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Abstract

This thesis presents a new investigation of imaggoration and its application to
fluorescence cell microscopy. The first part of therk is to develop advanced image
denoising algorithms to restore images from noisseovations by using a novel feature-
preserving diffusion approach. | have applied thakgrithms to different types of
images, including biometric, biological and naturalages, and demonstrated their
superior performance for noise removal and feapueservation, compared to several
state of the art methods. In the second part ofwask, | explore a novel, simple and
inexpensive super-resolution restoration method doantitative microscopy in cell
biology. In this method, a super-resolution imageeistored, through an inverse process,
by using multiple diffraction-limited (low) resoloh observations, which are acquired
from conventional microscopes whilst translating #ample parallel to the image plane,
so referred to as translation microscopy (TRAM)key to this new development is the
integration of a robust feature detector, develapetthe first part, to the inverse process
to restore high resolution images well above tlieatition limit in the presence of strong
noise. TRAM is a post-image acquisition computalanethod and can be implemented
with any microscope. Experiments show a nearly |@-fimcrease in lateral spatial
resolution in noisy biological environments, defing multi-colour image resolution of

~30 nm.
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Chapter 1

Introduction

1.1 Background

1.1.1 Image Restoration

In recent years, images and videos have becomgrahtgarts of our lives.
Applications now range from casual documentation eMents [1] and visual
communication [2], to the more serious surveillafi@g medical [4] and biological
fields [5]. This has led to an ever increasing dednfor accurate and visually pleasing
images with high image quality for various taskshese applications. However, images
acquired by modern digital cameras inevitably ugdea degrading process, which as
shown in Fig. 1.1, involves the corrupting of argoral high-quality image due to many
effects, such as blurring, down-sampling, contatinaof photon or dark-current
noises, etc. Although several models have beepoges to mathematically formulate
such degrading process based on the optical desidifferent applications, the most

popular and generalized one is still the forwardlel@iven as [6],
J=PO+N (1.1)

where the column vectots and| consist of row-wise concatenations of the acquired
and original imagesN represents the noise corruption dds a matrix describing
blurring effects due to camera motion, atmospharbulence, point spread function
(PSF) of the imaging system, etc.. Since the higdiity imagel is not available to



observers, it can only be estimated based on tipg@rad image) from imaging devices
which is also called as observation. Image restoraaims to “invert” the imaging
process Eq. (1.1) to recover an image that is @edchs possible to the original ohe,

Image restoration is therefore an inverse process.

PSF blurring,

Original Motion blurring, /TN .| Acquired
imagel Atmosphere turbulenc N imageJ

Down sampling, et

D

NoiseN

Fig. 1.1 A flowchart of image formation process

1.1.2 Image Denoising

In fluorescence microscopy or medical imaging, #Himosphere turbulence and
motion blur in most cases can be neglected solthdry occurs mostly due to the PSF.
When the object size is much (50-100 times) lathpan the PSF size, the blurring
matrix P can be considered to be unitary. Image restorasothen simplified as a
denoising process, which estimates a noise-freganfilm its noisy observation. The
noiseN in Eq. (1.1) can arise from different sources andifferent forms, including
fixed-pattern, dark-current, shot, thermal, quaattan noise and so on [7], all of which
can be modelled as a random variable with a sgepibability density distribution
(PDF) [8]. Noise removal is then often achieved dmgoothing, i.e., replacing the
randomly fluctuating intensities with their meanlues. However, the smoothing
process is a double-edge sword for image restorabio one hand it can suppress noise
in the background regions; on the other hand itldan the features of interest in the
image, resulting in an unsuccessful restorationavad this problem, denoising should
be locally adapted in the images, so it is encadaip background regions while

inhibited in the vicinity of the features or strucgs.

In general, an edge is a fundamental feature timaienies more complicated
features or structures in an image. The latter lmarpreserved as long as edges are
preserved after denoising. Since the edge candm@adierised by a first-order difference
(gradient), most existing methods [9-18] use thedgnt as an edge detector to reject

smoothing at edges and permit smoothing in othergsd. These methods have achieved



remarkable performance of improving image qualibger noise contamination both
visually and quantitatively. Here | use a simplaraple to illustrate the effectiveness of
edge preserving in denoising. Fig. 1.2 shows agira@i (noise-free) and noisy images
together with two denoised images by pure smootl@ng by total variation (TV)
diffusion [19] respectively, the last of which ia @adge-preserving denoising method.
As seen, although both Fig. 1.2(c) and (d) remasiseneffectively, the former brings

unpleasant blurring effects.

(a) (b) (€) d)(
Fig. 1.2 Denoising test on a natural image. (a Tl original (noise-free) and noisy
image corrupted by additive white Gaussian nois&tofo, = 20; (¢ - d) Denoised
results by linear and TV diffusion [19], respectie

1.1.3 High-Resolution I mage Restoration

When the blurring matri® in Eq. (1.1) is non-unitary, image restorationalwes not
only noise removal but also improving the imageoh&®on that has been decreased
during the imaging process to offer more image eanthat may be critical in various
applications. This is usually called high-resolat{®IR) image restoration. Compared to
denoising, HR restoration is a more sophisticatetgss which is required to remove
noise while recovering fine structures that ar¢ iloshe image degrading process. Such
goal can be achieved through an inverse processing multiple low resolution (LR)
observations from a same HR image due to the diegrguocess. Through the inverse
process, the contents of the restored image arereased [20] with combined
information [21] from different LR observations.

Similar to image denoising, noise removal during timverse process of HR
restoration should be also spatially adapted tadawwer-smoothing of features of
interests. To date, noise removal in HR restoratgonndertaken based on the edge-
preservation concept [22]; features are restorddragas all the edges are preserved in
the inverse process. Fig. 1.3(a-b) shows respégtaveR and HR image obtained by a



Bayesian HR restoration approach that uses edgesdel the visual complexity of the

Image [23]. As seen, details that are blurred enltR image are clearly distinguishable

in the resulting HR one after the HR restoration.

Fig. 1.3 An example of HR restoration. (a-b) theibidge and HR result by a Bayesian
HR restoration [23].

1.1.4 Super-Resolution maging

In microscopy, the resolution of an imaging systesmmeasured by the minimal
distance of two distinguishable (resolvable) poitsch distance is often restricted by
the diffraction limit, which is determined by thize of PSF of the imaging system and
is given by the Abbe diffraction criterion &f(2NA) [24], where/ is the wavelength of
light and NA is the numerical aperture of the I&met characterizes the range of angles
over which the lens can accept or emit light [B#solutions that exceed this limit are
referred to as super-resolution (SR). There areently two popular approaches to
generate SR images in microscopy imaging. The dine aims to reduce the size of
PSF by employing optical patterning of the exaiatand a nonlinear response of the
sample, such as stimulated emission deletion (§TE&] and structured illumination
microscopy (SIM) [27]. The second approach is @rgblecule localization
microscopy (SMLM) [28], which acquires images oflividual single molecule at
different time duration and then locates the peatkeach molecule. A SR image is
finally generated by mapping together all the imtlinal peaks [28]. The two approaches
have yielded an order of magnitude improvemenpatial resolution and are currently

two dominant methods to achieve SR in microscopy.
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1.1.5 Image Restoration in Fluorescence Microscopy and Main Challenges

In biology, various biological processes relateatétis can be observed only when
proteins can be visualized and located throughasampes. Unfortunately, cells are not
suitable for direct optical visualization sinceytra@e mostly transparent in natural state,
and the immense numbers of molecules that corsstititem are optically
indistinguishable from one another. This makesidiatification of a particular protein
a very complex task. However, if a bright markeatthan be directly observed with
visible lights were attached to the protein of iass, it would be able to very precisely
indicate its position. With several bright markbesng attached together to the proteins,
| can then easily visualize these biological saspleor this purpose, fluorescence
microscopy was proposed to visualize biologicalcpsses by marking samples with
fluorescence and then generating images using stuopes.

Fluorescence microscopy was invented almost a oeago. But it was not until the
1990s that fluorescence microscopy began to reeoize the biological research,
when Chalfie, et al. [29] succeeded in expressiggean fluorescent protein occurring
in a jelly fish species onto other organisms by ifyatly their genome to code for this
protein. To date, fluorescence microscopy has lieemprimary modality for biological
imaging, and experimental requirements, such &sdell imaging with high- or super-
resolution, are continuously stimulating new depetents.

However, the application of fluorescence microscapyive-cell imaging is still
hindered by the low quality of the acquired imadeésstly, the live-cell fluorescence
images are often contaminated by severe noiseudmeiscence live-cell microscopic
imaging there is always a compromise between im@ug@lity and cell viability.
Excitation of fluorescent probes causes photobiegcind phototoxicity to cells, which
limit the light intensity and exposure times thahde used. The requirement to image
fast and in multiple dimensions to capture dynamicacellular events also constrains
illumination and exposure regimes and requiresdastera readout. This in turn results
in low signal-to-noise ratio (SNR) fluorescence gas with mixed Poisson-Gaussian
noise [30, 31]Secondly, the current two dominant SR imaging apghnes introduced
in the last subsection have their limitations inoflesence microscopy: they either
involve complex optical design or work slow and ammputationally intensive [32],
and both cases require special fluorephores thre¢mt techniques cannot provide in an
easy way. To solve these problems in live-cell 8Rdimaging, image restoration, as a
computational approach independent of the optiedl@hemical design, is therefore an
indispensable tool to improve the SNR of images] an alternative choice for SR

5



imaging to facilitate both visual and computatioraalysis of the data in the
fluorescence microscopy community.

As discussed earlier, most existing image restamagipproaches are based on the
edge-preserving concept. These methods have adhirearkable performance in
many applications, such as medical imaging, stdetiiaging, security surveillance and
mobile phones[33-36]. Compared to these applicatidifuorescence microscopy
images are more challenging. Fluorescence cell eayg intracellular structures are
often contaminated by very severe mixed Poissors§lan noise and contain abundant
and heterogeneous features of various shapes zesl and complex networks that are
made of these features. Sizes of features in thresges are also much smaller,
sometime by 10 times than the resolution limit][3¢ompared to 2-3 times in typical
medical images. In general, edges embedded inle@rapd small features are prone to
noise contamination. In other words, when the e@dgegpartly lost to a certain extent or
weak and contaminated severely by noise, theseaaetimay not be able to recover
theseedges and thus fail to restore other featuresateamade of by the edges, such as
blobs, ridges and textures, which are importanthin study of cell biology. As such,
traditional edge-preservation image restoration hodt do not perform well in
fluorescence microscopy. This calls for a more sigated approach for feature
characterization in the image restoration methadseverse the imaging process EQ.
(1.1) for a robust and accurate estimation of thgirmal fluorescence microscopical

images.

1.2 Contributions and Organization of the Thesis

The remainder of this thesis is organized into pads as follows.

In the first part, which includes Chapter 2, 3, @d study the problem of image
denoising. In Chapter 2 | firstly review severapptar denoising methods and briefly
analyze their similarities and dissimilarities. Bdn the analysis, | propose in Chapter
3 a novel second-order nonlocal differenc&-(@der NLD) as a feature detector and
incorporate it into a diffusion process to form avel feature-preserving nonlinear
anisotropic diffusion model for denoising imagesntaining blobs and ridges.
Experiments show that the new diffusion filter arfprms many popular filters for
preserving blobs and ridges, reducing noise andnmemg artifacts. In Chapter 4, |
further extend our work in the previous chapter. \W®pose a new and more
sophisticated feature detector by combinin} &nd 2%order NLD for a more

generalized nonlinear anisotropic diffusion modektt denoises natural images
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containing not only blob and ridge feature but atgber complex features under
extreme severe noise contamination.

In the second part, which includes Chapter 5 andsydy the SR restoration in the
application of fluorescence cell imaging. | firsbpide a review on existing SR imaging
in fluorescence cell imaging in Chapter 5. In Cleag, | then propose to use the HR
restoration in the image processing community faea® SR imaging in fluorescence
microscopy. | explore a new prior model based @nféature detector developed in the
first part to form a feature-preserving SR resiora{FP-SR) method. By combining the
FP-SR restoration with a multiple LR image acqiositmodality of translating the
microscopes, | present translation microscopy (TRAM a novel, simple and
inexpensive super-resolution imaging techniquecdh be implemented with any
microscopes and result in a 7-fold increase inrdtspatial resolution in noisy

biological environments, delivering multi-colour agpe resolution of ~30nm.
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Chapter 2

Image Denoising — A Review

Abstract: | start my study from image denoising in thetfjpsrt of the thesis. A major
challenge facing a denoising algorithm is to sugpreoise while preserving features
and fine details in the images. Over the yeargarehers have proposed many different
methods that attempt to achieve these contradigoays. These methods vary widely
in their approaches. Generally, denoising appraache be categorized based on their
operation domains - spatial or transform domairthla chapter, Il briefly review some
of the most popular approaches within each categbmiso briefly analyze their
similarities and dissimilarities and point out tmabst of these approaches are based on
the edge-preserving concept; more complicated ifesitor structures can be preserved
as long as edges are preserved.

2.1 Introduction

Traditionally, image restoration is to reduce um@déde degradations during the
imaging process while preserving important featusesh as edges and textures.
Perhaps the most fundamental image restorationdastage denoising: an ideal image
| is measured in the presence of an additive zemmmeiseN, with standard deviation
(Std)an. The noisy observatiohcan then be formulated as,

J=1+N, (2.1)
whereN can be independent or dependent.dbiven Eq. (2.1), image denoising then
aims to remove the noid¢ from J, in order to achieve a denoised image that idas®c
as possible to the original imageln general, the noise corruption is hardly avdide
an imaging process since intensity quantizationatao bring noise [8], as discussed in
Chapter I. As such, image denoising forms a prelary but important step for various
subsequent tasksuch as image segmentation [38], feature extrad®®j, pattern

recognition [40], object tracking [41], etc. Themew exist many denoising methods
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that vary widely in their approaches. Broadly, thesethods can be categorized based
on the domains they operate - spatial or transfdomain. Spatial-domain methods are
mainly made of variational methods [9, 12, 13, £2-&nd neighbhorhood filters [11, 16,
53-56]. Since our study for image denoising belotmgthe variational method, in the
reminder of this chapter, | review and discuss s#Ewexisting spatial-domain methods
for image denoising. We then briefly outline sonfettte most popular approaches
within the transform-domain category [57-70].

2.2 Spatial-domain Denoising

Denoising methods where the pixel intensities aedudirectly in the denoising
process are said to be spatial-domain filters, wizonsist of the variational methods
and neighbourhood filters. The former usually ubescalculus of variations to denoise
the image in an iterative scheme. The latter per$othe denoising of an image pixel

by its neighboring pixel intensities.

2.2.1 Variational Methods

Of all denoising methods, variational methods haeen particularly successful
[71], and remain one of the most active areaseskarch in mathematical image
processing and computer vision [72, 73]. Variatlanathods search for solutions of an
image denoising problem by minimising an appropriatnctional. When using the
calculus of variations, the minimization technigofethe chosen functional routinely
involves the solution of diffusion models derivesl mecessary optimality conditions
[10].

Let us first consider the following function&{l) defined in the space of the original

two-dimensional (2-D) image 2 0 R* - Rover a suppor as,
E(I):J.Qf(l)dx, (2.2)

wheref() > 0 is an increasing functior,= [x, y]' 0 denotes the image pixel and the
image support? is open and bounded. Given Eq. (2.2), the origimagel is then
denoised by solving the following minimization pleim,

I =argminE ( ), (2.3)

11



which can be estimated by computing the Euler-Liggaequation of Eq. (2.2) with
calculus of variations [74]. A gradient-descenusioh of Eq. (2.3) can then be obtained

as the following partial differential equation (PRE

o) _ ..
= =div[c(I(t)0I ] | 2.4)
[t=0)=J
where the coefficient functiog(l) is in the form of
1 df ([oul,)
c()= , (2.5)
o], a (o)

div is the divergence operatdr, is the gradient operato”[[ﬂ2 denotes theé?norm andJ

is the noisy observation. The PDE Egq. (2.4) isacat fa diffusion equation; the image
data are iteratively diffused from high-contrasgioms to low-contrast to generate a
sequence of smoother ima®. The image noise will be therefore gradually ree
from the observatiod by the smoothing behaviour, which is controlledty diffusion
coefficient (DC)c(l). Based on the diffusion model, Eg. (2.4) and)(21any diffusion
approaches have been proposed so far in the Uliterdor image denoising. The
methods have shown impressive denoising perfornsanbeth visually and

guantitatively. In the following, | describe somietloe most classical methods.

(e) V) () (h)
Fig. 2.1. Denoising experiences on an 8-bit natumalge (a - b) original noise-free and

noisy image contaminated by AWGN of Sig = 20; (c - h) denoised results of linear
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diffusion, P-M model, TV minimization, Tadmor—Nezz¥ese iterated TV, Oshet al.

iterated TV, and bilateral filter.

2.2.1.1 Linear diffusion
1
When | set the functiori in the functionalE(l) Eq. (2.2) asf(l):§||DI ||§ the

coefficient can be then obtained @d) =1 according to Eq. (2.5). The diffusion model
EqQ. (2.4) is hence expressed as,

al(t) _ 9% 07

=diviOl|[=Al =—+—
(0] x> ay*, (2.6)
It=0)=J
which is equivalent to the well-known heat equatiased in physics for instance to
describe heat flows through solids. Koenderink [@g&jved that the solution of Eq.

(2.6) at a particular timeis the convolution of the noisy imadewvith a normalized 2D

Gaussian functio; of Stdo, =0, =0 = J2t:
1(t)=J0G,, (2.7)
where,

1 2
G, (x¥) =5 ex —Xzzzyzj. (2.8)

The diffusion model Eq. (2.6) is thus named as litear diffusion model since the
convolution is a linear operation. Given Eq. (2and (2.8), a major drawback of the
linear diffusion framework is clear: the lineaffdsion uniformly filters local signal
features and noise little by little during the d#fon process, and thus blurs the whole
structure of the image. Fig. 2.1(a-b) shows a nfvese and noisy image with additive
white Gaussian noise (AWGN) of Stg = 20. The denoising result by using the linear
diffusion Eq. (2.6) is shown in Fig. 2.1(c). As seall image structures are blurred by

such a linear convolution scheme.

2.2.1.2 Perona—Malik Model

To overcome the limitations of linear smoothingrd®a and Malik [9] proposed a
nonlinear diffusion method. They considered a noifeum diffusion process that
reduces diffusion at image locations with a lardg&elihood to be edges while
encouraging diffusion at other places. This liketitl is measured by the first-ordef'(1
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order) difference of the local image intensities,tloe gradientll . Based on such

consideration, they revised the OCl) as a decreasing functia{1) of the gradient
al in the form of

o=t 2.9)

2
(o,
h

c(Ol) = exp(—mj : (2.10)

or

h

wheréh is a gradient threshold estimated from the nasell Combined with Eq. (2.9)
or (2.10), the diffusion model, Eq. (2.4), is thexferred to as Perona-Malik (PM)

diffusion model. In this model, the gradient magdé |l ||2 serves as an edge detector;
if [CI]|,>>h , thenc(O1) — 0 and | have a stop filter that discourages the shiog

in the vicinity of the edges to preserve image iti |0l |, <<h, thenc(OI) - 1and

| perform the linear diffusion (Gaussian smoothiitg)ackground regions to remove
noise. The PM model is therefore a nonlinear difflmgprocess that adaptively alters the
local smoothing based on the image contents. BExyats by Perona and Malik [9]
were visually very impressive: edges remained etad noise is removed after
diffusion process finishes. Fig. 2.1(d) shows tkedaised result by the PM model after
107 iterations. As seen by comparing Fig. 2.1(d) @), the PM model outperforms the
linear diffusion enormously by providing better geevation of features, including eyes,
hairs and hats in the girl's head.

However, since the gradient is measured by the-gahye difference of only two
pixels, the gradient operat@il cannot achieve a robust separation of edges arse.noi
In other words, the gradient operator may fail ébedt some weak edges or misinterpret
noise as spurious edges. The PM model may therpfeserve or even enhance large
variations generated by the noise and thus cretifacts in denoised images. As seen
in Fig. 2.1(d), the PM model produces several sigelike artifacts in the girl's face,
which are unacceptable for the subsequent taskis ascfeature detection, pattern

recognition, etc..
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2.2.1.3 Total Variation Model

Another well-known variational denoising methodhs total variation (TV) model
that was first introduced by Rudin, Osher and Fafd®, 46]. In the TV model, the
original noise-free imageis assumed to the piecewise-constant. Namely,ntlagel
consists of a set of flat regions (uniform inteylsgeparated by edges as boundaries.
The imagel is constant inside the flat regions but with jungzsoss the boundaries.
Under such assumption, Rudin, et al. [46] set timetionf(l) in the functionaE(l) Eq.

(2.2) asf(l) :||DI || The functionaE(l) Eqg. (2.2) is then expressed as
E(1)=]_|on],dxdy , (2.11)

with % :g—lx =0on the boundary of2 =042 ,[46] where Eq. (2.11) is called the TV of

the imagel. In another study, Chambolle and Lions [76] protkdt Eqg. (2.11) is
strictly convex and hence its minimum exists, iggue and computable. Given the TV
functional Eq. (2.11), the diffusion model Eq. (2c@n then be written as,

% = div[c(1)01] = div{i} |

|on, (2.12)

|(t=0)=J

where the DCc(I) = is also a decreasing function of the gradient ritade

1
([m}'A
O], . similar to the DCs Eg. (2.9) or (2.10) in the Ribdel. The two models

therefore share the same nonlinear diffusion idlkeea;smoothing is inhibited in the
vicinity of the edges (high gradients) to presesteictures while encouraged in the
background (low gradients) to remove noise.

The TV model given in Eg. (2.12) was further extethdio process colour or vector-

valued images by Blomgren and Chan [77] that ddfiae alternative semi-norm TV

d
functional TV, (1) = Z[ E( Il)] , whered is the number of colour channels aBl,) is
=1

given by Eq. (2.11) for th&"-channel imagé. Since coupling all channels in the TV
functional, the Blomgren-Chan model can avoid pobag the colour-noise artifacts [10]
during the diffusion process [77].

Although the TV model has been demonstrated toeaeha good balance between
noise removal and edge preservation, it tends adyme staircase artifacts that divide

the whole image by artificial edges [78]. This ischuse the pixel-level gradient

15



operatorl]l can either fail to detect the weak edges or neggnet the noise as the
edges, as has been demonstrated in Section 2farlEPM model. Fig. 2.1(e) shows
denoised result of the noisy image Fig. 2.1(b) byg the TV model Eq. (2.12) after
231 iterations. As seen, the TV model generatesrakartificial edges that are visually

unpleasant and likely to result in false reorgamizrafor the subsequent applications.

2.2.1.4 Iterated Total Variation Refinement

In the original TV model Eq. (2.12), the gradualgmoved noisé — J during the
diffusion process is treated as an error and ngdostudied. In practice, since fine
structures can be falsely classified as the noysthé gradient operator, they are over-
smoothed during the diffusion process. Recent wak proposed to avoid this
oversmoothing [22, 78] by studying the removed @ois
A. The Tadmor-Nezzar-Vese Approach

In the original TV model, the TV Eq. (2.11) was miized only once by using the
diffuson model Eq. (2.12). Tadmor, et al. [78] pepd to minimize the TV Eg. (2.11)
not only once but for many timesThey fistly decosg@dthe noisy imagéd,= lp+ ny, by
using the diffusion model Eqg. (2.12). So taking tesidual errony contains both noise
and structure information of the orginal imalgehey decomposg, = I; + n; by the

same diffusion model Eq. (2.12) except that thgaihconditionl(t = 0) =ny. Iteratively

N n k
estimation| was given byl :le . This strategy is in some sense close to the
1=0

matching pursuit methods [79], which can be seem msilti-layer decomposition of the
noisy observationJ in an intermediate scale of spaces between thoseoohded-
variation [80] and/%. Some theoretical results on the convergence ief ékpansion
were also presented in [78].
B. The Osher-et al. approach

Another iterative TV model was proposed by Osherle[22] through iteratively
introducing fidelity terms in the TV functional dog the diffusion process as follows:

I.  Initiation. Solve the minimization problem,
l, =arg|minIQ|DIlQ< Y+ A &y (x,y}2 dxdy,

to obtain the decompositial'= 15 + n;.

ii. Iterate: computé.; as a minimizer of the modified TV functional,
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oo =argminf |01 &y 1+ A3 6y I 006 y) L (Y] dxa

wheren is the residual noise estimated by the first stépe correction step
adds the initial estimatey of the noise to the noisy imagkand raises the
decompositiord + Nk = lysq + Nieq.
As k—, Osher, et al. [22] proved that the denoised edton I.; can approach the
noise-free imagé monotonically within the Bregman distance [77]cxsated with the

BV semi-norm [77], at least within the distarjge - J ||2 < o0? , wheres is the noise Std.

