm member should attempt to settle into this comfort
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Figure 4.3: Neighborhood Model [30].

Table 4.3: Neighborhood Parameters.
Parameter Distance (mm)

dmin 1200
d2 1320
d3 3000

zone and maintain it for the remainder of the test sequence. For the tests that follow the

correct behavior of the swarm with respect to the regions defined in this section defines

success of the test.

4.2 Stationary Target Tests

This subsection describes the stationary target test environment, experimental setup

and provides a summary of the results. The goal of the stationary target tests is to see if the

swarm model performs as expected against a simple stationary target. To accomplish this

goal, the swarm model is tested in three different initial configurations shown in Figure 4.4.

In these three configurations the swarm member’s starting position is varied from directly

behind (direct approach), offset to leader’s left (left approach) and offset to the leader’s

right (right approach). These tests provide the confidence necessary to proceed with testing

with a dynamic target. This section begins with a description of the test environment.

57



4.2.1 Environment. The environment for stationary tests is the Wright Field

Gymnasium, Wright Patterson AFB, Ohio. The tests are conducted on the baseline of the

Wright Field basketball court. The test area was marked with white tape marks every two

feet to provide a ground truth reference for the data collection camera. The video data is

recorded from an observation deck approximately 20 feet above the test area. No obstacles

are presented to the system in these tests. Only the leader robot with an orange cone

for identification and the follower swarm member occupy the test area. The next section

discusses the setup for the stationary target tests.

4.2.2 Experimental Setup. Each experiment begins in one of the three initial

configurations shown in Figure 4.4. A target robot is placed a known distance and remains

stationary. The swarm robot approaches the target robot a position offset to right, offset to

the left or directly behind the target robot. During the test the robot approaches the target

and settles into the comfort zone behind the target robot. The swarm robot’s velocity

is limited to 100mm/s for safety. During each test both robot’s motion was recorded at

320x240 resolution using a data collection camera operated from an observation deck. The

test area was lined on both sides with white tape marks every two feet to provide a reference

point for post test data analysis.

The parameters of the test are summarized in Table 4.4.

Table 4.4: Stationary Target Parameters.
Parameter Value

dmin 1200
d2 1320
d3 3000
Cperiph 1
Calign 1
Crepulse 1
Cattract 1
Vmaxrobot 100 mm/s
MaxTurn 5 degrees
update parameter .25

Five tests were conducted for both right and left approach tests and ten were conducted

for the direct approach tests. These tests provided confidence in the algorithm as designed.
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Since manual image analysis is required, no estimated distances are presented in this section

only a qualitative discussion of the tests.

Figure 4.4: Initial Configurations for Stationary Target Tests. From left to right: Left
Approach Test Configuration, Direct Approach Configuration, and Right Approach Test
Configuration.

4.3 Stationary Target Test Results

All of the tests conducted for the stationary target tests demonstrated expected be-

havior of the swarm model. The results are discussed in the following three sections. Each

sub section describes the results of each series of stationary target tests, provides general

observations and concludes with a rudimentary analysis of a sample video sequence of the

test. Complete video analysis is omitted because all analysis is obtained via manual analysis

of individual frames.

4.3.1 Left Approach Test Results. This section describes the qualitative results of

the left approach tests, describes general observations, and concludes with a rudimentary

analysis of a sample test video sequence.

Table 4.5: Left Approach Test Summary
Test Duration (s) Back up (s) Forward (s) Oscillations Notes

1 71 48 53 1.5 Oscillates in czone

2 75 45 50 2.0 Oscillates in czone

3 62 44 N/A N/A Doesn’t Oscillate
4 71 48 53 2.5 Oscillates in czone

5 71 45 51 2.5 Oscillates in czone

During all the left approach tests the follower begins by turning to the left to directly

approach the target robot. This demonstrates the ability of the robot to correct heading

provided the orange identification cone can be seen in the visual sensor. After making the

initial turn, the robot approaches until it reaches distance near the comfort zone. That is
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around d2 or 1320mm. In all but the third test, the robot begins a series of oscillations while

attempting to settle into the comfort zone. When the robot senses it has left the comfort

zone it correctly backs up to reestablish position within the comfort zone. The swarm

member then begins a series of oscillations in an attempt to stay in the comfort zone. From

Table 4.5, it can be seen that the time of the first back up are around 46 seconds. The

differences in these times can be accounted for by variations in the sensor readings and by

the error in the manual video analysis. Furthermore, the times of the first forward movement

after the backup all begin around 52 seconds. The differences are attributed to variation in

sensor readings and error in detecting the first resumption of forward motion by the video

analyst. Clearly, the swarm model as implemented performs as expected.

