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Abstract 

This thesis presents a new investigation of image restoration and its application to 

fluorescence cell microscopy. The first part of the work is to develop advanced image 

denoising algorithms to restore images from noisy observations by using a novel feature-

preserving diffusion approach. I have applied these algorithms to different types of 

images, including biometric, biological and natural images, and demonstrated their 

superior performance for noise removal and feature preservation, compared to several 

state of the art methods. In the second part of my work, I explore a novel, simple and 

inexpensive super-resolution restoration method for quantitative microscopy in cell 

biology. In this method, a super-resolution image is restored, through an inverse process, 

by using multiple diffraction-limited (low) resolution observations, which are acquired 

from conventional microscopes whilst translating the sample parallel to the image plane, 

so referred to as translation microscopy (TRAM). A key to this new development is the 

integration of a robust feature detector, developed in the first part, to the inverse process 

to restore high resolution images well above the diffraction limit in the presence of strong 

noise. TRAM is a post-image acquisition computational method and can be implemented 

with any microscope. Experiments show a nearly 7-fold increase in lateral spatial 

resolution in noisy biological environments, delivering multi-colour image resolution of 

~30 nm. 
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Chapter 1 

Introduction  

    

  

 

 

 

 

1.1 Background 

1.1.1 Image Restoration  

In recent years, images and videos have become integral parts of our lives. 

Applications now range from casual documentation of events [1] and visual 

communication [2], to the more serious surveillance [3], medical [4] and biological 

fields [5]. This has led to an ever increasing demand for accurate and visually pleasing 

images with high image quality for various tasks in these applications. However, images 

acquired by modern digital cameras inevitably undergo a degrading process, which as 

shown in Fig. 1.1, involves the corrupting of an original high-quality image due to many 

effects, such as blurring, down-sampling, contamination of photon or dark-current 

noises, etc.  Although several models have been proposed to mathematically formulate 

such degrading process based on the optical design in different applications, the most 

popular and generalized one is still the forward model given as [6],  

 = ⋅ +J P I N ,   (1.1) 

where the column vectors J and I consist of row-wise concatenations of the acquired 

and original images, N represents the noise corruption and P is a matrix describing 

blurring effects due to camera motion, atmosphere turbulence, point spread function 

(PSF) of the imaging system, etc.. Since the high-quality image I is not available to 
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observers, it can only be estimated based on the acquired image J from imaging devices 

which is also called as observation. Image restoration aims to “invert” the imaging 

process Eq. (1.1) to recover an image that is as close as possible to the original one, I. 

Image restoration is therefore an inverse process.  

PSF blurring, 
Motion blurring, 

Atmosphere turbulence 
Down sampling, etc. 

Original  
image I 

 

Acquired 
image J 

Noise N 
 

Fig. 1.1 A flowchart of image formation process 

1.1.2 Image Denoising 

In fluorescence microscopy or medical imaging, the atmosphere turbulence and 

motion blur in most cases can be neglected so the blurring occurs mostly due to the PSF. 

When the object size is much (50-100 times) larger than the PSF size, the blurring 

matrix P can be considered to be unitary. Image restoration is then simplified as a 

denoising process, which estimates a noise-free image from its noisy observation. The 

noise N in Eq. (1.1) can arise from different sources and in different forms, including 

fixed-pattern, dark-current, shot, thermal, quantization noise and so on [7], all of which 

can be modelled as a random variable with a specific probability density distribution 

(PDF) [8]. Noise removal is then often achieved by smoothing, i.e., replacing the 

randomly fluctuating intensities with their mean values. However, the smoothing 

process is a double-edge sword for image restoration; on one hand it can suppress noise 

in the background regions; on the other hand it can blur the features of interest in the 

image, resulting in an unsuccessful restoration. To avoid this problem, denoising should 

be locally adapted in the images, so it is encouraged in background regions while 

inhibited in the vicinity of the features or structures.  

In general, an edge is a fundamental feature that underlies more complicated 

features or structures in an image. The latter can be preserved as long as edges are 

preserved after denoising. Since the edge can be characterised by a first-order difference 

(gradient), most existing methods [9-18] use the gradient as an edge detector to reject 

smoothing at edges and permit smoothing in other places. These methods have achieved 
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remarkable performance of improving image quality under noise contamination both 

visually and quantitatively. Here I use a simple example to illustrate the effectiveness of 

edge preserving in denoising. Fig. 1.2 shows an original (noise-free) and noisy images 

together with two denoised images by pure smoothing and by total variation (TV) 

diffusion [19] respectively, the last of which is an edge-preserving denoising method. 

As seen, although both Fig. 1.2(c) and (d) remove noise effectively, the former brings 

unpleasant blurring effects.  

   

(a)               (b)               (c)               (d)  

Fig. 1.2 Denoising test on a natural image. (a - b) The original (noise-free) and noisy 

image corrupted by additive white Gaussian noise of Std σn = 20; (c - d) Denoised 

results by linear and TV diffusion [19], respectively. 

 

1.1.3 High-Resolution Image Restoration 

When the blurring matrix P in Eq. (1.1) is non-unitary, image restoration involves not 

only noise removal but also improving the image resolution that has been decreased 

during the imaging process to offer more image content that may be critical in various 

applications. This is usually called high-resolution (HR) image restoration. Compared to 

denoising, HR restoration is a more sophisticated process which is required to remove 

noise while recovering fine structures that are lost in the image degrading process. Such 

goal can be achieved through an inverse process by using multiple low resolution (LR) 

observations from a same HR image due to the degrading process. Through the inverse 

process, the contents of the restored image are  increased [20] with combined 

information [21] from different LR observations.  

Similar to image denoising, noise removal during the inverse process of HR 

restoration should be also spatially adapted to avoid over-smoothing of features of 

interests. To date, noise removal in HR restoration is undertaken based on the edge-

preservation concept [22]; features are restored as long as all the edges are preserved in 

the inverse process. Fig. 1.3(a-b) shows respectively a LR and HR image obtained by a 
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Bayesian HR restoration approach that uses edges to model the visual complexity of the 

image [23]. As seen, details that are blurred in the LR image are clearly distinguishable 

in the resulting HR one after the HR restoration.   

 

    

(a)                                   (b) 

 

Fig. 1.3 An example of HR restoration. (a-b) the LR image and HR result by a Bayesian 

HR restoration [23]. 

1.1.4 Super-Resolution Imaging 

In microscopy, the resolution of an imaging system is measured by the minimal 

distance of two distinguishable (resolvable) points. Such distance is often restricted by 

the diffraction limit, which is determined by the size of PSF of the imaging system and 

is given by the Abbe diffraction criterion of λ/(2NA) [24], where λ is the wavelength of 

light and NA is the numerical aperture of the lens that characterizes the range of angles 

over which the lens can accept or emit light [25]. Resolutions that exceed this limit are 

referred to as super-resolution (SR). There are currently two popular approaches to 

generate SR images in microscopy imaging. The first one  aims to reduce the size of 

PSF by employing optical patterning of the excitation and a nonlinear response of the 

sample, such as  stimulated emission deletion (STED) [26] and structured illumination 

microscopy (SIM) [27]. The second approach is single-molecule localization 

microscopy (SMLM) [28], which acquires images of individual single molecule at 

different time duration and then locates the peaks of each molecule. A SR image is 

finally generated by mapping together all the individual peaks [28]. The two approaches 

have yielded an order of magnitude improvement in spatial resolution and are currently 

two dominant methods to achieve SR in microscopy. 
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1.1.5 Image Restoration in Fluorescence Microscopy and Main Challenges  

In biology, various biological processes related to cells can be observed only when 

proteins can be visualized and located through microscopes. Unfortunately, cells are not 

suitable for direct optical visualization since they are mostly transparent in natural state, 

and the immense numbers of molecules that constitute them are optically 

indistinguishable from one another. This makes the identification of a particular protein 

a very complex task. However, if a bright marker that can be directly observed with 

visible lights were attached to the protein of interest, it would be able to very precisely 

indicate its position. With several bright markers being attached together to the proteins, 

I can then easily visualize these biological samples. For this purpose, fluorescence 

microscopy was proposed to visualize biological processes by marking samples with 

fluorescence and then generating images using microscopes.   

Fluorescence microscopy was invented almost a century ago. But it was not until the 

1990s that fluorescence microscopy began to revolutionize the biological research, 

when Chalfie, et al. [29] succeeded in expressing a green fluorescent protein occurring 

in a jelly fish species onto other organisms by modifying their genome to code for this 

protein. To date, fluorescence microscopy has been the primary modality for biological 

imaging, and experimental requirements, such as live-cell imaging with high- or super-

resolution, are continuously stimulating new developments.  

However, the application of fluorescence microscopy in live-cell imaging is still 

hindered by the low quality of the acquired images. Firstly, the live-cell fluorescence 

images are often contaminated by severe noise. In fluorescence live-cell microscopic 

imaging there is always a compromise between image quality and cell viability. 

Excitation of fluorescent probes causes photobleaching and phototoxicity to cells, which 

limit the light intensity and exposure times that can be used. The requirement to image 

fast and in multiple dimensions to capture dynamic intracellular events also constrains 

illumination and exposure regimes and requires fast camera readout. This in turn results 

in low signal-to-noise ratio (SNR) fluorescence images with mixed Poisson-Gaussian 

noise [30, 31]. Secondly, the current two dominant SR imaging approaches introduced 

in the last subsection have their limitations in fluoresence microscopy: they either 

involve complex optical design or work slow and are computationally intensive [32], 

and  both cases require special fluorephores that current techniques cannot provide in an 

easy way. To solve these problems in live-cell and SR imaging, image restoration, as a 

computational approach independent of the optical and chemical design, is therefore an 

indispensable tool to improve the SNR of  images, and an alternative choice for SR 
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imaging to facilitate both visual and computational analysis of the data in the 

fluorescence microscopy community.  

As discussed earlier, most existing image restoration approaches are based on the 

edge-preserving concept. These methods have achieved remarkable performance in 

many applications, such as medical imaging, satellite imaging, security surveillance and 

mobile phones[33-36]. Compared to these applications, fluorescence microscopy 

images are more challenging. Fluorescence cell images of intracellular structures are 

often contaminated by very severe mixed Poisson-Gaussian noise and contain abundant 

and heterogeneous features of various shapes and sizes, and complex networks that are 

made of these features. Sizes of features in these images are also much smaller,  

sometime by  10 times than the resolution limit [37],  compared to 2-3 times in typical 

medical  images. In general, edges embedded in complex and small features are prone to 

noise contamination. In other words, when the edges are partly lost to a certain extent or 

weak and contaminated severely by noise, these methods may not be able to recover 

these edges and thus fail to restore other features that are made of by the edges, such as 

blobs, ridges and textures, which are important in the study of cell biology. As such, 

traditional edge-preservation image restoration methods do not perform well in 

fluorescence microscopy. This calls for a more sophisticated approach for feature 

characterization in the image restoration methods to reverse the imaging process Eq. 

(1.1) for a robust and accurate estimation of the original fluorescence microscopical 

images. 

1.2 Contributions and Organization of the Thesis  

The remainder of this thesis is organized into two parts as follows. 

In the first part, which includes Chapter 2, 3, and 4, I study the problem of image 

denoising. In Chapter 2 I firstly review several popular denoising methods and briefly 

analyze their similarities and dissimilarities. Based on the analysis, I propose in Chapter 

3 a novel second-order nonlocal difference (2nd-order NLD) as a feature detector and 

incorporate it into a diffusion process to form a novel feature-preserving nonlinear 

anisotropic diffusion model for denoising images containing blobs and ridges. 

Experiments show that the new diffusion filter outperforms many popular filters for 

preserving blobs and ridges, reducing noise and minimizing artifacts. In Chapter 4, I 

further extend our work in the previous chapter. We propose a new and more 

sophisticated feature detector by combining 1st- and 2nd-order NLD for a more 

generalized nonlinear anisotropic diffusion model that denoises natural images 
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containing not only blob and ridge feature but also other complex features under 

extreme severe noise contamination. 

In the second part, which includes Chapter 5 and 6, I study the SR restoration in the 

application of fluorescence cell imaging. I first provide a review on existing SR imaging 

in fluorescence cell imaging in Chapter 5. In Chapter 6, I then propose to use the HR 

restoration in the image processing community to achieve SR imaging in fluorescence 

microscopy. I explore a new prior model based on the feature detector developed in the 

first part to form a feature-preserving SR restoration (FP-SR) method. By combining the 

FP-SR restoration with a multiple LR image acquisition modality of translating the 

microscopes, I present translation microscopy (TRAM) as a novel, simple and 

inexpensive super-resolution imaging technique. It can be implemented with any 

microscopes and result in a 7-fold increase in lateral spatial resolution in noisy 

biological environments, delivering multi-colour image resolution of ~30nm. 
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Image Denoising 
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Chapter 2 

 Image Denoising – A Review 

 

 

 

Abstract: I start my study from image denoising in the first part of the thesis. A major 

challenge facing a denoising algorithm is to suppress noise while preserving features 

and fine details in the images. Over the years, researchers have proposed many different 

methods that attempt to achieve these contradictory goals. These methods vary widely 

in their approaches. Generally, denoising approaches can be categorized based on their 

operation domains - spatial or transform domain. In this chapter, II briefly review some 

of the most popular approaches within each category. I also briefly analyze their 

similarities and dissimilarities and point out that most of these approaches are based on 

the edge-preserving concept; more complicated features or structures can be preserved 

as long as edges are preserved. 

2.1 Introduction 

Traditionally, image restoration is to reduce undesirable degradations during the 

imaging process while preserving important features such as edges and textures. 

Perhaps the most fundamental image restoration task is image denoising: an ideal image 

I is measured in the presence of an additive zero-mean noise, N, with standard deviation 

(Std) σn. The noisy observation J can then be formulated as,  

 = +J I N ,  (2.1) 

where N can be independent or dependent of I. Given Eq. (2.1), image denoising then 

aims to remove the noise N from J, in order to achieve a denoised image that is as close 

as possible to the original image I. In general, the noise corruption is hardly avoided in 

an  imaging process since intensity quantization can also bring noise [8], as discussed in 

Chapter I. As such, image denoising forms a preliminary but important step for various 

subsequent tasks, such as image segmentation [38], feature extraction [39], pattern 

recognition [40], object tracking [41], etc. There now exist many denoising methods 
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that vary widely in their approaches. Broadly, these methods can be categorized based 

on the domains they operate - spatial or transform domain. Spatial-domain methods are 

mainly made of variational methods [9, 12, 13, 42-52] and neighbhorhood filters [11, 16, 

53-56]. Since our study for image denoising belongs to the variational method, in the 

reminder of this chapter, I review and discuss several existing spatial-domain methods 

for image denoising. We then briefly outline some of the most popular approaches 

within the transform-domain category [57-70]. 

 

2.2 Spatial-domain Denoising 

Denoising methods where the pixel intensities are used directly in the denoising 

process are said to be spatial-domain filters, which consist of the variational methods 

and neighbourhood filters. The former usually uses the calculus of variations to denoise 

the image in an iterative scheme.  The latter performs the denoising of an image pixel 

by its neighboring pixel intensities. 

2.2.1 Variational Methods 

Of all denoising methods, variational methods have been particularly successful  

[71], and remain one of the  most active areas of research in mathematical image 

processing and computer vision [72, 73]. Variational methods search for solutions of an 

image denoising problem by minimising an appropriate functional. When using the 

calculus of variations, the minimization technique of the chosen functional routinely 

involves the solution of diffusion models derived as necessary optimality conditions 

[10].  

Let us first consider the following functional E(I) defined in the space of the original 

two-dimensional (2-D) image I: 2Ω ⊂ →R Rover a support Ω as,   

 ( ) ( )E I f I d
Ω

= ∫ x ,    (2.2) 

where f() ≥ 0 is an increasing function, x = [x, y]T Ω∈  denotes the image pixel and the 

image support Ω  is open and bounded. Given Eq. (2.2), the original image I is then 

denoised by solving the following minimization problem, 

 ˆ argmin ( )
I

I E I= , (2.3) 
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which can be estimated by computing the Euler-Lagrange equation of Eq. (2.2) with 

calculus of variations [74]. A gradient-descent solution of Eq. (2.3) can then be obtained 

as the following partial differential equation (PDE),   

 
[ ]( )

div ( ( ))

( 0)

I t
c I t I

t
I t J

∂ = ∇ ∂
 = =

,  (2.4) 

where the coefficient  function c(I) is in the form of  

 
( )
( )

2

2 2

1
( )

df I
c I

I d I

∇
=

∇ ∇
,  (2.5) 

div is the divergence operator, ∇  is the gradient operator, 
2

⋅ denotes the l2 norm and J 

is the noisy observation. The PDE Eq. (2.4) is in fact a diffusion equation; the image 

data are iteratively diffused from high-contrast regions to low-contrast to generate a 

sequence of smoother image I(t). The image noise will be therefore gradually removed 

from the observation J by the smoothing behaviour, which is controlled by the diffusion 

coefficient (DC) c(I). Based on the diffusion model, Eq. (2.4) and (2.5), many diffusion 

approaches have been proposed so far in the literature for image denoising. The 

methods have shown impressive denoising performances both visually and 

quantitatively. In the following, I describe some of the most classical methods.  

 

       

(a)                (b)                 (c)               (d)  

        

(e)                (f)                 (g)               (h)   

Fig. 2.1. Denoising experiences on an 8-bit natural image (a - b) original noise-free and 

noisy image contaminated by AWGN of Std σN = 20; (c - h) denoised results of linear 
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diffusion, P-M model, TV minimization, Tadmor–Nezzar–Vese iterated TV, Osher et al. 

iterated TV, and bilateral filter. 

2.2.1.1 Linear diffusion 

When I set the function f in the functional E(I) Eq. (2.2) as
2

2

1
( )

2
f I I= ∇ , the 

coefficient can be then obtained as ( ) 1c I =  according to Eq. (2.5). The diffusion model 

Eq. (2.4) is hence expressed as,  

 
[ ]

2 2

2 2

( )
div

( 0)

I t I I
I I

t x y

I t J

∂ ∂ ∂= ∇ = ∆ = + ∂ ∂ ∂
 = =

,  (2.6) 

which is equivalent to the well-known heat equation, used in physics for instance to 

describe heat flows through solids. Koenderink [75] proved  that the solution of  Eq. 

(2.6) at a particular time t is the convolution of the noisy image J with a normalized 2D 

Gaussian function Gσ of Std 2x y tσ σ σ= = = : 

 ( )I t J Gσ= ∗ ,  (2.7) 

where, 

 ( )
2 2

2 2

1
, exp

2 2

x y
G x yσ πσ σ

 += − 
 

 . (2.8) 

The diffusion model Eq. (2.6) is thus named as the linear diffusion model since the 

convolution is a linear operation. Given Eq. (2.7) and (2.8), a  major drawback of the 

linear diffusion framework is clear:  the linear diffusion uniformly filters local signal 

features and noise little by little during the diffusion process, and thus blurs the whole 

structure of the image. Fig. 2.1(a-b) shows a noise-free and noisy image with additive 

white Gaussian noise (AWGN) of Std σn = 20. The denoising result by using the linear 

diffusion Eq. (2.6) is shown in Fig. 2.1(c). As seen, all image structures are blurred by 

such a linear convolution scheme.  

2.2.1.2 Perona–Malik Model  

To overcome the limitations of linear smoothing, Perona and Malik [9] proposed a 

nonlinear diffusion method. They considered a non-uniform diffusion process that 

reduces diffusion at image locations with a larger likelihood to be edges while 

encouraging diffusion at other places. This likelihood is measured by the first-order (1st-
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order) difference of the local image intensities, or the gradient I∇ . Based on such 

consideration, they revised the DC ( )c I  as a decreasing function ( )c I∇ of the gradient

I∇ in the form of        

 
2

2

1
( )

1

c I
I

h

∇ =
∇ 

+  
 

  (2.9) 

or 

 
2

( ) exp
I

c I
h

∇ 
∇ = − 

 
,  (2.10) 

whereh is a gradient threshold estimated from the noise level. Combined with Eq. (2.9) 

or (2.10), the diffusion model, Eq. (2.4), is then referred to as Perona-Malik (PM) 

diffusion model. In this model, the gradient magnitude 
2

I∇  serves as an edge detector; 

if 
2

I h∇ >>  , then ( ) 0c I∇ →  and I have a stop filter that discourages the smoothing 

in the vicinity of the edges to preserve image details; if 
2

I h∇ << , then ( ) 1c I∇ → and 

I perform the linear diffusion (Gaussian smoothing) in background regions to remove 

noise. The PM model is therefore a nonlinear diffusion process that adaptively alters the 

local smoothing based on the image contents. Experiments by Perona and Malik [9] 

were visually very impressive: edges remained stable and noise is removed after 

diffusion process finishes. Fig. 2.1(d) shows the denoised result by the PM model after 

107 iterations. As seen by comparing Fig. 2.1(d) and (c), the PM model outperforms the 

linear diffusion enormously by providing better preservation of features, including eyes, 

hairs and hats in the girl’s head.  

However, since the gradient is measured by the gray-value difference of only two 

pixels, the gradient operator I∇ cannot achieve a robust separation of edges and noise. 

In other words, the gradient operator may fail to detect some weak edges or misinterpret 

noise as spurious edges. The PM model may therefore preserve or even enhance large 

variations generated by the noise and thus create artifacts in denoised images. As seen 

in Fig. 2.1(d), the PM model produces several speckle-like artifacts in the girl’s face, 

which are unacceptable for the subsequent tasks such as feature detection, pattern 

recognition, etc.. 
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2.2.1.3 Total Variation Model 

Another well-known variational denoising method is the total variation (TV) model 

that was first introduced by Rudin, Osher and Fatemi [19, 46]. In the TV model, the 

original noise-free image I is assumed to the piecewise-constant. Namely, the image I 

consists of a set of flat regions (uniform intensity) separated by edges as boundaries. 

The image I is constant inside the flat regions but with jumps across the boundaries. 

Under such assumption, Rudin, et al. [46] set the function f(I) in the functional E(I) Eq. 

(2.2) as ( )f I I= ∇ . The functional E(I) Eq. (2.2) is then expressed as 

 
2

( )E I I dxdy
Ω

= ∇∫  , (2.11) 

with 0
I I

x x

∂ ∂= =
∂ ∂

on the boundary of Ω Ω= ∂ ,[46] where Eq. (2.11) is called the TV of 

the image I. In another study, Chambolle and Lions [76] proved that Eq. (2.11) is 

strictly convex and hence its minimum exists, is unique and computable. Given the TV 

functional Eq. (2.11), the diffusion model Eq. (2.6) can then be written as,  

 
[ ]

2

( )
div ( ) div

( 0)

I t I
c I I

t I

I t J

  ∂ ∇= ∇ =  ∂ ∇   
 = =

 , (2.12) 

where the DC 
2

1
( )c I

I
=

∇
 is also a decreasing function of the gradient magnitude 

2
I∇ , similar to the DCs Eq. (2.9) or (2.10) in the PM model. The two models 

therefore share the same nonlinear diffusion idea; the smoothing is inhibited in the 

vicinity of the edges (high gradients) to preserve structures while encouraged in the 

background (low gradients) to remove noise.   

The TV model given in Eq. (2.12) was further extended to process colour or vector-

valued images by Blomgren and Chan [77] that defined an alternative semi-norm TV 

functional [ ]
1

( ) ( )d l
l

TV I E I
=

= ∑
d

, where d is the number of colour channels and ( )lE I is 

given by Eq. (2.11) for the l th-channel image Il. Since coupling all channels in the TV 

functional, the Blomgren-Chan model can avoid producing the colour-noise artifacts [10] 

during the diffusion process [77].   

Although the TV model has been demonstrated to achieve a good balance between 

noise removal and edge preservation, it tends to produce staircase artifacts that divide 

the whole image by artificial edges [78]. This is because the pixel-level gradient 
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operator I∇  can either fail to detect the weak edges or misinterpret the noise as the 

edges, as has been demonstrated in Section 2.2.1.2 for PM model. Fig. 2.1(e) shows 

denoised result of the noisy image Fig. 2.1(b) by using the TV model Eq. (2.12) after 

231 iterations. As seen, the TV model generates several artificial edges that are visually 

unpleasant and likely to result in false reorganization for the subsequent applications.   

2.2.1.4 Iterated Total Variation Refinement 

In the original TV model Eq. (2.12), the gradually removed noise I – J during the 

diffusion process is treated as an error and no longer studied. In practice, since fine 

structures can be falsely classified as the noise by the gradient operator, they are over-

smoothed during the diffusion process. Recent work has proposed to avoid this 

oversmoothing [22, 78] by studying the removed noise. 

A. The Tadmor-Nezzar-Vese Approach 

In the original TV model, the TV Eq. (2.11) was minimized only once by using the 

diffuson model Eq. (2.12). Tadmor, et al. [78] proposed to minimize the TV Eq. (2.11) 

not only once but for many timesThey fistly decompose the noisy image, J = I0 + n0, by 

using the diffusion model Eq. (2.12). So taking the residual error n0 contains both noise 

and structure information of the orginal image I, they decompose n0 = I1 + n1 by the 

same diffusion model Eq. (2.12) except that the initial condition I(t = 0) = n0. Iteratively 

decomposing {nj} j = 0,1,…,k one can obtain J = I0 + I1 + … + Ik + nk. Finally, the denoised 

estimation Î  was given by 
0

ˆ
k

l
l

I I
=

=∑ . This strategy is in some sense close to the 

matching pursuit methods [79], which can be seen as a multi-layer decomposition of the 

noisy observation J in an intermediate scale of spaces between those of bounded-

variation [80] and l2. Some theoretical results on the convergence of this expansion 

were also presented in [78]. 

B. The Osher-et al. approach 

Another iterative TV model was proposed by Osher, et al. [22] through iteratively 

introducing fidelity terms in the TV functional during the diffusion process as follows:  

i. Initiation. Solve the minimization problem, 

1

2

1 1 1arg min ( , ) ( , ) ( , )
I

I I x y J x y I x y dxdy
Ω

λ= ∇ + −∫ ,  

to obtain the decomposition J = I1 + n1. 

ii.  Iterate: compute Ik+1 as a minimizer of the modified TV  functional, 
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1

2

1 1 1arg min ( , ) ( , ) ( , ) ( , )
k

k k k k
I

I I x y J x y n x y I x y dxdy
Ω

λ
+

+ + += ∇ + + −∫   

where nk is the residual noise estimated by the first step. The correction step 

adds the initial estimate nk of the noise to the noisy image J and raises the 

decomposition J + nk = Ik+1 + nk+1. 

As k→∞, Osher, et al. [22] proved that the denoised estimation Ik+1 can approach the 

noise-free image I monotonically within the Bregman distance [77] associated with the 

BV semi-norm [77], at least within the distance 
2 2

kI J σ− ≤  , where σ is the noise Std.  

Both the Tadmor-Nezzar-Vese and Osher methods refine the TV diffusion process 

to choose the denoised result Ik. Their results have therefore more details preserved, as 

shown in Fig. 2.1(f - g), which smooth the hairs less and generate less artifacts, 

compared to the traditional TV result, Fig. 2.1(e). However, the face in the image still 

looks blocky since the edge is still measured by the pixel-level gradient operatorI∇ .  