Both the Tadmor-Nezzar-Vese and Osher methodserdie TV diffusion process
to choose the denoised reslyltTheir results have therefore more details preskras
shown in Fig. 2.1(f - g), which smooth the hairssleand generate less artifacts,
compared to the traditional TV result, Fig. 2.1(dpbwever, the face in the image still

looks blocky since the edge is still measured leypixel-level gradient operatlt

2.2.1.5 Coherence-Enhancing Diffusion

In the above section, all the reviewed diffusiondels utilize a scalar D@ to
control the diffusion process and thus the diffag®spatially isotropic. In other words,
the smoothing behaviors during the diffusion precae applied to the image with the
same weight in all the spatial directions. Suchrggmc smoothing may be however not
able to well preserve shapes of oriented structafess diffusion since the structure
orientation is not taken into account. To overcatme problem, Weickert [13, 49]
firstly considered an anisotropic diffusion by pospg a 2 x 2 matri® to replace the
scalar DCc in the diffusion model as

) .
o - dv[por] (2.13)

1(t=0)=J

where the matriXD was symmetric and semi positive-definite and \chia different
pixel positionsx = [x, y]' to control the diffusion strength and directione Wence
name D diffusion matrix or diffusion tensor (DT). Basedn osingular value

decomposition [72]D can be rewritten in the form of
A O
D=[v, V]| * [V, Vi, (2.14)
0 A

where the vector¥,,V, and the scalarg, 4, are the eigenvectors and eigenvalues of

the DT D, respectively. Using Eq. (2.14), one can thengteB for each pixelx by
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selecting different eigenvectors and eigenvalueS.cfhe vectors/,,V, determine the

smoothing directions during the diffusion procebs.perform a good preservation of
the feature geometry in the 2-D images, Weicke3t f9] proposed to seledb, V; for
each pixelx = [x, y]" as the eigenvectors of a smoothed structure te(sor 2

symmetric and semi positive-definite matiSg- G, 00(G, OI)[ (G, DI):|T , denoted

as 6,,0,, so the smoothing during the diffusion processpésformed along the

directions perpendicular and parallel to image ledps. The eigenvalueg, 1, are

weights determining the smoothing strength alorg tiho directions. To perform a
better preserving of the feature (intensity) costirahe smooth strength should be
preferred more in the image isophaleection instead of the gradient direction.

Weickert [13] proposed to choose the eigenvalyes so thatly > 1; holds in the form

of
A =
_|a if k=0 (2.15)
L la+(1-a)expEh/k) else ' '
K= (,uo - /11)2

whereh > 0 anda (0[0,1] are fixed thresholdgy, 11 are eigenvalues of the structure
tensorS. Theh > 0 serves as a threshold parameter«fer h | get A, =land Ak << h

leads toA, = a . The idea behind the choice of Eq. (2.15) is then:
* In almost constant regions, | should hawe= u; = 0 and thers — 0 and

A =a=A,. The diffusion model Eqg. (2.13) performs a lingapbtropic

smoothing.

* In the vicinity of the edges, | havye [l 1,1 0 andx >h, and thend, >a > A,.

The smoothings at these regions are then anisotrapainly directed by the
direction parallel to the image isophotes.

As a result, the coherence-enhance (CE) diffusiadeh Eq. (2.13) can more
precisely preserve the oriented image structurésr afenoising, compared to the
isotropic ones. In another study, Tschumperlé aadcbe [50] extended the anisotropic
diffusion model Eq. (2.13) to denoise vector-valc@our) images.

However, since the smoothing strength is still widi by the pixel-level gradient
operator, the CE diffusion may produce many litkke-frtifacts or spurious edges in the

background area. Another drawback of the CE modgl R.13) is its high
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computational burden. In a study, Weickert, et[8l] used the additive operator
splitting (AOS) scheme to solve Eq. (2.13), whishten times more efficient than the
widely used explicit schemes. But such scheme striceed to the special form Eq.
(2.15) of the diffusion tens@.

2.2.1.6 Selective Smoothing Diffusion Model

By comparing Eq. (2.15), (2.12) and (2.9), | cardfthat all the smoothing strength
in the previous nonlinear diffusion models are w=liin a similar manner; they are all
the decreasing functions of pixel-levél-drder difference, which is not robust for edge
measurement under noise contamination. Based dANhmodel Eq. (2.9), Catté, et al.
[12] proposed an improved nonlinear diffusion vensivherein the edge is measured by
the Gaussian smoothed gradient in the followingaéqu,

o) _ ..
T—dlv[quGJDIDDI] | (2.16)
It=0)=J
where the DQ is in the form of
o(0G, OI(x ”DZEXP(_WJ , (2.17)

2

2
h is the gradient threshold and the functiG)(x, y) =exp( x2+2y ) is the 2-D
o

Gaussian kernel with Stal. Since the gradient is derived in the Gaussianesheal

noisy image instead of the noisy one, it is motsust to noise. The diffusion model Eq.
(2.16) can therefore generate fewer artifacts tt@nPM model. However, Gaussian
smoothing of the noisy image can blur the imagecstires and significantly decrease
the contrast of the structures whose sizes arelanthbn the Stdr of the Gaussian
smoothing functionG,. The gradients of these structures in the smoathage can
hence be rather low, giving rise to a high smoglstrength for these structures. As
such, the diffusion model Eq. (2.16) is named dsctige smoothing diffusion model
since it can only selectively preserve structurath vgcales similar as that of the
Gaussian kernel [12].

2.2.2 Neighborhood Filter
The neighbourhood filter (NF) suppresses the nthiseugh a weighted averaging

process in which the intensity of a pixel in thendised image is the weighted average
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of the intensities of its surrounding neighbourpigels in the noisy image [36]. Since
iterating only once to denoise, the NFs often simaott noise less efficiently than the

variational methods do.

2.2.2.1 Bilateral Filter

One of the most popular NF is bilateral filteringH), which was introduced by
Tomasi and Manduchi [11] to estimate the weightstiwy distances of the spatial
positions and the intensities between the cenixal pnd its surrounding neighborhood
pixels in the following form,

W

ﬁ Dc(% Yk )I(x+ k y )
|(x,y) ==y : (2.18)

where

J _ J 2 X— 2+ 2
o y,m):exp[x (% y)hz (kD) _( k)Kz(w )j 2.19)
denotes the weight of the neighbouring pixet(, y + 1), W denotes the half width of
the searching window andl is the thresholding parameter of the spatiabdist. The

weight c(x, vy, k, 1) given in Eq. (2.19) both utilized the differendetwo pixels in gray-

value domain and spatial domain. As such, similatelp in the neighborhood
contribute more in the weighted averaging to remtheenoise contained in the central
pixel, so avoiding smoothing across edges. BFasefiore a nonlinear edge-preserving
filter. However, being a NF, the BF performs smaaghonly once, so the noise may
not be removed effectively. Fig. 2.1(h) shows teaalsed result of the noisy one Fig.
2.1(b) by the BF. As seen by comparing Fig. 2.1¢lh Fig. 2.1(d-g), the BF cannot
smooth out all noise on the face of the girl in th@sy image, compared to the
variational methods.

The traditional BF does not take into account tha&tial orientation of the features
in the image. Takeda, et al. [17] incorporate tieation of the pixel positionk(l) into

the weightc(x, y, k, I), which was called steering NF by taking robusinestion of the

local gradients into account to measure the siitylaetween two pixels, is given by
G(J(X' y) = Ik D)
h2
[x-k y-1S(0(G 0 x- k y- 1"
— . )
K
20

c(x v, k )=exp
(2.20)




where the 2 x 2 diagonal matrfi{[0)(G, (1)) is the structure tensor defined in Section
2.2.1.5. In the background regions whe&éD(GJEU)) is unitary, Eq. (2.20) is

simplified as the BF Eq. (2.19). However, in theinity of edges wheréS(D(GU EU))
Is no longer unitary, the local gradient directioformation contained in the structure
tensor S(D(GJ EU))adaptiver “steer” the local weights (kernefx, y,k,l), resulting

in rotated, elongated or elliptical shapes sprdadgathe directions of the local edge
structure. With these locally adapted kernels, skeering NF can result in better
preservation of details than BF does. However, B¥tk Eqg. (2.19) and (2.20) calculate
the similarity of the two pixelx{ y) and k, 1) by using only the torder difference of

the two pixel intensities in the noisy imadein a similar manner as the variational
methods Eq. (2.15), (2.12) and (2.9) that detedte® by using the pixel-level gradient.
Thus the BFs still cannot achieve a good balantedsn noise removal and feature

preservation.

2.2.2.2 Nonlocal-Means Filter

Nonlocal-Means (NLM) filter was proposed simultansly by Awate and Whitaker
[14] and Buades, et al. [15] in 2005. In geneta, intensity differencgx, y) —I(k, |) of
the two pixels in the noise-free image unknown and can only be estimated from the
noisy observatiod. In the BF filter Eq. (2.19), the difference is asared by the pixel-
level intensity difference(x, y) — J(k, I) in the noisy observatiod. The NLM filter
improved the estimation of the unknown differentg, y) — I(k, 1), by a novel
Euclidean distance between intensities of seveipalgp within two regions centred
respectively atX, y) and k 1) in the observation). Belonging to the NF, NLM
algorithm estimates the denoised intensfy y) of the pixelx =[x, y]" as a weighted
average of the intensities of all image pixels vehegrrounding regions look like that of

X in the form of

H,

L $ $ g el (ko ye D)

=5 Y . 0 0 ky+ 1), 2:21)
wherem( X) = HZ WZ expl d, (1%, ), 'rfj“’ K y+ 1)) ) is the normalizing factoi,

and W, denotes respectively the half height and widthithaf imagel, h denotes the
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weights threshold. The distanck (I1(X, y), [(x+k, y+ 1)) in Eq. (2.21) denotes the

intensity difference of the two pixex,(y) and & + k, y + |) in the unknown noise-free
imagel and is given by the intensity differences betwseweral neighbhouring pixels

around the two pixels as [53],

d, (1(x, y), [(x+ k, y+ 1)) =

Wy
DY G Mmn(Ix my p- I x k my k)’
m=-W, re- W,

(2.22)

whereG, is a Gaussian function with Stl Wy is the half width of the neighborhood
window. The difference of the two pixels is thug pxel-level but patch-level between
two patches, each of which contains noisy inteesitf several neighbouring pixels.
The difference Eqg. (2.22) is robust against noisatamination due to Gaussian
weighted averaging. It is also more likely to presefiner edges than the Catéal.
method Eq. (2.16) does since the Gaussian smoothittte Eq. (2.22) is not applied
directly on the image but on the square of the endifferences.

The standard NLM algorithm is computationally exgiga. In another study,
Buades, et al. [82] proposed to limit the searclgiore within which similar
neighborhoods are looked for. As such, the NLMefilcan be also seen as a
neighbourhood filter. Other researchers furtheppsed to accelerate the NLM filter by
many strategies, such as a pre-selection of thé&rilsoting neighborhoods based on
average value and gradient [83], mean values amchnee [84] or higher-order
statistical moments [85], and principal componerdlgsis [55]. Also the calculation of
the difference between different neighbourhoods(E®2) can be optimized using the
fast Fourier transform [86] or a moving averageefi[87].

The NLM filter was also applied in the spatial-timi@main for denoising video [88],
fluorescence microscopy image sequences [56], 28Ddnd 3-D medical images [84].
The selection of the parameters in the NLM filtexsnalso discussed in many studies. In
the ref. [88], the weight thresholdin Eq. (2.21) was pre-set between @./&nd g,
wherea, is the noise Std. In another study [89], the thoébh was determined by the
median average deviation of the nonlocal distarafethe whole image. In a recent
study, Van De Ville and Kocher [90] proposed toimjee the parameters in the NLM
filter based on the Stein’s unbiased-risk-estin{f@dRE) criteria [91] and achieved an
apparent denoising improvement over the NLM filtgth other parameter selection
methods.
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2.2.2.3 lterative Versions of the Nonlocal Means Filter

The NLM filter Eq. (2.21) performs local smoothiogly once on the whole image
for noise removal and thus may not be able to rentbe whole noise contained in the
noisy image. Based on the traditional NLM filterindermann, et al. [92] proposed a
NLM functional,

Epem (1) =

.[ng(l_ expE d, (I (X,r?, I (k1) )j expt (x— k)2|:2( y—1)? — (2.23)

whered,(I(x, y), I(k, 1)) is the nonlocal difference given in Eqg. (2.2By. minimizing
the above functional to restore the noise-free griad can then obtain an iterative
NLM filter that iteratively remove the noise frorhet noisy observatiod. However, a
major problem for minimizing Eq. (2.23) is that theactional is non-convex and its
global minimum is thus hardly achieved.

Another iterative NLM algorithm was introduced bylli®a and Osher [93] who

proposed to minimize the functional
1
B(1) =5 [0 (106 =1 (K D) w (% ¥ k ) dxdydke (2.24)

where the weight functiom, is only related to the noisy observatidrand given by

_4,0(x y).J (kD)
h2

w; (X Y, k1) = ex;{ j As such, the weightv, during the whole

diffusion iteration process remains unchanged. il contrast to the iterative scheme
of Kindermann, et al. [92] for minimizing Eq. (2)23vhere the weights are gradually
updated at each iteration step based on the prewdenoised result. By using the
calculus of variations to minimize the functional.E2.24), | can obtain the following

iterative equations,

{' (X, y’ t) = —J'nyy (l (X, y, t— 1)_ I (k, |,t_ 1))W (Xl y' k1 I)dkd (225)

I(t=0)=J
where Ny y is the set of the neighbouring region around thelp(x, y). To ensure

properties such as preservation of the averageanragnsity and convergence of the

whole iteration process, the weightg(x, y, k, I)in Eq. (2.25) are adaptively chosen in

two ways [93]; (i) In a neighbouring regid¥y y, only the 5 largest weights as well as
those for the four spatial neighbors of each pixg}) are kept and all other weights are
set to 0; (i) in case thaty(x, y, k ,)) = 0 andwi(k, I, X ,y) # 0, wio(X, y, k ,I) is set towg(k,
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[, x,y) # 0. The first choice (i) ensures irreducibilitytbe PDE Eq. (2.25) and therefore
the solution of the PDE can converges to a trigedady state [93]. The second
condition (i) ensures that the iteration processconservative [93], i.e., the mean

intensity of the whole image is preserved. Extemsiof Eq. (2.25) were presented in

the studies [94] and [95]. The first replaced theorm in Eq. (2.24) by other norms,
such as‘l(x, y)—| (k,l)\, resulting in a better edge preservation. The m@cstudy

proposed extensions such as iteratively selectaeyas the searching region and how to
deal optimally with colour images.

Another NLM-based variational method was suggested54], in which the
functional E(1) aimed to minimize the difference between the inabimage and the

filtered image in the following form,

jN W (%, Y, k DI (K, 1)dkdl i
jN W (% ¥,k 1)k

E() =[x - dxd (2.26)

where the nonlocal weight; is given byw, (x, y, k, I)= exp{—d"(I (9.1 (K, l))j.

h2
To minimize the functional Eq. (2.26), | computs Euler-Lagrange equation and
obtain the simplified iteration equation,

w, (X, k I (k, 1)dkdl

(X, Y, t+21)=1 (X, Y, )=A1 1 (X Y, - (2.27)
fi, Wi (x ik Delkal

X

with | (t=0)=J, whereAt is the step size. According to Eq. (2.27), the ctiiog

weights can be estimated more accurately from tfeady denoised imagkt) than
directly from the noisy ond. Moreover, since the weighted smoothing behaviaues
always applied to the noisy imagdeduring the iteration process, the over-smoothing
can be in some sense inhibited, thus providingteelbbalance between noise removal
and feature preservation, compared to the traditidlLM filter Eq. (2.21). However,
such method is still not able to efficiently remaalethe noise contained in the image.
So far, the best iterative NLM filter is perhaps tbne proposed by Kervrann and
Boulanger [16, 89], which adaptively and iteratwekvise the size of the search
window for each pixel at each iteration step basedhe local structures of the images.
Their iterative NLM is therefore named as structadeptive filter (SAFIR) and leads to

considerable improvement in denoising performarickeNLM filter.
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2.3 Transform-Domain Denoising Methods

The methods reviewed above use directly the intiessof pixels in the spatial
domain of the images. In this section | review aeottype of denoising methods,
transform-domain denoising where the pixel intgnsttransformed into new spaces to
separate noise-free image and noise componente 8irs thesis focus mainly on the
variational method, | here provide only a briefiesv of transform-domain method. For
more details about this approach, | refer the @s=d reader to [36, 79, 96, 97].

Original Transform Inverse Denoised
. ——>| Threshold —> .
T _ Transform 2 iImageJ

Fig. 2.2 Principal operations in shrinkage-basetbdeng methods [98]

The basic principle behind most transform-domainoiteng methods is shrinkage -
truncation (hard thresholding) or scaling (soft e8ihrolding) of the transform
coefficients to suppress the effects of noisehasva in Fig. 2.2. For such thresholding,
the challenge is to develop a suitable coefficraapping operation that does not
sacrifice the details in the image. The final deadiimage is obtained by performing an
inverse transform on the shrunk coefficients. Apotn the choice of the thresholding
operator, the choice of the transform domain i &lstical. In the image processing
literature, a variety of such transform domaindases have been proposed. Examples
of such bases include 2-D extensions of the wathistl discrete cosine (DCT) bases
used in [58], as well as those developed spedyidalr image modeling purposes,
namely curvelets [59], ridgelets [60], contourlg§], etc. Of the many transform bases
used in literature, the space-frequency localirafwoperty of the wavelet domain
makes it the most popular choice.

Since the seminal work by Donoho and Johnstone [62] wavelet basis has been
at the core of many transform-domain denoising oedh[63-66]. Of these, the
denoising method proposed by Portilla, et al. [6@ shown considerable promise.
There the authors proposed a denoising approachdbas the scale mixture of a
Gaussians (GSM) model for the wavelet coefficid@]. The noisy image is first
broken into multiple sub-bands in the wavelet denand in each sub-band the wavelet

coefficients within a local neighborhood are modeds a Gaussian scale mixture [69],
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where the scale indicates the standard deviatioth@fGaussian function. A Wiener
filter is then used to denoise the wavelet coedfits in a Bayesian least-squares
framework. The denoised coefficients across sultkbame then inversely transformed
to form the final denoised image. Recently, Lyu &mthoncelli [70] extended this local
framework by incorporating a global model for natumages using Gaussian Markov
random field (MRF) to form a Field of GSMs (FoGSMjuch a global model was
shown to improve upon the performance of the BL3YG®&ethod of [67].

The Wiener filter forms the basis of another cedédnl denoising method proposed
by Dabov, et al. [58]. There the authors proposet8B - a two-step denoising method
which exploits both spatial and frequency inforratiof an image. The first step
involves a shrinkage-based-transform-domain opmratiThe transform domain of
choice for strong noise was the DCT basis, althoiiighwavelet basis was recently
shown to improve performance somewhat [99]. Theaindenoised image is then used
as a guide or pilot estimate of the ground-tiutbr a Wiener filtering operation. What
makes this approach unique is that in each steppibits patch redundancy within the
image to improve performance. This is done by fidgntifying intensity-similar
patches in the image spatial domain. This grounésn used to perform an adaptive
thresholding in the shrinkage step. This allowsrth® process the entire group of
patches simultaneously. A similar grouping on thetpestimate is used to perform a
transform-domain Wiener filtering. Use of a grodppatches to adaptively estimate the
threshold and parameters of the Wiener filter lenodigistness to the process in presence
of strong noise. As such, this hybrid approach lmarseen as the start-of-art denoising
methods at present [] [].

Although performing denoising in the transform damamany of the so-called
transform-domain denoising methods in fact have ivedent spatial-domain
interpretations. A thorough analysis showing sughivealence for a more general class
of shrinkage-based estimators was presented in M&je recently, Milanfar [36] also
cast the hybrid approach of BM3D in a spatial-domaeighted averaging framework.
Consequently, various denoising methods may béndispreferably based on how a

specific filter is implemented rather than on tleendin of denoising.

2.4 Summary
In this chapter, Il have reviewed in detail most tbeé popular spatial-domain

denoising methods; from linear to nonlinear, ispicoto anisotropic, and pixel-level
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local to patch-level nonlocal approaches. All aigd methods aim to restore an image
by achieving a good balance between noise remowhlfeature preserving. Since the
edge is a fundamental feature, all these populdhads are designed by using thé 1
order difference of the image intensities to dettve smoothing strengths based on the
edge-preservation concept; more complicated festoretructures can be preserved as
long as edges are preserved. Some of these meltznds achieved an impressive
denoising performance, as shown in Fig. 2.1. Bssitlehave also briefly reviewed
another popular denoising approach, transform-derapproach, and pointed out that
most of the transform-domain-based methods canaint have their equivalent
variational interpretation in the image spatial éam

However, the edge-preserving denoising approachalsastheir limits. In the next
chapter of Part | in this thesis, Il point out thia¢ edge-preserving denoising approach
has their limits in preserving complex structuresl dextures, particularly under the
severe noise contamination. | discuss such linomgtiand proposed new denoising
methods for denoising images containing blobs #@igks, such as live-cell images. In
Chapter 4, 1l extend our method in Chapter 3 tqppse a more generalized diffusion

method for denoising natural images containing iplelttypes of features.
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Chapter 3

A Feature-Preserving Nonlinear Anisotropic Diffusian for Denoising

Images Containing Blobs and Ridges

Abstract: In this chapter, Il present a new diffusion metHor denoising low SNR
images containing blob and ridge features. In gdnétobs and ridges underlie many
important features in biological, biometric and o#eisensing images. Objects in these
images are likely to be corrupted by noise, suchivascells in fluorescent biological
images, ridgesandvalleys in fingerprints and moving targets in swtit aperture radar
and infrared images. A commonly used denoising otketimakes use of edge
information in an image to achieve a good balaretevéen noise removal and feature
preserving. However, if edges are partly lost teestain extent or contaminated
severely by noise, such an approach may not betalpeeserve these features, leading
to loss of important information. To overcome threblem, Il propose a novel second-
order nonlocal difference as a robust blob anderidgtector and incorporate it into a
diffusion process to form a novel feature-presegvitonlinear anisotropic diffusion
model. Experiments show that the new diffusiorefibutperforms many popular filters

for preserving blobs and ridges, reducing noiseraimimizing artifacts.

3.1 Introduction

As reviewed in Chapter 2, image denoising has bdeng-studied subject in image
processing which tries to restore an original néise image from the noisy
observation for improved visual quality and for sefuent processing tasks such as

image segmentation, feature extraction and imagdysis. There now exist many
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denoising approaches, ranging from linear [42-4%] monlinear diffusion model [9, 12,
46-48], tensor-driven diffusion model [13, 49-5@¢ighborhood filters [11, 16, 53-56],
to transform-domain denoising [57-60, 62-68, 70], @8 of which aim to optimally
remove noise by minimizing the mean square errc8EMbetween the original and
denoised images. Prior knowledge of key featurethénimage is usually taken into
account in the minimization process of MSE, dinectl indirectly, in order to achieve a
good balance between noise removal and featurerpreg in denoised images.
Nonlinear diffusion is a popular denoising approachvhich prior information of
image features can be incorporated via the diffusimefficientc (DC) into the filtering
processing. In general, an edge is a fundamerdalre that underlies more complicated
features or structures in an image. The latter lwarpreserved as long as edges are
preserved after denoising. Since the edge can &aderised by a*lorder difference
(gradient), Perona and Malik [9] first used thedigat as an edge detector to derive the
DC that can reject diffusion at edges and permibatinng in other places. Weickert
[13] further took into account the orientation afges and developed a tensor-driven
diffusion model in which smoothing is further discaged along the directions
perpendicular to the edge orientations. Building tthve work of Weickert [13],
researchers have developed various tensor-drivEasidin models [13, 50-52]. In
particular, Tschumperlé and Brun [51] proposed ahow for anisotropic image
smoothing by developing a new high-dimensionalcstme tensor field. The method
has shown impressive denoising performances batbally and quantitatively on

nature images [100], as reviewed in the previoaptdr.

(a) (b) () (d)
Fig. 3.1 (a) — (b) Noise-free and noisy fragmertam 8-bit imageParrot [101], the

latter of which contains additive Gaussian whitésaf a Stds,, = 20; (c) Gradient
amplitude of the noisy image calculated by thtofder central difference(b); (d)

Denoising result by PM diffusion [9] on (b)
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While there has been a considerable focus on thkate of anisotropic diffusion,
the smoothing strengths, either DCs, eigenvaluedififsion tensor or the averaging
weights of the neighbourhood filter for determinimfpere and how much smoothing
effect should be encouraged or discouraged, bdeaved using the grayscale gradient
information, which effectively corresponds to edfgection. However, in low-contrast
and/or low-SNR images, the gradient is not roboistharacterize the features contained
in noise-free images. Fig. 3.1(a-b) shows noise-&lvd noisy fragments of the image
Parrot [101]. Fig. 3.1(c) shows the gradient amplitudehaf noisy image Fig. 3.1(b) by
using a simple %torder central difference. The colour bar in thigufe indicates the
scale of the gradient amplitude: a red colour meahgh value of gradient amplitude.
As seen by comparing Fig. 3.1(a) and (c), | cad firat almost no features (the eye, eye
socket and stripes on the face of the parrot) @acharacterized in the gradient map.
Although one can perform a smoothing to removeenbifore calculating the gradient,
the edges in the image can be also blurred or dradaiut. As such, when the edges are
partly lost to a certain extent or are contaminaederely by noise, the gradient-based
denoising methods, one of which is shown in Fig(®, may not be able to recover
these edges and thus fails to preserve other confeabures that are made of by the
edges, such as blobs, ridges and textures, whehngvortant in the study of many
subjects, such as live-cell imaging [31], detatind tracking of small moving targets
[102], and recovery of ridges for pattern recogmitiof fingerprints. This calls for a
more sophisticated feature detector than the edgectr in the diffusion-based

denoising methods.