The third left approach test differs slightly from the other four tests and warrants

further discussion. During the third test, the robot approaches the target and appears to

halt in the comfort zone. A quick manual image analysis estimates this distance to be

1316.94mm or within the comfort zone. Initially, it appeared that this test ended with the

robot not oscillating; however, further image analysis showed the robot did oscillate in the

comfort zone. This is difficult to detect with just the eye due to camera motion and the

small amplitude of these oscillations.

Figure 4.5 shows a sample image sequence of the left approach test one. Beginning

in the upper left hand corner, you can see the initial configuration of the robots with the

swarm member offset to the top of the image. The second image shows the swarm member

turning to correct its heading and approach the comfort zone as expected. Images three

through seven show the continued approach of the swarm member until it passes beyond

dmin. The last two images show the robot backing up to within the comfort zone.

This section described the results of the left turn tests conducted to confirm the

performance of the algorithm implemented. The left turn tests all showed the expected

behavior with the swarm member approaching a stationary target and attempting to settle

into the comfort zone of Kadrovach’s model. Initial analysis indicated left turn test three

may have concluded with the swarm member settling into and maintain itself in the comfort

zone; however, further detailed analysis showed the robot actually did oscillate with smaller
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Figure 4.5: Sample Image Sequence of Left Approach Tests. Images progress in time from
left to right and top to bottom.

amplitudes than the other tests. This was difficult to see on initial analysis due to camera

jitter.

4.3.2 Right Approach Test Results. This section describes the qualitative results of

the right approach tests, describes general observations, and concludes with a rudimentary

analysis of a sample test video sequence.

Table 4.6: Right Approach Test Summary.
Test Dur(s) Back (s) Forward (s) Oscillations Notes

1 83 38 46 4.0 Oscillates in czone

2 75 46 53 3.0 Oscillates in czone

3 74 46 53 3.5 Oscillates in czone

4 67 41 45 3.5 Oscillates in czone

5 75 44 47 4.5 Oscillates in czone
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During all the right approach tests the follower begins by turning to the right to begin

approaching the target robot. This demonstrates the ability of the robot to correct heading

provided the orange identification cone can be seen in the visual sensor as was seen in the

previous series of left approach tests. Just as in the left approach tests, the robot approaches

until it reaches distance near the comfort zone around d2 or 1320mm. The robot begins a

series of oscillations while attempting to settle into the comfort zone. When the robot senses

it has left the comfort zone it correctly backs up to reestablish position within the comfort

zone. The swarm member then begins a series of oscillations. From Table 4.6, the time of

the first back up are around 42 seconds. Similar to the previous tests the differences in these

times can be accounted for by the variation in the sensor readings and by the video analysis.

Furthermore, the times of the first forward movement after the backup all begin around 50

seconds. The differences are attributed to variation in sensor readings and error in detecting

the first resumption of forward motion. Clearly, the swarm model as implemented performs

as expected.

Figure 4.6 shows a sample image sequence of the right approach tests. This image

sequence shows right approach test one. Beginning in the upper left hand corner, you can

see the initial configuration of the robots with the swarm member offset to the bottom of the

image this time. As in the left approach tests, the second image shows the swarm member

turning to correct its heading and approach the comfort zone as expected. Images three

through five show the continued approach of the swarm member until it passes beyond dmin.

Images six through eight show the backup portion of an oscillation. The final image shows

the swarm member beginning to close the distance with its leader again.

This section described the results of the right approach tests conducted to confirm

the performance of the algorithm implemented. The right approach tests all showed the

expected behavior with the swarm member approaching a stationary target and attempt-

ing to settle into the comfort zone of Kadrovach’s model. The next section evaluates the

performance of the final configuration of stationary target tests.

4.3.3 Direct Approach Test Results. This section describes the qualitative results

of the right approach tests, describes general observations, and concludes with a rudimentary

analysis of the a sample sequence of a sample test.
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Figure 4.6: Sample Image Sequence of Right Approach Tests. Images progress in time
from left to right and top to bottom.

All ten direct approach begin with the swarm member directly behind the target robot.

The robot then approaches the comfort zone. After translating through the comfort zone

the swarm member backs up to maintain its position and in all but test 4 and 5 oscillates

until the end of the tests. Test 6 and 7 have oscillations that decrease in amplitude with

time. Test 9 and Test 10 both have exhibit oscillations followed by a temporary correction

and then a resumption of oscillatory behavior around the comfort zone. From Table 4.7,

all tests have an initial backup of the robot around 40 seconds. Additionally, in the tests

which exhibit oscillatory behavior the forward motion resumes around 45 seconds. Like the

left approach test two tests appear to have the robot settle into the comfort zone without

oscillating.

Test 3 and Test 5 of the direct approach tests initially appeared to exhibit no oscillatory

behavior. As with Test 3 of the left approach tests, a more detailed image analysis is used
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Table 4.7: Direct Approach Test Summary.

