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Abstract Path Planning problems with Unmanned Aerial Vehicles (UAVs)
are among the most studied knowledge areas in the related literature. How-
ever, few of them have been applied to groups of UAVs. The use of swarms
allows to speed up the flight time and, thus, reducing the operational costs.
When combined with Artificial Intelligence (AI) algorithms, a single system or
operator can control all aircraft while optimal paths for each one can be com-
puted. In order to introduce the current situation of these AI-based systems,
a review of the most novel and relevant articles was carried out. This review
was performed in two steps: first, a summary of the found articles; second, a
quantitative analysis of the publications found based on different factors, such
as the temporal evolution or the number of articles found based on different
criteria. Therefore, this review provides not only a summary of the most re-
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cent work but it gives an overview of the trend in the use of AI algorithms
in UAV swarms for Path Planning problems. The AI techniques of the arti-
cles found can be separated into four main groups based on their technique:
Reinforcement Learning techniques, Evolutive Computing techniques, Swarm
Intelligence techniques, and, Graph Neural Networks. The final results show
an increase in publications in recent years and that there is a change in the
predominance of the most widely used techniques.

Keywords Unmanned Aerial Vehicle · UAV · Swarm Intelligence · Path
Planning

1 Introduction

Swarms of Unmanned Aerial Vehicles or UAVs are a revolution in both indus-
trial and recreational fields. They make it possible to perform industrial tasks
faster and more economical while maintaining safety. Mostly because to their
compact size, low cost, and overall ease of management and operation [43].
In this way, UAVs are very useful tools when it comes to carrying out tasks
in places that are difficult to access. The battery life can be considered in as
a major disadvantage due to their limited operational time. Thus, tasks that
require flying over large areas are a problem.

In addition to the individual advantages and challenges, operating in het-
erogeneous groups or swarms provides other advantages. Among them, the
most important is the time reduction of some operations by performing the
same task simultaneously and the capacity to perform tasks that require flying
over large areas [20].

Several sectors could benefit from these advantages. One example is the
agricultural sector, where these swarms are used in tasks such as field or crop
monitoring [8]. Other papers propose applications in military or rescue cases
[62]. Within the field of emergencies and rescues, they can also be used in
monitoring natural disasters such as floods [12].

Nevertheless, not all applications are purely industrial, other examples are
recreational. For example, there are numerous works that coordinate multiple
UAVs for image capture and composition, like the work of Moeller et al. [72].
Another recreational activity in which UAV swarms are being used is their use
as an alternative to fireworks [27]. This last activity is being highly considered
in other countries because of the lack of legislation on autonomous flights over
civil populations. Therefore, many countries do not have legislation for this
case.

All operations, whether industrial or non-industrial, depend on the flight
path. It is important to know the most optimal path possible. In this way, the
flight runs quickly and efficiently. This path calculation is known as the Path
Planning problem [35]. These problems seek, in addition to path calculation,
the autonomous control of the UAVs. Therefore, less operator intervention
is required, and they maintain, during the whole operation, the efficiency of
the flight regardless of obstacles or other problems that may arise. In other
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words, reducing personal and aerial distance results in significant cost savings.
The most recent works are focused on autonomous swarm coordination. How
this coordination is performed could reduce the operations to find the optimal
paths.

For better autonomous control of the swarms while maintaining path op-
timization, the authors are mainly making use of Artificial Intelligence (AI)
techniques in their works [86]. Thus, they obtain systems capable of efficiently
abstracting knowledge and, from this knowledge, calculating paths and con-
trolling UAV trajectories simultaneously and automatically. The importance
of these techniques and their application to Path Planning problems in UAV
swarms is discussed in more detail in the following sections.

The main aim of this article is to review the articles on autonomous UAV
swarms based on AI. The reason for the choice of AI is that these algorithms
make it possible to reduce the number of navigation sensors required by each
aircraft. AI can infer information from patterns in the data very efficiently, thus
reducing the amount of information to be captured [16]. The fewer sensors,
the lower the battery consumption. This allows the surplus energy to be used
for longer flight times or to add devices that allow the task to be carried out,
such as different multi-spectral cameras. Despite of the existence of works that
address this Path Planning problem with a single UAV, this article focuses on
the swarms because they add a multitude of challenges in which UAVs can
perform tasks that individually they could not or would do with difficulty. In
contrast to Artificial Intelligence works applied to a single UAV, the use of
Artificial Intelligence applied to UAV swarms has emerged recently. In spite of
this, the number of works with swarms is multiplying every year due to their
increasingly successful applications. It is therefore a good time to analyze the
current state of this field and identify the main trends that will develop in the
coming years on the basis of the work already developed.

For this article, 39 articles on AI techniques applied to UAV swarms in Path
Planning or Mission Planning problems have been reviewed. This review was
carried out in two steps: first, a summary of the found articles was made, and
they were grouped by techniques; second, a quantitative analysis was made
of the evolution over time of the publications found based on the techniques
used, the flight environment and the field of use. In the first step, we found
the different groups of techniques used and which models or methods are the
most common for each group. Finally, the last step is the quantitative study
of the publications found. The end result of this stage helps determine the
current state of trends in this knowledge area, as well as the application of the
techniques examined and the publishers of the articles discovered.

For the selection of the papers, a search was carried out in the main online
search engines. For this purpose, an initial set of search terms was defined. In
addition, the references in the papers found were reviewed in order to find even
more articles. Once the papers were selected, the most relevant and novel ones
were selected. A more detailed description can be found in Subsection 3.1.

For a better understanding of the review, a summary of the papers found
has been made. This summary is complemented by a quantitative analysis of
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the papers found according to the method used, the type of flight environment,
and the field of use. An analysis of the results of each paper could not be
performed due to the lack of standardization.

The main contributions of this paper are as follows:

– A detailed explanation of the many approaches discovered using AI tech-
niques to tackle the Path Planning problem for UAV swarms.

– The articles were then classified broadly based on the AI approaches used:
Reinforcement Learning, Evolutionary Computing, Swarm Intelligence and
Graph Neural Networks.

– Identification and discussion of the upward trends based on the number of
publications over the years.

Apart from this introductory section, the outline of this paper is structured
as follows: in Section 2, the aspects inherent to the development of Artificial
Intelligence algorithms for the control of UAV swarms are explained; in Section
3, there is a summary and classification of the found articles; in Section 4,
the results obtained from the found articles are discussed; in Section 5, the
conclusions obtained after reviewing the found articles are listed; finally, in
Section 6, the possible works and research from which the problem to be
addressed can be derived are listed.

