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Abstract

X-ray imaging is a genuine tool to reveal internal structures of opaque objects. This

is possible due to the penetration properties of its probe - X-ray radiation. Modern

synchrotron facilities, equipped with high-resolution detector systems, provide X-ray ra-

diation of unique quality and allow to investigate a broad range of dynamical processes,

both in materials and biological specimens. To perform automated and quantitative anal-

ysis of time-resolved X-ray data, a method capable to retrieve dynamical information is

required. In this work we develop a general-purpose framework for X-ray data analysis

based on optical flow.

Optical flow methods traditionally belong to the field of Computer Vision. Finding

correspondences between time-lapse images is a key problem in a variety of applications

such as robot vision, tracking systems and video analysis. In the scope of this work we

adapt variational optical flow methods - a specific class of approaches used to determine

the optical flow - to the task of X-ray data analysis.

The quality of time-resolved X-ray data is diverse, ranging from high-resolution datasets

to low-contrast, noisy images with artifacts. We provide a detailed classification of X-ray

data. This taxonomy serves as a reference point for the development of image preprocess-

ing, motion estimation and data analysis techniques. Image preprocessing is employed to

enhance the original (raw) X-ray data in order to improve the accuracy of optical flow

estimation for the case of challenging data.

To develop an accurate and robust motion estimation model, we perform a systematic

evaluation of state-of-the-art optical flow techniques and make quantitative performance

analysis of their components.
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On the top of the optical flow estimation we provide an extensive data analysis toolkit

including automated tracking, flow analysis, motion-based segmentation, image registra-

tion and detection of temporal changes. All the devised techniques can be applied in 4D

(3D + time) to enable analysis of tomographic data. The implementation of the devel-

oped techniques incorporates advanced numerical schemes and computations on GPU.

Thereby, the processing of a vast amount of X-ray data is feasible.

Finally, we present the application of the optical flow methods to a number of scientific

problems from various research fields. These examples include flow analysis and particle

segmentation in semi-solid alloys, analysis of morphogenesis in living frog embryos, coa-

lescence events estimation and stability studies during the foaming process, and tracking

of morphological dynamics in living insects.



Zusammenfassung

Röntgen-Bildgebung ist ein wertvolles Werkzeug, um interne Strukturen von undurch-

sichtigen Objekten zu untersuchen. Dies wird durch die Penetrationseigenschaften der

Röntgenstrahlung ermöglicht. Moderne Synchrotroneinrichtungen, die mit hochauflösenden

Detektorsystemen ausgestattet sind, bieten eine besondere Qualität der Röntgenstrahlung

und erlauben damit, ein breites Spektrum von dynamischen Prozessen sowohl in Materi-

alien als auch in biologischen Proben zu untersuchen. Um eine automatische und quanti-

tative Analyse von zeitaufgelösten Röntgendaten durchzuführen, benötigt man eine Meth-

ode, mit der sich dynamische Information aus solchen Daten gewinnen lassen. In dieser

Arbeit wird ein universelles Netzwerk für die Analyse von Röntgendaten entwickelt, das

auf dem optischen Fluss basiert.

Methoden des optischen Flusses werden traditionell dem Gebiet Maschinelles Se-

hen (engl. Computer Vision) zugerechnet. Die Suche nach Zusammenhängen zwischen

zeitaufgelösten Bildern ist das Kernproblem in verschiedenen Anwendungsgebieten wie

etwa Robot Vision, Objektverfolgung und Videoanalyse. Die variationalen Methoden

gehören zu einer spezifischen Klasse von Ansätzen, um den optischen Fluss zu bestim-

men. Im Rahmen dieser Arbeit passen wir die variationalen Methoden des optischen

Flusses an, um die Analyse von Röntgendaten zu erleichtern.

Die Qualität von zeitaufgelösten Röntgendaten unterscheidet sich sehr stark von

hochqualitativen und hochauflösenden Datensätzen bis hin zu kontrastarmen verrauschten

Bildern mit Artefakten. Wir stellen eine detaillierte Klassifizierung von Röntgendaten

bereit. Diese Taxonomie dient als Bezugspunkt für die Entwicklung von Bildvorverar-

beitungs, Bewegungsabschätzungs- und Datenanlysetechniken. Die Bildvorverarbeitung
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wird zur Verbesserung von ursprünglichen (rohen) Röntgendaten eingesetzt, um die Qualität

der Bestimmung des optischen Flusses im Falle von anspruchsvollen Daten zu erhöhen.

Um ein akkurates und robustes Modell der Bewegungsabschätzung zu entwickeln,

führen wir eine systematische Auswertung der modernsten Techniken des optischen Flusses

und eine quantitative Leistungsanalyse ihrer Komponenten durch.

Basierend auf den Methoden des optischen Flusses entwickeln wir ein umfangreiches

Werkzeugset zur Datenanalyse, das automatische Objektverfolgung, Flussanalyse, bewe-

gungsbasierte Segmentierung, Bildregistrierung sowie die Detektion von zeitlichen

Veränderungen enthält. Alle in diesem Zusammenhang entwickelten Methoden können

für die Analyse von zeitaufgelösten tomographischen Daten (4D) verwendet werden. Die

Implementierung dieser Techniken beinhaltet fortgeschrittene numerische Schemata und

Berechnungen auf Grafikprozessoren (GPUs), wodurch die Verarbeitung von sehr großen

Röntgendatensätzen ermöglicht wird.

Schließlich zeigen wir die Anwendung der Methoden des optischen Flusses anhand

mehrerer wissenschaftlicher Fragestellungen aus verschiedenen Forschungsgebieten. Beispiele

sind die Flussanalyse und die Segmentierung von Partikeln in halbfesten Legierungen,

die Analyse der Gestaltbildung in lebenden Froschembryonen, die Beurteilung von Koa-

leszenz und Stabilität während der Schaumaufbereitung sowie die Verfolgung dynamischer

Prozesse in lebenden Insekten.
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Chapter 1

Introduction

In this chapter we give a motivation for our work, discuss the possibilities of time-resolved
X-ray imaging methods and arising problems for data analysis. The imaging principles
and application fields are shortly described for radiography and tomography experiments.
Further we give an introduction to optical flow methods and a general mathematical
model behind their principle. We proceed with an overview of related work on the optical
flow methods. In the end of the chapter we specify the aims of this work.

1.1 Motivation

The discovery of physical phenomena such as X-rays, ultrasound, radioactivity, magnetic
resonance, and the development of imaging instruments based on their principles, has
revolutionized the fields of medical imaging and materials research. Among other tech-
niques, X-ray imaging is recognized as a genuine tool to image the internal structure of
opaque objects, which is possible due to the penetration properties of X-ray radiation.
X-rays usually do not require special sample treatment and allow to use dedicated sample
environments for in-situ experiments. New methods emerged with the development of
synchrotron radiation X-ray sources. Modern synchrotron facilities, equipped with high-
resolution detector systems provide intense radiation and high spatial resolution. This
allows to investigate a broad spectrum of dynamical processes in materials and biological
samples.

Conducting an in-situ experiment, triggering the process of interest, and then collect-
ing time-lapsed data, enables to visualize and study dynamical phenomena. After the
X-ray experiment is performed, all underlying events and internal changes are captured
in a sequence of radiographic images or tomographic volumes. This makes time-resolved
X-ray imaging a powerful tool that offers the exciting possibility to observe real-time
dynamics and reveal internal structural information.

A vast variety of X-ray imaging methods, experiment types and sample forms give
rise to a numerous challenges in the subsequent data analysis. Application examples of
time-resolved X-ray imaging include evolution of morphological structures, monitoring of
fabrication processes, investigation of materials under mechanical stress or heat treatment,
velocimetry of liquid flows and diffusion processes, examination of living organisms and
many other studies from various research fields.

The common point of interest of these problems is the dynamics of a process. From
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12 CHAPTER 1. INTRODUCTION

the data processing perspective we can identify several topics of interest for time-resolved
data analysis. First, it is motion analysis, which includes the analysis of various qualita-
tive and quantitative characteristics of the moving scene or objects, such as motion type,
existence of sources and sinks, velocity or acceleration profiles. Another task is to perform
the detection of objects by the analysis of their motion, the so-called motion-based seg-
mentation. The next typical task is object tracking, which is a procedure for estimation of
the trajectory of an object as it changes its position over time. To perform such a broad
spectrum of data analysis tasks, a method capable of retrieving temporal changes and
capturing dynamical information is required. In this work we present a general-purpose
framework for time-resolved data analysis based on optical flow.

Optical flow methods traditionally belong to the field of Computer Vision. A problem
of finding correspondences between time-lapse images is useful for a variety of applications
such as robot vision, tracking systems, video analysis and stereo reconstruction. The
application of optical flow methods become increasingly important in other fields, such as
medical imaging, materials research and life sciences. In this work we adapt optical flow
methods to the task of time-resolved X-ray data analysis and show that these methods are
well suited for a broad range of scientific problems. We restrict ourselves to a specific class
of approaches that can be used to determine the optical flow, the so-called variational
methods. These methods are recognized among the currently most accurate, flexible and
robust techniques for the optical flow computation [BSL+11, SRB14].

1.2 Outline

This work is organized in the following way.
In the beginning of Chapter 1 we shortly discuss the possibilities of time-resolved X-

ray imaging methods and arising data analysis problems. X-ray imaging principles will be
described shortly for radiography and tomography experiments. Additionally, we discuss
their advantages and shortcoming with respect to time-resolved imaging. Further we give
a short introduction to optical flow methods and describe the related work. In the end of
the chapter we state the aims of this work.

Chapter 2 is dedicated to an extensive description and evaluation of optical flow meth-
ods. Quality and confidence measures for motion estimation are introduced. We present
different approaches for the construction of variational models and discuss how these tech-
niques can be applied for particular types of X-ray data. We proceed with an extension
of the devised 2D methods into a 3D model, which enables us to perform data analysis
of tomographic data. Next, we explain how a variational functional can be solved numer-
ically using iterative methods. Furthermore, we discuss various computational aspects
such as the coarse-to-fine strategy.

In Chapter 3 we consider important topics of data preprocessing and motion analysis.
Several strategies will be presented to cope with the most important data challenges such
as image noise filtering, correction of inhomogeneous brightness and enhancement of fea-
tures contrast. The influence of the proposed filtering techniques on the performance of
optical flow methods results will be discussed in detail. Then, we switch to the analysis
of the computed flow field and temporal data. We cover data analysis methods including
advanced flow analysis, automated tracking, motion-based segmentation, image registra-
tion and detection of temporal changes. All the presented techniques will be tested on
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synthetic data in the experimental part of the work (see Chapter 5) and employed in the
part devoted to applications (see Chapter 6).

In Chapter 4 we describe our computational framework. First, we present our software
modules and describe their components and responsibilities. Then, we discuss an impor-
tant topic of efficient and high performance computation of the optical flow . A number
of optimization strategies will be presented. Next, we provide an efficient implementation
of the optical flow algorithms on the GPU computing architecture. The last section of the
chapter is dedicated to visualization methods. Here we present our own implementation
of vector fields visualization, which allows for interactive inspection of the optical flow
results.

In Chapter 5 we perform systematic numerical experiments on synthetic data, designed
to test the performance of computational methods. In the beginning of the chapter we
provide a taxonomy of X-ray data. We present the quantitative evaluation of the per-
formance, influence of preprocessing, modeling of noise and data outliers in dedicated
sections. For all the experiments we outline important observations and draw the respec-
tive conclusions, which we summarize at the end of the chapter.

In Chapter 6 we apply our framework to various scientific examples from different
research fields. These application examples include flow analysis and particle segmenta-
tion in semi-solid alloys, analysis of morphogenesis in living frog embryos, estimation of
coalescence events and stability studies during the foaming process in various kinds of
foams, and tracking of morphological dynamics in a living insect. For each application
we give a short description of a problem and specify our data analysis tasks. We evaluate
the dataset according to our data taxonomy. Then we provide a detailed discussion on
the choice of the appropriate data preprocessing routines, selection of a suitable optical
flow model and the selection of the specific data analysis technique, which will lead to the
solution of the declared scientific aim.

In Chapter 7 we summarize the main results of our work and give our conclusions
about the developed techniques. We also discuss a number of possible extensions and
promising ideas which might further improve the results and extend our capabilities for
analysis of challenging X-ray data.

1.3 X-ray Imaging

1.3.1 Introduction to X-ray Imaging

X-rays were discovered by W. C. Röntgen on 8 November 1895 [R9̈6]. In 1901 for this
discovery and his investigations he obtained the first Nobel Prize in Physics. X-rays are
electromagnetic radiation with a wavelength in the range of 0.01 to 10 nanometers, which
corresponds to frequencies in the range 3 × 1016 Hz to 3 × 1019 Hz and energies in the
range 100 eV to 100 keV.

Due to their penetrating ability, hard X-rays (with photon energies between 10 - 100
keV) are an invaluable tool to image the internal structure of optically opaque objects.
Already shortly after the discovery, X-ray imaging became widely used for medical ap-
plications, non-destructive testing and security systems. During propagation through the
matter the intensity of X-rays is attenuated along their path of propagation. For 2D
radiography imaging, the variations in thickness or properties of materials provide a con-
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a b c

Figure 1.1: Evolution of X-ray imaging techniques. (a) First medical X-ray by Wilhelm
Röntgen of his wife’s hand. Image: Wikipedia, public domain. (b) X-ray radiography of
a chest. Image: Wikipedia, public domain (c) Volume rendering of the head of the stick
insect Peruphasma schultei imaged by a high resolution microtomography [vdKEdSR+13].

trast to resolve different structures. However, in this case one obtains only a projected
image and loses any depth information due to superimposed structure details.

Computed tomography (CT) overcomes this limitation and provides a three-dimensional
information about the internal structure. To achieve this, a series of projections from dif-
ferent angles are acquired. Then, a reconstruction algorithm is used to yield a 3D digital
representation of an object. The mathematical foundations for tomographic reconstruc-
tion were established by J. Radon in 1917 [Rad86] and the CT technology was developed
by G. Hounsfield and A. Cormack in 1960s-1970s. Since then the computed tomography
has revolutionized the fields of medical imaging and materials research.

New methods and imaging techniques emerged with the development of synchrotron
radiation sources. This radiation is generated using charged particle accelerators. Syn-
chrotron radiation is emitted by the charged particles which are accelerated by magnetic
fields on a circular trajectory in a storage ring.

Modern 3rd-generation synchrotron radiation sources, equipped with high-resolution
detector systems provide small beam size, high radiation intensity and high spatial reso-
lution. With the introduction of various X-ray optics the beam quality can be controlled,
providing polychromatic or monochromatic radiation. Synchrotron sources are expensive,
not portable and usually are operated by large-scale facilities, which could limit a broad
use of this technology. However, the unique quality of its probe make them a powerful
tool for a wide range of X-ray experiments and applications.

X-ray Imaging Principles

X-rays interact with matter either by photoelectric absorption or scattering (Compton
and Rayleigh). An absorption effect occurs when the X-ray photon is absorbed in the
course of liberating an electron from the inner shells of an atom. This contributes to the
radiation dose defined as the amount of absorbed energy per unit of mass. This aspect is
crucial for imaging of biological specimens. For a Compton scattering only a part of the
X-ray photon energy is used to free an electron from an outer shell and the photon itself
changes its direction, i.e. scatters [Dou09].

As a result of these interactions the intensity of the incoming beam is reduced. Various
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tissues or materials affect the changes in radiation intensity differently. In a homogeneous
object this depends on its thickness l along the direction of propagation and the atten-
uation coefficient µ of the material. The intensity I of the incident X-ray beam after
propagation through the sample of thickness l is related to its initial intensity I0 by the
following expression:

I = I0e
−µl,

which is known as a Beer - Lambert law.

Depending on the main effect of X-ray interaction with matter it is possible to classify
imaging techniques into absorption imaging and phase-sensitive imaging. For the absorp-
tion imaging the contrast is produced by the attenuation of x-rays and is described as an
amplitude modulation of the wave-field. In the case of phase-sensitive imaging, contrast
is governed by the phase modulations due to the differences in spatial distribution of the
refractive index. A number of phase sensitive imaging techniques might be used. A simple
and popular method exploits the effect of propagation of the X-ray wave-field after its
interaction with the sample. Due to interference effects caused by the propagation, the
phase modulation can be reconstructed and visualized. For this technique a quantitative
retrieval of the phase modulations is possible [CLB+99], which allows to extract the real
part of the refractive index in the interior of the investigated sample.

