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1. Introduction

1.1. Motion in Image Sequences of Living Cells

In this thesis we investigate motion estimation methods in confocal fluorescence mi-
croscopy. Imaging living cells at the level of the nucleus or even at a subchromosomal
level poses a real challenge because images have a poor signal-to-noise ratio and a low
sampling rate combined with objects of interest at the size of the limit of resolution.

In contrast to intrinsic problems the interesting fact of living cells is that they move.
They move as a whole, but more interestingly is motion inside a living cell. For our
setup cell locomotion is irrelevant. But as cell locomotion will influence the motion
estimation results, we have to remove it or compensate it or motion estimation method
should incorporate cell locomotion.

The response of motion estimation methods relies on the characteristics of the se-
quence. As we are operating on the edge of what can be measured, motion information
is only useful if one can identify the reliability and the accuracy of a motion estimation
method. Therefore, reliability measures are needed to describe how much we are able
to trust our estimation results. But what are good reliability measures? Can we predict
on what occasions a method will fail?

1.2. Confocal Microscopy

The first compound light microscope is ascribed to Zacharias Jansen in 1595. It took
well into the 19th century for further important improvements to the theory and design
of microscopes. In the second half of the 20th century confocal microscopy saw its
light [29], [151], [113]. The availability of strong light sources such as laser and power-
ful computing facilities enabled a wide applicability of confocal microscopy. With the
introduction of confocal microscopy the images no longer were unknown projections
of a complex 3D world. Nowadays confocal fluorescence microscopy is commonly
used in the biological and biomedical sciences.
Confocal principle
The principle of confocal microscopy rests on the use of a pinhole to block out sig-
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1. Introduction

nals which are out of focus. See figure 1 1 for schematics of the confocal microscope
principle. The ability to scan the laser focus in x- and y-direction through the spec-
imen, combined with a scanning table in z-direction, enables the creation of a three
dimensional image from the responses primarily originating from the spot of the laser.
The logical next step is the evaluation of dynamic processes in a three dimensional
environment.

Figure 1.1.: Principle of confocal microscopy. Optical sectioning is provided by the
pinholes in front of the laser and the detector element. Hence only the
light originating from the focal plane reaches the detector. Light emitted
from out of focus planes is largely blocked by the pinhole.

Fluorescence
Fluorescence confocal microscopy relies on the use of fluorophores attached to the bi-
ological substrate to be visualized. In the specimen, fluorescent molecules are either
natural fluorophores, or fluorophores added by a chemical process referred to as stain-

1image obtained from ����� �����	��
�
�
� ���� ����� ���������� ������� �"!#�%$'&)('*,+	- ./��0�!��1��23��01!�� 4�� 5��7698;:� �����
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1.3. Living Cells

ing. The latter process can be done in such a way that the deposition of the fluorophores
is specific to certain functional groups in the specimen. [2], [127], [128],

Light production at the focal spot originates from fluorophores. The fluorophores
are excitated by the scanning focal spot. When staining and image formation is done
right, it may be concluded that the detected light is derived with known specificity from
the focal spot. Then the intensity of the fluorescence is sufficiently proportional to the
density of the fluorophores.
Bleaching
The density is not the only factor one has to take into account when imaging with
fluorescence. An important other characteristic is the bleaching of fluorophores. Foto-
bleaching is the decline of the numbers of molecules which are able to fluoresce. There
is an average number of excitation emission cycles one molecule can endure. The av-
erage number of cycles depends on the type of fluorescent molecules. Bleaching in
the specimen may be modeled in good approximation by an exponential decay pro-
cess. The speed of decay is determined by the chemical environment of the fluorescent
molecules.
Noise
Any measurement on rare, uncorrelated, discrete events will give rise to hits following
Poisson statistics. When measuring � photons, there is a 68% probability that the
actual amount of photons lies between ���

�
� and ���

�
� . The higher the amount

of collected photons, the smaller the relative uncertainty will become. The signal-to-
noise ratio is proportional to

�
� .

1.3. Living Cells

The introduction of fluorescent proteins has made it possible to look into living cells
as they function [157], [141]. The potential applications are abundant. We name just
a few: visualizing cancer processes in living animals [78], the evaluation of tumor
cell mobility, or even processes inside nuclei of living cells [105], [103], [154], [114],
[130].
Keeping cells alive
For visualizing its internal functioning it is essential to keep the cell on the microscope
stage alive. The cellular environment should be kept constant, by means of controlling
the temperature, humidity and CO � . Also the sensitivity of a living cell to photodam-
age forms a real threat. The bleaching fluorophores enhance the damaging effect and
appropriate measures have to be taken to counter that effect by keeping the light in-
tensity as low as the signal to noise ratio allows for data collection [157]. Limiting
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1. Introduction

photodamage is controlled by the light intensity and the duration of the illumination at
the expense of high levels of noise in the signal.
Living cells move

Once the cells are successfully kept alive during the scanning the door is opened to
study the motion of cells and its internal parts. There are various types of motion and
movement in living cells. One is locomotion of a cell or a group of cells [78]. When
studying motion inside living cells typically first one has to compensate for the motion
of the cell as a whole. We leave locomotion to what it is, although the techniques we
develop to investigate motion inside living cells need the locomotion of the cell either
to be compensated or removed.

1.4. Motion estimation

In the literature of computer vision several models of motion are identified.
Motion models
Rigid motion If an object shape remains constant during the motion one speaks of a
rigid motion. Rigid objects can be tracked by matching the previous appearance if the
object on the next frame. This assumes that the correspondence of objects over time is
unambiguous. It implies that an object needs to be represented by features which are
unique to that object. Example features are object intensity, object shape when fixed,
spatial arrangement of objects when stable or even object motility when unique.

This immediately gives rise to the question ’what is a good object feature?’ For
example, the shape of an object is only a good feature if the shape descriptor is both
specific and constant for each individual object. For objects with dimensions at or
below the limit of resolution of the microscope, the shape as it appears in the recorded
image is dominated by the point spread function of the microscope. Thus in good
approximation the shape will be identical for all objects. As a consequence, shape
alone cannot be used as a unique identifier of the object to track.
Quasi-rigid motion To permit some object flexibility, we can admit piece-wise rigid
bodies where the object can be divided into rigid body parts. These rigid parts are
connected by hinges enabling orientation changes of parts. The motion of a human
body is usually described by such a model for its motion. The degrees of freedom of
each joint determines the possible relative motion of the body parts.
Non-rigid motion An object without any rigidity constraint can freely change its shape.
The shape of an object is determined by internal and external forces acting upon it [3].

In confocal microscopy we expect to have objects which motion is determined by
a non-rigid motion model. Although object particles are not by definition non-rigid

4



1.5. Scope of this thesis

as well. It depends on the problem statement at hand what kind of motion model is
appropriate.
Motion estimation

The choice of a proper model for motion estimation depends on several imaging
characteristics. The temporal sampling rate of confocal microscopy sequences influ-
ences directly the choice of motion estimation models.
Tracking features Tracking features is a widely used technique to estimate the motion
in sequences. The features to track can be points [148], [53], [180] or line segments
[52]. In these methods tracking is posed as a ’connect the dots’ problem. No additional
image knowledge is used.
Region based tracking: Another form of tracking is based on region tracking. In region
tracking patches of an image are correlated to patches of a next image in a sequence
[129], [86], [81].
Optical flow tracking: A third group of motion estimation methods can be character-
ized by the use of spatio-temporal derivatives. For example optical flow estimation
[79], [185], [100] gives a dense velocity field. This is in contrast to the sparse velocity
field of the previous mentioned tracking methods.

1.5. Scope of this thesis

In chapter 2 we evaluate an optical flow velocity estimation method based on spatial
and temporal derivatives. The velocity estimation is applied to study chromatin motion.
A reliability measure is incorporated to reduce the uncertainty in the estimation [18].

In chapter 3 we investigate a tracking method that uses the bleaching of fluorescence
as a model of spot intensity. With the method it has been studied if spotmotion is
dictated by Brownian motion combined with directed motion. The tracking needs to be
capable of tracking spots in noisy sequences and spatially the spots only cover several
voxels.

Chapter 4 describes the value of determining divergence and curl from sequences
of living cells. The influence of the derivative function to the estimation of divergence
and curl has been evaluated.

In chapter 5 we describe the geometrical arrangement of moving objects or points
of interest. It has been studied how the geometrical arrangement described by the di-
vergence and curl of parts of the geometrical arrangement is descriptive for the relative
motion of internal markers inside a living cell nucleus. Furthermore it has been stud-
ied how different definitions of markers result in motion characterization of shapeless
objects and blob patterns.
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2. Velocity Estimation of Spots in 3D Confocal Image Sequences of Living Cells

2.1. abstract

The analysis of 3D-motion is becoming of increasing importance in life cell imaging.
A simple description of sometimes complex patterns of movement in living cells gives
insight in the underlying mechanisms governing these movements.

We evaluate a velocity estimation method based on intensity derivatives in spatial
and temporal domain from 3D confocal images of living cells. Cells of the sample
contain intense spots throughout the cell nucleus. In simulations we model these spots
as Gaussian intensity profiles which are constant in intensity and shape. To quantify
the quality of the estimated velocity we introduce a reliability measure.

For constant linear velocity the velocity estimation is unbiased. For accelerated mo-
tion paths or when a neighboring spot disturbs the intensity profile the method results
are biased. The influence of the point-spread function on the velocity estimation can be
compensated for by introducing anisotropic derivative kernels. The insight gained in
the simulations is confirmed by the results of the method applied on an image sequence
of a living cell with fluorescently labeled chromatin.

With the velocity estimation method a tool for estimating 3D velocity fields is de-
scribed which is successfully applied to a living cell sequence. With the estimated
velocity fields motion patterns can be observed, which are a useful starting point for
the analysis of dynamic processes in living cells.
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2.2. Introduction

2.2. Introduction

During the last few years new labeling techniques (e.g. GFP techniques and in vitro
labeling of DNA with fluorescent nucleotide) and detection techniques (e.g. confocal
microscopy, 2-photon excitation) have become available that allow us to observe cel-
lular structures in 3 dimensions in living cells. The large amount of data generated
by 4D-imaging (3D + time) contains the information concerning sometimes complex
movements of these structures. Therefore determination of 3D motion patterns of spots
is of major importance. Velocity estimates of individual spots can provide valuable in-
formation in analysis of motion patterns.

Velocity estimation methods can be roughly divided in two groups: feature and
model based object tracking methods [148], [194] and image derivative based methods
like optical flow [1], [11], [12], [79], [100], [153]. Spot tracking methods rely heavily
on accuracy of the segmentation of spots or other uniquely detectable characteristic ob-
jects. In general, segmentation methods are sensitive to the high noise levels, which are
common in image sequences of living cells. In optical flow methods no segmentation
is needed. Consequently motion patterns can be obtained avoiding the disadvantages
related to segmentation.

Practical imaging with a confocal system results in blurred images of spots [161].
The blurring is caused by the point-spread function of the system. Especially when the
objects are small compared to the point-spread function, the blurring can cause a biased
velocity estimation. Usually deconvolution is used to reduce the influence of blurring
by the point-spread function. However, deconvolution is noise sensitive [176] and com-
plete reconstruction of the original objects is never accomplished. Therefore we have
developed a procedure that allows the compensation for blurring by the point-spread
function. This procedure is incorporated in the velocity estimation method without any
loss of functionality and computational efficiency of the velocity estimation method.

In this paper we evaluate the applicability of optical flow on 3D image sequences
containing moving spots. We show that this method is theoretically unbiased for con-
stant motion of a single spot along a straight trajectory. Furthermore we investigate the
velocity estimation for curved trajectories of single spots and linear trajectories with
overlapping spots and introduce a reliability measure. A correction procedure was
designed to compensate for the influence of the point-spread function. The applicabil-
ity of the here presented methods are demonstrated in two different image sequences
recorded by confocal microscopy: 1) fluorescent beads and 2) fluorescently labeled
chromatin in living cells [105].

9



2. Velocity Estimation of Spots in 3D Confocal Image Sequences of Living Cells

2.3. Materials and Methods

2.3.1. Optical Flow

The formulation of optical flow is based on the assumption that the total time derivative
of the image is zero at all positions through the image sequence. This leads to the
optical flow constraint as introduced by Horn and Schunk [79]:

���������
	
����������
	
� � ���������
	
�������
(2.1)

with
�������
	
�

the image intensity function,
���������
	
����������� � � ��!��" � ����� � � ��!��# � ����� � � ��!��$ �

the
gradient vector of the image intensity,

���%�����
	
�
the time derivative of the intensity and

position
�

is the three dimensional position
�&�'��()�
*+�-, �

. Vector
�������
	
�

is the op-
tical flow at position and time of computation of derivatives. The optical flow vector
corresponds to the three dimensional velocity vector at a certain position in space.

In case the space would be one dimensional, a single optical flow constraint is the-
oretically sufficient to compute a single velocity vector. The single linear equation
(2.1) does not yield sufficient information to resolve the velocity from a sequence of
3D images regarding the three dimensional nature of flow vector

�������
	
�
; the system is

under determined. Several solutions for extra constraints are available: multiple mea-
surements in a single point [12], [185], or an extra global constraint [79], or by using a
local motion constraint [100] [153].

Multiple measurements in a single point require multiple independent filters applied
to the image. For example application of different orders of derivatives or different
orientations of derivative filters is used [185]. The computational load increases with
the amount of independent filters and higher order derivatives are more sensitive to
noise. Consequently, for the noisy images of living cells first order derivatives are
more appropriate.

The global motion constraint assumes small variation in the motion over the total
image domain. In a sequence with multiple spots, spots have different individual ve-
locities. Accordingly, estimations using a global motion constraint will be biased in
living cell image sequences. Therefore the velocity is calculated using a local motion
constraint, following [11], [100], [153]. The assumption in using local constraints is
that neighboring voxels within a local region . will have the same velocity and should
give the same optical flow vector. In computing the flow vector, a number of optical
flow constraint equations within a small region around the position of flow estimation
are combined. To emphasize information close to the point of estimation a weighting
function is used which decays with distance from the central position.

We compute the optical flow following [100] and others ([1], [11], [153]). To find
the flow vector we compute a linear least squares estimation of

�������
	
�
with a Gaussian
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2.3. Materials and Methods

weight function � ���)�
. The weight function is incorporated in a squared error function

by a convolution of the squared optical flow constraint with � ���)�
� ���������
	
�
� � � ���)����� ���������
	
���%�������
	
�

�
���������
	
��� � �

(2.2)

with

� ���)��� �	 
��� ����
� ��� ��� ���� ��

!��
(2.3)

Equation (2.2) gives the error function in every position
�

in the image sequence. Min-
imizing the error function (2.2) for

�
����� ��� ��� � ���)����� ���������
	
�
���������
	
� � ���������
	
� � ���������
	
� ���%�����
	
���������

(2.4)

and using the assumption of
�������
	
�

constant in � ���)�
results in an expression for the

flow vector
�������
	
�

: �������
	
��� �"! �����
	
� ��#%$ �����
	
� �
(2.5)

In equation (2.5) matrix ! �����
	
�
and vector

$ �����
	
�
are defined by:

! �����
	
� � � ���)����� ���������
	
�
���������
	
� �&� �
(2.6)$ �����
	
� � � ���)����� ���������
	
� ���������
	
��� �
(2.7)

The derivative images in (2.6) and (2.7) are based on spatiotemporal Gaussian deriva-
tives as also used in [118], [185]:

�('-�����
	
���*)),+ �.- �����
	%/
,0 �  �
��� �������
	
�
���1-2'
�����
	%/ ,0 �  �
��� �������
	
���

(2.8)

with + the index of differentiation ( + � ()�
*+�-, �
	
) of arbitrary order. The Gaussian

kernel for derivative function (2.8) is then:

- �����
	%/ ,0 �  �
� � �� 	 
��� �0 � 3 �
� ��� ��� ���� �4 ! �	 
��� �� �

� ��5 ���� �5
! �

(2.9)

with
,0

spatial width and
 �

temporal width of the Gaussian derivative function. Gaus-
sian derivative functions are utilized to suppress the influence of noise on the derivative
estimates. Moreover, Gaussian derivatives provide meaningful derivatives in a discrete
image [97].