2 Fundaments

To have a better understanding of all the technical aspects faced by each AI
project in autonomous UAV swarms, and to make the reading more com-
fortable, the following technical aspects are explained: first, what is a UAV;
second, what are UAV Swarms; third, the Path Planning problem; fourth, arti-
ficial flight environments; and, finally, Path Planning with Swarm Intelligence
using Artificial Intelligence.

2.1 Unmanned Aerial Vehicle

An Unmanned Aerial Vehicle (UAV), commonly known as a drone, is a semi-
autonomous aircraft that can be controlled and operated remotely, without
an aircrew on-board, by using electronic intelligence and control subsystem
[9]. In recent years, UAVs’ popularity has increased, and they are widely used
in different professional, and recreational applications. UAVs represent one
of the most challenging and high-potential tech available nowadays. Initially
limited to military uses, they are now expanding into different commercial
and industrial sectors [7]. This is due, in particular, to the improvements in
technology and power capacities of these vehicles [10,42].

Their structure, configuration and equipment vary depending on the task
to be performed [42]. Having different configurations and equipment implies an
improvement in terms of electricity consumption, operation time, and safety
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risks in the operation. This results in a reduction in costs due to the improve-
ment in the efficiency of the operation. Apart from their original military use
[18], other new utilities of the UAVs such as photography, air rescue, or agri-
culture stand out. However, with the growing popularity and use of drones for
consumer applications, the number of incidents involving drones is increasing
dramatically [67]. This increase in air accidents is due to the increase in this
type of air traffic and the lack of knowledge of the use by some users. Mainly
because many UAVs can be acquired without licenses or aptitude tests.

2.2 UAV Swarms

Most risky or laborious tasks often require several UAVs. This is due, in partic-
ular, to a large amount of time required for operation and the limited autonomy
of these small vehicles. When at work, available vehicles assume the function
of those that fail. Thus, the task is developed in parallel and the necessary
time is shortened compared to when each drone is used one by one.

This strategy is based on the group behavior of natural biological models
such as birds or ants [83]. Individuals of these species are able to coordinate
and interact with each other when carrying out a task for a common goal, such
as flying to warm places or transporting food to their colonies, as well as with
their environment. This leads to different groups of swarms being considered
to be flocks or herds, depending on the organism.

In Computer Science, Swarm Intelligence (SI) or Swarm Behavior is known
as the complex collective, self-organized, coordinated, flexible, and robust be-
havior of a group of individuals that follows common simple rules [17]. Back
in the 1970s, some works about the application of swarm intelligence to small
and non-air vehicles can be found, while not until 1990s the UAVs appeared
together with the first studies on these devices [70]. It may be due to improve-
ments in the performance of these vehicles and their communications, which
speeds up experimentation. The main objective of this experimentation is the
ability to achieve algorithms that facilitate navigation and self-organization of
a group of UAVs in order to achieve an objective without human interaction.

Robotic swarms are proving their ability to perform certain tasks with
respect to cases with a single robot [101]. Especially with UAVs, where each
vehicle is part of the assigned task in conjunction with other vehicles perfectly
coordinated automatically [19]. In this way, the group is more fault-tolerant,
and a shorter execution time is required [87]. This means a significant reduction
in costs and operation time.

There were methods previously used to solve path planning problems, es-
pecially in individual systems. Algorithms, such as dynamic programming [13]
or geometric algorithms like A* search [58], have usually formulated the prob-
lem as a heuristic-based numerical cost minimization problem, regardless of
computational cost or path correction. During the dynamic programming pro-
cess, a local cost is assigned to each subdivision of the grid that forms the
operation map [11]. It is assumed that the cost of flying over a subzone is
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independent of the path taken by the UAV to reach the target. Therefore, the
cost considered is different from the actual cost [63,64]. On the other hand,
A* algorithm [104], which is a variant of the shortest path algorithm, has dif-
ficulties in solving problems with multiple constraints. This type of algorithm
is largely based on the cost map, which must be calculated and stored at all
times, and the production of the cost map is a time-consuming and error-prone
task. All these methods suffer from relatively high execution time. AI meth-
ods were proposed as candidates to overcome these problems. These methods
use inaccurate and incomplete knowledge and can produce control actions in
an adaptive way. This is similar to the inference of knowledge performed by
biological systems like humans. In the last decade, an increasing number of
studies in the literature have focused on AI methods to solve path planning
problems, with one or multiple vehicles.

2.3 Path Planning Problem

Path planning is the process of using accumulated sensor data and initial
information to allow an autonomous robot to find the best path to reach a
goal position. It is a very common problem within the problems with any type
of mobile robot, not only UAVs. They are also known as Mission Planning
problems. This term is very common within the military. Thus, the term Path
Planning is mostly reserved for the civilian field.

It is composed of two main steps: first, compiling all the available informa-
tion into an effective and appropriate configuration space; and second, using
a search algorithm to find the best path in that space [35].

With respect to the first step, there are different types of representation of
the flight environment information:

– Cell-maps: this is the most used technique. The map is divided into a set of
representative areas known as cells. In those cells, several authors describe
the characteristics of the world for each of the cells (elevation, permissibly
to fly, etc.).

– Roadmaps: this type of map attempts to describe the world in terms of
how to get from a place of origin to a place of destination, taking into
account the cost of moving between them. They are much more difficult
and time-consuming to create than the previous maps. As an advantage,
they are faster to process once created.

– Potential Fields: each UAV is represented as an object under the influence
of a field of potentials created by goals and obstacles in the world. These
potentials influence the UAV as if it were a physical quantity. This method
has most often been used for local obstacle avoidance in mobile robots, but
can also contribute to efficient path planning.

At present, it involves a high cost to fly over a real area of the world. In
addition, there is a lack of legislation for experimental flights in many countries.
Therefore, most authors use artificial flight environments.
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The second step is the most critical, as it is responsible for the path cal-
culation and control of the UAVs. Due to the complexity of the problem and
the need to automate the process, the most commonly used methods are those
based on Artificial Intelligence techniques.

These techniques must be able to overcome as much as possible all the
challenges present in this type of problem. These include:

– Path length: the shorter the path, the more optimal it is. If a path is
shorter than another and connects the same points, it means that it has
fewer loops and fewer curves, making it more energy-efficient.

– Obstacle avoidance: the system must be capable of permiting UAVs to
avoid any obstacle that appears during flights. Whether dynamic or fixed.

– Restricted areas: the system must be able to control that UAVs do not fly
over restricted areas. Thus, the user is not exposed to legal risk situations

– Fault tolerance: especially in swarms, the system must be able to reorganize
the paths of the UAVs in case one fails. Thus, the other UAVs can complete
the task.