(a) (b)
Fig. 3.2 An example of blob and ridge feature Adjright blob; (b) A bright horizontal

ridge

Blobs and ridges correspond respectively to circated line-like regions that are
either brighter or darker than their surroundint®4, 105]. Fig. 3.2(a) and (b) show a
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bright blob and ridge. Mathematically, these feesuare more correlated to a second-
order difference rather than a first-order one Wwhiceasures edges. In this chapter |
propose a novel second-order nonlocal differené&q@ler NLD) to detect blob and
ridge features. By nonlocal difference | mean thatgrayscale difference between two
pixels is measured by two regions (patches) cerdtdtie pixels instead of the pixels
themselves. Each patch can be considered as ar vecto multidimensional feature
space [51], so the proposed®drder NLD measures the second-order difference
involving more than two vectors. The use of suchlocal differences is inspired by the
success of the popular NLM filter [53], in whichethdifference of two pixels is
measured by the Euclidean distance of the grays@diees between two patches that
are centred at these pixels. Such distance measntdras been used as a basis not only
for image denoising [16, 51, 57, 58] reviewed ia firevious chapter, but also for other
machine vision tasks such as texture synthesis| [406 texture segmentation [107].
We further propose to form a new feature-preservibgnoising method by
incorporating the proposed®rder NLD in a nonlinear anisotropic diffusion nebd
Owing to a good performance of%drder NLD as a blob and ridge detector, our
denoising method can preserve these features éwemh the edges that bound the
blobs and ridges are partly lost or contaminateddyere noise. Experimental results
demonstrate that our method can achieve a higlad-gignal-to-noise ratio (PSNR) [16]
and higher mean similarity index (MSSIM) [108] whapplied to both synthetic and
real live-cell, fingerprint and natural imagesttbantain blobs and ridges with various
sizes, compared to traditional diffusion methods 2], tensor-driven diffusion
methods [13, 51, 52] and other popular denoisinthads [16, 53, 58].

The remainder of this chapter is organized as \ialldVe first present thé'2order
NLD in Section 3.2. In Section 3.3, th&®rder NLD is employed to form a feature-
preserving nonlinear diffusion method. Experimesrisboth synthetic and real data are
presented in Section 3.4. Finally, | conclude tfemmesults of the paper in Section 3.5.

3.2 Second-order Nonlocal Difference

A simplest way to detect blobs and ridges is tolyagpe Laplacian operator [109]
which, for one-dimensional (1-D) digital imagesusually approximated by a second-
order difference of signal intensities of threeaadnt pixels. However, noise in these
images can lead to false detections because tle¢lpiel difference, as shown for the
gradient image in Fig. 3.1(c), is prone to be coted by noise. We here introduce the
concept of nonlocal difference which measures tissidilarity between two local
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regions, referred to as patches, rather than twelgi The nonlocal difference between
two patches was first introduced for textures sgsith by Efros and Leung [106] and
then for image denoising in the work of NLM filtéyy Buades, et al. [53]. In this
section, | apply the concept to develop a secoddrononlocal difference for robust
detections of blobs and ridges. The difference thigin be incorporated into a diffusion

model for feature-preserved denoising.

3.2.1 Nonlocal Difference

1(x)

i
Xiw X g X Xi+w—1 Xi+w X X
WL w-1
2 2

Fig. 3.3. A schematic showing nonlocal differentcesne-dimensional space

We describe the concept of nonlocal difference Inasignal. Extension to the 2-D
case is straightforward and will be discussed ldtet | : @ OR* -~ R'be a 1-D signal
defined on the signal domai@ and x J 2 is the pixel positiong =X ,X% ,.. ,¥, as
shown in Fig. 3.3. For each pixet, | define a neighbourhood regia, which

comprisesW pixels centred arounk. We further define a patd, , which is a vector

comprising gray-level values of all pixels withimetneighbourhood regiosy, [51]

F’)q :[I(Xi—(W—l)IZ)’ I(Xi_(\N—l)/ZHI)""I(Xi)""l (X, w—l)/z)]T, (3.1)

whereW is assumed to be an odd number for symmetry ceratidn. The nonlocal
distance between two signal valués;) andli(x), can be measured as the Gaussian-

weighted Euclidean difference [53],

dy (X, )ﬂ)z Pxi _ij

2,0

L e [TV (3.2)
- 2 "5 G- 06|

C k=—(W-1)/2
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of the two vectors?, and P, in the W-dimensional space, whef@, is a Gaussian

(W-1)/2
kernel with Stde andC = z G, (K) is the normalizing factor. The Stdis often

k=—(W-1)/2
chosen as 1/3 of the half of the patch width. FomaagelJ that is the noisy observation

of the imagel, this nonlocal distance has been proven to pro@adaore reliable

estimation for the unknown absolute intensity d'effn:e‘l(xi)—l(xj)‘, compared to

estimation by using only the noisy samplés) andJ(x) [97]. The distance Eqg. (3.2)
has also been used in the NLM filter for improvidgnoising performance of the
traditional weighted averaging filter [14, 15, 53].

Based on the nonlocal distance, Eq. (3.2), andhpexpression, Eg. (3.1), | can
define a first-order nonlocal difference™(@rder NLD) when two patches, centredkat

wa1y2a@ndXiswa1)2, are very close to each other,

|||:|NLI (Xl)” = PX.f(w+1)/2 B Xiv (W+1)/2 2,0
1 (W-1)/2 2 }é ' (33)
= (— Z Ga(k)(l (X—ON+1)/2+k) -1 ( X+ON+1)/2‘k)) J
k=—(W-1)/2

whereG, is a Gaussian kernel with Std Eq. (3.3) involves the first-order difference

between two adjacent patchélgW and me .. For the same reason given to Eq.

+1)/2 +1)
(3.2), Eq. (3.3) is more reliable than the pixeldegradient operator involving two
pixels to measure edges under noise contamination.

One drawback of the nonlocal distance is its irm@dacomputational burden. To

overcome this problem, an alternative solution [83) first transform the vectey to

another vectolF, =[F,(0),..F, W-2J with an orthonormal transforming matrix

derived by the principal components analysis (PCRA)simplified nonlocal distance

dus(%, %) can then be measured by either all or parts octimponents of the new

vector F, . When all components &, are considered, the simplified nonlocal distance

is equivalent to Eq. (3.2) sineg, ((x, x)=|F, —F,

2,0

2% -#2.],, =[PP,

551

In particular, when only the componelit (0) of the vectorF, is used, the simplified

nonlocal distancel ((x, %) is given by

dNLs(&,>s)=GU(O)‘F‘éSZ)_FX" (0) JF* (oz:—l:% (0} | .
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which is simply the difference of two scalars deddby a constant. According the

theory of PCA [55], the first componeR, (0) of F, . which is also the first principal
component of the path?& , can be seen as a mean value of the p&gchAs such, the

edge detectofd(G, O1)(x)| that was introduced in Eq. (2.16) by Catté, efld] can

indeed be seen as a simplified case of therler NLD Eq. (3.3) since the edge
detector in the discrete form

(6, 0 ()] =| X kG, (K 10x,)
=W Ziv:_l G, (k-(W+1)/2) |( )|(+k—(W+1)/2) (3.5)

G, (k-(W+1)/2) I x,

-1

+(W+1)/2)

DM

k=

N ‘

also measures the difference between the Gaussmmed mean values of the two

patches (vectors). In a recent study, TasdizenH&5]shown that the PSNR obtained by
a variation of NLM filter whose nonlocal differerecare measured by the first principle
components of the patches, i.e., in the similahitasto Eq. (3.5), is much lower than

that by the original NLM filter which uses Eq. (Bfr the distance measurement. As
such, using the full components of the patche®éflye detection should perform better
than that given by Eq. (3.5) that uses only thermesdues of the patches.

3.2.2 Second-order Nonlocal Difference

Based on the definition of nonlocal difference hie tast section, | now formulate a
second-order nonlocal difference"{@rder NLD) to be used for blob and ridge
detection in the form of

PR oL, =128 =P, =Pl

2,0

1 (W-1)/2 2 %' (36)
:(— z Gg(k)(ZI (X+k)_| (X—W+k)_| (X+W+k)) j

C k=-(W-1)/2

whereG, and C are the same as those in Eq. (3.2). Eq. if8:6)ves the second-order

difference between a central pateh and its two adjacent patchés and P, shown

in Fig. 3.3. A IargeHDﬁ,Ll(x)HZJ corresponds to a brighter (darker) central patch

compared with its two neighbours, which indicates presence of a blob or ridge. For a
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similar reason as for Eq. (3.2) in the last sectaq. (3.6) can provide a more reliable
measurement than the pixel-level second-order rdifige, i.e. the Laplacian operator,

for blob and ridge detection in the presence o$@oi

200 T 1 1 T (
150~ -- ey a)|
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Fig. 3.4. (a) A 1-D noise-free signal containingethblobs and the corresponding signal
corrupted by additive white Gaussian noise withtdad§ = 20; (b) The F-order NLD
and LoG response of the noise-free signal; (c) fidek response of thé%brder NLD
for a blob at the blob centre versus the blob sjz@) The 2%order NLD and LoG
response of the noisy signal; (e) The diffusionfiicient of 2"-order NLD and LoG

response on the noisy signal.

In order to illustrate the performance 8f-Brder NLD as a blob detector in the 1-D

case, | study the behaviour df3, | (>q)HZJ on a 1-D 8-bit signal containing three
blobs of sizes = 5, 11 and 21 pixels without and with additive tehiaussian noise
(AWGN) of a Stdo, = 20, as shown in Fig. 3.4(a). Intensities of thlebs and

backgrounds are set to be 150 and 100 respectiVietyresponse of thé%order NLD
given by Eg. (3.6) on the noise-free image is pbbin Fig. 3.4(b), where the patch size
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W = 21is chosen, which corresponds to the largest biodisi the signal. The Steof
the Gaussian function in Eq. (3.6) is setaas (W -1)/6=10/3, which is 1/3 of the

half of the patch window [109]. As shown in Figd@), when the blob size equals the
patch size, i.e.s =W (rightmost blob in Fig. 3.4(b)), the response #t&der NLD is
unimodal and symmetric with the peak value at thetre of the blob with a limited
non-zero spatial range. In the general caseszdV, while the unimodal behaviour is
gradually lost and the peak value decreases ablohesizes deviates from the patch
size W, the maximum peaks remain at the centre of b&izs they are significantly
higher than responses at other positions withitodloThe spatial dependence of the
2"%order NLD is in general complex since Eq. (3.68)ef®ls not only on the position
but also the value o#, blob size, contrasts, etdHowever, it can be simplified
considerably in a special case when a box window-(+~) is used, the blob size
equals the patch size, i. 8. W, and the intensity of the blob is uniform. We ame
this expression to explain the essential behawbdine observed spatial characteristics
of 2"“order NLD. Whers =W, o — +o, and the signal intensities inside and outside
the blob region are unequal but respectively umfoEq. (3.6) can then be written

explicitly as
M (4=3x = x [ IW)* if | x= x|< W

[Birgs= W, =3 M| x= [/ WP if we| e <2 v (37)

0 otherwise

where x_is the central pixel of a blob arM is the intensity difference between the

blob and its surrounding background. The respoh&&’@rder NLD given by Eq. (3.7)
is unimodal and symmetric with the peak value atdéntre of the blob and a non-zero

range ofx O (-2W+ x ,2W+ x). We further find in Fig. 3.4(b) that the peak \alof

the 2%order NLD for a blob decreases as the blob siteviates from the patch siyé
To quantify such decreasing, | express the peakevalf the X-order NLD as a

function of the blob size by simplifying Eg. (3.6) into

2M (s/8)" if0s < §
[oir=x.9], ={2M[1-(s/ $-0 /2" if $< s35  (38)
0 otherwise

whereM is the intensity difference between the blob dadgurrounding backgrouns;

is the patch size S = W in the 1-D case. Eqg. (3.8) is unimodal with a maipeak
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value of M whens=W and monotonically decreases when the blob seviates the

patch sizeS. Fig. 3.4(c) shows the plot of the peak va{'ﬁkﬁ,LI (%=X, s)Hzm versus

the blob sizes whenW = 21 and the intensity differend# = 50. We can easily obtain

from Eq. (3.8) thaﬂDﬁ,Ll (%=X, S)H2+ stays aboveM (i.e., half of the maximal peak

value M) if the size of the blob is within a ran&/4,5M2], which give$6,52 for
W =21

We have further tested thé%drder NLD on the noisy image in Fig. 3.4(a) and
shown the results in Fig. 3.4(d). As seen, the mhbaracteristics exhibited in the noisy
response curves, i.e., the unimodality, non-zestiglprange (up to a small fluctuation
due to noise) and the dependence of the peak valuttee blob size remains essentially
unchanged, indicating that th&"®rder NLD is a viable operator for detecting blatfs
different sizes in noisy images.

The performance of"2order NLD can be compared to that of Laplacianaof
Gaussian (LoG) [109], which has previously beerdwssean operator for blob detection
[110], and also used in the Marr—Hildreth algoritfjrfor edge detection. The detection
response by LoG at pix&l in the same 1-D sign&linvolves convolution of with the
LoG operator

(aw-1)/2

Pe 0= Y (K=0?) G (RI(x%,)]- (3.9)

k=—(3W-1)/2

Similar to the discussions about the performanc&bérder NLD, | apply Eq. (3.9) to
the noise-free 1-D signal Fig. 3.4(a) with the sapatch sizeW =21 and a Std
0 =10/3 so that nearly all values (99.73%) of the Gaus%amel lie within the
window of sizeW = 21 [109]. The response of LoG is shown in Figi(l3). We can
prove through simple manipulations of Eq. (3.6) dgl (3.9) that the difference

A(x):umag(X)HZ]U—\DZLoGﬂl(x)\>o in a blob region andA(x)=0 in the

background regions. The"order NLD has therefore a higher response to blobs
without increasing false detection in the backgrbwegions compared to LoG. Also
seen from this figure, the response of LoG forabbs triple-modal, each of which can
be misinterpreted as three blobs due to three lneaima [109]. LoG hence is prone to
false blob detections in images. Moreover, | phat peak response curve of LoG at the
centre pixel of a blob versus the blob séze Fig. 3.4(c) for comparison. As seen, both
the 2%order NLD and LoG achieve the same maximal pedkevaM ats=W and

decrease to zero at= 0 and 3V. However, the P-order NLD decreases in a much
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slower rate than LoG. Compared to the blob sizgez{xﬁ,Sj obtained earlier for 2nd-

order NLD, LoG possesses a narrower rar[fgléZ,Z\N] = [1142]. As a result, Z-order
NLD with a single patch sizé/ (scale) has a higher sensitivity for detectingoblavith

different sizes, compared to LoG with same pararsefghis is also true for images

with noise, as shown in Fig. 3.4(d).

3.2.3 Directional Second-order Nonlocal Differencein 2-D Images
We have formulated and studied th&-@der NLD in 1-D signals in the above
subsection. In this subsection, | extend tAto2der NLD Eq. (3.6) to 2-D images in

which both ridges and blobs can be directionaluiest. The detection of these features
should take their directions into considerationt Le2 O0R* ~ R be a 2-D image

defined on the image domai® and x, =[x,y] 0@ is the pixel position,
X =%, X, ... Xy . FOr each pixelx; = [x, yi], the neighbourhoodv, , is then defined
as aW x W square region [55] which compris@€ pixels centred arount = [x, vi]".

The patchP, , in the 2-D image is then defined as a vector cosmmi gray-level
values of all pixels within the neighbourhood regia/, . [51] in the row-wise-
concatenations form,

Py =X ey Yeawenya)s- - 1 Yoo (X oy Vi 2] - (3.10)
The neighbourhoodv, , is chosen as a square region for symmetric coraider[55,
110, 111]. Based on the patch definition Eq. (3.1@efine a 2-D directional®order
NLD at a pixel X =[>§ : yi]T along a given directioél as

X W cossr ¥-w sig X+ cogr Y+w sig

[Pt .0, =[2R,., -

20

W wel %, (3.11)
1 2 2
= c Z Z G, (K |)(2| Kot Yo )= 1w cosprc » Yow singnt )= T (K cogeic » Yoow siﬂ+l))2
S
2 2
W we
2 2
whereC= > > G,(k ) is a normalizing factor. As shown in Fig. 3.5(&x.
w-1 w-1
2

(3.11) involves the difference between a centratipand two neighbors along a given

direction.A large directional %-order NLDHDZNLI (X ,H)HZJ corresponds to a brighter

(darker) patch compared with two neighbors along directioné, so indicating the
presences of blobs and ridges whose principal tireare perpendicular t
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[
>

(x-x)sind-(y-y)co®d =(W-1)2 %

(I) isotropic ZYNLD  (m) isotropic 2° NLD (n) LoG (0) LoG

Fig. 3.5 Performance illustration of th&-arder NLD in 8-bit 2-D images. (a) A noise-
free synthetic 8-bit image consists of blobs anljes with various shapes, sizes and
orientations; (b) A noisy observation corrupted AWGN of Std o, =20; (c) A
schematic showing directional®NLD in 2-D space; (d) — (g) Responses of directlon
2"%order NLD at3@ for noise-free and noisy image, and that Sf@der DoG at30°

on same imagegh) — (k) Responses of directiondl®®rder NLD at12@ for noise-
free and noisy image, and that df-Brder DoG atl2®® on same images; (I) — (0)
Responses of isotropi€®2order NLD for noise-free and noisy image, and ¢hosLoG

on the two images.

To illustrate the performance of th&%®rder directional NLD as a blob and ridge
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detector, | study the behavior Hﬁ]ZNLI (Xi'H)Hzg in an 8-bit 2-D image without and

with AWGN of Stdo, = 20, as shown in Fig. 3.5(a-b), which consistbdbs of
dimensions 11x11 and 21x21 (pixels), two circulexbb of the diameters 11 and 21,
two elliptical blobs with same major and minor deters of 41 and 21 in two
orientations at90° and 12, and a ridge of length 61 and width & at 30°,
respectively. Each of the features is marked witbtt@r. Intensities of the features and
backgrounds are set to be 150 and 100 respectsastye as the setting of those in the
1-D experiment Fig. 3.4(a). We first apply the 2iectional 2%order NLD Eq. (3.11)
along two directions perpendicular to each othef aB(°and12C° to the noise-free
image. The responses are shown respectively in3gd) and (h), where the patch
height (width)W =21 ando =10/3 are chosen, same as in the 1-D experiment. It is
obvious that the responses are general directiopdalendent. However, the essential
behavior of the responses for the each given dire¢hered =30°and120C), such as
the peak locations, the symmetry, and the intenmibfiles, are similar to the 1-D case.
The peak values, similar to the 1-D case, stillesheppon the objects sizes. We can
analytically explain easily this dependence fordhee of o - +o by simplifying Eq.
(3.11) into the following form,

1/2

2M (s, /' S) ifo< g< S
HDZNLI (x; :XiC!SH)HZYMO = ZM[]-—(% IS —]) /2:|ll2 if S< s<3 & (B.12)
0 otherwise

where$s is the patch sizeyis the size of blob and ridge region bounded betvie®

lines (X—X )sin@-(y-y )cogd =+ and 6 is the angle of the directional®2

order NLD, as illustrated in Fig. 3.5(c). The pasden M is the intensity difference
(feature contrast) between features and backgrolgis(3.12) has the same function
expression as the peak value, Eqg. (3.8), in theck$®, allowing same dependence for

peak values of directional™®order NLD on size ratis,/S; as that in the 1-D case,
except now thats,/S, is the 2-D area ratio which depends on both the simd

orientation of the object. For example, for blob &= 30° and 120 correspond to
directions perpendicular and parallel to the ppatirientation of the blob and the area
ratio for the two cases a/S, =1 and 71/2, respectively. Consequently the peak
value for blob F at) = 30 (Fig. 3.5(d)) equalsM and is much higher than thatéat
120 (Fig. 3.5 (h)) according to Eq. (3.12).
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We have also tested the noisy image Fig. 3.5(bpfmlying the ¥-order NLD
along the same directions &t = 3¢ and 120, the results of which are shown
respectively in Fig. 3.5(e) and (i). As seen, tesponses of "dorder NLD are
essentially the same as those to the noise-fregeinmathe same directions, in a similar
manner as the comparisons of characteristics id4Decase between the noisy-free Fig.
3.4(b) and noisy responses Fig. 3.4(d) of the 1"Hogder NLD. Accordingly, the
directional 2%order NLD Eq. (9), same as the 1-f$-Brder NLD for feature detection
in the 1-D noisy signals, is viable for detectinglds and ridges with different sizes,
shapes and orientations in the 2-D noisy images.

For completeness, | compare Eq. (9) witff-&der directional derivative of
Gaussian (-order DoG), which has previously been used for ®iBb and ridge

detection [111]. The detection response BY DoG at pixel X; =[><i,yi]T along the

orientationd can be written as

P pe ! (%,6)| =
(BW-1)/2  (3W-1)/2 . (3.13)
[ (kcosg-1sig §-07 |G, k1) € ¥

k=—(3W-1)/2 |=— (3W-1)/2

Similar to the performance comparison between IB&ler NLD and 1-D LoG in our
1-D experiment in the previous subsection, | afigy (3.13) to the noise-free and noisy

images Fig. 3.5(a) and (b) along the same direstad = 30 and120 the response

of which are further shown in Fig. 3.5 (f), (g) aRd). 3(j), (k) respectively, with the
same patch heightv =21 and Std 0 =10/3 . In general, the ®-order DoG

‘DZDoG,A(Xi,H)‘ can be seen as a 1-D LoG along a given direafioso potentially

exhibiting the characteristics of 1-D LoG whichave analyzed for Eq. (3.9) in Section
3.2.2. This is hence no surprise that responsg¥afrder DoG in Fig. 3.5(f), (g) and (j),
(k) all show apparent triple-modal shapes and tqueak values, particularly for blob
A, C and ridge G, compared to the resultsBfd2der NLD in Fig. 3(d), (e) and (h), (i),

respectively. All of these are consistent with tiservations of Fig. 3.4(b) and (d). In
this sense, the conclusions obtained in 2-D imagesonsistent with those in the 1-D

case.

3.24 Isotropic Second-order Nonlocal Differencein 2-D Images
As shown above, the responses of both directioffabrler NLD and DoG are

directionally dependent. That is, for two featuneth same shapes, sizes and brightness
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but varied orientations, the operator yields ddférvalues [112]. For example, the
responses for two blobs E and F in Fig. 3.5(a)) wé&me shapes, sizes and contrasts but
varied orientations, are totally different in a gafigure, such as Fig. 3.5(h) or (j). As
such, the directions of the features should be knaw a priori when the operator is
applied to the images for detection. However, thewdedge of the feature directions in
most cases is unknown to us and thus has to beast by other methods. This may
greatly increase the computational burden and dseréhe detection sensitivity of the
detectors if the directions are not estimated ately. To overcome this problem, the
Laplacian of Gaussian was proposed as [109]
02 .01 06)] =| T pa,! (%,0)+ 0% ol (% ,90) =
(BwW-1)/2  (3-1)/2

(k* +12-20%) G, (KD (% Y
k=-(3W-1)/2 |I=- (3W-1)/2 (3.14)

which is the isotropic sum of"2order DoG in two dimensions and thus a rotatignall
invariant [109]. Following the same approach, Infatate an isotropic"-order NLD

as

HDlz\lLl (Xi)Hz,a :%HDI%JLI (%,0)+ 05! (% ,901‘

2,0

:%HA'P&,V. ~Pyve "Pive "Pawy TP NHM' (3.15)

which is an isotropic (rotationally invariant) op&sr and can thus yield same responses
to identical features oriented at different angles.

We illustrate the performance of the isotrop?&-drder NLD by applying Eq. (3.15)
respectively on the noise-free and noisy images ¥iga) and (b), where patch height
W = 21 andsr —+o0 are chosen, same as those in the previous sutrseResponses of
the two images are shown in Fig. 3.5(l) and (m).sAen, profiles of isotropic'2order
NLD for all features are very close to the origimales. Also as seen from the two
figures, the ¥-order isotropic NLD operator provides the samepoeses to the two
elliptical blobs E and F with the same shapes, ssiaad brightness but varied
orientations, indicating the rotational invarianogé Eq. (3.15). By considering the
computational speed and detection sensitivity, ifmropic 2%order NLD is thus a
better operator independent of the feature dirastithhan the directional one to detect
the blob and ridge features in the 2-D images &und tmore appropriate to derive the
smoothing strength for a diffusion model in the tegction, in which the strength
should be independent of the feature directionsaartg derived by the contrasts of the
features [9, 49].
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To illustrate the consistent advantages of tAogder NLD over the ¥-order
derivative of Gaussian, | apply the 2-D LoG Eql}.to Fig. 3.5(a) and (b) and show
the two response images in Fig. 3.5(n) and (0).iQsv triple-modal behavior and
lower peak values are again observed comparecetoetiponses of thé%order NLD.
All the results and comparisons indicate that tifeoBder NLD performs noticeably
better than the LoG in 2-D case as a blob and riggector.

3.3 Feature-Preserving Diffusion

A diffusion coefficient (DC) in the traditional nbnear diffusion model, such as the
PM model Eg. (2.9) or (2.10) [9], is a decreasimgction of the gradient of imadethe
value of which is small in the vicinity of edgesdarlatively large in background areas,
S0 giving rise to edge-preserving diffusion. Instlgection, | begin with a feature-
preserving nonlinear diffusion (FP-ND) for the 1dignal | : QOR - R in the

image domain® in the form,

A0~ v {5, 1], ) 1 00 (3.16)

where the diffusion coefficient (DC),

(B i

ol 1000, ) = exg e

(3.17)

is a decreasing function of the 1-B%®rder NLD Eq. (3.6), (x,t =0)=J(x) is the
initial noisy image,[] is the gradient operator, div is the divergenceraioe andh is

the diffusion threshold. If0, 1 (x,t)], >>h, c(umaJ(x,t)HM) ~ 0 and the diffusion

flux is suppressed; {fi1%, | (X’t)HZ,U <<h, C(HDZNL | (X’t)HM) _ 1 and the diffusion flux is

encouraged. Thus the paramédieserves as a threshold to determine whether or not a
smoothing behavior is encouraged. We employ theianeabsolute deviation (MAD)
of the 2%order NLD to adaptively estimate at each iteration step during diffusion
process [47, 48] (see Section 3.4 for more details)

The DC Eq. (3.17) is unimodal of th&%drder NLD, which remains a one-to-one
correspondence between the local minima and trolesbland is lower in value in the

vicinity of blob features than noisy backgroundy.R.4(e) shows an example of the DC

c(HDﬁ,LI(x,t)HZ’J), corresponding to the"2order NLD HDﬁLI(x,t)HZJ given in Fig. 3.4
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(d), where the diffusion thresholilis chosen to béa =20, same as the Stg}, of the
AWGN in the corrupted image. We will show througtperiments in Section 3.4 that
the FP-ND filter Eqg. (3.17) can successfully smooth noise and preserve the three
blobs. For further comparisons, | also plot DCha exponential form of LoG response
in Fig. 3.4 (e), which exhibits the same triple-rabshape and has higher value in blob
regions in comparison.