2.2.1.5 Coherence-Enhancing Diffusion 

In the above section, all the reviewed diffusion models utilize a scalar DC c to 

control the diffusion process and thus the diffusion is spatially isotropic. In other words, 

the smoothing behaviors during the diffusion process are applied to the image with the 

same weight in all the spatial directions. Such isotropic smoothing may be however not 

able to well preserve shapes of oriented structures after diffusion since the structure 

orientation is not taken into account. To overcome this problem, Weickert [13, 49] 

firstly considered an anisotropic diffusion by proposing a 2 × 2 matrix D to replace the 

scalar DC c in the diffusion model as  

 
[ ]( )

div

( 0)

I t
I

t
I t J

∂ = ∇
∂

 = =

D
 . (2.13) 

where the matrix D was symmetric and semi positive-definite and varied at different 

pixel positions x = [x, y]T to control the diffusion strength and direction. We hence 

name D diffusion matrix or diffusion tensor (DT). Based on singular value 

decomposition [72], D can be rewritten in the form of  

 [ ] [ ]1
0 1 0 1

2

0

0
T

λ
λ

 
=  

 
D V V V V ,  (2.14) 

where the vectors 10,VV  and the scalars λ0, λ1 are the eigenvectors and eigenvalues of 

the DT D, respectively. Using Eq. (2.14), one can then design D for each pixel x by 
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selecting different eigenvectors and eigenvalues of D. The vectors 10,VV  determine the 

smoothing directions during the diffusion process. To perform a good preservation of 

the feature geometry in the 2-D images, Weickert [13, 49] proposed to select V0, V1 for 

each pixel x = [x, y]T as the eigenvectors of a smoothed structure tensor (2 × 2 

symmetric and semi positive-definite matrix) ( ) ( ) T
G G I G Iρ σ σ= ∗∇ ∗ ∇ ∗  S  , denoted 

as 10 ,θθ , so the smoothing during the diffusion process is performed along the 

directions perpendicular and parallel to image isophotes. The eigenvalues λ0, λ1 are 

weights determining the smoothing strength along the two directions. To perform a 

better preserving of the feature (intensity) contrast, the smooth strength should be 

preferred more in the image isophote direction instead of the gradient direction. 

Weickert [13] proposed to choose the eigenvalues λ0, λ1 so that λ0 ≥ λ1 holds in the form 

of  

 

0

1

2
0 1

0

(1 )exp( )

( )

if

h else

λ α
α κ

λ
α α κ

κ µ µ

=
=

=  + − −

= −

,  (2.15) 

where h > 0 and [0,1]α ∈  are fixed thresholds, µ0, µ1 are eigenvalues of the structure 

tensor S . The h > 0 serves as a threshold parameter: for κ >> h I get 1 1λ ≈ and κ << h 

leads to 1λ α≈ . The idea behind the choice of Eq. (2.15) is then:  

• In almost constant regions, I should have µ0 ≈ µ1 ≈ 0 and then 0κ →  and 

1 0λ α λ≈ ≈ . The diffusion model Eq. (2.13) performs a linear isotropic 

smoothing. 

• In the vicinity of the edges, I have 1 2 0µ µ� �  and hκ > , and then 1 0λ α λ> > . 

The smoothings at these regions are then anisotropic, mainly directed by the 

direction parallel to the image isophotes.  

As a result, the coherence-enhance (CE) diffusion model Eq. (2.13) can more 

precisely preserve the oriented image structures after denoising, compared to the 

isotropic ones. In another study, Tschumperlé and Deriche [50] extended the anisotropic 

diffusion model Eq. (2.13) to denoise vector-value (colour) images. 

However, since the smoothing strength is still derived by the pixel-level gradient 

operator, the CE diffusion may produce many line-like artifacts or spurious edges in the 

background area. Another drawback of the CE model Eq. (2.13) is its high 
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computational burden. In a study, Weickert, et al. [81] used the additive operator 

splitting (AOS) scheme to solve Eq. (2.13), which is ten times more efficient than the 

widely used explicit schemes. But such scheme is restricted to the special form Eq. 

(2.15) of the diffusion tensor D. 

2.2.1.6 Selective Smoothing Diffusion Model  

By comparing Eq. (2.15), (2.12) and (2.9), I can find that all the smoothing strength 

in the previous nonlinear diffusion models are derived in a similar manner; they are all 

the decreasing functions of pixel-level 1st-order difference, which is not robust for edge 

measurement under noise contamination. Based on the PM model Eq. (2.9), Catté, et al. 

[12] proposed an improved nonlinear diffusion version wherein the edge is measured by 

the Gaussian smoothed gradient in the following equation,  

 
( )

( )

( 0)

I t
div c G I I

t
I t J

σ
∂ = ∇ ∗ ∇   ∂
 = =

 , (2.16) 

where the DC c is in the form of  

 
2

( , )
( ( , ) ) exp

G I x y
c G I x y

h
σ

σ
∇ ∗ 

∇ ∗ = − 
 

,  (2.17) 

h is the gradient threshold and the function
 

2 2

2
( , ) exp( )

2

x y
G x yσ σ

+= −
 
is the 2-D 

Gaussian kernel with Std σ. Since the gradient is derived in the Gaussian-smoothed 

noisy image instead of the noisy one, it is more robust to noise. The diffusion model Eq. 

(2.16) can therefore generate fewer artifacts than the PM model. However, Gaussian 

smoothing of the noisy image can blur the image structures and significantly decrease 

the contrast of the structures whose sizes are smaller than the Std σ of the Gaussian 

smoothing function Gσ. The gradients of these structures in the smoother image can 

hence be rather low, giving rise to a high smoothing strength for these structures.  As 

such, the diffusion model Eq. (2.16) is named as selective smoothing diffusion model 

since it can only selectively preserve structures with scales similar as that of the 

Gaussian kernel [12]. 

 

2.2.2 Neighborhood Filter 

The neighbourhood filter (NF) suppresses the noise through a weighted averaging 

process in which the intensity of a pixel in the denoised image is the weighted average 
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of the intensities of its surrounding neighbouring pixels in the noisy image [36]. Since 

iterating only once to denoise, the NFs often smooth out noise less efficiently than the 

variational methods do.  

2.2.2.1 Bilateral Filter 

One of the most popular NF is bilateral filtering (BF), which was introduced by 

Tomasi and Manduchi [11] to estimate the weights by the distances of the spatial 

positions and the intensities between the central pixel and its surrounding neighborhood 

pixels in the following form,    

 
( )

( )

, , , ( , )
( , )

, , ,

W W

k W l W
W W

k W l W

c x y k l J x k y l
I x y

c x y k l

=− =−

=− =−

+ +
=
∑ ∑

∑ ∑
 , (2.18) 

where  

 
2 2 2

2 2

( ( , ) ( , )) ( ) ( )
( , , , ) exp

J x y J k l x k y l
c x y k l

h K

 − − + −= − − 
 

  (2.19) 

denotes the weight of the neighbouring pixel (x + k, y + l), W denotes the half width of 

the searching window and K is  the thresholding parameter of the spatial distance. The 

weight ( , , , )c x y k l  given in Eq. (2.19) both utilized the difference of two pixels in gray-

value domain and spatial domain. As such, similar pixels in the neighborhood 

contribute more in the weighted averaging to remove the noise contained in the central 

pixel, so avoiding smoothing across edges. BF is therefore a nonlinear edge-preserving 

filter. However, being a NF, the BF performs smoothing only once, so the noise may 

not be removed effectively. Fig. 2.1(h) shows the denoised result of the noisy one Fig. 

2.1(b) by the BF. As seen by comparing Fig. 2.1(h) with Fig. 2.1(d-g), the BF cannot 

smooth out all noise on the face of the girl in the noisy image, compared to the 

variational methods. 

The traditional BF does not take into account the spatial orientation of the features 

in the image. Takeda, et al. [17] incorporate the direction of the pixel position (k, l) into 

the weight ( , , , )c x y k l , which was called steering NF by taking robust estimation of the 

local gradients into account to measure the similarity between two pixels, is given by  

 
( )( )

2

2

2

( ( , ) ( , ))
( , , , ) exp(

[ , ] [ , ]
)

T

J x y J k l
c x y k l

h

x k y l G J x k y l

K
σ

−= −

− − ∇ ∗ − −
−

S
,  (2.20) 
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where the 2 × 2 diagonal matrix ( )( )Gσ∇ ∗S J  is the structure tensor defined in Section 

2.2.1.5. In the background regions where ( )( )Gσ∇ ∗S J  is unitary, Eq. (2.20) is 

simplified as the BF Eq. (2.19). However, in the vicinity of edges where ( )( )Gσ∇ ∗S J

is no longer unitary, the local gradient direction information contained in the structure 

tensor  ( )( )Gσ∇ ∗S J adaptively “steer” the local weights (kernel) ),,,( lkyxc , resulting 

in rotated, elongated or elliptical shapes spread along the directions of the local edge 

structure. With these locally adapted kernels, the steering NF can result in better 

preservation of details than BF does. However, both BFs Eq. (2.19) and (2.20) calculate 

the similarity of the two pixel (x, y) and (k, l) by using only the 1st-order difference of 

the two pixel intensities in the noisy image J, in a similar manner as the variational 

methods Eq. (2.15), (2.12) and (2.9) that detects edges by using the pixel-level gradient. 

Thus the BFs still cannot achieve a good balance between noise removal and feature 

preservation. 

2.2.2.2 Nonlocal-Means Filter 

Nonlocal-Means (NLM) filter was proposed simultaneously by Awate and Whitaker 

[14] and Buades, et al. [15] in 2005. In general, the intensity difference I(x, y) – I(k, l) of 

the two pixels in the noise-free image I is unknown and can only be estimated from the 

noisy observation J. In the BF filter Eq. (2.19), the difference is measured by the pixel-

level intensity difference J(x, y) – J(k, l) in the noisy observation J. The NLM filter 

improved the estimation of the unknown difference, I(x, y) – I(k, l), by a novel 

Euclidean distance between intensities of several pixels within two regions centred 

respectively at (x, y) and (k, l) in the observation, J. Belonging to the NF, NLM 

algorithm estimates the denoised intensity I(x, y) of the pixel x = [x, y]T as a weighted 

average of the intensities of all image pixels whose surrounding regions look like that of 

x in the form of  

 2

1 ( ( , ), ( , ))
( , ) exp( ) ( , )

( , )

I I

I I

H W

k H l W

d I x y I x k y l
I x y J x k y l

m x y h
σ

=− =−

+ += − + +∑ ∑ , (2.21) 

where 2

( ( , ), ( , ))
( ) exp( )

I I

I I

H W

k H l W

d I x y I x k y l
m x

h
σ

=− =−

+ += −∑ ∑
 
 is the normalizing factor, HI 

and WI denotes respectively the half height and width of the image I, h denotes the 
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weights threshold. The distance ( ( , ), ( , ))d I x y I x k y lσ + + in Eq. (2.21) denotes the 

intensity difference of the two pixel (x, y) and (x + k, y + l) in the unknown noise-free 

image I and is given by the intensity differences between several neighbhouring pixels 

around the two pixels as [53],  

 ( )2

( ( , ), ( , ))

( , ) ( , ) ( , )
N N

N N

W W

m W n W

d I x y I x k y l

G m n J x m y n J x k m y k n

σ

σ
=− =−

+ + =

+ + − + + + +∑ ∑
,  (2.22) 

where Gσ is a Gaussian function with Std σ, WN is the half width of the neighborhood 

window. The difference of the two pixels is thus not pixel-level but patch-level between 

two patches, each of which contains noisy intensities of several neighbouring pixels. 

The difference Eq. (2.22) is robust against noise contamination due to Gaussian 

weighted averaging. It is also more likely to preserve finer edges than the Catté et al. 

method Eq. (2.16) does since the Gaussian smoothing in the Eq. (2.22) is not applied 

directly on the image but on the square of the image differences.  

The standard NLM algorithm is computationally expensive. In another study, 

Buades, et al. [82] proposed to limit the search region within which similar 

neighborhoods are looked for. As such, the NLM filter can be also seen as a 

neighbourhood filter. Other researchers further proposed to accelerate the NLM filter by 

many strategies, such as a pre-selection of the contributing neighborhoods based on 

average value and gradient [83], mean values and variance [84] or higher-order 

statistical moments [85], and principal component analysis [55]. Also the calculation of 

the difference between different neighbourhoods Eq. (2.22) can be optimized using the 

fast Fourier transform [86] or a moving average filter [87]. 

The NLM filter was also applied in the spatial-time domain for denoising video [88],  

fluorescence microscopy image sequences [56], 2-D [35] and 3-D medical images [84]. 

The selection of the parameters in the NLM filter was also discussed in many studies. In 

the ref. [88], the weight threshold h in Eq. (2.21) was pre-set between 0.75σn and σn, 

where σn is the noise Std. In another study [89], the threshold h was determined by the 

median average deviation of the nonlocal distances of the whole image. In a recent 

study, Van De Ville and Kocher [90] proposed to optimize the parameters in the NLM 

filter based on the Stein’s unbiased-risk-estimate (SURE) criteria [91] and achieved an 

apparent denoising improvement over the NLM filter with other parameter selection 

methods.   
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2.2.2.3 Iterative Versions of the Nonlocal Means Filter 

The NLM filter Eq. (2.21) performs local smoothing only once on the whole image 

for noise removal and thus may not be able to remove the whole noise contained in the 

noisy image. Based on the traditional NLM filter, Kindermann, et al. [92] proposed a 

NLM functional,  

 2 2

2 2

( )

( ( , ), ( , )) ( ) ( )
1 exp( ) exp( )

BCME

d x y k l x k y l
dxdydkdl

h K
σ

Ω Ω×

=

− + − − − − 
 

∫

I

I I , (2.23) 

where dσ(I(x, y), I(k, l)) is the nonlocal difference given in Eq. (2.22). By minimizing 

the above functional to restore the noise-free image I, I can then obtain an iterative 

NLM filter that iteratively remove the noise from the noisy observation J. However, a 

major problem for minimizing Eq. (2.23) is that the functional is non-convex and its 

global minimum is thus hardly achieved.  

Another iterative NLM algorithm was introduced by Gilboa and Osher [93] who 

proposed to minimize the functional 
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4
E x y k l w x y k l dxdydkdl

Ω×Ω
= −∫ JI I I ,  (2.24) 

where the weight function wJ is only related to the noisy observation J and given by 

2

( ( , ), ( , ))
( , , , ) exp

d x y k l
w x y k l

h
σ = − 

 
J

J J . As such, the weight wJ during the whole 

diffusion iteration process remains unchanged. This is in contrast to the iterative scheme 

of Kindermann, et al. [92] for minimizing Eq. (2.23), where the weights are gradually 

updated at each iteration step based on the previous denoised result. By using the 

calculus of variations to minimize the functional Eq. (2.24), I can obtain the following 

iterative equations,  

 ,

( , , ) ( ( , , 1) ( , , 1)) ( , , , )

( 0)
x yN

x y t x y t k l t w x y k l dkdl

t

 = − − − −

 = =

∫ JI I I

I J
,  (2.25) 

where Nx, y is the set of the neighbouring region around the pixel (x, y). To ensure 

properties such as preservation of the average image intensity and convergence of the 

whole iteration process, the weights ( , , , )w x y k lJ in Eq. (2.25) are adaptively chosen in 

two ways [93]; (i) In a neighbouring region Nx, y, only the 5 largest weights as well as 

those for the four spatial neighbors of each pixel (x, y) are kept and all other weights are 

set to 0; (ii) in case that wJ(x, y, k ,l) = 0 and wJ(k, l, x ,y) ≠ 0, wI0(x, y, k ,l) is set to wI0(k, 
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l, x ,y) ≠ 0. The first choice (i) ensures irreducibility of the PDE Eq. (2.25) and therefore 

the solution of the PDE can converges to a trivial steady state [93]. The second 

condition (ii) ensures that the iteration process is conservative [93], i.e., the mean 

intensity of the whole image is preserved. Extensions of Eq. (2.25) were presented in 

the studies [94] and [95]. The first replaced the l2 norm in Eq. (2.24) by other norms, 

such as ( , ) ( , )x y k l−I I , resulting in a better edge preservation. The second study 

proposed extensions such as iteratively selecting size of the searching region and how to 

deal optimally with colour images.  

Another NLM-based variational method was suggested in [54], in which the 

functional E(I) aimed to minimize the difference between the original image and the 

filtered image in the following form,  

 ,

2

,

( , , , ) ( , )
( ) ( , )

( , , , )

x y

x
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w x y k l k l dkdl
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w x y k l dkdlΩ

 
 = − 
 
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∫
∫

∫

I

I

J
I I ,  (2.26) 

where the nonlocal weight wI  is given by 
2

( ( , ), ( , ))
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I

I I .  

To minimize the functional Eq. (2.26), I compute its Euler-Lagrange equation and 

obtain the simplified iteration equation,  
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,
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I I I   (2.27) 

with ( 0)t = =I J , where ∆t is the step size. According to Eq. (2.27), the smoothing 

weights can be estimated more accurately from the already denoised image I(t) than 

directly from the noisy one J. Moreover, since the weighted smoothing behaviours are 

always applied to the noisy image J during the iteration process, the over-smoothing 

can be in some sense inhibited, thus providing a better balance between noise removal 

and feature preservation, compared to the traditional NLM filter Eq. (2.21). However, 

such method is still not able to efficiently remove all the noise contained in the image. 

So far, the best iterative NLM filter is perhaps the one proposed by Kervrann and 

Boulanger [16, 89], which adaptively and iteratively revise the size of the search 

window for each pixel at each iteration step based on the local structures of the images. 

Their iterative NLM is therefore named as structure adaptive filter (SAFIR) and leads to 

considerable improvement in denoising performance of the NLM filter. 
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2.3 Transform-Domain Denoising Methods  

The methods reviewed above use directly the intensities of pixels in the spatial 

domain of the images. In this section I review another type of denoising methods, 

transform-domain denoising where the pixel intensity is transformed into new spaces to 

separate noise-free image and noise components. Since this thesis focus mainly on the 

variational method, I here provide only a brief review of transform-domain method. For 

more details about this approach, I refer the interested reader to [36, 79, 96, 97].  

 

Transform 
T 

Original  
image I 
 

Denoised 
image J 

Threshold Inverse 
Transform T-1 

 

Fig. 2.2 Principal operations in shrinkage-based denoising methods [98]  

 

The basic principle behind most transform-domain denoising methods is shrinkage - 

truncation (hard thresholding) or scaling (soft thresholding) of the transform 

coefficients to suppress the effects of noise, as shown in Fig. 2.2. For such thresholding, 

the challenge is to develop a suitable coefficient-mapping operation that does not 

sacrifice the details in the image. The final denoised image is obtained by performing an 

inverse transform on the shrunk coefficients. Apart from the choice of the thresholding 

operator, the choice of the transform domain is also critical. In the image processing 

literature, a variety of such transform domains or bases have been proposed. Examples 

of such bases include 2-D extensions of the well-studied discrete cosine (DCT) bases 

used in [58], as well as those developed specifically for image modeling purposes, 

namely curvelets [59], ridgelets [60], contourlets [61], etc. Of the many transform bases 

used in literature, the space-frequency localization property of the wavelet domain 

makes it the most popular choice.  

Since the seminal work by Donoho and Johnstone [62], the wavelet basis has been 

at the core of many transform-domain denoising methods [63-66]. Of these, the 

denoising method proposed by Portilla, et al. [67] has shown considerable promise. 

There the authors proposed a denoising approach based on the scale mixture of a 

Gaussians (GSM) model for the wavelet coefficients [68]. The noisy image is first 

broken into multiple sub-bands in the wavelet domain, and in each sub-band the wavelet 

coefficients within a local neighborhood are modeled as a Gaussian scale mixture [69], 
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where the scale indicates the standard deviation of the Gaussian function. A Wiener 

filter is then used to denoise the wavelet coefficients in a Bayesian least-squares 

framework. The denoised coefficients across sub-bands are then inversely transformed 

to form the final denoised image. Recently, Lyu and Simoncelli [70] extended this local 

framework by incorporating a global model for natural images using Gaussian Markov 

random field (MRF) to form a Field of GSMs (FoGSM). Such a global model was 

shown to improve upon the performance of the BLS-GSM method of [67].  

The Wiener filter forms the basis of another celebrated denoising method proposed 

by Dabov, et al. [58]. There the authors proposed BM3D - a two-step denoising method 

which exploits both spatial and frequency information of an image. The first step 

involves a shrinkage-based-transform-domain operation. The transform domain of 

choice for strong noise was the DCT basis, although the wavelet basis was recently 

shown to improve performance somewhat [99]. The initial denoised image is then used 

as a guide or pilot estimate of the ground-truth I for a Wiener filtering operation. What 

makes this approach unique is that in each step it exploits patch redundancy within the 

image to improve performance. This is done by first identifying intensity-similar 

patches in the image spatial domain. This group is then used to perform an adaptive 

thresholding in the shrinkage step. This allows them to process the entire group of 

patches simultaneously. A similar grouping on the pilot estimate is used to perform a 

transform-domain Wiener filtering. Use of a group of patches to adaptively estimate the 

threshold and parameters of the Wiener filter lends robustness to the process in presence 

of strong noise. As such, this hybrid approach can be seen as the start-of-art denoising 

methods at present [] []. 

Although performing denoising in the transform domain, many of the so-called 

transform-domain denoising methods in fact have equivalent spatial-domain 

interpretations. A thorough analysis showing such equivalence for a more general class 

of shrinkage-based estimators was presented in [98]. More recently, Milanfar [36] also 

cast the hybrid approach of BM3D in a spatial-domain weighted averaging framework. 

Consequently, various denoising methods may be distinct preferably based on how a 

specific filter is implemented rather than on the domain of denoising. 

 

2.4 Summary 

In this chapter, II have reviewed in detail most of the popular spatial-domain 

denoising methods; from linear to nonlinear, isotropic to anisotropic, and pixel-level 
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local to patch-level nonlocal approaches. All of these methods aim to restore an image 

by achieving a good balance between noise removal and feature preserving. Since the 

edge is a fundamental feature, all these popular methods are designed by using the 1st-

order difference of the image intensities to derive the smoothing strengths based on the 

edge-preservation concept; more complicated features or structures can be preserved as 

long as edges are preserved. Some of these methods have achieved an impressive 

denoising performance, as shown in Fig. 2.1. Besides, II have also briefly reviewed 

another popular denoising approach, transform-domain approach, and pointed out that 

most of the transform-domain-based methods can in fact have their equivalent 

variational interpretation in the image spatial domain. 

However, the edge-preserving denoising approach has also their limits. In the next 

chapter of Part I in this thesis, II point out that the edge-preserving denoising approach 

has their limits in preserving complex structures and textures, particularly under the 

severe noise contamination. I discuss such limitations and proposed new denoising 

methods for denoising images containing blobs and ridges, such as live-cell images. In 

Chapter 4, II extend our method in Chapter 3 to propose a more generalized diffusion 

method for denoising natural images containing multiple types of features.   
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Chapter 3 

A Feature-Preserving Nonlinear Anisotropic Diffusion for Denoising 

Images Containing Blobs and Ridges 

  

 

 

 

 

Abstract: In this chapter, II present a new diffusion method for denoising low SNR 

images containing blob and ridge features. In general, blobs and ridges underlie many 

important features in biological, biometric and remote-sensing images. Objects in these 

images are likely to be corrupted by noise, such as live cells in fluorescent biological 

images, ridges and valleys in fingerprints and moving targets in synthetic aperture radar 

and infrared images. A commonly used denoising method makes use of edge 

information in an image to achieve a good balance between noise removal and feature 

preserving. However, if edges are partly lost to a certain extent or contaminated 

severely by noise, such an approach may not be able to preserve these features, leading 

to loss of important information. To overcome this problem, II propose a novel second-

order nonlocal difference as a robust blob and ridge detector and incorporate it into a 

diffusion process to form a novel feature-preserving nonlinear anisotropic diffusion 

model. Experiments show that the new diffusion filter outperforms many popular filters 

for preserving blobs and ridges, reducing noise and minimizing artifacts.  

3.1 Introduction  

As reviewed in Chapter 2, image denoising has been a long-studied subject in image 

processing which tries to restore an original noise-free image from the noisy 

observation for improved visual quality and for subsequent processing tasks such as 

image segmentation, feature extraction and image analysis. There now exist many 
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denoising approaches, ranging from linear [42-45] and nonlinear diffusion model [9, 12, 

46-48], tensor-driven diffusion model [13, 49-52], neighborhood filters [11, 16, 53-56], 

to transform-domain denoising [57-60, 62-68, 70, 98], all of which aim to optimally 

remove noise by minimizing the mean square error (MSE) between the original and 

denoised images. Prior knowledge of key features in the image is usually taken into 

account in the minimization process of MSE, directly or indirectly, in order to achieve a 

good balance between noise removal and feature preserving in denoised images. 

Nonlinear diffusion is a popular denoising approach in which prior information of 

image features can be incorporated via the diffusion coefficient c (DC) into the filtering 

processing. In general, an edge is a fundamental feature that underlies more complicated 

features or structures in an image. The latter can be preserved as long as edges are 

preserved after denoising. Since the edge can be characterised by a 1st-order difference 

(gradient), Perona and Malik [9] first used the gradient as an edge detector to derive the 

DC that can reject diffusion at edges and permit smoothing in other places. Weickert 

[13] further took into account the orientation of edges and developed a tensor-driven 

diffusion model in which smoothing is further discouraged along the directions 

perpendicular to the edge orientations. Building on the work of Weickert [13], 

researchers have developed various tensor-driven diffusion models [13, 50-52]. In 

particular, Tschumperlé and Brun [51] proposed a method for anisotropic image 

smoothing by developing a new high-dimensional structure tensor field. The method 

has shown impressive denoising performances both visually and quantitatively on 

nature images [100], as reviewed in the previous chapter. 
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(a)                (b)                (c)                   (d)  

Fig. 3.1 (a) – (b) Noise-free and noisy fragments of an 8-bit image Parrot [101], the 

latter of which contains additive Gaussian white noise of a Std σn = 20; (c) Gradient 

amplitude of the noisy image calculated by the 1st-order central difference(b); (d) 

Denoising result by PM diffusion [9] on (b) 
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While there has been a considerable focus on the methods of anisotropic diffusion, 

the smoothing strengths, either DCs, eigenvalues of diffusion tensor or the averaging 

weights of the neighbourhood filter for determining where and how much smoothing 

effect  should be encouraged or discouraged, are all derived using the grayscale gradient 

information, which effectively corresponds to edge detection. However, in low-contrast 

and/or low-SNR images, the gradient is not robust to characterize the features contained 

in noise-free images. Fig. 3.1(a-b) shows noise-free and noisy fragments of the image 

Parrot [101]. Fig. 3.1(c) shows the gradient amplitude of the noisy image Fig. 3.1(b) by 

using a simple 1st-order central difference. The colour bar in this figure indicates the 

scale of the gradient amplitude: a red colour means a high value of gradient amplitude. 

As seen by comparing Fig. 3.1(a) and (c), I can find that almost no features (the eye, eye 

socket and stripes on the face of the parrot) can be characterized in the gradient map. 