– Completeness: it is necessary that the system can satisfy a completeness
criterion according to the assigned task. If the objective is to map as much
terrain as possible, it is of interest that the system searches for the solution
that covers the most area of that terrain taking into account the constraints
of the UAVs. On the other hand, in tasks such as logistics, it is of interest
that the UAVs cover the distance from the warehouse to the recipient in
its entirety.

– UAV configuration: the system must be able to adapt the path to the limits
of each UAV. That is, depending on factors such as the number of engines,
their layout, or their autonomy, the path must be adapted so that the UAV
can fly it.

– Other external factors: another challenge is to be able to take into account
external factors that influence the trajectory of UAVs. Factors such as
wind, birds, rain, or solar storms are obstacles in the paths.

2.4 Artificial Flight Environments

The development of Swarm Intelligence (SI) with UAV for the Path Planning
problem studies involves experimentation with vehicles and robots in real con-
ditions. This is not always possible, due to economic requirements, the need
for controlled spaces, or the legislation in force in each country.

Fortunately, more and better artificial flight environments and simulation
libraries are being developed. They mimic the limitations and underlying phys-
ical forces of UAVs in different environments. In addition, these environments
mimic different conditions that a real UAV may face in a real environment.

Among the most used and modern simulators there is Microsoft’s AirSim
[91]. This simulator is aimed at developing algorithms for autonomous vehicles.
To do this, AirSim allows the capture of data from many scenarios in order to
train different agents. It can handle multiple drones in real 3D environments.
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Users can create environments with countless variables that can be modified,
such as the intensity of the wind or its direction. AirSim also has the possibility
of handling land vehicles for the development of algorithms for autonomous
land vehicles.

One of the most used UAV control libraries is DroneKit [28]. It is an Open
Source library made in Python [6], which allows its combination with AI or
UAV camera management libraries. It is known for its simple handling and
the ability to receive and send large amounts of information to the vehicle.
There are other options for commercial UAV like PyParrot [68], made for
controlling Parrot UAV. It was developed to teach children STEM concepts,
such as programming, in Parrot mini-drones.

2.5 Path Planning with Swarm Intelligence using Artificial Intelligence

Path planning depends on various factors such as telecommunications [20]
or Artificial Intelligence (AI) algorithms [122]. This study is oriented to AI
techniques for path planning, so it relies on the second option.

The concept of SI was initially introduced by Gerardo Beni et al. applied
to cellular robotic systems [15]. Beni’s swarm agents act like AI agents, where
they autonomously learn and take action based on an environment [86]. In this
way, the agent is able to abstract high-level knowledge without being explicitly
programmed. The knowledge is often difficult to represent in its entirety due
to its complexity or its wide range of cases. Because of this similarity between
SI robots and AI agents, most experts considered SI as a sub-technique of AI.

The main idea is that desired swarm behaviors are not explicitly coded
with hierarchical command or control structure but are instead an emergent
consequence of the interaction of individual agents with each other and their
environment [14]. This kind of algorithm or distributed problem-solving device
is inspired by the collective behavior of biological social groups like insect
colonies and other animal societies [93]. The agents at the group use simple
local rules to govern their actions and via the interactions of the entire group
the swarm achieves its objectives [65].

All the agents in a swarm abstract knowledge from information obtained.
The great advantage of SI is that agents can be heterogeneous. Therefore, the
knowledge abstracted by each agent can be obtained differently. Unlike in a
homogeneous swarm, all agents can be trained in different ways to abstract
information. For this reason, SI makes use of other techniques of AI to reach
its objective.

There are different approaches, all of them based on different AI techniques.
In the State of the Art, path planning studies with one or multiple vehicles that
use Reinforcement Learning (RL) and Evolutionary Computing (EC) are the
most common. For example, Hüttenrauch et al. use Deep RL for controlling
groups of agents [49]. On the other hand, Zhao et al. combine EC with other
techniques to develop a new SI method [119].
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Rules followed by the agents that make up the swarms, and the strategy
taken before them, are those that characterize each of the existing types of SI
algorithms. There are two main approaches among all the existing ones: the
first one makes use of RL-based algorithms; and, the second one of EC-based.
We introduce the necessary concepts for ease of understanding of the most
common kinds of algorithms.

2.5.1 Reinforcement Learning

The first named approach, Reinforcement Learning (RL), is a set of algorithms
where the agent must learn behaviors by trial-and-error interactions with a
dynamic environment [50,99,111]. The goal is to optimize the behavior of the
agent with respect to a reward signal that is provided by the environment. The
actions of the agent can also affect the environment, complicating the search
for the optimal behavior [105].

All RL algorithms follow a common structure. The only difference is the
learning strategies. There are several types of these strategies. They all follow
different policies that allow them to deal with different problems. The most
common types of RL strategies used in SI are explained below.

Q-Learning [110] is one of the most used strategies amongst RL-based algo-
rithms at SI. It follows a model-free strategy [36], so it updates its knowledge
following a policy purely by trial-and-error. It is based on off-policy learning,
it permits the agents to use their experience for learning the values of all the
policies in parallel, even when they can follow only one policy at a time [100].
Q-Learning’s classical learning optimal function for computing Q-table values
(Q(s, a)) is based on Bellman’s Equation (eq. 1).

Q(s, a)← r + γ × arg max
a′

(Q(s
′
, a

′
)) (1)

There are several examples where Q-Learning is used in swarm robotics.
For instance, Hung et al. developed an algorithm for controlling flocks of small
fixed-wing UAV and tested it in a non-stationary stochastic environment [48].
On the other hand, Rui et al. use Q-Learning to tune the corresponding pa-
rameters of a fuzzy multi-UAV formation controller [84].

Using exclusively Bellman’s Equation may present abstraction issues in
some scenarios. In certain cases, the Q-table values are calculated based on
predictions from Deep Learning models [57]. These models learn from the
actions taken, their rewards, and the surrounding environment. This results
in a model that is able to abstract more concepts from available data and
calculate all future Q values more accurately. This type of algorithm is known
as Deep Q-Learning and is part of the well-known Deep RL [71].

Deep Learning [57] is a branch of Machine Learning [69] known for being
able to make high-level abstractions automatically. In other words, there is no
need for experts to extract characteristics from the data in order for the model
to learn them.
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The most used and common models used in Deep Learning are known as
Artificial Neural Networks (ANN). These networks are large structures formed
by connected layers of nodes. Each node is known as an artificial neuron [80].
In Fig. 1 there is an example of the most neuron in an ANN. Neurons perform
as summing and nonlinear mapping junctions. The main purpose of ANN is
to be able to reproduce some flexibility and power of the human brain by
the artificial means [81,126]. Neural networks applied to Deep Q-Learning are
known as Deep Q-Networks.