In 2-D images, ridges are line-like features wiitfiedent orientations and blobs can
be approximated by directional ellipses. To betieserve the geometric properties of
the features, smoothing behaviour should be peddrim directions parallel rather than
perpendicular to the isophotes of the images [§2¢ propose a feature-preserving
nonlinear anisotropic diffusion (FP-NAD) that smoe$ along the direction of the
image contours [49]. In this case, the diffusiondeidor a 2-D imagd : @ OR* ~ R
is not manipulated by the scalar DC in Eq. (3.b8), by a2x 2 diffusion tensor (DT)

D in the following form,

ol (x,t)
ot

=div[D(x, )OI (x,t)], (3.18)

where x =[x, y]" OR? is a pixel anddI(x,t)0R? is a vector whose elements are
gradients at the pixet along x-axis andy-axis. As a symmetric and semi-positive-
definite 2 x 2 matrix,D can be expressed as [50],

D(x,t) = f (X, tV Vg + f, (X, tVV/S (3.19)
where the vector¥,,V, and the scalard,, f,are the eigenvectors and eigenvalues of

the DT D, respectively. The vectord, andV, determine the smoothing directions
during the diffusion process and are commonly chdsebe the eigenvectors of the
structure tensorS=G, 00(G, 01)O(G, O1)" [13, 49, 50, 52], pointing to the
directions perpendicular and parallel to image stes. The eigenvaludg f; in Eq.
(3.19) determine the strengths of the local smogtiiehaviour along the directioNs,

V1 in a diffusion process. Therefore how to obtaie two values determines the
performance of the diffusion Eq. (3.18). We finattvhen the edges are partly lost or
contaminated by severe noise, high values of smuptstrengthsf,, f; will lead to
oversmoothing of the blob and ridge features if sheothing strengthare derived as
decreasing functions of low amplitudes of gradiastin previous studies [9, 12, 13, 46-

52]. The problems can be overcome if the more roBlYsorder NLD based operator is
used. The smoothing strengths should be also imdiee of feature directions so two
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identical objects with different orientations cam $moothed equally. We here propose

the eigenvalued,, f, as decreasing functions
1/2
(05 00) =e (| D1 (x), ) and £, OF1 &t )=[1, 041 &))" 320
of the isotropic Z-order NLD HDﬁ,LI(x,t)HZJ Eq. (3.15), where the form of

C(HD’%‘LI(X’t)Hzg) is same as Eq. (3.17). By constructing the difiugensorD with

Eq. (3.19) and Eg. (3.20), our diffusion model E8.18) can thus perform various
smoothing behaviours for different regions: In bgrckind regions the"2order NLD is

smalland Ilim f,=

o = | I|H f, =1 , so smoothing behaviours in the directgnand
Dﬁ|20ﬂ0 D@|2”ﬂo
0, are encouraged at an equal level (isotropic snimagthin the vicinity of blobs and

ridges, sinceHDZNLIHZUis large, lim f,=0 and Ilim f =0 and smoothing

2 2
02 1 H L+ HD I ‘ oo
‘ NL 20 NL b o

behaviours in the two directions are discourageudthiermore, both the eigenvaluigs

f, are smaller than 1 and the latter is the squaoé ©b the former, giving rise to

f . . . .
il TO:O' As such, smoothing behaviours along the direcfierpendicular to
D21 =+
NL 20 1

the intensity isophotes, regardless of whetherhetgs are located around blobs or
ridges, is discouraged at a higher order to bptteserve the shapes of the features.

Our method, Eqg. (3.18), is different from seversvous tensor-driven methods
[13, 49, 50, 52], in which the smoothing strendthg eigenvalueh, f; of the tensoD)
are derived by the gradient, whereas in our metheyl are determined by d%brder
NLD. The latter allows better preservation of bkt ridge features, compared to other
diffusion methods [13, 49, 50, 52], particularlyden severe noise contamination. This
will be demonstrated experimentally in the nexttisec Our method derives the

smoothing directions in the same way as previouhoas by using the eigenvectors of
the structure tens@® =G, 00(G, 01)J(G, O1)" . This is due to the fact that the

directions of objects, such as blobs and ridges,rainforced by the structure tensor
through the use of the direction coherence of thesires [50], even when edges that
bound them are partly lost or broken due to notsgammination [13].

We further discuss the similarity and differenevieen our diffusion model Eq.
(3.18)-(3.20) and the anisotropic diffusion in tepace of patches (ADSP) [51].

Although the ADSP, at a first look, is similar taromethod, the two methods are
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essentially different. While both methods involve tconcept of image patches in the
formulation of diffusion models, the smoothing sgths and directions in the two
methods are determined respectively by differerdgrajors and structure tensors: in

ADSP they are derived respectively by the trag¢s,] and eigenvector of a new

=00

structure tensos( Py =

Ol (s constructed in a high-dimensional patch space, [51]

where F(P) denotes the projection of imagdeonto the patch space. The eigenvector
(., gives the orientation perpendicular to the isopkof [ ,,. The tracetr[S,] is

the Euclidean norm of the gradient in the patchcepso the smoothing strength is
reduced at locations with high patch-gradients hfiezally ADSP is a diffusion method
based on gradient (edge) measurement and an edgé-@nhancing) diffusion in the
patch space. Such method has shown better dengisifigrmance compared to NLM
filter [51]. Our method, on the contrary, compusesoothing strengthisy the ?%order
NLD which measures the difference between seveeidhbouring i-order patch
differences. Since thé"2order NLD has a higher response to blob and ridgéures
than the T-order difference (gradient), particularly when esldpounding features are
partly lost or contaminated under severe noise,stheothing strengthfy andf; Eg.
(3.20) by the Z-order NLD obtained in our method is expected tdgwen better in the

diffusion process for blob and ridge feature preisgrand noise removing.

3.4 Experiments

In this section | present visual and numerical ltespbtained by using our diffusion
method, first for a 1-D signal and subsequently Brages. It is common to terminate
the diffusion after a fixed number of diffusionréaéions. However, such a mechanism is
not flexible and it is difficult to produce satisfary results. Here, | utilize the mean
squared difference-norm (MSDN) criterion [108] timgs the diffusion automatically.

The MSDN between two adjacent diffusion steps ecawbtten as,

N
MSDN(I (t)) =%\/Z(| (x,t)=1 (x t-1)°, (3.21)
i=1
whereN is the number of pixels andienotes the iteration time. In the diffusion psx;e
the MSDN value decreases exponentially with the memof iterations. The diffusion is
terminated when the MSDN reaches to a certain sralke. We set this value as 1% in
all experiments of this section, implying that t#fusion process has sufficiently

converged. Besides, in all tests the diffusionghodéd h of Eq. (3.20) at each iteration
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step during diffusion process is estimated by egiptpthe median absolute deviation
(MAD) [16, 47]

h=1.4826 MAD(%, | (x t, )

2,0

(3.22)
=1.4826mediaHHDﬁ,Ll X(t[) - medigig, 1 x(t|,) ‘}

of the 2%order NLD. The mechanism of MAD operator has bdisgussed in detail in
[47] and proven very effective in estimating thdfudiion threshold [16, 47]The
parameteh varies adaptively and converges during the diflagrocess, the value of
which depends on the complexity of structures @ithages.

We compare our results with those of existing méshancluding PM [9], Catté
[12]*, coherence-enhancing diffusion method (CEML3], tensor-driven curvature-
preserving diffusion (TDCPB) [52], anisotropic diffusion in the space of pash
(ADSPY [100], NLM filt ® [53], structure adaptive filter (SAFIR) [16] andobk
matching and 3-D collaborative filtering (BM3D[58]. The last method is considered
to be the best denoising algorithm at present996,

! Using the code at http://visl.technion.ac.il/~géi#BDE-based_image_filtering.html

2 Using the software provided by the author at hymic.sourceforge.net/gimp.shtmi

3 Using the code at http://www.mathworks.com/matlaitad/fileexchange/13619

4 Using the code provided by the authohtip://www.cs.tut.fi/~foi/lGCF-BM3D/BM3D.zip
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Fig. 3.6 Evolution of the 1-D noisy signal givenkig. 3.4(a). (a) - (b) Results by FP-
ND in two different stages; (c) The final denoisaegnal after 472 iterations. The same
approach with DC using LoG response is also pldtedomparison; (d) MSDN values

and the diffusion threshohlldof FP-ND versus the iteration number.

We first test the FP-ND filter Eq. (3.16) on théDlroisy image Fig. 3.4(a). The
patch sizélV is chosen a8V = 21, same as the size of the largest blob. The iniaale
of the diffusion threshold is set to beh =20, same as the Stg, of the AWGN in the
image, and is updated using the MAD operator EQ2)3at each iteration. Fig. 3.6(a) -
(c) illustrate the denoising results of the noisyage Fig. 3.4(a) at different stages
during the diffusion process. As seen from Fig.(8.4the DC is much higher in
background regions far from three blobs than inréggons close to them. As such, FP-
ND smoothes more heavily on the former regionshm ihitial stage while leaves the
regions in the vicinity of blobs essentially uncbead, as shown in Fig. 3.6(a). As the
diffusion thresholdch gradually increases during the evolution (Fig. &§(the DC in
the vicinity of blobs also gradually increases dige the characteristics of the
exponential function in Eq. (3.17). The smoothifige then “propagates” towards the
blobs regions in the diffusion process as showiign 3.6(b). Background regions away
from blobs continue to be smoothed during thisqaerAs noise is gradually removed,
the difference of the images between two adjacemrations becomes increasingly
smaller. The diffusion process stops when MSDNedwiced to 0.01. The final result is
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plotted in Fig. 3.6(c), showing good preservatidrthe three blobs at different sizes
compared to those in the noise-free image Figa3.4he MSDN given in Fig. 3.6(d) is
shown to decrease exponentially so the convergehdhe diffusion filter can be
guaranteed. The diffusion threshdidversus iteration number is also plotted in this
figure, which increases monotonically during th8ugion process. For comparison, |
also denoise the same noisy image in Fig. 3.4(aa bgnlinear diffusion filter whose
DC is calculated by the LoG response Eq. (3.9)rélalt of which is shown Fig. 3.6(c).
As seen, the two smaller blobs are removed whdteadargest one is significantly
distorted.

3.4.2 2-DImages

3.4.2.1 Denoising of a Synthetic Image Containing Blobs

(a) Noise-free (b) Noisy
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(d) PM

(c) My method

(f) CED

(e) Catté,

(h) ADSP
51

(g) TDCPD



(i) NLM (i) SAFIR

(k) BM3D
Fig. 3.7 Denoising results of a synthetic live-ciellage. (a) Noise-free image. (b)
Simulated noisy image with AWGN (Stg= 20). (c) - (k) Denoised results by FP-NAD,
PM, Catté, CED, TDCPD, ADSP, NLM filter, SAFIR amM3D, respectively. Two

boxes in each image are marked by A and B for igetaomparisons.

Table 3.1
PSNR and MSSIM results on the noise-free live-tedige Fig. 3.7(a) corrupted with
AWGN of Std o, = 20 (Fig. 3.7(b)), 30 and 40, by our method, RBAtté, CED,
TDCPD, ADSP, NLM filter, SAFIR and BM3D, the visuadsults of which fow, = 20

have been shown in Fig. 3.7(c) — (k), respectively.
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PSNR value(dB)/MSSIM value

On
Noisy Our PM Catté CED TDCPD ADSP NLM SAFIR BM3D

20 22.1/0.186 39.2/0.973 36.2/0.938 36.6/0.923 28.9/0.637 36.4/0.941 36.7/0.953 34.4/0.838 36.7/0.956 37.4/0.955
30 18.8/0.101 36.6/0.957 34.2/0.916 34.9/0.905 27.0/0.516 34.4/0.922 34.3/0.936 31.4/0.718 34.6/0.936 35.0/0.935

40 16.5/0.065 35.9/0.950 32.3/0.887 33.7/0.870 24.2/0.458 33.2/0.898 33.5/0.913 29.9/0.634 33.4/0.919 33.8/0.920

We first undertake experiments with an 8-bit 2-Daga that simulates moving
particles in live cells recorded by a microscopke Tmage is constructed by using a
linear model [56] that comprises blobs, uneven gemknd and AWGN with a Sta,=
20. The noise-free and noisy images are showngnZ¥(a) and (b). As seen, the blobs
are circular or ellipse regions with varying diieas and intensities, the size of which
can be estimated by two orthogonal axes of a habshortest one is 5 pixels whilst the
longest is 31 pixels.

We apply the feature-preserving nonlinear anisatrdgfusion (FP-NAD) filter Eq.
(3.18) to the noisy image Fig. 3.7(b). The patcte $br calculating Z-order NLD by
Eq. (3.15) is set to be 15 x 15 pixels, betweerstiwatest and longest axes of the blobs
in the image. The parameteis chosen initially to bdn =20, equal to the Std, of the
noise, and is updated using the MAD operator atessive iterations. The diffusion
process stops when the MSDN Eq. (3.21) is less @h@h. The denoised result by the
FP-NAD is shown in Fig. 3.7(c). As seen, all pdetscare correctly preserved by
comparing to the noise-free image Fig. 3.7(a),uditlg those which are very weak in
region A and much smaller than the patch sizegroreB.

The denoised results of the same noisy image by @at¢, CED, TDCPD, ADSP,
NLM filter, SAFIR and BM3D, are shown in Fig. 3.%{k). For PM and Catté, the
time interval is set to béat = 0.2 and the processes stop when the MSDN Eg. (3.21) is
less than 0.01. For NLM filter, the patch windowdasearching window are set to be 7
x 7 and 21 x 21 pixels, both of which follow theggasted values in [53]. The filtering
parameteh of the NLM filter determines the weight of NLM tigr, the value of which,

according to ref [53], is chosen within the opematiwindow of h=a &, with
a 0 [0.75]1] for a high visual quality solution. Here | choosenaldle valuéh = 080, .

In SAFIR, the patch window is set to be 9 x 9, tiximum number of increments for

the nested window size is 4, the critical paranseigy, =113.5 and p=3. The

reasons for choosing these parameter values al&meqgbin an original paper [16]. The
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parameters for BM3D used in all tests follow ‘NotrRaofile’ in Table | in reference
[58]. Note that since the parameters were not gesgiicitly in CED [13], TDCPD [52]
and ADSP [100], | have varied the parameters usdldase three methods exhaustively
to obtain the best possible results with respeBSNR

By a visual comparison, Catté, TDCPD, NLM filterABR and BM3D result in
over-smoothing of blobs when the image is strorglgrupted by noise, especially for
the barely visible features in region A in the gaand the small-size features in region
B. CED distorts the blobs by elongating the shaged produces several line-like
artifacts in background regions because the meathddsigned especially for denoising
images with repetitive flow-like patterns [13]. AB$reserves blob features better than
the above six methods because the smoothing dtresigtetermined by using patch
difference Oversmoothing of blobs, however, carstileobserved visually in region A
of Fig. 3.7(h) for ADSP. This is because the alidponi derives the smoothing strength
by using the first-order nonlocal differences, nhnggadients in a space of patches [51],
which still cannot effectively detect the edgedat contrast blobs in region A of the
noisy image Fig. 3.7(b). Our FP-NAD overcomes fhisblem since the"®order NLD
characterize the blobs better than the first-oated thus has a high response to blob
features under noise contamination. The strongifegireserving ability of our method
can further be attributed to the unimodal shape2forder NLD and anisotropic
diffusion along the orientation of the features.r®twver, our method performs isotropic
diffusion in background regions so can reduce naisee effectively than the NLM
filter and induce little artifacts, compared to Riid BM3D. We have quantified the
image fidelity by calculating peak signal-to-nors¢éio (PSNR) [56] and mean structure
similarity index (MSSIM) [108] between original ami&noised images. Higher PSNR
and MSSIM imply better image restoration and striepreservation, respectively. We
report in Table 3.1 the PSNR and MSSIM values afotked results shown in Fig. 3.7
by our method, PM, Catté, CED, TDCPD, ADSP, NLM¢€ii| SAFIR and BM3D.
Table 3.1 also summarizes the PSNR and MSSIM fod#noised images by the above
methods on Fig. 3.7(a) with AWGN of Str], =  3hd 40. As seen, our method, for

different levels of Gaussian noise, achieves tigadst PSNR and MSSIM value among

the nine algorithms.

3.4.2.2 Denoising of a Fingerprint Image Containing Ridges

54



i

(b) Our rT.letr'lod
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Fig. 3.8 Denoising of a fingerprint image and congmzms. (a) Original fingerprint
image; (b) - (i) Denoised results by FP-NAD, PM,EDCPD, ADSP, NLM filter,
SAFIR and BM3D, respectively. In each image, regfomand B are marked by two

boxes.

This experiment is to illustrate that the FP-NADtefi can further be used to
improve the quality of fingerprints containing relé¢eatures. Fig. 3.8(a) shows an 8-bit
fingerprint image from FVC 2004 in which ridges(l lines) and valleys (bright lines)
are main features. The image is corrupted by nbisaks and smudges. An example of
the latter is a short and light dark line between tidges as shown in region B of Fig.
3.8(a). These adverse effects can seriously degra@erformance of a fingerprint
recognition device. We show in Fig. 3.8(b) the testithe fingerprint image processed
by the FP-NAD filter. The patch size for calculatig’®order NLD is 15 x 15 pixels,
same as one used in the last test. As seen, E(p)3estores very well the ridges
corrupted by smudges and breaks. We compare tbigt reith those shown in Fig.
3.8(c)-(i) by PM, CED, TDCPD, ADSP, NLM filter, SAR and BM3D, respectively.
Parameters used in the seven methods are all ithe @s those in the last test. As seen,
while all the methods produce comparable noiseatialy, except for PM which creates
speckle-like artifacts, their abilities for featupgeservation vary. This can be best
shown using the denoised images in the two regmoaked by the boxes in Fig. 3.8.

55



From the original image Fig. 3.8(a), the breaksridfies (region A) and smudges
between parallel ridges (region B) result in th&t laf edge information. As a result, PM
and ADSP enlarges the breaks and smudges since dimmothing strengths are
determined by the first-order differences in difier spaces [9, 51], both of which
cannot detect the lost edges due to breaks. TDGEB&egve ridges better than PM due
to smoothing along the direction of ridges, but stter-smooth the features in region A
since the smoothing strength is also determinethéyirst-order difference. The breaks
and smudges also lead to lower contrast betweegesicand valleys under noise
contamination. NLM filter, SAFIR and BM3D hence bhthe ridges in this region. The
2"%order NLD, even when the edges of ridges are &Lior partly lost to a certain
extent, can still detect them properly and theeefamovides high responses in region A
and B. Compared to other methods, the FP-NAD fitleplays the best contrast
enhancement and preservation of ridges with diftevadths both in region A and B.
CED performs comparably with our method with resgecridge preserving since it
derives the smoothing strength by the coherenstro€tures in the image and the CED
is therefore suited to fingerprints with repeatimgs [13]. But the method gives rise to

lower image contrasts than our method by comparison

3.4.2.3 Denoising of a Natural Image Containing Blobs &idges
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Fig. 3.9 Test on a fragment of a natural ima@grrots (a) Noise-free image; (b) — (f)
Images corrupted by additive white Gaussian noisie $tds = 20, 30, 40, 70 and 120,
respectively; (g) - (o) Denoised images of (f) hy smethod, PM, Catté, CED, TDCPD,
ADSP, NLM filter, SAFIR and BM3D on image (f), resgively.

Table 3.2
PSNR and MSSIM results on the noise-fRaarot image Fig. 7(a) corrupted with
AWGN of Stda, = 20, 30, 40, 70 and 120 (Fig. 7(b) — (f)) by mathod, PM, Catté,
CED, TDCPD, ADSP, NLM filter, SAFIR and BM3D, thasual results of which
for on = 120 have been shown in Fig. 7(g) — (0), respelsti

PSNR value (dB)/MSSIM value

On

Noisy Our PM Catté CED TDCPD ADSP NLM SAFIR BM3D
20 22.6/0.835 26.6/ 0.97324.3/0.88024.7/0.861 24.7/0.835 24.6/0.881 24.8/0.884 23.5/0.856 26.3/0.87226.5/0.907
30 19.3/0.729 24.2/0.957 22.3/0.81322.4/0.784 22.6/0.827 23.14/0.83122.7/0.841 20.4/0.762 23.5/0.801 24.0/0.852
40 17.3/0.655 22.1/0.850 19.2/0.74619.4/0.716 19.8/0.767 19.9/0.785 20.4/0.790 18.6/0.69321.8/0.73321.9/0.808
70 12.9/0.479 17.1/0.791 15.3/0.42015.4/0.409 15.8 /0.563 15.8 /0.600 16.0 /0.61214.6/0.367 15.5/0.415 16.0/0.537

120 8.4/0.223 15.9/0.622 13.4/0.37813.6/0.33014.3 /0.507 14.8/0.497 14.8 /0.51812.9/0.20214.7/0.361 14.9/0.484
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Finally, | test FP-NAD on a natural image that @m$ both blobs and ridges and
are corrupted by AWGN of different noise levelsg.F8.9(a) shows a fragment of the
noise-free benchmark imaggarrots [101], in which the eye is of blob feature and the
eye socket and stripes are ridges with differertdthd and orientations. The image is

then corrupted by AWGN with Std, = 2030,40,70,and120 gs shown in Fig. 3.9

(b)—(f). Table 3.2 lists the PSNR and MSSIM valobgined on the denoised results of
these images for different noise levels by our metfM, Catte, CED, TDCPD, ADSP,
NLM filter, SAFIR and BM3D NLM filter, SAFIR and BMD. The parameters used
are the same as those in the last test. As se€abie 3.2, for lower noise levels,(=
20, 30 and 40), our method performs slightly beB&43D, the latter of which has
higher PSNR and MSSIM values compared to the atiethods. However, for higher
noise levelsd4,= 70 and 120), our method gives a noticeably be#sult, at least by
1dB in terms of PSNR and 0.1 in terms of MSSIM, paned to BM3D and ADSP,
which for these two noise levels have highest PSR MSSIM values among all
methods except ours, respectively. To visualizéh sogprovement, | illustrate in Fig.

3.9 (g9)—(0) the denoised images for the highesdentdvel g, = 12(. As seen, due to

the severity of noise, edges in the image Fig.fB&@€ heavily broken, particularly in
the eye region. It is therefore not surprising Bkt (Fig. 3.9(h)) and Catté (Fig. 3.9(i))
are ineffective in restoring these features. PM @snerates artifacts in flat regions.
CED (Fig. 3.9(j))) and TDCPD (Fig. 3.9(k)) presemsteipes better than PM and Catte
but noticably distort the eye, eye sockets angesriof parrot, and produce visually
unpleasant artifacts in homogeneous regions ofptreot’'s face. ADSP (Fig. 3.9(l))
preserves the eye and stripes better and introeéwes artifacts, compared to CED and
TDCPD. However, ADSP tends to spread the eye t@yeesocket and break up ridges
on the parrot face since it determines the smogthkirengths by the gradients, which,
despite in a space of patches, can be also veryf lthe edges are heavily broken. The
NLM filter (Fig. 3.9(m)) is the only non-iterativeenoising method used here for
comparison and does not seem to remove noise igéBctSAFIR (Fig. 3.9(n)), which
can be seen as an iterative NLM filter with adap®earching windows, over-smoothes
the whole image due to severe noise contaminatisually, BM3D (Fig. 3.9(0)) are
shown to restore the noisy image better withouwihealistorting the features in the
image, compared to PM, Catté, CED, ADSP and TDC®AEIR and NLM filter. But

it is still outperformed by the FP-NAD, as the egge socket and face stripes are partly
over-smoothed in comparison to the result by FP-NADe main reason behind the
good performance of FP-NAD is again due to the gasgponse of the"2order NLD
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to the features. Moreover, nonlinear anisotropitudion employed in our filter has the

ability to effectively reconstruct the shapes @& thatures while remove noise.

3.5 Conclusion and Discussion

We have presented a new operator for blob and riggeure detection and
incorporated it into a diffusion model for improgienoising performance on images
containing these features. We have further tegtechew algorithm on synthetic live-
cell images, fingerprint images and natural imaayes demonstrated good performance
in preserving blobs and ridges, reducing backgrawmsle and minimizing artifacts.