Although one can perform a smoothing to remove noise before calculating the gradient, 

the edges in the image can be also blurred or smoothed out. As such, when the edges are 

partly lost to a certain extent or are contaminated severely by noise, the gradient-based 

denoising methods, one of which is shown in Fig. 3.1(d),  may not be able to recover 

these edges and thus fails to preserve other common features that are made of by the 

edges, such as blobs, ridges and textures, which are important in the study of many 

subjects,  such as  live-cell imaging [31], detection and tracking of small moving targets 

[102], and recovery of ridges for pattern recognition of fingerprints. This calls for a 

more sophisticated feature detector than the edge detector in the diffusion-based 

denoising methods. 

 

 

            

(a)                         (b)  

Fig. 3.2 An example of blob and ridge feature. (a) A bright blob; (b) A bright horizontal 

ridge  

 

Blobs and ridges correspond respectively to circular and line-like regions that are 

either brighter or darker than their surroundings [104, 105]. Fig. 3.2(a) and (b) show a 
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bright blob and ridge. Mathematically, these features are more correlated to a second-

order difference rather than a first-order one which measures edges. In this chapter I 

propose a novel second-order nonlocal difference (2nd-order NLD) to detect blob and 

ridge features. By nonlocal difference I mean that the grayscale difference between two 

pixels is measured by two regions (patches) centred at the pixels instead of the pixels 

themselves. Each patch can be considered as a vector in a multidimensional feature 

space [51], so the proposed 2nd-order NLD measures the second-order difference 

involving more than two vectors. The use of such nonlocal differences is inspired by the 

success of the popular NLM filter [53], in which the difference of two pixels is 

measured by the Euclidean distance of the grayscale values between two patches that 

are centred at these pixels. Such distance measurement has been used as a basis not only 

for image denoising [16, 51, 57, 58] reviewed in the previous chapter, but also for other 

machine vision tasks such as texture synthesis [106] and  texture segmentation [107]. 

We further propose to form a new feature-preserving denoising method by 

incorporating the proposed 2nd-order NLD in a nonlinear anisotropic diffusion model. 

Owing to a good performance of 2nd-order NLD as a blob and ridge detector, our 

denoising method can preserve these features even though the edges that bound the 

blobs and ridges are partly lost or contaminated by severe noise. Experimental results 

demonstrate that our method can achieve a higher peak-signal-to-noise ratio (PSNR) [16] 

and higher mean similarity index (MSSIM) [108] when applied to both synthetic and 

real live-cell, fingerprint and natural  images that contain blobs and ridges with various 

sizes, compared to traditional diffusion methods [9, 12], tensor-driven diffusion 

methods [13, 51, 52] and other popular denoising methods [16, 53, 58]. 

The remainder of this chapter is organized as follows. We first present the 2nd-order 

NLD in Section 3.2. In Section 3.3, the 2nd-order NLD is employed to form a feature-

preserving nonlinear diffusion method. Experiments on both synthetic and real data are 

presented in Section 3.4. Finally, I conclude the main results of the paper in Section 3.5. 

3.2 Second-order Nonlocal Difference 

A simplest way to detect blobs and ridges is to apply the Laplacian operator [109] 

which, for one-dimensional (1-D) digital images, is usually approximated by a second-

order difference of signal intensities of three adjacent pixels. However, noise in these 

images can lead to false detections because the pixel-level difference, as shown for the 

gradient image in Fig. 3.1(c), is prone to be corrupted by noise. We here introduce the 

concept of nonlocal difference which measures the dissimilarity between two local 



 

33 

regions, referred to as patches, rather than two pixels. The nonlocal difference between 

two patches was first introduced for textures synthesis by Efros and Leung [106] and 

then for image denoising in the work of NLM filter by Buades, et al. [53]. In this 

section, I apply the concept to develop a second-order nonlocal difference for robust 

detections of blobs and ridges. The difference will then be incorporated into a diffusion 

model for feature-preserved denoising. 

3.2.1 Nonlocal Difference 
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Fig. 3.3. A schematic showing nonlocal differences in one-dimensional space 

 

We describe the concept of nonlocal difference in a 1-D signal. Extension to the 2-D 

case is straightforward and will be discussed later. Let 1 1:I Ω ⊂ →R R be a 1-D signal 

defined on the signal domain Ω and ix  Ω∈  is the pixel position, 1 2= i Nx  x , x , , xK , as 

shown in Fig. 3.3. For each pixel, xi, I define a neighbourhood region 
ixN  which 

comprises W pixels centred around xi. We further define a patch 
ixP , which is a vector 

comprising gray-level values of all pixels within the neighbourhood region 
ixN  [51] 

 ( 1)/2 ( 1)/2 1 ( 1)/2[ ( ), ( ), ( ), ( )]
i

T
x i W i W i i WI x I x I x I x− − − − + + −= K KP ,  (3.1) 

where W is assumed to be an odd number for symmetry consideration. The nonlocal 

distance between two signal values, I(xi) and I(xj), can be measured as the Gaussian-

weighted Euclidean difference [53],  
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of the two vectors 
ixP  and 

jxP  in the W-dimensional space, where Gσ is a Gaussian 

kernel with Std σ and 
( 1)/2

( 1)/2

( )
W

k W

C G kσ

−

=− −

= ∑  is the normalizing factor. The Std σ is often 

chosen as 1/3 of the half of the patch width. For an image J that is the noisy observation 

of the image I, this nonlocal distance has been proven to provide a more reliable 

estimation for the unknown absolute intensity difference ( ) ( )i jI x I x− , compared to 

estimation by using only the noisy samples J(xi) and J(xj)  [97]. The distance Eq. (3.2) 

has also been used in the NLM filter for improving denoising performance of the 

traditional weighted averaging filter [14, 15, 53].  

Based on the nonlocal distance, Eq. (3.2), and patch expression, Eq. (3.1), I can 

define a first-order nonlocal difference (1st-order NLD) when two patches, centred at xi-

(W+1)/2 and xi+(W+1)/2, are very close to each other,  
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where Gσ is a Gaussian kernel with Std σ. Eq. (3.3) involves the first-order difference 

between two adjacent patches 
( 1)/2i Wx− +

P  and 
( 1)/2i Wx+ +

P . For the same reason given to Eq. 

(3.2), Eq. (3.3) is more reliable than the pixel-level gradient operator involving two 

pixels to measure edges under noise contamination. 

One drawback of the nonlocal distance is its increased computational burden. To 

overcome this problem, an alternative solution [95] is to first transform the vector
ixP  to 

another vector [ (0),... ( 1)]
i i i

T
x x x W= −F F F  with an orthonormal transforming matrix A 

derived by the principal components analysis (PCA). A simplified nonlocal distance 

NLS( , )i jd x x can then be measured by either all or parts of the components of the new 

vector 
ixF . When all components of 

ixF are considered, the simplified nonlocal distance 

is equivalent to Eq. (3.2) since NLS
2, 2, 2,

( , )
i j i j i ji j x x x x x xd x x

σ σ σ
= − = − = −F F AP AP P P  [55]. 

In particular, when only the component (0)
ixF  of the vector 

ixF  is used, the simplified 

nonlocal distance NLS( , )i jd x x  is given by  

 ( )NLS 1/2 1/2

(0) (0) (0) (0) (0)
,

C C
i j i jx x x x

i j

G
d x x

σ − −
= =

F F F F
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which is simply the difference of two scalars divided by a constant. According the 

theory of PCA [55], the first component (0)
ixF  of 

ixF , which is also the first principal 

component of the patch 
ixP , can be seen as a mean value of the patch 

ixP . As such, the 

edge detector ( ) ( )iG I xσ∇ ∗  that was introduced in Eq. (2.16) by Catté, et al. [12] can 

indeed be seen as a simplified case of the 1st-order NLD Eq. (3.3) since the edge 

detector in the discrete form 

 

( )

( ) ( )( )

( ) ( )( )

1
2

1 2
1

2

1

2

1 2
1

2

( ) ( ) ( )

( 1) 2

( 1) 2

W

i i k
k W

W

i k W
W

k

W

i k W
W

k

G I x kG k I x

W G k W I x

G k W I x

σ σ

σ

σ

+
=−

−

+ − +
−=−

−

− + +
−=−

∇ ∗ =

= − +

− − +

∑

∑

∑

  (3.5) 

also measures the difference between the Gaussian-weighted mean values of the two 

patches (vectors). In a recent study, Tasdizen [55] has shown that the PSNR obtained by 

a variation of NLM filter whose nonlocal differences are measured by the first principle 

components of the patches, i.e., in the similar fashion to Eq. (3.5), is much lower than 

that by the original NLM filter which uses Eq. (3.2) for the distance measurement. As 

such, using the full components of the patches for edge detection should perform better 

than that given by Eq. (3.5) that uses only the mean values of the patches.  

3.2.2 Second-order Nonlocal Difference 

Based on the definition of nonlocal difference in the last section, I now formulate a 

second-order nonlocal difference (2nd-order NLD) to be used for blob and ridge 

detection in the form of  
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where Gσ and C are the same as those in Eq. (3.2). Eq. (3.6) involves the second-order 

difference between a central patch 
ixP  and its two adjacent patches 

i Wx −
P and 

i Wx +
P shown 

in Fig. 3.3. A large 2
NL 2,

( )ix
σ

∇ I  corresponds to a brighter (darker) central patch 

compared with its two neighbours, which indicates the presence of a blob or ridge. For a 
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similar reason as for Eq. (3.2) in the last section, Eq. (3.6) can provide a more reliable 

measurement than the pixel-level second-order difference, i.e. the Laplacian operator, 

for blob and ridge detection in the presence of noise.  
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Fig. 3.4. (a) A 1-D noise-free signal containing three blobs and the corresponding signal 

corrupted by additive white Gaussian noise with a Std σn = 20; (b) The 2nd-order NLD 

and LoG response of the noise-free signal; (c) The peak response of the 2nd-order NLD 

for a blob at the blob centre versus the blob size s; (d) The 2nd-order NLD and LoG 

response of the noisy signal; (e) The diffusion coefficient of 2nd-order NLD and LoG 

response on the noisy signal. 

 

In order to illustrate the performance of 2nd-order NLD as a blob detector in the 1-D 

case, I study the behaviour of  2NL 2,
( )ix

σ
∇ I  on a 1-D 8-bit signal containing three 

blobs of size s = 5, 11 and 21 pixels without and with additive white Gaussian noise 

(AWGN) of a Std σn = 20, as shown in Fig. 3.4(a). Intensities of the blobs and 

backgrounds are set to be 150 and 100 respectively. The response of the 2nd-order NLD 

given by Eq. (3.6) on the noise-free image is plotted in Fig. 3.4(b), where the patch size 
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21=W
 
is chosen, which corresponds to the largest blob size in the signal. The Std σ of 

the Gaussian function in Eq. (3.6) is set as ( 1) / 6 10 / 3Wσ = − = , which is 1/3 of the 

half of the patch window [109]. As shown in Fig. 3.4(b), when the blob size equals the 

patch size, i.e., Ws = (rightmost blob in Fig. 3.4(b)), the response of 2nd-order NLD is 

unimodal and symmetric with the peak value at the centre of the blob with a limited 

non-zero spatial range. In the general cases of Ws≠ , while the unimodal behaviour is 

gradually lost and the peak value decreases as the blob size s deviates from the patch 

size W, the maximum peaks remain at the centre of  blobs and they are significantly 

higher than responses at other positions within blobs.  The spatial dependence of the 

2nd-order NLD is in general complex since Eq. (3.6) depends not only on the position xi, 

but also the value of σ, blob size, contrasts, etc. However, it can be simplified 

considerably in a special case when a box window (σ → +∞ ) is used,  the blob size 

equals the patch size, i. e., s = W, and the intensity of the blob is uniform. We can use 

this expression to explain the essential behaviour of the observed spatial characteristics 

of 2nd-order NLD. When s = W,  σ → +∞ , and the signal intensities inside and outside 

the blob region are unequal but respectively uniform, Eq. (3.6) can then be written 

explicitly as  
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where 
ci

x  is the central pixel of a blob and M is the intensity difference between the 

blob and its surrounding background. The response of 2nd-order NLD given by Eq. (3.7)

is unimodal and symmetric with the peak value at the centre of the blob and a non-zero 

range of ( 2 , 2 )
c ci i ix W x W x∈ − + + . We further find in Fig. 3.4(b) that the peak value of 

the 2nd-order NLD for a blob decreases as the blob size s deviates from the patch size W. 

To quantify such decreasing, I express the peak value of the 2nd-order NLD as a 

function of the blob size s by simplifying Eq. (3.6) into 

 

( )
( )

c

1/2

1/22
NL 2,

2 / if 0

( , ) 2 1 / 1 / 2 if 3

0 otherwise

P P

i i P P P

M s S s S

x x s M s S S s S
+∞

 ≤ ≤
∇ = = − − < ≤   



I ,  (3.8) 

where M is the intensity difference between the blob and its surrounding background, SP 

is the patch size : SP = W in the 1-D case. Eq. (3.8) is unimodal with a maximal peak 
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value of 2M when Ws= and monotonically decreases when the blob size s deviates the 

patch size SP. Fig. 3.4(c) shows the plot of the peak value 
c

2
NL 2,

( , )i ix x s
+∞

∇ =I  versus 

the blob size s when W = 21 and the intensity difference M = 50. We can easily obtain 

from Eq. (3.8) that 
c

2
NL 2,

( , )i ix x s
+∞

∇ =I  stays above M (i.e., half of the maximal peak 

value 2M) if the size of the blob is within a range [ ]/25/4, WW , which gives[ ]52,6  for 

21=W .  

We have further tested the 2nd-order NLD on the noisy image in Fig. 3.4(a) and 

shown the results in Fig. 3.4(d). As seen, the main characteristics exhibited in the noisy 

response curves, i.e., the unimodality, non-zero spatial range (up to a small fluctuation 

due to noise) and the dependence of the peak values on the blob size remains essentially 

unchanged, indicating that the 2nd-order NLD is a viable operator for detecting blobs of 

different sizes in noisy images. 

The performance of 2nd-order NLD can be compared to that of Laplacian of a 

Gaussian (LoG) [109], which has previously been used as an operator for blob detection 

[110], and also used in the Marr–Hildreth algorithm [] for edge detection. The detection 

response by LoG at pixel xi in the same 1-D signal I involves convolution of I with the 

LoG operator 

 ( )
(3 1)/2

2 2 2
LoG,

(3 1)/2

( ) ( ) ( )
W

i i k
k W

x k G k xσ σσ
−

+
=− −

∇ = −∑I I .  (3.9) 

Similar to the discussions about the performance of 2nd-order NLD, I apply Eq. (3.9) to 

the noise-free 1-D signal Fig. 3.4(a) with the same patch size 21=W
 
and a Std 

3/10=σ  so that nearly all values (99.73%) of the Gaussian kernel lie within the 

window of size W = 21 [109]. The response of LoG is shown in Fig. 3.4(b). We can 

prove through simple manipulations of Eq. (3.6) and Eq. (3.9) that the difference 

2 2
NL LoG,2,

( ) ( ) ( ) 0i i ix x I xσσ
∆ = ∇ − ∇ >I  in a blob region and ( ) 0ix∆ ≈  in the 

background regions. The 2nd-order NLD has therefore a higher response to blobs 

without increasing false detection in the background regions compared to LoG. Also 

seen from this figure, the response of LoG for a blob is triple-modal, each of which can 

be misinterpreted as three blobs due to three local maxima [109]. LoG hence is prone to 

false blob detections in images. Moreover, I plot the peak response curve of LoG at the 

centre pixel of a blob versus the blob size s in Fig. 3.4(c) for comparison. As seen, both 

the 2nd-order NLD and LoG achieve the same maximal peak value 2M at Ws = and 

decrease to zero at s = 0 and 3W. However, the 2nd-order NLD decreases in a much 
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slower rate than LoG. Compared to the blob size range [ ]52,6  obtained earlier for 2nd-

order NLD, LoG possesses a narrower range, [ ] [ ]42,112/2, =WW . As a result, 2nd-order 

NLD with a single patch size W (scale) has a higher sensitivity for detecting blobs with 

different sizes, compared to LoG with same parameters. This is also true for images 

with noise, as shown in Fig. 3.4(d). 

3.2.3 Directional Second-order Nonlocal Difference in 2-D Images 

We have formulated and studied the 2nd-order NLD in 1-D signals in the above 

subsection. In this subsection, I extend the 2nd-order NLD Eq. (3.6) to 2-D images in 

which both ridges and blobs can be directional features. The detection of these features 

should take their directions into consideration. Let 2:I Ω ⊂ →R R  be a 2-D image 

defined on the image domain Ω  and T[ , ]i i ix y Ω= ∈x   is the pixel position, 

1 2= i N , , , Kx x x x . For each pixel, xi = [xi, yi], the neighbourhood ,i ix yN  is then defined 

as a W × W square region [55] which comprises W2 pixels centred around xi = [xi, yi]
T. 

The patch ,i ix yP in the 2-D image is then defined as a vector comprising gray-level 

values of all pixels within the neighbourhood region ,i ix yN [51] in the row-wise-

concatenations form,   

 , ( 1)/2 ( 1)/2 i ( 1)/2 i ( 1)/2[ ( , ), ( , ), ( , )]
i i

T
x y i W i W i i W WI x y I x y I x y− − − − + − + −= K KP . (3.10) 

The neighbourhood ,i ix yN is chosen as a square region for symmetric consideration [55, 

110, 111]. Based on the patch definition Eq. (3.10), I define a 2-D directional 2nd-order 

NLD at a pixel [ ]T, iii yx=x  along a given direction θ as 

( )

cos sin cos sin

2
NL , , ,2, 2,

1
1 1 2

2 2
2

cos sin cos sin
1 1

2 2

( , ) 2

1
( , ) 2 ( , ) ( , ) ( , )

i i i W i W i W i Wi x y x y x y

W W

i k i l i W k i W l i W k i W l
W W

k l

I

G k l I x y I x y I x y
C

θ θ θ θσ σ

σ θ θ θ θ

θ
− − + +

− −

+ + − + − + + + + +
− −=− =−

∇ = − −

 
 = − −
  
 

∑ ∑

x P P P

, (3.11) 

where 

1 1

2 2

1 1

2 2

( , )

W W

W W
k l

C G k lσ

− −

− −=− =−

= ∑ ∑  is a normalizing factor. As shown in Fig. 3.5(c), Eq. 

(3.11) involves the difference between a central patch and two neighbors along a given 

direction. A large directional 2nd-order NLD 2
NL 2,

( , )iI
σ

θ∇ x  corresponds to a brighter 

(darker) patch compared with two neighbors along the direction θ, so indicating the 

presences of blobs and ridges whose principal directions are perpendicular to θ.  



 

40 

 

  
(a)                 (b)                            (c) 

      Noise-free             Noisy              Noise-free             Noisy 

     

0.2

0.4

0.6

0.8

1

   (d) 2nd NLD(30º)      (e) 2nd NLD(30º)       (f) 2nd DoG(30º)      (g) 2nd DoG(30º)  

     

0.2

0.4

0.6

0.8

1

  (h) 2nd NLD(120º)      (i) 2nd NLD(120º)      (j) 2nd DoG(120º)     (k) 2nd DoG(120º)  

     

0.2

0.4

0.6

0.8

1

 (l) isotropic 2nd NLD   (m) isotropic 2nd NLD       (n) LoG              (o) LoG  
 

ii yx ,P  
θθ sincos , WiWi yx ++

P  

 

θθ sincos , WiWi yx −−
P  

 

y (x-xi)sinθ-(y-yi)cosθ =-(W-1)/2 

Sin 

(xi,yi) 

x(0,0) θ 

(x-xi)sinθ-(y-yi)cosθ =(W-1)/2 A 

C 

F G 

B 

D 
E 

W 

 

Fig. 3.5 Performance illustration of the 2nd-order NLD in 8-bit 2-D images. (a) A noise-

free synthetic 8-bit image consists of blobs and ridges with various shapes, sizes and 

orientations; (b) A noisy observation corrupted by AWGN of Std σn =20; (c) A 

schematic showing directional 2nd NLD in 2-D space; (d) – (g) Responses of directional 

2nd-order NLD at °30  for noise-free and noisy image, and that of 2nd-order DoG at 30°

on same images; (h) – (k) Responses of directional 2nd-order NLD at °120  for noise-

free and noisy image, and that of 2nd-order DoG at 120°  on same images; (l) – (o) 

Responses of isotropic 2nd-order NLD for noise-free and noisy image, and those of LoG 

on the two images.    

 

To illustrate the performance of the 2nd-order directional NLD as a blob and ridge 
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detector, I study the behavior of 2NL 2,
( , )iI

σ
θ∇ x  in an 8-bit 2-D image without and 

with AWGN of Std σn = 20, as shown in Fig. 3.5(a-b), which consist of blobs of 

dimensions 11×11 and 21×21 (pixels), two circular blobs of the diameters 11 and 21, 

two elliptical blobs with same major and minor diameters of 41 and 21 in two 

orientations at 90°  and 120° , and a ridge of length 61 and width of 5 at 30° , 

respectively. Each of the features is marked with a letter. Intensities of the features and 

backgrounds are set to be 150 and 100 respectively, same as the setting of those in the 

1-D experiment Fig. 3.4(a). We first apply the 2-D directional 2nd-order NLD Eq. (3.11) 

along two directions perpendicular to each other at 30θ = ° and 120°  to the noise-free 

image. The responses are shown respectively in Fig. 3.5(d) and (h), where the patch 

height (width) 21W =   and 10 / 3σ =  are chosen, same as in the 1-D experiment. It is 

obvious that the responses are general directionally dependent. However, the essential 

behavior of the responses for the each given direction (here 30θ = ° and 120° ), such as 

the peak locations, the symmetry, and the intensity profiles, are similar to the 1-D case. 

The peak values, similar to the 1-D case, still depend on the objects sizes. We can 

analytically explain easily this dependence for the case of  σ → +∞  by simplifying Eq. 

(3.11) into the following form,  

 

( )
( )

c

1/2

1/22
NL 2,

2 / if 0

( , ) 2 1 / 1 / 2 if 3

0 otherwise

P P

i i P P P

M s S s S

I x s M s S S s S

θ θ

θ θ θ+∞

 ≤ ≤
∇ = = − − < ≤   



x , (3.12) 

where SP is the patch size, sθ is the size of blob and ridge region bounded between two 

lines 
1

( )sin ( )cos
2c ci i

W
x x y yθ θ −− − − = ±  and θ is the angle of the directional 2nd-

order NLD, as illustrated in Fig. 3.5(c). The parameter M is the intensity difference 

(feature contrast) between features and backgrounds. Eq. (3.12) has the same function 

expression as the peak value, Eq. (3.8), in the 1-D case, allowing same dependence for 

peak values of directional 2nd-order NLD on size ratio PSsθ as that in the 1-D case, 

except now that PSsθ is the 2-D area ratio which depends on both the size and 

orientation of the object. For example, for blob F, θ = 30° and °120 correspond to 

directions perpendicular and parallel to the principal orientation of the blob and the area 

ratio for the two cases are 1≈PSsθ  and 2/π , respectively. Consequently the peak 

value for blob F at θ = °30 (Fig. 3.5(d)) equals 2M and is much higher than that at θ = 

°120 (Fig. 3.5 (h)) according to Eq. (3.12). 
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We have also tested the noisy image Fig. 3.5(b) by applying the 2nd-order NLD 

along the same directions at θ = °30  and °120 , the results of which are shown 

respectively in Fig. 3.5(e) and (i). As seen, the responses of 2nd-order NLD are 

essentially the same as those to the noise-free image in the same directions, in a similar 

manner as the comparisons of characteristics in the 1-D case between the noisy-free Fig. 

3.4(b) and noisy responses Fig. 3.4(d) of the 1-D 2nd-order NLD. Accordingly, the 

directional 2nd-order NLD Eq. (9), same as the 1-D 2nd-order NLD for feature detection 

in the 1-D noisy signals, is viable for detecting blobs and ridges with different sizes, 

shapes and orientations in the 2-D noisy images. 

For completeness, I compare Eq. (9) with 2nd-order directional derivative of 

Gaussian (2nd-order DoG), which has previously been used for 2-D blob and ridge 

detection [111]. The detection response by 2nd DoG at pixel [ ]T, iii yx=x along the 

orientation θ can be written as  

 

2
DoG,

(3 1)/2 (3 1)/2
2 2

(3 1)/2 (3 1)/2

( , )

( cos sin ) ( , ) ( , )

i

W W

i k i l
k W l W

I

k l G k l I x y

σ

σ

θ

θ θ σ
− −

+ +
=− − =− −

∇ =

 − − ∑ ∑

x

.  (3.13) 

Similar to the performance comparison between 1-D 2nd-order NLD and 1-D LoG in our 

1-D experiment in the previous subsection, I apply Eq. (3.13) to the noise-free and noisy 

images Fig. 3.5(a) and (b) along the same directions at θ = °30  and °120 , the response 

of which are further shown in Fig. 3.5 (f), (g) and Fig. 3(j), (k) respectively, with the 

same patch height 21=W  and Std 3/10=σ . In general, the 2nd-order DoG 

),(,DoG
2 θσ iI x∇ can be seen as a 1-D LoG along a given direction θ, so potentially 

exhibiting the characteristics of 1-D LoG which I have analyzed for Eq. (3.9) in Section 

3.2.2. This is hence no surprise that responses of 2nd-order DoG in Fig. 3.5(f), (g) and (j), 

(k)  all show apparent triple-modal shapes and lower peak values, particularly for blob 

A, C and ridge G, compared to the results of 2nd-order NLD in Fig. 3(d), (e) and (h), (i), 

respectively. All of these are consistent with the observations of Fig. 3.4(b) and (d). In 

this sense, the conclusions obtained in 2-D images are consistent with those in the 1-D 

case.  

3.2.4 Isotropic Second-order Nonlocal Difference in 2-D Images 

As shown above, the responses of both directional 2nd-order NLD and DoG are 

directionally dependent. That is, for two features with same shapes, sizes and brightness 
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but varied orientations, the operator yields different values [112]. For example, the 

responses for two blobs E and F in Fig. 3.5(a), with same shapes, sizes and contrasts but 

varied orientations, are totally different in a same figure, such as Fig. 3.5(h) or (j). As 

such, the directions of the features should be known as a priori when the operator is 

applied to the images for detection. However, the knowledge of the feature directions in 

most cases is unknown to us and thus has to be estimated by other methods. This may 

greatly increase the computational burden and decrease the detection sensitivity of the 

detectors if the directions are not estimated accurately.  To overcome this problem, the 

Laplacian of Gaussian was proposed as [109] 

 
( )

2 2 2
LoG, DoG, DoG,

(3 1)/2 (3 1)/2
2 2 2

(3 1)/2 (3 1)/2

( ) ( ,0) ( ,90)

2 ( , ) ( , )

i i i

W W

i k i l
k W l W

I I I

k l G k l I x y

σ σ σ

σσ
− −

+ +
=− − =− −

∇ = ∇ + ∇ =

+ −∑ ∑

x x x

 , (3.14) 

which is the isotropic sum of 2nd-order DoG in two dimensions and thus a rotationally 

invariant [109]. Following the same approach, I formulate an isotropic 2nd-order NLD 

as  

 

2 2 2
NL NL NL2, 2,

, , , , , 2,

1
( ) ( ,0) ( ,90)

2
1

4
2 i i i i W i i W i W i i W i

i i i

x y x y x y x y x y

I I I
σ σ

σ− + − +

∇ = ∇ + ∇

= − − − −

x x x

P P P P P
.  (3.15) 

which is an isotropic (rotationally invariant) operator and can thus yield same responses 

to identical features oriented at different angles.  