Fig. 1 General schema of an artificial neuron. First, the inputs are multiplied each by its
corresponding weight and added with the bias. Then, this result is used as input to the
activation function. The output of the neuron is the result of this function.

Deep Q-Learning is the most widely used variant of Q-Learning in UAV
swarms. It is also the technique used in the most recent works such as Yijing
et al. [116] and Baldazo et al. [12].

Similarly to Q learning, State-Action-Reward-State-Action (SARSA) [85]
is a close approach. The key difference is that SARSA is an on-policy learning
algorithm [100]. Therefore, that SARSA learns Q-table values based on the
action performed by the current policy instead of the greedy policy. This im-
plies that SARSA has constraints over the next action. This is the reason why
Q-Learning is utilized less frequently.

Like Q-Learning, there is the Deep SARSA approach [118]. This version
with Deep Learning models also shows more flexibility and power of abstrac-
tion than its classic version.

The use of SARSA in UAV and robotics is recent. Most of the publications
found show an increasing trend in its use as the years go by. There are SI
studies with multiple UAVs like Luo et al. [66] and Speck et al. [95].
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2.5.2 Evolutionary Computation

The second approach, Evolutionary Computation (EC), is about algorithms
based on Charles Darwin’s theory of natural evolution. These algorithms try
to achieve the best heuristic based on populations and their inheritance from
one generation to the next one [25,94].

The whole process of natural selection begins with the selection of the
fittest elements or individuals from an initial population. Combinations of
some of them produce offspring [34]. These descendants inherit some char-
acteristics from their parents and will be added to the next generation in
addiction with some random probability of mutations and of inheriting some
characteristics [96]. If parents have the best fitness, their offspring will be bet-
ter than their parents and will have a better chance of surviving. The process
keeps on repeating over generations until convergence is reached or there are
no generations remaining. Finally, a generation with the fittest individuals will
be found. This generation will be able to solve the given problem in the most
optimal possible way [55,38].

There are two main domains among all domains in EC: first, Genetic Al-
gorithms (GA) [39]; and, second, Genetic Programming (GP) [53]. The main
difference is that Genetic Algorithms use real values-based exploration and
GP is an extension of GA tree-based exploration [46,54].

There is a great variety of work with EC in UAV swarms. This is because it
was one of the first approaches tested when applying SI to UAV. It is possible
to find work such as Duano et al. [30], Lamon et al. [56] and Gaudiano et
al.[33].

2.5.3 Other Methods

The methods explained above are the most widely used. This does not imply
that other methods are not being exploited with satisfactory results. These
include some approaches that are explained below.

Another of the most commonly used methods is pure Swarm Intelligence
(SI) based methods. As stated above, these AI methods try to mimic the
complex collective, self-organized, coordinated, flexible, and robust behavior
of a group of homogeneous or heterogeneous individuals [17].

There are many variations of these methods. The most common are dis-
tributed optimization based ones. These techniques are widely used in mini-
mization problems because of their potential. Therefore, they are used to min-
imize path lengths [114]. Among the most commonly used in Path Planning
are Ant Colony Optimization [26] and Particle Swarm Optimization [51].

To coordinate these swarms it is necessary to employ communication mech-
anisms between group members. More biologically puristic approaches em-
ployed mechanisms that mimicked communication by means of odor or pheromones.

The most recent publications are based mostly on pheromones. These tech-
niques are known as virtual pheromones based methods [76]. In this way, the
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agents employ mechanisms that imitate the pheromones used by insects such
as ants.

The use of pheromones to coordinate and interact with the environment is
known as stigmergy [102]. The concept was first introduced by Grassé when
he observed interactions in two species of termites: Bellicositermes Natalensis
and Cubitermes [40].

In this variant of SI, the work of Parunak et al. [75] is very relevant, al-
though new approaches are emerging.

Classic Deep Learning [57] effectively captures hidden patterns of Euclidean
data, like images or text recognition, but there is an increasing number of ap-
plications where data are represented in the form of graphs [112], like molecules
or proteomics. Graph Neural Networks extend existing neural network meth-
ods for processing the data represented in graph domain[90].

Unlike the data used in classical Deep Learning models, graphs do not
have a defined structure. A node on a graph may have no connections or many
connections, which may not be directed. Graphs in a data set can have a
varying number of nodes and edges arranged in different ways. Based on their
different distributions, graphs can be acyclic, cyclic, set, or unset. In general,
it makes the data handling process more computationally expensive.

In this discipline, it is possible to find some of the most recent work. Among
them are those of Li et al. [59] and Tolstaya et al. [103].

3 Artificial Intelligence applied to Path Planning in UAV swarms

Being a dynamic and relatively new knowledge field, it is difficult to identify
which works are related to and to identify the future challenges that this
newborn area should tackle in the upcoming years. In this section, an analysis
is proposed based on the 39 works found from 2016 to 2021. The last 5 years
have been chosen because they are a close time period that can sufficiently
indicate the current trend of the field. In this analysis, articles are grouped by
the type of AI technique used for making reading easier.

3.1 Methodology

The well-known online tools Google Scholar [2], Scopus [4], Web of Science [5],
IEEE Xplore [3] and arXiv [1] were used to obtain the articles related to the
topic. In them, searches were performed for the terms listed in Table 1.

The references of the works found are also reviewed. Thus, more relevant
ones can be found that have not appeared in the search tools. Then, the whole
set of articles found is selected by the year. In this way, the most recent and
relevant ones are found.
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Category Terms
Vehicles Unmanned Aerial Vehicle, UAV, aircraft,

drone, Remotely Piloted Aircraft, RPA
Group of vehicles multiple, multi, swarm, group, flock,

formation, collaborative
Technique Artificial Intelligence, Swarm Intelligence,

Reinforcement Learning, Evolutionary
Computation, Q-Learning, SARSA,
Artificial Neural Network, ANN, Genetic
Programming, Genetic Algorithm,
Particle Swarm Optimization, PSO, Ant
Colony Optimization, ACO

Problem Path Planning, Mission Planing, Mission
Control, autonomous flight, autonomous
control, navigation

Field of application Civilian, agriculture, emergency, forestry,
military, surveillance, photography,
filming

Table 1 Table with search terms grouped by category.

3.2 Content Review

This sections presents a summary of the main points of the articles found and
selected. For ease of reading, they have been grouped by the technique used.