11



2. Velocity Estimation of Spots in 3D Confocal Image Sequences of Living Cells

2.3.2. Single Spot Motion Estimation

Consider an image sequence containing spots moving in a 3D environment. All spot
intensity profiles contribute to the image intensity. Here we consider spots to be mod-
eled by a Gaussian intensity profile. For a single moving spot, with width


, the image

sequence intensity function
�������
	
�

is:

�������
	
��� �� � 
��� � � 3 � � � ��� ��� 5�� � ���� � �
(2.10)

with the trajectory of the spot described by � ��	
� .
For a single spot moving along a straight line with constant velocity the estimation

will be unbiased. For unbiased results error function (2.2) is equal to zero throughout
the image i.e. � ��� ����� �

(2.11)

Equation (2.11) is zero if the optical flow constraint (2.1) is met. In a straightforward
derivation one can prove that with a Gaussian intensity profile and Gaussian derivatives
the latter requirement is fulfilled [17].
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Figure 2.1.: The intensity profiles in the spatial and the temporal domain for a Gaussian
object with

 �	�
. a) A spatial intensity profile (

� � � � ). b) The temporal
intensity profiles of a) for two different velocities

� ��
 � � 
� . c) The
temporal intensity profiles for two accelerated spots, with acceleration � �

�� � ��� � .

12



2.3. Materials and Methods

For accelerated motion, the velocity estimation is expected to be biased. To inves-
tigate the mechanism which may introduce the bias due to acceleration we look at the
temporal intensity profile at a constant position in the image (Fig. 2.1). The position is
located on the trajectory of the spot center. When a Gaussian spot is moving along the
linear trajectory the intensity in this constant position changes over time. Plotting the
observed intensity as a function of time gives a temporal intensity profile as in figure
2.1b. The temporal intensity profile is a symmetric function for a constant velocity
along a straight line. The width of the profile is a relation between the width of the spot
and the velocity of the spot.  ��� �������
	
� � 

� � �
�

(2.12)

If we let the Gaussian spot accelerate, the temporal intensity function becomes asym-
metric as in figure 2.1c. Since we use symmetric kernels for derivatives and weighting
function we expect the asymmetry to be of influence on the bias of the estimation of
the spot velocity.

2.3.3. Reliability Measure

The velocity estimation method assumes a constant intensity profile in a local volume
. . This is true for single spots. When two spots are close to each other the intensity
profiles overlap. When intensity profiles overlap the spot intensity profiles are not
constant in time anymore. When the intensity of a spot changes over time, bias in the
velocity estimation is expected. To detect errors in the velocity field, the smoothness
of the local velocity field structure is useful to provide for a reliability measure for the
estimated velocity.

The velocity field is called smooth when all vectors in a volume . have the same
orientation and the same length. This is the case for an unperturbed spot.

A smoothness measure of the velocity field can be calculated by principal com-
ponents analysis [84] of the relative velocity field in a local volume . . A velocity�� �����
	
�

, relative to the average velocity vector
���

in volume . is calculated by

�� �����
	
��� �������
	
� � ��� �
(2.13)

From
�� �����
	
�

we form a scatter matrix

� �����
	
� � �� �����
	
� �� �����
	
� � �
(2.14)

where the averaging is over all points in . . The eigenvalues � '-�����
	
� ( + � � � 
 ��� ) of
scatter matrix

� �����
	
�
represent the smoothness of the velocity field in . , since the
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2. Velocity Estimation of Spots in 3D Confocal Image Sequences of Living Cells

(a) (b)

Figure 2.2.: Two different examples of a 3D velocity field in a local volume . . At the
left hand side of each figure the velocity field is depicted and at the right
hand side the resulting volume spanned by the eigenvectors � '-�����
	
�

of the
scatter matrix

� �����
	
�
is schematically given. a) A small deviation from

the average velocity vector causes a small volume spanned by the eigen-
vectors. b) For large deviations of the velocity vectors from the average a
large volume is spanned by the eigenvectors.

eigenvalues measure the spread of the vectors
�  �����
	
�

in . (see Fig. 2.2). Due to the
nature of the relative velocity vector field

�  �����
	
�
a smooth velocity field gives rise

to small eigenvalues (see Fig. 2.2a). This is because in a smooth velocity field all
velocity vectors have the same length and orientation. With such a field the deviation
of the relative velocity from the average velocity in . will be zero or at least very small.

Thus a smooth velocity field will yield small eigenvalues � ' . Therefore we define
a reliability measure

� �����
	
�
, which takes the spread of the velocity field in volume .

relative to the measured average velocity in volume . .

� �����
	
��� � �����
	
�
�������
	
� �

� � 3' � # � '
�

(2.15)

with � ' the eigenvalues of the scatter matrix
� �����
	
�

and
�������
	
�

the average velocity
in a local volume . with . at location

�
and at time point

	
. The reliability measure

is a normalized function, resulting in values between zero and one. A value of one
represents a maximal reliability of the velocity estimation. Smaller values of

� �����
	
�
represent lower reliability.
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2.3. Materials and Methods

2.3.4. Anisotropy of the point-spread function

In the previous sections image sequences with isotropic spots and kernels were as-
sumed. However, the actual point-spread function in a confocal microscope is an
anisotrope function, which can be approximated by a 3D Gaussian function [178] (in
the following denoted by � ���)�

). The size of � ���)�
in axial direction (

 	� ) is approx-
imately three times the size in lateral direction (

 �� ) for a 1.3 NA objective. This
anisotropy is expected to cause the estimation to be direction dependent if the size of

� ���)�
is in the order of magnitude of the spots to be observed. Consequently two spots

touching in the axial direction experience the same amount of overlap at larger dis-
tances, than spots touching in the lateral direction. This influences the determination
of the derivatives involved in the velocity estimation. In this section we describe how
to overcome this position and orientation dependency of the velocity estimate.

A single spot as imaged by a confocal microscope is the result of a convolution of
the original object � �����
	
� with the point-spread function � ���)�

,

�������
	
��� � �����
	
��� � �����
	
�
�

(2.16)

The Gaussian derivative image of the spot image is a convolution of the spot image�������
	
�
with the Gaussian derivative kernel

- '-�����
	
�
,

�(' �����
	
� �*)),+ �.- �����
	%/
 �� �  	� ��� � �����
	%/  �� �  	� �
��� � �����
	
�

�
(2.17)

The convolution of two Gaussian functions,
- �����
	%/  �� �  	� � and � �����
	%/  �� �  	� �

results
in a Gaussian function � �����
	%/  �� �  	� �

(see Fig. 2.3), with lateral and axial scales:

 �� � �  �� � �  �� � � (2.18) 	� � �  	� � �  	� � � (2.19)

Thus the resulting derivative of the spot is an isotrope function if the Gaussian function
� �����
	%/  �� �  	� �

is an isotrope function. � �����
	%/  �� �  	� �
can be made isotrope if

 �� and 	� are chosen as follows:  �� �  	� �  � �
(2.20) �� � �  � � �

 �� � � (2.21) 	� � �  � � �
 	� � � (2.22)
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2. Velocity Estimation of Spots in 3D Confocal Image Sequences of Living Cells

Figure 2.3.: The convolution of an imaged object (left) with the anisotrope cigar shaped
point-spread function of the confocal imaging system and an anisotrope
oblate ellipsoid kernel of the derivatives leads to an isotrope object image
(right). The lateral scale is the scale in x and y direction (

�� �  � � 
� ),

the axial scale

� is the scale in the z direction. The scale of the isotrope

object image is a function of the original object size and the scales of the
point-spread function and the kernels

 �� and
 	� .

2.3.5. Error Measures

To have an indication of the possible bias of the estimated velocity field, error measures
are needed. In the simulations original motion of the spot is known, therefore it is
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2.4. Results

possible to calculate the difference between the original correct velocity
���

and the
estimated velocity

��� 0 �
. The definitions of the two error measures employed are:

��� � � ��� � � � ��! � � � ��� 4 5 � � � ��! �� ��� � � � ��! � �
(2.23)

�
	 � #
��������������

��� � � � ��!�� ��� 4 5 � � � ��!� ��� � � � ��! � � ��� 4 5 � � � ��! �
�

(2.24)

In the experiments �
� is expressed in percentages and ��	 is expressed in degrees.

2.3.6. Sample Preparation

Cell Culture and Preparation
Indian Muntjac cells were cultured in glass-bottom petri-dishes coated with poly-d-

lysine (MatTek). Cells were bead-loaded with fluorescein-dUTP (Molecular Probes)
as described in [105] and cultured for 5 hours to allow incorporation of fluorescein-
12-dUTP into nascent DNA. During imaging the cells were kept at

�������
on a heated

stage by using an objective heater (Bioptechs, Butler, PA). 3D images were obtained
using a Zeiss LSM510 (Carl Zeiss, Jena, Germany) equipped with a Plan-Neofluar
100x/1.3-oil and Ar-ion laser tuned at �������! and less than

� � ����� laser power at the
position of the cells, to prevent cell death [105]. 30 3D images each containing 18
optical sections (512x512 pixels) were scanned at a sample frequency of 12 images per
hour and a voxel size of " ���! lateral and

� � ���! axial. Cells were scanned directly
after telophase entering G # phase.

Bead Preparation
A fluorescent bead with a diameter of ��#! is imaged with a Zeiss LSM510 (Carl

Zeiss, Jena, Germany) equipped with a Plan-Neofluar 100x/1.3-oil and Ar-ion laser
tuned at �������! . 15 3D images each containing 64 optical sections (512x512 pixels)
were scanned with a voxel size of



���! lateral and ��� ���! axial. Afterwards a linear

motion path is constructed by computing images which are translated relative to the
original images. For each individual time frame a different image is used. In this way
successive frames have uncorrelated noise and imaging imperfections. The bead has a
radius

�%$
in the lateral plane of approximately 25 voxels (see figure 2.4).

2.4. Results

In this section some examples are shown that demonstrate the applicability of the mo-
tion estimation on moving spots in 3D. The section consists of a part which shows
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2. Velocity Estimation of Spots in 3D Confocal Image Sequences of Living Cells

−50 0 50
0

255

Figure 2.4.: The intensity profile along a line in the xy plane through the center of the
recorded bead.

simulations on motion estimation and a part which shows the application of the mo-
tion estimation on real 3D image sequences. In the first part a series of simulations
is presented, which show the estimation bias in some specific situations such as linear
motion, constant and accelerated, and curved motion of a single spot. The estimation
bias of close spots with overlapping intensity profiles is examined. A final simulation
demonstrates the robustness of the motion estimation method in relation to the constant
shape of the intensity profile of the spots.

In the second part the application of the motion estimation is demonstrated on two
image sequences recorded with a confocal microscope. The first image sequence is
based on a number of 3D images of a fluorescent bead. The second sequence is a time
series of 3D images of a living cell recorded during cell division.

2.4.1. Simulations on Motion

In the simulations the average error and the standard deviation of the errors ��� (2.23)
and �
	 (2.24) are calculated over a local volume. The local averaging volume is an
isotropic volume of the size of the spots. Besides the errors ��� and �
	 also the reliability
measure

�
(2.3.3) is calculated over the same local averaging volume. In this way the

reliability measure can be compared to the real estimation bias.
The simulations evaluate the estimation bias of the method in three ways: the in-

fluence of the type of motion pattern of the spots, the influence of the point-spread
function and the robustness for the shape of the spots.

The different motion patterns under evaluation are linear and curved motion. With
linear motion a further classification is made in constant linear motion and accelerated
linear motion. In the motion pattern simulations, image sequences are created with the
specific motion patterns of a single isotropic Gaussian spot with scale

 � �
.
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2.4. Results

Experiments reveal that spatial sampling is not very critical as long as the spatial
scale of the derivative kernels (see eq. (2.9))

,0�� 

approximately. We choose for

 0
a value of

,0 � �
�
�  and for spatial scale of local volume � ���)�

(see eq. (2.2)) a value
of

 � � 
. Since the time sampling is the most critical parameter in the application of

the motion estimation the temporal kernel size is varied from
 � � 
�� �

to
 � � 


in
unit time step throughout all simulations.
Linear Motion The estimation bias for the spot moving with constant relative velocity
is in the order of � � ��� � 3

for the temporal filter widths used. The value for the relative
velocity

� ��� ��
lies between

� ��� �� � � and
� ��� �� � � . The deviation of the values of

�
from the perfect situation (

� � ��� ��� ) are negligible.
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Figure 2.5.: Accelerated linear motion: for a linear moving Gaussian spot the veloc-
ity estimation errors �
� and �
	 and the reliability measure R are given as
function of the acceleration of the spot.

In figure 2.5 the estimation bias for accelerated motion is shown. As expected, bias
is a function of the acceleration � of the spot and of the scale

 �
of the temporal part

of the derivative kernels. The acceleration �	� � � � � � � ��� which is a realistic choice of
parameters considering practical motion situations. The motion is chosen in such a way
that the velocity at the time point of motion estimation is the same for all the situations� � � �� � �

�
�
. The figure shows a relationship between the temporal size of the kernel

and the estimation bias. For small kernels the bias is small and the bias increases with
increasing kernel size. As can be expected from section 2.3.2 the bias increases with
increasing acceleration of the moving spot. The reliability measure

�
decreases with

increasing acceleration and increasing kernel size.
Curved Motion The estimation bias as a function of the radius of a motion curve ( 
 ��
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2. Velocity Estimation of Spots in 3D Confocal Image Sequences of Living Cells

between 
 �� � � and 
 �� � 

� ) is given in figure 2.6. The tangential velocity of

the spot is kept constant during the simulation (
� � � �� � �

�
�
). With decreasing radius

of the motion curve the reliability measure
�

decreases significantly as compared to
the linear motion results. Again a larger temporal kernel size gives a larger bias and
smaller reliability measure in the motion estimation. For increasing radius, 
���� ,
the motion asymptotically reaches a linear motion path. The corresponding bias also
asymptotically reach low values for 
���� .
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Figure 2.6.: Curved motion with constant velocity: for a moving Gaussian spot along
a curved path with radius 
 the velocity estimation errors ��� and �
	 and the
reliability measure R are given as function of the radius 
 .

Anisotropy Correction The influence of the point-spread function of a microscope is
simulated in sequences with anisotropic Gaussian spots. The size in the axial direction
differs from the size in the lateral direction (

 	 �� � � �
) to simulate the difference

in blurring by the microscope in the axial and lateral direction. Due to this blurring
of the microscope the intensity profiles of different spots can overlap. The derivative
kernel widths are chosen as

 	� �� �� � � � � ��� for a
 � �� � � � � � � to correct for

the anisotropy of the spot. The spot describes a linear motion with constant velocity� � � � �
�
�  �

. A second spot is situated at a distance
�

from the center of the moving
spot at the time frame of estimation. Three situations are demonstrated; the second
spot is located in the lateral plan ( � � � � ), the second spot is located in the axial plane
( � �	� � � ) and the second spot is located at � � � � � from the lateral plane (see Fig.
2.7). This simulation is repeated with the same anisotropic spots but with isotropic
derivative kernels.

The estimation bias for two overlapping Gaussian intensity profiles is given in figure
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2.4. Results

Figure 2.7.: The positioning of two spots for the simulation with two overlapping spots.
One spot is fixed in space at the origin. The second spot moves along a
straight line with a constant velocity

�
. The motion path has at a minimum

distance
�

from the origin an angle � from the lateral plane.

2.8. The bias is calculated at the time frame where the distance
�

between the spots
is minimal. The estimation bias is a function of

�
for both situations. The original

anisotropic spot with isotropic derivative kernels also shows (Fig. 2.8 top panels) an
orientation dependency. In the situation where the anisotropic spot is compensated with
anisotropic kernels (Fig. 2.8 bottom panels) the orientation dependency is vanished.
The reliability measure

�
drops below

� ��� which is small compared to the other
simulations described.
Robustness for Intensity Profile Shape Since the estimation method depends on the
estimation of intensity derivatives, the shape of a spot is of interest. If the shape of a
spot hampers accurate derivative estimation, the result of the estimation method may
be biased. Spot shapes encountered in living cells will usually resemble a Gaussian
spot shape but also profile shapes that are more accurately described by a parabolic or
even a rectangular intensity profile are sometimes present in the images. To examine
the bias caused by spot shapes deviating from a Gaussian shape, three spot shapes are
used. A Gaussian shaped spot as in the previous simulations, a spot with a parabolic
intensity profile and a spot with a rectangular intensity profile. In figure 2.9 the three
used intensity profiles are shown. The intensity is given as a function of the distance
from the center of the object. In figure 2.10 the estimation bias for the three shapes is
given. The bias for the three different shapes is negligible. The reliability measure is
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Figure 2.8.: point-spread function influence: an anisotropic spot constantly moving
along a straight line with another stationary spot overlapping. The lo-
cation of the stationary spot at distance

� �� � is taken for three angles �
with the lateral plane. For the top three panels no correction for anisotropy
is applied. The bottom three panels show the correction for point-spread
function influence.

approximately 100 %.

2.4.2. Application to 3D confocal image sequences

Fluorescent Bead A series of linear motion paths is constructed from the serie of bead
images, with velocities

� � � � � � � 
 ���
in the lateral plane. In figure 2.11 the resulting

motion estimation bias is given along with the reliability measure
�

. The reliability
measure

�
is never lower than 95%.
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Figure 2.9.: Intensity profiles. A Gaussian shaped intensity profile, a parabolic inten-
sity profile and a rectangular intensity profile. The profiles give the inten-
sity of the objects as function of the radius from the center of the object.
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Figure 2.10.: Robustness for shape: the velocity errors ��� and �
	 and the reliability
measure R are given for three different shapes, with radius

� 0
; an ob-

ject with a Gaussian intensity profile, an object with a parabolic intensity
profile and an object with a rectangular intensity profile.