Test Dur (s) Back (s) Forward (s) Oscillations Notes

1 99 29 31 12 Oscillates in czone amp decreases
2 99 44 51 5 Oscillates in czone

3 73 38 N/A N/A Doesn’t Oscillate
4 105 39 47 6 Oscillates in czone

5 56 41 N/A N/A Doesn’t Oscillate
6 104 42 50 8 Oscillates in czone amp decreases
7 85 38 44 11 Oscillates in czone amp decreases
8 70 40 45 4 Oscillates in czone

9 73 36 41 5 Oscillates; moves closer; oscillates
10 87 42 46 11 Oscillates; moves closer; oscillates

to further investigate this apparent behavior. Direct Approach Test 3 analysis showed

behavior similar to that seen in left approach test 3. Namely, small oscillations around

the comfort zone which are difficult to see without detailed analysis due to camera jitter.

Further analysis of test 5 shows the same results. Therefore, further analysis shows all tests

displayed oscillatory behavior around the comfort zone.

Figure 4.7 shows a sample images sequence of the direct approach tests. It depicts

direct approach test one. The image in the upper left shows the initial configuration of the

test with the swarm member directly behind the target robot. Images two through four

show the initial approach of the robot in to the comfort zone. Images five through nine

show the oscillatory nature of the behavior around the comfort zone.

This section described the results of the direct approach tests conducted to confirm

the performance our algorithm. The direct approach tests all showed the expected behavior

with the swarm member approaching a stationary target and attempting to settle into

the comfort zone of Kadrovach’s model. Two tests in this section appeared to exhibit no

oscillatory nature; however, detailed image analysis revealed true oscillatory behavior for

both Test 3 and Test 5 initially not detected due to camera jitter. The next section discusses

the tests conducted against a moving target in three different configurations.
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Figure 4.7: Sample Image Sequence of Direct Approach Tests. Images progress in time
from left to right and top to bottom.

4.4 Dynamic Target Tests

This subsection describes the dynamic target tests, environment, setup and provides

a summary of the test results. The goal of the dynamic target tests is to demonstrate

performance of the implemented swarm control algorithm with moving targets. The test

environment is described in the next sub section. Then, the experimental setup is outlined.

Finally, the results and analysis of the dynamic target tests is presented.

4.4.1 Environment. The environment for stationary tests is the Wright Field

Gymnasium, Wright Patterson AFB, Ohio. The tests are conducted on the baseline of the

Wright Field basketball court. The test area was marked with white tape marks every two

feet to provide a ground truth reference for the data collection camera video. The video

data is recorded from an observation deck approximately 20 feet above the test area. No
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obstacles are presented to the system in these tests. Only the leader robot with an orange

cone for identification and the follower swarm member occupy the test area. Experimental

setup is discussed in the next subsection.

4.4.2 Experimental Setup. The swarm model is evaluated against a dynamic target

in three scenarios. First, similar to the direct approach tests the target robot is placed a

set distance in front of the swarm member. This time the target robot, leader, translates at

50mm/s while the swarm member begins translating at 100mm/s. The speeds of the robots

are kept small due to the limited space for conducting the tests and to limit the movement

by the data collection camera. This setup allows the swarm member to approach the target,

then settle into its comfort zone and continue translating until the end of the test. This test

is run twelve times to evaluate the performance of the swarm model in a translation mode.

This is similar to a formation joining and maintenance behavior as seen in other formation

control experiments in literature.

Next, a series of tests evaluates the swarm model in another dynamic mode. The

initial setup is similar to the translational tests described in the previous paragraph. The

target translates at 75mm/s and the swarm model robot begins translating at 100mm/s to

allow the swarm member to approach into the comfort zone. After translating a distance the

leader robot performs a left turn and continues to translate at 75mm/s. The speeds of the

robots are kept small to the limit space used to conduct the tests and to limit the movement

of the data collection camera. The follower is expected to approach, establish its position in

the comfort zone and then maintain its relative position while performing the left turn and

following the leader. This test is run ten times to evaluate the performance of the swarm

model following a dynamic target who turns. Again this is similar to formation joining and

maintenance behaviors as seen in other formation control experiments in literature.

Finally, a series of right turn tests is conducted with setup identical to the previous

left turn tests; however, this time the leader performs a right turn after translating at

75mm/s. Again the swarm member translates at 100mm/s to allow for the swarm member

to approach, establish position in the comfort zone and maintain that position while tracking

a leader turning to the right. Again speeds of both robots are limited due to space and data

collection camera motion constraints.
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The initial configurations of the tests are shown in Figure 4.8.

Figure 4.8: Initial Configurations for Dynamic Target Tests. From left to right: Left
Turn Test Configuration, Translation Configuration, and Right Turn Test Configuration.