We illustrate the performance of the isotropic 2nd-order NLD by applying Eq. (3.15) 

respectively on the noise-free and noisy images Fig. 3.5(a) and (b), where patch height 

W = 21 and σ →+∞ are chosen, same as those in the previous subsection. Responses of 

the two images are shown in Fig. 3.5(l) and (m). As seen, profiles of isotropic 2nd-order 

NLD for all features are very close to the original ones. Also as seen from the two 

figures, the 2nd-order isotropic NLD operator provides the same responses to the two 

elliptical blobs E and F with the same shapes, sizes and brightness but varied 

orientations, indicating the rotational invariance of Eq. (3.15). By considering the 

computational speed and detection sensitivity, the isotropic 2nd-order NLD is thus a 

better operator independent of the feature directions than the directional one to detect 

the blob and ridge features in the 2-D images and thus more appropriate to derive the 

smoothing strength for a diffusion model in the next section, in which the strength 

should be independent of the feature directions and only derived by the contrasts of the 

features [9, 49]. 
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To illustrate the consistent advantages of the 2nd-order NLD over the 2nd-order 

derivative of Gaussian, I apply the 2-D LoG Eq. (3.14) to Fig. 3.5(a) and (b) and show 

the two response images in Fig. 3.5(n) and (o). Obvious triple-modal behavior and 

lower peak values are again observed compared to the responses of the 2nd-order NLD. 

All the results and comparisons indicate that the 2nd-order NLD performs noticeably 

better than the LoG in 2-D case as a blob and ridge detector.  

3.3  Feature-Preserving Diffusion 

A diffusion coefficient (DC) in the traditional nonlinear diffusion model, such as the  

PM model Eq. (2.9) or (2.10) [9], is a decreasing function of the gradient of image I, the 

value of which is small in the vicinity of edges and relatively large in background areas, 

so giving rise to edge-preserving diffusion. In this section, I begin with a feature-

preserving nonlinear diffusion (FP-ND) for the 1-D signal :I Ω ⊂ →R R in the 

image domain Ω  in the form,   

 ( )2
NL 2,

( , )
div ( , ) ( , )

I x t
c I x t I x t

t σ

∂  = ∇ ⋅∇
  ∂

  (3.16) 

where the diffusion coefficient (DC),  

 ( )
22

NL2 2,
NL 22,

( , )
( , ) exp

I x t
c I x t

h
σ

σ

 ∇
 ∇ = −
  
 

 , (3.17) 

is a decreasing function of the 1-D 2nd-order NLD Eq. (3.6), ( , 0) ( )I x t J x= =  is the 

initial noisy image, ∇ is the gradient operator, div is the divergence operator and h is 

the diffusion threshold. If 2
NL 2,

( , ) ,I x t h
σ

∇ >>  ( )2
NL 2,

( , ) 0c I x t
σ

∇ →  and the diffusion 

flux is suppressed; if 2
NL 2,

( , ) ,I x t h
σ

∇ << ( )2
NL 2,

( , ) 1c I x t
σ

∇ →  and the diffusion flux is 

encouraged. Thus the parameter h serves as a threshold to determine whether or not a 

smoothing behavior is encouraged. We employ the median absolute deviation (MAD) 

of the 2nd-order NLD to adaptively estimate h at each iteration step during diffusion 

process [47, 48] (see Section 3.4 for more details). 

The DC Eq. (3.17) is unimodal of the 2nd-order NLD, which remains a one-to-one 

correspondence between the local minima and true blobs, and is lower in value in the 

vicinity of blob features than noisy background. Fig. 3.4(e) shows an example of the DC 

( )2
NL 2,

( , )c I x t
σ

∇ , corresponding to the 2nd-order NLD 2
NL 2,

( , )I x t
σ

∇  given in Fig. 3.4 
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(d), where the diffusion threshold h is chosen to be 20=h , same as the Std σn of the 

AWGN in the corrupted image. We will show through experiments in Section 3.4 that 

the FP-ND filter Eq. (3.17) can successfully smooth out noise and preserve the three 

blobs. For further comparisons, I also plot DC in the exponential form of LoG response 

in Fig. 3.4 (e), which exhibits the same triple-modal shape and has higher value in blob 

regions in comparison. 

In 2-D images, ridges are line-like features with different orientations and blobs can 

be approximated by directional ellipses. To better preserve the geometric properties of 

the features, smoothing behaviour should be performed in directions parallel rather than 

perpendicular to the isophotes of the images [52]. We propose a feature-preserving 

nonlinear anisotropic diffusion (FP-NAD) that smoothes along the direction of the 

image contours [49]. In this case, the diffusion model for a 2-D image 2:I Ω ⊂ →R R

is not manipulated by the scalar DC in Eq. (3.16), but by a 22×  diffusion tensor (DT) 

D in the following form,     

 [ ]( , )
div ( , ) ( , )

I t
t I t

t

∂ = ∇
∂
x

D x x ,  (3.18) 

where T 2[ , ]x y= ∈x R  is a pixel and 2( , )I t∇ ∈x R  is a vector whose elements are 

gradients at the pixel x along x-axis and y-axis. As a symmetric and semi-positive-

definite 2 × 2 matrix,  D can be  expressed as [50],  

 0 0 0 1 1 1( , ) ( , ) ( , )T Tt f t f t= +D x x V V x V V   (3.19) 

where the vectors 10,VV  and the scalars 10, ff are the eigenvectors and eigenvalues of 

the DT D, respectively. The vectors 0V  and 1V determine the smoothing directions 

during the diffusion process and are commonly chosen to be the eigenvectors of the 

structure tensor ( ) ( )T
G G I G Iρ σ σ= ∗∇ ∗ ∇ ∗S  [13, 49, 50, 52], pointing to the 

directions perpendicular and parallel to image isophotes. The eigenvalues f0, f1 in Eq. 

(3.19) determine the strengths of the local smoothing behaviour along the directions V0, 

V1 in a diffusion process. Therefore how to obtain the two values determines the 

performance of the diffusion Eq. (3.18). We find that when the edges are partly lost or 

contaminated by severe noise, high values of smoothing strengths 10, ff  will lead to 

oversmoothing of the blob and ridge features if the smoothing strengths are derived as 

decreasing functions of low amplitudes of gradient, as in previous studies [9, 12, 13, 46-

52]. The problems can be overcome if the more robust 2nd-order NLD based operator is 

used. The smoothing strengths should be also independent of feature directions so two 
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identical objects with different orientations can be smoothed equally. We here propose 

the eigenvalues 10, ff  as decreasing functions   

      ( ) 1/22 2 2 2
0 NL NL 1 , 0 NL2,
( ( )) ( , ) and ( ( , )) ( ( , ))NLf I c I t f I t f I tσσ

 ∇ = ∇ ∇ = ∇ x x x x   (3.20) 

of the isotropic 2nd-order NLD 2
NL 2,

( , )I t
σ

∇ x  Eq. (3.15), where the form of 

( )2
NL 2,

( , )c I t
σ

∇ x  is same as  Eq. (3.17). By constructing the diffusion tensor D with 

Eq. (3.19) and Eq. (3.20), our diffusion model Eq. (3.18) can thus perform various 

smoothing behaviours for different regions: In background regions the 2nd-order NLD is 

small and 
2 2
NL NL2, 2,

0 1
0 0

lim lim 1f f
σ σ

∇ → ∇ →
≈ =

I I
 , so smoothing behaviours in the direction 0θ  and 

1θ  are encouraged at an equal level (isotropic smoothing). In the vicinity of blobs and 

ridges, since 2
NL 2,

I
σ

∇ is large, 
2
NL 2,

0lim 0f
σ

∇ →+∞
=

I
 and 

2
NL 2,

1lim 0f
σ

∇ →+∞
=

I
 and smoothing 

behaviours in the two directions are discouraged. Furthermore, both the eigenvalues f0, 

f1 are smaller than 1 and the latter is the square root of the former, giving rise to

2
NL 2,

0

1

lim 0
f

f
σ

∇ →+∞
=

I
. As such, smoothing behaviours along the direction perpendicular to 

the intensity isophotes, regardless of whether isophotes are located around blobs or 

ridges, is discouraged at a higher order to better preserve the shapes of the features.  

Our method, Eq. (3.18), is different from several previous tensor-driven methods 

[13, 49, 50, 52], in which the smoothing strengths (the eigenvalues f0, f1 of the tensor D) 

are derived by the gradient, whereas in our method they are determined by a 2nd-order 

NLD. The latter allows better preservation of blob and ridge features, compared to other 

diffusion methods [13, 49, 50, 52], particularly under severe noise contamination. This 

will be demonstrated experimentally in the next section. Our method derives the 

smoothing directions in the same way as previous methods by using the eigenvectors of 

the structure tensor ( ) ( )T
G G I G Iρ σ σ= ∗∇ ∗ ∇ ∗S . This is due to the fact that the 

directions of objects, such as blobs and ridges, are reinforced by the structure tensor 

through the use of the direction coherence of these features [50], even when edges that 

bound them are partly lost or broken due to noise contamination [13].  

We further  discuss the similarity and difference between our diffusion model Eq. 

(3.18)-(3.20) and the anisotropic diffusion in the space of patches (ADSP) [51]. 

Although the ADSP, at a first look, is similar to our method, the two methods are 
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essentially different. While both methods involve the concept of image patches in the 

formulation of diffusion models, the smoothing strengths and directions in the two 

methods are determined respectively by different operators and structure tensors: in 

ADSP they are derived respectively by the trace ( )tr[ ]PS  and eigenvector of a new 

structure tensor ( ) ( ) ( )
T= ∇ ∇P P PS I I% %  constructed in a high-dimensional patch space [51],  

where  ( )PI%  denotes the projection of image I onto the patch space. The eigenvector 

( )Pu%  gives the orientation perpendicular to the isophotes of ( )PI% . The trace ( )tr[ ]PS  is 

the Euclidean norm of the gradient in the patch space so the smoothing strength is 

reduced at locations with high patch-gradients. Technically ADSP is a diffusion method 

based on gradient (edge) measurement and an edge-based (enhancing) diffusion in the 

patch space. Such method has shown better denoising performance compared to NLM 

filter [51]. Our method, on the contrary, computes smoothing strengths by the 2nd-order 

NLD which measures the difference between several neighbouring 1st-order patch 

differences. Since the 2nd-order NLD has a higher response to blob and ridge features 

than the 1st-order difference (gradient), particularly when edges bounding features are 

partly lost or contaminated under severe noise, the smoothing strengths f0 and f1 Eq. 

(3.20) by the 2nd-order NLD obtained in our method is expected to perform better in the 

diffusion process for blob and ridge feature preserving and noise removing.   

3.4 Experiments  

In this section I present visual and numerical results obtained by using our diffusion 

method, first for a 1-D signal and subsequently 2-D images. It is common to terminate 

the diffusion after a fixed number of diffusion iterations. However, such a mechanism is 

not flexible and it is difficult to produce satisfactory results. Here, I utilize the mean 

squared difference-norm (MSDN) criterion [108] to stop the diffusion automatically. 

The MSDN between two adjacent diffusion steps can be written as, 

 ( )2

1

1
MSDN( ( )) ( , ) ( , 1)

N

i i
i

t I t I t
N =

= − −∑I x x , (3.21) 

where N is the number of pixels and t denotes the iteration time. In the diffusion process, 

the MSDN value decreases exponentially with the number of iterations. The diffusion is 

terminated when the MSDN reaches to a certain small value. We set this value as 1% in 

all experiments of this section, implying that the diffusion process has sufficiently 

converged. Besides, in all tests the diffusion threshold h of Eq. (3.20) at each iteration 
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step during diffusion process is estimated by employing the median absolute deviation 

(MAD) [16, 47] 

 { }
2
NL 2,

2 2
NL NL2, 2,

1.4826MAD( ( , ) )

1.4826median ( , ) median( ( , ) )

h I x t

I x t I x t

σ

σ σ

= ∇

= ∇ − ∇
  (3.22) 

of the 2nd-order NLD. The mechanism of MAD operator has been discussed in detail in 

[47] and proven very effective in estimating the diffusion threshold [16, 47]. The 

parameter h varies adaptively and converges during the diffusion process, the value of 

which depends on the complexity of structures in the images.  

We compare our results with those of existing methods, including PM1 [9], Catté 

[12]1, coherence-enhancing diffusion method (CED1) [13], tensor-driven curvature-

preserving diffusion (TDCPD2) [52], anisotropic diffusion in the space of patches 

(ADSP1) [100], NLM filt 3  [53], structure adaptive filter (SAFIR) [16] and block 

matching and 3-D collaborative filtering (BM3D4) [58]. The last method is considered 

to be the best denoising algorithm at present [96, 97].  

 

                                                 
1 Using the code at http://visl.technion.ac.il/~gilboa/PDE-based_image_filtering.html 
2  Using the software provided by the author at http://gmic.sourceforge.net/gimp.shtml 
3 Using the code at http://www.mathworks.com/matlabcentral/fileexchange/13619 
4 Using the code provided by the author at http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D.zip 
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3.4.1  1-D Signals 

 

Fig. 3.6 Evolution of the 1-D noisy signal given in Fig. 3.4(a). (a) - (b) Results by FP-

ND in two different stages; (c) The final denoised signal after 472 iterations. The same 

approach with DC using LoG response is also plotted for comparison; (d) MSDN values 

and the diffusion threshold h of FP-ND versus the iteration number. 

 

We first test the FP-ND filter Eq. (3.16) on the 1-D noisy image Fig. 3.4(a). The 

patch size W is chosen as 21=W , same as the size of the largest blob. The initial value 

of the diffusion threshold h is set to be 20=h , same as the Std σn of the AWGN in the 

image, and is updated using the MAD operator Eq. (3.22) at each iteration. Fig. 3.6(a) - 

(c) illustrate the denoising results of the noisy image Fig. 3.4(a) at different stages 

during the diffusion process. As seen from Fig. 3.4(e), the DC is much higher in 

background regions far from three blobs than in the regions close to them. As such, FP-

ND smoothes more heavily on the former regions in the initial stage while leaves the 

regions in the vicinity of blobs essentially unchanged, as shown in Fig. 3.6(a). As the 

diffusion threshold h gradually increases during the evolution (Fig. 3.6(e)), the DC in 

the vicinity of blobs also gradually increases due to the characteristics of the 

exponential function in Eq. (3.17). The smoothing effect then “propagates” towards the 

blobs regions in the diffusion process as shown in Fig. 3.6(b). Background regions away 

from blobs continue to be smoothed during this period. As noise is gradually removed, 

the difference of the images between two adjacent iterations becomes increasingly 

smaller. The diffusion process stops when MSDN is reduced to 0.01. The final result is 
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plotted in Fig. 3.6(c), showing good preservation of the three blobs at different sizes 

compared to those in the noise-free image Fig. 3.4(a). The MSDN given in Fig. 3.6(d) is 

shown to decrease exponentially so the convergence of the diffusion filter can be 

guaranteed. The diffusion threshold h versus iteration number is also plotted in this 

figure, which increases monotonically during the diffusion process. For comparison, I 

also denoise the same noisy image in Fig. 3.4(a) by a nonlinear diffusion filter whose 

DC is calculated by the LoG response Eq. (3.9), the result of which is shown Fig. 3.6(c). 

As seen, the two smaller blobs are removed whereas the largest one is significantly 

distorted.   

 

3.4.2 2-D Images 

3.4.2.1 Denoising of a Synthetic Image Containing Blobs  

 

A

B

A

B

 

                 (a) Noise-free                                           (b) Noisy 
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A

B

 

             (c) My method                                               (d) PM 

A

B

 

                 (e) Catté,                                                    (f) CED 

 

                 (g) TDCPD                                              (h) ADSP 
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A

B

A

B

 

                  (i) NLM                                                   (j) SAFIR 

(k) BM3D  

Fig. 3.7 Denoising results of a synthetic live-cell image. (a) Noise-free image. (b)  

Simulated noisy image with AWGN (Std σn= 20). (c) - (k) Denoised results by FP-NAD, 

PM, Catté, CED, TDCPD, ADSP, NLM filter, SAFIR and BM3D, respectively. Two 

boxes in each image are marked by A and B for detailed comparisons. 

 

Table 3.1 

 PSNR and MSSIM results on the noise-free live-cell image Fig. 3.7(a) corrupted with 

AWGN of Std σn = 20 (Fig. 3.7(b)), 30 and 40, by our method, PM, Catté, CED, 

TDCPD, ADSP, NLM filter, SAFIR and BM3D, the visual results of which for σn = 20 

have been shown in Fig. 3.7(c) – (k), respectively.  
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σn 
PSNR value(dB)/MSSIM value 

Noisy  Our  PM Catté CED TDCPD ADSP NLM  SAFIR BM3D 

20 22.1/0.186 39.2/ 0.973 36.2/0.938 36.6/0.923 28.9/0.637 36.4/0.941 36.7/0.953 34.4/0.838 36.7/0.956 37.4/0.955 

30 18.8/0.101 36.6/0.957 34.2/0.916 34.9/0.905 27.0/0.516 34.4/0.922 34.3/0.936 31.4/0.718 34.6/0.936 35.0/0.935 

40 16.5/0.065 35.9/0.950 32.3/0.887 33.7/0.870 24.2/0.458 33.2/0.898 33.5/0.913 29.9/0.634 33.4/0.919 33.8/0.920 

 

We first undertake experiments with an 8-bit 2-D image that simulates moving 

particles in live cells recorded by a microscope. The image is constructed by using a 

linear model [56] that comprises blobs, uneven background and AWGN with a Std σn= 

20. The noise-free and noisy images are shown in Fig. 3.7(a) and (b). As seen, the blobs 

are circular or ellipse regions with varying directions and intensities, the size of which 

can be estimated by two orthogonal axes of a blob, the shortest one is 5 pixels whilst the 

longest is 31 pixels. 

We apply the feature-preserving nonlinear anisotropic diffusion (FP-NAD) filter Eq. 

(3.18) to the noisy image Fig. 3.7(b). The patch size for calculating 2nd-order NLD by 

Eq. (3.15) is set to be 15 × 15 pixels, between the shortest and longest axes of the blobs 

in the image. The parameter h is chosen initially to be 20=h , equal to the Std σn of the 

noise, and is updated using the MAD operator at successive iterations. The diffusion 

process stops when the MSDN Eq. (3.21) is less than 0.01. The denoised result by the 

FP-NAD is shown in Fig. 3.7(c). As seen, all particles are correctly preserved by 

comparing to the noise-free image Fig. 3.7(a), including those which are very weak in 

region A and much smaller than the patch size in region B. 

The denoised results of the same noisy image by PM, Catté, CED, TDCPD, ADSP, 

NLM filter, SAFIR and BM3D, are shown in Fig. 3.7(d)-(k). For PM and Catté, the 

time interval is set to be 0.2=∆t  and the processes stop when the MSDN Eq. (3.21) is 

less than 0.01. For NLM filter, the patch window and searching window are set to be 7 

× 7 and 21 × 21 pixels, both of which follow the suggested values in [53]. The filtering 

parameter h of the NLM filter determines the weight of NLM filter, the value of which, 

according to ref [53], is chosen within the operation window of nh σα ⋅=  with 

]1,75.0[∈α  for a high visual quality solution. Here I choose a middle value nh σ8.0= . 

In SAFIR, the patch window is set to be 9 × 9, the maximum number of increments for 

the nested window size is 4, the critical parameters 5.11301.0 =λ  and 3=ρ . The 

reasons for choosing these parameter values are explained in an original paper [16]. The 
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parameters for BM3D used in all tests follow ‘Normal Profile’ in Table I in reference 

[58]. Note that since the parameters were not given explicitly in CED [13], TDCPD [52] 

and ADSP [100], I have varied the parameters used in these three methods exhaustively 

to obtain the best possible results with respect to PSNR. 

By a visual comparison, Catté, TDCPD, NLM filter, SAFIR and BM3D result in 

over-smoothing of blobs when the image is strongly corrupted by noise, especially for 

the barely visible features  in region A in the image and the small-size features in region 

B. CED distorts the blobs by elongating the shapes and produces several line-like 

artifacts in background regions because the method is designed especially for denoising 

images with repetitive flow-like patterns [13]. ADSP preserves blob features better than 

the above six methods because the smoothing strength is determined by using patch 

difference Oversmoothing of blobs, however, can be still observed visually in region A 

of Fig. 3.7(h) for ADSP. This is because the algorithm derives the smoothing strength 

by using the first-order nonlocal differences, namely gradients in a space of patches [51], 

which still cannot effectively detect the edges of low contrast blobs in region A of the 

noisy image Fig. 3.7(b). Our FP-NAD overcomes this problem since the 2nd-order NLD 

characterize the blobs better than the first-order and thus has a high response to blob 

features under noise contamination. The strong feature preserving ability of our method 

can further be attributed to the unimodal shape of 2nd-order NLD and anisotropic 

diffusion along the orientation of the features. Moreover, our method performs isotropic 

diffusion in background regions so can reduce noise more effectively than the NLM 

filter and induce little artifacts, compared to PM and BM3D. We have quantified the 

image fidelity by calculating peak signal-to-noise ratio (PSNR) [56] and mean structure 

similarity index (MSSIM) [108] between original and denoised images. Higher PSNR 

and MSSIM imply better image restoration and structure preservation, respectively. We 

report in Table 3.1 the PSNR and MSSIM values of denoised results shown in Fig. 3.7 

by our method, PM, Catté, CED, TDCPD, ADSP, NLM filter, SAFIR and BM3D. 

Table 3.1 also summarizes the PSNR and MSSIM for the denoised images by the above 

methods on Fig. 3.7(a) with AWGN of Std 30=nσ  and 40. As seen, our method, for 

different levels of Gaussian noise, achieves the highest PSNR and MSSIM value among 

the nine algorithms.  

 

3.4.2.2 Denoising of a Fingerprint Image Containing Ridges 
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   (a) Original                     (b) Our method                      (c) PM    

                                  
    (d) CED                        (e) TDCPD                      (f) ADSP     

                                  
(g) NLM                        (h) SAFIR                       (i) BM3D     

Fig. 3.8 Denoising of a fingerprint image and comparisons. (a) Original fingerprint 

image; (b) - (i) Denoised results by FP-NAD, PM, CED, TDCPD, ADSP, NLM filter, 

SAFIR and BM3D, respectively. In each image, region A and B are marked by two 

boxes. 

 

This experiment is to illustrate that the FP-NAD filter can further be used to 

improve the quality of fingerprints containing ridge features. Fig. 3.8(a) shows an 8-bit 

fingerprint image from FVC 2004  in which ridges (dark lines) and valleys (bright lines) 

are main features. The image is corrupted by noise, breaks and smudges. An example of 

the latter is a short and light dark line between two ridges as shown in region B of Fig. 

3.8(a). These adverse effects can seriously degrade the performance of a fingerprint 

recognition device. We show in Fig. 3.8(b) the result of the fingerprint image processed 

by the FP-NAD filter. The patch size for calculating 2nd-order NLD is 15 × 15 pixels, 

same as one used in the last test. As seen, Fig. 3.8(b) restores very well the ridges 

corrupted by smudges and breaks. We compare this result with those shown in Fig. 

3.8(c)-(i) by PM, CED, TDCPD, ADSP, NLM filter, SAFIR and BM3D, respectively. 

Parameters used in the seven methods are all the same as those in the last test. As seen, 

while all the methods produce comparable noise-reduction, except for PM which creates 

speckle-like artifacts, their abilities for feature preservation vary. This can be best 

shown using the denoised images in the two regions marked by the boxes in Fig. 3.8. 
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From the original image Fig. 3.8(a), the breaks of ridges (region A) and smudges 

between parallel ridges (region B) result in the lost of edge information. As a result, PM 

and ADSP enlarges the breaks and smudges since their smoothing strengths are 

determined by the first-order differences in different spaces [9, 51], both of which 

cannot detect the lost edges due to breaks. TDCPD preserve ridges better than PM due 

to smoothing along the direction of ridges, but still over-smooth the features in region A 

since the smoothing strength is also determined by the first-order difference. The breaks 

and smudges also lead to lower contrast between ridges and valleys under noise 

contamination. NLM filter, SAFIR and BM3D hence blur the ridges in this region. The 

2nd-order NLD, even when the edges of ridges are blurred or partly lost to a certain 

extent, can still detect them properly and therefore provides high responses in region A 

and B. Compared to other methods, the FP-NAD filter displays the best contrast 

enhancement and preservation of ridges with different widths both in region A and B. 

CED performs comparably with our method with respect to ridge preserving since it 

derives the smoothing strength by the coherence of structures in the image and the CED 

is therefore suited to fingerprints with repeating lines [13]. But the method gives rise to 

lower image contrasts than our method by comparison. 

 

3.4.2.3  Denoising of a Natural Image Containing Blobs and Ridges 
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       (a) Noise-free     (b) σ = 20        (c) σ = 30       (d) σ = 40       (e) σ = 70            

                 

   (f) σ = 120     (g) Our method      (h) PM         (i) Catté         (j) CED           

                 

   (k) TDCPD      (l) ADSP        (m) NLM       (n) SAFIR       (o) BM3D           

 

Fig. 3.9 Test on a fragment of a natural image, Parrots. (a) Noise-free image; (b) – (f) 

Images corrupted by additive white Gaussian noise with Std σ = 20, 30, 40, 70 and 120, 

respectively; (g) - (o) Denoised images of (f) by our method, PM, Catté, CED, TDCPD, 

ADSP, NLM filter, SAFIR and BM3D on image (f), respectively.  

 

 

Table 3.2  

PSNR and MSSIM results on the noise-free Parrot image Fig. 7(a) corrupted with 

AWGN of Std σn = 20, 30, 40, 70 and 120 (Fig. 7(b) – (f)) by our method, PM, Catté, 

CED, TDCPD, ADSP, NLM filter, SAFIR and BM3D, the visual results of which 

for σn = 120 have been shown in Fig. 7(g) – (o), respectively.  