Living Cell The second sequence contains a living cell nucleus labeled with fluorescein-
dUTP (Fig. 2.12). Spots formed from labeled DNA move through the nucleus. In the
sequence we observe that the cell shows a global motion containing translational and
rotational components. Superimposed on this global motion spots show a relative mo-
tion. Since we are only interested in the relative motion of the single spots we corrected
for nuclear movement. Figure 2.13 (top right panel) shows five time steps of the se-
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Figure 2.11.: Motion estimation on a single moving fluorescent bead. A bead with ra-
dius
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of approximately 25 [voxel] is artificially moved with a constant

velocity
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along a linear trajectory. The velocity estimation errors��� and �
	 and the reliability measure R are given as function of the bead
velocity

� � � � �%$
.

quence. The time steps are color coded. Each time step is obtained from the sequence
by taking a threshold on the maximum intensity projection along the z-axis. This figure
gives an impression of the motion paths. The motion paths of spots A and B show an
approximately linear path for time steps 2 3 and 4, whereas the motion path of spot C
shows a meandering curve.

The velocity of the spots is estimated using kernel sizes
 0 � �

and
 � � �

for the
spatial scale, and

 � � 
�� �
for the temporal scale. To represent the estimated velocities

the three spots A, B and C from Fig. 2.13 are shown in figure 2.14. For each spot two
optical sections are presented. One optical section at a specific z position (x-y plane,
left image) and one optical section at a specific x position (z-y plane, right image).
In the optical sections two time steps are shown as two colors. The first time step is
colored red and the second time step is colored green. To give an idea of the estimated
velocities a smooth contour at a constant intensity (isophote) is plotted. The plotted
velocity vectors for spots A and B start from the first contour and end near the second
contour. The vectors show the direction and the length of the displacement of the spots.
The velocity vectors are a projection of the 3D velocity vectors.

Spots A and B (Fig. 2.14 top and middle panels) show a good velocity estimation and
spot C (Fig. 2.14 bottom panels) shows an inferior velocity estimation. Both direction
and length of the velocity vectors of spot C do not correspond with the displacement of
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2.5. Discussion

Figure 2.12.: A single frame from the live cell sequence. At the top left, top right and
bottom left maximum intensity projections are shown of the recorded
volume. The top left image is the xy plane, with the projection along the
z-axis, the top right image shows the maximum intensity projection along
the x axis and the bottom left image shows the projection along the y axis.
The bottom right image shows a 3D impression by means of a Simulated
Fluorescence Process (SFP) [175].

the spot due to the meandering of spot C. The values for the reliability measure
�

for
the three spots are measured. Spot A and spot B have a reliability of 99.6 % and 94.0
% respectively. The reliability measure

�
for spot C is 90.4 %.

2.5. Discussion

In this paper we demonstrated the usefulness of derivative based velocity estimation in
3D confocal image sequences. Within the optical flow framework we investigated the
determinants for accuracy in velocity of spots in living cells. The characteristics of the
motion patterns turned out to be of major importance for the correctness of the velocity
estimation. We have extensively investigated the influence of the motion patterns on
the bias of the velocity estimation method in a number of simulations.

The simulations confirm the theoretically derived unbiasness of the velocity estima-
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tion for constant linear motion. Therefore constant linear motion is a good starting
point for the analysis of other more complex motion patterns. Accelerated motion
of spots introduces a bias in the estimated velocities which increases with increasing
acceleration and increasing temporal support. Acceleration in the direction of mo-
tion introduces a bias due to the shape of the temporal intensity profile. As shown in
section 2.3.2 the temporal intensity profile of an accelerated Gaussian spot is asym-
metric whereas the temporal derivatives are symmetric functions. This asymmetry of
the temporal intensity profile causes a bias in the velocity estimation. For motion with
a constant tangential acceleration the motion pattern describes a curve with a specific
radius. A curved motion path also deviates from a linear motion path introducing a bias
on the velocity estimation. For small values of the radius of the curve and a large width
of the temporal support the bias increases significantly compared to linear motion.

The velocity estimation method assumes constant shape of a single spot within the
temporal kernel support. When the intensity profile of the spot is severely disturbed
by a neighboring spot, large bias occurs in the velocity estimation. Consequently sit-
uations where spot intensity profiles are changing rapidly compared to the temporal
sampling rate should be avoided.

Apart from the motion pattern of spots the point-spread function introduces a po-
sition and orientation dependency of the velocity estimation. For two overlapping
spots the influence of the point-spread function was compensated for by introducing
anisotrope derivative kernels. In this way the effective spot profiles become isotrope.
By compensation the spots take on a larger diameter resulting in a larger bias, however
the resulting bias is predictable because the bias is independent of the relative position
of two spots. Specifically combined with a possible correction method for the bias, this
bias becomes independent of the relative orientation.

To investigate the dependency of the velocity estimation method on the shape of the
intensity profile we applied a rectangular, a parabolic and a Gaussian intensity profile.
Even in these cases the bias for constant linear spot motion is negligible. Therefore we
conclude that the velocity estimation is not significantly dependent on the shape of the
intensity profile of the spots as long as the shape is constant in time.

On a real image sequence the motion estimation shows good velocity estimation for
spots with a linear motion path as can be expected from theory and simulations. The
experiment shows a close correspondence with simulations on linear motion. The bias
observed for the fluorescent bead can be attributed to positional and intensity noise.
For example spots A and B in the image sequence (Fig. 2.13) of the living cell show an
almost linear motion path within the kernel support of the temporal derivative, whereas
spot C shows a meandering motion path. Consequently the velocity estimation for spot
C shows large errors compared to the velocity estimations for spot A and B. The motion
of spot C is highly curved compared to the size of spot C. The order of magnitude in the
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bias in both direction and length of the estimated velocity vectors is similar to the bias
as found in the simulations (cf. Figs. 2.6 and 2.14 bottom panels). The poor velocity
estimation is also reflected in the value of

�
. In the application

�
is low for spot C

compared to the values of
�

for spots A and B.
The combination of the temporal kernel size and the temporal sampling is crucial

for the velocity estimation. For example the combination in the application is clearly
insufficient for spot C, whereas the combination is sufficient for spots A and B. Theo-
retically, for non linear motion such as for spot C a small temporal kernel is favorable
because the influence of changes in the velocity are small for a smaller temporal ker-
nel size. However, a practical lower limit of the temporal kernel size exists due to the
discrete nature of time sampling. This limit can be reduced by taking a high as possi-
ble temporal sampling rate, the change in velocity is than small for successive frames
resulting in a more linear motion path compared to the temporal kernel size.

With the velocity estimation method a tool for estimating 3D velocity fields is pre-
sented which is successfully applied to a living cell spot sequence. With the estimated
velocity fields motion patterns can be observed.

The bias is dependent on the size of the used kernels, in the simulations of nonlinear
motion the bias increases with increasing temporal kernel size. An extension of the
work presented could be modeling the existing relation between temporal kernel size
and bias for several types of motion (see also [53], [162]). Where the bias in the work
of Deriche et.al and Streekstra et.al. is on the position of corners and line structures,
the modeling of the bias is analogous in the temporal direction. Modeling the bias
as a function of the temporal kernel size enables one to correct for the bias, since the
amount of bias that is introduced by the temporal kernel size used can be estimated.

The dependency of the bias on the kernel size is disturbed when spots are overlap-
ping, since the bias becomes direction dependent also. Correcting for this anisotropy
eliminates the direction dependency. This again gives the possibility for correcting for
the bias, without the influence of the direction of two overlapping spots.

The motion patterns in the velocity field are a starting point for analysis of living
cell dynamics during cell division. From the velocity field, motion of the total nucleus
is apparent. This nucleus motion is caused by cell migration during image acquisition.
Furthermore if several spots form a group with a common motion pattern this is seen in
the velocity field. The relative motion of a single spot compared to surrounding spots
is also clear from the velocity field. Guided by the estimated velocity field spots can be
followed in time creating spot trajectories in a 3D volume. These spot motion patterns
and spot trajectories can play a role in analysis of living cell dynamics as is shown in
recent work on dynamics in living cells [Manders et. al. manuscript in preparation].
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Figure 2.13.: Left panel: two time steps coded red and green respectively in a 3D rep-
resentation of the living cell, red: first time step, green; second time step.
Right panel: A maximum intensity projection of the 3D region. The
projection shows a region of the cell at five time steps. Each time step is
obtained as a maximum intensity image along the z axis. From this region
the velocity vectors are estimated. Bottom panel: A 3D representation of
a part of the estimated velocity field around spots A, B and C.
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Figure 2.14.: Spot A, B and C at two time steps from top to bottom respectively. Es-
timated velocity vectors for the spots are projected in th x-y plane and
in the z-y plane. The left images show an x-y optical section through
the spot with the horizontal axis the x axis and the vertical axis the y axis.
The right images show a z-y optical section through the spot with the hor-
izontal axis the z axis and the vertical axis the y axis. The two time steps
are color coded, the first time step is colored red the second time step is
colored green. For guidance smooth isophote contours are plotted. The
velocity vectors originating from isophotes are projected on the optical
sections.
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3.1. Abstract

Sub-nuclear structures or domains represent morphological or functional entities con-
sisting of DNA, RNA and proteins. These entities can be stained in living cells using
fluorescent probes such as green fluorescent protein or fluorescent nucleotides. Anal-
ysis of the visual blobs in living cells renders information about the cellular dynamics
and the cellular function. In this study, we derive a computational model for tracking
of spots in living cells.

We present a spot tracking method for vitally stained cells. The spot tracking method
has to deal with Brownian motion and dynamic appearance of the spot intensities due
to bleaching of fluorochromes. In addition, the tracking method needs to be capable
of handling spot fusions and separations. In fact, both the position and the intensity in
the next image are predicted on the basis of past behavior. To this end a intertwined set
of linear Kalman filters is used to predict the next instance. The perceived state of the
spot is updated by the observations on each new recording by comparing the prediction
with the actual measurement.

Object tracking with the proposed method was performed on a 3D time confocal
recordings of telomeric DNA. From this recording, several tracks have been recon-
structed, including one with spots fusing. Statistical analysis shows that the motion of
the spots is a combination of diffusional, Brownian motion and directed motion.

Directional motion is detected in all tracks in spite of the severe Brownian compo-
nent demonstrating that the method is accurate enough even for vital stain conditions.

3.2. Introduction

In this study we aim at quantifying the 3D structure of cell nuclei from a dynamic
perspective. We aim to quantify the three dimensional architecture as a dynamic en-
tity by studying movement and motion of nuclear components in microscopy image
sequences.

The architecture has been the topic of research over many years. In almost all stud-
ies on three-dimensional motion patterns the extraction of the displacement is done
by hand. The research described in [26] focuses on the motion of sub-chromosomal
foci. In [105] the chromosome formation is described. The work in [114] addresses
protein motion, whereas [130] describes the motion of cajal bodies. This demonstrates
a growing interest in the quantitative analysis of cell body dynamics.

In the references, biological systems are all studied in a three-dimensional image
sequence. In addition, the target blobs are all bright and small relative to the resolution
of the confocal microscope. In this paper we aim at such particles but by automation
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of the tracking process we aim to do so more efficiently and more accurately than
the results achieved in the above mentioned references by manual tracking. Such a
method should be robust against the small movements of Brownian motion in order to
detect the underlying directed motion. And, the tracking method should be capable of
handling the severe noise conditions which come with imaging living cells.

The targets we want to track are so small that they cover just a few pixels in the scan-
ning grid. Such conditions require that we start building our model from the intrinsic
constraints. First, the motion pattern is random but determined by the (thermodynami-
cal) conditions. So once we have set the initial Brownian maximum displacement, we
assume such to be constant. Furthermore, in the current method we assume the spot to
be approximately constant in size once it has been identified for tracking. In addition
we assume the resolution to induce Gaussian-shaped point spread functions and stable
noise levels. Thirdly, the bleaching of the fluorescent labels is constant in the sense that
it can be modelled as usual by an exponential decay. As a consequence in the tracking
method, we cannot assume intensity preservation from one image to another. This puts
aside most motion tracking methods in literature starting from an equal intensity con-
straint. Furthermore we assume the imaging conditions to be sufficiently linear such
that in the case of temporal spot-fusion the intensity of the combined spot is predictable
from the isolated ones.

The analysis of image sequences for the purpose of estimating camera motion is
heavily studied in computer vision. Practical applications are found in 3D scene geom-
etry reconstruction [61], identification of heart wall motion [59], or tracking cars [177]
or pedestrians [71]. Each of the aforementioned three methods has its own model
for the calculation of the correspondence between points in subsequent frames. This
motion correspondence problem is solved by a system of several equations and as-
sumptions or constraints known to be valid for the scene. In the tracking of a car or in
the reconstruction of a scene, the common assumption is that the shape is rigid and the
intensity varies slowly compared to the time resolution. What remains is an unknown
viewing angle and distance to be updated by estimation during the tracking. In the
tracking of heart wall motion the rigid body assumption fails, but in that case it is usu-
ally assumed that the intensity is proportional to the muscular mass which remains con-
stant. From the constancy a minimum effort solution for the deformation of the heart
wall is computed. In the case of pedestrian tracking the constant intensity assumption
cannot be made as they may walk into secluded areas. As a consequence, tracking in
the reference is done by the prototypical periodical shapes a pedestrian assumes while
walking. Here tracking reduces to predicted shape searching. Thus tracking objects re-
quires a few invariant conditions to be estimated in the computational model. Tracking
pedestrians in a crowd requires either identification of unique appearance characteris-
tics or accurate prediction of the trajectory and predictable behaviour. For the current
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3. Spot Tracking in 3D Recordings of Living Cells

case we may consider either intensity invariance - discarded due to the bleaching -, the
shape uniqueness - not applicable as there are many similar shapes or the rigid body
assumption - invalid because of the fusion condition. We start building our model from
the observation that the intensity decreases predictably, the shape is constant most of
the time and the motion behaviour is bounded by the Brownian conditions. None of
the existing methods is able to cope with Brownian irregular motion combined with
bleaching amidst very similarly appearing objects. We take the commonly used linear
Kalman filter as our starting point, see for example [109], but we innovate the method
by Kalman tracking the spatial displacement as well as Kalman tracking the intensity
of the spot over time.

3.3. Materials and Methods

3.3.1. Preliminaries

In case of Brownian motion, the probability ��� of a specific displacement
�

is given
by the coefficient of diffusion � of the material, and the time

	
since the start

	��
. The

direction is a stochastic random variable taken from a uniform distribution:

��� � �
 � �
� 	 � � � ���	��


�
(3.1)

For stable thermodynamic conditions - that is � is constant - the probability of a
given displacement

�
is a constant as well. This yields a fixed displacement distribution

in each direction plus a random direction of displacement. We can only exploit the fact
that we know the distribution of the displacement (and not the displacement itself) in
contrast to the motion estimation methods cited above.

Spots are detected and characterized by fitting a 3D spot model to the intensity image
[120]. In the matching we estimate spot position � , spot intensity

�
, spatial size


and

local background level  . The spot detection and characterization method behaves well
in case of noise. It is capable of detecting and characterizing partially overlapping
spots. This method was demonstrated to be useful for the noisy circumstances of vital
cell scanning. From the spot detection we copy the estimated intensity and position
parameters at subvoxel accuracy in the 3D-grid of the confocal recordings.

In fluorescence microscopy bleaching can be modeled by a first order decay as fol-
lows:

����	
��� ��� � �
� � �

(3.2)
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where � is the decay parameter and
� �

the intensity of a given spot at time
	 �

. The
intensity is monotoneously decreasing. When � is estimated properly and estimating
reliably

���
, the spot intensity is sufficiently well characterized over time.

A track is defined as a sequence of measurements assumed to originate from the
same object. We propose tracking by combination of spot intensity following and
displacement prediction, under the following operational conditions:

1. There is sufficient motion correspondence, that is a spot can be found in the next
frame.

2. The mean displacement (see eq. 3.1) is constant over the entire sequence. That
is, the thermodynamical conditions are constant.

3. The intensity of a spot decays approximately linear relative to the scale of a time
step. This is a weaker assumption than given in eq. 3.2).

4. Measurements are corrupted by Gaussian white noise.

Figure 3.1 gives a schematic overview of the spot tracking. We cannot employ the usual
smoothness constraint on the shape of the track as the result would be too piece-wise
linear to represent a Brownian driven particle. Using the other common constraint in
motion estimation, namely selecting a suitable nearest neighbour as the next position
on the track would tend to select as the next position of the spot, the spot closest to the
current one. From the figure it is clear that such a constraint is not helpful in our case.
In the figure (figure 3.1 I, II, and III) the correct spot fulfils probabilistic conditions on
displacement and the condition of decaying intensity.