4.5 Dynamic Target Test Results

All of the tests conducted for the dynamic target tests demonstrated expected behavior

of the swarm model implemented. The results are discussed in the following three sections.

Each sub section describes the results of the translation, left turn, and right turn tests. Full

data analysis of the estimated distances is included for five test sequences: two translation

tests, two left turn tests, and one right turn test.

4.5.1 Translation Test Results. This section presents the results of the twelve

translation tests. All of the tests conducted for the translation target tests demonstrated

expected behavior of the swarm model. The section begins with the general observations of

the series of tests. Then two detailed analyses of translation test 4 and translation test 8

conclude this section. Only these two tests are analyzed due to the manual analysis needed

to recover estimated distance from video data. Due to the data collection camera motion

the raw video data is sampled at 2Hz and then distance is estimated frame by frame using

the white tape mark’s known separation distance to calibrate the pixel length. Then the

center of the leader’s cone and front of the robot are used as reference points. Using these

points a Euclidean pixel distance between the two robot’s is calculated and multiplied by

the estimated pixel length to obtain an estimate of the separation distance of the leader and

the follower.

All of the twelve translation tests begin with the swarm member directly behind

the lead robot. The tests begin with the follower closing the distance to the follower at

approximately 50mm/s. Upon reaching the comfort zone the follower halts or backs up to

maintain its position in the comfort zone. Oscillations begin and continue for the remainder
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of the test sequence. All of the tests have the first backup around 37 seconds into the test

sequence. The two outliers, tests 5 and 11 are explained by the follower starting its motion

after the leader has begun translating. The first movement forward after the first stop

begins around 4 seconds after the first backup. Then, a variety of oscillations occur for the

remainder of the test sequence. The differences in the number of oscillations reported is due

to sensor error and visual analysis error similar to what is reported during the stationary

tests in the previous section.

Table 4.8: Translation Test Summary.

Test Dur (s) Back (s) Forward (s) Oscillations Notes

1 196 35 38 12
2 180 36 40 9
3 118 39 43 6
4 94 41 47 4
5 110 57 62 3 Late Follower Start
6 96 43 46 5
7 104 53 57 5
8 97 32 35 9
9 99 35 38 8
10 93 35 39 5 Delay Restart after 4 Oscillations
11 105 68 70 5 Late Follower Start
12 95 40 40 11 Lead Batt dies @ 80s

Figure 4.9 shows the estimated distance in mm plotted against the time of test 4 in

seconds. There are 4 horizontal lines depicting the boundaries of the four neighborhood

regions of the Kadrovach model. dmin is the green line. d2 is the red horizontal line. A blue

horizontal line depicts d3. Finally, start, in purple, denotes the known starting distance

of 8ft or 2438.4mm. The first observation is the difference in estimated starting distance

and known starting distance. This test sequence begins with the data collection camera

appearing to be slightly angled towards the leader in order to maintain the leader in the

frame. This angle distorts the image and results in the large error in starting position.

Furthermore, during the test sequence the leader disappears from the frame intermittently

as the data collection camera attempts to hold the robots in the frame.

Given the test setup and known speeds of the two robots the slope of the line in the

graph should be -50mm/s as this is the difference in speeds, or closure rate of the follower.
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Using Data Cursors in MATLAB at two points (10, 2767) and (30, 1606) yields an estimated

closure rate of -58mm/s. Furthermore, the initial back up of the follower, noted in Table

4.8, at approximately 41 seconds. The forward motion begins again at approximately 47

seconds. Finally, the four peaks of the oscillations are easily seen. Assuming a starting

distance of 2438.4, closure rate of the follower of -50mm/s, and a perfect sensor we would

expect the swarm member to cross the d2 line, entering the comfort zone at 22.368 seconds

and exit the comfort zone at 24.768 seconds. This test produces inconclusive results due to

errors. Section 4.6 attempts to detail sources of error in the system.
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Figure 4.9: Translate Test 4 - Estimated Distance vs Time.

Figure 4.10 shows the estimated distance in mm plotted against the time of test 8 in

seconds. Identical to translation test 4, there are 4 horizontal lines depicting the boundaries

of the four neighborhood regions of the Kadrovach model. dmin is the green line. d2 is the

red horizontal line. A blue horizontal line depicts d3. Finally, start, in purple, denotes the

known starting distance of 8ft or 2438.4mm. Unlike the translate test 4 above, a very good

approximation of the initial distance is seen to begin this test sequence. Recall, translation

test 4 began with camera angled toward the leader. Translation test 8; however, begins

with leader in the middle of frame. The data collection camera also appears to be more

directly overhead throughout the test. Furthermore, the data collection camera keeps the

robots in the middle of the frame for the duration of the tests. The estimated distance is

2498.72 for an error of only 60.32mm. The same technique described above for two points
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(10, 2106) and (28.5, 1279) yields an estimated closure rate of -44.7mm/s. As described

previously the expected crossover of d2 into the comfort zone and out of the comfort zone

are 22.368 seconds and 24.768 seconds, respectively. Figure 4.10 shows the follower entering

the comfort zone at between 27 and 27.5 seconds an error of approximately 5 seconds.