For simplicity, | used the"®-order NLD operator with a single patch size (sScéde
detect features with different siz&%hile such a single scalé®rder NLD can detect
blobs and ridges of different sizes around thidesdhe blob size range that can be
detected is limited. An improvement to our currergthod is to employ a multiscale
feature detector that comprises sevefdio2der NLD operators with different patch
sizes, in a way similar to Harr-like feature detedti13]. The number of the operators
required is determined by the size range of théufea under investigation. Since a
single scale ¥-order NLD operator can cover a fair wide blob siaege as discussed
earlier in this work, the number of"%rder NLD operators required in many

applications should be small. For example, to caveize range betwee{ho, 20d (in

the unit of pixels), | need two"2order NLD operators with patch siZix 21 and
42x 42 . The implementation of the multiscale"®rder NLD operator is
straightforward from the current model.

We note finally that the diffusion directions usedour method are the smoothed
feature directions [51] determined by the eigenwectof the popular traditional
structure tensors [13, 49, 51, 100], which has shtmawork well in most circumstances.
It may not be sufficiently accurate for featurdsose directions change rapidly in space.
A further improvement to our method can be madedeyeloping the nonlocal
difference concept for more robust estimation efsmoothing directions. ADSP [51] is
such a method which determines the diffusion dimest based on patch gradient in a
high dimensional space and has shown improved P&h\Rpared to the NLM filter
[53]. Combining ADSP with our operator is expectedfurther improve diffusion

performance of our present method.
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Chapter 4

A Generalized Feature-preserving Nonlinear Anisotrpic Diffusion

Method for Denoising Natural Images

Abstract: In the previous chapter, Il have proposed a nefusidn method and shown
its promising performance over other popular meshiod denoising images containing
blobs and ridge such as live-cell and fingerprmages in the biology and biometric
applications. However, images captured in generaglrenments may contain not only
blob and ridge features, but also other types afuies of interests, particularly in
natural scenes. To denoise these natural imagélisichapter Il extend our FP-NAD
and propose a generalized feature-preserving remlianisotropic diffusion for noise
reduction and multiple feature preservation by cmmlg first- and second-order
differences for a nonlinear anisotropic diffusiodel. Numerical experiments show
that the new diffusion filter outperforms many plavufilters for denoising natural

images containing edges, blobs and ridges andresxtnade of these features.

4.1 Introduction

Since the edge is a fundamental feature that uedamore complicated features in
the image, most of the existing diffusion metha@s46, 47, 114] incorporated the edge
information in the diffusion process to reject dgifon at edges and permit smoothing in
other places. Hence if edges cannot be distingdighe to severe noise, these methods
may not be able to preserve features that are lgoliby the edges. To overcome this
problem, in the previous chapter | have proposedva FP-NAD and demonstrated its
promising performance over edge-preserving andrgibpular methods for denoising
images containing blobs and ridge such as live-aall fingerprint images in the

biology and biometric applications.
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Images in many other applications [115, 116] maytaim not only blob and ridge,
but also other features. For example, an imageuoaghin the natural environment [117]
usually consists of textures and complex pattehas are made of a combination of
edges and blobs and ridges. Since tHeo&ler NLD is mathematically most correlated
to blob and ridge feature, it can provide a go@poase only to these two features. To
preserve simultaneously multiple features in théuna images, in this chapter |
propose a new feature-preserving denoising metyazbmbining the ¥ and 2%order
NLD to form a new feature detector in a nonline#iudion model. By combining the
1st- and P-order NLD, our new feature detector measures iniaggnsity contrasts
between neighbouring patches in a more sophisticatanner and can effectively
capture fundamental features such as edges assvblbbs and ridges. We incorporate
the new feature detector into a nonlinear diffusioodel to form a generalized feature-
preserving nonlinear anisotropic diffusion filtéeKP-NAD) for denoising the natural
images. Experimental results demonstrate that thRE-8AD can remove noise and
preserve simultaneously multiple features in theunad images, compared to the FP-
NAD. Experimental results also demonstrate thatGR€-NAD method can achieve a
higher peak-signal-to-noise ratio (PSNR) [16] andghlbr mean similarity index
(MSSIM)[108] than several commonly used algorithms wheplieg to natural images

containing a range of features and textures.

4.2 A Combined Nonlocal Difference

We first define the combined nonlocal differencainone-dimensional (1-D) signal.
Extension to the two-dimensional (2-D) case isigitforward and will be discussed
later. Letl : @ OR' -~ R" be a 1-D scalar signal defined on the discreteaiio® and
x [0 is the pixel positionx = X1, Xz,... Xn. As discussed in the previous chapter, the
edge feature is mathematically most correlatedheo Ist-order difference whilst the
blob and ridge features are most correlated t@therder one. Using eithef'dor 2'*
order difference may therefore not be able to mle\good responses to both edge and

blob/ridge featuresTo simultaneously detect both the edge and bloturfes, | define a

combined nonlocal difference (CNL[”MELI (xi)szg in the form of

[O51 0], =w o0 do 100, + wOO BTz 100, (4.1)
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where the -order NLD, HDNLI (xi)szg, and 2%order NLD, HDﬁ,LI (xi)szg, are given by

Eq. (3.3) and (3.6), respectively. The Stof the Gaussian function used in Eq. (4.1)
are same for the®1 and 2%order NLD since the same patch size is appliecbfgh
NLDs, although the P-order requires more patches than tHedder for differentiation.
The weightswi(x) and wx(x) should be appropriately chosen for balancing the
contributions of T-order NLD and Z-order NLD to the CNLD. We define(x) and

wi(x) as functions of the®t and 2% order NLD in the form,

2% ol
HDNL I ()ﬂ )HZU +HD§“— I ()g )H 20

[Pt )l

. (4.2
EA N EACIN “2

W (%) = W (%)=

In the vicinity of an edquDNLI (xi)H20> HDﬁ,LI (Xi)Hzg , sows(X) > wx(x) and the I-
order NLD contributes more to the DC; in the vigmof a blob, HDNLI(xi)H20<

HDﬁ,LI(xi)HZU, thereforewi(x) < wx(%) and the X-order NLD contributes more. As

such, the CNLDs for the edge and blob featuresdareinated respectively by thé-1
and 2%order NLD. Since the®t and 2%order NLDs are mostly correlated respectively
to the edge and blob features, the CNLD Eq. (4ah) give rise to high responses to

both features.
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Fig. 4.1. (a) A noise-free and the noisy image wated by Gaussian noise; (b) TH: 1
and 2%order NLDs and the CNLD. The®1and 2%order can give high responses to
only one type of features whilst low responseshtdther type. The CNLD gives high

responses to the both edge and blob features.

In general, responses of th&,12"%order NLD and CNLD to edges and blobs are
complex, but the expressions can be simplified Bpecial case where the patch size

equals the blob size, i.eWW = s. We use this case as an example to explain the

63



performance of the CNLD for detecting both edge laloth features. Fig. 4.1(a) shows a
1-D 8-bit image containing a step edge and a bfalizes = 21 pixels without and with
additive white Gaussian noise (AWGN) of a 3td= 40. Intensities of the blob and
edge are set to be 160, against the backgroun@®f\We apply Eq. (3.3), (3.4), and
(4.1) on the noisy image and plot the responseiign 4.1(b), where the Std of the
Gaussian function is set as>+w so the patch window is a box one for simplicitys A
seen from this figure, the responses of all NLD$h® edge contain only one obvious
peak and nearly symmetric. For the step edge thk palues of the *torder NLD is
entirely higher than that of thé%brder NLD, whereas for the blob the peak values of
the 2%order NLD is higher than that of thé“arder NLD. This is becaus€rder
NLD measures the difference of two neighbourirfigoider NLDs. When one of*1
order NLDs fails to detect one edge of the blob thumoise contamination, thé'2
order NLD can still give a reasonable responsdef dother edge of the blob can be
detected. The CNLD provides higher responses th b edge and blob features,
compared respectively to thé-1land 2%order NLDs. This can be attributed to the
weights wi(X) and wx(x) given in Eq.(4.2), which adaptively adjust thelamce
between the correlations of-land 2%order NLD to multiple features base on the
NLDs themselves that further enhance the correlatiBoth edge and blob features can
therefore be better identified by the new combarabf the two NLDs than by the'l

or 2%order NLD individually. Finally | note that in thgeneral cases &/ #= s, the
essential characteristics of CNLD as well as tfleahd 2%order NLD for edge and

blob detection remains unchanged.

4.3 Generalized Feature-Preserving Nonlinear Diffusion
Based on the CNLD Eq. (4.1) as a new feature dmtettform a novel feature-

preserving nonlinear diffusion model,
ol (x,t :
% . d|v[c(||DNL TE% W =K (x,t)szg) mi (x,t)} | 4.3)

where the diffusion coefficient (DC¢(||DNLI(x,t)||2'J,HD,ﬁLI(x,t)HZVJ) is given as a

decreasing function of the CNL”EELI (x,t)HZUin the form of
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(EArEm)
el )|

c(||DNL 160, | (x,t)HZ’J) = ex (4.4)

the CNLDJ|Of, | (x,t)HZJ is given by Eq. (4.1)(t = 0) =J is the initial noisy image]

is the gradient operator and div is the divergemperator. Since the CNLDs are high
for the edge and blob features, the DCs are smélhe vicinity of both features and
high in the backgrounds. As such, the diffusiondsthing) process will be discouraged
considerably in feature regions and encouragedarkdround regions, leading to a
generalized feature-preserving nonlinear diffus{@~P-ND) method that preserves
multiple features and removes noise in the backgtoduring the diffusion process.
Compared to the GFP-ND Eq. (4.3), the FP-ND EdL@Bproposed in the previous

chapter can be seen as a special case of the GRRRED the weight, (X, t) =0and
w, (X, t) = 1for any pixelx and time step.

The thresholdh serves as a parameter that determines whethetwadeshould be
preserved in the diffusion process. A latgmay oversmooth features whereas a small
h can produce artefacts and unsatisfactory noispreagion. The choice d¢f should
also reflect noise levels. Based on this rule, isduwesearchers have proposed various
strategies for the assignment of thevalues, of which the MAD operator has been

proved being the most effective one [16, 47]. Iis tthesis we employ the median

absolute deviation (MAD) of CNLq‘DﬁLI(x,t)HZU for a robust estimation of the

diffusion threshold [16, 47].

A simple way to terminate the diffusion processbig fixing the number of
iterations. In this work | utilize the MSDN criten given in Eq. (3.21) to stop the
diffusion adaptively. The diffusion process stopsyavhen the MSDN reaches to a pre-

specified small value.

4.4 Experiments

In this section | present visual and numerical litssabtained by using our diffusion
method, first for a 1-D image and subsequently Zaiages. In the latter case |
incorporate the orientation of the features inta Eg3), leading to a GFP-nonlinear
anisotropic diffusion (GFP-NAD) model. We test tBEP-NAD on 2-D natural images
and compare the results with existing popular dgngi methods, including PM
anisotropic diffusion method [9], structure adaetifilter (SAFIR) [16] and block
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matching and 3-D collaborative filtering (BM3D) [b8he last method is considered to
be the best denoising algorithm at present [18,128]. We have not included bilateral
filter [11], which can be seen as a special cas@AdfIR [16] when both the patch width
and iteration number equal to 1, because repo@is]19] have already shown that it

underperforms SAFIR for denoising natural images.

4.4.1 1-D Signals
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Fig. 4.2. Tests on the noisy image shown in Fij(a). (a) Denoising result by an edge-
preserving diffusion, which is a special case & BFP-ND whernw,(x,t) =1 and
w, (X, t) = 0for anyx; andt; (b) Denoising result by a blob-preserving diffusi which

is also a special case of the GFP-ND whe(x,t) =0 andw,(x,t) =1for anyx and

t; (c) Results in two different stages of the diitus process by GFP-ND, where
w (%, t) andw,(x,t) are calculated by Eq. (4.3); (d) The final dendisesult by the
GFP-ND.

We first test the GFP-ND filter Eq. (4.3) on th®Iroisy image shown in Fig. 4.1(a)
that has been used in Section 4.2. The patchWize chosen a¥V = 21. The initial
value of the diffusion thresholulis set to bdr = 40, same as the Sigof the AWGN in
the image, and is updated using the MAD operaterah iteration. We first consider a
special case ofy(x,t)=1 and w,(x,t)=0, for which the GFP-ND Eq. (4.3) is
reduced to a conventional edge-preserving diffusiég. 4.2(a) shows the results by
this special case of the GFP-ND in which the stégeeis preserved but the blob is
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smoothed out. On the contrary, if | set(x,t)=0 andw,(x,t)=1, the GFP-ND Eq.

(4.3) is reduced to the FP-ND model Eq. (3.16).. H@(b) shows results by this
method in which the blob is preserved but the stige is filtered.

We now apply the GFP-ND to the noisy image and sti@vdenoising results in
three different stages during the diffusion prodesBig. 4.2(c) and (d). Whew; and
w, follow Eq. (4.2), the S-order and Z-order NLD play a dominating role respectively
around edges and blobs in determining the DCs. #salt, for the initial noise image,
the DCs are low in the vicinity of both featureddngh in backgrounds. As such, the
GFP-ND smoothes more heavily on the former regiortbe initial stage while leaves
the regions in the vicinity of the edge and blohtfiees essentially unchanged, as shown
by the black curve in Fig. 4.2(c). As the imagelegs during the diffusion process, the
smoothing effect “propagates” towards the feat@gans. Background regions away
from the features continue to be smoothed during pleriod. The contrasts of the
features thus become increasingly higher, givieg to higher responses of thedrder
and 2%order NLD around the edge and blob, respectivéigher responses of'2and
2"%order NLD imply higherw; and w, respectively, so the system performs in a
positive feedback manner, leading to more effectnase reduction and feature
preservation in the second stage, as shown in4ERfc) (orange curve). As noise is
gradually removed, the difference of the imageswbeh two adjacent iterations
becomes increasingly smaller. The diffusion prosteps when the MSDN is reduced
to 0.01, indicating that the diffusion process hasverged. As seen from Fig. 4.2(d),
the final result shows good preservation of featumed reduction of noise compared to

the noise-free image in Fig. 4.1(a).

442 2-D Images

Edges and ridges can be directional featuresD images. To better preserve the
geometric properties of these features, the otliems of features should be taken into
account when | apply the GFP-ND filter to 2-D imagé&Ve therefore propose a
spatially anisotropic nonlinear diffusion methodhexeby smoothing behaviour is
performed in directions parallel rather than pedpemar to the isophotes of images
[52]. In this case, the scalar Dsdn Eq. (4.3) should be replaced by a diffusionsten
(DT) D, a symmetric and definite-positive matrix [50] atite diffusion model is

formulated as
% = div[ DO ()] (4.5)
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where x, =[x, y]' OR? is a pixel andl(x;,t)=[0,1 (xt),0,1 (Xt )]T OR? is a

vector whose elements are gradients at the pidbngx-axis andy-axis. The DTD is

expressed as [50],

D(x,,t) = A, (X, t)VV, + A, (X tVV], (4.6)
where the vector¥,,V, and the scalard,, A, are the eigenvectors and eigenvalues of
the DT D, respectively. The vectoks, andV, are chosen to be the eigenvectors of the

structure tenso =G, 00(G, 0I)0(G, 01)" [13, 49, 50, 52], in a same manner as

that in Section 3.2.3 in the previous chapter, yimg that the smoothing vect@®l is
decomposed onto one orthonormal basis with dinestaxross and along the principal

direction of features, respectively. The eigenvaldgx;,t) and A,(x;,t)of D in Eq.

(4.6) determine the strengths of the local smogthiehavior along the directioNy, Vi1
in a diffusion process. They are given as,

Ao(%;,1) = C(“DNLl (% ’t)”z,a ’HDi‘LI (%t )Hz,a) andd, & 1 FA & 1 (4.7)

where the form of the dreasing functio(ﬂDNLI(xi,t)||2’0_,HD§LI (x ,t)HM) is the same

as the DC in Eq. (4.4) except that tiie and ?Lorder NLD is now in the 2-D isotropic

form of

2

ENICRIEN wole g
HDZNLl (X ’t)szg = H4Pxi,yi Py TPy TP TPr Hz,g/4

Py " Py

2
=+ —_
.o *1Pey =P

2,

The reason for designing the smoothing strength, (E®), at different orientations
follows the explanation for the FP-NAD, Eq. (3.18), Section 3.3: In background

regions Eq. (4.5) performs an isotropic smoothing tb the CNLDHDELI Hzgis small

and lim A,= Ilm A =1. In the vicinity of features both the smoothing

C C
a] |H -0 HD |H -0
H NL 2,0 NL 20

behaviours in the two directions are discouragmﬁ’DELIHMis large. Smoothing

behaviours along the direction perpendicular to ititensity isophotes is however
discouraged at a higher order to better presereestimpes of the features since

, A : L :
- ”‘m /]—OZO. Eq. (4.5) therefore performs a nonlinear spatiainisotropic
NL 2,0_’+°° 1

smoothing during the diffusion process.
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4.4.2.1 Denosing of a Natural Image Containing Multiple Fe®s

L -

l: 3

(c) GFP-NAD

() SAFIR (f) BM3D

69



(g) FP-NAD

Fig. 4.3. A noise-freBarbaraimage; (b) The noisy image with AWGN of a Sig 25;
(c) —(g) Denoised results by GFP-NAD, PM,SAFIR, BMa8nd FP-NAD, respectively

We first undertake experiments on a classical imBgebara (512x512). Fig. 4.3(a)
and (b) shows respectively the noisy-free and nioage with AWGN of a Std, = 25.
As seen, the image contains various features, dnmgumany edges, checkerboard-like
and striped textures on the tablecloth and striprtlires on the clothes.

We apply the generalized feature-preserving noatiramisotropic diffusion (GFP-
NAD) filter Eq. (4.5) to the noisy image Fig. 4.3(Fhe patch size for calculating“1
and 2%order NLD by Eq. (4.8) is set to be 13 x 13 pixeldich is between the
smallest and largest widths (7 to 17 pixels) ofridges in the image. The parameter
Is chosen initially to bé& = 25, equal to the Stg, of the noise, and is updated using the
MAD operator at successive iterations. The diffaspyocess stops when the MAE is
less than 0.01. The denoised result by our GFP-NAEhown in Fig. 4.3(c). As seen,
all features in the image are correctly preserwed@dmparing to the noise-free image
Fig. 4.3(a), including eyes @&arbara weak striped textures on the clotheBBafbara

and checkerboard-like textures on the tablecloth.
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Noise-free Noisy GFP-NAD SAFIR MBD FP-NAD

(m) (n) (0) () () (

Fig. 4.4. Detail comparisons of the imaBarbara in Fig. 4.3(a) among different
denoising methods for. (a) —(f) Zoom-in imageshaf boxed region A for noise-free Fig.
4.3(a) and noisy image Fig. 4.3(b), and result®imymethod, SAFIR, BM3D and FP-
NAD, respectively. (g) —(I) Zoom-in images of thexled region B for the same noise-
free and noisy image, and results by our methodFIBRA BM3D and FP-NAD,
respectively. (m) —(r) Zoom-in images of the boxegion B for the same noise-free and
noisy image, and results by our method, SAFIR, BMBId FP-NAD, respectively

The denoised results of the same image by PM, SARIRBM3D, are shown in Fig.
4.3(d)-(f). For PM, the time interval is set to Ae=0.2 and the processes stop when
the MSDN is less than 0.01. In SAFIR, the patchdeim and the maximum number of
increments for the nested window size are set otispéy as 9 x 9 and 4 so that the
highest PSNR values of the result can be obtaiflee critical parameterk 0:=113.5 is
set so the ‘false alarm’ probability of terminatirtgrations cannot exceed 0.01. The
thresholdp = 3 is chosen to get a good accuracy for the pmis¢ estimator of the
adaptive neighbouring size. More details aboutphmeter selection for SAFIR can
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be referred to an original paper [16]. The paramsefier BM3D used in all tests follow
‘Normal Profile’ in Table I'in [58] .

By a visual comparison, PM significantly oversmasththe women’s face and
wipes out almost all textures in the image, suchhasweak striped patterns on the
tableclothandtrousers. To better compare visually the denoissdlts, | choose three
typical boxed regions of the imagBarbara Fig. 4.3(a) and show in Fig. 4.4
respectively the zoomed-in regions of the noise-famd noisy image, the denoised
results by our method, SAFIR and BM3D. As seen, IBAbreserves the features on the
trousers better than the PM, but still oversmootheseyes oBarbara (compare Fig.
4.4(g) and (j)) and removes the textures on th&digsompare Fig. 4.4(a) and (d)) and
trousers (compare Fig. 4.4(m) and (p)). Our GFP-N&Dids this problem (see Fig.
4.4(c), (i) and (0)) since to the CNLD provide higisponses on these features under
noise contamination The strong feature preservihiitya of our method is also
attributed to the unimodal shape of tiie and 2% order NLD and anisotropic diffusion
along the orientation of the features. Moreover,mathod performs isotropic diffusion
in background regions so remove noise and indtibe dirtifacts, unlike the PM method.
BM3D performs comparably with our GFP-NAD in terwisnoise removal, but tends
to slightly oversmooth the eyes (compare Fig. 4.4¢d (i)) and stripes on the trousers
(compare Fig. 4.4(0) and (q)) by comparisd@esides, | show in Fig. 4.3(g) the
denoised result of the FP-NAD Eq. (3.16) proposethe previous chapter, which can
be seen as a special case of the GFP-NAD when thightvw,(x,t)=0 and

w,(x,t)=1. The boxed-regions A, B and C of the denoisedlrdsu FP-NAD are

further magnified and shown in Fig. 4.4(f), (1) afryl respectively. By comparing Fig.
4.3(c) with Fig. 4.3(g), | find that both the GFRAN and FP-NAD perform well in
removing noise and preserving blob and ridge featand textures made up by them.
The latter, however, oversmoothes most of the éelggaires in the image, including the
boundaries between the basket and the land (F¢f)¥.the boundaries of the hairs on
the woman'’s face (Fig. 4.4(l)) and the boundariethe arm (Fig. 4.4(r)). This is due to
the fact that the FP-NAD uses only single featwetctor (2%order NLD) for feature-
preserving denoising. The GFP-NAD combines differémature detectors in the
diffusion model, so preserves simultaneously akdees in the natural images during
the diffusion process. This result demonstrates tina GFP-NAD is indeed a more
generalized approach for denoising the natural @sagompared to the FP-NAD

method.
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We have quantified the image fidelity by calculgtifRSNR [16] and MSSIM [108]
between original and denoised images. Higher PSNRMSSIM imply better image
restoration and structure preservation, respegtivdle report in Table 4.1 the PSNR
and MSSIM values of denoised results shown in &i§.by GFP-NAD, PM, SAFIR,
BM3D and FP-NAD. Table 4.1also summarizes the PANRMSSIM for the denoised
images by the above methods on Fig. 4.3(a) with AW Stdso, = 30 and 40. As
seen, our method, for different levels of AWGN, iagks the highest PSNR and

MSSIM value among the five algorithms.

Table 4.1. Comparison of PSNR and MSSIM by GFP-NRM, SAFIR, BM3D and
FP-NAD. Three levels of AWGN with Stdg = 25, 30 and 40 are tested.

PSNR/MSSIM values

On

Noisy Image GFP-NAD PM SAFIR BM3D FP-NAD

20.32 /0.40631.22/0.901 24.47/0.71| 27.78/0.79| 30.73/0.88| 27.12/0.813
0 0 7

25

18.79/ 0.346 30.37/0.89| 24.03/0.63| 26.39/0.74| 29.76/0.86| 25.97/0.784
2 5 8 4

30

16.49/ 0.264 28.85/0.84| 22.16/0.51| 24.30/0.67| 28.07/0.82|23.49/0.701
3 4 4 4

40

4.4.2.2 Denoising of a Natural Image under Extremely SeMase Contamination
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Fig. 4.5. Test on a fragment of a natural image;d®a (a) Noise-free image. (b) Noisy
image 6, = 120). (c) - (f) Denoised results by GFP-NAD, SRFBM3D and FP-NAD,
respectively. Two numbers under each image aredhesponding PSNR and MSSIM

values.

We further test the FP-NAD filter on a natural ireaginder severe noise
contamination. Fig. 4.5(a) and (b) show a fragmana noise-free and noisy image
Parrots[101] that has been used for testing the FP-NAD(E4.6) in Section 3.4.2.3 of
the previous chapter. Extremely high-level AWGHN € 120) again is used in order to
test the performance limit of the GFP-NAD filter extremely low-PSNR images.
Parameters of GFP-NAD, SAFIR and BM3D are the samthose in the last test. The
denoising result is shown in Fig. 4.5(c) - (e), twe numbers under each figure are the
corresponding PSNR and MSSIM values, respectivetyseen, due to the severity of
noise, edges in the image Fig. 4.5(b) are heavidkdn, particularly in the eye region.
As such, SAFIR (Fig. 4.5(d)) is ineffective in r@shg these features. Visually, BM3D
(Fig. 4.5(e)) are shown to preserve features beti@n SAFIR, but are still
outperformed by the GFP-NAD (Fig. 4.5(c)), as thie,eeye socket and face stripes are
partly oversmoothed in comparison to the resulGByP-NAD. The main reason behind
the good performance of our GFP-NAD is again duthéocombination of two feature
detectors. Besides, | also show in Fig. 4.5(f) temoised result of FP-NAD for
comparison. As seen by comparing Fig. 4.5(c) with £5(f), | find that the GFP-NAD
performs comparably with FP-NAD in terms of featpreserving and noise removing,
though the PSNR and SSIM values suggest that ttex Ia slightly better. This is not
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surprising since this image comprises predominasitip and ridge features that can be
best preserved by the FP-NAD. However, even urdsrsituation the GFP-NAD as a
general method still perform very well. This resnticates that the GFP-NAD method

can be also tailored to denoise images containiaiglgnblob and ridge features.