3.3.2. Kalman filter for displacement and intensity

A Kalman filter estimates a process by using feedback control. The filter estimates a
process state at time

�
. It obtains feedback on the validity of its state by performing

some input measurements. An intrinsic part of Kalman filtering is that these measure-
ments are noisy. A Kalman filter can thus be divided in two parts: a time update and
a measurement update. The temporal update equations are responsible for projecting
the current state and error covariance estimates forward in time obtaining estimates for
the next time step. The measurement update equations provide feedback to improve
the estimates. Estimation values before measurement update are referred to as a priori
estimations, while estimations after measurement update are called a posteriori estima-
tions. To perform a measurement update, we need measurements of the spot position
and spot intensity in the new frame.
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3. Spot Tracking in 3D Recordings of Living Cells

Figure 3.1.: Explanation of the tracking method. Four subsequent frames are shown.
The four frames reveal one track of a spot indicated by the disc. Stars in-
dicate other tracks. In frame I only the disc is candidate for continuation
of the track because it is the only spot in the prediction window. When
the spot measures a correct intensity, the spot is selected to prolong the
track. In frame II, two candidates are available in the predicted displace-
ment range. Using a smoothness constraint on the direction of motion
would erroneously lead to the selection of the star. However, on the basis
of the prediction of the displacement and intensity selection will lead to the
detection of the disc as the next spot on the track. In frame III again two
candidates are given but now the intensity is equal for both spots. From
these spots the disc is selected as the star is not within the predicted dis-
placement range. Frame IV shows the complete track of the disc.

We will now discuss each of the modules one by one. In figure 3.2 the proposed
Kalman filter pair is drawn schematically.

Since the intensity of the spot and the position of the spot are independent, the pa-
rameters can be estimated independently, that is by two separate Kalman filters. From
the linearity assumptions on intensity and directed displacement we can use two linear
Kalman filters.

Consider the displacement Kalman filter. We use two successive moments in time,	 � � and
	
. The model for the state prediction consists of the displacement

� ��	
�
of

which the directed component is assumed to be predictable amidst (severe) Brownian
motion considered as displacement noise here. The displacement noise may be larger
than the actual directed displacement itself, but as long as the operational conditions
are valid such would not hamper the method.

� ��	
��� � ��	 � � � � ��� ��	 �1� � (3.3)

where ��� ��	
� is the noise of the displacement state
� ��	
�

. The noise is assumed to be
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Figure 3.2.: Flow diagram of the proposed Kalman filter pair. Internal state displace-
ment variables are denoted by d and intensity state variables are denoted
by I. Following the prediction

�� ��	
�
for displacement and the prediction

�����	
�
for intensity we evaluate a time update. The new predictions (

�� ��	 � �
and

�����	 � � ) are used as input for the measurement of the displacement and
intensity on the object detection. The results of the measurements

- ��	
�
for

displacement and
� ��	
�

for intensity are combined with the predictions to
update the state of the model in measurement update.

Gaussian with variance
 �� .

The measurement
- ��	
�

of displacement is given by- ��	
� � � ��	
� � � � ��	
�
(3.4)

with the results of the spot detection and characterization of the selected spot as pa-
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rameter for the measurement of displacement. The Gaussian noise in the measurement
is given by � � ��	
�

with assumed variance
 �� .

We use the notation
�� ��	
�

for the estimation of
� ��	
�

and
�� ��	 � � for the a priori estima-

tion of
� ��	
�

. The time update equations for the displacement are
�� ��	 � � � �� ��	

� � ��� (3.5)

with variance  �� ��	 � ���  �� ��	 � � � �  �� � (3.6)

The time update gives the a priori estimation of the displacement
�� ��	 � � . To improve

the a priori estimation of the displacement state, the state is updated with the use of the
object detection results. The state update is provided by the Kalman gain

� ��	
� �  �� ��	
� �� ��	
� �  �� (3.7)

The actual estimation
�� ��	
�

is related to the a priori estimation
�� ��	 � � by:

�� ��	
��� �� ��	 � � � � ��	
�%�.- ��	
� � �� ��	 � �
�
(3.8)

Note that
- ��	
� � �� ��	 � � is the difference between the measurement and the prediction

at time
	
. This difference is added to the a priori estimation

�� ��	 � � weighted with
the Kalman gain

� ��	
�
, resulting in the a posteriori estimate

�� ��	
�
. The update of the

variance estimate is:  �� ��	
��� � � � � ��	
�
�  �� ��	 � � (3.9)

Following this scheme repeatedly, for each new time
	

the estimation
�� ��	
�

is updated.
Likewise for the intensity signal, a second Kalman filter is used to estimate the in-

tensity as follows ����	
��� ����	 � � � ��� � � � ��	 � � � (3.10)

where � � ��	
� is the noise of the intensity state
����	
�

. Here � is the change in intensity
in one time step. Again the noise is assumed to be Gaussian white noise with variance �� .

The measurement
� ��	
�

of the intensity is given by

� ��	
� � ����	
� � ��� ��	
� (3.11)

with the intensity of the selected spot as the actual measurement. Again the noise��� ��	
� is assumed to be Gaussian with a variance
 �� . We use a similar notation for the
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intensity estimations as with the displacement estimations. The estimation of
����	
�

is
given by

�����	
�
, the a priori estimation is given by

�����	 � � . Then, in the same manner as
for the displacement, the time update equations for the intensity state are given by

�����	 � ��� �����	
� � ��� (3.12)

with variance  �� ��	 � ���  �� ��	 � � � �  �� (3.13)

Again a Kalman gain needs to be defined to be able to derive the estimation from
�����	 � �

and the actual measurement. The Kalman gain � ��	
� is given by

� ��	
� �
 �� ��	
� �� ��	
� �  �� (3.14)

This results in the intensity estimation
�����	
�

�����	
� � �����	 � � ��� ��	
�%� � ��	
� � �����	 � �
�
(3.15)

Note again the typical relation between the a priori estimation
�����	 � �

and the intensity
measurement

� ��	
�
. Again also the variances in the Kalman filter are updated. For the

intensity Kalman filter this update is given by �� ��	
� � � � ��� ��	
�
�  �� ��	 � � (3.16)

3.3.3. Spot selection

The spot selection is based on the predicted values of the displacement
�� ��	 � � and the

intensity
�����	 � � of the spot. Spots near the predicted displacement are selected (see fig.

3.1). This first selection excludes the nearest neighbour marked by the star and leaves
a set of possible track spots. From these remaining spots the spot with closest intensity
to the predicted intensity

�����	 � � is the spot to select. The selected spot determines the
new values of displacement measurement

- ��	
�
and intensity measurement

� ��	
�
.

In case no spot fusion and spot splitting occurs, above mentioned method is capable
of tracking randomly moving spots. However, spot fusion and splitting introduces
abrupt changes in spot parameters. Where the track is continued, either two tracks
combine or one track splits into two tracks. We propose a multiple hypothesis solution
to track fusing and splitting spots.

If we allow spot splitting and spot fusion, the situation of spot selection changes
because three different models are applied:

39



3. Spot Tracking in 3D Recordings of Living Cells

Figure 3.3.: Diagram of the model check method. With the prediction of step size
(

�� ��	 � � ) and intensity (
�� ��	 � � ), three possible models have to be checked.

The first model, normal correspondence of one spot, is the default model
(model I). If model I is not applicable model II is checked. Model II de-
scribes the spot fusion by searching for a brighter spot that is not connected
to any existing track. If model II is not valid also, model III is checked, by
searching for two less bright spots which are not connected to any existing
track.

I: Each spot has only one next spot, as described in the previous section.

II: Two single spots fuse into one spot.

III: One single spot splits into two separate spots.

In figure 3.3 the model check is given in a flow diagram. The current prediction of
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displacement
�� ��	 � �

is used to select the best possible hypothesis. The default model
is I. The distance between different spots makes sure that II is checked. In case no
normal correspondence or a fusion is detected the method checks for possibility of III,
spot splitting. Thus detection of spot splitting and spot fusing is needed to steer the
spot tracking process.

Fusion detection is a two-step procedure. In the first step a potential fusion event
is detected by the relative position between two spots. The second step checks for the
two spots in the area where the spots are expected to be in the next frame. The decision
of spot fusion is made when 1) no spots with the original parameters are found and 2)
a brighter spot exists that does not belong to another track.

For split detection also a two-step approach is used. First all possible spot candidates
are examined for best fitting parameters. When no similar spot is found multiple candi-
dates are selected fitting the predicted position. These spots are only selected when 1)
the spots are trackless and 2) the sum of intensities is similar to the expected intensity.

Before tracking, the spot tracker has to be initialized. This initialization is done by
creating spot associations by hand. For each pair, one spot at the starting frame is
associated with a spot in the second frame. This initialization gives starting values for
displacement and intensity of the specific spot. Note that we implicitly assume that no
splitting or fusing will occur between the first two frames.

3.3.4. Statistical motion description

To examine whether the Brownian motion assumption is correct, we consider statistics
of the detected tracks. Statistical trajectory analysis has often been studied in biological
processes [51], [136], [38], [144]. Organelle trajectories are examined in [51] by means
of the mean-square displacement. We also adopt a mean-square strategy by using��� � � ��� ��� .

��� � � ��� ��� � � � � ��	 � � � � � ��	
��� � � (3.17)

The mean-square displacement is given for various conditions [144]. A combination
of a pure diffusional movement and directed movement is given by:

��� � � ��� ��� � � � � � � � � � �
(3.18)

where � is the diffusion coefficient and
�

the velocity of the active component. A
dimensionless parameter � is derived [82] as the ratio between the mean-square dis-
placement during time

�
and the mean-square displacement during time


 �
, the double

time interval.

� � ��� � � � 
 � ���
��� � � ��� ��� (3.19)
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From equation 3.19 we can see that, given equation 3.18, for pure diffusional motion
� � 


, while for pure linear motion � � � .
Saxton [144] also describes anomalous diffusion and confined motion.

��� � � ��� ����� � � ���
anomalous diffusion (3.20)��� � � ��� ����� � � � � � # � ( � � � � � � � � � � ���

confined motion (3.21)

with ��� � and
�

the corral size,
� # and

�
� constants determined by the corral geom-

etry. The three pure modes are given in figure 3.4, active movement, pure diffusional
movement and confined movement, each showing a monotonously increasing curve for
mean-square displacement.
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Figure 3.4.: Examples of three modes of movement. The upper line (dash-dot) gives
active movement and diffusional movement. The line in the middle
(dashed) gives mean-square displacement for pure diffusional motion.
Lower line gives the mean-square displacement for confined movement.

3.4. Results

3.4.1. Sample Preparation

For life cell observation, U2OS cells (derived from a human osteosarcoma) were cul-
tured on coverslips in

� � �
�
 petridishes (Mattek, Ashland, Ma.) in RPMI 1640 culture
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medium, without phenol red, supplemented with
� � fetal calf serum and buffered with
 �  �� Hepes buffer to pH 7.2 (Life Technologies, Breda, The Netherlands). The Cy3

labelled (C3TA2) PNA probe was kindly provided by DAKO, Glostrup, Denmark. The
probe was dissolved to a final concentration of �� �� in a buffer containing � �� ��� ���

, ���� �� �
� ��� � , �� �� � � ��� , (pH 7.2) to a final concentration of �� �� , and

was added to the cells. To label the cells glass bead loading was performed as described
by McNeil et al [112] using alkali washed glass beads. The PNA probe hybridize
specifically to telomeric DNA repeats in living U2OS cells, resulting in similar fluo-
rescence signals as on fixed chromosomes and nuclei [95], [49]. Images were acquired
using a Zeiss CLSM 510, with a Zeiss Plan-Neofluar 100x/ N.A. 1.3 oil objective. Cy3
was excited using the

� � � �! laser line. The image series consists of 70 stacks of 16
Z-slices, size 128x128 pixels taken with 1-minute time intervals. The total sequence
thus comprises 70 minutes.

3.4.2. Illustration

Figure 3.5.: A single frame from the image sequence of a 3D recording of a living
U2OS cell. The image shown is a maximum intensity projection of a sin-
gle 3D frame. The bright spots in the image are fluorescently labelled
telomeric DNA repeats. The diffuse staining around the spots represents
unhybridized probe present in the cell.
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Figure 3.6.: Results for tracking an isolated spot in the image sequence. a) Maximum
intensity projection of a frame from the sequence. The circle indicates the
selected spot. b) Intensity values of selected spot. The dashed curve is
the estimated intensity. The continuous curve is the measured intensity. c)
Displacement values of the selected spot.The dashed curve is the estimated
displacement. The continuous curve is the measured displacement.

Figures 3.5 and 3.6 show the nucleus and cytoplasm of a living U2OS cell. Here the
dots representing the fluorescence signal from the Cy3-labelled PNA probes hybridized
to telomeric DNA repeats are clearly seen. Each spot has its own intensity due to
differences in repeat number on the different chromosomes. Around the spots a diffuse
staining is seen. This diffuse staining is due to unhybridized probe present in the living
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Figure 3.7.: Histogram of spot displacements of the track of the selected spot in figure
3.6 a).

cell.
To verify the bleaching of the spots a single spot is monitored. The intensity devel-

opment of this spot is given in figure 3.6 b). Note that the intensity decreases with each
next frame. This intensity decrease is typical for bleaching of fluorescence in the spot.

The application of the Kalman filter is shown in figure 3.6 b) and c). In figure 3.6
b) the intensity estimation is given by a dashed line. The displacement estimation is
given in figure 3.6 c) again by a dashed line. Note that the dashed lines follow the
measurements gradually. The individual measurements are only used to update the
Kalman states. Therefore the Kalman tracking method is unaffected by the noise in the
individual measurements.

Looking closer to the displacement of the spot we note that the average displacement
is rather constant during the recording. The average value of approximately

� � 
 � �
can also be appreciated when the displacement is presented in a histogram (figure 3.7).
In the displacement histogram a Gaussian distribution can be identified with a mean
displacement value of

� � 
 � �
voxels and a standard deviation


of

 � � voxel for
each frame. Reminding the subvoxel accuracy of the spot detection method we can
conclude that this spread on the displacement is due to spot motion only.

In total � � �2� tracks of single spots are detected. The tracks of these spots are
shown in figure 3.8. From these tracks we can see that the motion of the individual
spots has a common part and an individual part. The living cell is moving during the
recording of the image sequence. Evidently, this common motion component does not
influence the quality of the tracking method.

Note also the sharp directional change in the middle part of the tracks. This sharp
change is found in all tracks at the same time. Thus, this change in direction is due to a
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Figure 3.8.: Example tracks of � � �2� isolated spots, no spot fusion or spot splitting
occurs in these tracks.

global motion. This motion can either be caused by abrupt cell motion or a mechanical
impact on the microscope table. In conclusion the spot tracking method is robust to
moderate changes in motion properties. However, if displacements due to outside ef-
fects are much larger than the expected displacements tracks can be lost. For example
if abrupt changes in displacement are much larger than expected displacements, the
tracking method cannot find the correct spots and terminates the tracks.

In the presented sequence a few spots fuse. For testing spot fusion, tracks of these
spots are selected and visually verified. Figure 3.9 shows an example of two fusion
tracks.

In figure 3.10 the mean-square displacement for one track is given. In this figure a
quadratic model is fitted to the datapoints according to a least squares fit. This fitted
model corresponds to diffusional movement of the spot with an active motion compo-
nent as is described by equation 3.18. In conclusion we can state that our assumption of
Brownian movement of individual spots is a valid assumption. Furthermore the global
motion of the cell is small compared to the displacement of spots at each frame. This
is seen in the model fitted to the estimated mean-square displacement. For figure 3.10
a � value of ��� 
 � �

is found at time intervals of
� � �

frames and
� � ��� frames.

Note that for pure diffusional motion a Q value of



will be found, while for pure linear
motion � � � will be found. This indicates that the motion tends to be diffusional
combined with a (small) linear displacement component.
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(a) (b)

Figure 3.9.: Example track of fusing spots, a) Start of the spot fusion tracks, b) end of
the fused tracks.
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Figure 3.10.: Mean-square displacement as function of duration
�

for one estimated
track without fusion.

47



3. Spot Tracking in 3D Recordings of Living Cells

3.5. Discussion

We have derived a tracking method that is robust to noise in image sequences and is
capable of tracking spots with Brownian motion, while occasionally fusion or splitting
occurs. We have demonstrated the possibility of tracking small spots in a nucleus of a
living cell (U2OS cell derived from a human osteosarcoma). The spots in this image
sequence are small and the motion is thought to be Brownian. Fusing spots are seen in
this sequence.