Exiting the comfort zone is estimated to occur between 29.5 and 30 seconds, an error of

approximately 5 seconds. From Table 4.8 we note the initial data analysis indicates the

robot began backing around 32 seconds which is near what the figure shows. Table 4.8

notes forward motion again at 35 seconds which is clearly reflected in Figure 4.10. Finally,

the table notes nine oscillations of which only approximately eight are shown in the figure.

This test shows a good depiction of the expected behavior of the swarm model.
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Figure 4.10: Translate Test 8 - Estimated Distance vs Time.

This subsection describes the first series of dynamic tests of the swarm model. All of

the tests conducted for the translation target tests demonstrated the expected behavior of

the swarm model. The section began with general observations of all 12 tests conducted

including description of similar and outlier behavior. After the general observations a de-

tailed analysis of the results of translation test 4 and translation test 8 is presented. While

the results of test 4 proved inclusive due to errors in the video analysis, test 8 produced

excellent behavior of the swarm model. The next section presents the analysis of the left

turn tests.
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4.5.2 Left Turn Test Results. This section presents the results of the ten left turn

tests. All of the tests conducted for the left turn tests demonstrate the expected behavior

of the swarm model. The section begins with the general observations of the test series.

Then two detailed analyses of left turn test 1 and left turn test 8 conclude this section.

Only these two tests are analyzed due to the manual analysis needed to recover estimated

distance from video data. Due to the data collection camera motion the raw video data is

sampled at 2Hz and then distance is estimated frame by frame using the white tape marks

and known separation distance to calibrate the pixel length. Then the center of the leader’s

cone and front of the robot are used as reference points. Using these points a Euclidean

pixel distance between the two robot’s is calculated and multiplied by the estimated pixel

length to obtain an estimate of the separation distance of the leader and the follower.

All of the ten left turn tests begin with the swarm member directly behind the lead

robot at the top of the frame. After translating at 75mm/s for 30 seconds the leader

performs a left turn and resumes translating at 75mm/s second. Given the difference in

leader translation speed the closure rate for this test sequence is 25mm/s not 50mm/s as

seen in the translation tests. Upon reaching the comfort zone the follower halts or backs

up to maintain its position in the comfort zone. Oscillations begin and continue for the

remainder of the test sequences. Table 4.9 shows the results of the ten tests. For all ten

tests the leader begins turning around 37 seconds. Subsequently, the follower begins its

turn around 46 seconds. The follower then backs between 60-70 seconds into the test. The

variation in the back up times is due to the sensor noise and the manual video analysis.

Test 9 is an outlier as the follower never backs up to maintain its position. This is due to

the follower not overcoming its late start to begin the test sequence.

Figure 4.11 shows the estimated distance in mm plotted against the time of test 1

in seconds. As before, there are 4 horizontal lines depicting the boundaries of the four

neighborhood regions of the Kadrovach model. dmin is the blue line. d2 is the green

horizontal line. A red horizontal line depicts d3. Finally, start, in purple, denotes the

known starting distance of 8ft or 2438.4mm. The data collection camera’s position during

the beginning of this test is approximately overhead as noted in the translation 8 test

sequence; however the robots appear in the top of the frame and are further away from the

camera position at the beginning of the test sequence. As observed in the translation tests
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Table 4.9: Left Turn Test Summary.
Test Dur (s) Lead Turns (s) Follow Turns (s) Follow Backs (s) Notes

1 85 35 47 72 Follow Backs x2
2 74 40 48 59
3 73 39 46 66
4 70 36 47 N/A Never Backs
5 63 45 55 60
6 66 38 48 70
7 70 35 44 66
8 73 39 49 59 Leader Late
9 88 36 43 N/A Follow Late
10 81 31 41 65
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Figure 4.11: Left Turn Test 1 - Estimated Distance vs Time.

there is an error to begin the test sequence as the first data point measures the relative

distance is estimated 2674.37mm for an error of 235.97mm.

Given the test setup and known speeds of the two robots the slope of the line in the

graph should be -25mm/s as this is the difference in speeds, or closure rate of the follower.