3.2.1 Reinforcement Learning

Starting with the discipline of Q-Learning, Hung et al. manage fixed-wing
UAV flock in which there are a leader and a set of followers [48]. Thus, it
gets groups of autonomous UAV that move in a synchronized way, similar to
a flock of birds. Using a leading aircraft improves the computation time since
it is important to improve the leading path and the others would be derived
from it. Nevertheless, in case of failure of the leading UAV, it would be more
expensive to recalculate all the paths. If there was no dependence between
paths, only the UAVs closest to the fallen aircraft would be affected. The use
of fixed-wing UAVs greatly limits their application due to their more complex
control and lower stationary flight capability. Khalil et al. succeed in making
a multi-agent system by improving the classical Q-Learning, which they call
economic Q-Learning [52]. In their system, they copied the decision techniques
used in Economic Theory. In the described technique, it is considered that what
is most chosen is what is most useful and frequent in the future.

There are variations of the algorithm, like the work of Hafez et al. where
Fuzzy Systems with Q-Learning are combined for control of UAV swarms for
military use [41]. Their method shows robustness to failure. In this way, it
can be recovered in the event of a UAV falling. In this article, the UAVs
have to maintain a formation, which conditions the computation of the paths.
Moreover, they were tested in closed indoor environments, so they do not con-
template changes in the wind or dynamic flying obstacles such as birds. Also,
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combined with Fuzzy Logic, Su et al. make use of fuzzy matrices as a reward
function to recalculate paths of groups of drones [98]. In this case, the use of
clustering techniques for the initial distribution of the land makes it dependent
on the initialization parameters. Therefore, a good study of the parameters
should be made so that they can be used in a variety of real environments.
Continuing with fuzzy computing, in 2020, Yang et al. also propose to combine
it with Q-Learning. A very important point in their project is that it is one of
the few that take into consideration the battery level [113]. Also in 2020, Chen
et al. propose a multi-agent Q-Learning system based on constrained actions
[23]. Thus, they facilitate autonomous in-flight decision-making by taking into
account the uncertainty of the location of each landmark. Their system was
tested with a different number of UAVs. They showed that as the number of
UAVs increases, the task failure rate increases.

The best known variation of Q-Learning is DQN, because of its power
of generalization and its proposed professional applications. One of the most
important approaches is the one proposed by Roudneshin et al. in which they
perform ANN to control swarms composed of UAVs and heterogeneous robots
[82]. This work of military nature does not present a work purely in UAVs but
adds terrestrial robots. However, this is a problem of swarm path planning with
greater difficulty than using only UAVs. This increase in the difficulty of the
problem is due to the different limitations presented by air and land vehicles.
Thus, a land vehicle can encounter non-geographic obstacles and has more
limited movements. As a practical utility, they expose the capabilities for use
in search and rescue missions. Also in emergency or rescue conditions, Baldazo
et al. propose a DQN model to coordinate multiple UAV for flood monitoring
and minimize damage costs [12]. This paper has a very good choice of the
type of UAV when it comes to flood monitoring. Fixed-wing UAVs are the
most efficient solution for long-distance travel because of their higher speed.
As they have less stationary flight capability than other configurations, fixed-
wing UAVs require smooth flight paths, without sudden changes. If applied
in real scenarios, the paths calculated should have mechanisms to smooth out
the curves due to possible abrupt changes in case of obstacles. Later, in 2020,
Zhao et al. proposed a variation of Deep Q-Learning known as Wire Fitting
Neural Network Q (WFNNQ) learning [120]. Combining this technique with
hill-climbing algorithms successfully creates smoothed flight paths in simulated
environments. Despite the computational cost, his system avoids having to
perform a final phase of path smoothing. Venturini et al. also created a system
capable of controlling multiple UAVs using DQN techniques. In 2020 proposed
a system capable of operating on square cell maps [106]. In 2021 the maps
were simulations of real maps [107]. While it is a project that demonstrates
capabilities to operate on different maps, it is necessary to establish targets to
direct the paths. Therefore, it is very dependant on the initialization.

Goh et al. designed a DQN model with Convolutional Recurrent Neural
Network [37]. In this way, they could control multiple UAVs to pursue the
target. The most remarkable thing about their project is the freedom of move-
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ment of the UAVs. For added visibility, their system has been tested in the
AirSim simulator.

On the other hand, with the SARSA algorithm less recent approximations
were found. However, they show satisfactory results in different cases. Luo et
al. tested their Deep-SARSA algorithm in dynamic environments, where the
obstacles can change [66]. The paper offers an efficient method in dynamic
environments. This demonstrates its ability in changing environments, which
reinforces its usefulness in the real world. However, the model requires a pre-
training phase, which may limit its deployment in novel environments due to
the time required for pretraining. Speck et al. combine object-focused learn-
ing with the SARSA algorithm in order to improve the algorithm itself [95].
This paper presents a very efficient decentralized approach in terms of gener-
alization. The capacity for generalization may be limited when dealing with
fixed-wing UAVs for the same reasons as the papers cited above. Thus, the
configuration of the UAV limits the range of application of the system to cases
where it is optimal to use fixed-wing UAVs. The paper written by Zhao et
al. shows a new method for the coordination of UAV swarms in mesh net-
works [121]. These networks are very important in disaster areas to maintain
communications. In this way, their approach contemplates the limitations of
communications in these cases. Despite contemplating such limitations, mesh
networks cannot always be deployed if the environment is rugged or very diffi-
cult to access. Therefore, consideration should be given to limiting the number
of paths needed to make it as viable as possible.

3.2.2 Evolutionary Computation

In the field of EC, another huge volume of papers is available. For example,
Sathyan et al. combine GA with Fuzzy logic to improve accuracy during path
planning [89]. The paper approaches the problem from a very interesting point
of view, as they interpret the paths as polygons. Thus, they quickly solve the
problem of each UAV returning to the starting point at the end of the operation
as if it were part of the path itself. The main drawback of this article is that
they do not take into account fuel consumption or possible collisions. Thus,
paths can have great lengths or abrupt changes of direction that the range
cannot support. In addition, paths can be so close that UAVs can collide.

Ramirez et al. use, in some of their works, variations of the Multi-objective
Genetic Algorithm (MOGA) for mission planning with multiple UAVs [78,
79]. In their work, they carry out an exhaustive evaluation of their system and
show the evolution of the results as the complexity increases. In both works,
there is a lack of detail in the description of the data sets they use, so it is
vague whether these changes in complexity are correctly interpreted. Cekmez
et al. find control points in the terrain by using K-means clustering [21]. Then,
a parallel genetic algorithm solves the multi-UAV path planning problem of
each subset of control points. The advantage of this genetic algorithm is its
implementation on CUDA, which allows for faster experimentation. The use of
K-means clustering can be limiting for area partitioning. Many clustering al-
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gorithms, such as K-means or K-medians, are known to be strongly dependent
on the initialization parameters. Therefore, this partitioning should be tested
in a huge amount of different environments until satisfactory parameters are
achieved.