4.5 Conclusions and Discussion

We have presented a generalized feature-presemankinear anisotropic diffusion
method in which the diffusion coefficient is consgtied by not only single detector but
a combination of two different feature detectorse Wave tested the new algorithm on
1-D and 2-D images and demonstrated good perforenancpreserving multiple
features and textures. It can also effectively cedthe background noise and create
minimal artifacts.

A key issue in our GFP-NAD filter is the formatiof DC by using two combined
NLDs, which provides improved detection performarme edge, blob and ridge
features. The NAD process controlled by this DC ttearefore smooth out noise while
preserve simultaneously multiple features in theunad images. The GFP-NAD filter
are therefore a more generalized denoising mettmdpared to the FP-NAD that can
only preserve blob and ridge features in the demgiprocess. We note that our work
can be further extended by combining multiple featdetectors into the diffusion
model. A range of choices of these detectors aeady available in the fields of image
processing and computer vision [110, 120-123]. €hmserators can therefore be used

for the feature-preserving denoising in a wide eaafjapplications.
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Chapter 5

Super-Resolution Fluorescence Microscopy for Celhhaging

Abstract: | have studied a simple degradation case, n@s&amination, in the first part
of the thesis. In the second part, | study a mamptex degradation in which the
original imagel is not only contaminated with noise, but also tddrdue to the light
diffraction and thus loses resolution during theagimg process (Fig. 1.1) in
fluorescence microscopy. In such a case, the resolwf the observed imagé is
diffraction-limited. To break the barrier of theffdaction limit in the fluorescence cell
microscope images, several modern fluorescenceosuopy techniques have been
proposed and currently are still being developedhis chapter, | provide an overview
of some of these modern SR microscopy techniquas.ofiginal work for increasing

the image resolution will be discussed in the rofepter.

5.1 Introduction

For century, light microscopy has revolutionizedlbgists’ understanding of how
cells function. In fact, entire fields of biologyave emerged from images acquired
under light microscopes [124]. With the recent depment of fluorescent probes and
new high-resolution microscopes, biological imagings entered a new era and is
presently having a profound impact on the way netess being conducted in the life
sciences. Biologists are depending more and morlienaging; they can now visualize

cellular components and processas vivo both structurally and functionally;
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observations can be made in two or three dimensbdgdferent wavelengths, possibly
with time-lapse imaging to investigate cellular dymcs. However, the application of
fluorescence microscopy for many areas of biolagtill hindered by its moderate
resolution of several hundred nanometers. Thisluéea is approximately the size of
an intracellular organelle, thus inadequate forl@xpg the inner architecture of many
intracellular structures [125].

In general, the resolution of the fluorescence osicopy is limited by the
diffraction of the light wave when it passes throwgsmall aperture or is focused to a
tiny spot. Because this property is directly redbto the wavelength of light at different
energies, breaking the diffraction limit of fluocemice microscopy was deemed
impossible for a long time, particularly for theshle light with wavelengths ranging
from 400 nm to 700 nm. However, such limitationséhaot deterred a small group of
scientists from pursuing super-resolution (SR) riiscence microscopy that images
beyond this seemingly impenetrable limit. In thenaender of this chapter, | will briefly
summarize the technological advances of thesetst®eim the field of super-resolution
fluorescence microscopy. We will also give a shoonclusion to analyze some

drawbacks of these SR techniques.

5.2 Super-Resolution in Fluorescence Microscopy
When light is focused by the objective of a micagse, the notion of light rays

converging to an infinitely sharp “focal point”ags not happen. Instead, the light wave
forms a blurry focal spot due to diffraction. THh&urring spot has a finite size that
depends on the wavelength of the light and theeaaglhich the light wave converges;
the latter is, in turn, determined by the numeragarture of the objective. As such, the
width of the spoW is calculated a8V~ 0.61 / NA, where/ is the wavelength of the
light and NA is the numerical aperture of the le@snilarly, a point emitter, such as a
single fluorescent molecule also appears as aybdpot with a finite size when imaged
through a microscope. The intensity profile of thmt, which defines the point spread
function (PSF) of the microscope, has approximatetysame width as that of the focal
spot described above. The resolution of the flumese microscopy is then defined by

these widths, which are also called diffractionHed resolution.
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A Diffraction limits the resolution
of light microscopy
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B Sizes of various biological entities
and the diffraction limit
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Fig. 5.1. Diffraction-limited resolution of the ceentional fluorescence microscopy. (a)
Left panel: for visible lights, the diffraction litnof microscopes with high NAs is ~250
nm in the lateral directions and ~550 nm in theabsirections. Middle panel: a LR

microtubule image captured by a conventional flacemce microscope. Right panel:
intensity curves of the two cross sections at thieesponding positions indicated by
white lines A and B in the image of the middle daifle) Sizes of various biological

structures in comparison with the diffraction-liedt resolution. From left to right: a
mammalian cell, a bacterial cell, a mitochondrian,influenza virus, a ribosome, the

green fluorescent protein, and a small moleculgngthe).

The diffraction limit of the resolution was firsthgcognized by Abbe [24] about 150
years ago, and is also called the Abbe limit. Ferséble light, the diffraction-limited
image resolution of an objective len with a highmauical aperture is ~250 nm
perpendicular to the direction of light propagati@e., in the lateral dimensions) and
~550 nm parallel to the direction of light propagat(i.e., in the axial dimension), as
shown in the left panel of Fig. 5.1(a). Consequentlo identical emitters separated by
a distance less than the width of the PSF will ape a single object, making them
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appear as a single entity (i.e., unresolvable)hSase is illustrated in the middle panel
of Fig. 5.1(a), which shows a LR microtubule imacmptured by a conventional
fluorescence microscope. We mark two white linesvweo microtubules in the image
and plot in the right panel two cross sectionshef inicrotubules at positions indicated
by the white lines in the LR image. As seen, the hearby microtubules in the curve A
locate farther than the diffraction limit and camdiscriminated. In the curve B they are
however too close to be resolved. Fig. 5.1(b) shamesmparisons between the
diffraction-limited resolution and sizes of variob$ological structures, including a
mammalian cell, a bacterial cell, a mitochondrian,influenza virus, a ribosome, the
green fluorescent protein, and a thymine, the fast of which are intracellular
structures that attract biologists’ broad attentida seen, these intracellular structures
are smaller than these resolution limits and tharsnot be observed by conventional
fluorescence microscopes. Super-resolution (SRyimga therefore, refers to imaging
that exceeds the resolution limit to resolve théstacellular structures in the

fluorescence microscopy.

5.3 Current Super-Resolution Fluorescence Microscopy Tehniques

For many years, several imaging techniques havéepushe boundary of the
diffraction limit of fluorescence microscopy. Amonthese methods, confocal
microscopy and multi-photon fluorescence microscopy only enhance the image
resolution, but also reduce the out-of-focus flsoemce background, allowing optical
sectioning and thus three-dimensional imaging.dditéon, infrared light experiences a
lower amount of scattering from tissues, allowirggpl tissue imaging with two-photon
microscopy [126]. 4 microscopy and®M use two opposing objective lenses to increase
the effective numerical aperture of the microscepel thereby improve the image
resolution [127-129]. Although these methods sigaiftly improve the resolution, they
are still fundamentally limited by diffraction amdve, in practice, achieved resolutions
of ~150 nm in all three dimensions [128].

The diffraction-limited resolution applies only tght that has propagated for a
distance substantially larger than its wavelength, (in the far field). Therefore, one
route to bypass this constraint is to place thetatkan source or detection probe
(usually an optical fiber, a metal tip, or simplgmall aperture) near the sample (i.e., in
the near field) [130]. Indeed, near-field microsgomas achieved resolution

substantially below 100 nm [131-133]. However, teguirement that the excitation
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source or detection probe be physically close #oténget object (often within tens of
nanometers) has made it difficult to look into # oe a piece of tissue with near field
microscopy, limiting the applications of this teaune in biology.

It was not until recently that several novel flusmence microscopy approaches
completely go beyond the diffraction limit of imagesolution in the far field. In
general, all of these approaches generate SR intggeasing the physical properties of
fluorescent probes to distinguish emissions frono taearby molecules within a
diffraction-limited region. These super-resolutiapproaches can be divided into two
primary categories. The first category is hardwaaeed, aiming to reduce the point
spread function (PSF) by employing optical pattegrof the excitation and a nonlinear
response of the sample. This category includesutdied emission depletion (STED)
microscopy [134, 135] and the related RESOLFT tetdgy [136], as well as saturated
structured illumination microscopy (SSIM) [137]. &hsecond category takes
advantages of single-molecule imaging, using phatoking or other mechanisms to
stochastically image single PSFs separated in toakulating the positions of the
single molecules to give rise to the signals witrecision substantially better than the
diffraction limit. This second class includes stastic optical reconstruction
microscopy (STORM) [138], photoactivated localipatimicroscopy (PALM) [139]
and fluorescence photoactivation localization nmscapy (FPALM) [140].

5.3.1 Hardware-based SR Fluorescence Microscopy

In the hardware-based approach, a patterned ffdight is applied to the sample to
manipulate its fluorescence emission. This spatiadulation can be implemented
either in a positive or negative manner. In thetpescase, the light field that is used to
excite the sample and generate fluorescence istlgirpatterned. In contrast, the
negative patterning approach seeks the help ofdaiti@nal patterned light field to
suppress the population of molecules that can dkme in the sample. In both
approaches, the spatial information encoded int® ithumination pattern allows
neighboring fluorophores to be distinguished froactte other, leading to enhanced

spatial resolution.

5.3.1.1 Negative Patterning: STED Microscopy
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A STED microscopy B SIM and SSIM

STED pattems (S)SIM pattern
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Saturated depletion SIM fluorescence emission
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STED images D SIM images
of mitochondria of nucleus

Fig. 5.2. (a) A systematic schema of stimulatedseman depletion (STED) microscopy,
which reduces the size of the fluorescent spoin@abottom layer) and improves the
image resolution. (b) A systematic schema of stmect illumination microscopy (SIM)
and saturated SIM (SSIM), which use pattered ilhation to excite the sample and
saturate the fluorescence, providing spatial infdrom substantially beyond the
diffraction limit. (c) Examples of STED images. Tqmnel: comparison between
confocal (left) and STED (right) images of the suteembrane of mitochondria that is
immunolabeled against the protein TOM20 [141]. Buwitleft panel: two-color
iISOSTED image of TOM20 (green) and the matrix protdSP70 (red). Bottom-right
panel: three-dimensional rendering of an isoSTEagen of TOM20 [142]. (D)
Examples of 3D SIM images [143]. Top panel: a @ntross-section of a confocal
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image of the nucleus stained for DNA (blue), larBingreen), and the nuclear pore

complex (red). Bottom panel: 3D SIM images of aiksifty stained nucleus.

In STED microscopy, the patterned illumination mets fluorophores from
emitting light [134, 135, 144]. This suppressiorachieved by the stimulated emission,
a process in which a light source, called the depidight (the second layer of Fig.
5.2(a)), brings an excited fluorophore (the topelagf Fig. 5.2(a)) down to the lowest
energy state (i.e., the ground state) before it emnt fluorescence signal. STED
microscopy takes advantage of the saturated responfsfluorophores: once the
depletion laser intensity is above the saturatievel, the number of fluorophores
remaining in the excited state (and thus capablgeokrating fluorescence) approaches
zero. Thus, when a ring-shaped depletion lightepatvith peak intensity significantly
above the saturation level is applied to the sapgiy the molecules within a small
region near the center of the ring can generatedkcence (bottom panel of Fig. 5.2(a)),
giving rise to a sharpen PSF for a SR image. Thevdth-at-half maximum (FWHM)
of PSF, and thus the resolution of the microscepales approximately with the inverse
square root of the intensity of the depletion ligi#4].

Theoretically, STED could produce unlimited reswmiot improvement if an
infinitely strong depletion light source is givelm practice, however, a number of
factors influence the resolution of STED microscapgluding aberrations in the optics,
scattering from the sample, and the photostabibfy the fluorophores. STED
microscopy has reached a remarkable resolution @fim6 using strong depletion
intensity to image fluorescent defects in diamonabich almost never photobleach
[145]. In biological applications, STED imaging hashieved a resolution of 20 nm
when using organic dyes and 50-70 nm resolutionnwigng fluorescent proteins
[146]. The upper panel of Fig. 5.2(c) shows a campa between a confocal and a
two-color STED image of the mitochondrial outer-niame protein TOM20 and
matrix protein HSP70 [141].

The STED microscopy is also used for 3-D imagingc& a ring-shaped pattern
light in the XY plane improves the lateral resabati a pattern having two maxima
along the z axis improves the axial resolution [1ZBverlaying these two patterns
improves the resolution in both lateral and axiakbaions [147], allowing 3D SR
imaging with a axial resolution ~2.5 times the tat@ne. The lower panel in Fig. 5.2(c)
[142] shows a 3-D SR image of mitochondria acqulgd using isoSTED [142] with
the 4t configuration, achieving a resolution of ~30 nralhthree dimensions.
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In addition to stimulated emission, other saturaipécal transitions that send the
molecule to dark states can also be used to stivenkrea of molecules that fluoresce in
a focal spot [136]. This extension of the STED apph, called reversible saturable
optically linear fluorescence transitions (RESOLFMmicroscopy, allows super
resolution to be implemented with a substantiatbyver-depletion light intensity,

causing less damage to delicate biological sanjptey.

5.3.1.2 Positive Patterning: Structured lllumination Micrazpy

Structured illumination microscopy (SIM) improvesiage resolution by using
positive patterning of the excitation light [27]hieh is typically a sinusoidal pattern
created by combining (i.e., interfering) two lighgams. As a result, an image snapshot
of the sample becomes the product of the sampletste and this excitation pattern, as
shown in Fig. 5.2(b). A final image is then compiataally reconstructed from multiple
snapshots collected by scanning and rotating tkterpa In this process, the additional
spatial modulation from the excitation pattern ggarenhanced spatial resolution into
the reconstructed image [148]. However, the illustion pattern created by interference
is also limited by diffraction. Therefore, when tfieorescence signal scales linearly
with the intensity of the excitation light, SIM tdts only in a doubling of spatial
resolution (Fig. 5.2(b)), which is ~100 nm in ttegelral dimensions [148]. Fig. 5.2(d)
shows respectively a three-color confocal and Sihdge of the nucleus containing
DNA (blue), lamin B (green), and the nuclear pavenplex (red) [143].

Like with the STED approach, the saturating respafghe fluorophore can also be
exploited here to further enhance the resolutidsiv[1149]. With sufficiently strong
excitation, the fluorescence emission from a flplware will saturate. Saturated SIM
(SSIM) utilizes this phenomenon to create shargk dagions where the excitation
pattern has zero intensity, providing image resatutsignificantly beyond the
diffraction limit, as shown in the lowest panel lbfy. 5.2(b). With this approach, a

resolution of ~50 nm has been obtained for imafluyescence microspheres [137].

5.3.2 Single Molecule Localization Microscopy

After 20 years of development in the field of segholecule imaging [150], single
fluorophores are now routinely detected in a variet imaging modalities, such as
epifluorescence, total-internal-reflection, conflp@ad multiphoton microscopiednce

each fluorescent probe in a sample can be imagd#didnally, its positions can be
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determined to a high precision by finding the ceofethe single-molecule image [151,
152]. The uncertainty in determining the moleculgssition (i.e., the localization
precision) scales approximately with the inverseasg root of the number of photons
detected from the molecule. For bright fluoresadyds, about one million photons can
be detected from a single molecule, leading tocalipation precision of< 1 nm [151,
153].

A STORM/(F)PALM

Conventional image Super-resolution image

Stochastic activation
over many frames

B 3D images of clathrin-coated pits
by astigmatism imaging

C 3D images of plasma |D Comparison of
membrane by inference| photoswitchable dyes and
fluorescent proteins

500 nm
e

Fig. 5.3 (a) A systematic schema of STROM/(F)PALMW). 3D super-resolution images

taken using an astigmatism approach with cylindltexas [154, 155]. Two left panels: a
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a conventional LR image of clathrin-coated pits #mel corresponding 3-D SR image
showing an XY cross section near the plasma mersbididdle panel: magnified SR
images of a single clathrin-coated with an XY petign (top), an XY cross-section at
the lower portion of the pit (middle), and an XZoss section cutting through the
middle of the pit (bottom). Two right panels: matilor 3-D image of clathrin (green),
dynamin (cyan), and an F-BAR domain protein FBR&d)(in the cell-free system. (c)
3-D SR images taken using an interferometry approdth apposing objectives [156].
Top: XY projection of the plasmamembrane of a asghiere the color encodes their Z
coordinates. Bottom: XZ cross section of the boxedion in the top panel. (D)
Comparison of STORM/(F)PALM images [155] of clatirgoated pits immunostained
with the photoswitchable Alexa647 dye (green) @g&d with the mEos2 fluorescent

protein (red).

However, being able to localize a single molecidanot directly generate super-
resolution imaging of a biological sample, whicim c@ntain thousands of fluorophores
inside of the diffraction-limited region. At firssight, it might seem impossible to
distinguish these molecules individually. Howeviéithe fluorescence emissions from
these molecules are controlled so that only oneecutd is emitting at one time,
individual molecules can then be imaged and loedlizThis is the idea behind a
recently developed super-resolution imaging teammiqcalled single molecule
localization microscopy (SMLM), including STORM [&@B PALM [139], and FPALM
[140]. In this technique, photoswitchable (or plamtiivatable) fluorophores are used to
achieve temporal control of the emission. Theserfiphores can be converted between
a fluorescent (or “on”) state and a dark (or “off)ate or states that fluoresce at
different wavelengths. Therefore, when activatightl of a sufficiently low intensity is
applied to the sample, only a random, sparse sulbdkiorophores is activated to the
on state at any time, allowing these molecules @oirbaged individually, precisely
localized, and then deactivated by switching tcewersible dark state or permanent
bleaching. Iterating this process then allows tieations of many fluorophores to be
mapped and a super-resolution image constructed fn@se localizations, either with
synchronized activation [138-140] or with asyncloos activation [157]. Fig. 5.3(a)
shows a systematic schema of SMLM. The image raealis then no longer limited
by diffraction but instead by how precisely eadmofbphore is localized. Using this

approach, a lateral image resolution as high asw20as been achieved [138].
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By determining the position of individual moleculesall three dimensions, SMLM
can be extended to 3-D imaging. The first impleragoh of this approach uses a
simple optical design that takes advantage of @stigm in which light propagating in
perpendicular planes has different focal pointsec8jcally, a cylindrical lens is
inserted in the imaging path, such that the shdse single-molecule image becomes
elliptical. This makes it possible to determine theal position of the molecule from
the ellipticity and the lateral position from thenter position of the image [155]. Fig.
5.3(b) shows 3D images of clathrin-coated pits makth this approach, resolving the
nanomorphology of these structures [155]. Otherlemgntations have utilized a
variety of 3D localization methods, such as capydefocused images at two different
focal planes [158], engineering a PSF with a dotlelécal shape [159], and using a
mirror to project the axial view to the lateralatition [160]. Axial resolutions of 40-70
nm have been reported using these methods. ThedtigRial resolution is achieved by
interferometry using two opposing objectives inraisr fashion to 4 microscopy and
I°M [156]. Fig. 5.3(c) shows the clear separationtid ventral and dorsal plasma
membrane in a thin protrusion of the cell using tiiethod, demonstrating an axial
resolution of 10 nm [156]. The imaging depth ofsttapproach is relatively small
compared to the PSF-fitting approaches describethéoother 3-D SMLMs.

An important issue in SMLM is the choice of fluoceace probes. SMLM often
uses fluorescent proteins to label the cell sampléswever, for some specific
experiments, the decision of whether to use dyeBuorescent proteins for labeling
depends on a variety of factors. In terms of ladgglfluorescent proteins are genetically
encodable, allowing proteins in living cells to beadily labeled with fluorescent
proteins. However, dyes are more versatile for liagedifferent molecular species,
including proteins, nucleic acids, oligosaccharjdasl even small molecules. In terms
of the optical properties, dyes generally have gnicantly higher photon output,
allowing higher image resolution than fluorescembt@ns. Fig. 5.3(d) shows a
comparison of STORM images of clathrin-coated pitsmunostained with the
photoswitchable Alexa647 dye (green) and tagget Wié mEos2 fluorescent protein
(red) [155].

5.4 Summary
SR fluorescence microscopy has shown great profusestudying biological

structures and processes from the cellular to mmaalecular scale. Images obtained
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from new SR imaging approaches enable scientistdirectly visualize biological
samples at the nanometer scale and complement nisights obtained through
traditional molecular and cell biology approachesthis chapter | have outlined some
of most important SR fluorescence microscopy temines, which can be categorized as
hardware-based one and SMLM. Although these twegoaies of methods use
different approaches to accomplish sub-diffractrerolution, these techniques share
important commonalities. In both cases, a physimalchemical property of the
fluorophore is used to maintain neighboring molesuh different states (i.e., “on” and
“off”), enabling them to be resolved from eachhet [144].

Although having achieved remarkable performancsuin-diffraction-limit imaging,
these SR fluorescence techniques have their limitsch include not only high cost,
instrumental complexity and tardy commercialisatioat also the fact that each method
has its own practical disadvantages. STED microgagguires the use of special
fluorophores and sophisticated multi-wavelengthedasources. The resolution that
STED has achieved for biological samples is tyjpyca0 to 100 nm. PALM needs the
specimen to be frozen through many cycles, eacle cgmsisting of activation and then
imaging to the full bleaching of a subset of phptotein molecules. Stochastic methods
such as STORM and SIM are slow and computatiomatiénsive and do not provide as
large an improvement in resolution as the previmeshods, at least with the available
linear optics. There is currently still no ideak®m that offers user-friendly, high-speed,

3-D and multicolor imaging with nanometer-level splaresolution.
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Chapter 6

Feature-Preserving Super-Resolution Restoration forFluorescence

Microscopy

Abstract: In the previous chapter, | have reviewed seveualent SR techniques in the
fluorescence microscopy for cell imaging. All oete approaches use the properties of
the fluorophore to make certain special and compteging arrangements to achieve
super resolution. In this chapter | propose anraditeve approach, HR image restoration,
to increase image resolution beyond the diffractionit. It is a post image acquisition
computational technique, which restores a HR inmtagasing multiple LR observation
through an inverse process. A major advantagePRfréstoration method is minimal
hardware modification to standard microscopes aercefore low cost. The method can
also apply to many circumstances where accessegfdst SR imaging devices is not
possible. Commonly used HR restoration methodsrpuarate the edge information in
the inverse process to achieve a good balance eetweise removal and resolution
recovery of features in the image. However, suclthous have a limited effect in
modelling complex features in fluorescence cellgesgand may not be able to restore
these features and therefore restore the desiradeimesolution. To overcome this
problem, | propose a new feature-preserving HRoragbn method by incorporating
the combined nonlocal difference (NLD), which haet proven effective for feature
preserving in our work on image denoising, into pmecess of resolution restoration.
Experimental results demonstrate that our methogeoiorms several popular HR
restoration methods for noise removing and fegbueserving (and resolution restoring)
when applied to both synthetic and real naturalgesa When implemented with

conventional microscopes, our method results i7-fotel increase in the lateral spatial

90



resolution in noisy biological environments, detimg multi-colour image resolution of
~30 nm.

6.1 Introduction

Image resolution in the biological fluorescence nmscopy, as discussed in the
previous chapter, is often hindered by the standdifftaction limit. Two main
approaches have been developed for breaking thisifi fluorescence microscopy and
achieved remarkable resolution improvement. SR intaglevices such as STED
usually involves complex optical and chemical desigd therefore high costs.

An alternative approach for SR imaging is to agplgge processing techniques to
restore a high resolution image or sequence frazataf low-resolution observations,
referred to as HR image restoration [20]. As disedsearlier in Chapter 1, the LR
observations can be considered the outcomes ofifradiag process of the HR images
due to blurring and noise effects, as shown in Eidg. and formulated by Eq. (1.1),
when the blurring matri® is no longer unitary. Compared to the image demgiHR
restoration is a more complicated inverse probldrtivis required to not only remove
noise but also restore fine structures that areitothe image degrading process. It is a
post-acquisition method that does not depend orgimgasystems by which the LR
observations are recorded. However, the relativatipa (correspondence) between
these observations must be known.

As a cost-effective method for increasing imag®lgsn, researchers over the last
decades have devoted substantial efforts to dewadffeptive algorithms, ranging from
optical flow HR restoration [23], transform-domaidR restoration [161, 162],
projection onto convex sets HR [163], adaptivesfiig HR [22, 164], to MCMC-blind
HR [165] and so on, in order to solve the HR redion as an inverse problem. The HR
restoration approach has already been applied tay nagplications, such as space
imaging [33], security surveillance [166] and mebdameras [167], where the images
are usually captured in a high-SNR condition. lonbetrics, it has significantly
improved the performance of face and iris recognifil68]. Recently, there have been
increasing research activities of HR restoratiothoes to produce SR medical imaging,
such as functional magnetic resonance imaging (JMRB9, 170] and positron
emission tomography (PET) [171]. When applied uofescence microscopy, in which
the resolution limitation is mainly due to lightffdaction, HR restoration means SR

restoration.
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Medical imaging usually uses highly controlled miunation sources to avoid tissue
or organ damages to a human object. Moreover, inaagaisition duration has to be
restricted in order to release patient discomfad aninimize imaging artifacts due to
the uncontrolled patient movement. The low leveligiit flux leads to limited signal to
noise (SNR) images. Removal of noise is therefordispensable and critically
important to the performance of HR restoration edmal imaging [172]; otherwise the
noise may be amplified during the HR restoratiaming rise to unpleasant artifacts in
the restored images. However, there exists a tfAdetween noise removal and feature
preservation (and resolution restoration); over@timog can impede on image
resolution that can be restored and lead to atsifat the restored images. Hence a
successful HR restoration method must comprise id-ibufeature-preserving noise
reduction algorithm. This is often achieved by impmyating a prior model or function,
which detects the features of interests, into tmeerise process. Similar to image
denoising problem, previous methods for SR restoraproblem usually employs a
prior model based on edge-preservation concephadical and other applications
[173]; features are restored as long as all the®dge preserved in the inverse process.
Particularly in medical imaging, several prior medfl62, 174, 175] using gradient
operators were employed for simultaneously remowimige and preserving features.