MATLAB data cursors are again used at two points (10, 2638) and (50, 1682) yielding

an estimated closure rate of -23.9mm/s. While information on the turning times cannot

be obtained from relative distance plots, the initial back up of the follower noted in Table

4.9 at approximately 72 seconds. Although the second backup noted in the table is not

easily seen. Unlike the translation tests predicting the cross over times of the follower is not
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straight forward because of the lower closure rate of 25mm/s. Assuming a starting distance

of 2438.4, closure rate of the follower of -25mm/s, and a perfect sensor we would expect the

swarm member to only close to 2438.4 - 30s*25mm = 1688.4 mm before the leader begins

his turn. This makes estimation of the entry and exit times of the comfort zone difficult. It

is possible to predict the swarm member to enter the comfort zone at approximately 44.736

seconds and exit the comfort zone at 49.536 seconds assuming a straight line closure rate of

-25mm/s. From Figure 4.11 the entry and exit times of the comfort zone are between 58.5

and 59 seconds and between 63 and 63.5 seconds respectively.
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Figure 4.12: Left Turn Test 8 - Estimated Distance vs Time.

Figure 4.12 shows the estimated distance in mm plotted against the time of test 8 in

seconds. As before, there are 4 horizontal lines depicting the boundaries of the four neigh-

borhood regions of the Kadrovach model. dmin is the yellow line. d2 is the red horizontal

line. A blue horizontal line depicts d3. Finally, start, in green, denotes the known starting

distance of 8ft or 2438.4mm. The data collection camera’s position is angled towards the

follower as in translation test 8. The leader is late to start as noted in Table 4.9 this allows

a more rapid initial closure rate as depicted in the first few seconds of Figure 4.12. Due to

the late start the camera keeps the robots in the center of the frame for most of the test

sequence. It is expected these results should be more accurate as is seen in translation test

8. As observed in the translation tests and similar to left turn test 1 above there is an error
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to begin the test sequence as the relative distance is estimated at 2555mm for an error of

116.6mm.

MATLAB data cursors are again used at two points of the for estimation of the closure

rates; however, due to the late start of the leader two estimates of closure rates are obtained,

an initial and final. Due to the late start, its is expected the initial closure rate should be

near the max velocity of the swarm member of 100mm/s. The two points used in the

estimation are (4, 2653) and (6.5, 2310) yielding an initial estimated closure rate of 137.2

mm/s. To estimate the final closure rate points (10, 2125) and (20, 1836) are used yielding

an estimated final closure rate of 26.9 mm/s. As discussed earlier, approximating comfort

zone entry and exit times is more difficult in turning tests. This test is further complicated

by the late start of the leader and different resulting closure rates. Therefore, the entry and

exit times of the Figure 4.12 are only reported. They are between 47.5 and 48 seconds and

52.5 and 53 seconds, respectively.

This subsection describes the left turn tests of the swarm model. All of the tests con-

ducted in this series demonstrates the expected behavior of the swarm model. The section

begins with general observations of all ten left turn tests conducted including description

the general observations of swarm member behavior. After these observations a detailed

analysis of the results of left turn test 1 and 8 is presented. The next section analyzes the

final series of dynamic tests, the right turn tests.

4.5.3 Right Turn Test Results. This section presents the results of the ten right

turn tests. All of the tests conducted demonstrate the expected behavior of the swarm

model. The section begins with the general observations of the right turn test series. Then

concludes with a detailed analysis of right turn test 1. Only this test is analyzed due to the

manual video analysis needed to recover estimated distance from video data. See Section

4.5.1 or Section 4.5.2 for detailed rationale.

All of the ten right tests begin with the swarm member directly behind the lead robot

like the previous dynamic test sequences; however, this time the robots appear at the bottom

of the video frame, closer to the data collection camera. This moves the camera into a better

position and thus, more accurate distance estimates are expected. For this test sequence,

the leader translates at 75mm/s for 30 seconds then performs a right turn before resuming
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at 75mm/s second. The closure rate for this test sequence is 25mm/s again not 50mm/s as

seen in the translation tests. Upon reaching the comfort zone the follower halts or backs

up to maintain in the comfort zone. Oscillations begin and continue for the remainder of

the test sequences. Table 4.10 shows the results of the ten tests. For all ten tests the leader

begins turning around 36 seconds. Subsequently, the follower begins its turn around 42

seconds. The follower then backs between 50-70 seconds into the test. The variation in the

back up times is due to the sensor noise and the manual video analysis technique.

Table 4.10: Right Turn Test Summary.
Test Dur (s) Lead Turns (s) Follow Turns (s) Follow Backs (s) Notes

1 78 34 43 65
2 91 40 50 51
3 70 34 43 N/A Follow Late
4 71 35 40 67
5 70 34 40 67
6 69 33 41 N/A
7 68 34 42 N/A
8 76 33 44 64
9 71 38 45 56
10 69 35 45 60
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Figure 4.13: Right Turn Test 1 - Estimated Distance vs Time.