σn 
PSNR value (dB)/MSSIM value 

Noisy  Our  PM Catté CED TDCPD ADSP NLM  SAFIR BM3D 

20 22.6/0.835 26.6/ 0.973 24.3/0.880 24.7/0.861 24.7/0.835 24.6/0.881 24.8/0.884 23.5/0.856 26.3/0.872 26.5/0.907 

30 19.3/0.729 24.2/0.957 22.3/0.813 22.4/0.784 22.6/0.827 23.14/0.831 22.7/0.841 20.4/0.762 23.5/0.801 24.0/0.852 

40 17.3/0.655 22.1/0.850 19.2/0.746 19.4/0.716 19.8/0.767 19.9/0.785 20.4/0.790 18.6/0.693 21.8/0.733 21.9/0.808 

70 12.9 /0.479 17.1/0.791 15.3/0.420 15.4/0.409 15.8 /0.563 15.8 /0.600 16.0 /0.612 14.6/0.367 15.5/0.415 16.0/0.537 

120 8.4 /0.223 15.9/0.622 13.4/0.378 13.6/0.330 14.3 /0.507 14.8/0.497 14.8 /0.518 12.9/0.202 14.7/0.361 14.9/0.484 
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Finally, I test FP-NAD on a natural image that contains both blobs and ridges and 

are corrupted by AWGN of different noise levels. Fig. 3.9(a) shows a fragment of the 

noise-free benchmark image Parrots [101], in which the eye is of blob feature and the 

eye socket and stripes are ridges with different widths and orientations. The image is 

then corrupted by AWGN with Std ,120and,70,40,30,20=nσ  as shown in Fig. 3.9 

(b)–(f). Table 3.2 lists the PSNR and MSSIM values obtained on the denoised results of 

these images for different noise levels by our method, PM, Catté, CED, TDCPD, ADSP, 

NLM filter, SAFIR and BM3D NLM filter, SAFIR and BM3D. The parameters used 

are the same as those in the last test. As seen in Table 3.2, for lower noise levels (σn = 

20, 30 and 40), our method performs slightly better BM3D, the latter of which has 

higher PSNR and MSSIM values compared to the other methods. However, for higher 

noise levels (σn = 70 and 120), our method gives a noticeably better result, at least by 

1dB in terms of PSNR and 0.1 in terms of MSSIM, compared to BM3D and ADSP, 

which for these two noise levels have highest PSNR and MSSIM values among all 

methods except ours, respectively. To visualize such improvement, I illustrate in Fig. 

3.9 (g)–(o) the denoised images for the highest noise level ( 120=nσ ). As seen, due to 

the severity of noise, edges in the image Fig. 3.9(f) are heavily broken, particularly in 

the eye region. It is therefore not surprising that PM (Fig. 3.9(h)) and Catté (Fig. 3.9(i)) 

are ineffective in restoring these features. PM also generates artifacts in flat regions. 

CED (Fig. 3.9(j)) and TDCPD (Fig. 3.9(k)) preserve stripes better than PM and Catté 

but noticably distort the eye, eye sockets and stripes of parrot, and produce visually 

unpleasant artifacts in homogeneous regions of the parrot’s face. ADSP (Fig. 3.9(l)) 

preserves the eye and stripes better and introduce fewer artifacts, compared to CED and 

TDCPD. However, ADSP tends to spread the eye to the eye socket and break up ridges 

on the parrot face since it determines the smoothing strengths by the gradients, which, 

despite in a space of patches, can be also very low if the edges are heavily broken. The 

NLM filter (Fig. 3.9(m)) is the only non-iterative denoising method used here for 

comparison and does not seem to remove noise effectively. SAFIR (Fig. 3.9(n)), which 

can be seen as an iterative NLM filter with adaptive searching windows, over-smoothes 

the whole image due to severe noise contamination. Visually, BM3D (Fig. 3.9(o)) are 

shown to restore the noisy image better without heavily distorting the features in the 

image, compared to PM, Catté, CED, ADSP and TDCPD, SAFIR and NLM filter. But 

it is still outperformed by the FP-NAD, as the eye, eye socket and face stripes are partly 

over-smoothed in comparison to the result by FP-NAD. The main reason behind the 

good performance of FP-NAD is again due to the good response of the 2nd-order NLD 
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to the features. Moreover, nonlinear anisotropic diffusion employed in our filter has the 

ability to effectively reconstruct the shapes of the features while remove noise.  

 

3.5 Conclusion and Discussion 

 

We have presented a new operator for blob and ridge feature detection and 

incorporated it into a diffusion model for improving denoising performance on images 

containing these features. We have further tested the new algorithm on synthetic live-

cell images, fingerprint images and natural images and demonstrated good performance 

in preserving blobs and ridges, reducing background noise and minimizing artifacts.  

For simplicity, I used the 2nd-order NLD operator with a single patch size (scale) to 

detect features with different sizes. While such a single scale 2nd-order NLD can detect 

blobs and ridges of different sizes around this scale, the blob size range that can be 

detected is limited. An improvement to our current method is to employ a multiscale 

feature detector that comprises several 2nd-order NLD operators with different patch 

sizes, in a way similar to Harr-like feature detector [113]. The number of the operators 

required is determined by the size range of the features under investigation. Since a 

single scale 2nd-order NLD operator can cover a fair wide blob size range as discussed 

earlier in this work, the number of 2nd-order NLD operators required in many 

applications should be small. For example, to cover a size range between [ ]200,10  (in 

the unit of pixels), I need two 2nd-order NLD operators with patch size 21 21×  and  

42 42× . The implementation of the multiscale 2nd-order NLD operator is 

straightforward from the current model.  

We note finally that the diffusion directions used in our method are the smoothed 

feature directions [51] determined by the eigenvectors of the popular traditional 

structure tensors [13, 49, 51, 100], which has shown to work well in most circumstances. 

It may not  be sufficiently accurate for features whose directions change rapidly in space. 

A further improvement to our method can be made by developing the nonlocal 

difference concept for more robust estimation of the smoothing directions. ADSP [51] is 

such a method which determines the diffusion directions based on patch gradient in a 

high dimensional space and has shown improved PSNR compared to the NLM filter 

[53].  Combining ADSP with our operator is expected to further improve diffusion 

performance of our present method.  
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Chapter 4 

A Generalized Feature-preserving Nonlinear Anisotropic Diffusion 

Method for Denoising Natural Images 

 

 

 

 

Abstract: In the previous chapter, II have proposed a new diffusion method and shown 

its promising performance over other popular methods for denoising images containing 

blobs and ridge such as live-cell and fingerprint images in the biology and biometric 

applications. However, images captured in general environments may contain not only 

blob and ridge features, but also other types of features of interests, particularly in 

natural scenes. To denoise these natural images, in this chapter II extend our FP-NAD 

and propose a generalized feature-preserving nonlinear anisotropic diffusion for noise 

reduction and multiple feature preservation by combining first- and second-order 

differences for a nonlinear anisotropic diffusion model. Numerical experiments show 

that the new diffusion filter outperforms many popular filters for denoising natural 

images containing edges, blobs and ridges and textures made of these features. 

4.1 Introduction 

Since the edge is a fundamental feature that underlies more complicated features in 

the image, most of the existing diffusion methods [9, 46, 47, 114] incorporated the edge 

information in the diffusion process to reject diffusion at edges and permit smoothing in 

other places. Hence if edges cannot be distinguished due to severe noise, these methods 

may not be able to preserve features that are bounded by the edges. To overcome this 

problem, in the previous chapter I have proposed a new FP-NAD and demonstrated its 

promising performance over edge-preserving and other popular methods for denoising 

images containing blobs and ridge such as live-cell and fingerprint images in the 

biology and biometric applications.  
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Images in many other applications [115, 116] may contain not only blob and ridge, 

but also other features. For example, an image captured in the natural environment [117] 

usually consists of textures and complex patterns that are made of a combination of 

edges and blobs and ridges. Since the 2nd-order NLD is mathematically most correlated 

to blob and ridge feature, it can provide a good response only to these two features. To 

preserve simultaneously multiple features in the natural images, in this chapter I 

propose a new feature-preserving denoising method by combining the 1st- and 2nd-order 

NLD to form a new feature detector in a nonlinear diffusion model. By combining the 

1st- and 2nd-order NLD, our new feature detector measures image intensity contrasts 

between neighbouring patches in a more sophisticated manner and can effectively 

capture fundamental features such as edges as well as blobs and ridges. We incorporate 

the new feature detector into a nonlinear diffusion model to form a generalized feature-

preserving nonlinear anisotropic diffusion filter (GFP-NAD) for denoising the natural 

images. Experimental results demonstrate that the GFP-NAD can remove noise and 

preserve simultaneously multiple features in the natural images, compared to the FP-

NAD. Experimental results also demonstrate that the GFP-NAD method can achieve a 

higher peak-signal-to-noise ratio (PSNR) [16] and higher mean similarity index 

(MSSIM) [108] than several commonly used algorithms when applied to natural images 

containing a range of features and textures. 

 

4.2 A Combined Nonlocal Difference 

We first define the combined nonlocal difference in a one-dimensional (1-D) signal. 

Extension to the two-dimensional (2-D) case is straightforward and will be discussed 

later. Let 1 1:I Ω ⊂ →R R  be a 1-D scalar signal defined on the discrete domain Ω and 

ix  Ω∈  is the pixel position, xi = x1, x2,… xN. As discussed in the previous chapter, the 

edge feature is mathematically most correlated to the 1st-order difference whilst the 

blob and ridge features are most correlated to the 2nd-order one. Using either 1st- or 2nd-

order difference may therefore not be able to provide good responses to both edge and 

blob/ridge features. To simultaneously detect both the edge and blob features, I define a 

combined nonlocal difference (CNLD) C
NL 2,

( )iI x
σ

∇  in the form of  

 C 2
NL 1 NL 2 NL2, 2, 2,

( ) ( ) ( ) ( ) ( )i i i i iI x w x I x w x I x
σ σ σ

∇ = ⋅ ∇ + ⋅ ∇ , (4.1) 
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where the 1st-order NLD, NL 2,
( )iI x

σ
∇ , and 2nd-order NLD, 2

NL 2,
( )iI x

σ
∇ , are given by 

Eq. (3.3) and (3.6), respectively. The Std σ of the Gaussian function used in Eq. (4.1) 

are same for the 1st- and 2nd-order NLD since the same patch size is applied for both 

NLDs, although the 2nd-order requires more patches than the 1st-order for differentiation. 

The weights w1(xi) and w2(xi) should be appropriately chosen for balancing the 

contributions of 1st-order NLD and 2nd-order NLD to the CNLD. We define w1(xi) and 

w1(xi) as functions of the 1st- and 2nd-order NLD in the form, 

 
2

NL NL2, 2,
1 22 2

NL NL NL NL2, 2, 2, 2,

( ) ( )
( ) , ( )

( ) ( ) ( ) ( )

i i

i i

i i i i

I x I x
w x w x

I x I x I x I x
σ σ

σ σ σ σ

∇ ∇
= =

∇ + ∇ ∇ + ∇
. (4.2) 

In the vicinity of an edge, NL 2,
( )iI x

σ
∇ > 2

NL 2,
( )iI x

σ
∇  , so w1(xi) > w2(xi) and the 1st-

order NLD contributes more to the DC; in the vicinity of a blob, NL 2,
( )iI x

σ
∇ < 

2
NL 2,

( )iI x
σ

∇ , therefore w1(xi) < w2(xi)  and the 2nd-order NLD contributes more. As 

such, the CNLDs for the edge and blob features are dominated respectively by the 1st- 

and 2nd-order NLD. Since the 1st- and 2nd-order NLDs are mostly correlated respectively 

to the edge and blob features, the CNLD Eq. (4.1) can give rise to high responses to 

both features.  
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Fig. 4.1. (a) A noise-free and the noisy image corrupted by Gaussian noise; (b) The 1st- 

and 2nd-order NLDs and the CNLD. The 1st- and 2nd-order can give high responses to 

only one type of features whilst low responses to the other type. The CNLD gives high 

responses to the both edge and blob features. 

 

In general, responses of the 1st-, 2nd-order NLD and CNLD to edges and blobs are 

complex, but the expressions can be simplified in a special case where the patch size 

equals the blob size, i.e., W = s. We use this case as an example to explain the 
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performance of the CNLD for detecting both edge and blob features. Fig. 4.1(a) shows a 

1-D 8-bit image containing a step edge and a blob of size s = 21 pixels without and with 

additive white Gaussian noise (AWGN) of a Std σn = 40. Intensities of the blob and 

edge are set to be 160, against the background of 120. We apply Eq. (3.3), (3.4), and 

(4.1) on the noisy image and plot the responses in Fig. 4.1(b), where the Std of the 

Gaussian function is set as σ→+∞ so the patch window is a box one for simplicity. As 

seen from this figure, the responses of all NLDs to the edge contain only one obvious 

peak and nearly symmetric. For the step edge the peak values of the 1st-order NLD is 

entirely higher than that of the 2nd-order NLD, whereas for the blob the peak values of 

the 2nd-order NLD is higher than that of the 1st-order NLD. This is because 2nd-order 

NLD measures the difference of two neighbouring 1st-order NLDs. When one of 1st-

order NLDs fails to detect one edge of the blob due to noise contamination, the 2nd-

order NLD can still give a reasonable response if the other edge of the blob can be 

detected. The CNLD provides higher responses to both the edge and blob features, 

compared respectively to the 1st- and 2nd-order NLDs. This can be attributed to the 

weights w1(xi) and w2(xi) given in Eq.(4.2), which  adaptively adjust the balance 

between the correlations of 1st- and 2nd-order NLD to multiple features base on the 

NLDs themselves that further enhance the correlations. Both edge and blob features can 

therefore be better identified by the new combination of the two NLDs than by the 1st- 

or 2nd-order NLD individually. Finally I note that in the general cases of W ≠ s, the 

essential characteristics of CNLD as well as the 1st- and 2nd-order NLD for edge and 

blob detection remains unchanged. 

   

4.3 Generalized Feature-Preserving Nonlinear Diffusion 

Based on the CNLD Eq. (4.1) as a new feature detector, I form a novel feature-

preserving nonlinear diffusion model, 

 ( )2
NL NL2, 2,

( , )
div ( , ) , ( , ) ( , )

I x t
c I x t I x t I x t

t σ σ

∂  = ∇ ∇ ⋅∇  ∂
,  (4.3) 

where the diffusion coefficient (DC) ( )2
NL NL2, 2,

( , ) , ( , )c I x t I x tσ σ
∇ ∇ is given as a 

decreasing function of the CNLD C
NL 2,

( , )I x t
σ

∇ in the form of  
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 ( ) ( ) 2
C
NL 2,2

NL NL 22, 2,

( , )
( , ) , ( , ) exp

I x t
c I x t I x t

h
σ

σ σ

 ∇ ∇ ∇ = − 
 
 

, (4.4) 

the CNLD C
NL 2,

( , )I x t
σ

∇  is given by Eq. (4.1), I(t = 0) = J is the initial noisy image, ∇ 

is the gradient operator and div is the divergence operator. Since the CNLDs are high 

for the edge and blob features, the DCs are small in the vicinity of both features and 

high in the backgrounds. As such, the diffusion (smoothing) process will be discouraged 

considerably in feature regions and encouraged in background regions, leading to a 

generalized feature-preserving nonlinear diffusion (GFP-ND) method that preserves 

multiple features and removes noise in the background during the diffusion process. 

Compared to the GFP-ND Eq. (4.3), the FP-ND Eq. (3.16) proposed in the previous 

chapter can be seen as a special case of the GFP-ND when the weight 1( , ) 0w x t ≡ and

2( , ) 1w x t ≡ for any pixel x and time step t. 

The threshold h serves as a parameter that determines whether a feature should be 

preserved in the diffusion process. A large h may oversmooth features whereas a small 

h can produce artefacts and unsatisfactory noise suppression. The choice of h should 

also reflect noise levels. Based on this rule, several researchers have proposed various 

strategies for the assignment of the h values, of which the MAD operator has been 

proved being the most effective one [16, 47]. In this thesis we employ the median 

absolute deviation (MAD) of CNLD C
NL 2,

( , )I x t
σ

∇
 
for a robust estimation of the 

diffusion threshold h [16, 47].  

A simple way to terminate the diffusion process is by fixing the number of 

iterations. In this work I utilize the MSDN criterion given in Eq. (3.21) to stop the 

diffusion adaptively. The diffusion process stops only when the MSDN reaches to a pre-

specified small value. 

4.4 Experiments 

In this section I present visual and numerical results obtained by using our diffusion 

method, first for a 1-D image and subsequently 2-D images. In the latter case I 

incorporate the orientation of the features into Eq. (4.3), leading to a GFP-nonlinear 

anisotropic diffusion (GFP-NAD) model. We test the GFP-NAD on 2-D natural images 

and compare the results with existing popular denoising methods, including PM 

anisotropic diffusion method [9], structure adaptive filter (SAFIR) [16] and block 
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matching and 3-D collaborative filtering (BM3D) [58]. The last method is considered to 

be the best denoising algorithm at present [18, 96, 118]. We have not included bilateral 

filter [11], which can be seen as a special case of SAFIR [16] when both the patch width 

and iteration number equal to 1, because reports [16, 119] have already shown that it 

underperforms SAFIR for denoising natural images. 

 

4.4.1 1-D Signals 

 

Fig. 4.2. Tests on the noisy image shown in Fig. 4.1(a). (a) Denoising result by an edge-

preserving diffusion, which is a special case of the GFP-ND when 1( , ) 1iw x t ≡  and 

2( , ) 0iw x t ≡ for any xi and t; (b) Denoising result by a blob-preserving diffusion, which 

is also a special case of the GFP-ND when 1( , ) 0iw x t ≡  and 2( , ) 1iw x t ≡ for any xi and 

t; (c) Results in two different stages of the diffusion process by GFP-ND, where 

1( , )iw x t  and 2( , )iw x t  are calculated by Eq. (4.3); (d) The final denoised result by the 

GFP-ND.  

We first test the GFP-ND filter Eq. (4.3) on the 1-D noisy image shown in Fig. 4.1(a) 

that has been used in Section 4.2. The patch size W is chosen as W = 21. The initial 

value of the diffusion threshold h is set to be h = 40, same as the Std σn of the AWGN in 

the image, and is updated using the MAD operator at each iteration. We first consider a 

special case of 1( , ) 1iw x t ≡  and 2( , ) 0iw x t ≡ , for which the GFP-ND Eq. (4.3) is 

reduced to a conventional edge-preserving diffusion. Fig. 4.2(a) shows the results by 

this special case of the GFP-ND in which the step edge is preserved but the blob is 
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smoothed out. On the contrary, if I set 1( , ) 0iw x t ≡  and 2( , ) 1iw x t ≡ , the GFP-ND Eq. 

(4.3) is reduced to the FP-ND model Eq. (3.16). Fig. 4.2(b) shows results by this 

method in which the blob is preserved but the step edge is filtered. 

We now apply the GFP-ND to the noisy image and show the denoising results in 

three different stages during the diffusion process in Fig. 4.2(c) and (d). When w1 and 

w2 follow Eq. (4.2), the 1st-order and 2nd-order NLD play a dominating role respectively 

around edges and blobs in determining the DCs. As a result, for the initial noise image, 

the DCs are low in the vicinity of both features and high in backgrounds. As such, the 

GFP-ND smoothes more heavily on the former regions in the initial stage while leaves 

the regions in the vicinity of the edge and blob features essentially unchanged, as shown 

by the black curve in Fig. 4.2(c). As the image evolves during the diffusion process, the 

smoothing effect “propagates” towards the feature regions. Background regions away 

from the features continue to be smoothed during this period. The contrasts of the 

features thus become increasingly higher, giving rise to higher responses of the 1st-order 

and 2nd-order NLD around the edge and blob, respectively. Higher responses of 1st- and 

2nd-order NLD imply higher w1 and w2 respectively, so the system performs in a 

positive feedback manner, leading to more effective noise reduction and feature 

preservation in the second stage, as shown in Fig. 4.2(c) (orange curve). As noise is 

gradually removed, the difference of the images between two adjacent iterations 

becomes increasingly smaller. The diffusion process stops when the MSDN is reduced 

to 0.01, indicating that the diffusion process has converged. As seen from Fig. 4.2(d), 

the final result shows good preservation of features and reduction of noise compared to 

the noise-free image in Fig. 4.1(a). 

4.4.2 2-D Images 

     Edges and ridges can be directional features in 2-D images. To better preserve the 

geometric properties of these features, the orientations of features should be taken into 

account when I apply the GFP-ND filter to 2-D images. We therefore propose a 

spatially anisotropic nonlinear diffusion method, whereby smoothing behaviour is 

performed in directions parallel rather than perpendicular to the isophotes of images 

[52]. In this case, the scalar DC c in Eq. (4.3) should be replaced by a diffusion tensor 

(DT) D, a symmetric and definite-positive matrix [50] and the diffusion model is 

formulated as 

 [ ]( , )
div ( , )i

i

I t
I t

t

∂ = ∇
∂
x

D x , (4.5) 
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where 2[ , ]T
i i ix y= ∈x R  is a pixel and 2( , ) ( , ), ( , )

T

i x i y iI t I t I t ∇ = ∇ ∇ ∈ x x x R  is a 

vector whose elements are gradients at the pixel x along x-axis and y-axis. The DT D is 

expressed as [50],   

 0 0 0 1 1 1( , ) ( , ) ( , )T T
i i it t tλ λ= +D x x V V x V V , (4.6) 

where the vectors 10,VV  and the scalars 0 1,λ λ are the eigenvectors and eigenvalues of 

the DT D, respectively. The vectors 0V  and 1V are chosen to be the eigenvectors of the 

structure tensor ( ) ( )T
G G I G Iρ σ σ= ∗∇ ∗ ∇ ∗S  [13, 49, 50, 52], in a same manner as 

that in Section 3.2.3 in the previous chapter, implying that the smoothing vector I∇D  is 

decomposed onto one orthonormal basis with directions across and along the principal 

direction of features, respectively. The eigenvalues 0( , )i tλ x  and 1( , )i tλ x of D in Eq. 

(4.6) determine the strengths of the local smoothing behavior along the directions V0, V1 

in a diffusion process. They are given as,   

 ( )2
0 NL NL 1 02, 2,
( , ) ( , ) , ( , ) and ( , ) ( , )i i i i it c I t I t t tσ σ

λ λ λ= ∇ ∇ =x x x x x ,  (4.7) 

where the form of the dreasing function ( )2
NL NL2, 2,

( , ) , ( , )i ic I t I tσ σ
∇ ∇x x  is the same 

as the DC in Eq. (4.4) except that the 1st- and 2nd-order NLD is now in the 2-D isotropic 

form of  

 

2 2

NL , , , ,2, 2, 2,

2
NL , , , , ,2, 2,

( , )

( , ) 4 4

i i i W i i i i i W

i i i W i i W i i i W i i W

i x y x y x y x y

i x y x y x y x y x y

I t

I t

σ σ σ

σ σ

− −

− + − +

∇ = − + −

∇ = − − − −

x P P P P

x P P P P P
.  (4.8) 

The reason for designing the smoothing strength, Eq. (4.8), at different orientations 

follows the explanation for the FP-NAD, Eq. (3.18), in Section 3.3: In background 

regions Eq. (4.5) performs an isotropic smoothing due to the CNLD C
NL 2,

I
σ

∇ is small 

and 
C C
NL NL2, 2,

0 1
0 0

lim lim 1
I I

σ σ

λ λ
∇ → ∇ →

≈ = . In the vicinity of features both the smoothing 

behaviours in the two directions are discouraged since C
NL 2,

I
σ

∇ is large. Smoothing 

behaviours along the direction perpendicular to the intensity isophotes is however 

discouraged at a higher order to better preserve the shapes of the features since 

C
NL 2,

0

1

lim 0
I

σ

λ
λ∇ →+∞

= . Eq. (4.5) therefore performs a nonlinear spatially anisotropic 

smoothing during the diffusion process.   
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4.4.2.1 Denosing of a Natural Image Containing Multiple Features 

          

            (a) Noise-free image                                           (b) Noisy image 

  

                      (c) GFP-NAD                                                           (d) PM 

    

                           (e) SAFIR                                                  (f) BM3D 
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(g) FP-NAD  

Fig. 4.3. A noise-free Barbara image; (b) The noisy image with AWGN of a Std σn= 25; 

(c) –(g) Denoised results by GFP-NAD, PM,SAFIR, BM3D and FP-NAD, respectively 

 

We first undertake experiments on a classical image: Barbara (512x512). Fig. 4.3(a) 

and (b) shows respectively the noisy-free and noisy image with AWGN of a Std σn = 25. 

As seen, the image contains various features, including many edges, checkerboard-like 

and striped textures on the tablecloth and striped textures on the clothes. 

We apply the generalized feature-preserving nonlinear anisotropic diffusion (GFP-

NAD) filter Eq. (4.5) to the noisy image Fig. 4.3(b). The patch size for calculating 1st- 

and 2nd-order NLD by Eq. (4.8) is set to be 13 × 13 pixels, which is between the 

smallest and largest widths (7 to 17 pixels) of the ridges in the image. The parameter h 

is chosen initially to be h = 25, equal to the Std σn of the noise, and is updated using the 

MAD operator at successive iterations. The diffusion process stops when the MAE is 

less than 0.01. The denoised result by our GFP-NAD is shown in Fig. 4.3(c). As seen, 

all features in the image are correctly preserved by comparing to the noise-free image 

Fig. 4.3(a), including eyes of Barbara, weak striped textures on the clothes of Barbara 

and checkerboard-like textures on the tablecloth. 
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  Noise-free     Noisy      GFP-NAD    SAFIR      BM3D      FP-NAD 

 

     (a)         (b)         (c)          (d)          (e)          (f) 

 

     (g)         (h)         (i)          (j)          (k)          (l) 

 

     (m)         (n)         (o)          (p)          (q)          (r) 
 

Fig. 4.4. Detail comparisons of the image Barbara in Fig. 4.3(a) among different 

denoising methods for. (a) –(f) Zoom-in images of the boxed region A for noise-free Fig. 

4.3(a) and noisy image Fig. 4.3(b), and results by our method, SAFIR, BM3D and FP-

NAD, respectively. (g) –(l) Zoom-in images of the boxed region B for the same noise-

free and noisy image, and results by our method, SAFIR, BM3D and FP-NAD, 

respectively. (m) –(r) Zoom-in images of the boxed region B for the same noise-free and 

noisy image, and results by our method, SAFIR, BM3D and FP-NAD, respectively 
 

The denoised results of the same image by PM, SAFIR and BM3D, are shown in Fig. 

4.3(d)-(f). For PM, the time interval is set to be 0.2t∆ =  and the processes stop when 

the MSDN is less than 0.01. In SAFIR, the patch window and the maximum number of 

increments for the nested window size are set respectively as 9 × 9 and 4 so that the 

highest PSNR values of the result can be obtained. The critical parameters λ0.01=113.5 is 

set so the ‘false alarm’ probability of terminating iterations cannot exceed 0.01. The 

threshold ρ = 3 is chosen to get a good accuracy for the point-wise estimator of the 

adaptive neighbouring size. More details about the parameter selection for SAFIR can 
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be referred to an original paper [16]. The parameters for BM3D used in all tests follow 

‘Normal Profile’ in Table I in [58] . 

By a visual comparison, PM significantly oversmoothes the women’s face and 

wipes out almost all textures in the image, such as the weak striped patterns on the 

tablecloth and trousers. To better compare visually the denoised results, I choose three 

typical boxed regions of the image Barbara Fig. 4.3(a) and show in Fig. 4.4 

respectively the zoomed-in regions of the noise-free and noisy image, the denoised 

results by our method, SAFIR and BM3D. As seen, SAFIR preserves the features on the 

trousers better than the PM, but still oversmoothes the eyes of Barbara (compare Fig. 

4.4(g) and (j)) and removes the textures on the basket (compare Fig. 4.4(a) and (d)) and 

trousers (compare Fig. 4.4(m) and (p)). Our GFP-NAD avoids this problem (see Fig. 

4.4(c), (i) and (o)) since to the CNLD provide high responses on these features under 

noise contamination The strong feature preserving ability of our method is also 

attributed to the unimodal shape of the 1st- and 2nd-order NLD and anisotropic diffusion 

along the orientation of the features. Moreover, our method performs isotropic diffusion 

in background regions so remove noise and induce little artifacts, unlike the PM method. 