To the best of our knowledge, the HR restoratiopragpch has not been developed
for SR fluorescence microscopy in biological apgiiens. In microscopy imaging there
always exists a compromise between image quality @il viability. Excitation of
fluorescent probes causes photo-bleaching and bwi@ty, which limit the light
intensity and exposure times that can be used.ré@eirement to image fast and in
multiple dimensions to capture dynamic intracel@aents also constrains illumination
and exposure regimes and requires fast cameraueadllb these lead to low-SNR
fluorescence imaging as in medical imaging. Conghacemedical imaging however,
biological images are more challenging in termsnodge complexity and feature size
compared to medical images. The latter usually aiontlata describing tissues with
simpler structures and larger size compared tddhaer, typically 2-3 times smaller
than the resolution limit of the images [176]. Femcence images of intracellular
structures often contain abundant, heterogenealsdid ridge-like features, complex
sub-cellular structures, potentially 10 times serathan the resolution limit [37]. In
general, edges embedded in small and complex &satas having been demonstrated

by the poor performance of the edge-based denomgthods [177, 178] in Chapter 3
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and Chapter 4, are rather prone to noise contaimmais such, HR restoration based

on edge-preservation may not perform well in flgoence microscopy.

In Chapter 4, | have demonstrated the excelleribpaance for image denoising by
using the GFP-NAD method that combinés and 2% order NLDs as a feature detector
[178]. Inspired by the success of NLDs in image aleng that can be seen as a
simplified case of SR restoration with the unitbhyrring matrixP in Eq. (1.1), | in this
chapter propose a new prior model that combinedthand 2%order NLDs. The new
prior function is then incorporated into an enefigyction to invert the imaging process
by using optimization algorithms to form a featpreserving SR restoration (FP-SR)
method. When | apply the FP-SR in fluorescence aosmwpy, the LR images are
acquired by a conventional fluorescence microsaapiést translating the microscopes
in the XY plane. We refer to the combination of ls@cmultiple LR image acquisition
modality with our SR restoration method as tramshatnicroscopy (TRAM) for super-
resolution imaging, which can be in principle opedain any standard microscopes
with few hardware modifications. Experimental réswan synthetic images demonstrate
that our method can achieve a higher PSNR comparseveral popular SR restoration
methods [174, 179, 180]. When tested to the rearéscence microscopic images, our
method achieves a ~7-fold increase in lateral apaésolution in noisy biological

environments, delivering multi-colour image resmntof ~30 nm.

6.2 Feature-Preserving SR Restoration

6.2.1 SR Restoration by Optimization of an Energy Function

A low resolution (LR) imageJ;, can be considered as the outcome of an original
high resolution (HR) image,, after an image-degrading process involving bhgrand
noise contamination, whetedenotes image index. This process has been dtestrin
Fig. 1.1 and can be formulated by the image capgumodel [179, 181],

J =Rl +N;, (6.1)
where thecolumn vectors); andl; comprise respectively row-wise concatenations of
the LR and HR image®) is a blurring matrix determined by the PSF of ittnaging

system and\, represents additive white Gaussian noise (AWGNyeGE(Q. (6.1), SR
restoration aims to recover the HR imdgdeyond the diffraction limit from the LR
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observationJ;. Theoretically, by multiplying the inverse® of the matrixP on both
sides of Eq. (6.1), the HR imagiecan be easily and uniquely determined. However, fo
a fluorescence microscopy where the PSF of eadH {g»almost identical, the blurring
matrix P cannot have a full rank and is not invertible [[LF8encel, cannot be uniquely
determined by directly invertind®. Instead, it can be estimated by adapting an
optimization approach by minimizing a pre-defineggy function [181],
I, =argminE (, ),

" , (6.2)

E(1) =g{|9, -R1[E)+ A, RO

where the first term in the energy functigf;) measures the difference between the LR

observation and predicted data in"anorm form andg(l) is a robust function. The

robust function is a class of symmetric, positiwdhtite functions with a unique
minimum at zero, and less increasing than the auiadiunction,f(x) = x>. The goal of

such a robust function is to decrease the influeric®-called outliers, i.e. large values
of the ¢*norm ||J, - F1I|||§ so that the energy function more likely reacheglabal

minimum [182].

Unfortunately, the estimation of still cannot be uniquely determined from Eq. (6.2)
since the size of the imagges always no smaller than that of the blurringriety which
also equals to the rank of the mathx SR restoration from single LR image Eq. (6.2)
therefore turns into an ill-posed problem [183]. Make Eq. (6.2) well-posed, multiple

LR observations{J, } of the HR imageg!,} , that represent different

k=1,.....,M k=1,..l..,
‘looks’ of the same scenlg, are therefore needed to provide additional infdrom for

SR restoration [20, 23, 33, 167, 179, 181]. Thatieh between the two HR imagés,
andly, is measured by a matr that gives the pixel-level correspondence of the t

HR images. The minimization problem Eq. (6.2) daentbe written as
I, =argminE (, ),
I

M , ) (6.3)
E(l,) :Z(”(”Jk -BCyl |||1)"'/]|I R1,)

In practice, the correspondence matixis unknown to the observer but is assumed to
be unchanged during the degrading process. As sliehmatrix can be determined by
the correspondence between LR images [181]. Thetérm of the energy functidg(l))

in Eq. (6.3) therefore measures the sum of multghifeerences that provides more

constraints for estimating the compared to that by using single constraint in (B®).
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Provided thal, andl, are different looks of the same scene, the m&jixs then not

unitary and thus the rank of matrixC,, is no longer less than that of the HR imé&ge

resulting in a unique solution gffrom Eq. (6.3) [20, 165, 173, 179, 181].

In general, the performance of a SR restorationralgn depends on three factors:
the estimation accuracy of the blurring keri&l and the correlation€,, among
multiple LR observations, and the ability of norsenoval [167, 173, 176, 179, 181]. In
applications such as space imaging [33], surveaifgii66] and mobile cameras [167],
the former two often vary from observations to efations during the capturing
process. An accurate and robust estimation of tisetiius a key for the SR restoration.
Compared to these two factors, the removal of nsigeot essential since images are
often acquired under strong illumination energy,iclhoften results in high-SNR
images. On the contrary, in other applications sashmedical imaging [4, 171, 172,
176] where imaging environments can be perfecthtratled in laboratories, the former
two factors can be known during image acquisitiortheir estimation can be obtained
very accurately. The noise contamination in theliced imaging process, however, can
be rather high due to low dosages of illuminatiadiation and short durations of data
acquisition to release patients’ discomfort. Thefqgenance of SR restoration in
medical imaging then largely depends on a good vamaf noise. For the application
of biological florescent microscopy, the imaging/iekonment is quite similar as that in
medical imaging where the motion and blurring patars can be known as priors or
estimated accurately in an easy way. As such, whey to apply SR restoration in
biological microscopy imaging, the problem of noismoval is the key factor to
determine the performance of resolution recovenchSproblem will be solved in the

next section, where | propose a new prior mo&¢l, ) , and incorporate it in the energy

function toE(l)) in Eq. (6.3) for noise removing during the inveocess of resolution

restoration.
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6.2.2 A New Prior Modd

(a) (b)
Fig. 6.1 An example of SR restoration without naismoval. (a) An LR DAPI image.
(b) The HR image restored by SR restoration withnatse removal. The image

contains several spurious structures around thieinuc

In practice, the contamination of noidg& is inevitable in the imaging process, Eq.

(6.1), of fluorescence microscopy even in a highfRSNnaging condition since
quantization errors can also introduce noises [K3}he noise is not suppressed or
removed during the inverse process, such randoonsewill be falsely recognized as
structures and thus be amplified by a resolutiomaacing behaviour induced by the
inverse process Eq. (6.3). Fig. 6.1 shows an exampSR restoration result without
noise removal. As seen, the random noises in them&ye (Fig. 6.1(a)) are falsely
enhanced as artifacts, namely spurious structiigs §.1(b)), which may significantly
mislead the analysis of biologists both visuallyd aguantitatively. A prior model,

R(I,), should therefore be included in the energy famc(l;) to regularize the

minimization process for noise removal, as giverthia second term dg(l|) in the

second equation of Eq. (6.3).
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Fig. 6.2 A BS-C-1 cell image contains abundantigats (green) and clathrin-coated
pits and vesicles (red). Scale bapm [37].

In general, noise removal is often achieved by ghing. However, there is a
tradeoff between smoothing and feature preservdgtiod restoration); over-smoothing
can introduce blurring effects to features can tinysede image resolution that can be
restored [174]. As such, the prior model shoulddesigned to remove noise while

preserving key features of interests during thestis® process of SR restoration. The
parameter/l,l, is to balance noise removal and resolution rasitor. In general, an

edge is a fundamental feature that underlies momepticated features or structures in
an image, so the latter can be preserved as loregiges are preserved [177]. Since
edges can be characterised by a first-order difterggradient), many SR restoration
methods in medical imaging have applied gradiemrators to build the prior model
[162, 165-167, 169, 171, 174, 175] and achievedesgve performances in fMRI and
PET [170]. However, the gradient-based prior matteds not work well when applied
to biological fluorescence microscopy. Fluorescebmdogical microscopy data are
usually made up by vesicles, filaments, microtubwded their complex networks, as
shown in a cell imagé&ig. 6.2, which are more complicated than medicages of
organs or tissues. Spatial scales of the structorg®e two type of images are also very
different, the ratio of the full-width-at-half marum (FWHM) of a microtubule to the
PSF of an optical microscope is typically 10 tinj&g] while the size of a lung lesion
to the resolution limitation of PET is usually 23dimes [171]. Since edges embedded
in small and complex structures, as demonstratezinwork of image denoising, are
prone to noise contamination [177, 178] , the gmatlbased operators in the

fluorescence microscopic images may not be abteliostly detect edges under severe
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noise contamination. SR restoration using the gradbased prior models may
therefore fail to preserve these complex structares restore image resolution during
the inverse process.

We here present a new prior model that is capableharacterizing complex
fluorescence cell structures to avoid over-smoagthiam restoring the resolution of low-
SNR images during the inverse process. The modbhas®d on our observations in
Chapter 3-4 in bio-imaging denoising that divers®dgical structures such as vesicles,
filaments, microtubules and their complex netwoake made primarily of two basic
features, blob and ridge, which are circular amg-like regions either brighter or
darker than their surroundings [105, 184], as showrfig. 3.2. They are better
correlated with a second-order difference rathanth first-order one which measures
edges. Inspired by the success of NLDs in imag®idery that is a special case of SR
restoration in unitary the blurring matrix, | preg@oa new prior model by combining the
1%t and 2% order NLDs in the form,

R = o( WO G, + wO|oi O ) (6.4)

whereN is the pixel number of the HR imag#@mll(x)”z’g andHDﬁ‘LI,(x)HM are the

1%t and 2%order NLDs at the pixel position given by Eq. (3.2), (3.6) and Eq. (4.8).
The coefficientsnvy(X) andwy(X) are weights that balance the contributions oftthe
NLDs in the forms of

wig =Pt L, I UG
2 2 2 2 '
LG UL S R A

(6.5)

SinCGHDNLH(X)HM > HDﬁ‘LI,(x)szgin the vicinity of edgesw; > w, and the I-order
NLD dominates the prior model in this region. Oe ttontrary, in the vicinity of blob
and ridge feature#DNLl,(x)szg < HDﬁ,LI,(x)HZJ, wi < W, and the ¥-order NLD
dominates the prior model. As such, the combination
W, (X) HDNLI,(X)HM + w( »“Dﬁ,Lll( ))Hzﬂ provides well-balanced responses for all edge,

blob and ridge features and complex structures mpdsy them.

6.2.3 Energy Minimization
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By combining Eq. (6.3) and Eq. (6.4), | proposeettimate the HR imagk by

solving the optimization problem,

o 2
Z¢(”Jk - RC, |||2)

k=1

[, =argmin N : (6.6)
I 2 2
2, Y A0t 3, + w3 O )
x=1
where the robust functioqv(°) is chosen in the form of
o(x) = X (6.7)

1+x
since it is differentiable so the close-form smintof the estimatioh, Eq. (6.6) can be

easily obtained. Another reason for choosing tlmfdeq. (6.7), is the strong ability of

Eq. (6.7) to reduce considerably, or even elimirampletely, the influence of large
errors for|J, - PC,! [ due to the inaccurate estimation Ry and Cy, compared to

other forms of the robust function [182].
The optimization problem Eg. (6.6) can be solvedibgling the solution| so that

% =0, which leads to the following equation
|
M
(Ah |:)1T'A‘|\1|_1D1"'/]|I D;ANL2D2+ZCI2I—PKTAKPKCKIJ I [
K , (6.8)

M
Z C;l PkT AJ,
k=1

where the matriceB; andD, correspond tot and 2%order NLDs,An. andAn. are
N x N diagonal matriceshose elements are the derivatives of the robumttion ¢.)

in each pixel andN is the pixel number in the image. Details of degvEq. (6.8) from
Eq. (6.6), as well as definitions B, D,, An. andAn2, can be found in the Appendix
section. Eq. (6.8) is a nonlinear equation dbecausédn 1, An2 andAg also involve
the variablel;, so may have multiple solutions that correspondotal and global
minima of the energy functioi(l|). We here apply the iterative reweighted least
squares (IRLS) method, which has been proven toetfective in non-convex
optimization problems [185]. Experimental resultssé shown that IRLS can at least
lead to a local optimum solution that is most clésehe global optimum among all
local solutions [185]. To solve Eq. (6.8), | assuthe initial solution ad, = J. The
solution then evolves iteratively while the enefgynction is gradually minimized by

IRLS. The rate of the evolution is adjusted at eigetation step based on the difference
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of HR solutions between the present and previcessthe rate is usually highly in the
beginning and become slower as the energy fungits closer to the global minimum.

The parametey, is also updated at each iteration step accordintheaesidual noise

contained in the current HR image estimation [1X¥8hen the difference of the HR
image estimations between two adjacent iteratienbelow a pre-set threshold, the
iteration stops and the solution is consideredht restored HR image. More details

about the process of minimizing energy function @) are given in Appendix..

6.24 Trandation Microscopy (TRAM)

Based on information theory [21], the LR observadi®o be used to recover a HR
image via the proposed inverse process must beslated but not identical. For
biological microscopy applications, the easiest wayobtain a set of (related) LR
images of the same object is to record these imab#és the microscope or specimen is
translated in the XY plane. The correspondence ixmatr this case can be easily
determined from motion vectors of the two LR imagesen by the relative positions
between the camera and specimen. The PSF matiaboratory environment is the
same for each LR image and is readily availablenfrine manufacturers of the
microscopes or can be accurately estimated usiagesisuch as bead or quantum dot
samples. We refer to the combination of such aipteltR image acquisition modality
with our SR restoration method as translation nsicopy (TRAM) for super-resolution
imaging. Compared with other SR imaging techniques suchlisls STED, STORM,
etc., TRAM can be implemented simply on conventionizroscopes with no hardware
modifications. TRAM can be also operated with otlmiage systems capable of
acquiring multiple translational images, includi8& facilities to achieve even higher

spatial resolutions.

6.3 Experiments

We apply our SR restoration method to a numberyothetic data sets and real
fluorescence microscopic data. We first use a ®mpD test to explain why our prior
model works better than the edge-based method blyzng the inverse process in
detail. We further test our method on a 2-D stathdasolution chart and a synthetic
biological image containing blobs and ridges ofyway sizes and orientations. An
experiment on human face is also carried out aedréisults show that our method
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works well for natural images. Finally | apply onorethod to the real fluorescence

microscopic images. In all the tests the SR reStorgrocess is measured by the mean
squared difference-norm (MSDN) of the restored iesadetween two adjacent

iterations given in Eq. (3.21). When the MSDN resxcho a certain small value, the

inverse process is terminated.

We have implemented our algorithm by using Matl&)E®b. The computational
time of the Matlab code depends on the parameteange On a recent Intel i7 3820
3.80 Ghz CPU with 32Gb physical memory, it takassifistance 10h to restore a 256
X 256 HR image from 32 LR observations with patae aV = 21 and 640 iterations.
We believe that our algorithm can be largely acgegéel by using different optimization

strategies such as parallel computing.

6.3.1 Validation on Synthetic Data

We first test our method on 1-D, 2-D synthetic imag@nd compare the results with
existing methods, including the robust SR method80] (denoted by ZMT), which is
based on back projection with median filtering, tbbust SR method in [179] (denoted
by RSR), which is based on bilateral TV priors, amadiational Bayesian SR in [174]
(denoted by ALG), which uses Bayesian framework &dpriors. The last method is
considered to be the best multi-frame SR restoratigorithm at present [186].

6.3.1.1 Validation on 1-D Signals
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Fig. 6.3. Test on a 1-D signal. (a) A 1-D HR and iBnal containing one step edge,
three blobs and strips made of these blobs. (bpdees of 3, 2" order NLDs and

their combination to the LR signal in (a); (c) ) Té&e evolution process leading to HR
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restoration by my method; (f) The restored HR digiiiy our method and by a similar
method using an edge-preserving prior model.

Fig. 6.3(a) shows one of the 64 1-D 8-bit HR and dighals containing one step
edge, three single blobs of widths 5, 11 and 21 pixels and strips made of theskesblo
in multiple packs, the latter was PSF blurred (Stdr = 10 pixel) and noise
contaminated (AWGN Std,, = 20) of the former under the general model Edl)(6
Fig. 6.3(b) plots the responses of tie, P"%order NLDs and their combination to the
noisy LR signal; the value of thé'brder NLD is relatively large in the vicinity ohé
edge but small in the neighbourhood of the blok stripe. On the contrary, th&8%2

order NLD responds better to blobs and stripes tedges. Consequently, a
combination of the twow_L(x)HDNLI k(x)H; + w( >9HD2NLI W ))H;, gives rise to a well-

balanced response to all the features and low nsgptw the background, as shown in
Fig. 6.3(b). As such, background regions are snembtieavily in the initial stage while
features are being restored, as shown in Fig. 6.3& the signal evolves during the
inverse process, the smoothing effect “propagatesards the feature regions, which
leads to higher contrast between feature and baokgr and therefore increased
responses of the®land 2%order NLD to the features. The system performstich a
positive feedback manner, leading to more effecheese reduction and resolution
improvement in the second stage, as shown in Eig(d4). The iteration process
completes when the differences of signals betwaenadjacent iterations is below a
pre-defined threshold. The final result in Fig.(6.3hows good restoration of features
and reduction of noise compared to the noise-frege in Fig. 6.3(a). For comparison,
| also restore the same set of LR frames by settimgnethod withw; = 1 andw, =0 in
Eq. (6.4), corresponding to the edge-preservingrpniodel. As seen from the red curve
in Fig. 6.3(f), the edge is preserved but the blahg stripes are smoothed out by using
this method.
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6.3.1.2 Validation on 2-D Standard Resolution Chart Images

20 40 60 80100
Number of LR

d e
A4o»§ = 7§§€~
m
B351+% |

a .
25-5.' - - = _ ——
20 .
20 30 40

g, ALG RSR ZMT

Fig. 6.4. Test results on a 2-D 8-bit resolutioarth(a-b): A resolution chart corrupted
by a Gaussian-shaped PSF with &tg-= 5 (pixels) and an AWGN with Stg, = 20,
and the restored result by our method. (c) The nRBNR of our method versus the
frame number of LR images for noise Sto= 20 and PSF Stdsse= 5, 10, 15 pixels,
respectively. (d): A comparison among the mean P8N&ur method, ALG, RSR and
ZMT versus the Noise Std when the PSF Sigls = 5, 10, 15, respectively. (e): A
close-up region marked by a red box in (a); (f)je@mame of LR images generated from
(e) by Gaussian-shape PSF with &tdr= 10 and AWGN with Std, = 20; (g) — ()):
Restoration results by our method, ALG, RSR and ZM$pectively.

Next | tested on an 8-bit LR resolution chart, fagven in Fig. 6.4(a), which contains
blobs and ridges with varying sizes and orientai@md is commonly used for a
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standard evaluation of SR restoration [187]. Thageis corrupted by a Gaussian-
shaped PSF with Stgbsg= 5 (pixels) and an AWGN with Sigh = 20. We first apply
our method on a set of 64 LR sequences corruptead ®gussian-shaped PSF with Std
opst = 5 (pixels) and an AWGN with Ste, = 20. The restored result is shown in Fig.
6.4(b). As seen by comparing Fig. 6.4(a), our tessgtore very well all features in the
resolution chart, including the stripes, curve dirmnd numbers in the chart image. To
guantify the performance, | plot PSNR of our resudltsus the number of LR frames
under same noise situation (Std= 20) but three different blurring (Stdssg= 5, 10,
15) in Fig. 6.4(c). As seen, all three curves slzomonotonic increase of the FWHM
ratio on increasing the number of LR observationd hegin to saturate at 50 LR
images, the latter depends on the noise leveldrLBobservations. There is however a
shift among the three curves because of differentrities of PSF blurring; worse
image restoration for higher level of PSF blurrfoga fixed number of LR images and,
for higher blurring levels, more LR observation® aequired to achieve a same
restoration level compared to lower blurring cases.

We also compared our method with three populatiegiSR methods, ZMT [180],
RSR [179], and ALG [174]. Fig. 6.4(e-j) show resipesly the magnified HR, LR and
restored images of the boxed region in Fig. 6.4athe four methods using 64 LR
frames. As seen, the other three methods eithelupeosevere artifacts (ALG) or fail to
restore the image resolution by smooth out numbedsridges in their results (RSR,
ZMT). In contrast, our result shows visually a sugreresolution enhancement without
artifacts, compared to the original HR one in FEgl(a). For quantitative comparison,
Fig. 6.4(d) plots the PSNRs of the restored redmtshe four methods on the 64 LR
frames for different degradation cases with varinase and PSF levels. As seen, our
method for all cases performs noticeably betten tih@ other methods, at least by 5dB
in terms of PSNR.
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6.3.1.3 Validation on Synthetic Cell Data
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Fig. 6.5 Test results on 2-D synthetic cell data: ) A synthetic HR cell image and its
LR observation corrupted with noise contamiationStd 6,= 20 and PSF blurring of
Std gpst = 31 (pixels). 1-D intensity profiles of the fistructures LR image are also
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plotted as green curves in the two figures. (c)téted image by our method and the
intensity profile in a green curve. (d) FWHM rabetween the LR and restored images
for the five types of structures, respectively. E&YHM ratio between the LR and
restored structures versus the Std of the inpugendihe number of LR frames and PSF
Std are fixed to be 64 angse= 31 (pixels), respectively. (f) FWHM ratio betwethe

LR and restored structures versus the number ofmi&jes for different input noise
levels of Stdo, = 10, 20 and 30, respecitively. The Std of PSBeilsto bespsg= 31
(pixels).

Fig. 6.5(a) shows an 8-bit synthetic HR cell ima@812 pixel x 384 pixel)
containing blobs and ridges that mimic the key deed of transport particle and
microtubules in intracellular structures. The bldtzve a diameter of 21 pixels and a
centre distance of 21 pixels between the two adjaaees. The ridges have the FWHM
of 10 pixels and a centre-line distance of 32 gix€he 1-D vertical profiles for the four
types of particle arrangements and a cross-settpyoéle for the three microtubules
are plotted (green curves) in this figure. A seb4fLR frames are obtained under the
TRAM procedure with an AWGN of Stal, = 20 and Gaussian-shaped PSF of dptg
= 31 pixels, the latter gives rise to the diffraatilimit of 91 pixels [25]. If such
diffraction limit equals to the standard one, ~200, for visible lights, the pixel size
would be ~2.2 nm. As such, the resolution improveina this experiment can be
measured in a high precision. Fig. 6.5(b) showsRaobservation and corresponding
intensity profiles of the HR image in Fig. 6.5(AF seen, all of structures in this image
are diffraction unresolved. Fig. 6.5(c) plots testored image, showing a remarkable
resolution improvement. The resolution improvemenimeasured to be around 6.3
times for each structure in terms of the FWHM rg&ay. 6.5(d)), demonstrating the
robustness of our method for different structufidee resolution in the restored image is
now ~14 pixels (28.4 nm) and is smaller than th&tagices between the adjacent
particles and parallel microtubules. Consequemtllystructures are resolved as shown
in Fig. 6.5(c).

We further illustrate in Fig. 6.5(e) the resolutionprovement of our method on
different noise levels for fixed PSF (PSF of Stg = 31 pixels) and LR frames (64
frames). As seen, the decrease of the FWHM rationoreasing noise level can be
divided into three stages. In the first stage whbeenoise contamination is low (noise
Std up to 10), the FWHM ratio decreases rapidlyictvlis consistent with a previous
study by Liu and Sun [23] that even low-noise comtation can greatly reduce the
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resolution that can be restored. In the final stagere the noise is high (noise Std 20-
40), the ratio decreases rapidly again and appesaicthl. This may be attributed to the
severity of noise contamination, which makes thpabdity of resolution restoration
decline faster, compared to that in the seconcdestag

We finally illustrate the dependence of the resoluimprovement on the numbers
of LR observations for different levels of noiséy.F6.5(f) plots the FWHM ratio of our
result versus the number of LR frames under sante B&ring (Stdopsg = 21) but
different noise contamination (Stes = 10, 20, 30). As seen, the FWHM ratios for all
levels of noise contamination show a monotonicaase on increasing the number of
LR observations and begin to saturate at 50 LR @naghere is however a shift among
the three curves because of different severitiesoige contamination; less resolution
improvement for higher level of noise contaminatfona fixed number of LR images
and, for higher noise levels, more LR observatians required to achieve a same
resolution improvement compared to lower noise €£asa such, the dependence of
FWHM ratio on different noise levels behaves sinyldo that of PSNR on different

blurring levels for the chart image shown in Figl(6).