The measurements of displacement and intensity are corrupted by Gaussian noise.
That is, the noise in the measurement is not due to the spot detection method but due
to the recording situations for living cells. Under these circumstances the recordings
are noisy and have a low temporal sampling. Furthermore the motion is assumed to be
Brownian. Thus a stochastical component is present in at least the displacement of the
spots. This requires a robust method to track the spots reliably. Kalman filtering gives
a robust mechanism to handle the variance in the measurements of displacement and
intensity. With Kalman filtering this variance is an explicit parameter that is updated
during the creation of the track. At each new frame the Kalman states are updated with
the new measurement of the intensity and displacement. Another advantage of this
approach is the capability of resolving problems like sudden jumps in position. This is
the case when the cell is shifted due to forces from outside the biological system. How-
ever very large jumps will eventually result in broken tracks when the displacement is
much larger than the expected displacement.

The location and intensity of spots are used as measurements in the tracking method.
Therefore we have a spot detection method applied that solely uses the characteristics
of spots recorded by a confocal microscope [120]. The method uses a spot model that
is fitted to the spots. The results have a subvoxel accuracy. And the method has the
ability to detect partially overlapping spots. Therefore, no segmentation or sensitive
thresholds are needed in the spot detection method. Since all spots have similar shape
and size only the position and intensity identify individual spots.

From the results we can see that the predicted spot is never in conflict with neighbor-
ing spots. The fusion detection is capable of selecting possible fusion by means of the
distance between two spot predictions. The displacement found in the isolated track
demonstrates an average displacement of

� � 
 � �
voxels with a standard deviation


of 1 voxel. Considering the subvoxel accuracy of the spot detection method, we can
conclude that the large variance in the displacement is due to the stochastical compo-
nent in the displacement itself. Thus the Brownian motion of spots does not hamper
the tracking of these spots.

The result of the tracking is found in � � �2� tracks of isolated spots. From these
tracks several observations can be made. The first observation is that the random dis-
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placement component is combined with the directional displacement component. The
directional component originates from a motion of the whole cell, while the random
component is due to Brownian motion of the spots inside the cell nucleus. The whole
image sequence comprises seventy minutes. Thus the time between two frames is one
minute. In one minute the cell can drift or the microscope table shows a mechanical
drift. Either way, a global motion component does not hamper the tracking method.
Another observation is the presence of an abrupt change in the global motion in the
second half of the tracks. Since this abrupt change is seen in all the tracks it is likely
that the motion is due to an external force. If this force is from outside the cell or even
from a sudden motion of the microscope is not clear. It is hard to reconstruct from the
tracks what actually happened.

From the statistical analysis applied to the tracks we can conclude that the motion
is a diffusional motion of the individual spots. In the experiment a quadratic model is
fitted to the data. However, the bias increases with increasing

�
because all data points

are taken from the same amount of estimated positions. Thus for larger
�

the time
average is over a smaller amount of data points than in case of small

�
. The quadratic

model describes diffusional motion combined with directional motion. This is the most
probable model considering the global movement of all spots. The dominant movement
is still the diffusional movement at small time scale.
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4.1. Abstract

Motion patterns like expansion and rotation can provide meaningful descriptions of
the processes in living cells and other microscopy image sequences. Expansion and
rotation in velocity vector fields can be described by the invariants divergence and curl.
Thus estimation of divergence and curl can provide information on interesting motion
patterns. This paper describes the local estimation of divergence and curl in image
sequences. An indirect approach is used, where from an image sequence the motion
field is derived. From this motion field the local divergence and curl are computed.
This indirect approach facilitates the computation of the variance of the motion field.
This motion field variance is propagated through to the divergence and curl estimation,
giving a reliability measure even before the quantities are computed. It is shown in
experiments that local divergence and curl can be estimated with a predictable accu-
racy. Besides stochastic errors also systematic errors like motion field discontinuities
due to working conditions which deviate from the model assumptions are examined.
Application of local divergence and curl estimation is given using an image sequence
of a crawling human T-cell.
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4.2. Introduction

In image processing, vector field images are found in numerous applications. These
vector field images are derived from single images or from image sequences. In single
images the local orientation of the intensity gradient gives a vector field image [68],
[138]. In an image sequence the velocity of objects can be estimated from the intensity
derivatives resulting in a vector field image representing displacement, the optical flow
[79], [93], [118], [11], [14].

Motion patterns like expansion and rotation can provide meaningful descriptions of
the processes in living cells and other microscopy image sequences. Expansion and
rotation in velocity vector fields can be described by the invariants divergence and curl.
Thus estimation of divergence and curl can provide information on interesting motion
patterns.

We are interested in the estimation of local properties of flow fields derived from
image sequences and we aim to derive measures for the noise in these local estimates.
Non rigid objects in image sequences show local deformations that cannot be described
by global estimations.

Estimation of divergence and curl in these flow fields is mostly used to determine the
motion of the observer. This means that the total optical flow field on the retina of the
observer has a global divergence or curl component due to the ego motion. The motion
related to these patterns originates from the motion of a rigid environment relative to
the observer [80], [46], [152]. This results in estimation of global flow properties, such
as focus of expansion and time to collision or rotation relative to a rigid surrounding.
Therefore these methods are not suited for describing local flow field properties.

Divergence and curl can be estimated in several ways, such as making use of oriented
line segments, or by tracking closed contours [87], [41]. These estimates of divergence
and curl provide global properties of flow fields and are therefore inappropriate for
estimating local flow field properties.

A flow field can be decomposed in a divergence term, a curl term and a deforma-
tion term [92] and [98]. In these cases flow fields on the retina of the observer in a
rigid environment are decomposed to describe the motion of the observer and the three
dimensional structure of the scene. Local differential operators on flow fields are pro-
posed, however no evaluation of the estimation of the divergence and curl are given.
Furthermore applications are towards global description of flow field properties.

Since we are interested in the robust estimation of the local divergence and curl of
vector field images, we aim to describe the expected variance of filter responses given
the variance in the flow fields. Besides the noise in the estimation also evaluation of
bias of the estimation and the behaviour of the estimations in case of abrupt changes in
the vector field is described as they frequently occur at the transition of objects to the
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background.

4.3. Divergence and curl in 2D vector fields

A vector function
�� � ��)�

is a function that is defined on some point set � in space and
associates with each point

��
in � a vector

�� � ��)�
.

Let
�� � ��)�

be a differentiable vector function, and let � # � ��)� and � � � �� � be the com-
ponents of

�� � �� �
. Then the function

� � �� � �� ��� ) � # � �� �) ( � ) � � � �� �) * (4.1)

is called the divergence of
�� � ��)�

.
For the same vector function

�� � ��)�
we can define the curl of the vector function in 2D

as ��� �� � �� ��� � � � � �2) � � � �� �) ( � ) � # � ��)�) * � �
(4.2)

Note that the curl is oriented out of the image plane. The sign gives the direction of
rotation.

4.3.1. Estimation of Div and Curl, an indirect method

For computing motion in image sequences a few solutions are available. Among these
solutions are correlation based methods, using simple block correlation to find new
positions of these parts of images in following frames [10]. Alternatively phase based
methods are applied for recovering image motion. They exploit the idea that a shift
in spatial domain corresponds to a phase in the Fourier domain [66]. For reviews of
different flow estimation methods see [11], [14].

A third class of methods is based on the gradient. They originate from the obser-
vation that for motion in an image where the intensity of moving parts in the image
remains constant, the total derivative of the moving intensity is zero. This is also
known as the optical flow constraint [63], [79]

����� �� �
	
� � �� � �� � � ���%� �� �
	
� � � � (4.3)

with
��� �� �
	
�

the image intensity,
�� � �� �

the optical flow field, and
�%�%� �� �
	
�

the time
derivative of image intensity

��� ����
	
�
. Note that the optical flow constraint is an un-

derdetermined system for solving for the two-dimensional flow field
�� � ��)�

. To be able
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to recover the flow field, additional constraints are needed. We will only describe a so-
lution from the local constant flow methods. The assumption is made that image points
within a small local region

�
will not show significantly different motion. This allows

for combining multiple local constraints in a weighted least squares sense [100]. An
error function

� � �� � �� �
�
can be defined from local optical flow constraints, weighted

with Gaussian weight function � � �� /�� �
with width

�
.� � �� � �� �
��� � � �� /�� ����� ����� �� �
	
�� �� � �� �
�
���%� ����
	
��� � (4.4)

The unknown flow field is found by minimizing
� � �� � �� �
�

by setting the derivatives
towards the two components of the flow field to zero

���� � �� ! � � �� � �� �
� � ��
(4.5)

This results in

� � �� /�� �&��� ����� ����
	
�
����� �� �
	
� � � �� � �� � � � � � �� /�� ����� ����� �� �
	
� ���%� �� �
	
��� �
(4.6)

Which can be rewritten to �� � ��������� ��# ��� �$
(4.7)

, with

� ����� � � �
	 � � � �" � � � " � #� � � " � # � � � �#�� � � � ��� �$ � � � � 	 � � � " ���� � � # ��� � �
From Eq. (4.7) the flow field

�� � �� �
can be solved. For all derivatives Gaussian

derivatives are used with width � .
From the flow field estimated by Eq. (4.7) the divergence and the curl can be esti-

mated using Gaussian derivative filters, of width
�
, on the flow field components

� � �� � �� � � � " � �� / � ��� � # � �� � � � # � �� / � ��� � � � �� � (4.8)� � �� � �� � � � � � � � � " � �� / � ��� � � � �� � � � # � �� / � ��� � # � �� ��� � (4.9)

In this way an estimation of divergence and curl are given using derivatives of flow
field components.

4.3.2. Estimation of Div and Curl, a direct Method

From the flow relation Eq. (4.7), which expresses the flow field
�� � �� �

at any given
position

��
, we can derive a direct estimate for the divergence and curl of the local
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vector field by taking the derivatives with respect to
(

and
*

of the two vector field
components of flow field

�� � �� �
(the derivation is not shown).

These relations give an expression for the divergence and curl in terms of first and
second order image derivatives combined in a local area with a Gaussian weight func-
tion � � �� /�� �

, the combinations give filters of order eight. The number of components
for direct estimation is high. This results in an addition of the noise present in each
component, resulting in noisy estimates. Therefore direct estimation as presented is
not used further in this paper.

4.4. Measurement Noise

4.4.1. Flow Fields

We are interested in the robust estimation of the divergence and curl of vector field
images. Therefore we want an expression of the variance of the estimation. For an
indirect estimation method the variance of the final result depends on the variance of
the first step.

Usually error measures and confidence measures are expressed in single value esti-
mates for convenience. To give the accuracy of flow fields Barron [11] defines a unit
space-time vector to measure the angle between estimated and correct flow vectors.
The same is done when deriving confidence measures for optic flow. In Barron’s study
[11] the smallest eigenvalue of a least-squares matrix is used. This eigenvalue gives
only an indication for the sensitivity of the model, which is useful in the case one needs
to decide if a given flow field is reliably estimated. However, we are interested in the
variance of the estimated flow field. Hence we need an absolute value for the variance
of flow instead of a relative ranking of flow vectors.

A study on the variance of optic flow is found in [56]. This study presents an expres-
sion for the maximum variance value of the estimated optic flow field. Assume that
the measurements of the image time derivatives are corrupted with additional and in-
dependent Gaussian noise with diagonal covariance matrix ��� �  �$�� . The covariance
matrix of the estimated flow vectors is then [134], [9]

��� �  �$ � � $ �� �%� � $ �� � � �
(4.10)

where
� $

is the gradient of
��

in the direction of
$

. Using (4.7) this gradient equals:
� $ �� � ��������� ��# ��� �

Taking the outer product of both sides and using equation (4.10) leads to

��� �  �$ ��������� ��#
(4.11)
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The diagonal entries in ��� equal the variances in the estimated flow field in the spatial
directions of coordinate axis. However it is possible that the variance in one direction is
much larger than the variance in the other direction, meaning that only one component
of the flow field can be estimated accurately. This is the well known aperture problem
[173]. Hence, we are not that interested in the variance in the directions of the axis but
in the maximum variance in a direction.

The easiest way to quantify ��� for this maximum variance is a decomposition of��� � ��� ��# into
��� � ��� ��# ������� ��# . Here

�
is the orthonormal matrix which contains

the eigenvectors and
�

is the diagonal matrix containing the eigenvalues of
��� � ��� ��#

.
Since

�
is orthonormal, the noise is most amplified in the direction of largest eigenvalue

���� . The eigenvector decomposition of its inverse
� � �

equals:
� � � ����� ��# � ��#

and likewise the noise is most amplified in the direction with minimum eigenvalue
of
� � �

; we denote this as � � . We can now relate the maximum variance
 �� in

the estimated flow field vector
��

to our measurement matrix
�

and conclude that the
maximum variance

 �� in the estimated flow field thus equals:

 �� �  �$
� �

�
(4.12)

The maximum variance
 �� is defined as the sensitivity measure of the flow estimation

method. Thus if we know the covariance in the measurements �
$
, then the sensitivity

measure would provide us with a value for the maximum variance in the flow field.
However we do not know � $ a priori and hence need an extra step to provide a variance
measure derived from the estimations.

Let us assume that the estimated flow equals the real flow
� � � $

. The residual 	
then just equals the noise in the measurements. The noisy measurement

$
is given by$ � $ ��
 , the real value

$
with additive noise 


	
�

b
¯
� � � (4.13)� $ ��
 � � � (4.14)�


�

(4.15)

Thus the variance of the measurements
 �$ equals the expectance of 	 � 	 �$ �� � 	 � 	 � � (4.16)

Since we now have an estimate of the measurement variance, incorporating the sensi-
tivity equation (4.12), gives the variance of the estimated optic flow

 �� � �
� �
� �
	
�
	
�

(4.17)

57



4. 2D+t Microscopy Motion Pattern Classification by Expansion and Rotation

If the number of measurements per region � is large we can simplify this equation
using

� �
	
�
	
�
�
	 � 	
�

�
(4.18)

resulting in the following approximation of the estimated variance
 �� of the flow field

 �� � 	 � 	
� � � (4.19)

This measure gives an absolute statement about the estimation of the flow field. Know-
ing this value of the variance in flow field estimation, variances in derived measures can
be derived by propagation of noise. In the following section we derive the variances in
divergence and curl estimations assuming we have this estimation of the variances in
the flow field.

4.4.2. Error Propagation in Div and Curl estimation

We are using Gaussian derivatives to estimate derivatives in images and vector fields.
Since Gaussian derivatives are discrete convolutions we can write a Gaussian derivative
in terms of its discrete weights � ' . Assuming all variables are independent and using
the fact that weights � ' are noiseless, we find for the variance in derivative estimations,
[9], [166]  ��� � �  � � ' � ' (4.20)

From this relation we can derive the variance in the estimation of curl and divergence.
The variance of the divergence (

 �
 ) and the curl (
 �� ) can be derived from the variances

in the x- and y-component of the vector field. �
 �  �# " �  �� # � 
  # " � # (4.21) �� �  �� " �  �# # � 
 
� " # # (4.22)

Where the variances
 �' � are the variances of the derivatives of the component + in the

direction � of the flow field. We consider it more useful to describe the variance of the
vector field in terms of direction and length of the vectors. To this purpose we define
the angle � as the angle of the vector with the positive x axis. We describe the length
of the vector by

�
�� ��� � ����� �� ��� 	 ��
 �

(4.23)
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The variance in
��

expressed in variances in the angle � and length
�
, for independent

noise in � and
�
, becomes

 � �� � � ����� ��� � ����� � � �  �	 ��� 	 � �� ��� � ��� 	 � � �  �	 ����� � ��� �
(4.24)

assuming independent noise in the direction and length. Using this in the variances of
the divergence and curl magnitude in case of independent noise we get

 �
 � � � � � 
  �	 �
 ��� � � � (4.25)

 �� � � � � � 
  �	 �
 ��� � � � (4.26)

where
� � � � ' � �' and

�
is the width of the filter related to

�
. So for a given noisy

flow field the variance in the divergence and curl are equal for independent noise in the
data of the flow field derivatives. The variance is linearly dependent on the variances
in length and linearly dependent on the direction of the vector field. In addition the
variance in direction is weighted with the length of the vectors in the vector field.
For increasing filter width

�
the value of

� � decreases, lowering the variance in the
estimation.