Beam Geometry

Depending on the instrumental implementation of a X-ray source a number of different
beam geometries are possible:

• Pencil beam. The first X-ray source was implemented using a so-called pencil beam.
For this geometry the cone of generated X-ray beams is filtered by a pinhole and,
thus a point-like X-ray source is produced. A single detector is placed to the opposite
side of the source to detect the X-rays.

• Fan beam. In this case the beam geometry is represented by a flat fan shape (di-
vergent beam) and a detector system consists of an array of detector elements.
Typically, the angle of beam divergence is small, as well as the size of the detection
array.

• Cone beam. In this geometry the beam is a 3D cone with a wide angle of divergence
and a large 2D detector is used. This technique is widely used in a laboratory-
based X-ray setups. For this type of geometry the distance between the sample and
the source is important, since it influences the object magnification in the detector
plane. Additionally, for image reconstruction algorithms the angular distribution
of the incoming rays with respect to the rotation axis has to be taken into account
[KS01].

• Parallel beam. The X-rays are coming parallel to each other and impinge on the
sample perpendicular to its rotation axis. The 3D image reconstruction procedure
for this type of geometry is the simplest and can be realized in an efficient way
[KS01].
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In the current work all experimental results presented in the application sections are
obtained using the parallel beam geometry. The most important aspect related to data
analysis is the quality of 3D reconstructed images. Each beam geometry is associated
with its own set of reconstruction artifacts [Buz08]. Therefore, the beam geometry, ex-
perimental parameters and the reconstruction algorithm strongly influence the later stages
of data processing and analysis. We discuss these aspects in the Section 1.3.2.2 devoted
to tomographic reconstruction.

Detector System

After the interaction with an object and propagation to the detector plane, X-rays are
registered by a detector system. Two distinct classes of detectors are used in synchrotron
radiation imaging [GET01]:

• Direct photon detectors. For this type of detector systems X-ray photons are con-
verted directly into an electric charge.

• Indirect detectors. For the indirect detection system the incident photons first strike
a material layer, called scintillator, which converts X-ray photons into visible-light
photons. These photons are then detected by a visible-light detector.

For each detector system a number of technologies are available, such as charge-coupled
devices (CCD) and complementary metal-oxide-semiconductor (CMOS) cameras. A sub-
stantial advantage of the indirect detector system is that a wide range of commercially
available high-performance, visible-light cameras is available. With the recent develop-
ments such cameras can achieve a very high spatial resolution (down to 1.0 µm) and ultra
fast data acquisition rates (up to 100.000 frames per second) [RGMS+10].

Digital Image

Spatial resolution is the capability of an image to represent object details. It can be char-
acterized as the minimum separation distance of nearby features of the object which can
still be recognized on the image as different structures. In general, the spatial resolution
of a digital image depends on the resolution of the imaging system described by its point
spread function (PSF) and the pixel size of the detector system [Dou09]. The pixel size
of the digital detector is determined by the sampling frequency used to digitize the image
signal and by the physical size and separation of the array elements within a 2D detector.
Increasing the pixel size reduces the effective resolution, but can lead to the increased
signal sensitivity. The point spread function describes the response of the imaging system
given a point source or a point object. The width of the PSF function determines the size
of the smallest detail that can be resolved. According to the sampling theorem [Nyq28],
the pixel size should be less or equal half the width of the point spread function in order
to correctly sample an analog signal. For smaller pixel sizes the PSF spreads to several
pixel locations and the resolution is reduced.

Another important characteristics of the digital image is the brightness resolution. In
a digital image differences between structures are represented by variations in brightness
values. In X-ray imaging, these variations are determined by or related to the physical
properties of a sample, such as sample thickness, material density and chemical com-
position. The aim of an imaging process is to distinguish between various parts of the
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sample, which differ in their structure or material composition. Ideally, this should also
be valid if both materials differ from each other only slightly. To achieve this a detector
system with a good brightness resolution should be used. This property is also called
the dynamic range of the detector system. The range of brightness variations which is
recorded depends also on the number of bits used for quantization procedure (converting
the analog signal to digital). Most modern camera systems allow to record images in 12,
16 or 32-bit value formats. We discuss further aspects related to the brightness resolution
in the Section 3.1.3, which is dedicated to preprocessing of low-contrast image data.

1.3.2 Experimental Methods

In this section we briefly describe two imaging techniques, which will be employed in
this work to acquire a sequence of time-lapsed X-ray images - radiography and tomogra-
phy. For both experimental techniques we describe the advantages and shortcomings of
its application with respect to its ability to capture spatio-temporal information. More-
over, we introduce typical challenges that arise during data processing and optical flow
computation.

1.3.2.1 Radiography

Radiography is a simple, yet powerful technique to visualize internal structures of a sample.
For this purpose a sample is placed in the beam and properly aligned using manipulation
devices (e.g. translation stages), so the optimal position in the field of view is achieved. As
soon as the process of interest is triggered, a high speed camera records time-lapse projec-
tion images, called ”radiograms”. Many instrumental modifications for the radiography
experiment setup are possible. They include the choice of the X-ray beam properties,
positioning devices, source-to-sample and sample-to-detector distances, detector optics
and the choice of digital camera or sensor.

We now describe a number of characteristic properties associated with the radiography
technique. Among the advantages of this method are:

• High spatio-temporal resolution: Spatial resolution down to the micrometer scale
and temporal resolution down to the microsecond range are achievable with modern
detector systems [RGMS+10].

• In most cases no complicated alignment of the sample is needed - the sample is
simply placed in the field of view of the detector system.

• Since the sample stage does not move during the data acquisition, the usage of com-
plex or bulk sample environments is possible (e.g. furnace, high-pressure chamber,
etc).

However, there are also a number of major drawbacks, that limit applicability of the
radiography:

• The main drawback of the radiography technique originates from the projection of
3D structures on a single 2D image plane. As a result, any depth information about
internal 3D structures is inevitably lost.
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• For data processing methods, including correspondence problems (e.g. optical flow,
object recognition), the superposition of 3D structures into a 2D plane imposes a
critical challenge - the underlying assumptions on data constancy and the affine
transformation model are no longer valid. For example, the change in orientation
of the object in 3D space causes a redistribution of the projected thickness on
the image plane. Thus, no reasonable assumption about the image data can be
enforced. In some situations the movement in 3D space does not cause a change
in the distribution of grey values in the projected 2D image. One example is an
object, which undergoes a translational movement perpendicular to the projected
plane and the parallel beam geometry is used.

Figure 1.2: Experimental setup for propagation-based phase-contrast X-ray microtomog-
raphy. A photon beam is generated by the synchrotron. After the beam is shaped and
filtered by the monochromator, the X-rays propagate over a large distance to interact
with the sample mounted on a rotation stage for tomographic data acquisition. The 2D
detector system consists of a scintillator, which converts X-rays into a visible light, a
mirror, a lens and a CMOS digital camera. Image: [MEA+13]

1.3.2.2 Computed Tomography

The previously described radiographic technique suffers from a major drawback - it only
produces a projection of three-dimensional objects on the 2D detector plane. As a result
the structures are superimposed with each other, which complicates their identification
and analysis. Computed Tomography (CT) is a technique which has been developed to
overcome this limitation. It provides a three-dimensional information about the inner
structures of an object. This technique consists of two stages. First, a series of radio-
graphic projections from different directions are taken. Then, a dedicated algorithm is
used to reconstruct a 3D volumetric image. The task for tomographic reconstruction is to
perform the retrieval of the unknown object function from a series of its Radon transfor-
mations taken from different angles [KS01]. There are two distinct classes of tomographic
reconstructions:
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• Analytical methods are based on reconstruction steps using the Fourier transforma-
tion [KS01]. It is important to note, that such methods yield an exact solution of
the inverse problem if a number of requirements are fulfilled. For large tomographic
datasets these methods a preferred since they are typically less computationally
demanding. Moreover, they are also less sensitive to noise and small data arti-
facts, thus producing more accurate results. One popular choice for such type of
techniques is the filtered back-projection (FBP) [KS01].

• Algebraic methods represent an object as an array of unknown coefficients and model
a ray transmission through the object as a mathematical function of these coeffi-
cients. Then a system of algebraic equations is solved to estimate the object. Usually
this class of reconstruction methods is used if the requirements for the analytical
methods are not satisfied. For instance, if the number of angular projections is
insufficient. Or if the beam geometry and tomographic acquisition is hard to be
modeled analytically, e.g. for diffraction tomography.

A typical tomography setup is shown in Figure 1.2. Here we list advantages and
drawbacks of the computed tomography technique. Among the advantages are:

• Computed tomography provides a 3D structural information about a sample.

• For the computation of optical flow having a 3D representation of a scene and
its objects means that there are no occlusions between different structures (as it
happens for 2D images). This highly influence the accuracy of motion estimation
and leads to better results.

Nevertheless, there are also a number of limitations:

• The need of tomographic acquisition, which involves imaging of an object from
multiple directions, can limit temporal resolution. This is especially critical for
imaging rapid dynamical processes.

• The rotation of the sample on the tomographic stage could also restrain the use of
sample environments (wiring, bulky instrumentation, etc), which cannot be rotated
freely around an axis.

• To obtain tomographic volumes of a high quality, a large number of radiographic
projections is required. Depending on the sample and properties of the X-ray ra-
diation, it may result in a high dose deposition. This aspect is crucial for imaging
living specimens and can limit the applicability of X-ray computed tomography.

• Depending on the number of projections, image quality and specific image artifacts
could appear and degrade the resulting 3D data. Compared to such image charac-
teristics, such as noise and low contrast, these artifacts are difficult to correct. The
presence of reconstruction artifacts significantly reduces the performance of optical
flow methods.
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1.4 Variational Optical Flow

Optical flow is one of the major problems in Computer Vision. Given a sequence of
images the aim is to determine the correspondences between them. A method to find
the displacement field which maps all image points from the first frame to their new
locations within the second frame is called optical flow. Following a formulation from the
seminal work of Horn and Schunck [HS81], the motion field is the 2D projection of the
actual 3D motion of objects and scene, where the optical flow is the apparent motion of
the brightness patterns depicted on the image. In our work we extend the definition of
optical flow as an actual 3D motion of internal structures when applied to 3D tomographic
volumes.

Optical flow is useful for a variety of different applications such as robot vision, driver
assistant systems, object tracking and stereo reconstruction, video analysis and processing
[Wol96, SL96, KZK03, HTWM04]. In this work we employ optical flow methods to
perform data analysis and investigate of a wide range of applications related to the field
of X-ray imaging. One example is given in Figure 1.3, where optical flow is used to capture
real-time movements of the feeding cockroach.

a b

c

Figure 1.3: Fast radiography of the feeding cockroach Periplaneta americana. (a) First
frame of the radiographic sequence (the background is removed and contrast is adjusted).
(b) Computed flow field, which captures the movements of the insect. (c) Color coding:
color represents direction and its brightness represents flow magnitude.

1.4.1 Related Work

The research on optical flow estimation advances is rapidly. The methods become more
accurate, robust with respect to challenging data and flexible to model various scene
and motion scenarios. In the scope of this work we restrict ourselves to a specific class
of approaches used to determine the optical flow, so-called variational methods. These
methods are recognized as one of the most accurate and best understood techniques for
the optical flow computation [BSL+11, SRB14].

Recently a number of important contributions to the field of optical flow estimation
were made. In the work of Bruhn [Bru06] a systematic taxonomy and quantitative evalu-
ation of variational optical flow methods was presented. A common notation as well as an
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extensive list of available models allows to construct an optical flow framework, suitable
for a wide range of applications. Development of a novel database for the evaluation
of optical flow techniques has led to rapid improvements and understanding of optical
flow methods [BSL+11] . A vast amount of literature on motion estimation techniques
propose sophisticated models and multiple features. This makes it hard to evaluate the
performance of the individual components. In Refs. [SRB10, SRB14] the authors provide
an overview over current state-of-the-art optical flow methods and reveal the ”secrets”
behind the most successful models. Recently, some of the authors reported that even the
most advanced approaches yield poor results on a challenging real-life data. This high-
lights the importance of work on robust optical flow methods designed for a particular
task or application. A number of application specific optical flow evaluation databases
has already emerged [AVBSZ07, GLU12].

Many of the today’s state-of-the-art variational optical flow methods still resemble the
original formulation by Horn and Schunck [HS81]. This model combines a data term that
imposes constraints on image features which should be matched and a smoothness term
which regulates the properties of the flow field. A global energy functional containing
both constraints is then minimized to find the solution. In this section we describe im-
portant work related to the modeling of data and smoothness assumptions, as well as the
optimization procedure. We also give a short outlook of works where optical flow methods
has been applied.

There are many approaches and interesting concepts which go beyond the scope of
this work. For example, we exclude the discussion of photometric data terms constancy
assumption based on color information [MBW07], motion with transparency or layered
models [JB93, WA93, JBJ96], incorporation of feature descriptors (i.e. SIFT) to refine
motion estimation during coarse-to-fine strategy [XJM10], combination of optical flow
estimation and image segmentation [BJ96, ZJK05, XCJ08], or the use of non-convex
optimization strategies. We will restrict ourselves only to those approaches which are
suitable for the application on the X-ray image data and can be incorporated to the
variational framework.

1.4.1.1 Data Assumptions

In the literature, there are two major directions for the formulation of data constraints:
design of robust data terms, which improve the performance on problematic image data
and incorporation of additional information to model various aspects, such as illumination
changes and different motion models. The first approach for the robust data term was
proposed in the work of Black and Anandan [BA91, BA96], where the quadratic function
of the original Horn and Schunck method was replaced by a non-quadratic variant. The
robust modeling of data constraints become an important factor in the construction of
accurate optical flow methods [BBPW04, LRR08, XJM10, BSL+11, SRB14]. In order to
handle varying illumination conditions, higher order constancy assumptions [Sch93, Sch94,
BBPW04, PBB+06, ZBW11] or special image filtering are proposed [MBW07, WPZ+09,
ZBW11]. To improve the performance of data constraints for noisy images some of the
authors suggested a local-global data term [BWS02, BWS05], which takes into account
the information around a local region.
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1.4.1.2 Regularization

The regularization of flow fields involves two main aspects: discontinuity preserving mo-
tion estimation and incorporation of temporal information. The first approach to use
adaptive smoothness was proposed by Nagel et al. [Nag83, NE86]. This idea has been
developed in a number of approaches which assume image-driven [Sch93, ASW99] or flow-
driven smoothness [SH89, Sch94]. In Ref. [SLB08] the authors combined the advantages of
both methods to obtain precise motion discontinuities and avoid oversegmentation prob-
lems. In their work the smoothness direction is adjusted to image edges and smoothing
amount to the flow gradient. In Ref. [ZBW11] the authors generalized this idea to obtain
a complementary smoothness term. Such approach regulates the smoothness direction
according to the data constraint, instead of image edges.

The idea to assume the smoothness also in temporal direction was first investigated
by [MB87] and extended for continuous models in [Nag90]. A discontinuity-preserving
spatio-temporal smoothness was proposed in [WS01b] and used for a number of highly
accurate optical flow models [BBPW04, ZBW11, VBVZ11].

1.4.1.3 Solution

To find a solution of variational methods in the presence of large displacements it is
common to use a coarse-to-fine strategy [BA96, MP98, BBPW04, XJM10]. For the con-
struction of image pyramids and in order to perform image warping a bicubic interpolation
is commonly used [SRB10]. In order to represent image gradients a second order deriva-
tives, as well as temporal averaging are among good practices [WPZ+09, SRB14, ZBW11].
A number of efficient computation models were proposed, such as multigrid methods
[BWF+05, BWKS06a]. Furthermore, a popular trend is a fast implementation of varia-
tional methods using graphical processing units (GPU) [WPZ+09, GZG+12, BJKY14].

1.4.1.4 Applications

Optical flow methods are widely used in the native field of Computer Vision, for such
applications as video surveillance and analysis [KZK03, HTWM04], video compression
[Wol96] and video annotation [SL96]. Recently, the usage of optical flow methods become
important for data analysis in the fields of biological imaging and life sciences, as well as in
other research fields. Examples include: zebrafish development [AMK13], monitoring of
plant growth [BL97], in-vivo blood flow measurements [VLW07], modeling and correction
of respiratory motion [MHSK13] and analysis of cardiac images [XPI+10].

