2,143 research outputs found

    A survey on variational optic flow methods for small displacements

    Get PDF
    Optic fow describes the displacement field in an image sequence. Its reliable computation constitutes one of the main challenges in computer vision, and variational methods belong to the most successful techniques for achieving this goal. Variational methods recover the optic flow field as a minimiser of a suitable energy functional that involves data and smoothness terms. In this paper we present a survey on different model assumptions for each of these terms and illustrate their impact by experiments. We restrict ourselves to rotationally invariant convex functionals with a linearised data term. Such models are appropriate for small displacements. Regarding the data term, constancy assumptions on the brightness, the gradient, the Hessian, the gradient magnitude, the Laplacian, and the Hessian determinant are investigated. Local integration and nonquadratic penalisation are considered in order to improve robustness under noise. With respect to the smoothness term, we review a recent taxonomy that links regularisers to diffusion processes. It allows to distinguish five types of regularisation strategies: homogeneous, isotropic image-driven, anisotropic image-driven, isotropic flow-driven, and anisotropic flow-driven. All these regularisations can be performed either in the spatial or the spatiotemporal domain. After discussing well-posedness results for convex optic flow functionals, we sketch some numerical ideas in order to achieve realtime performance on a standard PC by means of multigrid methods, and we survey a simple and intuitive confidence measure

    Correspondence problems in computer vision : novel models, numerics, and applications

    Get PDF
    Correspondence problems like optic flow belong to the fundamental problems in computer vision. Here, one aims at finding correspondences between the pixels in two (or more) images. The correspondences are described by a displacement vector field that is often found by minimising an energy (cost) function. In this thesis, we present several contributions to the energy-based solution of correspondence problems: (i) We start by developing a robust data term with a high degree of invariance under illumination changes. Then, we design an anisotropic smoothness term that works complementary to the data term, thereby avoiding undesirable interference. Additionally, we propose a simple method for determining the optimal balance between the two terms. (ii) When discretising image derivatives that occur in our continuous models, we show that adapting one-sided upwind discretisations from the field of hyperbolic differential equations can be beneficial. To ensure a fast solution of the nonlinear system of equations that arises when minimising the energy, we use the recent fast explicit diffusion (FED) solver in an explicit gradient descent scheme. (iii) Finally, we present a novel application of modern optic flow methods where we align exposure series used in high dynamic range (HDR) imaging. Furthermore, we show how the alignment information can be used in a joint super-resolution and HDR method.Korrespondenzprobleme wie der optische Fluß, gehören zu den fundamentalen Problemen im Bereich des maschinellen Sehens (Computer Vision). Hierbei ist das Ziel, Korrespondenzen zwischen den Pixeln in zwei (oder mehreren) Bildern zu finden. Die Korrespondenzen werden durch ein Verschiebungsvektorfeld beschrieben, welches oft durch Minimierung einer Energiefunktion (Kostenfunktion) gefunden wird. In dieser Arbeit stellen wir mehrere Beiträge zur energiebasierten Lösung von Korrespondenzproblemen vor: (i) Wir beginnen mit der Entwicklung eines robusten Datenterms, der ein hohes Maß an Invarianz unter Beleuchtungsänderungen aufweißt. Danach entwickeln wir einen anisotropen Glattheitsterm, der komplementär zu dem Datenterm wirkt und deshalb keine unerwünschten Interferenzen erzeugt. Zusätzlich schlagen wir eine einfache Methode vor, die es erlaubt die optimale Balance zwischen den beiden Termen zu bestimmen. (ii) Im Zuge der Diskretisierung von Bildableitungen, die in unseren kontinuierlichen Modellen auftauchen, zeigen wir dass es hilfreich sein kann, einseitige upwind Diskretisierungen aus dem Bereich hyperbolischer Differentialgleichungen zu übernehmen. Um eine schnelle Lösung des nichtlinearen Gleichungssystems, dass bei der Minimierung der Energie auftaucht, zu gewährleisten, nutzen wir den kürzlich vorgestellten fast explicit diffusion (FED) Löser im Rahmen eines expliziten Gradientenabstiegsschemas. (iii) Schließlich stellen wir eine neue Anwendung von modernen optischen Flußmethoden vor, bei der Belichtungsreihen für high dynamic range (HDR) Bildgebung registriert werden. Außerdem zeigen wir, wie diese Registrierungsinformation in einer kombinierten super-resolution und HDR Methode genutzt werden kann