There are also approaches such as the one made by San et al. [88], in which
genetic algorithms of chromosomes with multidimensional genes are used. In
this paper, the shortest possible path is computed, as it is for parcel UAVs.
For this purpose, two fitness functions are considered, one for the weight of
the load and another for the path, which achieves great results. UAVs tend to
consume more battery power if they need to be constantly stabilized, so they
should consider the oscillation of the load during the flight to minimize the
battery. Otherwise, a heavy object with many oscillations increases battery
consumption because the aircraft needs to be constantly correcting its tra-
jectory. Liu et al. employ Genetic Algorithms to adjust ANN for flight path
generation [61]. Relying only on the ANN for path computation makes it de-
pendent on more parameters than weights. Therefore, other parameters such
as learning rates or adjusting the architecture of the ANN should be adjusted.
Duan et al. also improve a genetic algorithm, in this case with a local search
algorithm. To do so, they combine a memetic algorithm with the VND search
algorithm [29]. In their work, an initial individual is generated based on the
heuristics of the nearest neighbors and the other initial individuals are config-
ured as random. Using the closest neighbors can greatly limit the generation of
individuals. Especially if there are many equally close neighbors. In that case,
a criterion should only be established to determine whether the individual is
a member of a group.

Cimino et al. employ Differential Evolution for UAV swarms to detect tar-
gets collaboratively [24]. The major difference between Differential Evolution
compared to other Evolutionary Computing algorithms, such as GA, is that it
depends more on the mutation operator [97] than on the crossover operator.
Thus, a descendant can be the exclusive mutation of a parent. Having less
dependence on one type of operator than the other makes it more difficult to
find new individuals in the population. Therefore, it can be more expensive
to find the optimal path. In the work of Zhou et al. multiple UAVs are made
to fly over a portion of terrain in the presence of dynamic targets. For this,
they make use of the Immune Genetic Algorithm (IGA) [125]. The drawback
of their method is the need for path smoothing.

Olson et al. also designed GA for multi-UAV systems [73]. In their case,
they seek to create 3D maps using multiple UAVs. To do this they simplify
the flight map to a 2D map. Once created, their system searches for paths
that maximize coverage and reduce flight time. The use of flight time in GA
is also used by other authors, such as Huang et al. [47]. In their paper, they
take into account the time taken by each UAV to find a target. A great point
to note in their work is that it is one of the few that take into account the
attributes of the UAVs. Other authors take into account the flight time of the
entire swarm depending on the task to be performed. As in the case of Ye et al.
where they seek to minimize the overall flight time of the swarm [115]. Thus,
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it may be more efficient in global terms to minimize the time of one UAV even
if the time of another is not minimized. Time is calculated using Dubin’s car
model. This model usually refers to the shortest curve connecting two points
in the two-dimensional Euclidean plane. It may not be the most optimal way
to obtain UAV paths and times because it only considers curves.

In 2021, Pan et al. combined GAs with Deep Learning to compute optimal
paths for multiple UAVs to capture data from multiple nodes [74]. Through
this combination, they improve the results concerning using purely GAs in
case of having numerous nodes.

3.2.3 Swarm Intelligence Based Methods

Among the proposals of SI for this type of problem is a great variety of al-
gorithms. Cekmez et al. make use of Ant Colony Optimization (ACO) for
planning optimal UAV paths while avoiding complex obstacles such as radars
[22]. In their paper, they implement a version of the algorithm for GPUs al-
lowing them to perform more iterations of that algorithm at the same time.
This allows getting closer to the optimal solution. They consider constant
flight speed, so the curves to be made for each UAV may not be the most
efficient. Perez-Carabaza et al. also use this technique to plan flight paths so
that multiple UAVs can find targets in unknown environments in the mini-
mum possible time [77]. The use of its heuristics is very accurate, because of
the speed of computation. In addition, correctly defined heuristics can reduce
the computational cost. As the authors state, paths should be smoothed or it
would be limited to a certain number of UAV types. Another approach to this
technique is its use in cooperative search-attack mission planning for multiple
UAVs [124]. These types of problems are very similar to path planning. In
these cases, it is usually a matter of finding a target and getting closer to at-
tack. In particular, they tend to face more changes in paths because the targets
frequently change. In this work, they also consider constant flight speeds. If
they are high speeds, plotted curves may not be feasible. Following ACO, Zhen
et al. proposed a distributed version of ACO in 2020. A respectable aspect of
their paper is that their system is one of the few that considers flight range
constraints among all the constraints considered [123].

Vijayakumari et al. make use of another well-known SI technique known
as Particle Swarm Optimization (PSO) for optimal control of multiple UAVs
in a decentralized way [108]. In their work, they manage to simplify the com-
putation of the problem by means of discretization. For collision avoidance,
they rely on distances. Although this is a dynamic variable, in certain types
of non-stationary flight UAVs, such as fixed-wing UAVs, it does not guaran-
tee collision avoidance. In these cases, a metric that predicts the state of the
UAV and the obstacle in future instants is of interest and thus makes a deci-
sion. Otherwise, the UAV would continue to move forward while the decision
is being computed. Li et al. also use this technique for UAV swarm control
and demonstrated the effectiveness of the results in several terrains at Shaanxi
province in China [60]. It is one of the few found studies applied to agricultural
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UAVs that have been tested in real field simulations. It is a great indicator
of the project’s viability and potential. The paths shown in the images have
abrupt changes in direction, so the path should be smoothed. Otherwise, some
UAVs would not be able to take the bends. More recently, there is work such
as that of Hoang et al. in which they employ a variation of PSO known as
Angle-Encoded PSO for the planning of flight paths in UAV swarms [45]. The
main advantage of the proposed model is that it considers flying height. Most
works consider 2D flights where UAVs do not need to vary their height. The
2D flight does not guarantee that the path traced in the presence of obstacles
is optimal. In many cases, a sudden change of direction can be avoided by
varying the height. The paper uses waypoints to assist the path. This makes
the model very dependent on the initialization of the waypoints. Also, with an
improved version of PSO, Shao et al. proposed the coordination of multiple
UAVs by comprehensively improved PSO [92]. In this type of PSO, parameter
tuning is done adaptively. Thus, the parameters are better tuned than in clas-
sical versions of PSO. In March 2021, He et al. proposed their improvement
of PSO for cooperative UAV systems on 3D maps [44]. Despite good results,
the paths need to be smoothed and UAV formations should be fixed.

In 2020, Wang et al. proposed a Path Planning system for multiple UAVs
using the Pidgeon-Inspired Optimization algorithm [109]. The main point that
makes it distinguishable from the SI papers described above is that, unlike the
others in general use, it employs a specific SI algorithm for path planning with
aerial robots [31]. Another algorithm different from those mentioned above
is the Bean Robot Optimization Algorithm used in UAV swarms for target
searching by Zhang et al. [117]. The algorithm takes into account the free-
moving space of individual UAVs and adds a free-space search mechanism to
improve target search efficiency.