6.3.2 Validation on Face Data
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Fig. 6.6. Tests on a real face data set. (a) Cammdrof LR image sequence; (b - e)
Reconstruction results by our method, ALG, RSR AR, respectively. It is apparent
that our method (b) provides a better recovenjutiing the eyes, eye bows, nose and
hair. Also thanks to the new prior model, our meths also very effective in
suppressing noise without introducing artifactscémparisons, RSR (d) and ZMT (e)
do not effectively restore the HR resolution sitlee gradient-based prior function over-
smoothes the features during the inverse procdss. (8) recovers the resolution better

than RSR and ZMT but results in severe zigzagaatsfaround the edges.

Our method can also apply to natural images takendmmercial cameras. The

original data cannot be obtained in this case stheeobservations are not generated
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synthetically but taken directly from the imagingvites. For this, | report an
experiment performed on a human portrait providgdJ&€SC [187]. The algorithm

ALG, ZMT and RSR are used again for comparisong. 6i6 (a) shows a LR and
restored images by our method, ALG, RSR and ZMT.cBmparing Fig. 6.6(b) with

Fig. 6.6(c-e), it is apparent that our method piesi a better recovery, including the
eyes, eye bows, nose and hair. Also thanks to ¢laeprior model, our method is also
very effective in suppressing noise without introidig artifacts. In comparisons, RSR
and ZMT do not effectively restore the HR resolatigince the gradient-based prior
function over-smoothes the features during the reevgorocess. ALG recovers the
resolution better than RSR and ZMT but resultsawese zigzag artifacts around the
edges.

6.3.3 Validation on Fluorescence Microscopy Data

We finally test our method on two exemplar datasdtdiological interest, the
guantum dot (QD) and the cell data samples. Thed@@ (Invitrogen QDot 625) was
diluted 1:1,000,000 in phosphate buffered salinBS)y Coverslips were coated with
CellTak (BD Biosciences) according to the manufeats instructions. Diluted
quantum dots were incubated on the coated coverfipone hour prior to imaging in
PBS. The cell samples were acquired using the HlUsQore-prepared slide #2
(Invitrogen) which contains bovine pulmonary artendothelial cells (BPAEC) stained
with Texas Red-X phalloidin, anti-bovine-tubulin and BODIPY FL Ilabelled
secondary antibody, and DAPIthe.

After the samples were prepared, they were acquiedlifferent microscopes.
Quantum dot calibration data was acquired on aarted IX81 microscope (Olympus)
using a 150X 1.45 NA objective. lllumination waoyided by a fully motorized four
laser TIRF combiner coupled to a 405 nm 100W laseer widefield illumination. The
sample was laterally translated using a motorizades(ASI). Image data was collected
using an Orce-Flash 4.0s CMOS camera (Hamamatsichwih combination with a
1.6x magnifier in the image path provided an effecpixel size of 27 x 27 nm. Ten
frames were acquired at each position before t@#insl of the stage to the next position.
Fixed cell data was acquired on an SP5 SMD lasersog confocal microscope (Leica)
using a 60X 1.4 NA objective. Images 4096 x 4096evaequired with a pixel size of 6
nm x 6 nm. A single frame in each channel was aeduiefore translation of the stage

to the next position.
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6.3.3.1 Validation on Quantum Dots
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Fig. 6.7. Tests on quantum dot data. (a) A singlené of QDs (diameter: 16 nm) from
a series of LR images taken with translation bebwegmes. (b) A close-up LR image
of region 1 containing a bright signal correspogdia a single QD, where the green
curve is the intensity profile in the horizontatetition. (c-d) Restored SR images using
32 and 64 LR observations respectively, with ovérletensity profiles. (e) The
observed FWHM of the restored quantum dot versasittmber of LR observations. (f-
g) Close-up LR and SR images of region 2 in (a)enehtwo QDs are resolved. (h-i)
Close-up LR and SR images of region 3 in (a), whstlow 3 QDs. (j) Intensity
fluctuations over time in region 1 between brightdadark states (k) Intensity
fluctuations of region 2, which are the sum of itltensities of the two resolved QDs in
the SR image. (l) Intensity fluctuations of in r@gi3, which are made of the sum of the
intensities of the three resolved QDs in the SRgm&cale bars, 8m (a) and 100 nm
(b-d,f-i). AU, arbitrary units.

We first test on the quantum dots (QD) images aedquiith excitation at 405 nm
wavelength on a widefield microscope equipped with50X 1.45 NA objective. This
gives the diffraction limit 228 nm (thus PSF of 18k at FWHM), which in turn
determines the convolving matri,. A set of LR images was acquired whilst
translating the sample along theaxis in steps of 100 nm, from which the

correspondence matric€g in Eq. (6.3) were determined. Fig. 6.7¢apws a 16-bit LR
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image containing several bright spots, with meatu@se levels of Ste, = 11.2. As
seen, the image contains several bright blobs, eherhich can be made up by either
single or multiple QDs with vary intensities. Fi§.7(b) shows a zoomed image of
region 1 , where the intensity profile is indeedyAdisk shape of the FWHM of 194 nm
(Gaussian fitting), in agreement with the theomdti@lue. A green curve is also plotted
in this figure as the 1-D intensity profile in therizontal directionFig. 6.7(c) and (d)
shows restored SR images resulting from 32 andRdlhservations, giving measured
FWHM of 39.7 and 30.6 nm respectively; an exporardecrease on increasing LR
frames is observed as shown in Fig. 6.7(e), showingsolution improvement of ~ 3-
fold for 16 observations and up to 7-fold for 64setvations. The results are fully
consistent with the experiment on synthetic cetada the last subsection. Our method
can also identify multiple diffraction-unresolved® in Fig. 6.7(a), as demonstrated
indeed for regions 2 and 3 that are magnified amowa in Fig. 6.7(f) and (h),
respectively. SR results of the two regions arevsheespectively in Fig. 6.7(g) and (i),
where 2 and 3 adjacent QDs are separated in ttwedsmages.

To verify the results, a true original SR imagewdtddoe known. However, since the
QDs in the sample are randomly distributed, the lmens1 and locations of QDs are
unknown to observers. In the lack of ground truth domparison, | investigate QD
intensity fluctuations over time for verificationaking advantage of the quantum
blinking effect of single QDs [188]. In general aiforight spot in the LR image contains
a single dot, its intensity varies quantally betwéeight and dark states, as shown in
Fig. 6.7(j). However, if a spot contains two QDsg tsignal is the sum of those of the
two dots, consequently the “off” state appears fesguently, as shown in Fig. 6.7(k).
This characteristic becomes more prominent wherethee more QD signals in a spot.
Fig. 6.7(j-1) plots the intensity variation ovemig for the three spots in Fig. 6.7(b), (f)
and (h), respectively. By a visual comparison améing 6.7(j-I), 1 find that the
intensity variations of the three spots in thregdabregions of Fig. 6.7(a) are consistent
with the theory: the black curve in Fig. 6.7(ksmoother than that of Fig. 6.7(j) and the
curve in Fig. 6.7(j) tends to be averaged out loyloen blinks of all the individual dots
in the region. Thus, deconvolving the intensitycfliations over time alongside our
image restoration provides a ‘ground truth’ for TRRAour restoration can indeed

separate single particles from diffraction-unreedldata.
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6.3.3.2 Validation on Cell Images

Fig. 6.8. Tests on cell data. (a) One of the 60ilbRges acquired whilst translating the
sample in steps of 100 nm. Three colours reprabese different structures; Red: Actin,
Green: Microtubule and Blue: DAPI. (b) Restored i&Rge by TRAM using the 60

images. (c-d) Zooms of the regions of interesthfridashed box) in (a), showing LR
(left) and restored SR views (right), respectively.- f) Zooms of the regions of
interest (left dashed box) in (a), showing LR {lefhd restored SR views (right). Scale
bars, 2um (a, b) and 400 nm (c - f).

We next analyzed a bovine pulmonary artery endothekdll sample stained with
Texas Red-X phalloidin, anti-bovinetubulin and a BODIPY FL labeled secondary
antibody, and DAPI. A set of 60 LR observationsatifthree channels were acquired,
with translation of 100 nm between each frame, gisirscanning confocal microscope.
A LR observation and the restored image are sheapectively in Fig. 6.8(agndFig.
6.8(b), the latter demonstrating a dramatic impnoeet in resolution and signal-to-
noise ratio in all three colors. We magnified th® tbooxed regions of Fig. 6.8(a-ahd
showed them irFig. 6.8(c-d)and Fig. 6.8(e-f), respectively. As seen, in the data
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where the microtubule network is unresolved andrlape with DAPI (Fig. 6.8(c)),
individual microtubule filaments and DAPI profilase clearly resolved by TRAM (Fig.
6.8(d)). The measured FWHM of a single microtubslé81 nm, which represents a
resolution improvement of 6.4-fold. When the thitained structures are densely
packed and mixed in the LR image (Fig. 6.8(e)), MRA capable of refining their
relative positions and particularly the boundariw®en actin and microtubule filaments
(Fig. 6.8(f)).

6.4 Conclusion

In summary, in this chapter | first propose to dem new prior model by combining
the - and 2%order NLDs and then incorporate it into an enefggyction in the
inverse process to form a new FP-HR restoratiorhatetBased on the FP-HR method,
| present a new SR imaging technique that can bd with any motorised microscope
with no further hardware modifications. Experiméntasults on synthetic data
demonstrate that our method outperforms severallpopiR restoration methods when
applied to both synthetic and real natural imad®bken applied on real fluorescene
microscopic data, our method result in a 7-foldéase in the lateral spatial resolution
in noisy biological environments, delivering muttlour image resolution of ~30 nm.

We believe that this technique will be of broacmest to the cell-biology community.
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Chapter 7

Conclusion

In the previous chapters | have presented seveal explorations for image
restoration and its applications in fluorescencecrosicopy. The results of our
explorations are summarized as follows.

The first part was devoted to the simplest imagtoration, image denoising. After
reviewing several popular denoising methods, | fairout that all these methods were
designed by using the’brder difference (gradient) of the image inteesitto derive
the smoothing strengths based on the edge-preservedncept; more complicated
features or structures can be preserved as loadges are preserved, so a good balance
between noise removal and feature preserving irdémeised images can be achieved.
We further demonstrated that these edge-presemigtipods under low-SNR and/or
low-contrast conditions may not be able to recdfieredges contaminated with severe
noise and thus fail to preserve other common feattinat are made of by the edges,
such as blobs, ridges, which are important in tbdysof many subjects, including live-
cell imaging, biometrics, etc. Since blobs and eglgre mathematically most correlated
to the 2%order difference rather than thé“drder one which measures edges, |
proposed a new"2order NLD and demonstrated its superior perforredioc blob and
ridge detection both in 1-D and 2-D cases, compéoeithe traditional Laplacian and
LoG operators. We further incorporated tH&-&der NLD into a diffusion model to
form a new FP-NAD method. Experiments showed that EP-NAD outperformed
many popular filters for preserving blobs and rglgeeducing noise and minimizing
artifacts. However, images captured in the natemalironment usually consist of
textures and complex networks that are made ofmabowtion of edges and blobs and
ridges. Noisy images of this kind can be beyondctgeability of FP-NAD. To preserve
simultaneously multiple features in natural imaggspposed a new GFP-NAD method,
by combining the % and ?%order NLD to form a new feature detector in a iuedr
diffusion model. The new feature detector measimege intensity contrasts between
neighboring patches in a more sophisticated maiamer can therefore effectively
capture more features in complex environments. &gtetl the GFP-NAD on 1-D and
2-D natural images and demonstrated improved pednce in removing noise and
preserving multiple features and textures, compdocedrP-NAD and other popular

denoising methods
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In the second part of the thesis, | focused on aensophisticated case of image
restoration, super-resolution (SR) restoration imldgical fluorescent microscopy to
break the barrier of diffraction limit. We first timed current SR approaches in the
fluorescent microscopy. After reviewing severalitsrof these approaches such as high
cost and limited applicability due to complex optiand fluorescent design, | proposed
a new and inexpensive SR restoration method fontijalive microscopy in cell
biology, where the noise effect is a main challenye pointed out that existing SR
restoration methods use the edge information dutfieginverse process and do not
perform well in achieving a good balance betweeisenaemoval and resolution
recovery of features, particularly for fluorescenoécroscopic images with higher
image complexity and smaller features than otheges. To overcome this problem, |
proposed a new prior model capable of characterizmmplex biological structures
under severe noise contamination by combining theattd 2%order NLDs. The new
model was then incorporated in an energy functiofotm a FR-SR method to seek for
an estimation of the original noise-free SR image. avoid converging to local
optimum estimations, | proposed to use an IRLSnagation algorithm, ensuring the
convergence towards either a global optimum orcalloptimum solution that is most
close to the global optimum among all local solioBy combining the FP-SR
restoration with a multiple LR image acquisitionaabty of translating the microscope
cameras, | presented TRAM as a novel, simple aexpbensive SR imaging technique.
It can be in principle implemented with any microges with no hardware
modifications. Numerical experiments illustrated the superior @enfance of our
method over other SR restoration methods, bothallisuand quantitatively, in
simultaneous noise removing and resolution regjoixperiments on real fluorescence
data also result in a ~7-fold increase in lategatisl resolution in noisy biological

environments, delivering multi-colour image resmntof ~30 nm.
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Appendix

Energy minimization in Feature-Preserving Super-Reslution

Restoration

A.1 Algorithm Procedure
In this appendix, | present a detailed procedurenfmimizing the energy function
given in Eg. (6.3) for SR restoration. We startsipstituting Eq. (6.4) into Eqg. (6.3) to

rewrite the energy function as,

M
E(l)= z¢7(||~]k -B [Tyl |||f)
y k=t i N (8.1)
+A, le(wl(wumml.(x)um w0 )
Wherq‘DNLl,(x)Hz‘g andHDﬁLll(x)H; are respectively the®1 and 2%order non-local

difference (NLDs) given by Eq. (3.3), Eqg. (3.6) dagl (4.8).

The optimization problem, =argminE (, ) , is usually solved by finding the
I

solution |, so that the gradierg%:O. However, Eq. (8.1) still contains the scalar
|

variable |,(x) , thus the gradie IZEI') cannot be directly calculated. As such, |
|

rewrite Eq. (6) in a matrix-vector form before éiféntiation. Since the NLDs involve

patches, each of which contains multiple pixeldefine two matricesp, J1R""and

D, DR in order to represent thé-land 2%order NLDs,

0(3W+1)x N O(3W+l)< N
D, =| Dy andD,=| Dy, : (8.2)
0(3\N+1)x N O(3W+1)< N

where N is the pixel number in the imag®/ denotes the half width of the patch,

QW+LN

is a null matrix to avoid the boundary effedn, , ORM®"2*N and

NL1

D, ORM"W=2*Ngre defined as
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N
-1 0 1 0 - 0O O
o -1 0 - 1 0 0.
Du=| . e 8.3)
0 0 -1 0 1 0
and
N
-1 0 2 0 - -1 0 0
o -1 0 - 2 0. -1 0
Dy, = Ce . [pN-ew-2. (8.4)
0 0O -1 0 2 0 -
. CQ,XDRNXI th .
We further define a column vector: , whosex" element is the only nonzero

element with unit value so that tR8 element of any vector= [v(1),... v(X),... V(N)]"

can be written as
v(X)=d,V. (8.5)

Combining Eq.(8.3), (8.4) and (8.5), | rewrite thealar variable of %t and 2%order
NLD as

[Bw 0, = (5T D,I,) andHDZNLI,(x)H = ((s;le ) . (8.6)

X+i

The functionE(l)) is then expressed by using Eq. (8.6) in the Yalhgy matrix-vector
form,

E(l)) :i%ﬁ([& (Rl =3y )]Z)

k=1 x=1

Ay vvl(x)ﬁ(éLlDl ) +vv2(><)iv) (a%..D.1) j

x=1 i=-W

(8.7)

which no longer contains any scalars related.t&qg. (8.7) now allows us to directly
computer the gradient,

dE(l) _

M
dl (/] DTANLl,I D1+/1|, D-ZrANLZl D2+ chlTR(TAk Pkalj I I
k=1

(8.8)
ZC RTAJ,

where the N x N diagonal matrices,, and A, , are given as
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N
=1

A {Zwl(x)ﬁ A (w30 3+ w3 »4\2)«5“«5;}

X

. w ) ) (8.9)
Az, {sz(x)__z @ (w0 3+ w3t O )M}
and the N x N diagonal matribdy, is given as
A =diag(®,)
(8.10)

b, zl:(d((élT(Pkm:k'l | _Jk))z)’“-q’((‘SL(Pkmk" '_Jk))Z)T

dE(l,)

The minimization, i.e., =0, leads to the following equation,

M M
(AM DlTANLl,I Dl"'/]lI D;—ANLZI D2+ ZCMTFLTAk Pkalj I 1= ZCkTPk TAk‘] K (8-11)
k=1 k=1

which is a nonlinear equation hfbecausé\.1, A2 andAg also involve the variable,
so will have multiple solutions that correspondadcal and global minima of the energy
function E(1)). We here apply a modified iterative reweightedstesquares (MIRLS)
method [185]. We first rewrite Eq. (8.11) as,
41 (1 1
=B —Q): (—/l F ——BJ, (8.12)
3580 )= X AR 3R

where the matriceBy, F|, Qk are given respectively as

B, = CII PkTAkJ K
Q = CL PkTAkPkall | . (8.13)
F = D1TAN|.1J D, + DEA D

NL2| 2
We then modify the nonlinear equation Eq. (8.12)) as,

1 1
SBmQ=AFI /M-8,

1Bk_Qk :/‘| Fl |/|\/| _}Bk ' (8.14)
2 : 2

1 1

EBM_QM :/‘IMFMII/M_EBM

which contains more constraint than Eg. (8.12) esitfte unknown imagé should
satisfy not only one equation but alsbequations simultaneously. The solutigiy
using Eq. (8.14) can therefore satisfy Eq. (8.1Phe main steps of MIRLS for solving
EqQ. (8.14) are:
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() Initialization: Letl; = J; and A, = on, where LR observatiody, the blurring

matrix Py, the correspondence matf@y and the noise Stg, are known.

(b) Computer the weight matric&s, F|, Qx by Eq. (8.13) based on the current

estimatd,

(c) For each framé:

2
(c1) Solve the equatioﬁ,k = argmir‘”% B, —Ql - The squtionIALk is an
2

intermediate solution of the final estinoati, x in step (c).

(c2) Giverﬂk , calculate the final estimatidrx in step (c) by solving the

equatioh, = arg mir“/llkFk Y _%Bk

2

(d) The solutioni, is obtained by a weighted averagd{ bf, }

k=1,..M

I {Zwl(k)l'k(l)'zwz(k)l”‘(2)’"ZWN (9 (N)} : (8.15)
where the weight vector is given as

w =[@(,0)-1,0),-.9'0, O-1, O] €,i=12.N, (8.16)

and Cy¢ is a normalization factor. This step enforces ttreg multiple
solutionslx by step (c) should be similar to each other.

(e) Go to step (c) if EqQ. (8.12) cannot be satisfiethgishe current estimation

|, ; otherwise update the parameggraccording to the residual noiselin

[173].

() The iteration stops wheh converges (measured by MSDN Eq. (3.21)
between two adjacent images) and is consideree timédo restored image;
otherwise go to step (b) to compute again the wetgdtrices with updated
L.
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2
The intermediate solutioﬁ,,k = argmir“% B, —Q,| in Step (cl) can be solved by many
2

approaches, e.g. conjugate gradient (CG), Wielhter For shrinkage method. | solve it
by iteratively using Wiener Filter method with &bt modification as

O 1 re -1 re
||,k:§(|fjk +(P/P, +epyg PKTJK—PKTPkIﬁ’k)), (8.17)

where eps is a small constant to make sure thdistati the matrix inverse|l ’is the

solution for the previous iteration. Given the mtediate solutiorﬂ’k, we then solve

the equation

2

l,,= arg mirﬂAlkalAlyk M —%Bk

2
2

, (8.18)

2

= argmi 24, (1, + (PTP+ ep} " R13,-PIPY ) M-3B

2

zargmir”/]lklzk(luk+(PkTPk+ ep¥l PkTJk_PkTPkl lk) M _84

2

which is supposed to be also solved by Wienerfilte the stability heavily depends on
the constant eps. A small eps can bring severdh@d while a large eps can give
inaccurate estimation of the solutidn, . We revise the equation by adding a
regularization term as

2

e argmirﬂ/],ka(lljk+(PkTPk+ epy B/J,-P/P| lk) M —84

2, (8.19)
+|RootAy 1, )'Dil |, | RootBy 5, ID1 14,

where ||, is the |-1 norm and operatcRoot(ANle,) generate a new matrix whose

elements are square root of the corresponding elesraf the matrixA, ;. We can

then solve EQ.(8.19) using a well-known method eé#st-absolute-shrinkage-and-
selection-operator (lasso) [189] as,

Il,k (X) = 5XD1ROOt( ANLl,k)_l Sgr( ROC(IANLl,k)_l Dll I,k)
([Root(As,) "4

+0, DzROOt( ANLZ,k)_l sgr( ROd[ANLz,k)_l D, I,k)

|

A /M) , (8.20)

_1 +
Root( Ay, ) Dol iy A, /M)

122



Wheresgn(-) is a sign function anaj-)+ is a shrinkage function given as [190],

v _|x-a [x-4>0
(x-a) _{ 0 clse - (8.21)

A.2 Numerical implementation

The calculation of the matrices,, and A, in Eq. (8.9) uses the™land 2°- order

NLD since the image features in most cases are coostlated to the two NLDs. This
is true for biological images. The natural images/&ver may contain features that are
not only correlated the two but also correlatedotber NLDs, the orders of which
depend on the features themselves and can variffettedt pixel positionsx. Since
similar patches should use the same number of NLIxstly cluster all image patches
into separate classes using K-means clusteringaddfl®1]. The number of NLDs for
each class is then estimated adaptively using Engeactor decomposition (SVD).

1)x

| first define a multivariate functiol{Px) of the patchP, U] R \which as defined

in Eg. (3.1), is a vector consisting intensitiesatlf pixels within the neighbourhood

region 9V, of the pixelx. The value of the functiol{ P,) is chosen to be theth element
o, | of the image vectadr, namelyl(P,) = ;| . As a result, we can present the function

[(Py) as its Taylor series,

ol =[1

P.= P‘Hz HVGC}{ Px— Px )Px_ F;;( j:mz}x’ 622
1P [Pt 00, 0% ),

where the operator vech(e) is defined as the hedtarization operator of thé‘lower-

triangular’ portion of a symmetric matrix, e.g.,

vecrqi SD:[a b d. (8.23).

Using Eqg. (8.22) and (8.23), the patBhEq. (3.1)can be hence rewritten as
Po=[olul ndlul | =@ 8, (8.24)

where the (B#+1) x (MH+1) matrix @, and the (¥+1)-dimensional vectop, are

written respectively as,
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1 [P-Po, [vect €,-P.)P-PWI], -
R 5 5 (8.25)
1 [P =Pul, |vect €.-Pou)P-P. T, -

and
1(x)
HDN'—I (X')Hz
B.= : (8.26)
[mFNES] R
As such, the NLD vectop, can be obtained as
g.=(o]0) ®P, (8.27)

As discussed earlier, the number of NLDs used &cheatchP,, corresponding to the
numberL of the non-zero elements in the vecgr, should be identical within same
classes and differ between different classes. Allsrahie may give rise to inaccurate
modelling and a large one can result in over-fiftaf the contaminated noise. Suppose

that the class containsG patches{ PX“} . o We therefore determine the NLD number

x=1,...

L" for the clas$ as the minimal number of non-zero elements olveator #, by

LM = min( B O),

c . o o (8.28)
subject to)_|P! ~ @[l = > [P -a)(a]) ij <y"

x=1 x=1 2

where ¢°-norm |v||, of a vectow is also the non-zero elementsvothe parametey”is
determined by the noise level for the patcheshendlassh. Eq. () Eq. (8.28) can be
solved by using the SVD of the matr' [192], the main steps of which are as follows:
(a). For each matrix®”, we extract its eigenvaluess(i)}i-1..aw1 , where
s{(1)>s(2)>...>5(2WH+1); (b) The numbek" is then determined by

L"=min(m),m=1,2,.. , 2N+ 1,

subject toii[s? (jzs Bo?’

i=1 x=1

(8.29)
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, Whereo is the Std of the noise contained in the imageén fact, Eq. (8.29) is

equivalent to the hard-thresholding method, or Istmehkage, on the elemengg(i) of

NLD vector g as [79]:

0 else

V2o

where the thresholg, is chosen ay, :2\N—+1' In the real application, however, the

complexity of performing SVD for each matrik is unaffordable since all patches

require SVD calculation. To simplify the computatjove estimatd." by performing

G
the SVD on the covariance mati&’ :éZ(PX“)(PXh)T of the patch clasé so the
x=1

eigenvalues are computed only once for the diap92], which is equivalent to the
PCA method for the patch class
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