Various parts of the current work were presented in publications, dedicated to X-ray
imaging [BRE+09, RGMS+10, AER+12], applied for in-situ studies of advanced mate-
rials [ZRGM+10, MEH+12, ZER+13] and for in-vivo investigation of various biological
questions [BRS+08, MEA+13, MEW+14, dSREvdKB14].

1.4.2 General Model

A general model for variational methods was proposed by Horn and Schunck in 1981
[HS81]. This technique determines the unknown displacement field as a minimal solution
of the energy functional. In general, such energy-based formulations are composed of two
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parts: a data term which assumes constancy of specific image features, and a smoothness
term which regularizes the spatial variation of the flow field.

The classical optical flow approach of Horn and Schunck consists of a brightness con-
stancy assumption and a homogeneous smoothness term. The first constraint states that
after the displacement the brightness value remains constant and the second constraint
assumes that the motion field varies smoothly in all directions.

In order to formulate the optical flow model we consider a time-lapse sequence of
images I(x, y, t), where (x, y) are the pixel coordinates within an image domain Ω2 ⊂ R2

and t denotes time frame. Then, the brightness constancy assumption can be expressed
by:

I(x+ u(x, y), y + v(x, y), t+ 1) = I(x, y, t), (1.1)

where (u(x, y), v(x, y)) is the displacement field from frame t to t + 1. To simplify the
formulation of model assumptions, we will use the short notation u, v for the displacement
field components instead of u(x, y), v(x, y). Assuming that the displacement components
are small and changing continuously, we can approximate the non-linear equation (1.1)
using a first order Taylor expansion. We obtain the so-called linearized optical flow
constraint :

Ixu+ Iyv + It = 0. (1.2)

The optical flow cannot be uniquely computed at a single point since the displacement
is given by two components, while the change in image brightness provides only one
constraint. In the literature this is known as the aperture problem [BPT88]. There are
two different cases of this issue. If only one component of the image gradient can be
computed, it is possible to determine the flow component parallel to the direction of
image gradient, so-called normal flow. In the second case, in homogeneous image regions
the brightness gradient vanishes completely, so no appropriate correspondence can be
found.

To overcome this problem, the method proposed by Horn and Schunck introduces
an additional constraint which assumes the spatial smoothness of the flow field. Such
constraint can be expressed by penalizing the spatial flow gradients, given by ∇2u and
∇2v. Both, the brightness constraint and the smoothness constraint can be integrated in
the energy functional to obtain the classical Horn and Schunck method:

EHS(u, v) =

∫
Ω2

(Ixu+ Iyv + It)
2 + α(|∇2u|2 + |∇2v|2)dxdy, (1.3)

where |f | =
√
f 2
x + f 2

y is the magnitude and ∇2 = (∂x, ∂y) denotes the spatial gradient.
The parameter α is called regularization or smoothness parameter and controls the amount
of required smoothness of the resulting flow field.

The variational optical flow methods based on the Horn and Schunck model can be
written in a more general form:

Egeneral =

∫
Ω2

(D(I, u, v) + α S(I, u, v)) dxdy,

where D(I, u, v) imposes constraints on image features which should be matched and
S(I, u, v) regulates the smoothness properties of the flow field. Both parts of this general
optical flow framework can be customized and adapted for the specific data properties and
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motion models. In Chapter 2 we present different approaches to construct accurate and
robust variational optical flow models and discuss how these techniques could be applied
for the particular task of X-ray data analysis.

In order to find the solution of the optical flow problem we are interested to have
energy functionals which are convex. For such functionals a unique solution exists and it
can be found using globally convergent algorithms. In contrast, for non-convex approaches
multiple local minima can be present and optimization algorithms may suffer from getting
trapped in local minima, thus providing inaccurate results. For the Horn and Schunck
method linearization of the brightness constraint must be performed in order to obtain
a convex functional. Such linearization step does not affect the accuracy of the result
as long as only small displacements for the scene are considered. In order to cope with
large displacements linearization procedure cannot be applied and the original non-linear
variant of the data term must be used. In Section 2.2.4 we will introduce a coarse-to-
fine strategy based on the theory of warping which allows to solve non-convex energy
functionals for our problem.

1.5 Aims of the Work

As it was discussed in the introductory section, time-resolved X-ray imaging methods
provide a wide range of possibilities for the research of dynamical processes. It is a
challenging task, however, and involves many steps to get from the initial idea of the
experiment to the final scientific result. After an experimental setup is prepared and
carefully adjusted, the original raw data is recorded by a detector system. The acquired
data have to be inspected and evaluated to ensure that the desired image quality is
achieved and the events of interest are captured. At this step important adjustments
could be introduced to improve the results. The raw experimental data coming from the
detector system is usually not suited for the immediate analysis, since images often contain
artifacts. Thus, an artifact correction and data enhancement procedure is desirable. The
quality of time-resolved X-ray data is immensely diverse. Data related properties, such
as image resolution, signal-to-noise ratio, features contrast and underlying motion model,
influence the performance of data processing routines. To automatically capture the
dynamics of a process an appropriate computation algorithm should be employed. In this
work we use variational optical flow as the core method to extract temporal information.

The main goal of our work is to cover, investigate and implement all the aspects that
are important for automated analysis of time-resolved X-ray data. To achieve this we
proceed with the following steps:

• provide a detailed classification of X-ray data, including the description of image
quality, motion types and features of interest. This taxonomy should serve as a
reference point for the development of image preprocessing, data analysis and motion
estimation procedures

• develop image preprocessing methods to enhance the original (raw) X-ray data

• perform systematic evaluation of state-of-the-art optical flow techniques, make quan-
titative analysis of their components and choose the most robust and accurate ap-
proaches
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• introduce a flexible framework based on variational optical flow methods to extract
dynamical information from time-lapsed datasets

• provide automated confidence measures to ensure the reliability of motion estima-
tion. Such measures should also assist with the automated optimization of model
parameters

• develop an extensive data analysis toolkit including automated tracking, flow analy-
sis, motion-based segmentation, image registration and detection of temporal changes

• implement the developed techniques for 4D data (3D + time) to enable analysis of
tomographic data

• provide an efficient implementation of optical flow methods using advanced numer-
ical schemes and computations on graphics processing units (GPUs). Thereby, the
processing of a vast amount X-ray data - long image sequences and large tomo-
graphic volumes - becomes feasible

• apply the devised optical flow and data analysis techniques to investigate a number
of scientific problems from various research fields

All the aforementioned topics are essential for the subject of this thesis, therefore we
consider them as a complete framework. However, some parts of this work are also useful
as isolated topics. As an example - in Section 5.1 we provide an approach for qualitative
data taxonomy and in Section 3 we present image processing routines to enhance the
original X-ray data. These steps are general for various data analysis problems that are
not related to analysis of dynamics (e.g. image segmentation). The variational optical
flow methods which we use in this work could be substituted by any other technique solv-
ing the same class of problems, i.e. finding correspondences between time-lapse images.
Therefore, the information presented in other parts, such as in the chapters dedicated
to data analysis or applications are still valuable. The current work is interdisciplinary
and closely related to the fields of Computer Science, X-ray imaging, Material and Life
Sciences.
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Chapter 2

Optical Flow Methods

This chapter is dedicated to a detailed description of optical flow methods. First we
introduce quality measures for motion estimation. Using these measures it is possible
to assess the accuracy of the result of the optical flow estimation if the ground truth is
known. Then, we present different approaches for the construction of variational models
and discuss how these techniques could be applied for X-ray data. This part is divided into
several sections, which are devoted to (i) the construction of data constancy assumptions,
(ii) robust data terms and (iii) smoothness assumptions. Afterwards we introduce of
automated confidence measures. Next, we extend the devised 2D optical flow models
to 3D, which enables us to perform data analysis of tomographic data. Afterwards,
we explain how a variational functional is solved numerically using iterative methods.
Furthermore, we discuss various computational aspects such as derivatives discretization
and implementation of multi-level computation.

2.1 Modeling

2.1.1 Quality Measures

Before we start with the description of optical flow methods, we first present quality mea-
sures which allow for quantitative comparison of different approaches if the ground truth
for optical flow is known. We will employ these measures in our extensive performance
studies of optical flow methods and data processing techniques in the section 5.4. It is
important to note, that the performance of an algorithm cannot be described by a single
measure. Instead, to show the performance with respect to different characteristics of an
image we employ a set of measures. However, we do not show all the available measures
for every evaluation. Instead, we use only those measures which are of interest for the
particular evaluation case.

2.1.1.1 Angular Error

In the recent years the most widely used performance measure for optical flow was the
angular error (AE). It is given by an angle between a computed flow vector w = (u, v)
and a ground truth flow wGT = (uGT , vGT ), which can be computed as a dot product of

27
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both vectors, divided by the product of their length:

AE = arccos
( u · uGT + v · vGT + 1.0√

u2 + v2 + 1.0
√
u2
GT + v2

GT + 1.0

)
.

Note, that angular error contains an additional scaling constant (1.0) to convert from
pixels coordinates to the angular space. This measure was introduced in Ref. [FJ90]
and was used in one of the first surveys on the performance of optical flow methods by
[BFB94]. The main purpose of the AE is to provide a relative performance measure that
could be used for all flow scales and is not causing problems for zero motion. However, it
is important to note that errors in regions with fast motion are penalized less than errors
in slow regions, which is a result of length normalization for this measure. Despite the
fact, that the angular error was widely used in the previous work on optical flow methods
its properties are not desirable for a robust and unbiased measure.

2.1.1.2 Endpoint Error

Another measure to estimate the performance of flow field computation is the endpoint
error (EE) [ON94]. This measure captures the absolute difference between two flow
vectors w = (u, v) and wGT = (uGT , vGT ):

EE =
√

(uGT − u)2 + (vGT − v)2.

The endpoint error does not suffer from the drawbacks of angular error measure: it can
be applied for the whole range of flow scales and all of them contribute equally. It is also
a much more appropriate way to evaluate the differences between vectors if not only the
direction, but also the difference in magnitude of the flow is important. Currently this
measure is prevalent in the literature [SRB10, BSL+11] and will also be used to evaluate
the performance of optical flow methods in this work.

2.1.1.3 Error Statistics

In order to evaluate the result of an optical flow computation for a given image sequence
one is interested in a quantitative description of the quality of the output. A straight-
forward statistical measures are the average error and the standard deviation [BFB94].
Despite the fact, that both measures can be used to evaluate the overall performance, they
are not optimal for measuring the performance on challenging image data or more complex
scenes (e.g. a scene for which the background with little or no motion is prevalent).

Following the ideas presented in Ref. [BSL+11] we compute robustness measures
[SS02]. For simplicity we also keep their notation for the presented statistical measures
and denote by RX the percentage of pixels that have an error measure larger then X. In
particular, we compute R0.5, R1.0, and R2.0 for the endpoint error.

2.1.1.4 Statistics Regions

The reliability of optical flow methods differs in various image regions. In particular, it
is difficult to compute the flow around motion discontinuities, inside noisy regions, near
artifacts or in homogeneous regions. Thus, it is reasonable to distinguish between such
regions and evaluate their statistics separately. This can provide insights how different
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optical flow models perform for in a particular situation. In the common benchmark for
optical flow methods [BSL+11] three types of regions were evaluated: all image data (All),
around motion discontinuities (Disc), and in textureless regions (Untext). In [BSL+11]
it is concluded that Disc regions contain the most challenging data for the computation
of optical flow. In contrast, textureless regions are not hard to recover, as soon as global
optimization techniques (employing smoothness constraints) are used. In the Section 5.2.2
to evaluate the performance of optical flow models on corrupted data we intentionally
introduce synthetic artifacts. In this case we are interested to measure error statistics
inside these regions and in a local neighborhood around them. We denote such regions
with data outliers as Err regions.

To compute a mask for the Disc regions we take the gradient of the ground truth
displacement field, compute its magnitude, apply a threshold for the magnitude, and
then dilate the resulting mask with a 9 × 9 stencil. Untext regions are computed in a
similar manner, but using a 3× 3 stencil size [BSL+11].

2.1.2 Data Constancy Assumptions

To solve a correspondence problem one has to assume constancy of certain image features.
For the choice of an appropriate constancy assumption all prior knowledge about the
acquisition method, imaging conditions and the underlying scene should be taken into
account. The selection of suitable data assumptions is essential and should be well adapted
for the specific image data. In this section we provide an overview of data constancy
assumptions. For each data assumption we discuss the aspects related to its usage on
X-ray data. Note, that in the current work we do not aim to provide a complete list of
all data constraints available in the literature. We focus only on those approaches, which
can be practically used for highly challenging X-ray data. For example, we exclude the
discussion of data terms based on color information.

2.1.2.1 Image Smoothing

The computation of optical flow is usually preceded by a presmoothing step. The aim
of this step is to eliminate image noise. The most common procedure is to convolve the
initial image I0 with a Gaussian kernel Kσ with a standard deviation σ. High frequency
variations are removed due to low-pass filtering effect of Gaussian filter. Furthermore,
presmoothed image becomes infinite times differentiable, which is an important property
to guarantee well-posedness of the inverse problem [HSSW01].

It is important to note that an appropriate choice of the smoothness degree is a crucial
task. On the one hand, image presmoothing allows to improve image data and increase
signal-to-noise ratio. On the other hand, oversmoothing destroys small image details and
edges, which can lead to an inaccurate optical flow estimation. For the description of
an optical flow model we always provide the initial smoothness level together with other
model parameters.

2.1.2.2 Brightness Constancy Assumption

The simplest assumption is that moving objects within a scene do not change their ap-
pearance. In other words, the corresponding pixels have the same brightness values
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[LK81, HS81]. This data constraint combines assumptions about the reflectance prop-
erties of the scene and illumination changes. For two subsequent image frames on time t
and t+ 1 the brightness constancy assumption can be expressed by:

I(x+ u, y + v, t+ 1) = I(x, y, t). (2.1)

Under the assumption that the displacement components are small, this non-linear im-
plicit equation for (u, v) can be linearized by performing a first-order Taylor expansion.
For a function I(x+ u, y + v, t+ 1) around the point p = (x, y, t) the Taylor expansion is
given by:

I(x+ u, y + v, t+ 1) ≈ I(x, y, t) + Ixu+ Iyv + It.

Using this approximation, the equation (2.1) can be rewritten as:

Ixu+ Iyv + It = 0. (2.2)

which is known in the literature as the linearized optical flow constraint.
To shorten the formulation of optical flow constraints we follow the idea presented in

[BWKS06b] and rewrite the equation (2.2) in the following way:

Ixu+ Iyv + It = ∇>3 Iw

where w = (u, v, 1) and ∇3 = (∂x, ∂y, ∂t) denotes the image gradient.
Since both positive and negative deviations from the data constraint should be taken

into account, in the work of [LK81, HS81] the authors incorporate its square to the final
version of data term. The brightness constancy assumption in a short notation is given
by:

Dgrey(I,w) = (∇>3 Iw)2.

2.1.2.3 Gradient Constancy Assumption

The brightness constancy assumption can be used as long as illumination conditions and
thus the corresponding pixel grey values between successive frames are not changing.
If these assumptions are violated, data constraints that are invariant under brightness
changes must be imposed. To cope with such situations, spatial brightness derivatives
are introduced [UGVT88, Sch93, BBPW04, PBB+06], since they remain constant in the
presence of additive illumination.

Taking spatial derivatives of the image brightness for both spatial components we
obtain two constraints given by:

Ix(x+ u, y + v, t+ 1) = Ix(x, y, t),

Iy(x+ u, y + v, t+ 1) = Iy(x, y, t).

After linearization step is performed, both constraints using a short notation are given
by:

∇>3 Ixw = 0,

∇>3 Iyw = 0.
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Combining both constraints gives us the required data term using gradient constancy
assumption:

Dgrad(I,w) = (∇>3 Ixw)2 + (∇>3 Iyw)2.

It is important to note - that in contrast to the brightness assumption - the gradient
assumption provides two independent constraints instead of one. This gives an additional
information and could be used to overcome the aperture problem [HS81]. However, despite
the advantages of gradient assumption in the presence of global brightness changes, this
constancy assumption is much more sensitive to noise. This property of a data constraint
is crucial for noisy data, such as often encountered in time-resolved X-ray imaging. We
investigate the influence of noise on the performance of data constancy assumptions in
the experimental section 5.4.1.1.