If the noise in the data of the flow field derivatives is correlated an extra term arises
which is positive in case of divergence Eq. (4.21) and negative in case of curl estimation
Eq. (4.22). In this case we can give an upper limit of the variance. The covariance # " � # and


� " # # satisfy the Schwartz inequality [166],

�  ' ����	 ��
  ' �  ��	 � (4.27)

If we substitute Eq. (4.27) into Eq. (4.21) and Eq. (4.22) for the variances
 �
 and

 ��
we find that [166]  �
 
  �# " �  �� # � 
  # "  � #� �  # " � 

� # � � (4.28) �� 
  �� " �  �# # � 
 
� "  # #� �  � " �  # # � � (4.29)

The values of the variances will never exceed the values derived in Eq. (4.28) and Eq.
(4.29). Thus if one knows the variances in the derivative estimations one can give a
worst case estimation of the variances to be expected in the estimation of divergence
and curl. In practice the correlation is expected to be small resulting in lower variance
values than predicted by Eq. (4.28) and Eq. (4.29).
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4.5. Experiments

4.5.1. Discontinuities in Vector Fields

The localization of divergence and curl estimation is influenced by discontinuities in
flow fields. To get an impression of the behaviour at discontinuities, a one dimensional
model of a discontinuity is examined. Let us consider a first order 1D signal � ��(+� with
a discontinuity at

( � � .

� ��(+����� � ( ��� if
(
� � �


 ( ��� if
( � �

�
(4.30)

Then filtering function � ��(+� with a Gaussian with width
�

and taking the derivative to
x yields:

)) ( �.- ��(�/ � ��� � ��(+�
��� �
 � � � 
 � � �
 � � �	
 ��� �	� � (
� 
 � � � � � �
� � �� 
�� � � ��� ��� � (4.31)

Thus the response at a discontinuity in the flow field is a function of the parameters
of the discontinuity and the width

�
of the used derivative filter. The localization error

is only depending on the width
�

of the derivative filter. The height of the response
depends on the strength of the discontinuity.

4.5.2. Synthetic flow fields

The description of error propagation in indirect curl and divergence estimation (eq.
(4.25) and (4.26)) predicts linear dependency on variance in vector length and linear
dependency on relative variance in length. These relations are verified using a uniform
flow field in the direction � � � � � , with no divergence nor curl. The vector length
is set to unity. To this flow field Gaussian noise is added to the length and direction
of individual vectors. To simulate realistic noise levels we choose the variances

 �	
between

 �	 � � and
 �	 � �

� � and the relative variance in length
 �� � � � between �� � � � � � and

 �� � � � � �
� � .

Two simulation experiments are conducted, one with only noise in orientation and
one with only noise in length of the flow field vectors. The results of these two sim-
ulations are given in figures 4.1 a) and 4.1 b) respectively. From equations (4.25) and
(4.26) we expect the variances to be linearly dependent on the variance in orientation

60



4.5. Experiments

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.5

1

1.5

2

2.5

3
x 10

−4

relative variance σ2
θ

va
ria

nc
e 

in
 fi

lte
r 

re
sp

on
se

divergence    
curl magnitude

(a) Variance in curl magnitude and divergence
as function of variance in vector orientation.
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(b) Variance in curl magnitude and divergence
as function of variance in vector length.

Figure 4.1.: Variance as function of variance in vector orientation and vector length for estima-
tion of curl magnitude and divergence in case of uniform synthetic flow fields with
no curl nor divergence ( ����� and �����
	�� ).

and relative variance in length. Figures 4.1 a) and b) demonstrate this linear depen-
dency. The observed slope is equal to the expected slope (

� � � � � 
 � � � ��� � 3
, for filter

width

� � 


). The variance in divergence and the variance in curl magnitude are equal
as expected. Thus relations (4.25) and (4.26) apply for independent noise in variables
vector length and vector orientation.

A second observation from equations (4.25) and (4.26) is the dependency of the
variance on the length of individual vectors. Therefore flow fields with uniform curl
magnitude or with uniform divergence are created. Again Gaussian noise is added to
the orientation and length of the vectors. These vector fields have a position dependent
orientation and length. Figure 4.2 a) shows the variance along a horizontal line. Figure
4.2 b) shows the relative variance

 � � � � . The relative variance is linear and horizontal
with a spread of � � ��� � � . This demonstrates that the variance is depending on the
length of the vectors as expected from theory, eq. (4.25) and (4.26). The noise added
to the flow field has a variance of

 �	 � �
� � in the orientation. The expected variance

in the estimated divergence and estimated curl magnitude then is
 � � � � � 
 � � � ��� � � ,

for filter width

� � 


. If we compare this expected value with the estimated values of � � � � in figure 4.2 b) we can see that the estimated values correspond with the expected
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value. Thus the variance is vector length dependent.
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(a) Variance in estimation of curl magnitude
along a horizontal line through the center of fig-
ure 4.2 a).
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(b) Relative variance along a horizontal line
through the center of figure4.2 a).

Figure 4.2.: Variance as function of the position in the image for a synthetic flow field with
uniform curl magnitude, with only noise in vector orientation ( � �� � ��� � ). The
vector length is position dependent. In the figures the variance along a line at
height � ��� � is shown. Figure a) shows the absolute value of variances � �	�
 � and
� � 	����  . Figure b) shows the relative variance � �	�
 � 	 � � and � � 	����  	 � � along the
line at height � ��� � .

In this paper we take special interest in the behaviour of flow field estimators around
discontinuities in the flow field. To this purpose we create noiseless flow fields with
specific discontinuities highlighting the influence of vector length and orientation around
these discontinuities. The discontinuous flow fields are given in figure 4.3 a) and b).
Each figure gives a specific situation for a boundary. Figure 4.3 a) a flow field with dis-
continuity in direction is given. The upper part is a flow field with constant divergence
and zero curl, while the lower part is a flow field with zero divergence and constant
curl. In figure 4.3 c), d) e) and f) the resulting estimations for the divergence and curl
magnitude are given. In case of figures 4.3 c) and d) the step strength increases with
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(a) Discontinuity in direction, the upper part is
curl free and the lower part is divergence free.
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(b) Discontinuity in length, the upper part and
lower have divergence of opposite signs and are
both curlfree.
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(c) Estimated di-
vergence for flow
field from figure a)
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(d) Estimated curl
for flow field from
figure a)
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(e) Estimated di-
vergence for flow
field from figure b)
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(f) Estimated curl
for flow field from
figure b)

Figure 4.3.: Example flow fields with discontinuities and resulting estimations of divergence
and curl.
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increasing vector length. This results in an increasing response of the curl and diver-
gence estimation with increasing step strength, while the width of the disturbed region
remains the same. One can make a similar observation in figures 4.3 e) and f), here the
orientation at both sides of the discontinuity is equal, but the length change is opposite
at both sides of the discontinuity. Both sides are curl free flow fields with an opposite
value of the divergence. We see that at the discontinuity a smoothed transition arises
from one value of the divergence in the upper part to another constant value of the di-
vergence in the lower part. Furthermore, although both parts of the flow field are curl
free, we see a clear response of the curl estimation at the discontinuity. This response
is depending on the step strength across the discontinuity, ranging from negative re-
sponse to positive response. The width of the discontinuity response is constant over
the discontinuity.

We see that the responses at discontinuities are depending on the step strength. Fur-
thermore the width of the responses are constant for a given filterwidth

�
. From equa-

tion (4.31) we see that the width of the response is controlled by the filter width
�

and
the strength of the response is depending on the step strength across the discontinuity.

The experiments on synthetic flow fields show the relation between the variance in
flow fields and the variance in the estimated divergence and estimated curl, together
with the influence of flow field discontinuities. For a given variance in flow fields the
variance in the results is influenced by the width of the estimation filter

�
. Choosing

a larger filter width results in lower variances provided that the area under the filter
contains a flow field with constant divergence or curl. Smaller filters result in better
localization The choice of filter width depends on the specific task at hand. For largely
changing flow field properties within small areas and at discontinuities small filters
are preferable. While for flow fields with smooth properties larger filter widths can be
used.

4.5.3. Flow fields derived from synthetic image sequences

Sequences of known image motion are created with a publicly available ray tracing
package [133]. In the experiment two sequences are created, leading ideally to a flow
field with uniform curl by rotating the camera,

� � �� � �� � � � �
�
� � � , and a flow

field with uniform divergence by translating the camera towards the texture image,� � �� � �� � � �
�
� � at the selected frame. The variance in the estimation of divergence

and curl is length dependent. Thus to find the variance at each point, estimations are
repeated for N=100 times. Furthermore to find the variance of the combination of
flow estimation and divergence or curl estimation, each image sequence is constructed
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Figure 4.4.: Example image for random texture images.

from a new texture image. Where each new texture image is independent of the other
texture images. The texture images are created from images with random intensity at
each pixel. These images are low pass filtered with a Gaussian filter with a width of 1
pixel. An example of these texture images is given in figure 4.4.

The results of divergence and curl for a rotating camera are given in figures 4.5 and
4.6. In figure 4.5 the mean value and variance in curl magnitude are given for each
pixel along a view line through the center of rotation. The mean value is a constant
value, as expected for a flow field with uniform curl magnitude. For divergent motion,
results are similar (see figure 4.6). In conclusion, the estimation of the divergence
and curl corresponds with the divergence and curl as expected in the image sequences.
Furthermore the noise levels in the divergence and curl are of such an order that a
clear discrimination can be made between curl free flow fields and flow fields with
curl, the same holds for the estimation of divergence. It is also concluded that there
is a difference between the variances in the estimation of divergence and estimation of
curl. This difference indicates that noise in the vector field derivatives is correlated.
However, the correlation is small compared to the worst case derived in eq. (4.28) and
eq. (4.29).

The correlation is further examined by taking an image sequence consisting of only
uncorrelated noise. Thus in the sequence no object is created and thus no motion is
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(a) Flow variance � ��
along view line, estimated
for a single measurement.
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(b) Curl magnitude (lower
curve) and divergence (up-
per curve) along view line,
after
��� 63-	- dif-

ferent random texture im-
ages with rotational mo-
tion around the centre.
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(c) Variance value of the
curl magnitude (upper
curve) and divergence
(lower curve) along view
line, after

��� 63-	-
different random texture
images with rotational
motion around the centre.

Figure 4.5.: Estimation of curl magnitude and divergence for a rotating camera imaging a ran-
dom texture image. Rotation with angular speed � �����
	
	 � � . The experiment is
repeated for � � � � � different random texture images, to exclude the influence of
a single texture image.

present. The estimated flow field is expected to be a zero field, with noise. From this
zero field divergence and curl are estimated. Figure 4.7 demonstrates the difference in
variance for divergence and curl. This implies that noise in the flow field is correlated.

Another observation from figures 4.5 and 4.6 is that the relative variance in flow
(relative to the length of flow field vectors) is large for small flow field vector length.
The resulting variance is a multiplication of the squared vector length and the variance
in flow field. This results in larger relative variances at the center of the rotation and
divergence.

The combination of flow estimation and divergence or curl estimation gives the result-
ing variance in the estimations. For different values of the three filter widths, involved
in indirect estimation experiments are repeated on a smaller scale. From the three filter
widths involved two are used in the flow estimation, the width of derivative filters �
and the width of local smoothness

�
. The third width is the width of the divergence
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(a) Flow variance � ��
along view line, estimated
for a single measurement.
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ent random texture images
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(c) Variance value of the
curl magnitude (lower
curve) and divergence
(upper curve) along view
line, after

��� 63-	-
different random texture
images with translational
motion towards the centre.

Figure 4.6.: Estimation of curl magnitude and divergence for a translating camera imaging a
random texture image. The real divergence is

����� � ��� �
. The experiment is

repeated for � � � � � different random texture images.

and curl derivative filters
�
. The variances are computed after � � ��� measurements.

In figure 4.8 the variance along a view line through the center of the image are given
corresponing to the different filter settings. This figure demonstrates the role of differ-
ent filterwidths. Using larger filters for divergence and curl estimation results in lower
variances and thus in better estimations for constant flow fields. The influence of flow
filter widths is different. The resulting variance is a combination of texture in the im-
age and the motion in the image. Thus the filter settings for the flow estimation need to
be adjusted at the motion present in the sequence, while the filter width for divergence
and curl estimation need to be adjusted according to the size of the area with constant
divergence or curl.

Texture is important when estimating correct flow properties. Since texture is a prop-
erty of objects in the scene in image sequences, texture can be a problem. To demon-
strate the importance of image texture a few textures from the Brodatz texture image
database are used and two extreme cases ’star’ and ’circular’ texture. The images from
the Brodatz database are manually selected based on the randomness and density of
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Figure 4.7.: Variance in curl and divergence for N=100 measurements, the solid line is diver-
gence variance and the dashed line is curl variance.

the texture. (selection D5, D100 see figure 4.9, other textures not shown). The ’star’
and ’circular’ textures are good examples for showing the importance of visual motion
cues in image sequences. The star shaped texture ’star’ results in a poor estimate of
the divergence for a divergent motion, while for rotational motion results are appropri-
ate (data not shown). The circular texture ’circular’ shows the opposite behaviour. In
comparison, the Brodatz textures offer reliable estimated of both divergence and curl in
rotational as well as diverging motion (data not shown). It is concluded that, as long as
objects show enough random structure, flow estimation and thus divergence and curl
estimation will perform well. However in the case of extreme textures, such as the
’star’ texture or the ’circular’ texture, flow estimation and finally divergence and curl
estimation will show large errors compared to the actual motion of the objects. In these
cases no reliable divergence and curl estimations are possible.

Discontinuities in flow fields cause a response in the estimation of divergence and curl.
This response depends on the strength of the discontinuity and the width of the filter
as is seen in other experiments. This experiment uses a non-moving foreground object
in front of a rotating background. The rotation of the background ideally gives a flow
field with constant curl. The divergence is ideally zero. The resulting estimation of
curl and divergence are given in figure 4.10. The flow field (fig. 4.10 b)) shows the
estimated motion in the sequence. At the boundary of the circular object flow vectors
are estimated incorrectly due to the discontinuity in the image data. The estimated curl
(fig. 4.10 c)) and the estimated divergence (fig. 4.10 d)) show values zero at the object
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Figure 4.8.: Variance values along view line for divergence estimation in case of a rotating
texture. The first column are variance plots with divergence filter width � � � .
The second column are variance plots with divergence filter width � � � . And the
third column are variance plots with divergence filter width � � 	 .
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Figure 4.9.: To try out the method two example images of good textures b) and c) [32], and two
examples of bad textures a) and d).

position (gray intensity value). The curl at the boundary show strong negative values
(dark intensity values) due to the change from long vectors to vectors with length zero.
The response is largest at the positions along the boundary with largest distance to
the centre of the image, the vector length increases with increasing distance from the
centre.

The divergence at the boundary shows a positive response at the lower right part of
the object (light intensity values) while a negative response is shown at the upper left
part of the object (dark intensity values). On the object boundary at the centre of the
image and at the opposite position the response in divergence is zero as expected. At
these positions the velocity vectors are tangential to the object boundary, resulting in
low divergence response.

4.5.4. Crawling human T-cell, flow, divergence and curl
results

On an image sequence of a crawling human T cell 1 flow estimation and derivation of
divergence and curl is demonstrated. The sequence consists of 150 frames of 288 by
244 pixels gray value. In the following figures the image frame with corresponding
estimated velocity field and the divergence and curl are given. For visualization pur-
poses, the velocity field is drawn on a grid with grid distance 5 pixels. The individual
velocity vectors are enlarged by a factor 5. For the divergence and curl only areas with
a value larger than a certain threshold (t= � 0.15 in this case) are shown. Thus only

1obtained from http: ��� keck.biology.uiowa.edu
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areas with a high response are depicted.
The figure demonstrate the following important results

I: At the boundary of the object a high response of both the divergence and curl
can be noticed. The object boundary is a boundary between the object with a
high intensity structure and a low intensity structure background.

II: Divergence response is high at areas where material contracts. In figure 4.11 a
part of the sequence is shown where an extending part is retracted to the cell.
The retraction corresponds with a collapse of the area of the extending part.

III: A high response of curl estimation can be appreciated at frames where the inner
material of the cell is ”squeezed” through a narrow stretched part of the cell.
In figure 4.12 this process is shown with the corresponding estimation of the
divergence and curl.

4.6. Discussion

A theoretical and experimental evaluation is carried out for estimating local divergence
and local curl in dense vector field images. Equations predicting the variance in esti-
mated divergence and curl have been derived. It was shown that they correspond well
with experimentally determined variances in divergence and curl.

Synthetic flow fields show that for independent noise in the flow field data, variance
in the estimation of divergence and curl is predictable (Eq. (4.25), (4.26)) once the
noise in the flow field is given. However the noise in the real flow field is not indepen-
dent, but correlated. Still the examination of independent noise is of interest because
this gives a lower bound for the variances of the estimations, one cannot do better than
these figures predict. On the other hand one can give an upper bound for dependent
noise (eq. (4.28), (4.29)). The resulting variance in the estimation will be between
these two bounds.

Estimation of divergence and curl from synthetic image sequences show that the
accurate estimation is crucial to the estimation of divergence and curl.