3.2.4 Graph Neural Networks

Finally, in the newest technique, Graph Neural Networks, a single article was
found. In it, Li et al. make use of these neural networks for path computation
in robotic systems. Thus, they achieve more capacity for generalization in the
face of new cases than other more widely used techniques [59]. Since we are
dealing with two ANNs, previous training is necessary in different and very
varied cases. Otherwise, ANNs may be overfitted in several flight areas and
swarm structures.

A summary of the publications cited above is shown in Table 2.

Table 2: Summary of works where Artificial Intelligence methods
are applied to path planning in UAV swarms.

Publication Technique Year Flight Environment
Hung et al. [48] RL 2016 Artificial environment.
Khalil et al. [52] RL 2021 Artificial environment.
Hafez et al. [41] RL 201 Real environment.
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Su et al. [98] RL 2016 Artificial environment.
Yang et al. [113] RL 2020 Artificial environment.
Chen et al. [23] RL 2020 Artificial environment.
Roudneshin et
al. [82]

RL 2019 Artificial environment.

Baldazo et al.
[12]

RL 2019 Artificial environment.

Luo et al. [66] RL 2018 Artificial environment.
Speck et al. [95] RL 2018 Artificial environment.
Zhao et al. [120] RL 2020 Artificial environment.
Venturini et al.
[106]

RL 2020 Artificial environment.

Venturini et al.
[107]

RL 2021 Artificial simulation
over a real environ-
ment.

Goh et al. [37] RL 2021 Artificial environment.
Zhao et al. [121] RL 2019 Artificial environment.
Sathyan et al.
[89]

EC 2016 Artificial environment.

Ramirez et al.
[78]

EC 2017 Artificial environment.

Ramirez et al.
[79]

EC 2017 Artificial environment.

Cekmez et al.
[21]

EC 2016 Artificial environment.

San et al. [88] EC 2016 Artificial environment.
Liu et al. [61] EC 2019 Artificial environment.
Duan et al. [29] EC 2018 Artificial simulation

over a real environ-
ment.

Cimino et al.
[24]

EC 2016 Artificial environment.

Zhuo et al. [125] EC 2020 Artificial environment.
Olson et al. [73] EC 2020 Artificial environment.
Huang et al. [47] EC 2020 Artificial environment.
Ye et al. [115] EC 2020 Artificial environment.
Pan et al. [74] EC 2021 Artificial environment.
Cekmez et al.
[22]

SI 2018 Artificial environment.

Perez-Carabaza
et al. [77]

SI 2018 Artificial environment.

Zhen et al. [124] SI 2018 Artificial environment.
Zhen et al. [123] SI 2020 Artificial environment.
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Vijayakumari et
al. [108]

SI 2019 Artificial environment.

Li et al. [60] SI 2016 Artificial simulation
over a real environ-
ment.

Hoang et al. [45] SI 2019 Real environment.
Saho et al. [92] SI 2020 Artificial environment.
Wang et al. [109] SI 2020 Artificial environment.
Zhang et al.[117] SI 2020 Artificial environment.
Li et al. [59] GNN 2019 Artificial environment.

3.3 Bibliometric Analysis

For the bibliographic analysis, the number of publications, the number of pub-
lishers, and their evolution over the last 6 years will be taken into account.
These three factors, along with their relationships, provide quite a bit of infor-
mation on how UAV swarm AI applications are doing for path planning and
mission control problems.

The first chosen graph (Fig. 2), the evolution of the number of publica-
tions in the last 6 years, shows the interest in the subject and the evolution
of the field based on the State of the Art. The Fig. 2 shows a decline in the
publications found over the years until 2018. This coincides with the regular-
ization of legislation in many countries, facilitating development in the field.
For example, in Europe, EASA regulated the situation in 2018 by establishing
the basis for all member countries [32]. Having a solid and current legislation
applied to UAVs favors development and innovation in these aircraft. Being
able to conduct experiments in a safe and controlled manner by having guide-
lines increases confidence in research and reduces fear of legal consequences
due to uncertainty. In 2020, a large number of articles have been found, thus
reinforcing the growing trend in the number of UAV projects. In 2021 quite a
few publications were found considering that they are only those belonging to
the first quarter.

As mentioned above, RL and EC are among the most widely used tech-
niques. Fig. 3 shows how RL outperforms EC, but they are still the most
widely used techniques. The reduction in the cost of computational resources
means that more and more authors are opting for these more expensive but
more efficient methods compared to SI techniques. Taking into account the
scope of use of the systems proposed in the papers, civil publications use dif-
ferent cited techniques in a variety of ways (Fig. 4). In spite of this, RL and
EC continue to be the most widely used techniques. In general terms, they are
always the most used regardless of the purpose.

In 2019, the most used technique was RL (Fig. 5). Its evolution contrasts
sharply with 2016 when it was in the minority. Unlike EC, its popularity in
this type of problem has been increasing. This change in trend may be due
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Fig. 2 Relevant and novel publications found per year. The bar of the year 2021 is the
number of papers of the first quarter.

Fig. 3 Relevant and novel publications found per technique.

to the normally lower computational cost of the RL and its greater ease of
development. On the other hand, an equal number of EC, RL, and SI papers
were found in 2020. The elevated number of publications shows indications of
the high impact of UAV swarms. Thus, each year seems to be increasing.
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Fig. 4 Publications per technique for each different purpose.

Fig. 5 Evolution of publications per technique for each year.

Fig. 6 shows that most of the studies found are for civil purposes. Years
ago, most articles were for military purposes or rescue operations. The change
in purpose reinforces the fact that these aircraft found a niche in civil func-
tions and operations. Studies applied to non-civil purposes remain constant
and scarce over the years. On the other hand, the number of studies on civil
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purposes found is much higher. The decrease in 2018 may be caused by regu-
latory changes in many countries. These changes often bring uncertainty and
loopholes that are corrected later. These corrections may explain the increase,
again, of publications in 2018.
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Fig. 6 Publications per purpose.

Fig. 7 shows that most studies use artificial environments. This may be due
to the difficulty in reserving airspace for experimentation. In many countries,
these requests are expensive and take a long time to confirm. Publications
for non-civil purposes are those that make the most use of real flight envi-
ronments. Normally, military authorities in countries usually have airspace
reserved for their flights. In addition, they are more likely to reserve airspace
when necessary. Quite a few publications use simulations of real locations. In
these cases, they map real environments and then simulate them virtually. In
this way, there is no need to reserve the flight area, but the mapping is often
expensive.