2.1.2.4 High-Order Constancy Assumptions

The use of derivative-based constancy assumptions is not limited to the constancy of
the brightness gradients. Higher-order derivatives, such as the Laplacian could also be
employed for formulations of constancy assumptions. However, some of them are not
suited for all types of motion. This is due to the fact, that some of these assumptions
(e.g. brightness gradient) contain directional information, so they are dependent on the
spatial orientation of image features. For an extended taxonomy of possible higher-order
constancy assumptions the reader is referred to the literature [PBB+06]. Here we describe
two constraints based on higher-order derivatives which can be potentially useful.

Laplacian Constancy Assumption
As it was mentioned in the previous section, directional information contained in data
constraints may introduce some difficulties in the presence of fast rotational motion. To
overcome this problem one can restrict to direction-invariant features such as constancy
of Laplacian [PBB+06], which is given by:

∆2I(x+ u, y + v, t+ 1)−∆2I(x, y, t) = 0,

where ∆2I = Ixx + Iyy. The linearized data term in a compact form reads:

Dlapl(I,w) = (∇>3 (∆2I)w)2.

In general, all constraints based on higher-order derivatives are more sensitive to noise
and data artifacts than their counterparts based on image intensity. This crucial property
must be taken into account for modeling of a suitable energy functional. We compare the
performance of the brightness constancy assumption and assumptions based on deriva-
tives in the evaluation section 5.4.1.1.

Gradient Norm Constancy Assumption
Another possibility to deal with fast rotational motion is to use the magnitude of the gra-
dient, instead of spatial gradients themselves ([PBB+06]). The obtained data constraint
and its corresponding data term are given by:

|∇I(x+ u, y + v, t+ 1)| − |∇I(x, y, t)| = 0

Dgrad−norm(I,w) = (∇>3 |∇I|w)2,

where |f| =
√
f 2
x + f 2

y .
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2.1.2.5 Assumptions on Multiple Image Features

To improve the accuracy of optical flow computation it might be a good idea to combine
assumptions on various image features. The model based on multiple constancy assump-
tions provides more flexibility and may lead to a significant improvement of the results. An
example for this approach a linear combination of both brightness and gradient constancy
assumptions [BBPW04, ZBW11]. Its data term reads:

Dbrigh+grad(I,w) = β1(∇>3 Iw)2 + β2((∇>3 Ixw)2 + (∇>3 Iyw)2),

where β1 and β2 are parameters to control the contribution of the individual constancy
assumption to the overall data term.

Multiple image assumptions might also be useful to incorporate the information ob-
tained by different contrast mechanisms, for example absorption and phase contrast. An
alternative approach to include multiple assumptions on image features (and more gener-
ally, on different optical flow models) was presented in [LRR08]. In this work a series of
candidate flow fields is computed using different algorithms or model parameters. Then
a final flow is determined by an additional optimization problem. This idea corresponds
to a so-called fusion approach.

2.1.2.6 Landmarks-driven approach

It is possible to incorporate user-defined landmarks to an optical flow model. This proce-
dure is especially useful if the manual tracking of some objects or their parts is performed.
Thus, it is possible to combine the information specified by an user with an automated
flow computation. As it was shown in [FM03] it is not convenient to embed the informa-
tion about landmarks into the original energy functional. It is much more straightforward
to modify the corresponding Euler-Lagrange equations (see Section 2.2.1) directly. We
illustrate this on the example of the Horn and Schunck model. For this purpose we in-
troduce a confidence map cGT (x, y), which equals to 1 or 0, depending on whether for a
pixel position (x, y) the ground truth landmark is given.

Embedding the confidence map cGT (x, y) into the Euler-Lagrange equations (2.4) we
obtain:

(1− cGT )(I2
xu+ IxIyv + IxIt − α div(Ψ′(|∇u|2 + |∇v|2) · ∇u)) + cGT (u− uGT ) = 0,

(1− cGT )(IyIxu+ I2
yv + IyIt − α div(Ψ′(|∇u|2 + |∇v|2) · ∇v)) + cGT (v − vGT ) = 0.

If the ground truth displacement is not provided we obtain the original version of Euler-
Lagrange equations. For the other case the solution is set to the ground truth result
u = uGT , v = vGT . After the flow field is modified according to information provided by
landmarks it is propagated to the neighbouring pixels via the regularization term (see
Section 2.1.4). Furthermore, to enhance the influence of the ground truth it makes sense
to increase the smoothness constraint around locations where the correct flow is given.
This could be regarded as an adaptive smoothness approach and can be implemented in
a similar way as presented in Section 2.1.4.5.
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2.1.3 Robust Data Assumptions

2.1.3.1 Robust Modeling

To obtain data constraints which take into account both positive and negative deviations
from constancy assumptions in the previous sections we used squared data terms. The
effect of such a quadratic, energy-like penalty function can be undesired in the presence
of image artifacts or other cases, when constancy assumptions cannot be satisfied. As
a result, such data outliers provide a large contribution to the overall energy functional,
decreasing the quality of optical flow estimation. To overcome this, it is reasonable to
penalize such deviations less strictly using a more robust function. There are a number
of different penalty functions available in the literature [BA91, BA96, SRB10, BSL+11].
The most popular choices are: quadratic function Ψ(x) = x2, the Charbonnier penalty
Ψ(x) =

√
x2 + ε2 [CBFAB94] and the Lorentzian Ψ(x) = log(1 + x2

2σ2 ) [BA96], which is a
non-convex sub-quadratic penalty function. The comparison between them is presented
in Figure 2.1. An important aspect for the modelling of robust data terms is the convexity
of the resulting energy functional. This property implies that a global minimum solution
exists and we may use globally convergent algorithms to search for it. For this reason
convex penaliser functions are preferred.
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Figure 2.1: Comparison between penalising functions: quadratic, Charbonnier and
Lorentzian.

For our purpose we choose a penaliser function, which is a differentiable variant of
L1-norm [BBPW04]:

ΨR(x) =
√
x2 + ε2,

where ε is a small positive constant used to avoid a problem of division by zero after
differentiation step.

An example of a robust data term for brightness constancy assumption (see Section
2.1.2.2) is given by:

DR(I,w) = ΨR(∇>3 Iw).

As a result of such robust modelling the quality of optical flow estimation significantly
improves [SRB10, BSL+11, ZBW11]. We perform quantitative and qualitative evaluation
of robust settings in the presence of image artifacts in the experimental sections 5.4.3.3
and 5.4.3.3.
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2.1.3.2 Joint and Separate Modeling

In the case when multiple data constraints are used, as we discussed in Section 2.1.2.5,
an important aspect is how to penalize individual data terms. One approach is to apply a
single penalty function on both data constraints. On the example of combined brightness
and gradient data constancy assumptions this can be illustrated as:

Djoint(I,w) = ΨR(β1(∇>3 Iw) + β2(∇>3 Ixw +∇>3 Iyw)).

Evidently, it is not necessary that both constraints should be satisfied at the same
time for all data points. As it was previously shown, brightness constraint fails in regions
where illumination changes and gradient constraint is sensitive to noise. However, the
deviations from both constraints are penalized jointly. Note, that weight parameters
β1, β2 are coupled as an argument of the penalty function, which slightly changes its
mathematical formulation.

In the work of [BW05] the authors introduced a concept of separate robustification.
Such strategy takes into account all the data constraints independently and allows to use
a different penalty function for each counterpart. Using this approach, we rewrite the
combined constraint as:

Dsep(I,w) = β1ΨR1(∇>3 Iw) + β2ΨR2(∇>3 Ixw +∇>3 Iyw).

Following the performance analysis from the literature [BW05, ZBW11], if multiple
image features are used to impose data constancy assumption we choose a separate ro-
bustification strategy. Such setting is more flexible and provides better results in most
cases.

2.1.3.3 Combined Local-Global Approach

A useful approach to improve robustness of optical flow methods on noisy data is to
consider the information not only from a particular data point, but also in a local neigh-
bourhood. The modified data term would then impose a constancy assumption within
a fixed region. Such constraint strongly resembles an original optical flow method by
Lucas and Kanade [LK81]. In the work of [BWS02] so-called combined local-global (CLG)
approach was introduced. The name highlights the fact that such technique combines
the local information for the modelling of data term and provides dense results of global
variational methods.

It is reasonable to weight contributions within a local region according to a distance
from the central location (e.g. using weighted least squares fit). In [BWS02] it is presented
how this approach could be incorporated for the construction of robust data terms. For
brightness constancy assumption a least square fit is given by convolution with a Gaussian
function:

DCLG(I,w) = Kρ ∗ (∇>3 Iw)2,

with the standard deviation ρ. The standard deviation parameter is also called integration
scale [BWS02], since it regulates the size of spatial region which is taken into account.

This approach is not frequently used in the recent works since in cases when a high
quality, noise-free data is available it could provide more blurry flow results. However, the
combined local-global approach can lead to significant improvements for images which are
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highly degraded by noise [BWS02, BWS05]. We present numerical experiments on noisy
data and discuss the usefulness of the local-global approach in the experimental section
5.4.1.2.

2.1.3.4 Normalization of Data Terms

To provide additional robustness in unreliable regions influenced by noise or artifacts it
is possible to further adjust the data term. In the recent work of [ZBW11] the authors
used the ideas presented in [SAH91, LV98] to perform normalization of data constraints.
One can show that image locations with large gradient and smooth regions are weighted
differently [ZBW11]. As a result, high-gradient features provide more contribution to
overall energy of the data term and thus largely influence the estimation of optical flow.
Such behaviour can be undesired since high image gradient may be caused by noise or
artifacts. Following [LV98, ZBW11] the original data constraint can be normalized by a
factor:

n =
1

|∇2I(x, y, t)|2 + η
,

where positive parameter η avoids division by zero and controls the normalisation process
depending on the noise scale.

After the normalization procedure the resulting data term is still convex and can be
easily incorporated in our variational computation scheme. The normalized brightness
constancy constraint is given by:

Dnorm(I,w) = n(∇>3 Iw)2.

For low contrast and noisy X-ray images the use of normalized data terms can be
especially beneficial. We discuss the influence of proposed correction procedure, as well
as choice of the appropriate η parameter on various amounts of noise in Section 5.4.1.3.

2.1.3.5 Refinement Model

In the work of [XJM10] authors proposed to explicitly model occlusions (or other data
outliers) and reduce the influence of data term in these regions. First, a motion estimation
is performed using appropriate model assumptions, then a confidence map is constructed
using an occlusion detection. Then, a second run of optical flow algorithm is done using
occlusion-aware refinement:

Erefine(I,w) =

∫
Ω

(c(x) · D(I,w) + αS(I,w)) dΩ,

where c(x) is a confidence map, which downweights the contribution of data constraint for
unreliable image regions, D(I,w) is a data constraint and S(I,w) regulates the smooth-
ness properties of the flow field.

We discuss various approaches for the estimation of confidence maps in Section 2.1.5.

2.1.4 Smoothness Assumptions

As it was mentioned previously, assuming constancy constraints based only on local image
data is not sufficient to uniquely find a solution for optical flow. In order to overcome
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the aperture problem additional assumptions about the flow field itself are employed.
The first idea to impose such assumptions goes back to the seminal work of Horn and
Schunck [HS81]. Smoothness constraints allow a filling-in [WS01a] of the flow information
from the adjacent regions at image locations where no unique correspondence can be
determined. Most of the approaches impose smoothness constraint by penalizing the
magnitude of the flow gradient. According to the specific properties of the smoothness
one may distinguish between homogeneous, isotropic and anisotropic smoothness. For a
more detailed description of various models we refer the reader to the work of [WS01a].

2.1.4.1 Homogeneous Smoothness

The original method of Horn and Schunck [HS81] introduces smoothness assumption by
penalizing magnitude of the flow gradient:

SHS(u, v) = u2
x + u2

y + v2
x + v2

y = |∇2u|2 + |∇2v|2,

where |f| =
√
f 2
x + f 2

y is a spatial magnitude and ∇2 = (∂x, ∂y) denotes a spatial gradient.
This homogeneous regularization requires uniformly smooth flow fields and does not adapt
to any supplementary information about image data and the flow field. Assuming that
depicted objects may move differently from the background or with respect to each other it
is evident that such constraint can hardly be fulfilled. Therefore, smoothness assumptions
which allow to model discontinuities more thoroughly are required.

2.1.4.2 Image-Driven Smoothness

In order to take into account motion discontinuities one may assume that the flow field
coincides with the boundaries of moving object, thus the smoothness degree can be ad-
justed according to image edges [NE86, ASW99]. To implement this approach one can
multiply the original smoothness term by a scalar weighting function g(x) that decreases
on image edges [Sch93, ASW99]. One possibility for such function is:

g(x) =
1

2
√
x+ ε

,

where ε is a small positive constant used to avoid a problem of division by zero.
The obtained image-driven smoothness term is given by:

Simage(I, u, v) = g(|∇I|2)(|∇u|2 + |∇v|2),

where the magnitude of the spatial gradient |∇I| is used to identify image edges [WS01a].
It should be noted, that such smoothness term is isotropic, since it treats all directions
in image gradients in the same manner. To enhance the smoothing process along image
edges, and suppress across them one can use an anisotropic image-driven approach [NE86].

Despite the fact that image-driven regularization provides sharp edges on the bound-
aries of moving object, it is prone to errors if the image gradient does not correspond
to the actual flow discontinuities. For instance, this occurs in highly textured regions.
Image noise is another challenge for this method, which causes the smoothness value to
be adjusted to noise variations. In both cases image-driven approaches produce overseg-
mentation artifacts in the computed flow field.
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2.1.4.3 Flow-Driven Smoothness

To preserve motion discontinuities the smoothness can be adapted to the unknown flow
field. In this case the smoothness is reduced at flow edges described by the flow gradient
[SH89, Sch94]. The regularization based on the flow-driven approach is thus given by:

Sflow(u, v) = ΨS(|∇u|2 + |∇v|2),

where the smoothness penalty function reads ΨS(x) =
√
x+ ε and corresponds to the

total variation (TV) regularization [ROF92].
In comparison to image-driven method the flow-driven approach provides less strict

estimation of flow edges on the boundaries of the moving objects. However, for high-
texture or noisy data the flow-driven approach is more robust and outperforms image-
driven flow regularization [BBPW04, PBB+06, WPZ+09].

2.1.4.4 Spatial-Temporal Smoothness

In case if more then two frames are given for the estimation of optical flow, it is reason-
able to additionally assume temporal smoothness of the flow fields [MB87, BA91]. For
variational approaches such spatial-temporal smoothness terms were proposed by [Nag90]
and [WS01b]. Implementation of the spatial-temporal smoothness term is done by the
extension of spatial derivatives to the spatial-temporal dimension:

Stemp(u, v) = u2
x + u2

y + u2
t + v2

x + v2
y + v2

t = |∇3u|2 + |∇3v|2,

where ∇3 = (∂x, ∂y, ∂t) denotes the spatial-temporal gradient.
The usage of temporal information provides a significant improvement for the estima-

tion of optical flow [BBPW04, ZBW11]. In the case when stationary regions are corrupted
by noise the temporal regularization helps to smooth noise contributions and correctly
estimate zero flows. This property of spatial-temporal smoothness is especially useful if
one is interested in separation between moving objects and a static background, i.e. for
motion-based segmentation. For moving objects the applicability of the temporal smooth-
ness depends on the type and magnitude of displacements. In the case of small, linear
displacements the extension to the temporal domain will not cause problems since the
influence of spatial and temporal smoothness will be approximately equal. However, in
the presence of fast motion large discontinuities in a temporal direction may emerge. To
appropriately handle them a number of strategies can be used. One way would be to
use the coarse-to-fine computation scheme which allows to solve for large displacements.
We describe this technique in details in Section 2.2.4.2. Another option would be to em-
ploy discontinuity preserving smoothness terms using robust penalty function presented
in Section 2.1.4.3. This approach will result into a joint spatial-temporal discontinuity
preserving smoothness term:

Sflow−temp(u, v) = ΨS(|∇u|3 + |∇v|3),

where ΨS(x) =
√
x+ ε and ∇3 = (∂x, ∂y, ∂t).