BM3D performs comparably with our GFP-NAD in terms of noise removal, but tends 

to slightly oversmooth the eyes (compare Fig. 4.4(k) and (i)) and stripes on the trousers 

(compare Fig. 4.4(o) and (q)) by comparison. Besides, I show in Fig. 4.3(g) the 

denoised result of the FP-NAD Eq. (3.16) proposed in the previous chapter, which can  

be seen as a special case of the GFP-NAD when the weight 1( , ) 0w t ≡x  and 

2( , ) 1w t ≡x . The boxed-regions A, B and C of the denoised result by FP-NAD are 

further magnified and shown in Fig. 4.4(f), (l) and (r), respectively. By comparing Fig. 

4.3(c) with Fig. 4.3(g), I find that both the GFP-NAD and FP-NAD perform well in 

removing noise and preserving blob and ridge features and textures made up by them. 

The latter, however, oversmoothes most of the edge features in the image, including the 

boundaries between the basket and the land (Fig. 4.4(f)), the boundaries of the hairs on 

the woman’s face (Fig. 4.4(l)) and the boundaries of the arm (Fig. 4.4(r)). This is due to 

the fact that the FP-NAD uses only single feature detector (2nd-order NLD) for feature-

preserving denoising. The GFP-NAD combines different feature detectors in the 

diffusion model, so preserves simultaneously all features in the natural images during 

the diffusion process. This result demonstrates that the GFP-NAD is indeed a more 

generalized approach for denoising the natural images, compared to the FP-NAD 

method.  
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We have quantified the image fidelity by calculating PSNR [16] and MSSIM [108] 

between original and denoised images. Higher PSNR and MSSIM imply better image 

restoration and structure preservation, respectively. We report in Table 4.1 the PSNR 

and MSSIM values of denoised results shown in Fig. 4.3 by GFP-NAD, PM, SAFIR, 

BM3D and FP-NAD. Table 4.1also summarizes the PSNR and MSSIM for the denoised 

images by the above methods on Fig. 4.3(a) with AWGN of Stds σn = 30 and 40. As 

seen, our method, for different levels of AWGN, achieves the highest PSNR and 

MSSIM value among the five algorithms. 

  

 

Table 4.1. Comparison of PSNR and MSSIM by GFP-NAD, PM, SAFIR, BM3D and 

FP-NAD. Three levels of AWGN with Stds σn = 25, 30 and 40 are tested. 

σn 

PSNR/MSSIM values 

Noisy Image GFP-NAD PM SAFIR BM3D FP-NAD 

25 
20.32 /0.406  31.22/0.901 24.47/0.71

0 

27.78/0.79

0 

30.73/0.88

7 

27.12/0.813 

30 
18.79/ 0.346 30.37/0.89

2 

24.03/0.63

5 

26.39/0.74

8 

29.76/0.86

4 

25.97/0.784 

40 
16.49/ 0.264 28.85/0.84

3 

22.16/0.51

4 

24.30/0.67

4 

28.07/0.82

4 

23.49/0.701 

 

4.4.2.2 Denoising of a Natural Image under Extremely Severe Noise Contamination 
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(a) +∞ / 1              (b) 8.40 / 0.223                (c) 15.07 / 0.595           

  
   (d) 14.46 / 0.484           (e) 14.68 / 0.361              (f) 15.29 / 0.622 

 

Fig. 4.5. Test on a fragment of a natural image, Parrots. (a) Noise-free image. (b) Noisy 

image (σn = 120). (c) - (f) Denoised results by GFP-NAD, SAFIR, BM3D and FP-NAD, 

respectively. Two numbers under each image are the corresponding PSNR and MSSIM 

values.  

 

We further test the FP-NAD filter on a natural image under severe noise 

contamination. Fig. 4.5(a) and (b) show a fragment of a noise-free and noisy image 

Parrots [101] that has been used for testing the FP-NAD Eq. (3.16) in Section 3.4.2.3 of 

the previous chapter. Extremely high-level AWGN (σn = 120) again is used in order to 

test the performance limit of the GFP-NAD filter on extremely low-PSNR images. 

Parameters of GFP-NAD, SAFIR and BM3D are the same as those in the last test. The 

denoising result is shown in Fig. 4.5(c) - (e), the two numbers under each figure are the 

corresponding PSNR and MSSIM values, respectively. As seen, due to the severity of 

noise, edges in the image Fig. 4.5(b) are heavily broken, particularly in the eye region. 

As such, SAFIR (Fig. 4.5(d)) is ineffective in restoring these features. Visually, BM3D 

(Fig. 4.5(e)) are shown to preserve features better than SAFIR, but are still 

outperformed by the GFP-NAD (Fig. 4.5(c)), as the eye, eye socket and face stripes are 

partly oversmoothed in comparison to the result by GFP-NAD. The main reason behind 

the good performance of our GFP-NAD is again due to the combination of two feature 

detectors. Besides, I also show in Fig. 4.5(f) the denoised result of FP-NAD for 

comparison. As seen by comparing Fig. 4.5(c) with Fig. 4.5(f), I find that the GFP-NAD 

performs comparably with FP-NAD in terms of feature preserving and noise removing, 

though the PSNR and SSIM values suggest that the latter is slightly better. This is not 
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surprising since this image comprises predominantly blob and ridge features that can be 

best preserved by the FP-NAD. However, even under this situation the GFP-NAD as a 

general method still perform very well. This result indicates that the GFP-NAD method 

can be also tailored to denoise images containing mainly blob and ridge features. 

4.5 Conclusions and Discussion 

We have presented a generalized feature-preserving nonlinear anisotropic diffusion 

method in which the diffusion coefficient is constructed by not only single detector but 

a combination of two different feature detectors. We have tested the new algorithm on 

1-D and 2-D images and demonstrated good performance in preserving multiple 

features and textures. It can also effectively reduce the background noise and create 

minimal artifacts. 

A key issue in our GFP-NAD filter is the formation of DC by using two combined 

NLDs, which provides improved detection performance on edge, blob and ridge 

features. The NAD process controlled by this DC can therefore smooth out noise while 

preserve simultaneously multiple features in the natural images. The GFP-NAD filter  

are therefore a more generalized denoising method, compared to the FP-NAD that can 

only preserve blob and ridge features in the denoising process. We note that our work 

can be further extended by combining multiple feature detectors into the diffusion 

model. A range of choices of these detectors are already available in the fields of image 

processing and computer vision [110, 120-123]. These operators can therefore be used 

for the feature-preserving denoising in a wide range of applications.  
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Chapter 5  

Super-Resolution Fluorescence Microscopy for Cell Imaging  

 

 

 

 

 

 

Abstract: I have studied a simple degradation case, noise contamination, in the first part 

of the thesis. In the second part, I study a more complex degradation in which the 

original image I is not only contaminated with noise, but also blurred due to the light 

diffraction and thus loses resolution during the imaging process (Fig. 1.1) in 

fluorescence microscopy. In such a case, the resolution of the observed image J is 

diffraction-limited. To break the barrier of the diffraction limit in the fluorescence cell 

microscope images, several modern fluorescence microscopy techniques have been 

proposed and currently are still being developed. In this chapter, I provide an overview 

of some of these modern SR microscopy techniques. Our original work for increasing 

the image resolution will be discussed in the next chapter.  

 

5.1 Introduction 

 

For century, light microscopy has revolutionized biologists’ understanding of how 

cells function. In fact, entire fields of biology have emerged from images acquired 

under light microscopes [124]. With the recent development of fluorescent probes and 

new high-resolution microscopes, biological imaging has entered a new era and is 

presently having a profound impact on the way research is being conducted in the life 

sciences. Biologists are depending more and more on imaging; they can now visualize 

cellular components and processes in vivo both structurally and functionally; 
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observations can be made in two or three dimensions at different wavelengths, possibly 

with time-lapse imaging to investigate cellular dynamics. However, the application of 

fluorescence microscopy for many areas of biology is still hindered by its moderate 

resolution of several hundred nanometers. This resolution is approximately the size of 

an intracellular organelle, thus inadequate for exploring the inner architecture of many 

intracellular structures [125]. 

In general, the resolution of the fluorescence microscopy is limited by the 

diffraction of the light wave when it passes through a small aperture or is focused to a 

tiny spot.  Because this property is directly related to the wavelength of light at different 

energies, breaking the diffraction limit of fluorescence microscopy was deemed 

impossible for a long time, particularly for the visible light with wavelengths ranging 

from 400 nm to 700 nm. However, such limitations have not deterred a small group of 

scientists from pursuing super-resolution (SR) fluorescence microscopy that images 

beyond this seemingly impenetrable limit. In the remainder of this chapter, I will briefly 

summarize the technological advances of these scientists in the field of super-resolution 

fluorescence microscopy. We will also give a short conclusion to analyze some 

drawbacks of these SR techniques.  

 

5.2 Super-Resolution in Fluorescence Microscopy 

When light is focused by the objective of a microscope, the notion of light rays 

converging to an infinitely sharp ‘‘focal point’’ does not happen. Instead, the light wave 

forms a blurry focal spot due to diffraction. This blurring spot has a finite size that 

depends on the wavelength of the light and the angle at which the light wave converges; 

the latter is, in turn, determined by the numerical aperture of the objective. As such, the 

width of the spot W is calculated as W ≈ 0.6λ / NA, where λ is the wavelength of the 

light and NA is the numerical aperture of the lens. Similarly, a point emitter, such as a 

single fluorescent molecule also appears as a blurry spot with a finite size when imaged 

through a microscope. The intensity profile of this spot, which defines the point spread 

function (PSF) of the microscope, has approximately the same width as that of the focal 

spot described above. The resolution of the fluorescence microscopy is then defined by 

these widths, which are also called diffraction-limited resolution.  
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Fig. 5.1. Diffraction-limited resolution of the conventional fluorescence microscopy. (a) 

Left panel: for visible lights, the diffraction limit of microscopes with high NAs is ~250 

nm in the lateral directions and ~550 nm in the axial directions. Middle panel: a LR 

microtubule image captured by a conventional fluorescence microscope. Right panel: 

intensity curves of the two cross sections at the corresponding positions indicated by 

white lines A and B in the image of the middle panel. (b) Sizes of various biological 

structures in comparison with the diffraction-limited resolution. From left to right: a 

mammalian cell, a bacterial cell, a mitochondrion, an influenza virus, a ribosome, the 

green fluorescent protein, and a small molecule (thymine). 

 

The diffraction limit of the resolution was firstly recognized by Abbe [24] about 150 

years ago, and is also called the Abbe limit. For a visible light, the diffraction-limited 

image resolution of an objective len with a high numerical aperture is ~250 nm 

perpendicular to the direction of light propagation (i.e., in the lateral dimensions) and 

~550 nm parallel to the direction of light propagation (i.e., in the axial dimension), as 

shown in the left panel of Fig. 5.1(a). Consequently, two identical emitters separated by 

a distance less than the width of the PSF will appear as a single object, making them  
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appear as a single entity (i.e., unresolvable). Such case is illustrated in the middle panel 

of Fig. 5.1(a), which shows a LR microtubule image captured by a conventional 

fluorescence microscope. We mark two white lines on two microtubules in the image 

and plot in the right panel two cross sections of the microtubules at positions indicated 

by the white lines in the LR image. As seen, the two nearby microtubules in the curve A 

locate farther than the diffraction limit and can be discriminated. In the curve B they are 

however too close to be resolved. Fig. 5.1(b) shows comparisons between the 

diffraction-limited resolution and sizes of various biological structures, including a 

mammalian cell, a bacterial cell, a mitochondrion, an influenza virus, a ribosome, the 

green fluorescent protein, and a thymine, the last five of which are intracellular 

structures that attract biologists’ broad attention. As seen, these intracellular structures 

are smaller than these resolution limits and thus cannot be observed by conventional 

fluorescence microscopes. Super-resolution (SR) imaging, therefore, refers to imaging 

that exceeds the resolution limit to resolve these intracellular structures in the 

fluorescence microscopy.   

 

5.3 Current Super-Resolution Fluorescence Microscopy Techniques 

For many years, several imaging techniques have pushed the boundary of the 

diffraction limit of fluorescence microscopy. Among these methods, confocal 

microscopy and multi-photon fluorescence microscopy not only enhance the image 

resolution, but also reduce the out-of-focus fluorescence background, allowing optical 

sectioning and thus three-dimensional imaging. In addition, infrared light experiences a 

lower amount of scattering from tissues, allowing deep tissue imaging with two-photon 

microscopy [126]. 4π microscopy and I5M use two opposing objective lenses to increase 

the effective numerical aperture of the microscope and thereby improve the image 

resolution [127-129]. Although these methods significantly improve the resolution, they 

are still fundamentally limited by diffraction and have, in practice, achieved resolutions 

of ~150 nm in all three dimensions [128]. 

The diffraction-limited resolution applies only to light that has propagated for a 

distance substantially larger than its wavelength (i.e., in the far field). Therefore, one 

route to bypass this constraint is to place the excitation source or detection probe 

(usually an optical fiber, a metal tip, or simply a small aperture) near the sample (i.e., in 

the near field) [130]. Indeed, near-field microscopy has achieved resolution 

substantially below 100 nm [131-133]. However, the requirement that the excitation 
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source or detection probe be physically close to the target object (often within tens of 

nanometers) has made it difficult to look into a cell or a piece of tissue with near field 

microscopy, limiting the applications of this technique in biology.  

It was not until recently that several novel fluorescence microscopy approaches 

completely go beyond the diffraction limit of image resolution in the far field. In 

general, all of these approaches generate SR images by using the physical properties of 

fluorescent probes to distinguish emissions from two nearby molecules within a 

diffraction-limited region. These super-resolution approaches can be divided into two 

primary categories. The first category is hardware-based, aiming to reduce the point 

spread function (PSF) by employing optical patterning of the excitation and a nonlinear 

response of the sample. This category includes stimulated emission depletion (STED) 

microscopy [134, 135] and the related RESOLFT technology [136], as well as saturated 

structured illumination microscopy (SSIM) [137]. The second category takes 

advantages of single-molecule imaging, using photoswitching or other mechanisms to 

stochastically image single PSFs separated in time, calculating the positions of the 

single molecules to give rise to the signals with a precision substantially better than the 

diffraction limit. This second class includes stochastic optical reconstruction 

microscopy (STORM) [138], photoactivated localization microscopy (PALM) [139] 

and fluorescence photoactivation localization microscopy (FPALM) [140]. 

5.3.1 Hardware-based SR Fluorescence Microscopy 

In the hardware-based approach, a patterned field of light is applied to the sample to 

manipulate its fluorescence emission. This spatial modulation can be implemented 

either in a positive or negative manner. In the positive case, the light field that is used to 

excite the sample and generate fluorescence is directly patterned. In contrast, the 

negative patterning approach seeks the help of an additional patterned light field to 

suppress the population of molecules that can fluoresce in the sample. In both 

approaches, the spatial information encoded into the illumination pattern allows 

neighboring fluorophores to be distinguished from each other, leading to enhanced 

spatial resolution. 

5.3.1.1 Negative Patterning: STED Microscopy 
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Fig. 5.2. (a) A systematic schema of stimulated emission depletion (STED) microscopy, 

which reduces the size of the fluorescent spot (orange, bottom layer) and improves the 

image resolution. (b) A systematic schema of structured illumination microscopy (SIM) 

and saturated SIM (SSIM), which use pattered illumination to excite the sample and 

saturate the fluorescence, providing spatial information substantially beyond the 

diffraction limit. (c) Examples of STED images. Top panel: comparison between 

confocal (left) and STED (right) images of the outer membrane of mitochondria that is 

immunolabeled against the protein TOM20 [141]. Bottom-left panel: two-color 

isoSTED image of TOM20 (green) and the matrix protein HSP70 (red). Bottom-right 

panel: three-dimensional rendering of an isoSTED image of TOM20 [142]. (D) 

Examples of 3D SIM images [143]. Top panel: a central cross-section of a confocal 
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image of the nucleus stained for DNA (blue), lamin B (green), and the nuclear pore 

complex (red). Bottom panel: 3D SIM images of a similarly stained nucleus.  

 

In STED microscopy, the patterned illumination prevents fluorophores from 

emitting light [134, 135, 144]. This suppression is achieved by the stimulated emission, 

a process in which a light source, called the depletion light (the second layer of Fig. 

5.2(a)), brings an excited fluorophore (the top layer of Fig. 5.2(a)) down to the lowest 

energy state (i.e., the ground state) before it can emit fluorescence signal. STED 

microscopy takes advantage of the saturated response of fluorophores: once the 

depletion laser intensity is above the saturation level, the number of fluorophores 

remaining in the excited state (and thus capable of generating fluorescence) approaches 

zero. Thus, when a ring-shaped depletion light pattern with peak intensity significantly 

above the saturation level is applied to the sample, only the molecules within a small 

region near the center of the ring can generate fluorescence (bottom panel of Fig. 5.2(a)), 

giving rise to a sharpen PSF for a SR image. The full-width-at-half maximum (FWHM) 

of PSF, and thus the resolution of the microscope, scales approximately with the inverse 

square root of the intensity of the depletion light [144]. 

Theoretically, STED could produce unlimited resolution improvement if an 

infinitely strong depletion light source is given. In practice, however, a number of 

factors influence the resolution of STED microscopy, including aberrations in the optics, 

scattering from the sample, and the photostability of the fluorophores. STED 

microscopy has reached a remarkable resolution of 6 nm using strong depletion 

intensity to image fluorescent defects in diamonds, which almost never photobleach 

[145]. In biological applications, STED imaging has achieved a resolution of 20 nm 

when using organic dyes and 50–70 nm resolution when using fluorescent proteins 

[146]. The upper panel of Fig. 5.2(c) shows a comparison between a confocal and a 

two-color STED image of the mitochondrial outer-membrane protein TOM20 and 

matrix protein HSP70 [141].  

The STED microscopy is also used for 3-D imaging. Since a ring-shaped pattern 

light in the XY plane improves the lateral resolution, a pattern having two maxima 

along the z axis improves the axial resolution [128]. Overlaying these two patterns 

improves the resolution in both lateral and axial directions [147], allowing 3D SR 

imaging with a axial resolution ~2.5 times the lateral one. The lower panel in Fig. 5.2(c) 

[142] shows a 3-D SR image of mitochondria acquired by  using isoSTED [142] with 

the 4π configuration, achieving a resolution of ~30 nm in all three dimensions.  
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In addition to stimulated emission, other saturable optical transitions that send the 

molecule to dark states can also be used to shrink the area of molecules that fluoresce in 

a focal spot [136]. This extension of the STED approach, called reversible saturable 

optically linear fluorescence transitions (RESOLFT) microscopy, allows super 

resolution to be implemented with a substantially lower-depletion light intensity, 

causing less damage to delicate biological samples [144]. 

 

5.3.1.2 Positive Patterning: Structured Illumination Microscopy 

Structured illumination microscopy (SIM) improves image resolution by using 

positive patterning of the excitation light [27], which is typically a sinusoidal pattern 

created by combining (i.e., interfering) two light beams. As a result, an image snapshot 

of the sample becomes the product of the sample structure and this excitation pattern, as 

shown in Fig. 5.2(b). A final image is then computationally reconstructed from multiple 

snapshots collected by scanning and rotating the pattern. In this process, the additional 

spatial modulation from the excitation pattern brings enhanced spatial resolution into 

the reconstructed image [148]. However, the illumination pattern created by interference 

is also limited by diffraction. Therefore, when the fluorescence signal scales linearly 

with the intensity of the excitation light, SIM results only in a doubling of spatial 

resolution (Fig. 5.2(b)), which is ~100 nm in the lateral dimensions [148]. Fig. 5.2(d) 

shows respectively a three-color confocal and SIM image  of the nucleus containing 

DNA (blue), lamin B (green), and the nuclear pore complex (red) [143].  

Like with the STED approach, the saturating response of the fluorophore can also be 

exploited here to further enhance the resolution [137, 149]. With sufficiently strong 

excitation, the fluorescence emission from a fluorophore will saturate. Saturated SIM 

(SSIM) utilizes this phenomenon to create sharp dark regions where the excitation 

pattern has zero intensity, providing image resolution significantly beyond the 

diffraction limit, as shown in the lowest panel of Fig. 5.2(b). With this approach, a 

resolution of ~50 nm has been obtained for imaging fluorescence microspheres [137]. 

5.3.2 Single Molecule Localization Microscopy 

After 20 years of development in the field of single-molecule imaging [150], single 

fluorophores are now routinely detected in a variety of imaging modalities, such as 

epifluorescence, total-internal-reflection, confocal, and multiphoton microscopies. Once 

each fluorescent probe in a sample can be imaged individually, its positions can be 
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determined to a high precision by finding the center of the single-molecule image [151, 

152]. The uncertainty in determining the molecule’s position (i.e., the localization 

precision) scales approximately with the inverse square root of the number of photons 

detected from the molecule. For bright fluorescent dyes, about one million photons can 

be detected from a single molecule, leading to a localization precision of  ≤ 1 nm [151, 

153]. 

 

 

Fig. 5.3 (a) A systematic schema of STROM/(F)PALM. (b) 3D super-resolution images 

taken using an astigmatism approach with cylindrical lens [154, 155]. Two left panels: a 
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a conventional LR image of clathrin-coated pits and the corresponding 3-D SR image 

showing an XY cross section near the plasma membrane. Middle panel: magnified SR 

images of a single clathrin-coated with an XY projection (top), an XY cross-section at 

the lower portion of the pit (middle), and an XZ cross section cutting through the 

middle of the pit (bottom). Two right panels: multicolor 3-D image of clathrin (green), 

dynamin (cyan), and an F-BAR domain protein FBP17 (red) in the cell-free system. (c) 

3-D SR images taken using an interferometry approach with apposing objectives [156]. 

Top: XY projection of the plasmamembrane of a cell, where the color encodes their Z 

coordinates. Bottom: XZ cross section of the boxed region in the top panel. (D) 

Comparison of STORM/(F)PALM images [155] of clathrin-coated pits immunostained 

with the photoswitchable Alexa647 dye (green) or tagged with the mEos2 fluorescent 

protein (red). 

 

However, being able to localize a single molecule cannot directly generate super-

resolution imaging of a biological sample, which can contain thousands of fluorophores 

inside of the diffraction-limited region. At first sight, it might seem impossible to 

distinguish these molecules individually. However, if the fluorescence emissions from 

these molecules are controlled so that only one molecule is emitting at one time, 

individual molecules can then be imaged and localized. This is the idea behind a 

recently developed super-resolution imaging technique called single molecule 

localization microscopy (SMLM), including STORM [138], PALM [139], and FPALM 

[140]. In this technique, photoswitchable (or photoactivatable) fluorophores are used to 

achieve temporal control of the emission. These fluorophores can be converted between 

a fluorescent (or “on”) state and a dark (or “off”) state or states that fluoresce at 

different wavelengths. Therefore, when activation light of a sufficiently low intensity is 

applied to the sample, only a random, sparse subset of fluorophores is activated to the 

on state at any time, allowing these molecules to be imaged individually, precisely 

localized, and then deactivated by switching to a reversible dark state or permanent 

bleaching. Iterating this process then allows the locations of many fluorophores to be 

mapped and a super-resolution image constructed from these localizations, either with 

synchronized activation [138-140] or with asynchronous activation [157]. Fig. 5.3(a) 

shows a systematic schema of SMLM. The image resolution is then no longer limited 

by diffraction but instead by how precisely each fluorophore is localized. Using this 

approach, a lateral image resolution as high as ~20 nm has been achieved [138]. 
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By determining the position of individual molecules in all three dimensions, SMLM 

can be extended to 3-D imaging. The first implementation of this approach uses a 

simple optical design that takes advantage of astigmatism in which light propagating in 

perpendicular planes has different focal points. Specifically, a cylindrical lens is 

inserted in the imaging path, such that the shape of a single-molecule image becomes 

elliptical. This makes it possible to determine the axial position of the molecule from 

the ellipticity and the lateral position from the center position of the image [155]. Fig. 

5.3(b) shows 3D images of clathrin-coated pits taken with this approach, resolving the 

nanomorphology of these structures [155]. Other implementations have utilized a 

variety of 3D localization methods, such as capturing defocused images at two different 

focal planes [158], engineering a PSF with a double-helical shape [159], and using a 

mirror to project the axial view to the lateral direction [160]. Axial resolutions of 40–70 

nm have been reported using these methods. The highest axial resolution is achieved by 

interferometry using two opposing objectives in a similar fashion to 4π microscopy and 

I5M [156]. Fig. 5.3(c) shows the clear separation of the ventral and dorsal plasma 

membrane in a thin protrusion of the cell using this method, demonstrating an axial 

resolution of 10 nm [156]. The imaging depth of this approach is relatively small 

compared to the PSF-fitting approaches described for the other 3-D SMLMs. 

An important issue in SMLM is the choice of fluorescence probes. SMLM often 

uses fluorescent proteins to label the cell samples. However, for some specific 

experiments, the decision of whether to use dyes or fluorescent proteins for labeling 

depends on a variety of factors. In terms of labeling, fluorescent proteins are genetically 

encodable, allowing proteins in living cells to be readily labeled with fluorescent 

proteins. However, dyes are more versatile for labeling different molecular species, 

including proteins, nucleic acids, oligosaccharides, and even small molecules. In terms 

of the optical properties, dyes generally have a significantly higher photon output, 

allowing higher image resolution than fluorescent proteins. Fig. 5.3(d) shows a 

comparison of STORM images of clathrin-coated pits immunostained with the 

photoswitchable Alexa647 dye (green) and tagged with the mEos2 fluorescent protein 

(red) [155]. 

 

5.4 Summary 

SR fluorescence microscopy has shown great promise for studying biological 

structures and processes from the cellular to macromolecular scale. Images obtained 
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from new SR imaging approaches enable scientists to directly visualize biological 

samples at the nanometer scale and complement the insights obtained through 

traditional molecular and cell biology approaches. In this chapter I have outlined some 

of most important SR fluorescence microscopy techniques, which can be categorized as 

hardware-based one and SMLM. Although these two categories of methods use 

different approaches to accomplish sub-diffraction resolution, these techniques share 

important commonalities. In both cases, a physical or chemical property of the 

fluorophore is used to maintain neighboring molecules in different states (i.e., ‘‘on’’ and 

‘‘off’’), enabling them to be resolved from each other [144].  