For divergence and curl estimation a sequence of a crawling human T cell is shown.
Reasonable divergence and curl estimations are possible. The estimations of the diver-
gence and curl are clear at object boundaries. These boundaries correspond with dis-
continuities in the velocity vector field. These discontinuities give rise to a significant
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response in divergence and curl estimation. Also significant response is clear at motion
field properties corresponding to object contraction (divergence response) and material
repositioning through a narrow duct when the cell is ”crawling” (curl response). The
shown responses of the divergence and curl are a result of the used filter widths of the
different filters used. That means that for estimating divergence and curl a specific area
is incorporated around a given position of estimation. The filterwidth chosen in the
divergence and curl estimation (3 pixels) enables the estimation over small areas inside
the cell.

In appendix A a similar result is shown on a complete different type of image se-
quence. A blooming flower

Divergence and curl estimation depends on the estimation of the flow field. Errors
occurring in the flow field estimation propagate through to the divergence and curl
estimations. Errors in flow fields divide into two categories: systematic and stochas-
tic. Systematic errors are due to working conditions which deviate from the model
assumptions, such as occlusion or insufficient structure in the image. Systematic errors
are more difficult to handle. Discontinuities in the flow field due to occlusion, will
always result in a false response of divergence and curl. In a proper estimation scheme
object boundary detection should overrule the curl and divergence discontinuities, as
the interest at object boundaries shall be in their presence. This means that improve-
ment of a flow estimation method for occlusions (e.g. [21]) will not change the high
responses of the divergence and curl significantly. Stochastic errors are given by the
flow variance

 �� as derived in Eq. (4.19) [56]. The flow field variance leads to an
estimate of the error in the divergence and curl without actually computing them. The
flow field variance is preferred over other confidence measures [11] on flow estimation,
because the variance provides an absolute measure. In this way a reliability measure is
available even before the quantity itself is computed.
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(a) Image sequence with non-moving fore-
ground object and background rotating around
the centre.

(b) Flow field as estimated by optical flow
method.

(c) Curl magnitude of flow field from figure b). (d) Divergence of flow field from figure b).

Figure 4.10.: Simulated occlusion of a rotating camera. The objects are fixed relative to the
camera in this way occlusion of the scene is created. The curl magnitude and
divergence show responses at the boundaries of occluding objects.
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Figure 4.11.:
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Figure 4.12.:
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5.1. Abstract

Motion properties of groups of markers can be estimated using the geometrical ar-
rangement of these markers. These markers can represent single cells, small objects
inside cells or boundary points of shapeless objects.

The divergence and curl of an arbitrary closed polygon can be estimated using basic
theorems, assuming constant divergence and constant curl within this closed polygon.
To construct such a polygon the geometrical arrangement of the markers is used. In
case of shapeless objects the positions of the markers are updated according to the
motion of the objects, together with an update in the amount of markers to provide an
optimal geometrical arrangement.

The estimation of divergence and curl is demonstrated on two image sequences. The
first image sequence shows an arrangement of telomeres inside a cell nucleus. The
small expansion and the cell rotation are estimated using the presented method. In
the second image sequence the mitoses of a living cell is recorded. The expansion is
estimated using the presented method.

The presented method gives an estimation of the deformation of the geometrical
arrangement of markers. The estimation of the divergence and curl shows the estima-
tion of, in principle, differential properties of a dense motion vector field. This with a
method that only uses a sparse geometrical arrangement of markers. Thus coarse time
sampling, inherent to imaging of living cells, is of small influence on the estimation of
divergence and curl. However undersampling will result in erroneous results.
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5.2. Introduction

Walking though the grasslands one occasionally encounters flocks of birds with, by the
eye, an uncountable number of individual birds. The flight of such a flock of birds is
an entity by itself. The description of the flock does not stop at the description of all
individual flight patterns. The dynamic geometric arrangement reveals complex motion
patterns. Describing the motion properties of a flock of birds requires a computational
method that keeps track of individual birds and of the geometrical arrangement of the
group as a whole.

Much like motion patterns in a flock of birds, the motion pattern of cellular bodies in
living cells or entities in living tissue also is a dynamic geometrical arrangement. The
motion pattern is specific in the sense that one may characterize tissues [37], [123],
[48], [72] from it. Similarly, in this paper we argue that the motion pattern of particles
studied as a whole can be used to characterize tissues and cells. In this chapter, we pro-
pose a method for group motion description based on the dynamics of the geometrical
arrangement of particles.

In the absence of other descriptions, the geometrical arrangement of cells can be
captured best from the distances between particles or other conspicuous entities. From
mathematics we adopt the best way to describe a pattern of dots by a neighbor graph
known as the Voronoı̈ graph.

In microscopy, the objects we are interested in are in the majority of cases in size
equal to or smaller than the point-spread function of the microscope. Then, the ap-
pearance of these blobs will have no visible internal structure. This we take as our
definition of a blob, namely: any particle which show no internal structure. Any such
blob can be represented in good approximation by a Gaussian-shaped intensity profile
as described in chapter 3. Having defined the blob as a structure-less entity, we are
permitted to reduce the shape of the particles to a point at the centre of the blob. We
follow a description of the dynamic pattern by reducing the cell or tissue first to a set
of points, one to each centre of a particle.

Local changes in dynamic point sets are conveniently described by geometrical in-
variants. The most prominent ones are divergence and curl [93, 41]. These measures
are independent of the choice of coordinate system. The divergence and curl are related
to the change in the shape of the pattern of connected lines spanned between the points
in the set. Deformations to the graph caused by (local) object expansion or (local)
torsion are described in terms of divergence and curl.

The common way to estimate curl and divergence is to measure them from the com-
plete (dense) motion field. Numerous solutions exist for estimating motion in image
sequences. Horn and Schunk [79] describe the most basic method to derive a dense
motion vector field from image sequences based on spatial and time derivatives of im-
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age intensities in the sequence. However, for image patches with no intensity structure,
as we have to deal with, their solution is ill-posed. The field between the blobs shows
little or no internal texture. Hence, estimates for the motion field are unstable almost
everywhere and can not be used [41]. The goal of this chapter is to find an alternative
method to estimate these invariants from image sequences.

Our work on the estimation of the dynamics of the geometrical architecture of tissue
is motivated by [74]. A Delaunay triangulation is the basis of a simple algorithm for
image segmentation. We use a similar method, now applied to motion analysis of a
pattern of points. From this architecture one easily derives the geometrical invariants
for each of the triangles spanned between the points in the set.

5.3. Related Work

We give an overview of related work using a classification of image sequence segmen-
tation as given by Zhang and Lu [192]. They conclude that motion-based approaches
start from optical flow estimation, change detection, or motion parameter estimation.
Segmentation based on motion estimation alone unlikely generates an accurate result
due to noise generated over-segmentation it results in. In addition, the methods com-
monly suffer from a difficult initialization. At the same time the computational com-
plexity is considerable and hence the applicability is limited. Therefore, many seg-
mentation schemes use spatio-temporal filtering to start from as such an approach will
produce more stable results. Zhang and Lu share this conclusion stating that spatio-
temporal approaches are robust and applicable to non-rigid motion.

The most primitive method of segmentation in still images is matching a known
template. Usually, some deviation is permitted to the template, to be able to fit the
template to a variety of shapes of biological origin. Felzenszwalb [62] demonstrates
fitting a triangular template, using non-rigid deformation, exploiting the fact that any
simple polygon describing a boundary can be triangulated. In this triangulation it is
then sufficient to find the boundary rather then the interior of the object. This requires
a good definition of a boundary. The paper gives a good example of the flexibility as
obtained with the triangulations of objects.

A connection between template matching and spatio-temporal segmentation approa-
ches can be found in the work of Sclaroff [146]. Sclaroff describes template tracking by
a well-defined initial template. Then, the non-rigid deformation of objects is taken into
account. To that end, tracking is posed as a mesh registration over time. A minimum
warping error defines the parameters of the optimal registration. The optimum regis-
tration is found by modal matching of the mesh to the frames in the image sequence.
The proposed method of active blobs tracks some objects with success. However, the
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implicit assumption is that the object is required to be highly textured. The method
will perform poorly on low textured objects.

Celasun et. al. [36] propose a mesh-based object segmentation in video. A 2D-mesh
by Delaunay triangulation is used on feature points. The mesh describes objects as
they move in the sequence. The updates of the mesh-positions are computed with the
method of Lucas & Kanade [100]. The proposed method relies on the computation of
optical flow. Hence it relies on the presence of image structure for a reliable estimate.
The method shows good tracking results without the necessity of user initialization.
Drawbacks of the method are a need for motion vector computation, reliability on hard
boundaries on the objects and the need of constraints to find good object boundaries.

5.4. Materials and Methods

5.4.1. Sample Preparation, telomeres sequence

For life cell observation, U2OS cells (derived from a human osteosarcoma) were cul-
tured on coverslips in

� � �
�
 petridishes (Mattek, Ashland, Ma.) in RPMI 1640 culture

medium, without phenol red, supplemented with
� � fetal calf serum and buffered with
 �  �� Hepes buffer to pH 7.2 (Life Technologies, Breda, The Netherlands). The Cy3

labelled (C3TA2) PNA probe was kindly provided by DAKO, Glostrup, Denmark. The
probe was dissolved to a final concentration of �� �� in a buffer containing � �� ��� ���

, ���� �� � � ��� � , �� �� � � ��� , (pH 7.2) to a final concentration of �� �� , and
was added to the cells. To label the cells glass bead loading was performed as described
by McNeil et al [112] using alkali washed glass beads. The PNA probe hybridize
specifically to telomeric DNA repeats in living U2OS cells, resulting in similar fluo-
rescence signals as on fixed chromosomes and nuclei [95], [49]. Images were acquired
using a Zeiss CLSM 510, with a Zeiss Plan-Neofluar 100x/ N.A. 1.3 oil objective. Cy3
was excited using the

� � � �! laser line. The image series consists of 70 stacks of 16
Z-slices, size 128x128 pixels taken with 1-minute time intervals. The total sequence
thus comprises 70 minutes.

5.4.2. Sample Preparation, mitose sequence

The recordings of a HeLa cell line expressing histone H2B-GFP (cell line 2-12-HeLa;
Kanda et al. [88]) were kindly provided by Dr. E.M.M. Manders (University of Am-
sterdam, Amsterdam, NL) [103]. Cells were grown in DMEM (Gibco, Life Tech-
nologies Ltd, Paisley, UK) supplemented with 10% FCS (Gibco), glutamine and peni-
cillin/streptavidin at

�������
and 5% CO � in glass-bottom microdishes (MatTek, Ash-
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land, MA). Two hours before imaging, the medium was replaced py prewarmed DMEM
without phenol red (Gibco) supplemented with 10% FCS, glutamine, penicillin / strep-
tavidin and free radical scavenger Trolox (0.1 mmol/L; Sigma-Aldrich Chemie BV,
Zwijndrecht, The Netherlands). The glass-bottom plate was placed on a heated micro-
scope stage (

�������
, Zeiss, Jena, Germany). An objective heater (Bioptech, Butler, PA)

was used to keep the microscope objective at
�������

. To stabilize the temperature, cell
cultures (60% confluent) were kept on the microscope stage for at least 2 h prior to
imaging.

5.4.3. Image Acquisition and Software

Images were captured with a Zeiss LSM510 using a Plan-Neofluar 100x / 1.3-oil objec-
tive (Zeiss, Jena, Germany) and an Ar-ion laser tuned at �������! and less than

� � �����
laser power at the position of the cells, to prevent cell death [105]. 10 3D images
each containing 31 optical sections (256x256 pixels) were scanned with a voxel size of� ���! lateral and

� ���! axial.

For image processing Matlab R14 (The MathWorks, Inc., Natrick MA, USA) was
used. Additionally, the Signal Processing toolbox and the Image Processing toolbox
(The Mathworks, Inc., Natrick MA, USA) are used. This high-level language scientific
software suite is expanded by user written source code for adaptive triangulation.

5.4.4. Deformable Mesh Motion Estimation

Delaunay Graph

Consider an image sequence of a living cell or a tissue containing living cells. Detec-
tion of objects of interest will result in a marker set � . Let � be the set of  markers,
� � 
 � # � � � � ����� � � � � , a subset of � ( ��� � ). A graph � � � � defines how elements
of � are connected in a Delaunay graph. A Delaunay-graph gives the triangulation of
the convex hull of the set of markers � . The triangulation is such that every circum-
circle of a triangle contains no other points. It is empty apart from the points which
make up the circle. It is guaranteed that such a solution does exist, as can be seen from
defining its dual graph. In � � , the Delaunay-graph is the dual of a Voronoı̈ graph. A
Voronoı̈ graph is defined by polygons � � � � , where each polygon defines the area for
which all points are closer to marker � than to any other marker [182].
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5.4. Materials and Methods

Deformable Mesh

Consider a Delaunay-graph � � � � at time
	

of markers � . The Delaunay-graph � � � �
at time

	
�
� 	

will be identical to � � � � , under the assumption that the geometrical
arrangement is constant within time intervals

� 	
. Implying that the set of markers �

at time
	
�
� 	

is the same as the set of markers � at time
	
.

Let the positions of the  markers be defined by  positions � ����� , � ��	
� � 
 � ������� �� ������� � ����� � � ������� � . Then, the geometrical arrangement is defined by � � � � with posi-
tions � ��	
�

of markers � .
The above construction is referred to as a deformable mesh. The mesh is allowed

to deform over time, as is described by the displacement of the markers. Usually the
deformation of the mesh is written as a minimization problem of the image warping
error for each triangle. Rather than minimizing a matching process (e.g. [184]), the
image segmentation error here is minimized by introducing new markers to the set �
from the marker set � , to fulfill the minimization criterion for the image segmentation,
see section 5.4.5.

Mesh Deformation Measurements

One can measure the deformation by calculating the displacement of each individual
marker. However, the geometrical layout provides more information.

Consider, in � � , an arbitrary area
�

with boundary ) � . Let 	� be a vector field
defined on area

�
. Then, Gauss’s theorem (or divergence theorem) states that:


��� 	� � 	� � �)��� � � � 	� � � (5.1)

Stokes’s theorem states that:

��� 	� � 	� � ����� � ��� 	� � � (5.2)

with 	� the tangential vector at
�

and 	� the normal vector at
�

to boundary ) � .
Suppose we have a boundary of an area defined by a polygon. Then, motion of the

vertices of the polygon can be seen as only a few sample vectors from a dense vector
field. Under the assumption of constant divergence and constant curl inside the closed
polygon, Gauss’s theorem and Stokes’ theorem can be rewritten into:

� � 	� � �
�



��� 	� � 	� � � (5.3)
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5. Motion Characterization of Shapeless Objects and Blob Patterns

��� 	� � �
�



��� 	� � 	� � � (5.4)

The right hand sides of equations (5.3) and (5.4) are estimated from the displace-
ments of the markers � � � that define polygon of the boundary ) � . A linear
interpolation of the displacement vector over the boundary is applied (see figure 5.1).

(a) (b)

Figure 5.1.: a) Definition of a contour with tangential vector 	� and normal vector 	� b)
Example of a closed polygon with displacement vectors

5.4.5. The Process of Mesh Deformation

In figure 5.2 the motion segmentation and mesh deformation is given schematically.
For each frame a point-set is extracted as shown schematically in figure 5.3. The frame
is thresholded and segmented. Then, object contours are defined. The contours define
the order of the points along the contour. From local curvature maxima and minima
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are extracted. The curvature maxima and minima form point set � . Figure 5.4 depicts

Figure 5.2.: Motion segmentation and mesh deformation method.

the motion update. From the point set at frame + all points are connected to their
corresponding point in the point set of frame + � � . The correspondence is derived
from the curvature value of the points, the order of the points along the contour and the
Euclidean distance between a point at frame + and a point at frame + � � .

Motion estimation approach; segmentation

Marker definition The image is thresholded at an experimentally defined intensity
level. positions with high isophote curvature and high intensity gradient are best find
by
� � � �
� � � � is computed as described in [168]. The set of markers ��� consists

of the local maxima and minima of
�

at frame
�

.
Segmentation The segmentation method starts at the first image of the sequence with
the initial triangulation �

�
. Markers in �

�
are set at the corners of the frame and the

one position of highest curvature in the image. When the analysis has progressed to the
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5. Motion Characterization of Shapeless Objects and Blob Patterns

Figure 5.3.: detailed schematic of extracting pointsets

next image, the segmentation of the image is initialized by the previous segmentation
after a motion update; �

�' � # � � �' .
Let � � denote the incremental Delaunay-triangulation after

�
insertions of points in

� � and let
�
�� form the

� ���
triangle of the

�
���

triangulation. For
� � � the triangulation

is �
� � � � . The function ��� � � � � defines an image surface � ��()�
* � , that is the

still image from the sequence at
	 � 	 '

. � �� ��()�
* � is a compact area of � bounded by
the vertices of triangle

�
�� .

�
�� is a subset of � � containing point

(
inside triangle

�
�� .