An important aspect for modeling temporal smoothness is a number of time frames
used to impose constraints in temporal direction. In the works of [Bru06], [ZBW11]
it was shown that increasing the number of frames significantly improved the results.
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However, it was also observed that there is an upper limit after which there is no longer
an improvement in the result. The usage of both spatial and temporal information about
the flow field allows to decrease the optimal value for smoothness parameter, which result
in a sharper flow edges. Additionally, it is reasonable to apply presmoothing step described
in Section 2.1.2.1 also in temporal direction [Bru06]. The temporal smoothness parameter
should be chosen according to constancy of the motion in time and amount of noise. In
general, spatial-temporal smoothness provides a robust approach to compute the optical
flow, especially for noisy or corrupted data.

2.1.4.5 Adaptive Smoothness

The smoothness term can be further adapted using a number of different strategies. One
approach would be to use a weighting function based on segmented masks representing
particular data objects. Such objects could be identified during the optical flow com-
putation or can be pre-labeled using an a-priori knowledge. An example of such masks
could be a reduction of smoothness weight on the boundary of closely moving objects,
which may improve the separation between them. Another example corresponds to the
case when the motion in separate regions expected to exhibit different properties.

The adaptive variant of the smoothness term is then given by:

Sadapt(I, u, v) = αSi(|∇u|2 + |∇v|2),

where αSi represents the smoothness parameter inside or around the segment Si.
Another strategy is to adapt the smoothness according to the computation procedure.

In [ZBW11] authors proposed to adjust the smoothness weight on each level of multiscale
computation of optical flow. One may note, that on coarser image levels the data term
provides less details resulting from smoothing properties of the downscaling procedure.
In this case it makes sense to increase the influence of the smoothness term. This can be
done by adjusting the flow regularization according to the warping computation level k:
α(k) = α

ηk
, where η is a downscaling factor.

2.1.4.6 Joint Image and Flow Driven Smoothness

As it was discussed in Sections 2.1.4.2 and 2.1.4.3 both image- and flow-driven smoothness
approaches have their advantages and drawbacks. To improve the performance of optical
flow estimation it makes sense to combine the advantages of both methods to obtain
precise motion discontinuities and avoid oversegmentation problems in highly textured
image regions. The first idea which achieves that was presented in [SLB08]. In this
work the smoothness direction is adapted to image edges and smoothing amount to the
flow gradient. In [ZBW11] the authors presented a more general approach, which they
call complementary smoothness term. Such approach regulates the smoothness direction
according to the data constraint, which could be different from information given by image
gradients. As a result the smoothness is reduced in the direction where data constraint
provides useful information and increased in regions where data constraint is vanished.

2.1.5 Measures of Confidence

In Section 2.1.1 we have described measures for quantitative evaluation of optical flow
algorithms in the case when the ground truth result is known. In this section we discuss
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measures to check the reliability of optical flow based only on the computed flow field and
initial image data.

Until the recent works of [SRB10, ZBW11] only little attention was dedicated to the
application of confidence measures for optical flow methods. These measures can allow us
to determine errors in the computed flow fields caused by artifacts. Moreover, we may use
these measures to evaluate the quality of the computed result and automatically optimize
the model parameters for the optical flow computation.

2.1.5.1 Gradient-based Measure

The first confidence measure for variational optical flow methods was presented by [BFB94].
It was proposed to relate the quality of the flow estimation with the image gradient, since
as it was discussed in Section 1.4.2 the correspondence problem can only be solved if there
is enough information provided by the local image gradient. The confidence measure based
on image data is thus given by:

Cgradient(x) = |∇I(x)|.

Clearly, this measure does not take into account any dynamical information and assumes
only local image data. Additionally, this measure is not capable to evaluate global optical
flow approaches which use additional smoothness term to overcome the aperture problem.
Moreover, the variations in image brightness can be caused by noise or artifacts. These
drawbacks make image-based confidence measure not well suited for the evaluation of
optical flow estimation.

2.1.5.2 Energy-based Measure

In the work of [BW06, Ers08] the authors presented an intuitive way to evaluate the
quality of variational optical flow methods based on energy minimization. Since during
minimization procedure such functionals penalize deviations from model assumptions, it
is very natural to consider such deviations as a confidence measure.

For the case of method of Horn and Schunck the energy-based confidence measure for
a pixel x reads:

Cenergy(x) =
1

(∇>3 I(x)w)2 + α(|∇2u(x)|2 + |∇2v(x)|2)
.

At this point one may consider to evaluate energy contributions from both data and
smoothness terms jointly or, alternatively, evaluate only the data term which constitutes
the optical flow problem, i.e. correspondence between pixels (see Section 2.1.5.3). In the
presence of artifacts or other data outliers the model assumptions are violated, which
results in a high values of energy in those regions.

As it was discussed in [BW06] energy-based confidence measures have a number of
advantages: 1) it is based on the same assumptions as the computational model 2) it is
general and could be extended or modified for a particular optical flow model 3) it does
not require additional parameters.



40 CHAPTER 2. OPTICAL FLOW METHODS

2.1.5.3 Data Constancy Error

A similar concept to the energy-based confidence measure is a data constancy error, which
evaluates only the data constraint. For the case of brightness constancy assumption, the
confidence measure for a pixel x reads:

Cdata(x) = (I(x + w, t+ 1)− I(x, t)).

This measure shares the same set of advantages as the energy-based confidence mea-
sure, as it is also directly based on an optical flow model.

2.1.5.4 Motion Uniqueness Criteria

Another approach to evaluate the computed flow field is to examine its spatial distribution.
We assume that if the motion is applied (source image is warped towards the target image)
all pixels should still be uniformly distributed [BBH03, Ers08, XJM10]. However, in the
presence of data outliers or problems with appearing and disappearing information the
flow vectors could point to nearly the same position. Such multiple pixels mapping could
indicate a location of unreliable motion estimation. This idea is illustrated in Figure 2.2.

Figure 2.2: Flow uniqueness criteria. Left: First image frame. Middle Left: Second im-
age frame. Middle Right: One-to-one correspondence. Pixels are mapped to uniformly
distributed positions. Right: Pixels are mapped nearly to the same position, indicating
a sink in a vector field.

In order to implement this approach we count a number of arrived pixels x + u(x) to
the target image position x . In order to handle real-valued displacements we redistribute
contributions from neighboring flow vectors according to their distance to the target pixel
location. The confidence measure based on motion uniqueness mapping is then expressed
by:

Cunique(x) =
1

|1− count(x)|+ ε
,

where ε is a small posotive contstant to avoid a division by zero problem. The deviations
from the one-to-one mapping will be captured and the confidence degree will be reduced.

2.1.5.5 Forward-Backward Check

A common way to ensure consistency of a motion field solution in the presence of occlu-
sions is to perform a so-called forward-backward check (or cross-checking) [CCK91, Fua93,
BBH03]. In this approach we assume that the flow field computed in forward (from I(x, t)
to I(x, t+ 1)) and the backward direction is equal, but opposite:
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wf (x) = −wb(x + wf (x))

where wf and wb is a flow field computed in a forward and a backward direction respec-
tively.

In the case of occlusions or other image artifacts, forward and backward vectors do
not match, which could be exploited to identify problematic regions. For the consistency
based confidence measure we estimate the magnitude of the difference vector between
forward and backward flow vectors:

|∆w(x)| =
√

(wf (x) + wb(x + wf (x)))2

ufw

ubw Δu

Figure 2.3: Forward-Backward check method. Left: First image frame with the for-
ward flow vectors. Middle: Backward flow vectors for interchanged images. Right:
Discrepancy vector between forward and backward displacement vectors.

The idea for forward-backward check approach is illustrated in Figure 2.3.
As a result we consider pixels, where consistency check failed as locations with a low

confidence value:

Cconsist(x) =
1

|∆w(x)|+ ε
.

We will employ this measure in the section dedicated to analysis of temporal changes in
metal foams of various kind in the application Section 6.2.1.

2.1.5.6 Optimal Prediction Principle

Recently, in [ZBW11] the authors proposed a confidence measure based on the principle
of optimal prediction (OPP). It states that the flow field computed with optimal model
parameters allows for the best flow prediction for the next image frames. For this, one
assumes that the objects are moving with a constant velocity and linear trajectory. This
can be implemented by scaling the flow vector by 2. In order to estimate the prediction
quality a data term between the first and the third frame is evaluated. The resulting data
constancy error (DCE) measure is given by:

Cpredict(x) = (I(x + 2w, t+ 2)− I(x, t)).

Despite its simplicity, confidence measure based on the optimal prediction principle
gives good results [ZBW11]. The only drawback is a restriction imposed by the assumption
of temporally constant flow field, which can be frequently violated.

We test the performance of automated confidence measures and give conclusions re-
garding their use in the experimental section 5.4.4.
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2.1.6 Generalization to 3D Optical Flow

In order to apply optical flow methods on tomographic data, the extension from the
2D variational model into a 3D model should be performed. This step is done in a
straightforward way by including an additional spatial dimension. The advantages for 3D
optical flow are discussed in the section, describing computed tomography experiments
(see Section 1.3.2.2).

The 2D variational optical flow model using the flow-driven smoothness approach
(Section 2.1.4.3) is given by:

E2D(u, v) =

∫
Ω2

(I(x+ u, y + v, t+ 1)− I(x, y, t))2 + αΨ(|∇2u|2 + |∇2v|2)dxdy.

For a volume image I(x, y, z, t), where (x, y, z) are the voxel coordinates within an image
domain Ω3 ⊂ R3, the extension to the 3D variational model reads:

E3D(u, v, w) =

∫
Ω3

(I(x+ u, y + v, z + w, t+ 1)− I(x, y, z, t))2 +

+ α Ψ(|∇3u|2 + |∇3v|2 + |∇3w|2)dxdydz.

It is important to mention that some of the problems of 2D optical flow estimation
disappear after the extension into a 3D domain. For example, there are no problems
related to the projection geometry, such as occlusions between moving objects or divergent
motion due to the perspective change.

As a drawback, solving 3D optical flow problem is a resources demanding task. It
requires both large memory consumption and intense computational power. We further
discuss performance aspects in Chapter 4.2 we describe a number of efficient computation
schemes and present high-performance implementation of 3D optical flow methods on
GPUs.

We can further generalize the variational optical flow model for a n-dimensional image
data. For a time-lapse sequence of n-dimensional images Ind(x1, x2, . . . , xn, t), where
(x1, x2, . . . , xn) are the pixel coordinates within an image domain Ωn ⊂ Rn and t denotes
time frame, the brightness constancy assumption can be expressed by:

Dnd
grey(I

nd,w) = (∇>n+1I
ndw)2,

where w = (w1, w2, . . . , wn) and ∇n+1 = (∂x1 , ∂x2 , . . . , ∂xn , ∂t) denotes the image gradient.
The gradient constancy assumption for a n-dimensional image data is given by:

Dnd
grad(I

nd,w) =
n∑
i=1

(∇>n+1I
nd
xi

w)2.

The flow-driven optical flow model using the brightness constancy assumption for a
n-dimensional data is given by:

EnD(w) =

∫
Ωn

(
(∇>n+1I

ndw)2 + αΨ

(
n∑
i=1

|∇nwi|2
))

dΩn.

Other data terms, as well as smoothness terms can be formulated in a similar manner.
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2.2 Numerical Solution

In this section we explain how a variational optical flow model can be solved numerically.
For this purpose we introduce a minimization procedure and iterative methods. We
also discuss important implementation aspects, such as discretization and a derivatives
approximation. In the first part of the section we derive underlying equations assuming
small displacements between image frames. Then we present an extension of the energy
functional and its minimization procedure which allows to handle large displacements. To
shorten the derivation of the corresponding formulas we assume 2D images. The extension
to 3D domain can be performed in similar manner.

2.2.1 Minimization Procedure

In the previous chapter we have discussed the construction of a variational energy func-
tional. Next, our aim is to find such a displacement field u(x, y) and v(x, y) which mini-
mizes deviations from the model assumptions.

According to calculus of variations [Els62], the minimum of the convex variational
functional of the general form:

E(u, v) =

∫
Ω2

F (x, y, u, v, ux, uy, vx, vy)dxdy.

can be found at the location where its first-order derivatives vanish. Such coupled differ-
ential equations are called Euler-Lagrange equations and given by:

Fu −
∂

∂x
Fux −

∂

∂y
Fuy = 0 (2.3)

Fv −
∂

∂x
Fvx −

∂

∂y
Fvy = 0

with reflecting Neumann boundary conditions n>∇u = 0 and n>∇v = 0, where n is a
normal vector.

We show an example of minimization procedure on a flow-driven optical flow model
with brightness constancy assumption. First, we calculate partial derivatives with respect
to the unknown functions u and v:

Fu = 2I2
xu+ 2IxIyv + 2IxIt

Fv = 2IyIxu+ 2I2
yv + 2IyIt

Fux = 2α Ψ′(|∇u|2 + |∇v|2) ux

Fuy = 2α Ψ′(|∇u|2 + |∇v|2) uy

Embedding these terms into the Euler-Lagrange equations (2.4) we obtain:

I2
xu+ IxIyv + IxIt − α div(Ψ′(|∇u|2 + |∇v|2) · ∇u) = 0,

IyIxu+ I2
yv + IyIt − α div(Ψ′(|∇u|2 + |∇v|2) · ∇v) = 0.

Solving this coupled system of equations with respect to the unknown displacement func-
tions u and v gives us the minimum of our energy functional.
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2.2.2 Discretization

To solve Euler-Lagrange equations numerically we should perform a discretization proce-
dure. We consider the unknown functions u(x, y, t) and v(x, y, t) on a rectangular image
with the grid size of hx in x-direction and hy in y-direction. The values uij and vij
denote the approximation of functions u(x, y) and v(x, y) at a pixel position (i, j) with
i = 0 . . . N − 1, j = 0 . . .M − 1, where N , M indicate image dimensions.

In order to represent image derivatives we must assume a particular approximation
of the differential operator. Second order approximations of the spatial image derivatives
using central differences are given by:

[Ix]i,j =
Ii+1,j,t − Ii−1,j,t

2hx

[Iy]i,j =
Ii,j+1,t − Ii,j−1,t

2hy

To improve the accuracy of derivatives approximation one may also use fourth order
approximations:

[Ix]i,j =
−Ii+2,j,t + 8Ii+1,j,t − 8Ii−1,j,t + Ii−2,j,t

12hx

[Iy]i,j =
−Ii,j+2,t + 8Ii,j+1,t − 8Ii,j−1,t + Ii,j−2,t

12hy

For further improvement with respect to noise it is common to use a temporal averaging
of spatial derivatives [SRB10, ZBW11]. For the second order central difference such a
temporal averaging is given by:

[Ix]i,j =
(Ii+1,j,t+1 − Ii−1,j,t+1) + (Ii+1,j,t − Ii−1,j,t)

4hx

[Iy]i,j =
(Ii,j+1,t+1 − Ii,j−1,t+1) + (Ii,j+1,t − Ii,j−1,t)

4hy

To compute temporal derivatives we choose a forward difference:

[It]i,j =
Ii,j,t+1 − Ii,j,t

ht
,

where time step ht is chosen to be equal to 1.0.