Although having achieved remarkable performance in sub-diffraction-limit imaging, 

these SR fluorescence techniques have their limits, which include not only high cost, 

instrumental complexity and tardy commercialisation, but also the fact that each method 

has its own practical disadvantages. STED microscopy requires the use of special 

fluorophores and sophisticated multi-wavelength laser sources. The resolution that 

STED has achieved for biological samples is typically 50 to 100 nm. PALM needs the 

specimen to be frozen through many cycles, each cycle consisting of activation and then 

imaging to the full bleaching of a subset of photo-protein molecules. Stochastic methods 

such as STORM and SIM are slow and computationally intensive and do not provide as 

large an improvement in resolution as the previous methods, at least with the available 

linear optics. There is currently still no ideal system that offers user-friendly, high-speed, 

3-D and multicolor imaging with nanometer-level spatial resolution. 
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Chapter 6 

Feature-Preserving Super-Resolution Restoration for Fluorescence 

Microscopy 

 

 

 

 

 

Abstract: In the previous chapter, I have reviewed several current SR techniques in the 

fluorescence microscopy for cell imaging. All of these approaches use the properties of 

the fluorophore to make certain special and complex imaging arrangements to achieve 

super resolution. In this chapter I propose an alternative approach, HR image restoration, 

to increase image resolution beyond the diffraction limit. It is a post image acquisition 

computational technique, which restores a HR image by using multiple LR observation 

through an inverse process.  A major advantage of HR restoration method is minimal 

hardware modification to standard microscopes and therefore low cost. The method can 

also apply to many circumstances where access of specialist SR imaging devices is not 

possible. Commonly used HR restoration methods incorporate the edge information in 

the inverse process to achieve a good balance between noise removal and resolution 

recovery of features in the image. However, such methods have a limited effect in 

modelling complex features in fluorescence cell images and may not be able to restore 

these features and therefore restore the desired image resolution. To overcome this 

problem, I propose a new feature-preserving HR restoration method by incorporating 

the combined nonlocal difference (NLD), which has been proven effective for feature 

preserving in our work on image denoising, into the process of resolution restoration. 

Experimental results demonstrate that our method outperforms several popular HR 

restoration methods for noise removing and feature preserving (and resolution restoring) 

when applied to both synthetic and real natural images. When implemented with 

conventional microscopes, our method results in a ~7-fold increase in the lateral spatial 
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resolution in noisy biological environments, delivering multi-colour image resolution of 

~30 nm. 

 

6.1 Introduction 

Image resolution in the biological fluorescence microscopy, as discussed in the 

previous chapter, is often hindered by the standard diffraction limit. Two main 

approaches have been developed for breaking this limit in fluorescence microscopy and 

achieved remarkable resolution improvement. SR imaging devices such as STED 

usually involves complex optical and chemical design and therefore high costs. 

An alternative approach for SR imaging is to apply image processing techniques to 

restore a high resolution image or sequence from a set of low-resolution observations, 

referred to as HR image restoration [20]. As discussed earlier in Chapter 1, the LR 

observations can be considered the outcomes of a degrading process of the HR images 

due to blurring and noise effects, as shown in Fig. 1.1 and formulated by Eq. (1.1), 

when the blurring matrix P is no longer unitary. Compared to the image denoising, HR 

restoration is a more complicated inverse problem which is required to not only remove 

noise but also restore fine structures that are lost in the image degrading process. It is a 

post-acquisition method that does not depend on imaging systems by which the LR 

observations are recorded. However, the relative position (correspondence) between 

these observations must be known.  

As a cost-effective method for increasing image resolution, researchers over the last 

decades have devoted substantial efforts to develop effective algorithms, ranging from 

optical flow HR restoration [23], transform-domain HR restoration [161, 162], 

projection onto convex sets HR [163], adaptive filtering HR [22, 164], to MCMC-blind 

HR [165] and so on, in order to solve the HR restoration as an inverse problem. The HR 

restoration approach has already been applied to many applications, such as space 

imaging [33], security surveillance [166] and mobile cameras [167], where the images 

are usually captured in a high-SNR condition. In biometrics, it has significantly 

improved the performance of face and iris recognition [168]. Recently, there have been 

increasing research activities of HR restoration methods to produce SR medical imaging, 

such as functional magnetic resonance imaging (fMRI) [169, 170] and positron 

emission tomography (PET) [171]. When applied in fluorescence microscopy, in which 

the resolution limitation is mainly due to light diffraction, HR restoration means SR 

restoration.  



 

92 

Medical imaging usually uses highly controlled illumination sources to avoid tissue 

or organ damages to a human object. Moreover, image acquisition duration has to be 

restricted in order to release patient discomfort and minimize imaging artifacts due to 

the uncontrolled patient movement. The low level of light flux leads to limited signal to 

noise (SNR) images. Removal of noise is therefore indispensable and critically 

important to the performance of HR restoration in medical imaging [172]; otherwise the 

noise may be amplified during the HR restoration, giving rise to unpleasant artifacts in 

the restored images. However, there exists a tradeoff between noise removal and feature 

preservation (and resolution restoration); over-smoothing can impede on image 

resolution that can be restored and lead to artifacts in the restored images. Hence a 

successful HR restoration method must comprise a built-in feature-preserving noise 

reduction algorithm. This is often achieved by incorporating a prior model or function, 

which detects the features of interests, into the inverse process. Similar to image 

denoising problem, previous methods for SR restoration problem usually employs a 

prior model  based on  edge-preservation concept in medical and other applications 

[173]; features are restored as long as all the edges are preserved in the inverse process.  

Particularly in medical imaging, several prior models [162, 174, 175] using gradient 

operators were employed for simultaneously removing noise and preserving features.  

To the best of our knowledge, the HR restoration approach has not been developed 

for SR fluorescence microscopy in biological applications. In microscopy imaging there 

always exists a compromise between image quality and cell viability. Excitation of 

fluorescent probes causes photo-bleaching and photo-toxicity, which limit the light 

intensity and exposure times that can be used. The requirement to image fast and in 

multiple dimensions to capture dynamic intracellular events also constrains illumination 

and exposure regimes and requires fast camera readout. All these lead to low-SNR 

fluorescence imaging as in medical imaging. Compared to medical imaging however, 

biological images are more challenging in terms of image complexity and feature size 

compared to medical images. The latter usually contain data describing tissues with 

simpler structures and larger size compared to the former, typically 2-3 times smaller 

than the resolution limit of the images [176]. Fluorescence images of intracellular 

structures often contain abundant, heterogeneous blob and ridge-like features, complex 

sub-cellular structures, potentially 10 times smaller than the resolution limit [37]. In 

general, edges embedded in small and complex features, as having been demonstrated 

by the poor performance of the edge-based denoising methods [177, 178] in Chapter 3 
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and Chapter 4, are rather prone to noise contamination. As such, HR restoration based 

on edge-preservation may not perform well in fluorescence microscopy.  

In Chapter 4, I have demonstrated the excellent performance for image denoising by 

using the GFP-NAD method that combines 1st- and 2nd-order NLDs as a feature detector 

[178]. Inspired by the success of NLDs in image denoising that can be seen as a 

simplified case of SR restoration with the unitary blurring matrix P in Eq. (1.1), I in this 

chapter propose a new prior model that combines the 1st- and 2nd-order NLDs. The new 

prior function is then incorporated into an energy function to invert the imaging process 

by using optimization algorithms to form a feature-preserving SR restoration (FP-SR) 

method. When I apply the FP-SR in fluorescence microscopy, the LR images are 

acquired by a conventional fluorescence microscope whilst translating the microscopes 

in the XY plane. We refer to the combination of such a multiple LR image acquisition 

modality with our SR restoration method as translation microscopy (TRAM) for super-

resolution imaging, which can be in principle operated in any standard microscopes 

with few hardware modifications. Experimental results on synthetic images demonstrate 

that our method can achieve a higher PSNR compared to several popular SR restoration 

methods [174, 179, 180]. When tested to the real fluorescence microscopic images, our 

method achieves a ~7-fold increase in lateral spatial resolution in noisy biological 

environments, delivering multi-colour image resolution of ~30 nm. 

 

 

6.2 Feature-Preserving SR Restoration  

6.2.1 SR Restoration by Optimization of an Energy Function 

A low resolution (LR) image, Jl, can be considered as the outcome of an original 

high resolution (HR) image, Il, after an image-degrading process involving blurring and 

noise contamination, where l denotes image index. This process has been illustrated in 

Fig. 1.1 and can be formulated by the image capturing model [179, 181],  

 l l l l= +J P I N , (6.1) 

where the column vectors Jl and Il comprise respectively row-wise concatenations of 

the LR and HR images, Pl is a blurring matrix determined by the PSF of the imaging 

system and Nl represents additive white Gaussian noise (AWGN). Given Eq. (6.1), SR 

restoration aims to recover the HR image Il beyond the diffraction limit from the LR 
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observation Jl. Theoretically, by multiplying the inverse P-1 of the matrix P on both 

sides of Eq. (6.1), the HR image Il can be easily and uniquely determined. However, for 

a fluorescence microscopy where the PSF of each pixel is almost identical, the blurring 

matrix P cannot have a full rank and is not invertible [173]. Hence Il cannot be uniquely 

determined by directly inverting P. Instead, it can be estimated by adapting an 

optimization approach by minimizing a pre-defined energy function [181],
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E

E  - Rφ λ
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= +

I

I

I I

I J P I I
,  (6.2) 

where the first term in the energy function E(Il) measures the difference between the LR 

observation and predicted data in a l2-norm form and )(⋅φ  is a robust function. The 

robust function is a class of symmetric, positive-definite functions with a unique 

minimum at zero, and less increasing than the quadratic function, f(x) = x2. The goal of 

such a robust function is to decrease the influence of so-called outliers, i.e. large values 

of the l2-norm 
2

2l l l -J P I  so that the energy function more likely reaches a global 

minimum [182]. 

Unfortunately, the estimation of Il still cannot be uniquely determined from Eq. (6.2) 

since the size of the image Il is always no smaller than that of the blurring kernel, which 

also equals to the rank of the matrix Pl. SR restoration from single LR image Eq. (6.2) 

therefore turns into an ill-posed problem [183]. To make Eq. (6.2) well-posed, multiple 

LR observations, { }  1, , ,,Mk k l= … …
J  of the HR images { }  1, , ,,Mk k l= … …

I  that represent different 

‘looks’ of the same scene Il, are therefore needed to provide additional information for 

SR restoration [20, 23, 33, 167, 179, 181]. The relation between the two HR images, Il 

and Ik, is measured by a matrix Ckl that gives the pixel-level correspondence of the two 

HR images. The minimization problem Eq. (6.2) can then be written as  

 ( )2

1
1

argmin ( ),

( ) ( )

l

l

l l

M

l k k kl l l
k

E

E  - Rφ λ
=

=

= +∑

I

I

I I

I J P C I I
. (6.3) 

In practice, the correspondence matrix Ckl is unknown to the observer but is assumed to 

be unchanged during the degrading process. As such, the matrix can be determined by 

the correspondence between LR images [181]. The first term of the energy function E(Il) 

in Eq. (6.3) therefore measures the sum of multiple differences that provides more 

constraints for estimating the Il, compared to that by using single constraint in Eq. (6.2). 
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Provided that Il and Ik are different looks of the same scene, the matrix Ckl is then not 

unitary and thus the rank of matrix k klP C  is no longer less than that of the HR image Il, 

resulting in a unique solution of Il from Eq. (6.3) [20, 165, 173, 179, 181].  

In general, the performance of a SR restoration algorithm depends on three factors: 

the estimation accuracy of the blurring kernel Pk and the correlations Ckl among 

multiple LR observations, and the ability of noise removal [167, 173, 176, 179, 181]. In 

applications such as space imaging [33], surveillance [166] and mobile cameras [167], 

the former two often vary  from observations to observations  during the capturing 

process. An accurate and robust estimation of them is thus a key for the SR restoration. 

Compared to these two factors, the removal of noise is not essential since images are 

often acquired under strong illumination energy, which often results in high-SNR 

images. On the contrary, in other applications such as medical imaging [4, 171, 172, 

176] where imaging environments can be perfectly controlled in laboratories, the former 

two factors can be known during image acquisition or their estimation can be obtained 

very accurately.  The noise contamination in the medical imaging process, however, can 

be rather high due to low dosages of illumination radiation and short durations of data 

acquisition to release patients’ discomfort. The performance of SR restoration in 

medical imaging then largely depends on a good removal of noise. For the application 

of biological florescent microscopy, the imaging environment is quite similar as that in 

medical imaging where the motion and blurring parameters can be known as priors or 

estimated accurately in an easy way. As such, when I try to apply SR restoration in 

biological microscopy imaging, the problem of noise removal is the key factor to 

determine the performance of resolution recovery. Such problem will be solved in the 

next section, where I propose a new prior model, ( )lR I , and incorporate it in the energy 

function to E(Il) in Eq. (6.3) for noise removing during the inverse process of resolution 

restoration.  
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6.2.2 A New Prior Model 

    

               (a)                                    (b) 

Fig. 6.1 An example of SR restoration without noise removal. (a) An LR DAPI image. 

(b) The HR image restored by SR restoration without noise removal. The image 

contains several spurious structures around the nuclei.  

 

In practice, the contamination of noise lN  is inevitable in the imaging process, Eq. 

(6.1), of fluorescence microscopy even in a high-SNR imaging condition since 

quantization errors can also introduce noises [23]. If the noise is not suppressed or 

removed during the inverse process, such random errors will be falsely recognized as 

structures and thus be amplified by a resolution enhancing behaviour induced by the 

inverse process Eq. (6.3). Fig. 6.1 shows an example of SR restoration result without 

noise removal. As seen, the random noises in the LR image (Fig. 6.1(a)) are falsely 

enhanced as artifacts, namely spurious structures (Fig. 6.1(b)), which may significantly 

mislead the analysis of biologists both visually and quantitatively. A prior model, 

, should therefore be included in the energy function E(Il) to regularize the 

minimization process for noise removal, as given in the second term of E(Il) in the 

second equation of Eq. (6.3).  

 

)( lR I
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Fig. 6.2 A BS-C-1 cell image contains abundant filaments (green) and clathrin-coated 

pits and vesicles (red). Scale bar, 3 µm [37]. 

 

In general, noise removal is often achieved by smoothing. However, there is a 

tradeoff between smoothing and feature preservation (and restoration); over-smoothing 

can introduce blurring effects to features can thus impede image resolution that can be 

restored [174]. As such, the prior model should be designed to remove noise while 

preserving key features of interests during the inverse process of SR restoration. The 

parameter, 
l

λI , is to balance noise removal and resolution restoration. In general, an 

edge is a fundamental feature that underlies more complicated features or structures in 

an image, so the latter can be preserved as long as edges are preserved [177]. Since 

edges can be characterised by a first-order difference (gradient), many SR restoration 

methods in medical imaging have applied gradient operators to build the prior model 

[162, 165-167, 169, 171, 174, 175] and achieved impressive performances in fMRI and 

PET [170]. However, the gradient-based prior model does not work well when applied 

to biological fluorescence microscopy. Fluorescence biological microscopy data are 

usually made up by vesicles, filaments, microtubules and their complex networks, as 

shown in a cell image Fig. 6.2, which are more complicated than medical images of 

organs or tissues. Spatial scales of the structures in the two type of images are also very 

different, the ratio of the full-width-at-half maximum (FWHM) of a microtubule to the 

PSF of  an optical microscope is typically 10 times [37] while the size of a lung lesion 

to the resolution limitation of PET is usually 2 to 3 times [171]. Since edges embedded 

in small and complex structures, as demonstrated in our work of image denoising, are 

prone to noise contamination [177, 178] , the gradient-based operators in the 

fluorescence microscopic images may not be able to robustly detect edges under severe 
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noise contamination. SR restoration using the gradient-based prior models may 

therefore fail to preserve these complex structures and restore image resolution during 

the inverse process.  

We here present a new prior model that is capable of characterizing complex 

fluorescence cell structures to avoid over-smoothing for restoring the resolution of low-

SNR images during the inverse process. The model is based on our observations in 

Chapter 3-4 in bio-imaging denoising that diverse biological structures such as vesicles, 

filaments, microtubules and their complex networks are made primarily of two basic 

features, blob and ridge, which are circular and line-like regions either brighter or 

darker than their surroundings [105, 184], as shown in Fig. 3.2. They are better 

correlated with a second-order difference rather than a first-order one which measures 

edges. Inspired by the success of NLDs in image denoising that is a special case of SR 

restoration in unitary the blurring matrix, I propose a new prior model by combining the 

1st- and 2nd-order NLDs in the form,  

 ( )2 22
1 NL 2 NL2, 2,

1

( ) ( ) ( ) ( ) ( )
N

l l l
x

R w x x w x x
σ σ

φ
=

= ∇ + ∇∑I I I   (6.4) 

where N is the pixel number of the HR images,
 NL 2,

( )l x
σ

∇ I  and 2
NL 2,

( )l x
σ

∇ I  are the 

1st- and 2nd-order NLDs at the pixel position x given by Eq. (3.2), (3.6) and Eq. (4.8). 

The coefficients w1(x) and w2(x) are weights that balance the contributions of the two 

NLDs in the forms of  
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I I

I I I I
 . (6.5) 

Since NL 2,
( )l x

σ
∇ I  >  2

NL 2,
( )l x

σ
∇ I in the vicinity of edges, w1 > w2 and the 1st-order 

NLD dominates the prior model in this region. On the contrary, in the vicinity of blob 

and ridge features NL 2,
( )l x

σ
∇ I  <  2

NL 2,
( )l x

σ
∇ I , w1 < w2 and the 2nd-order NLD 

dominates the prior model. As such, the combination 

2
1 NL 2 NL2, 2,
( ) ( ) ( ) ( )l lw x x w x x

σ σ
∇ + ∇I I  provides well-balanced responses for all edge, 

blob and ridge features and complex structures made up by them.   

6.2.3  Energy Minimization  
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By combining Eq. (6.3) and Eq. (6.4), I propose to estimate the HR image Il by 

solving the optimization problem,  
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where the robust function ( )φ •  is chosen in the form of  

 ( )
1

x
x

x
φ =

+
  (6.7) 

since it is differentiable  so the close-form solution of the estimation Il Eq. (6.6) can be 

easily obtained. Another reason for choosing the form, Eq. (6.7), is the strong ability of 

Eq. (6.7) to reduce considerably, or even eliminate completely, the influence of large 

errors for 
2

2k k kl l−J P C I  due to the inaccurate estimation of Pk and Ckl, compared to 

other forms of the robust function [182]. 

The optimization problem Eq. (6.6) can be solved by finding the solution Il so that 

0
)( =

l

l

d

dE

I
I

, which leads to the following equation 
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where the matrices D1 and D2 correspond to 1st- and 2nd-order NLDs, ANL and ANL2 are 

N × N diagonal matrices whose elements are the derivatives of the robust function ( ).φ

in each pixel and N is the pixel number in the image. Details of deriving Eq. (6.8) from 

Eq. (6.6), as well as definitions of D1, D2, ANL and ANL2 , can be found in the Appendix 

section. Eq. (6.8) is a nonlinear equation of Il because ANL1, ANL2 and Ak also involve 

the variable Il, so may have multiple solutions that correspond to local and global 

minima of the energy function E(Il). We here apply the iterative reweighted least 

squares (IRLS) method, which has been proven to be effective in non-convex 

optimization problems [185]. Experimental results have shown that IRLS can at least 

lead to a local optimum solution that is most close to the global optimum among all 

local solutions [185]. To solve Eq. (6.8), I assume the initial solution as Il = Jl. The 

solution then evolves iteratively while the energy function is gradually minimized by 

IRLS. The rate of the evolution is adjusted at each iteration step based on the difference 
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of HR solutions between the present and previous steps; the rate is usually highly in the 

beginning and become slower as the energy function gets closer to the global minimum. 

The parameter 
l

λI is also updated at each iteration step according to the residual noise 

contained in the current HR image estimation [173]. When the difference of the HR 

image estimations between two adjacent iterations is below a pre-set threshold, the 

iteration stops and the solution is considered to the restored HR image. More details 

about the process of minimizing energy function Eq. (6.6) are given in Appendix.. 

6.2.4 Translation Microscopy (TRAM)  

Based on information theory [21], the LR observations to be used to recover a HR 

image via the proposed inverse process must be correlated but not identical. For 

biological microscopy applications, the easiest way to obtain a set of (related) LR 

images of the same object is to record these images while the microscope or specimen is 

translated in the XY plane. The correspondence matrix in this case can be easily 

determined from motion vectors of the two LR images given by the relative positions 

between the camera and specimen. The PSF matrix in laboratory environment is the 

same for each LR image and is readily available from the manufacturers of the 

microscopes or can be accurately estimated using images such as bead or quantum dot 

samples. We refer to the combination of such a multiple LR image acquisition modality 

with our SR restoration method as translation microscopy (TRAM) for super-resolution 

imaging. Compared with other SR imaging techniques such as SIM, STED, STORM, 

etc., TRAM can be implemented simply on conventional microscopes with no hardware 

modifications. TRAM can be also operated with other image systems capable of 

acquiring multiple translational images, including SR facilities to achieve even higher 

spatial resolutions.  

 

6.3 Experiments 

We apply our SR restoration method to a number of synthetic data sets and real 

fluorescence microscopic data. We first use a simple 1-D test to explain why our prior 

model works better than the edge-based method by analyzing the inverse process in 

detail. We further test our method on a 2-D standard resolution chart and a synthetic 

biological image containing blobs and ridges of varying sizes and orientations. An 

experiment on human face is also carried out and the results show that our method 



 

101 

works well for natural images. Finally I apply our method to the real fluorescence 

microscopic images. In all the tests the SR restoration process is measured by the mean 

squared difference-norm (MSDN) of the restored images between two adjacent 

iterations given in Eq. (3.21). When the MSDN reaches to a certain small value, the 

inverse process is terminated.  

We have implemented our algorithm by using Matlab R2012b. The computational 

time of the Matlab code depends on the parameter settings. On a recent Intel i7 3820 

3.80 Ghz CPU with 32Gb physical memory,  it takes for instance 10h to restore a  256 

× 256 HR image from 32 LR observations with patch size W = 21 and 640 iterations. 

We believe that our algorithm can be largely accelerated by using different optimization 

strategies such as parallel computing.   

 

6.3.1 Validation on Synthetic Data 

We first test our method on 1-D, 2-D synthetic images and compare the results with 

existing methods, including the robust SR method in [180] (denoted by ZMT), which is 

based on back projection with median filtering, the robust SR method in [179] (denoted 

by RSR), which is based on bilateral TV priors, and variational Bayesian SR in [174] 

(denoted by ALG), which uses Bayesian framework and TV priors. The last method is 

considered to be the best multi-frame SR restoration algorithm at present [186]. 

6.3.1.1 Validation on 1-D Signals 

 

 

Fig. 6.3. Test on a 1-D signal. (a) A 1-D HR and LR signal containing one step edge, 

three blobs and strips made of these blobs. (b) Responses of 1st-, 2nd- order NLDs and 

their combination to the LR signal in (a); (c) – (e) The evolution process leading to HR 
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restoration by my method; (f) The restored HR signals by our method and by a similar 

method using an edge-preserving prior model. 

 

Fig. 6.3(a) shows one of the 64 1-D 8-bit HR and LR signals containing one step 

edge, three single blobs of widths s = 5, 11 and 21 pixels and strips made of these blobs 

in multiple packs, the latter was PSF blurred (Std σPSF = 10 pixel) and noise 

contaminated (AWGN Std σn = 20) of the former under the general model Eq. (6.1). 

Fig. 6.3(b) plots the responses of the 1st-, 2nd-order NLDs and their combination to the 

noisy LR signal; the value of the 1st-order NLD is relatively large in the vicinity of the 

edge but small in the neighbourhood of the blobs and stripe. On the contrary, the 2nd-

order NLD responds better to blobs and stripes than edges.  Consequently, a 

combination of the two, 
2 22

1 NL 2 NL2, 2,
( ) ( ) ( ) ( )k kw x x w x x

σ σ
∇ + ∇I I , gives rise to a well-

balanced response to all the features and low response to the background, as shown in 

Fig. 6.3(b). As such, background regions are smoothed heavily in the initial stage while 

features are being restored, as shown in Fig. 6.3(c). As the signal evolves during the 

inverse process, the smoothing effect “propagates” towards the feature regions, which 

leads to higher contrast between feature and background and therefore increased 

responses of the 1st- and 2nd-order NLD to the features. The system performs in such a 

positive feedback manner, leading to more effective noise reduction and resolution 

improvement in the second stage, as shown in Fig. 6.3(d-e). The iteration process 

completes when the differences of signals between two adjacent iterations is below a 

pre-defined threshold. The final result in Fig. 6.3(f) shows good restoration of features 

and reduction of noise compared to the noise-free image in Fig. 6.3(a). For comparison, 

I also restore the same set of LR frames by setting our method with w1 ≡ 1 and w2 ≡ 0 in 

Eq. (6.4), corresponding to the edge-preserving prior model. As seen from the red curve 

in Fig. 6.3(f), the edge is preserved but the blobs and stripes are smoothed out by using 

this method.  
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6.3.1.2 Validation on 2-D Standard Resolution Chart Images  

 

Fig. 6.4. Test results on a 2-D 8-bit resolution chart. (a-b): A resolution chart corrupted 

by a Gaussian-shaped PSF with Std σPSF = 5 (pixels) and an AWGN with Std σn = 20, 

and the restored result by our method. (c) The mean PSNR of our method versus the 

frame number of LR images for noise Std σn = 20 and PSF Stds σPSF = 5, 10, 15 pixels, 

respectively. (d): A comparison among the mean PSNR of our method, ALG, RSR and 

ZMT versus the Noise Std when the PSF Stds σPSF = 5, 10, 15, respectively. (e): A 

close-up region marked by a red box in (a); (f): One frame of LR images generated from 

(e) by Gaussian-shape PSF with Std σPSF = 10 and AWGN with Std σn = 20; (g) – (j): 

Restoration results by our method, ALG, RSR and ZMT, respectively. 

 

Next I tested on an 8-bit LR resolution chart, as shown in Fig. 6.4(a), which contains 

blobs and ridges with varying sizes and orientations and is commonly used for a 
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standard evaluation of SR restoration [187]. The image is corrupted by a Gaussian-

shaped PSF with Std σPSF = 5 (pixels) and an AWGN with Std σn = 20. We first apply 

our method on a set of 64 LR sequences corrupted by a Gaussian-shaped PSF with Std 

σpsf = 5 (pixels) and an AWGN with Std σn = 20. The restored result is shown in Fig. 

6.4(b). As seen by comparing Fig. 6.4(a), our result restore very well all features in the 

resolution chart, including the stripes, curve lines and numbers in the chart image. To 

quantify the performance, I plot PSNR of our result versus the number of LR frames 

under same noise situation (Std σn = 20) but three different blurring (Stds σPSF = 5, 10, 

15) in Fig. 6.4(c). As seen, all three curves show a monotonic increase of the FWHM 

ratio on increasing the number of LR observations and begin to saturate at 50 LR 

images, the latter depends on the noise level in the LR observations. There is however a 

shift among the three curves because of different severities of PSF blurring; worse 

image restoration for higher level of PSF blurring for a fixed number of LR images and, 

for higher blurring levels, more LR observations are required to achieve a same 

restoration level compared to lower blurring cases.  