Figure 4.13 shows the estimated distance in mm plotted against the time of the right

turn test 1 in seconds. As before, there are 4 horizontal lines depicting the boundaries of

the four neighborhood regions of the Kadrovach model. dmin is the purple line. d2 is the
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green horizontal line. A red horizontal line depicts d3. Finally, start, in blue, denotes the

known starting distance of 8ft or 2438.4mm. The improved data collection camera position

produces a better initial estimate of relative distance to begin right turn test 1. The initial

distance in right turn test 1 is 2567mm which is only 128.6mm in error. For most of the

tests the robots appear directly underneath the data collection camera’s position. Using

MATLAB data cursors to select points, points (5.5, 2424) and (30, 1831) are used to obtain

a closure rate estimate of 24.2mm/s. As explained in Section 4.5.2, estimating ideal entry

and exit times for the comfort zone is difficult but they are noted to be between 50.5 and

51 seconds and between 54.5 and 55 seconds, respectively. This is clearly the most accurate

test of the three turning tests analyzed due to the superior camera position; however, the

oscillations noted in Figure 4.13 are below the comfort zone.

This subsection described the results of the right turn test series. All of the tests

conducted in this series demonstrated the expected behavior of the model. The section

began with general observations of all ten right turn tests. These observations are followed

by a detailed analysis of the results of right turn test 1. As has been noted throughout this

chapter, there are many sources of error effecting the results. The next section identifies

and analyzes these sources of error.

4.6 Error Analysis

This section discusses errors in both the system as implemented and the errors which

could be introduced in the manual data extraction method. There are four possible sources

of error affecting the results presented in this chapter. They are:

1. Stereo Vision Sensor Error

2. Error offset of the cameras

3. Error picking the center of cone and front of the robot.

4. Error in each pixel distance due to observer motion and camera angle

The next four paragraphs discusses each of these sources of error in detail and analyzes

their effects on the results.
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The stereo vision sensor introduces the first error. As we saw from Figure 4.1.1 the

vision sensor is not a perfect visual sensor. Moreover from Figure 4.2 showed us the fast

color segmentation algorithm introduces further error in the system. The increases with

as the distance increases. From equation 2.22 we recall the resolution of the disparity

measurements from a stereo camera scales quadratically with range. To combat this effect,

the neighborhoods of the swarm model are kept under 3000mm. Figure 4.2 shows an average

distance estimate of 4000mm at an actual distance of 3000mm. An error of over 1 meter.

Furthermore, in the region around dmin and d2 errors in are around approximately 300mm.

This means the swarm member estimates it is about 300mm further away than the estimates

from the data collection camera would show. This accounts for some of the oscillations

occurring below dmin in the trials.

The second source of error in the results comes from the inability to observe the

actual cameras and thus the position of the imagers in the data collection camera’s video

stream. Recall the distance in the results is estimated from the center of the leader’s cone

to the front of the follower robot. The pan-tilt camera head and thus the imagers of the

stereo cameras are offset from the front of robot by 168mm. This means the data collection

camera’s reported distance is in error by 168mm. This is in the opposite direction of the

error in the previous section. As the robot is measured to be closer than the robot perceives

it is.

The third source of error is introduced by the manual selection of the center of the

leader’s cone and the front of the follower robot. The estimated error in the center of of the

leader’s cone is estimated to be one or two pixels. Given the average pixel distance from

the estimations is between 15.6mm/pixel and 20.5 mm/pixel. Giving an estimated error

of: +/− 2pixels ∗ [15.6mm/pixel − 20.5mm/pixel] = +/− [31.2mm − 41mm]. The second

manual estimation is the front of the follower robot. Shadows and camera motion make this

estimate harder. The error is estimated to be between two or four pixels. Again given the

average pixel distance from the tests yields +/−4pixels∗[15.6mm/pixel−20.5mm/pixel] =

+/− [62.4mm− 82mm]. In the worst case the errors are additive. This yields an estimated

error in the +/ − (41 + 82) = +/ − 123mm.
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The final source of error in our data extraction is the data collection camera’s motion

and angle. The estimation process assumes the camera position is nearly directly overhead

while this is true in some of the right turn and translational tests it is not true in general.

Estimating this error is further complicated by the camera’s motion throughout all of the

tests. Furthermore, the error is not consistent as the camera angle varies with each test.

Therefore this error is ignored for the analysis.

This subsection discusses the error sources in the system as implemented and the

errors introduced by the manual data extraction method.