We proceed with the discretization of others terms such as div(Ψ′(|∇u|2 + |∇v|2)∇u).
Additionally to the second-order derivative approximation, we can also employ the dis-
cretization approach based on nested central differences with the halved grid sizes 1

2
hx
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and 1
2
hy. Using this strategy the term div(Ψ′∇u) can be expressed as:

div(Ψ′∇u) = (Ψ′ux)x + (Ψ′uy)y

=
(Ψ′ux)i+ 1

2
,j − (Ψ′ux)i− 1

2
,j

2(1
2
hx)

+
(Ψ′uy)i,j+ 1

2
− (Ψ′uy)i,j− 1

2

2(1
2
hy)

=

Ψ′i+1,j+Ψ′i,j
2

(
ui+1,j−ui,j

2( 1
2
hx)

)
− Ψ′i,j+Ψ′i−1,j

2

(
ui,j−ui−1,j

2( 1
2
hx)

)
2(1

2
hx)

+

Ψ′i,j+1+Ψ′i,j
2

(
ui,j+1−ui,j

2( 1
2
hy)

)
− Ψ′i,j+Ψ′i,j−1

2

(
ui,j−ui,j−1

2( 1
2
hy)

)
2(1

2
hy)

=
Ψ′i+1,j + Ψ′i,j

2

(
ui+1,j − ui,j

h2
x

)
−

Ψ′i,j + Ψ′i−1,j

2

(
ui,j − ui−1,j

h2
x

)
+

Ψ′i,j+1 + Ψ′i,j
2

(
ui,j+1 − ui,j

h2
y

)
−

Ψ′i,j + Ψ′i,j−1

2

(
ui,j − ui,j−1

h2
y

)
,

where the nonlinear terms [Ψ′]i,j are given by:

[Ψ′]i,j = Ψ′(|∇u|2 + |∇v|2) = Ψ′([ux]
2
i,j + [uy]

2
i,j + [vx]

2
i,j + [vy]

2
i,j)

The discretization of the term div(Ψ′∇v) is done in a similar way.
Finally, after all necessary discretization schemes are introduced we can write down

the discrete Euler - Lagrange equations:

[I2
x]i,jui,j + [IxIy]i,jvi,j + [IxIt]i,j − α

∑
l∈x,y

∑
(̄i,j̄)∈Nd(i,j)

[Ψ′ ]̄i,j̄ + [Ψ′]i,j
2

(uī,j̄ − ui,j
h2
d

)
= 0

[IyIx]i,jui,j + [I2
y ]i,jvi,j + [IyIt]i,j − α

∑
l∈x,y

∑
(̄i,j̄)∈Nd(i,j)

[Ψ′ ]̄i,j̄ + [Ψ′]i,j
2

(vī,j̄ − vi,j
h2
d

)
= 0,

where Nd(i, j) denotes neighbor pixels for the position (i, j) in the direction d ∈ (x, y).
Now, this coupled system of equations has to be solved with respect to the unknown

displacements uij, vij.

2.2.3 Iterative Methods

After the discretization of the Euler-Lagrange equations is performed we obtain a linear
system of equations, which can be formulated in the following form:

Ax = b

To solve it directly, we may invert the system matrix and multiply it by the result vector:

x = A−1b

However, for large systems of equations this procedure is computationally expensive. As
an alternative, it is possible to decompose the initial matrix A into two terms:

A = A1 + A2,
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and try to approximate the solution iteratively:

A1x
k+1 = b− A2x

k

xk+1 = A−1
1 (b− A2x

k)

The appropriate choice of matrix A−1
1 should be done in such a way, that it is a good

approximation to the initial inverse matrix A−1. Additionally, it should be easily com-
putable. This matrix splitting strategy is a core idea for a number of iterative methods
such as Jacobi and Gauß- Seidel methods.

2.2.3.1 Jacobi method

The Jacobi method is an iterative algorithm to solve a system of linear equations [Saa03].
The system of linear equations Ax = b has an unique solution, if the coefficient matrix A
contains no zeros on its main diagonal. On each iteration step, one finds the approximate
solution for each diagonal element and use it in the next step. The iterative process is
then repeated until it converges.

The Jacobi method can be expressed in a matrix form, using the following decompo-
sition of the initial matrix A:

A = D − L− U, (2.4)

where D, L and U represent the diagonal, strictly lower triangular and strictly upper
triangular matrices of A, respectively. After the substitution of the decomposed matrix
A in the equation Ax = b, it can be reformulated in the following way::

Dx = (L+ U)x + b, (2.5)

and the corresponding iterative solution can be found via:

xk+1 = D−1(L+ U)xk +D−1b. (2.6)

Using the Jacobi method, the new value of xki on the iteration step k + 1 can be
estimated in the following way:

xk+1
i =

1

aii

(
bi −

n∑
j=1,j 6=i

(
aijx

k
j

))
. (2.7)

It is important to mention that the order in which the matrix entries are evaluated
is irrelevant since the Jacobi method uses only the matrix values from the old time step.
Such property of the method is advantageous for the parallel implementations of the
iterative algorithm.

2.2.3.2 The Gauß-Seidel Method

One of the most simple and commonly used iterative solvers for linear system of equations
is the Gauß-Seidel method [Saa03]. In this approach the initial matrix A is decomposed
into the following parts:

A = D − L− U = (D − L)︸ ︷︷ ︸
A1

+ (−U)︸ ︷︷ ︸
A2

,
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where D,L, U represent the diagonal, strictly lower triangular, and strictly upper trian-
gular parts of the system matrix A. Using such decomposition we can rewrite the initial
equations:

(D − L)x = (b + Ux)

The solution using Gauß-Seidel methods is then given by:

x = (D − L)−1(b + Ux).

And the corresponding iterative solution scheme reads:

xk+1 = (D − L)−1(b + Uxk).

2.2.4 Large Displacements

In Section 2.2.2 we assumed that displacements between two consequent images are small,
so the linearization of the data constancy assumption can be performed. This procedure
is important since it allows us to construct convex energy functionals, which we can min-
imize using globally convergent algorithms. However, in case of a large displacements the
linearization procedure cannot be performed, since no reliable approximation is possible
using the Taylor expansion. In order to handle whole range of displacements in this sec-
tion we introduce an extension of the variational approach and describe the steps related
to its minimization.

2.2.4.1 Euler - Lagrange Equations

As a first step, we formulate the energy functional in its original form without linearized
data constraints:

E(u, v) =

∫
Ω2

(I(x+ u, y + v, t+ 1)− I(x, y, t))2 + αΨ(|∇2u|2 + |∇2v|2)dxdy. (2.8)

The corresponding Euler-Lagrange equations, which have to be solved to find the mini-
mum of the energy functional are given by:

Ix(x+u, y+ v, t+ 1)(I(x+u, y+ v, t+ 1)− I(x, y, t))−αdiv(Ψ′(|∇u|2 + |∇v|2) ·∇u) = 0,

Iy(x+ u, y+ v, t+ 1)(I(x+ u, y+ v, t+ 1)− I(x, y, t))−α div(Ψ′(|∇u|2 + |∇v|2) · ∇v) = 0

Note, that the energy functional (2.8) is not convex, since the data term implicitly
depends on the unknown flow components u, v. From the non-convexity property it follows
that multiple local minima may exist and numerical algorithms could be trapped in such
a local minimum away from the best solution.

In order to find a solution the incorporation of a suitable minimization strategy is
required.
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2.2.4.2 Coarse-to-fine Strategy

The common approach to deal with large displacements in many optical flow methods
is a coarse-to-fine strategy [BA96, MP98, BBPW04]. In the current work we follow this
idea and use the incremental hierarchical approach. First, on each computation level we
decompose the flow field into an already computed solution from the previous coarser
level u, v and a small unknown motion increment for the current level du, dv (see Figure
2.4):

uk+1 = uk + duk,

vk+1 = vk + dvk.

Figure 2.4: A schematic example of a multi-level coarse-to-fine computation strategy. The
top level of image pyramids represent the coarsest level and the bottom level of pyramid
corresponds to the original image representation. The computation scheme includes image
warping 2.2.4.3 and median filtering of intermediate flow results 2.2.6. Image: [SRB14]

Putting the incremental definition of the overall flow field we rewrite the image function
I(x+ uk+1, y + vk+1, t+ 1) in the following way:

I(x+ uk+1, y + vk+1, t+ 1) = I(x+ uk + duk, y + vk + dvk, t+ 1)

Next, we perform a first-order Taylor expansion around the point I(x+uk+1, y+vk+1, t+1),
which gives us:

I(x+ uk + duk, y + vk + dvk, t+ 1) = I(x+ uk, y + vk, t+ 1)

+ Ix(x+ uk, y + vk, t+ 1)duk

+ Iy(x+ uk, y + vk, t+ 1)dvk
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Finally we can write the Euler-Lagrange equations:

Ix(x+ uk, y + vk, t+ 1)( Ix(x+ uk, y + vk, t+ 1)duk

+ Iy(x+ uk, y + vk, t+ 1)dvk

+ I(x+ uk, y + vk, t+ 1)− I(x, y, t))

− α div(Ψ′(|∇(uk + duk)|2 + |∇(vk + dvk)|2) · ∇(uk + duk)) = 0

Iy(x+ uk, y + vk, t+ 1)( Ix(x+ uk, y + vk, t+ 1)duk

+ Iy(x+ uk, y + vk, t+ 1)dvk

+ I(x+ uk, y + vk, t+ 1)− I(x, y, t))

− α div(Ψ′(|∇(uk + duk)|2 + |∇(vk + dvk)|2) · ∇(vk + dvk)) = 0

This system of equations has to be solved on each computation level k with respect
to the motion increments duk and dvk. Since we assume that these increments are small
the linearization procedure is valid and can be applied. After the flow increments for the
current level are computed we find the overall solution as uk+1 = uk+duk, vk+1 = vk+dvk.
With such a coarse-to-fine strategy we perform the flow computation step-by-step, so
instead of a non-convex optimization we solve a series of convex problems and successively
refine the result.

In order to implement such a hierarchical approach we have to consider an appropriate
implementation to obtain the motion compensated image I(x + uk, y + vk, t + 1) at a
computation level k and the realization of a multi-level strategy (construction of image
pyramids).

2.2.4.3 Motion Compensation

We first discuss the implementation of the motion compensation procedure. The compu-
tation of the image function I(x+u, y+ v, t+ 1) and its derivatives Ix(x+u, y+ v, t+ 1),
Iy(x + u, y + v, t + 1) requires to ”apply” the computed flow field on the initial im-
age, so-called image warping [MP98]. In this work we follow the approach proposed in
[MP98, BBPW04] and perform a backward registration. A number of different implemen-
tations are possible (see Section 2.2.5). Here we show an example of motion compensation
using bilinear interpolation.

We decompose the real-valued computed flow field u and v into two parts: u =
û+εu, v = v̂+εv where û, v̂ denote the integer fraction of u, v and εu, εv denote the subpixel
displacement. Then we compute the motion compensated image I(x+ u, y + v, t+ 1) by
means of bilinear interpolation using:

[I(x+ u, y + v, t+ 1)]i,j,t+1 = (1− εu)(1− εv)I(i+û),(j+v̂),t+1

+ (εu)(1− εv)I(i+û)+1,(j+v̂),t+1

+ (1− εu)(εv)I(i+û),(j+v̂)+1,t+1

+ (εu)(εv)I(i+û)+1,(j+v̂)+1,t+1

The motion compensation procedure for the image derivatives Ix(x + u, y + v, t + 1),
Iy(x+ u, y + v, t+ 1) can be performed in the analogous way.
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2.2.5 Multi-level Computation

In order to implement a coarse-to-fine strategy we need to specify a transfer function
which downscales the original image version to a coarser resolution level and interpolates
the obtained results back to the finer computation level. On each computation level k the
image size is determined via:

Nk
d = N orig

d ηk,

where η is a warping scale parameter, Nd denotes the image size in the dimension d ∈
(x, y).

For this purpose a number of approaches can be used such as nearest neighbour aver-
aging, area-based averaging [BWF+05], billinear or bicubic interpolation. In the current
work for the construction of image pyramids we use bicubic interpolation using Coons
patches [Coo67]. This method gives good results [SRB14, ZBW11], efficient and easy to
implement. For the case of using 3D tomographic data as an input, we employ tricubic
interpolation.

2.2.6 Intermediate Flow Filtering

In the work of [SRB10, SRB14] authors reveal a preprocessing step which allows to sig-
nificantly improve the accuracy and, which is more important, robustness of optical flow
estimation [WPZ+09]. It is proposed to apply a median filtering to the intermediate flow
result prior to the warping step to the next computation level.

The reason for its surprisingly good results is straightforward. The errors in flow es-
timation which appear on the coarse image scale are propagated via a warping step to
the next level. On this level the incorrect flow serves as an initialization for optical flow
estimation. This results in an accumulation of errors during incremental computation
procedure. The median filtering allows to suppress flow errors already on earlier com-
putation levels. With this approach the current optical flow solution is computed via
wk+1 = Mp(w

k + dwk), where M is a median filter and p is its mask size.

In [SRB10, SRB14] it is concluded that optimal size of the median mask is (5 × 5),
which outperforms both (3 × 3) and (7 × 7) settings. In our work we generalize the
median filtering approach and use a more adaptive strategy for the flow correction. First,
we might observe that on the most coarse computation level, when the image size is the
smallest (around 20-50 pixels) median mask of size (5×5) may oversmooth the flow result,
which can lead to inaccurate flow estimation. To avoid that, we apply less strict filtering
on coarse levels using a smaller mask of 3× 3 pixels.

Additionally, in the presence of high amounts of noise or severe artifacts we use a
selective filtering using a larger mask (7 × 7 and 9 × 9 ). We perform such filtering in
homogeneous image regions determined using the same median filtering (7 × 7 or 9× 9)
on the original image. We present evaluation results in the experimental section 5.4.3.5.

2.3 Summary

In this section we summarize all models and features which are available in our optical
flow framework. In Table 2.1 we provide the references to the original papers, where
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a particular approach was introduced or discussed, as well as give a reference to the
corresponding parts of this work.

Table 2.1: A summary of methods implemented within the optical flow framework pre-
sented in this work.

Model References Section

D
at

a
te

rm

Brightness constancy [LK81, HS81] 2.1.2.2

Gradient constancy [Sch93, BBPW04, PBB+06] 2.1.2.3

Higher-order derivatives [PBB+06] 2.1.2.4

Multiple image features [BBPW04, ZBW11] 2.1.2.5

Combined Local-Global [BWS02, BWS05] 2.1.3.3

Robust Modeling [BA91, BA96, SRB14, BSL+11] 2.1.3.1

Joint and Separate Modeling [BW05, ZBW11] 2.1.3.2

Data Normalization [LV98, ZBW11] 2.1.3.4

S
m

o
ot

h
n

es
s Homogeneous [HS81] 2.1.4.1

Image-driven [Sch93, ASW99, WS01a] 2.1.4.2

Flow-driven [Sch94, BBPW04, PBB+06] 2.1.4.3

Spatial-temporal [Nag90, WS01b] 2.1.4.4

Adaptive smoothness [ZBW11] 2.1.4.5

O
p

ti
m

is
at

io
n

Coarse-to-fine strategy [BA96, MP98, BBPW04] 2.2.4.2

Flow median filtering [WPZ+09, SRB14] 2.2.6

Multiple results fusion [LRR08] 2.1.2.5

User-driven landmarks [FM03] 2.1.2.6

Confidence measures [Fua93, BBH03, BW06, XJM10] 2.1.5

Parameters optimization [ZBW11] 5.3

C
om

p
u

te

2D images — 2.1.2, 2.1.4

3D images — 2.1.6

Efficient schemes [BBPW04, Bru06, TBKP12] 4.2.1

GPU computation — 4.2.2
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Chapter 3

Data Analysis Framework

This chapter is dedicated to analysis of time-resolved X-ray data. It divides into two
extensive sections: data enhancement (Section 3.1) and further analysis of the computed
optical flow results (Section 3.2).

In Section 3.1 we start the discussion of data pre-processing (or filtering) to correct
image defects. This step always precedes any further data treatment and optical flow
computation. We consider three topics which are of key importance: image noise filtering,
brightness corrections and contrast adjustment.

In Section 3.2 we give a list of data analysis routines which we employ in the application
section of the current work. These routines, together with a variety of optical flow methods
constitute our framework for time-resolved data analysis. We distinguish five individual
tasks : analysis of the computed motion field; motion-based segmentation; detection of
temporal changes which are not attributed to the motion itself; automated tracking and
image registration/alignment.

3.1 Data Preprocessing

In this section we present a first step in our data treatment pipeline, namely data pre-
processing. The purpose of this step is to correct various image defects that might be
present due to non-optimal experimental conditions, physical properties of the process,
imprecise detector system, or artificial errors introduced by an image reconstruction pro-
cedure. Such image defects might deteriorate the result of data analysis and thus should
be corrected before any further optical flow computation or analysis steps are undertaken.

We assume that data which is provided for the image processing already represents the
best possible quality which can be achieved by the data acquisition process. Otherwise,
the experimental conditions should be readjusted and optimized. However, this is not
always possible and frequently the image acquisition system is employed to its technical
limits.