4 Discussion

The development of systems for Path Planning with UAVs is a common prob-
lem, but it is in the early stages. Despite this, there are more and more appli-
cations and studies of their use at the professional and domestic levels. One of
its most novel applications of systems for Path Planning is in UAV swarms.
Thus, costs and operation time can be reduced by having several aircraft oper-
ating at the same time in a coordinated manner. To assist in the coordination
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Fig. 7 Publications per flight environment.

of the swarms, more and more authors are making use of AI techniques, which
is the focus of this review.

One of the factors triggering this boom is the decrease in their market price
and the regulation of the laws concerning their use. Consequently, more and
more people can access them and have their airspace reserved. This facilitates
their use for developing activities and tests with them. In Fig. 2 this increase
in the last few years is shown, as 2018 is one of the years with the most changes
in the law. Despite this, more papers are being published every year. In 2020,
this growth will be even more accelerated. In the first quarter of the year 2021,
there is a significant number of papers, which may indicate that in 2021 there
will numerous papers. It could even surpass the year 2020.

With respect to the techniques reviewed, RL and EC are the main ones
in the number of publications (Fig. 3). Many of these articles may present
the use of these techniques because of tradition and because they are more
developed. Other techniques such as SI usually present ad-hoc methods or a
great diversity of different methods. However, the most commonly used are
distributed optimization based ones because of their ability to minimize the
length of the paths. GNN is the technique with the fewest publications, being
the only one in pre-published status. As it is a very new technique, few studies
are sufficiently advanced to be published no matter the discipline in which
they are applied.

Over the last 6 years, it seems there has been a change in the trend. The
techniques of EC present fewer publications, while those of RL are on the
rise (Fig. 5). This may be due to different factors such as the generally lower
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computational cost for RL techniques or the fact that many RL articles have
yet to be published in the field.

Most of the publications found are for civil purposes. This may be because
they are becoming more accessible to the public. As a result, these aircraft
can be used in a wider range of sectors and tasks.

Artificial environments are the most used among civil-purpose publications.
It may be caused by the difficulty in reserving airspace for testing. On the other
hand, publications for non-civil purposes have more facilities for this, so they
are usually tested in real environments.

In general terms, few publications have been found on the subject of the
study. This is due to the novelty of the problem. In other words, the advantages
of the use of UAV swarms are still beginning to be perceived.

The results achieved in the reviewed papers cannot be compared. In the few
cases where it is possible to compare them, it is almost impossible to obtain
a meaningful interpretation of the comparison. This issue involves multiple
factors such as the variables to be taken into account or the type of Path
Planning problem to be solved.

The most important factor is the lack of common evaluation methods to
communicate the results and demonstrate the goodness of the methods. This
seems to be a fairly common factor in new research areas. In this situation,
the authors of new contributions are not sufficiently informed or do not have
access to sufficient previous work. This leads to a lack of information which, in
turn, causes authors to opt for different approaches to communicating results.
Some of them are the time consumed, the length of the paths or the number
of solutions found by the system. Nevertheless, with the summary and classi-
fication of the papers found, together with the proposed figures, an attempt is
made to provide as objective a review as possible of the most recent and novel
projects.

As a final summary, the lack of standardization of the results together with
the growing number of studies reinforces the idea that this is an increasingly
important field of research. The most commonly used methods are RL and
EC. This convergence may be limiting in the development of new systems, as
there is less innovation in other different and possibly more promising methods.
There are more and more applications in the civilian field, mainly characterized
by the use of artificial flight environments. The use in non-real environments
can be limiting since in real environments, there are usually more obstacles
and external factors than many authors consider.

5 Conclusion

AI techniques applied to Path Planning problems with UAV swarms are boom-
ing and continuously developing. The increasing use of AI techniques in UAV
swarms for Path Planning problems over the years may be an objective indi-
cator of it. More and more papers are being published. Even in 2021, there
may be many publications due to the already high number published in the
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first quarter. Moreover, in the quantitative analysis, it can be seen that RL
and EC are the most used methods regardless of the domain. To test these
methods, mostly artificial flight environments are used. Therefore, many of
these methods may have difficulties operating in real environments due to the
large number of external elements that may affect the UAV.

As these are novel systems that use AI for the control of UAV swarms, there
are still shortcomings. Especially the lack of standardization of the results. As
each paper focuses on a different aspect of Path Planning, each one focuses on
a different variable. This can be limiting in the development of new systems
due to the lack of criteria to evaluate which approach is better. On the other
hand, it is indicative of this being a novel topic. In addition, it may also be
indicative that Path Planning problems should be divided into subproblems,
each focusing on its variable of interest. Thus, there would be branches that
would try to find the solutions with the shortest flight time, another where
the solutions involve the routes with the fewest number of turns, etc.

In conclusion, the low but growing number of publications shows that this
is a recent problem. The late emergence of UAV swarms coincides with the
late incorporation of UAVs in non-military fields. Being more accessible and
cheaper allows the public to experiment with them, finding more possible fields
of application.

6 Future Work

Based on the graphs shown it can be understood that the use of AI techniques
for UAV swarms in path planning problems is growing. This growth will be
greater as countries adapt their laws to swarms of autonomous vehicles. Other
sectors such as self-driving cars will also contribute to this increase with studies
that can also be taken to the world of UAVs.

As there is an increase in UAV swarm works and studies more sectors
will be able to benefit from them. In addition, other new fields within the
sectors are appearing. For example, the 3D animation sector as a substitute
for fireworks has emerged in the recreational sector.

With only one article on the GNN technique and in a pre-publish status,
a new research path is opened in the domain. The existence of a single paper
demonstrating the possibility of the use of GNN in UAV swarms encourages
many researchers to take it as a starting point for their research.

The change of tendency experienced in the papers found of RL and EC
indicates that the majority of possible works will be of RL. This is not a
definitive statement, since it may be more about fashion than about improving
results. Therefore, many future works may end up combining both techniques,
just as it is used in swarms of other robotic systems. On the other hand, in
2020 there have been a large number of SI articles, so in 2021 there may also
be a large number of them.

Finally, improvements in swarming other types of vehicles and improve-
ments in UAV navigation to require fewer sensors may work together. In this



A review of Artificial Intelligence applied to Path Planning in UAV swarms 27

way, information collected on the paths of other vehicles, such as autonomous
aircraft, can benefit the computation of UAV paths. And vice versa, informa-
tion collected from UAV paths can complement the computation of paths for
other vehicles such as avoiding congestion in self-driving cars.
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40. Grassé, P.P.: La reconstruction du nid et les coordinations interindividuelles chezbelli-
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