All triangles
�
�� are examined by computing a similarity predicate � � �

. When the
similarity predicate is false, a new point is added inside the area of triangle

�
�� . For

each point
( � �

�� a transition error
� � �

is calculated. The point
( � ' � �  + � � � � �
�

with lowest transition error is added to � � resulting in the next triangulation � �
� # ,

thus adapting the grid to the underlying image structure. This splitting phase continues
until all triangles

�
�� satisfy � � �

and yielding � � .
Let us now define the similarity predicate � � �

. Assume that within a region
�

the
values � ��()�
* � are approximately constant. They are represented by their mean � . We

86



5.4. Materials and Methods

Figure 5.4.: detailed schematic of estimating motion correspondence from frame i to
frame i+1

consider the similarity predicate of
�

to be true if the square error of the image surface
� within

�
is small. The square error

�
� ��� � � �

" � #�� �
� � ��()�
* � � � � �

�
(5.5)

is used in the predicate function

� ��� ��� � true if �
� ��� � 
 	

false otherwise
(5.6)

with threshold
	
, to be defined experimentally.

Motion update

Motion update initialization The motion update changes the triangulation � � of the
current frame into the initial triangulation of the subsequent frame. The displacement

87



5. Motion Characterization of Shapeless Objects and Blob Patterns

of each of the vertices is determined as follows.
A marker set � � � # is defined. The displacement of each vertex corresponds to the

best match between the current markers  and the markers from the marker set � � � # ,
based on three features of the markers. They are: the Euclidean distance

�
between

the markers, the difference of curvature values, and the order along the boundary. The
last is assumed to be constant. The difference in the curvature of each marker is an
indication of the similarity between two markers. A curvature distance

��
is defined by�� � � � � � � ' �

, with + and
�

indices of markers from the frame and its successor.
Once the motion update is completed, some of the points will remain unconnected

points in frame + � � . These points will be removed motivated as curvature points
can vanish within one step of the time resolution when the contour changes shape. At
the same time, curvature points may also appear at frame + � � . The segmentation is
updated at frame + �1� by inserting high-curvature points in frame + � � which are left
out as there is no corresponding points in the previous yet still have a high predicate
value � .

5.5. Results

5.5.1. Mesh Deformation Measurements on a Dynamic Blob
Pattern

The first sequence demonstrates the motion of the telomere set. We have observed
eleven prominent telomeres, see chapter 3. The tracks and the geometrical pattern are
displayed in figure 5.5. The deformation of the triangulation is shown in figure 5.6
as a 3D image. The blue tracks are connected by red and opaque surfaces. It can be
appreciated from figure 5.6 that the internal geometrical order is maintained throughout
the sequence.

Figure 5.7 gives the numbers of reference to the triangles and the vertices corre-
sponding to the positions of the eleven most prominent telomeres.

The convex hull of the group of telomeres represents the outline of the group of
markers. It can be appreciated in the figures 5.6a, 5.6b, and 5.6c that the convex hull is
composed from the same set of vertices (or telomeres for that matter) and in the same
order throughout the sequence. In figure 5.8 the divergence and the curl are given of
the convex hull.

The average divergence
�

of the convex hull is
� � 
 � � � ��� � � , equivalent to a

steadily growing area. The peak value of the divergence is � �
�
� � ��� � � at frame 49.

This corresponds with a shrinking of the area by �
�
� � . The average curl � of the

convex hull is �
� � � � � ��� � � . This corresponds with an average rotational speed of

88



5.5. Results

Figure 5.5.: Tracks of 11 prominent telomeres. The geometrical pattern at the start of
the sequence is drawn with straight red lines.

�
� � � � � ��� � 3

, and a clockwise rotation of the convex hull of � � � � 
 � ��� ��# . The
divergence and curl are fluctuating, changing between positive and negative values.
This corresponds to the findings of chapter 3. The motion resembles a diffuse motion
pattern combined with a steady linear displacement. To these findings one can add that
the group shows a small rotation throughout the sequence.

The divergence and curl of all individual triangles is given in figure 5.9(a). All values
are relatively small compared to the values of triangle 8 (see figure 5.7). The peak in
divergence is a factor 100 higher than the scale of the figure. Closely examination of
triangle 8 yields that the triangle becomes very small at the moment of the peak value.
Under such circumstances, even a small change in area will result in a high response in
divergence and curl. One may conclude that telomere 3 moves with a higher motility
than the surrounding telomeres.

All other triangles show a sequence of alternating positive and negative divergence
values indicating the expansion and shrinking of all individual triangles. This would
suggest a random and uncoordinated motion of individual markers.
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5. Motion Characterization of Shapeless Objects and Blob Patterns

(a) top view (b) side view

(c) front view

Figure 5.6.: 3D representation of the dynamic geometrical pattern corresponding to the
pattern between the eleven most prominent telomeres.

In figure 5.10(a) the divergence of two groups of telomeres is shown. The lefties
are composed of telomeres numbered 2, 8, 10 and 11. Together they span a convex
hull. The rightwing group is composed of the numbers 1, 4, 5, 6 and 7. They also form
a convex hull. Effectively, the two groups show a very similar pattern of movement.
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5.5. Results

Figure 5.7.: Numbers of the triangles and the vertices corresponding to telomeres
(boxed numbers).

(a) Divergence of the convex hull of the
group of telomeres of figure5.5

(b) Curl of the convex hull of the group of
telomeres of figure5.5

Figure 5.8.: Divergence and curl of the convex hull of the group of telomeres of figure
5.5

It might be the case that the divergence of the right group shows a slightly positive
divergence near the end of the sequence possibly indicating a small expansion.
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(a) Divergence of the individual triangles
of figure5.5
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(b) Curl of the individual triangles of figure
5.5

Figure 5.9.: Divergence and curl of individual triangles of figure 5.5

5.5.2. Shapeless Objects

In this section we study shape deformation just after the division of a nucleus. In
figures 5.11 and 5.12 the divergence of both daughter nuclei is given. The curl is
given in figures 5.13 and 5.14. The survival length of high curvature points in this
particular sequence is relatively short for most of them, at least short in comparison
to the sampling of the sequence. Nonetheless, it is still possible to give an estimation
of the divergence and curl of triangles between high curvature points. The fact that
the regions are defined by markers based on curvature extrema and the order along the
contour ensures that markers are connected reliably between two frames.

The sequence shows that many of the points appear and disappear. The geometrical
pattern is constantly innovated and adapted to the current shape of the nucleus. In-
novation and removal of high-curvature points imply that no region can be followed
throughout the entire sequence.

The curl values of the one daughter at the first frame indicate a clockwise rotation in
the middle a counterclockwise rotation at the right end of the object. In fact, the object
expands between the two regions. This expansion and the two rotating tails indicate
that the nucleus grows at that moment. More specifically the middle region moves
upward.
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(a) Divergence of right and left triangles of
figure5.5. The blue line represents the di-
vergence of the right group of triangles and
the green line represents the divergence
values of the left group. The average val-
ues of the two groups are indicated by a red
line for the right group and a yellow line
for the left one.
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(b) Curl of right and left triangles of figure
5.5. The blue line represents the curl of the
right group and the green line for the left
group. Average values of the right group
are indicated as before.

Figure 5.10.: Divergence and curl of groups of triangles. The two groups are the left
(numbers 2, 8, 10 and 11) and the right triangles (numbers 1, 4, 5, 6 and
7)

5.6. Discussion

In this paper a method is described for estimating motion properties like divergence
and curl from particles in a geometrical arrangement. They are usually small objects
or even points resulting from computation as for example curvature extremes.

We have analyzed two cases. The example of the telomeres demonstrates that the
method works for point sets. The estimated divergence shows that the expansion is very
small

� � 
 � � � ��� � � if not negligible. The estimated curl of the telomeres set shows an
average curl of �

� � � � � ��� � � . This corresponds an overall rotation of � � � � 
 � ��� ��# .
Earlier work on the telomeres image sequence (chapter 3) showed that the individual

tracks were mainly formed by random motion with just a small directional component.
Based on the findings here it can be concluded in addition to the findings of chapter 3
that the telomere set is expanding. The expansion is subject to random motion through-
out the nucleus where each fluctuation is much larger than any structural component.
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5. Motion Characterization of Shapeless Objects and Blob Patterns

Figure 5.11.: The estimated divergence of the top daughter nucleus in slice 15 of the
sequence. The top daughter nucleus, showing the divergence from frames
2 through 9. The colors of the triangles correspond to the color scale on
the side of the figure.

The complete geometrical structure followed a curved motion with an estimated rota-
tion speed of �

� � � � � ��� � 3
. The work presented here provides a useful addition to

the single track estimation methods presented earlier. In this work the individual tracks
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5.6. Discussion

Figure 5.12.: The estimated divergence of the top daughter nucleus in slice 15 of the
sequence. The lower daughter, showing the divergence from frames 2
through 6. After frame 6 the lower object disappears out of the focal
plane. The colors of the triangles correspond to the color scale on the
side of the figure.

are combined in a description of the dynamic geometrical arrangement.
The second part of this chapter describes a diving nucleus. The image sequence

shows expanding pools of DNA during the process of mitosis inside a living cell. The
expansion and rotation is captured by the estimation of the divergence and curl. The
time steps are relatively long to prevent excessive damage during scanning induced
by the intense laser spot used for scanning confocal microscopy. The coarseness of the
time sampling poses a problem for fast processes as the splitting of a nucleus (in reality
occuring between the first and the second frame, not shown). The current sequence
provides insufficient information to reliably estimate shape changes. The large change
in the nucleus leads to erroneous motion updates. The analysis of the two daughter
nuclei shows that the length of the survival of the high-curvature points on the boundary
is short, too short relative to the temporal sampling rate. This indicates large scale
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Figure 5.13.: The estimated curl of the top daughter nucleus in slice 15 of the sequence.
The top daughter nucleus, showing the curl from frames 2 through 9. The
colors of the triangles correspond to the color scale on the side of the
figure.

internal motion in the nucleus much faster than the time between successive samples.

The presented method is successful in computing a rough estimate of motion pa-
rameters, much better than spatio-temporal methods would do. This is because the
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Figure 5.14.: The estimated curl of the top daughter nucleus in slice 15 of the sequence.
The lower daughter, showing the curl from frames 2 through 6. After
frame 6 the lower object disappears out of the focal plane. The colors of
the triangles correspond to the color scale on the side of the figure.

presented method does not rely on the estimation of image derivatives in time.
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6. Conclusion

With the availability of a truly three dimensional imaging device having a look at the
interior of cells became possible. Imaging of living cells is demanding as it requires
taking into account the dynamic processes inside living tissue, cells or cell nuclei.

Visualization of living cells is dictated by the health of the cell. As a consequence,
illumination is kept as low as possible. This implies two major characteristics for the
subsequent signal processing. Moderate illumination levels dictate low signal-to-noise
ratios in the sequences and also low temporal sampling rates.

The low signal-to-noise ratios and the low sampling rates lead to specific methods
of motion estimation. In this thesis we investigate the possibilities of several motion
estimation techniques in various microscopic sequences. Under these circumstances
applying a motion estimation method should always be accompanied by measures for
their reliability and accuracy.

We have evaluated a velocity estimation method based on intensity derivatives in
spatial and temporal domain from 3D confocal images of living cells (chapter 2). Here
a reliability measure for the estimated velocity is introduced. The influence of the
point-spread function on the velocity estimation can be compensated for by introducing
anisotropic derivative kernels. The insight gained in the simulations is confirmed by the
results of the method applied on an image sequence of a living cell with fluorescently
labeled chromatin.

Sub-nuclear structures or domains represent morphological or functional entities
consisting of DNA, RNA, and proteins. Analysis of the visual blobs in living cells
renders information about the cellular dynamics and the cellular function. In chapter 3
we derive a computational model for tracking of spots in living cells. With this method
moving spots are tracked successfully. Statistical analysis shows that the motion of the
spots is a combination of diffusional, Brownian, and directed motion. Directional mo-
tion is detected in all tracks in spite of the severe Brownian component demonstrating
that the method is accurate enough even for vital stain conditions.

Expansion and rotation in velocity vector fields are described by divergence and curl
in chapter 4. From a dense velocity field the variance is calculated. This motion field
variance is propagated through to the divergence and curl estimation, giving a reliabil-
ity measure. Experiments show stochastic and systematic errors in the divergence curl
values due to motion field discontinuities. Application of local divergence and curl
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6. Conclusion

estimation is given using an image sequence of a crawling human T-cell.
Motion properties of groups of markers are estimated using their geometrical ar-

rangement in chapter 5. The particles may represent single cells, small objects in-
side cells or boundary points of shapeless objects. With the use of Gauss’ theorem
and Stokes’ theorem the estimation of divergence and curl is derived from a triangu-
lar graph spanned between the point set. An image sequence of 11 most prominent
telomeres shows a small expansion and rotation. The second image sequence of a cell
in mitosis is analyzed on high curvature points showing local uneven expansion and
rotation of the nucleus.

Combining the motion estimation at a single point or a single object is only one as-
pect of motion estimation in living cells. Numerous parts in a cell interact. Therefore
the geometrical arrangement is as important. A single track identifies the objects motil-
ity whereas the geometrical arrangement identifies the dynamical process of a group
of objects. In this thesis we have analyzed both aspects of intra cellular motion to the
limits of what current microscopy and estimation permit.
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A. Flow fields derived from image
sequences

The flow estimation and divergence and curl estimation are applied on a sequence of a
flower with unfolding petals. This motion includes expansion rotation and translation
of the petals see figure A.1. The motion of petals is different than the motion of the
background. Therefore at the boundaries of the petals a discontinuity arises in the flow
field. These boundaries will give a response for curl and divergence estimation as is
expected.

Frame 11 from the image sequence demonstrates only the motion of the petals, clearly
the moving parts in the frame show larger response than the background. The bound-
aries show large responses as expected.

Frame 23 shows positive curl in the right part of the upper petal, this is also demon-
strated in the estimated curl at those positions. At the heart of the flower clear diver-
gence is present in the flow field. This divergence is also estimated, giving rise to a
bright spot in the divergence image. At the same position of large divergence less curl
is estimated, demonstrating dominant divergent motion. Thus the complete flower is
expanding from the heart. Note the clear response at the outer boundary of the flower.
This response is due to the discontinuity in the flow field at the boundary of the flower.

Frame 40 shows also interesting flow field properties related to the growth of the
petals. The petals mostly stretch, resulting in flow fields with only translational motion.
The divergence estimation shows clear positive responses at the two discontinuities at
the boundaries between the upper petal and the left petal and the upper petal and the
right petal. Furthermore the divergence and curl at the translational flow field parts
are in the order of estimations of divergence and curl of the background. Thus no
significant divergence and curl are present in these parts.

In frame 46 of the sequence the flower is near its final pose, therefore motion is
very small. That the motion is small can also be seen from the estimated curl and
divergence, especially the lower right petal shows no significant curl nor divergence,
including at positions along the boundary between the object and the background. This
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A. Flow fields derived from image sequences

implies that no discontinuity in the flow field is present. The absence of a discontinuity
can have one cause, the background and the flower have the same motion. Since the
background is non moving, the petal is not moving. The upper petal shows small curl,
the left part of the petal expands to the left while the right part expands to the right
resulting in negative and positive curl respectively.
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Figure A.1.: Example frames (frames 11, 23, 40 and 46) of the blooming flower image se-
quence, with the corresponding divergence (middle column) and curl (right col-
umn) estimations.
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Samenvatting

Dit proefschift behandelt bewegingschatting en classificatie in multidimensionale mi-
croscopie beelden. Schatting van beweging en meting van richting en snelheid wordt
bepaald door middel van optical flow in drie dimensionale beeldreeksen van chro-
matine in de kern van een levende cel. Hierbij wordt de spreiding van de geschatte
verplaatsingsvectoren benut om een schatting te maken van de nauwkeurigheid van
de bewegingsschatting. Voor objecten met afmetingen vergelijkbaar met de afbeeld-
ingslimiet van een confocale microscoop is de vorm niet uniek. Een tracking meth-
ode gebasseerd op een Kalman tracking methode gebruikt bekende eigenschappen van
dergelijke objecten voor het vormen van de afgelegde weg. Telomeren in een levende
cel zijn succesvol met deze methode te volgen.

Een geschatte beweging is met een bekende nauwkeurigheid te bepalen. De gemaakt
fout in de bewegingsschatting werkt door in hiervan afgeleide grootheden. Deze door-
rekening van meetfouten is beschreven, experimenten zijn ter verduidelijking uitgevo-
erd.

De vervorming en geometrische relatie tussen objecten in een celkern is meer dan
alleen de opgetelde informatie van de enkele objecten op zich. De ontwikkelde meth-
ode is succesvol toegepast op microscopie beeldreeksen met ver-schillende ty-pen beel-
den. De verkregen bewegingsinformatie kan toegepast worden in onderzoek naar de
structuur en dynamiek in levende cellen.

1summary in dutch
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