As an example, image noise affects the ability to detect small feature details, especially
for the low contrast data - when brightness level differs only slightly for separate image
features. To increase signal-to-noise ratio and, thus, to improve data quality, it is necessary
to increase the number of detected photons. This can be done by increasing the beam
intensity, increasing the exposure time or acquiring and averaging several image frames.
All of this, however, will lead to a higher dose deposition, which can affect the viability
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of the specimen in the case of biological applications. Another option is to increase the
pixel size by combining several neighbor pixels, which will allow to detect more photons,
resulting in a higher signal-to-noise ratio. But, in this case, the improvement in signal-
to-noise ratio is obtained at the expense of poorer spatial resolution. This illustrates
a fundamental trade-off between image quality and dose deposition. Moreover, there is
also a trade-off between individual parameters of image quality, i.e. spatial resolution,
features contrast and noise. Furthermore, the optimization of experimental setup could
be time consuming and, given the limited time for experiments on a synchrotron, dealing
with image data as a post-processing step could be more practical. That is why it is
reasonable to sacrifices the image quality for the ability to capture physical characteristics
of dynamical process, and then utilize data processing as a correction step.

It is important to emphasize, that by the term data preprocessing we assume both
data restoration (correction) and data enhancement. However, both procedures are not
the same and serve different purposes. Unlike data enhancement, which is a subjective
routine and aimed on improving visual appearance of certain image details or features,
image restoration is based on mathematically justified image correction. There might
be cases when the same image processing procedure serves both purposes. For example,
correcting image brightness variations could improve visual analysis of image sequences,
since image flickering could be distracting and obscure important changes. On the other
hand, it could also correct pixel data for the use of certain optical flow models (e.g. grey
value constancy assumption).

3.1.1 Noise Filtering

Image noise is the unwanted fluctuations of the pixel brightness in an image. This results
in a degradation of image quality and deteriorates data analysis. The noise which is
generated within an imaging system is usually a combination of a number of independent
noise sources. In general, it is not possible to identify, and thus to filter individual noise
contributions separately. To quantify image variations due to the noise, a scene in which
the resulting image is expected to have a uniform brightness might be used. Then, a
noise content of the image (noise power Pn) is given by the variance, i.e. the square of
the standard deviation, of the pixel grey values in local image region. To estimate the
noise influence one should compare it with the average amount of intensity in the same
region (signal power Ps). The signal-to-noise ratio (SNR) is the ratio of the intensity of
the signal (pixel brightness) to the noise power SNR = Ps

Pn
. However, in cases when noise

properties cannot be described as random or having normal statistical distribution, it is
more difficult to estimate the amount of noise.

In the following sections we shortly describe a number of noise models which are the
most relevant for the processing of X-ray images and optical flow analysis. Then we
provide correction techniques (noise filters) which allow us to reduce the amount of noise
and to recover useful information. This, in turn, will improve the results of optical flow
computation.

3.1.1.1 Noise Models

The common sources of noise in images taken with X-ray imaging systems are photon
noise, which originates due to the discrete nature of X-ray radiation (and electromagnetic
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radiation in general) and interaction of X-ray with matter, and electronic noise from the
digital detector systems. Additionally, the process of digitization also adds noise (quan-
tization noise), but we assume that this type of noise does not contribute much to the
overall noise level.

Gaussian noise
A popular noise model which is considered in various fields of Signal Processing and
Computer Vision is Gaussian noise. It has a probability density function (or normalized
histogram), which is given by:

G(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 ,

where x is the pixel brightness, µ is the mean brightness value and σ is its standard
deviation. This model is a very convenient from the mathematical point of view and
simulates many real world random (stochastic) processes. That is why it is widely used
in image processing to contaminate images with noise. However, this model does not
adequately represent physical properties of image acquisition process in most medical
systems, including X-ray imaging, where an image has a spatial and temporal randomness
characterized by Poisson statistics.

In the current work we decide to keep this noise model for the sake of having a system-
atic experimental approach and direct comparability with the literature on optical flow.
We start all the experiment on noisy images with this simple model and then proceed
with the more suitable ones such as photon and impulse noise models.

Photon noise
Photon noise (also known as quantum noise or shot noise) arises from the statistical prop-
erties of electromagnetic radiation - an imaging sensor receives within a time interval of
∆t (exposure time) on average N electrons by absorption of photons. The average rate
of received photons per unit time λ is given by λ = N

∆t
. During each exposure a different

number of photons are registered by the detector element. A random process in which an
average λ∆t events are counted is described by a Poisson distribution P (λ∆t):

P (λ∆t) =
(λ∆t)n

!n
e−λ∆t, n ≥ 0,

with the mean and variance: µ = λ∆t and σ2 = λ∆t respectively. An important property
of a random process according to Poisson distribution is that it is not independent of a
signal and is not additive. Additionally, the signal-to-noise ratio increases as an average
brightness level gets larger, which means that the more X-ray photons are detected, the
higher the signal-to-noise is and the less noise is contained in the image data. The photon
noise is a fundamental and unavoidable source of noise in medical imaging. For an efficient
and optimized imaging system it is the dominant source of random fluctuation in image
data [Dou09].

An important contribution of our work is that in addition to a classical Gaussian
noise model we include an extensive discussion of performance of optical flow methods on
a physically justified noise model such as photon noise.
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Spike noise
Another type of noise which could be useful to consider for our class of applications is
so-called impulse noise (also salt-and-pepper or Spike noise). This type of noise is usu-
ally caused be the errors in data transmission or damaged sensor elements of the digital
detector system (”dead” or saturated pixels). The strength of the corruption by impulse
noise is usually of much more influence compared to other types of noise, since such type
of noise is recorded as an extreme values, so they are equal or close to the maximum and
minimum values of dynamic range of an image. This type of noise is usually quantified
by the percentage of pixels which are corrupted.

Despite the fact, that sometimes it is possible to correct such corrupted pixels using
the dark field correction (which will be described later in Section 3.1.2.2), we choose to
include this type of noise in our experiments on noise. We consider this type of noise
as very helpful to evaluate the performance of optical flow methods and data correction
techniques with respect to data outliers.

3.1.1.2 Noise Filters

In the previous section we introduced several noise models which we will use for our
experiments on noisy data (Sections 5.4.1 and 5.4.2.1). Here we present methods to
restore image details from the noisy images, with the aim to possibly improve results of
optical flow computation. There is a tremendous amount of literature on image denoising
methods. For this work we limit our experiments only on those methods which are widely
available, easy to implement and are well understood from the mathematical point of
view. Here we do not aim to fully cover this topic. For in-depth information on denoising
methods the reader is referred to the extensive literature. To enhance image data with
respect to noise we consider four filters: Gaussian filter, bilateral filter, median filter,
anisotropic diffusion filter.

An important assumption for any denoising method is that the pixel size (resolution)
is much smaller then the important details which we aim to recover.

Gaussian Filter
A commonly used approach to filter noise is a Gaussian smoothing. It can be im-

plemented as a convolution of the image with the Gaussian function. This filter reduces
noise from the image, however, it also blurs image edges and reduces image contrast. It
can introduce other artifacts such as merging of nearby structures. Moreover, the data
outliers are not completely filtered, but only averaged in a local neighborhood, which
means that the corrupted pixel data could be spatially extended. Note, that Gaussian
smoothing corresponds to the linear isotropic diffusion process. The implementation of
Gaussian low-pass filtering is done via computing a weighted average of pixel values in
the neighborhood, with the weights decreasing with the distance from the neighborhood
center.

Bilateral Filter
Bilateral filtering removes the noise while preserving image edge information, which is

done by a weighted average of intensity values from nearby pixels. An important property
of the bilateral filter, is that the weights depend on both geometrical closeness of the pixels
and their photometric differences (e.g. grey values) [TM98].
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The filtering procedure can be expressed in the following way:

Ibilateral(x) =
1

Wp

∑
xi∈Ω

I(xi)fr(|I(xi)− I(x)|)gr(|xi − x|),

where the normalization factor is:

Wp =
∑
xi∈Ω

fr(|I(xi)− I(x)|)gr(|xi − x|),

where I is the original image, x is the coordinate of the current pixel being processed; Ω is
the spatial window mask centered at location x; fr is the range kernel to filter differences
in pixel brightness; gs is the spatial kernel to filter differences in geometrical distances.

Among the advantages of the bilateral filter are simple implementation and non-
iterative nature of the algorithm.

Rank Filters
A drawback of smoothing or averaging filters is that they produce undesirable blur-

ring on object boundaries, which are represented by image edges. A possible solution to
this problem is to discriminate pixel values by ranking them in a local neighborhood. A
common choice is a median filter which selects the median value in the ordered list of
grey values and uses this value as a new result for the central pixel. Median filter provides
excellent performance for certain types of noise, especially impulse noise, which was dis-
cussed in the previous section. If a pixel contains an extreme brightness value (”dead” or
saturated pixel), it is substituted by an acceptable value from a local neighborhood. The
important property of the median filtering is that is an edge-preserving filter. However,
for very large neighborhood sizes small image details could be completely eliminated.

To implement a median filtering one may choose between different sizes and shapes
of the neighborhood. Several mask patterns are possible: a 4-nearest neighbor cross, a
(3 × 3) square, a (5 × 5) circular, etc. This different neighborhood patters are shown
in Figure 3.1. Typically, a square mask is easier to implement, however, as the mask
size increases the use of a pattern which approximates a circular region is important to
produce more isotropic filtering [Rus11]. For implementation of median filtering in the
current work we opt to use a circular median filtering mask.

Figure 3.1: Shapes of 2D neighborhood mask for median filtering. (a) 4-nearest neighbor
cross. (b) a (3× 3) square. (c) (5× 5) circular. (d) (5× 5) square. (e) (7× 7) circular.
Image: [Rus11].

Another useful approach is to consider a more sophisticated ranking of neighborhood
information. This step is driven by the fact, that median filter removes small details which
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are twice smaller then the size of the median mask and also removes sharp corner details.
A special case of corner-reserving median filter, is a hybrid median filter [NHN87, Rus11].
This filter ranks all the pixels in different sets. In the first group there are 4 nearest neigh-
bours forming a ”+” sign and the second group are pixels which are located in diagonal
locations with respect to the central pixel (forming a ”x” sign). Then, median values from
these two sets are compared with the central pixel. The idea is sketched in Figure 3.2.

Figure 3.2: A sketch of hybrid median filter, which preserve corners and small coherent
structures. Image: [Rus11]

Anisotropic Diffusion
Anisotropic diffusion (also known as Perona - Malik diffusion [PM90]) is a method

which aims to reduce image noise without removing image edges representing an important
features. Additionally, such types of filters can posses even edge-enhancing properties
[Wei98]. The smoothing is done by means of a diffusion process in which the strength
of the diffusion is controlled by derivatives of the image brightness values. Anisotropic
diffusion is define as:

∂I

∂t
= div(c(x, y, t)∇I),

where I(x, y, t) is an image in a domain Ω2 ⊂ R2, ∇ denotes gradient operator, div()
is a divergence operator, c(x, y, t) function controls the rate of diffusion depending on
image data at pixel location (x, y). In a seminal paper of Perona and Malik the diffusivity
c(x, y, t) are:

c(|∇I|) = e−(|∇I|/ε)

or

c(|∇I|) =
1

1 + ( |∇I|
ε

)

where |∇I| is a magnitude of the image gradients and ε is constant which is choose
experimentally or depending on a noise scale.

Anisotroipic diffusion is a flexible and highly adjustable filter. With different pa-
rameters one my obtain a very distinctive filtering results. However, what might be an
advantage to produce better results, also can be a drawback, since it is not easy to optimize
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numerous parameters to get the best possible result. Additionally, the implementation is
not trivial and the filter is computationally demanding (being an iterative method).

Carefully weighting all pros and cons we use this filter for our quantitative comparison
of denosing filters, since anisotropic diffusion is a powerful and flexible method, with many
degrees of freedom.

We use an implementation based on the paper of [TD05]. A freely available imple-
mentation can be access via a web link:
http://rsb.info.nih.gov/ij/plugins/anisotropic-diffusion-2d.html.

Comparison of different noise filtering methods is presented in Figure 3.3.

3.1.2 Brightness Correction

The most commonly used assumption in image analysis to identify or compare pixel values
is that the region representing the same object or feature should have the brightness
value. However, in practice for real-world imaging scenarios such strict conditions could
not always be fulfilled.

For X-ray imaging the constancy and uniformity of the background brightness dis-
tribution can be affected because of various reasons, such as non-uniform beam profile
due to spatio-temporal fluctuations of a light source, etc. Usually such effects can be
corrected by recording a background image (without an object in the field of view) and
then removing non-constant brightness variation (see Section 3.1.2.2). Depending on the
image content, this can be implemented as a subtraction or division operation with a
background and the image with an object. However, this procedure is not always feasible,
especially for in-situ or in-vivo experiments, when one acquires a continuous sequence
of images and brightness variations occur during the recording time. For this case we
propose a proper brightness correction procedure. Here we describe the most popular
methods to achieve this and later evaluate how different correction procedures influence
the accuracy of optical flow estimation (see Section 5.4.2.2).

3.1.2.1 Illumination Models

As we outlined previously, background brightness distribution can be non-constant over
time or non-uniform spatially for a sequence of X-ray images. This property of X-ray
data is of crucial importance for the choice of appropriate data constancy assumptions
for the design of optical flow models (see Section 2.1.2). In the literature on optical flow
methods this problem is referred to as ”changing illumination conditions”.

To correctly model optical flow assumptions it is important to consider realistic illumi-
nation scenarios. Two important models in the literature on the optical flow are: additive
illumination and multiplicative illumination [vdWG04, MBW07]. Additionally, one may
distinguish between global and spatially local changes. In Section 2.1.2 on the available
data terms we already discussed that the gradient constancy assumption is invariant un-
der global additive illumination changes, however it is not suited for the case if there is
also a multiplicative part.

It is important to note, that increasing an exposure time while recording an X-ray
image corresponds to global multiplicative brightness changes. Thus, to apply optical
flow methods, an appropriate choice of the data term which is robust under this type of

http://rsb.info.nih.gov/ij/plugins/anisotropic-diffusion-2d.html


60 CHAPTER 3. DATA ANALYSIS FRAMEWORK

a b

c d

e f

Figure 3.3: Performance of noise filters on RubberWhale dataset with Gaussian noise with
nσ=10. (a) First frame of original image. (b) With Gaussian noise with nσ=10 added.
(c) Gaussian smoothing filter. (d) Median filter. (e) Bilateral filter. (f) Anisotropic
diffusion filter.

brightness changes is an crucial aspect. This will be discussed in the experimental section
5.4.3.2.

Typically, to tackle with varying brightness conditions optical flow methods make use
of different photometric invariants derived from color models [MBW07, ZBW11]. Such
transformations are invariant under general illumination changes. However, since color
information is not available for X-ray images we are enforced to search for another reliable
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solutions, which we present in the following sections.

3.1.2.2 Flat-field Correction

The simplest approach to correct background non-uniformities is to perform so-called
flat-field correction. In this case a ”flat” image, without an object in the field of view
is recorded. Then this image is used to eliminate the brightness pattern from the image
with a specimen. In a general form the flat-field correction can be computed as:

Ifilt =
Iraw − Idark
Iflat − Idark

,

where Iraw is a recorded raw image, which has to be corrected, Iflat is a flat-field image and
Idark is a dark-field image. The dark-field image is an image captured with no illumination.
In other words, it is an image of the sensor noise. An average of several dark-field frames
provides a possibility to correct for the fixed-pattern noise, including dark (”dead”) and
saturated (”hot”) pixels. For the case of X-ray data, since the recorded images represent
the absorption of a sample according to the Beer’s law (for the case when absorption
is dominating the image contrast) we may also perform a logarithm transformation to
recover the physical thickness of structures:

Ifilt =
log(Iraw − Idark)
log(Iflat − Idark)

However, as we mentioned before, a flat-field correction is not always possible for
in-situ or in-vivo experiments.

3.1.2.3 Fitting Background

One approach to eliminate uneven background from the recorded image, without a flat-
field image available is to measure an overall brightness in different parts of the image and
then interpolate the result. Then the obtained brightness pattern might be used for image
correction. A good choice for the interpolation function is a polynomial interpolation,
which gives good results for relatively gradual brightness variations. Another choice is
to perform least-squares fitting of sample points distributed over the image domain. The
distribution of sample points could be automated (for example using a grid or object
detection) or manual.

3.1.2.4 Image Leveling

In the case when the background changes more irregularly, so the fitting of a simple
function cannot be performed, a different approach might be useful. For this method one
assumes that the image features have smaller size then the scale of brightness variations.
The background image is estimated by applying an averaging or ranking filter with a large
spatial mask. Than, this background image is subtracted from the original image frame
to remove brightness variations.