    Colour, texture, and motion in level set based segmentation and tracking

    Get PDF
    This paper introduces an approach for the extraction and combination of different cues in a level set based image segmentation framework. Apart from the image grey value or colour, we suggest to add its spatial and temporal variations, which may provide important further characteristics. It often turns out that the combination of colour, texture, and motion permits to distinguish object regions that cannot be separated by one cue alone. We propose a two-step approach. In the first stage, the input features are extracted and enhanced by applying coupled nonlinear diffusion. This ensures coherence between the channels and deals with outliers. We use a nonlinear diffusion technique, closely related to total variation flow, but being strictly edge enhancing. The resulting features are then employed for a vector-valued front propagation based on level sets and statistical region models that approximate the distributions of each feature. The application of this approach to two-phase segmentation is followed by an extension to the tracking of multiple objects in image sequences

    Inpainting methods for optical flow

    Get PDF
    Current methods for computing optical flow are based on a four-step pipeline. The goal of the first step is finding point correspondences between two consecutive images. The aim of the second step is filtering problematic or even false correspondences. The purpose of the third step-inpainting, is filling in the missing information from the neighborhood. The final step refines the obtained dense flow field using a variational approach. Up to now, there was little research that deals with the inpainting step and no work if a variational approach could improve the inpainting step. A common technique for the final step of the optical flow pipeline is minimizing an energy functional. In contrast, this thesis uses the minimization of an energy function for the inpainting step, which is also, the focus of this thesis. The inpainting energy functional consists of a similarity term and a smoothness term. For the smoothness term several possible extensions are proposed, that incorporate image information and enable an anisotropic smoothing behavior. Finally, all extensions are compared with each other and with the results from EpicFlow (Revaud et al., 2015)

    Automated Analysis of Time-resolved X-ray data using Optical Flow Methods

    Get PDF
    We develop a general-purpose framework for analysis of time-resolved X-ray data based on optical flow. We perform a systematic evaluation of state-of-the-art optical flow techniques and their components. On the top of motion estimation we provide an extensive data analysis toolkit. All the devised techniques can be applied in 4D (3D + time). The implementation employs advanced numerical schemes and computations on GPU. We present the application of the optical flow methods to a number of scientific problems from various research fields

    Post-processing approaches for the improvement of cardiac ultrasound B-mode images:a review

    Get PDF

    Hyperbolic Wavelet-Fisz denoising for a model arising in Ultrasound Imaging

    Get PDF
    International audienceWe present an algorithm and its fully data-driven extension for noise reduction in ultrasound imaging. Our proposed method computes the hyperbolic wavelet transform of the image, before applying a multiscale variance stabilization technique, via a Fisz transformation. This adapts the wavelet coefficients statistics to the wavelet thresholding paradigm. The aim of the hyperbolic setting is to recover the image while respecting the anisotropic nature of structural details. The data-driven extension removes the need for any prior knowledge of the noise model parameters by estimating the noise variance using an isotonic Nadaraya-Watson estimator. Experiments on synthetic and real data, and comparisons with other noise reduction methods demonstrate the potential of our method at recovering ultrasound images while preserving tissue details. Finally, we emphasize the noise model we consider by applying our variance estimation procedure on real images

    Feature-preserving image restoration and its application in biological fluorescence microscopy

    Get PDF
    This thesis presents a new investigation of image restoration and its application to fluorescence cell microscopy. The first part of the work is to develop advanced image denoising algorithms to restore images from noisy observations by using a novel featurepreserving diffusion approach. I have applied these algorithms to different types of images, including biometric, biological and natural images, and demonstrated their superior performance for noise removal and feature preservation, compared to several state of the art methods. In the second part of my work, I explore a novel, simple and inexpensive super-resolution restoration method for quantitative microscopy in cell biology. In this method, a super-resolution image is restored, through an inverse process, by using multiple diffraction-limited (low) resolution observations, which are acquired from conventional microscopes whilst translating the sample parallel to the image plane, so referred to as translation microscopy (TRAM). A key to this new development is the integration of a robust feature detector, developed in the first part, to the inverse process to restore high resolution images well above the diffraction limit in the presence of strong noise. TRAM is a post-image acquisition computational method and can be implemented with any microscope. Experiments show a nearly 7-fold increase in lateral spatial resolution in noisy biological environments, delivering multi-colour image resolution of ~30 nm
    corecore