4.7 Summary

This chapter describes the design of experiments and metrics for the characterization

and evaluation of the swarm control algorithm as implemented on the Pioneer P2-AT8

Robots described in Chapter 3. Three separate experiment sets are designed to evaluate

a different portion of the system. First, two experiments are conducted to evaluate the

performance of the vision sensor implementation. Next, a series of stationary target tests

are conducted to evaluate the performance of the swarm controller versus a stationary

target. Finally, a set tests are conducted to evaluate the performance of the system versus

a dynamic target. The section concludes with an analysis of the errors in the system. The

final chapter presents conclusions and future work.
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V. Conclusions and Future Work

This research presented an adaptation of Kadrovach’s Swarm Model [30] to a Pioneer

P2-AT8 robot and demonstrated a real-time visual sensor model. This chapter gives

final conclusions drawn from the research. Also, future research work is discussed.

5.1 Conclusions

This research sought to implement the swarm algorithm presented by Kadrovach in [30]

on a Pioneer P2-AT8 robot. Three objectives are outlined in Chapter 1 and are summarized

here:

1. Design and Implement Kadrovach’s Swarm Model.

2. Design and Implement Kadrovach’s Visual Sensor.

3. Evaluate the performance of the implemented swarm.

The robots are not allowed to communicate explicitly except through the environ-

ment. Limiting the implementation to passive sensing to simulate hostile environments.

All of the objectives are successfully completed. The swarm model is implemented on the

Pioneer AT robots using the Videre cameras and fast color segmentation algorithm [12]

to produce position estimates to stationary and dynamic targets. This swarm algorithm

uses no communication to produce the desired behavior. Complete analysis of the swarm

algorithm is limited due to the complications of errors introduced as described in section

4.6. The limitations of the complex manual data extraction technique limits the results

presented. The analysis showed the swarm algorithm works as designed for simple tasks

and small swarms.

5.2 Future Work

This section gives ideas for further research to improve swarm applications at AFIT.

The following topics warrant further investigation.

5.2.1 Oscillations. In all the results presented, the follower robot oscillated around

the comfort zone. Sometimes the amplitude of the oscillations decreased with time; however,
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a more robust behavior is desired. The errors in the visual sensor no doubt contributed to

this oscillatory behavior. Given the errors of the visual sensor it is easy to see the oscillations

are in large part due to the small comfort zone selected. Recall the comfort zone, is selected

to be only 120mm wide in this design while the error of the sensor in this region is 300mm.

A tuning of the behavior should be conducted to eliminate these oscillations beginning with

the exploration of expanding the comfort zone.

5.2.2 Robust Ground Truth Data Extraction. This work relied on a manual method

for extraction of ground truth data. The frame-by-frame video analysis is required due to

camera movement and jitter. A more robust testing environment at AFIT is necessary

for more in depth analysis of performance. Without a detailed automated data extraction

evaluation of complex swarming algorithms is very cumbersome and difficult.

5.2.3 Robust Robot Identification. The method of determining swarm members

in the passive environment was limited to color cones for identification. As is seen in ref

Section 4.6 this introduced error into the control system because of the variability in 1)

detecting the orange color due to lighting conditions and 2) lack of texture in the orange

cones. Thus, a more robust robot identification algorithm is a naturally extension of this

work. Many methods from object detection literature are possible candidates including [51].

5.2.4 Formation Tests. Another avenue of extension for this work is the investi-

gation of different swarming tests. Increasing the number of members in the swarm from

two warrants investigation. For this to occur, the sensor module will need to be modified

to provide a wider field of view. Recall from Section 3.1.2 the field of view of the Videre

camera’s is only 65.2 degrees for each imager. The effective field of view is smaller still

given that any object must be seen in both imagers in order for an estimate of distance

to be accurate. Since we limit the robot’s sensors to passive only a method needs to be

determined to expand this field of view to ensure swarm members do not hit each other

during trials.

Once this occurs the performance of a swarm of four to five robots could be conducted

to determine the overall performance of Kadrovach’s algorithm. One interesting observation

in [30] is the concept of stable structures. Namely, Kadrovach found that swarm members
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tended to settle in to simple lattice structures. The first such structure would be an equi-

lateral triangle which could be explored using just three robots. Similiarly, in a four robot

system the emergence of a diamond formation should be seen.

A final avenue of extension is the exploration of the connection between the fields of

formation control and swarm algorithms. Can we manipulate the parameters of a swarm

to exhibit different types of desired formations? What adaptations are necessary to create

a swarm which travels in specific formations. This could yield algorithms for unmanned

military vehicles in which the operator could select formation control or swarm behaviors

during different portions of the mission.

5.3 Summary

This research presented an adaptation of Kadrovach’s Swarm Model [30] to a Pioneer

P2-AT8 robot. A real-time visual sensor model was presented using Videre stereo vision

cameras , Balch’s fast color segmentation [12], and the SRI smallv C++ API package to

provide distance estimates to swarm members. This system is then analyzed for performance

of the visual sensor, static targets, and dynamic targets. The adaptation of swarm simulation

models to real-world swarms is a key component to the next revolution in modern warfare,

robots.
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