We also compared our method with three popular existing SR methods, ZMT [180], 

RSR [179], and ALG [174]. Fig. 6.4(e-j) show respectively the magnified HR, LR and 

restored images of the boxed region in Fig. 6.4(a) by the four methods using 64 LR 

frames. As seen, the other three methods either produce severe artifacts (ALG) or fail to 

restore the image resolution by smooth out numbers and ridges in their results (RSR, 

ZMT). In contrast, our result shows visually a superior resolution enhancement without 

artifacts, compared to the original HR one in Fig. 6.4(a). For quantitative comparison, 

Fig. 6.4(d) plots the PSNRs of the restored results by the four methods on the 64 LR 

frames for different degradation cases with various noise and PSF levels. As seen, our 

method for all cases performs noticeably better than the other methods, at least by 5dB 

in terms of PSNR. 
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6.3.1.3 Validation on Synthetic Cell Data 
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Fig. 6.5 Test results on 2-D synthetic cell data. (a - b) A synthetic HR cell image and its 

LR observation corrupted with noise contamiation of Std σn= 20 and PSF blurring of 

Std σpsf = 31 (pixels). 1-D intensity profiles of the five structures LR image are also 
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plotted as green curves in the two figures. (c) Restored image by our method and the 

intensity profile in a green curve. (d) FWHM ratio between the LR and restored images 

for the five types of structures, respectively. (e) FWHM ratio between the LR and 

restored structures versus the Std of the input noise. The number of LR frames and PSF 

Std are fixed to be 64 and σPSF = 31 (pixels), respectively. (f) FWHM ratio between the 

LR and restored structures versus the number of LR images for  different input noise 

levels of Std σn = 10, 20 and 30, respecitively. The Std of PSF is set to be σPSF = 31 

(pixels). 

 

Fig. 6.5(a) shows an 8-bit synthetic HR cell image (2312 pixel × 384 pixel) 

containing blobs and ridges that mimic the key features of transport particle and 

microtubules in intracellular structures. The blobs have a diameter of 21 pixels and a 

centre distance of 21 pixels between the two adjacent ones. The ridges have the FWHM 

of 10 pixels and a centre-line distance of 32 pixels. The 1-D vertical profiles for the four 

types of particle arrangements and a cross-sectional profile for the three microtubules 

are plotted (green curves) in this figure. A set of 64 LR frames are obtained under the 

TRAM procedure with an AWGN of Std σn = 20 and Gaussian-shaped PSF of Std σPSF 

= 31 pixels, the latter gives rise to the diffraction limit of 91 pixels [25]. If such 

diffraction limit equals to the standard one, ~200 nm, for visible lights, the pixel size 

would be ~2.2 nm. As such, the resolution improvement in this experiment can be 

measured in a high precision. Fig. 6.5(b) shows a LR observation and corresponding 

intensity profiles of the HR image in Fig. 6.5(a). As seen, all of structures in this image 

are diffraction unresolved. Fig. 6.5(c) plots the restored image, showing a remarkable 

resolution improvement. The resolution improvement is measured to be around 6.3 

times for each structure in terms of the FWHM ratio (Fig. 6.5(d)), demonstrating the 

robustness of our method for different structures. The resolution in the restored image is 

now ~14 pixels (28.4 nm) and is smaller than the distances between the adjacent 

particles and parallel microtubules. Consequently, all structures are resolved as shown 

in Fig. 6.5(c).  

We further illustrate in Fig. 6.5(e) the resolution improvement of our method on 

different noise levels for fixed PSF (PSF of Std σpsf = 31 pixels) and LR frames (64 

frames). As seen, the decrease of the FWHM ratio on increasing noise level can be 

divided into three stages. In the first stage where the noise contamination is low (noise 

Std up to 10), the FWHM ratio decreases rapidly, which is consistent with a previous 

study by Liu and Sun [23] that even low-noise contamination can greatly reduce the 
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resolution that can be restored. In the final stage where the noise is high (noise Std 20-

40), the ratio decreases rapidly again and approaches to 1. This may be attributed to the 

severity of noise contamination, which makes the capability of resolution restoration 

decline faster, compared to that in the second stage. 

We finally illustrate the dependence of the resolution improvement on the numbers 

of LR observations for different levels of noise. Fig. 6.5(f) plots the FWHM ratio of our 

result versus the number of LR frames under same PSF blurring (Std σPSF = 21) but 

different noise contamination (Stds σn = 10, 20, 30). As seen, the FWHM ratios for all 

levels of noise contamination show a monotonic increase on increasing the number of 

LR observations and begin to saturate at 50 LR images. There is however a shift among 

the three curves because of different severities of noise contamination; less resolution 

improvement for higher level of noise contamination for a fixed number of LR images 

and, for higher noise levels, more LR observations are required to achieve a same 

resolution improvement compared to lower noise cases. As such, the dependence of 

FWHM ratio on different noise levels behaves similarly to that of PSNR on different 

blurring levels for the chart image shown in Fig. 6.4(c).  

 

6.3.2 Validation on Face Data 

 

     

                               (a)                                                                  (b) 
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                               (c)                                                                  (d) 

 
(e)  

Fig. 6.6. Tests on a real face data set. (a) One frame of LR image sequence; (b - e) 

Reconstruction results by our method, ALG, RSR and ZMT, respectively. It is apparent 

that our method (b) provides a better recovery, including the eyes, eye bows, nose and 

hair. Also thanks to the new prior model, our method is also very effective in 

suppressing noise without introducing artifacts. In comparisons, RSR (d) and ZMT (e) 

do not effectively restore the HR resolution since the gradient-based prior function over-

smoothes the features during the inverse process. ALG (c) recovers the resolution better 

than RSR and ZMT but results in severe zigzag artifacts around the edges.  

 

                                

 

Our method can also apply to natural images taken by commercial cameras. The 

original data cannot be obtained in this case since the observations are not generated 
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synthetically but taken directly from the imaging devices. For this, I report an 

experiment performed on a human portrait provided by UCSC [187]. The algorithm 

ALG, ZMT and RSR are used again for comparisons. Fig. 6.6 (a) shows a LR and 

restored images by our method, ALG, RSR and ZMT. By comparing Fig. 6.6(b) with 

Fig. 6.6(c-e), it is apparent that our method provides a better recovery, including the 

eyes, eye bows, nose and hair. Also thanks to the new prior model, our method is also 

very effective in suppressing noise without introducing artifacts. In comparisons, RSR 

and ZMT do not effectively restore the HR resolution since the gradient-based prior 

function over-smoothes the features during the inverse process. ALG recovers the 

resolution better than RSR and ZMT but results in severe zigzag artifacts around the 

edges.  

 

6.3.3 Validation on Fluorescence Microscopy Data 

We finally test our method on two exemplar datasets of biological interest, the 

quantum dot (QD) and the cell data samples. The QD data (Invitrogen QDot 625) was 

diluted 1:1,000,000 in phosphate buffered saline (PBS). Coverslips were coated with 

CellTak (BD Biosciences) according to the manufacturer’s instructions. Diluted 

quantum dots were incubated on the coated coverslips for one hour prior to imaging in 

PBS. The cell samples were acquired using the FluoCells pre-prepared slide #2 

(Invitrogen) which contains bovine pulmonary artery endothelial cells (BPAEC) stained 

with Texas Red-X phalloidin, anti-bovine α-tubulin and BODIPY FL labelled 

secondary antibody, and DAPIthe. 

After the samples were prepared, they were acquired by different microscopes. 

Quantum dot calibration data was acquired on an inverted IX81 microscope (Olympus) 

using a 150X 1.45 NA objective. Illumination was provided by a fully motorized four 

laser TIRF combiner coupled to a 405 nm 100W laser under widefield illumination. The 

sample was laterally translated using a motorized stage (ASI). Image data was collected 

using an Orce-Flash 4.0s CMOS camera (Hamamatsu) which in combination with a 

1.6× magnifier in the image path provided an effective pixel size of 27 × 27 nm. Ten 

frames were acquired at each position before translation of the stage to the next position. 

Fixed cell data was acquired on an SP5 SMD laser scanning confocal microscope (Leica) 

using a 60X 1.4 NA objective. Images 4096 × 4096 were acquired with a pixel size of 6 

nm × 6 nm. A single frame in each channel was acquired before translation of the stage 

to the next position.   
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6.3.3.1 Validation on Quantum Dots 

 

  

 

Fig. 6.7. Tests on quantum dot data. (a) A single frame of QDs (diameter: 16 nm) from 

a series of LR images taken with translation between frames. (b) A close-up LR image 

of region 1 containing a bright signal corresponding to a single QD, where the green 

curve is the intensity profile in the horizontal direction. (c-d) Restored SR images using 

32 and 64 LR observations respectively, with overlaid intensity profiles. (e) The 

observed FWHM of the restored quantum dot versus the number of LR observations. (f-

g) Close-up LR and SR images of region 2 in (a), where two QDs are resolved. (h-i) 

Close-up LR and SR images of region 3 in (a), which show 3 QDs. (j) Intensity 

fluctuations over time in region 1 between bright and dark states (k) Intensity 

fluctuations of region 2, which are the sum of the intensities of the two resolved QDs in 

the SR image. (l) Intensity fluctuations of in region 3, which are made of the sum of the 

intensities of the three resolved QDs in the SR image. Scale bars, 3 µm (a) and 100 nm 

(b-d,f-i). AU, arbitrary units. 

 

We first test on the quantum dots (QD) images acquired with excitation at 405 nm 

wavelength on a widefield microscope equipped with a 150X 1.45 NA objective. This 

gives the diffraction limit 228 nm (thus PSF of 194 nm at FWHM), which in turn 

determines the convolving matrix, Pl. A set of LR images was acquired whilst 

translating the sample along the y-axis in steps of 100 nm, from which the 

correspondence matrices Ckl in Eq. (6.3) were determined. Fig. 6.7(a) shows a 16-bit LR 
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image containing several bright spots, with measured noise levels of Std σn = 11.2.  As 

seen, the image contains several bright blobs, each of which can be made up by either 

single or multiple QDs with vary intensities. Fig. 6.7(b) shows a zoomed image of 

region 1 , where the intensity profile is indeed Airy-disk shape of the FWHM of 194 nm 

(Gaussian fitting), in agreement with the theoretical value. A green curve is also plotted 

in this figure as the 1-D intensity profile in the horizontal direction. Fig. 6.7(c) and (d) 

shows restored SR images resulting from 32 and 64 LR observations, giving measured 

FWHM of 39.7 and 30.6 nm respectively; an exponential decrease on increasing LR 

frames is observed as shown in Fig. 6.7(e), showing a resolution improvement of ~ 3-

fold for 16 observations and up to 7-fold for 64 observations. The results are fully 

consistent with the experiment on synthetic cell data in the last subsection. Our method 

can also identify multiple diffraction-unresolved QDs in Fig. 6.7(a), as demonstrated 

indeed for regions 2 and 3 that are magnified and shown in Fig. 6.7(f) and (h), 

respectively. SR results of the two regions are shown respectively in Fig. 6.7(g) and (i), 

where 2 and 3 adjacent QDs are separated in the restored images.  

To verify the results, a true original SR image should be known. However, since the 

QDs in the sample are randomly distributed, the numbers and locations of QDs are 

unknown to observers. In the lack of ground truth for comparison, I investigate QD 

intensity fluctuations over time for verification, taking advantage of the quantum 

blinking effect of single QDs [188]. In general, if a bright spot in the LR image contains 

a single dot, its intensity varies quantally between bright and dark states, as shown in 

Fig. 6.7(j). However, if a spot contains two QDs, the signal is the sum of those of the 

two dots, consequently the “off” state appears less frequently, as shown in Fig. 6.7(k). 

This characteristic becomes more prominent when there are more QD signals in a spot. 

Fig. 6.7(j-l) plots the intensity variation over time for the three spots in Fig. 6.7(b), (f) 

and (h), respectively. By a visual comparison among Fig. 6.7(j-l), I find that the 

intensity variations of the three spots in three boxed regions of Fig. 6.7(a) are consistent 

with the theory: the black curve in Fig. 6.7(k) is smoother than that of Fig. 6.7(j) and the 

curve in Fig. 6.7(j) tends to be averaged out by random blinks of all the individual dots 

in the region. Thus, deconvolving the intensity fluctuations over time alongside our 

image restoration provides a ‘ground truth’ for TRAM: our restoration can indeed 

separate single particles from diffraction-unresolved data.  

 



 

112 

6.3.3.2 Validation on Cell Images 

 

 

 

Fig. 6.8. Tests on cell data. (a) One of the 60 LR images acquired whilst translating the 

sample in steps of 100 nm. Three colours represent three different structures; Red: Actin, 

Green: Microtubule and Blue: DAPI. (b) Restored SR image by TRAM using the 60 

images. (c-d) Zooms of the regions of interest (right dashed box) in (a), showing LR 

(left) and restored SR views (right), respectively. (e - f)  Zooms of the regions of 

interest (left dashed box) in (a), showing LR (left) and restored SR views (right). Scale 

bars, 2 µm (a, b) and 400 nm (c - f). 

We next analyzed a bovine pulmonary artery endothelial cell sample stained with 

Texas Red-X phalloidin, anti-bovine α-tubulin and a BODIPY FL labeled secondary 

antibody, and DAPI. A set of 60 LR observations of all three channels were acquired, 

with translation of 100 nm between each frame, using a scanning confocal microscope.  

A LR observation and the restored  image are shown respectively in Fig. 6.8(a) and Fig. 

6.8(b), the latter demonstrating a dramatic improvement in resolution and signal-to-

noise ratio in all three colors. We magnified the two boxed regions of Fig. 6.8(a-b) and 

showed them in Fig. 6.8(c-d) and Fig. 6.8(e-f), respectively. As seen, in the raw data 
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where the microtubule network is unresolved and overlaps with DAPI (Fig. 6.8(c)), 

individual microtubule filaments and DAPI profiles are clearly resolved by TRAM (Fig. 

6.8(d)). The measured FWHM of a single microtubule is 31 nm, which represents a 

resolution improvement of 6.4-fold. When the three stained structures are densely 

packed and mixed in the LR image (Fig. 6.8(e)), TRAM is capable of refining their 

relative positions and particularly the boundary between actin and microtubule filaments 

(Fig. 6.8(f)).   

 

6.4 Conclusion 

In summary, in this chapter I first propose to derive a new prior model by combining 

the 1st- and 2nd-order NLDs and then incorporate it into an energy function in the 

inverse process to form a new FP-HR restoration method. Based on the FP-HR method, 

I present a new SR imaging technique that can be used with any motorised microscope 

with no further hardware modifications. Experimental results on synthetic data 

demonstrate that our method outperforms several popular HR restoration methods when 

applied to both synthetic and real natural images. When applied on real fluorescene 

microscopic data, our method result in a 7-fold increase in the lateral spatial resolution 

in noisy biological environments, delivering multi-colour image resolution of ~30 nm. 

We believe that this technique will be of broad interest to the cell-biology community.  
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Chapter 7 

Conclusion 

In the previous chapters I have presented several new explorations for image 

restoration and its applications in fluorescence microscopy. The results of our 

explorations are summarized as follows. 

The first part was devoted to the simplest image restoration, image denoising. After 

reviewing several popular denoising methods, I pointed out that all these methods were 

designed by using the 1st-order difference (gradient) of the image intensities to derive 

the smoothing strengths based on the edge-preservation concept; more complicated 

features or structures can be preserved as long as edges are preserved, so a good balance 

between noise removal and feature preserving in the denoised images can be achieved. 

We further demonstrated that these edge-preserving methods under low-SNR and/or 

low-contrast conditions may not be able to recover the edges contaminated with severe 

noise and thus fail to preserve other common features that are made of by the edges, 

such as blobs, ridges, which are important in the study of many subjects, including live-

cell imaging, biometrics, etc. Since blobs and ridges are mathematically most correlated 

to the 2nd-order difference rather than the 1st-order one which measures edges, I 

proposed a new 2nd-order NLD and demonstrated its superior performance for blob and 

ridge detection both in 1-D and 2-D cases, compared to the traditional Laplacian and 

LoG operators. We further incorporated the 2nd-order NLD into a diffusion model to 

form a new FP-NAD method. Experiments showed that the FP-NAD outperformed 

many popular filters for preserving blobs and ridges, reducing noise and minimizing 

artifacts. However, images captured in the natural environment usually consist of 

textures and complex networks that are made of a combination of edges and blobs and 

ridges. Noisy images of this kind can be beyond the capability of FP-NAD. To preserve 

simultaneously multiple features in natural images, I proposed a new GFP-NAD method, 

by combining the 1st- and 2nd-order NLD to form a new feature detector in a nonlinear 

diffusion model. The new feature detector measures image intensity contrasts between 

neighboring patches in a more sophisticated manner and can therefore effectively 

capture more features in complex environments. We tested the GFP-NAD on 1-D and 

2-D natural images and demonstrated improved performance in removing noise and 

preserving multiple features and textures, compared to FP-NAD and other popular 

denoising methods  
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In the second part of the thesis, I focused on a more sophisticated case of image 

restoration, super-resolution (SR) restoration in biological fluorescent microscopy to 

break the barrier of diffraction limit. We first outlined current SR approaches in the 

fluorescent microscopy. After reviewing several limits of these approaches such as high 

cost and limited applicability due to complex optical and fluorescent design, I proposed 

a new and inexpensive SR restoration method for quantitative microscopy in cell 

biology, where the noise effect is a main challenge. We pointed out that existing SR 

restoration methods use the edge information during the inverse process and do not 

perform well in achieving a good balance between noise removal and resolution 

recovery of features, particularly for fluorescence microscopic images with higher 

image complexity and smaller features than other images. To overcome this problem, I 

proposed a new prior model capable of characterizing complex biological structures 

under severe noise contamination by combining the 1st- and 2nd-order NLDs. The new 

model was then incorporated in an energy function to form a FR-SR method to seek for 

an estimation of the original noise-free SR image. To avoid converging to local 

optimum estimations, I proposed to use an IRLS optimization algorithm, ensuring the 

convergence towards either a global optimum or a local optimum solution that is most 

close to the global optimum among all local solutions. By combining the FP-SR 

restoration with a multiple LR image acquisition modality of translating the microscope 

cameras, I presented TRAM as a novel, simple and inexpensive SR imaging technique. 

It can be in principle implemented with any microscopes with no hardware 

modifications. Numerical experiments illustrated the superior performance of our 

method over other SR restoration methods, both visually and quantitatively, in 

simultaneous noise removing and resolution restoring. Experiments on real fluorescence 

data also result in a ~7-fold increase in lateral spatial resolution in noisy biological 

environments, delivering multi-colour image resolution of ~30 nm. 
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Appendix 

Energy minimization in Feature-Preserving Super-Resolution 

Restoration 

A.1 Algorithm Procedure 

In this appendix, I present a detailed procedure for minimizing the energy function 

given in Eq. (6.3) for SR restoration. We start by substituting Eq. (6.4)  into Eq. (6.3) to 

rewrite the energy function as, 
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where
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∇ I are respectively the 1st- and 2nd-order non-local 

difference (NLDs) given by Eq. (3.3), Eq. (3.6) and Eq. (4.8).  

The optimization problem, arg min ( )
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I I  , is usually solved by finding the 
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. However, Eq. (8.1) still contains the scalar 

variable ( )l xI  , thus the gradient ( )l
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 cannot be directly calculated. As such, I 

rewrite Eq. (6) in a matrix-vector form before differentiation. Since the NLDs involve 

patches, each of which contains multiple pixels, I define two matrices, 1
N N×∈D R and

2
N N×∈D R  in order to represent the 1st- and 2nd-order NLDs, 
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where N is the pixel number in the image, W denotes the half width of the patch,  

(3 1)W N+ ×0  is a null matrix to avoid the boundary effect, ( 6 2)
1

N W N
NL

− − ×∈D R and

( 6 2)N W N
NL

− − ×∈D R are defined as  



 

119 

 6 2

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

N

N WNL − −


− 
 −  = 

 
 − 




D

6444444447444444448
L L L

L L O

O O O O O O O O M

L L L

  (8.3) 
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We further define a column vector, 
1N

x
×∈δ R , whose xth element is the only nonzero 

element with unit value so that  the xth element of any vector v = [v(1),… v(x),… v(N)]T 

can be written as  

 ( ) T
xx =v δ v .  (8.5) 

Combining Eq.(8.3), (8.4) and (8.5), I rewrite the scalar variable of 1st- and 2nd-order 

NLD as 
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The function E(Il) is then expressed by using Eq. (8.6) in the following matrix-vector 

form, 
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which no longer contains any scalars related to Il. Eq. (8.7) now allows us to directly 

computer the gradient, 
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where the N × N diagonal matrices,NL1A and NL2A , are given as  
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and the N × N diagonal matrix , Ak, is given as 
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The minimization, i.e.,  0
)( =

l

l

d
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I , leads to the following equation,  
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which is a nonlinear equation of Il because ANL1, ANL2 and Ak also involve the variable Il, 

so will have multiple solutions that correspond to local and global minima of the energy 

function E(Il). We here apply a modified iterative reweighted least squares (MIRLS) 

method [185]. We first rewrite Eq. (8.11) as, 
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where the matrices Bk, Fl, Qk are given respectively as 
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We then modify the nonlinear equation Eq. (8.12) of Il as, 
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which contains more constraint than Eq. (8.12) since the unknown image Il should 

satisfy not only one equation but also M equations simultaneously. The solution Il by 

using Eq. (8.14) can therefore satisfy Eq. (8.12).  The main steps of MIRLS for solving 

Eq. (8.14) are: 
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(a) Initialization: Let Il  = Jl and 
lIλ = σn, where LR observation Jk, the blurring 

matrix Pk, the correspondence matrix Ckl and the noise Std σn are known. 

 

(b) Computer the weight matrices Bk, Fl, Qk by Eq. (8.13) based on the current 

estimate Il  

 

(c) For each frame k:  

(c1) Solve the equation 
2

,
2

1ˆ   argmin
2l k k k= −I B Q .  The solution ,l̂ kI  is an   

        intermediate solution of the final estimation Il,k in step (c).   

              (c2) Given ,l̂ kI  , calculate the final estimation Il,k in step (c) by solving the       

                     equation , ,
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where the weight vector is given as   

 [ ]1'( ( ) ( )),... '( ( ) ( )) / , 1,2...,
T

i l M l ki i i i C i Nφ φ= − − =w I I I I ,  (8.16) 

and Ck is a normalization factor. This step enforces that the multiple 

solutions Il,k  by step (c) should be similar to each other.  

 

(e) Go to step (c) if Eq. (8.12) cannot be satisfied using the current estimation 

lI ; otherwise update the parameter 
lIλ according to the residual noise in Il  

[173].  

 

(f) The iteration stops when Il converges (measured by MSDN Eq. (3.21) 

between two adjacent images) and is considered to be the restored image; 

otherwise go to step (b) to compute again the weight matrices with updated 

Il. 
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The intermediate solution 
2

,
2

1ˆ   argmin
2l k k k= −I B Q  in Step (c1) can be solved by many 

approaches,  e.g. conjugate gradient (CG), Wiener Filter, or shrinkage method. I solve it 

by iteratively using Wiener Filter method with a slight modification as  
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where eps is a small constant to make sure the stability of the matrix inverse, pre
,l kI is the 

solution for the previous iteration. Given the intermediate solution ,l̂ kI , we then solve 

the equation  
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which is supposed to be also solved by Wiener filter but the stability heavily depends on 

the constant eps. A small eps can bring several artifacts while a large eps can give 

inaccurate estimation of the solution ,l kI . We revise the equation by adding a 

regularization term as  
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where 
1

•  is the l-1 norm and operator ( )NL1,Root lA  generate a new matrix whose 

elements are square root of the corresponding elements of the matrix NL1,lA . We can 

then solve Eq.(8.19) using a well-known method of least-absolute-shrinkage-and-

selection-operator (lasso) [189] as, 
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where ( )sgn • is a sign function and ( )+•  is a shrinkage function given as [190], 

 ( ) 0

0

x a x a
x a

else

+ − − >
− = 


. (8.21) 

A.2 Numerical implementation 

The calculation of the matrices NL1A and NL2A  in Eq. (8.9) uses the 1st- and 2nd- order 

NLD since the image features in most cases are most correlated to the two NLDs. This 

is true for biological images. The natural images however may contain features that are 

not only correlated the two but also correlated to other NLDs, the orders of which 

depend on the features themselves and can vary at different pixel positions x. Since 

similar patches should use the same number of NLDs, I firstly cluster all image patches 

into separate classes using K-means clustering method [191]. The number of NLDs for 

each class is then estimated adaptively using singular vector decomposition (SVD).  

I first define a multivariate function I(Px) of the patch ( )2 1 1W
x R + ×∈P , which as defined 

in Eq. (3.1), is a vector consisting intensities of all pixels within the neighbourhood 

region xN of the pixel x. The value of the function I( xP ) is chosen to be the x-th element 

T
xδ I of the image vector I, namely I( xP ) = T

xδ I . As a result, we can present the function 

I(Px) as its Taylor series,  

 

T

2 2

T
2

NL NL2 2

1 vech ( )( )
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i i i

i

T
x x x x x x x

x i iI x x
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 ∇ ∇ 

L

L

δ I P P P P P P

P I I
, (8.22) 

where the operator vech(•) is defined as the half-vectorization operator of the “lower-

triangular”portion of a symmetric matrix, e.g.,  

 [ ]T
vech

a b
a b d

c d

   =  
  

. (8.23). 

Using Eq. (8.22) and (8.23), the patch xP  Eq. (3.1) can be hence rewritten as  

 
T

, ...,T T
x x W x W x x− + = = P δ I δ I Φ β , (8.24) 

where the (2W+1) × (2W+1) matrix xΦ and the (2W+1)-dimensional vector xβ  are 

written respectively as,  
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and 
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As such, the NLD vector xβ  can be obtained as  

 ( ) 1T T
x x x x x

−
=β Φ Φ Φ P . (8.27) 

As discussed earlier, the number of NLDs used for each patch xP , corresponding to the 

number L of the non-zero elements in the vector xβ , should be identical within same 

classes and differ between different classes. A small value may give rise to inaccurate 

modelling and a large one can result in over-fitting of the contaminated noise. Suppose 

that the class h contains G patches { }
1,...

h
x x G=

P , we therefore determine the NLD number 

Lh for the class h as the minimal number of non-zero elements of the vector xβ by 
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2 21 1

min ,

subject to

h h
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x x
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β

P Φ β P Φ Φ P
, (8.28) 

where  0l -norm 
0

v  of a vector v is also the non-zero elements of v, the parameter hγ is 

determined by the noise level for  the patches in the class h. Eq. () Eq. (8.28) can be 

solved by using the SVD of the matrix hxΦ  [192], the main steps of which are as follows: 

(a). For each  matrix h
xΦ , we extract its eigenvalues {sx

h(i)} i=1,…2W+1 , where 

sx
h(1)>sx

h(2)>…>sx
h(2W+1);  (b) The number Lh is then determined by  

 2 2

1 1

min( ), 1,2, ,2 1,
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h
x

i x

L m m W

s i Gσ
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= = +
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K

, (8.29) 
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, where σ is the Std of the noise contained in the image I. In fact, Eq. (8.29) is 

equivalent to the hard-thresholding method, or hard shrinkage, on the elements ( )x iβ  of 

NLD vector h
xβ  as [79]: 

 
( ) ( )

( )
0

h h
h x x x
x

i i
i

else

γ >
= 


β β
β , (8.30) 

where the threshold γx is chosen as 
2

2 1x W

σγ =
+

. In the real application, however, the 

complexity of performing SVD for each matrix hxΦ  is unaffordable since all patches 

require SVD calculation. To simplify the computation, we estimate Lh by performing 

the SVD on the covariance matrix ( ) ( )
1

1 G Th h h
x x

xG =

= ∑C P P of the patch class h so the 

eigenvalues are computed only once for the class h [192], which is equivalent to the 

PCA method for the patch class h. 
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