In the current work we employ two types of filters, namely Gaussian smoothing filter
and median filter (See Section 3.1.1.2). Important parameters for such a filter are the
shape and the size of a spatial mask. One should note that brightness variations can be
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one-dimensional (e.g. horizontal stripes patters), in this case the filter can be implemented
as a 1D stencil. Figure 3.4 shows the application of image leveling methods to correct
uneven brightness patterns.

a b

Figure 3.4: Non-uniform background correction using image leveling with the Gaussian
smoothing filter with a spatial mask σ = 15. (a) Original image. (b) Corrected image.

3.1.2.5 Log Transform

Another approach to deal with local brightness variations (including additive and mul-
tiplicative intensity changes) is to use a so-called log-derivatives [MBW07]. In this case
the original image grey values are transformed into a logarithmic scale, then gradients
of these log-derivatives are considered as constancy assumptions for the computation of
optical flow. Such transformation is more robust under multiplicative intensity changes.

We evaluate this approach in the experimental Section 5.4.3.2, where we check the
performance of different data terms for changing brightness conditions.

3.1.3 Contrast Adjustment

The range of brightness values represented on the image is known as the dynamic range.
It can be measured as a difference between maximum and minimum values. Ideally, the
dynamic range obtained by the interaction of the radiation with the sample - for the
case of X-ray imaging - should coincide with the available dynamic range of the detector
system. In a case if it is wider than the one of the detector, the image histogram is
cutted. The brightness values which fall inside this cutted regions are inevitably lost.
Additionally, extreme pixel values which corrupt the range of histogram can be caused
by data outliers, such as ”dead” or ”hot pixels” and can be corrected as a preprocessing
step to improve the visibility of image details.

An image property which is related to the dynamic range is a contrast. In the case
when the dynamic range of an image covers all brightness values produced by the imaging
system (including interaction of X-rays with a sample), the image exhibits high contrast.
On contrary, when dynamic range is low (only a narrow range of similar grey values
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present in the image), the image has a low contrast. It is important to note, that the
dynamic range and image contrast are related, but not identical concepts. For instance,
images with bimodal histogram (peaks on the lower and upper parts of the histogram)
exhibit higher contrast than images with smooth, even histogram. For the ideal imaging
session one is interested to both cover the full dynamic range of the image and provide
maximum feature contrast.

Since for optical flow methods the pixel grey values are the source of information
to solve a correspondence problem, one may try to correct the image contrast not only
to enhance the visibility of image details, but also to improve results of optical flow
computation. In this section we present a number of techniques to achieve that and in
Section 5.4.2.3 we evaluate the influence of these methods on the accuracy of optical flow.

3.1.3.1 Contrast Estimation

In Section 3.1.1 we discussed an important characteristic of the image, which is a signal-to-
noise-ratio (SNR). Here we emphasize that for the analysis of X-ray images (and medical
image in general) a concept which is even more important is a contrast-to-noise ratio
(CNR):

C =
|S1 − S2|

σ
,

where S1, S2 are the brightness of structures in the region of interest and σ is the standard
deviation of image noise. For medical imaging applications the goal is to distinguish
between different structures or between an object and a background. For this case the
contrast-to-noise ratio is more descriptive and useful measure, since it relates both image
noise and image contrast.

3.1.3.2 Contrast Enhancement

A frequent situation, especially for X-ray imaging with low exposure conditions, is when
the images do not have the brightness range that covers the full dynamic range available
for a detector system. On Figure 3.5 brightness values on the light and dark ends of the
histogram are not used. Expanding the brightness value to cover the full dynamic range
may improve the visibility of local image features. This can be implemented with the
linear brightness values mapping [GW08]. This operation is often called the histogram
stretching. The result of this transformation is shown in Figure 3.5b.

In some cases the majority of pixel values occupy a narrow range of a histogram, but
a few number of outliers represent extreme values (e.g. hot and dead pixels). In this case
the histogram stretching cannot be performed, since the whole histogram range is used.
This results in an ineffective use of dynamical range. One way to solve this, is to filter
these outliers, e.g. using median filtering. However, this procedure also affects the pixel
values in the correct range of brightness range. Alternatively, it is possible to dismiss
a certain percentage of pixels on the histogram ends. As a result, these pixels will be
saturated with minimum and maximum values, but the rest of histogram range will be
used effectively.

Note, that the aforementioned procedure is global and linear. To improve local visibil-
ity of image features, one may perform nonlinear, local contrast enhancement [PAA+87].
This technique perform brightness stretching based on a histogram of a local image region.
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a b

Figure 3.5: Example of a histogram stretching to improve the visibility of local image
features. (a) Original radiograph with poor contrast. (b) Radiograph corrected using
histogram stretching.

3.2 Analysis Based on Optical Flow

This section is devoted to an overview of data analysis methods, which can be applied after
the optical flow results are computed. By further analysis of the obtained motion field
one can extract a vast amount of quantitative information about dynamical processes.
Although, several techniques can be closely related, in our data analysis framework we
identify four separate topics:

• Motion / flow analysis

• Motion-based segmentation

• Object tracking

• Image registration and alignment

In the following sections we describe in details each of these analysis methods.

3.2.1 Motion Analysis

In this section we present a common techniques to analyze the motion field after the
optical flow is computed. The aim of these methods is to provide quantitative information
about dynamical process. All of the presented methods are available in our data analysis
framework.

We define a vector field as a map F : Rn 7→ Rn that assigns each coordinate x a vector
F(x). A vector F in an n-dimensional Euclidean space can be defined as an ordered list
of n real numbers F = {x1, x2, . . . , xn}.
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3.2.1.1 Magnitude

An important property of a vector is its magnitude or length (also referred as velocity).
It is commonly defined as a Euclidean norm:

|F| =
√
x2

1 + x2
2 + · · ·+ x2

n

Magnitude of the vector field is a useful measure to quantitatively describe physical
characteristics of the dynamical process, distinguish between different moving object and
analyze the velocity changes over time. To compute the magnitude of the flow field one
might be interested to distinguish 4 scales:

• Magnitude of an individual pixel at the location x

• Average magnitude within a particular object O

• Average magnitude inside a certain region of interest (ROI)

• Average magnitude for the entire image frame I(x)

3.2.1.2 Divergence

Divergence is a vector operator that measures as a single scalar value to which extent a
vector field behaves as a sink or source at a given point. It can be defined for a continuously
differentiable vector field F = (Fx, Fy, Fz) as follows:

div F = ∇ · F =
∂Fx
∂x

+
∂Fy
∂y

+
∂Fz
∂z

Figure 3.6: Example of different types of vector fields. Left: Divergent vector field.
Middle: Rotational motion field. Right: Turbulent flow field with a significant amount
of flow discontinuities.

Divergence is a useful measure to analyze changes in velocity magnitude (i.e. accel-
eration). Additionally, divergence is a good indicator to identify potential errors in the
computed optical flow field, since according to the smoothness assumption, the displace-
ment field should vary slowly and violation of this fact can point out to problematic
regions.

An example of divergent vector field is given in Figure 3.6.
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3.2.1.3 Curl

Curl is a vector operator which describes the rotation of a vector field. At a given point
x of the field F(x), it is represented as a vector, which characterizes the rotation at that
point. The direction of the curl describes the rotations axis and the magnitude of the curl
is the magnitude of rotation. For Cartesian coordinates, for a continuously differentiable
vector field F = (Fx, Fy, Fz) the curl is given by:

curl F = ∇× F =

(
∂Fz
∂y
− ∂Fy

∂z

)
i +

(
∂Fx
∂z
− ∂Fz

∂x

)
j +

(
∂Fy
∂x
− ∂Fx

∂y

)
k,

where i, j and k are the unit vectors for x-,y-, and z-axes. An example of rotational motion
and corresponding vector field is given in Figure 3.6.

3.2.1.4 Phase

Another useful measure to analyze the resulting flow field is a magnitude of the flow
gradient. This measure is sensitive to any spatial variations of the motion field. For the
2-dimensional vector field F = (Fx, Fy) the magnitude of the spatial gradient is given by:

|∇2F|2 =

(
∂Fx
∂x

)2

+

(
∂Fx
∂y

)2

+

(
∂Fy
∂x

)2

+

(
∂Fy
∂y

)2

,

where |f | =
√
f 2
x + f 2

y denotes the spatial magnitude and ∇2 = (∂x, ∂y) the spatial gradi-
ent. For n-dimensional vector field this expression can be generalized in a straightforward
way by taking into account additional dimension.

It is important to note, that the given measure is equivalent to the formulation of
homogeneous smoothness assumption 2.1.4.1 and can be used to measure discontinuities
in the motion field. Figure 3.6 shows an example of a turbulent flow field with a large
amount of flow discontinuities.

3.2.2 Object Tracking

Object tracking is an important task in the field of Computer Vision. It is used for a
wide range of applications like video surveillance, human-computer interaction, automated
video analysis and autonomous vehicle navigation. For our application needs we are
interested to track and analyses spatio-temporal evolution of various objects imaged by
means of X-ray radiation: migrating cells, moving particles, changing structures, etc.

In the most general way, tracking is a procedure of estimating the trajectory of an
object within an 2D image plane (or 3D volume for tomographic data) as it changes
its position over time. Tracking involves three key steps: detection of moving objects,
tracking of these objects within an image sequence, and analysis of their trajectories to
learn about their dynamical behaviour.

In order to implement a tracking procedure one should consider a number of important
aspects. First, a suitable representation of the object should be defined. The next aspect
is to choose an image feature which will be used to recognize the object. And, finally, an
appropriate tracking strategy should be chosen.

We describe these aspects step by step in the following sections. Note, that the object
tracking is a well established and an extensive topic. Here we cover only those approaches



3.2. ANALYSIS BASED ON OPTICAL FLOW 67

which will be implemented within our data analysis framework (see Section 3.2), but
additional methods could be easily incorporated upon the need. For more details we refer
the reader to the literature on tracking methods [YJS06, TP06].

3.2.2.1 Object Representation

Here we describe common approaches to represent an object shape. In general, the choice
of object representation determines the tracking algorithm. It is possible to distinguish
the following representations:

• Points. The simplest representation of an object is using a point. This point
could be, for example, a geometrical center of the object (centroid) or some other
characteristic feature. Moreover, complex objects can be represented by a set of
points. In general, a single point representation is well suited for tracking small
objects (e.g. particles, cells).

• Primitive geometric shapes. In this case an object is represented by a simple ge-
ometrical shape, such as a rectangle or an ellipse. The motion for such shapes is
usually assumed to be described by affine transformations. Such geometrical shapes
are useful to represent rigid object.

• Object contours. Contour representation specify the boundary of an object. This
type of presentation is useful for tracking non-rigid objects. The contours are usu-
ally described using a special mathematical formulation, known as geodesic active
contours or snakes [CKS95]. However, in the scope of our work we do not use this
formulation. Instead, to represent a contour we use a multiple points, distributed on
the edge of an object. This simplifies and reduces the number of tracking algorithms
in our data analysis framework.

• Articulated shape or skeletal models. Articulated objects are composed of several
parts connected together with a joints mechanism. The relations between different
parts are driven by a specified kinematic motion model (e.g. angles relations, stiff-
ness). This representation is useful for tracking human or animal body parts. For
our class of applications this model can also be useful, however in the current work
we do not implement it.

As a base representation of objects we opt to choose a point representation, which
is general and allows to define small objects with a single point, complex objects as a
set of points and non-constant objects contours as a set of points distributed along the
boundary of an object. Additionally, this allows us to have only one type of tracking
algorithm (see Section 3.2.2.3).

3.2.2.2 Features for Tracking

The crucial aspect is a choice of image features or object properties which are used for
tracking. The requirements for such features are: they should be unique and provide a
good description the object, they should also be robust to noise and other artifacts. The
commonly used visual features are:
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• Color. The primary information about an object is its color or a brightness value. In
the visual light imaging scenario the color is mainly determined by the illumination
conditions of the scene and surface properties of the object (reflectance, diffusivity).
In our case, the color represents the result of interaction of X-rays with a sample
(e.g. attenuation of the upcoming radiation).

• Edges. Another characteristic property of an object is its boundaries. For this case
an edge detection algorithm is used to identify the changes in image intensities, rep-
resenting an object contour. There are several advantages for this feature. First, the
edges are less sensitive to illumination changes. Second, they additionally provide
orientational information. There are a number of easy to implement and accurate
edge detection techniques available [Can86, BKD01].

• Optical Flow. In this work the main feature used for tracking is a displacement
vector computed by an optical flow algorithm. This vector is available for every
pixel in the image (dense displacement field) and directly shows the new position of
the given pixel on the next frame.

• Texture. Texture is feature which describes brightness variations on the surface or
within an object. These variations might be caused by a pattern in the illumination
or properties of the object itself. Usually, to quantify the texture a number of
texture descriptors are used. Similar to an edge feature, texture based information
is also robust with respect to illumination conditions and noise.

Depending on the application and available data, a combination of aforementioned
features can be used. In the scope of this work we use an optical flow as the main source
of information to perform tracking. In order to track contours of non-rigid or complex
objects we additional may use the object edges to distribute a set of points for further
tracking.

3.2.2.3 Object Tracking

After the object representation and features of interest are chosen, the final step for the
tracker algorithm is to estimate a trajectory of a moving object by locating its position
in every frame of the image sequence.

The tracking procedure starts by detecting or identifying initial position of objects.
In our work we mainly use the point representation for small objects and multiple points
to represent complex objects. The distribution of points representing an object can be
done manually by the user or distributed automatically. In case of automatic selection
the points can be distributed randomly, using specified positions on a grid or according
to image features discussed in Section 3.2.2.2.

The model which is selected to represent an object constraints the type of motion
or deformation it can perform. For a point representation, the object motion is limited
to translations. Tracking of an object represented by a single point is trivial, we just
follow each point using a computed displacement vector. A non-rigid object represented
by multiple points defining its contour can move freely. In this case, by analyzing the
new positions of the contour it is possible to learn about object’s appearance. For a
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complex rigid object represented by multiple points we may introduce a number of mo-
tion constraints [YJS06] to reconstruct its affine transformation. These constraints are
schematically depicted in Figure 3.7.

Object postitions:

–  t-2

–  t-1

–  t 

r

Figure 3.7: Different motion constraints. Left: Maximum velocity constrained to the
radius r. Middle Left: Small velocity change constraint. Middle Center: Common
motion. Middle Right: Rigidity constraints. Triangles denote object position at frame
t-2, circles denote object position at frame t - 1, and crosses denote object position at
frame t. Right: Scheme of pixel codes on different time frames. Image adopted from
[YJS06].

• Maximum velocity specifies an upper bound of the object velocity which it can
undergo. This can be specified by a circular neighborhood around an object.

• Small velocity change (temporal motion smoothness) assumes the direction and
magnitude of the object’s displacement does not change rapidly.

• Common motion (spatial motion smoothness) constrains the displacements of nearby
points within the object to be similar.

• Rigidity assumes that objects are rigid, resulting that the distance between any two
points which belong to the object are unchanged after the .

3.2.3 Image Registration and Alignment

Image registration is a process of aligning two or more images of the same scene taken at
different times, from different views, or by different imaging techniques. Registration is
required in many fields, such as remote sensing, in medicine and in Computer Vision. An
example of image registration of time-resolved tomographic data is shown in Figure 3.8.

The task for image registration is to find the optimal spatial and intensity trans-
formations so the input images are matched. Image registration can be defined for two-
dimensional images as a mapping between a target I1(x, y) and a reference I2(x, y) images,
where I(x, y) represents image intensity. Then, the mapping between these images can
be expressed as following:

I2(x, y) = g(I1(f(x, y))),

where f is a function which maps spatial coordinates (x, y) into new locations (x′, y′),
such as (x′, y′) = f(x, y) and g is an intensity transformation.

Depending on the task and application field, it is possible to distinguish four classes
of specific registration problems:
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a b c d

e f g h

Figure 3.8: Example of image registration using optical flow. Application: in-situ analysis
of void formation in flip-chip devices under electrical load. (a) First time frame of the
image sequence. (b) Second frame. (c) Changes detection using image difference. Global
sample movement cause a lot of falsely identified regions. (d) Image difference after image
registration via optical flow. (e-h) After the image registration is performed, the tracking
of voids evolution is possible . Colors show individual pores. Note, that all voids merge
into a single one in the end of a sequence.

• Multimodal registration (different sensors): Registration of images of the same scene
acquired using different imaging modalities. Example: Combine structural informa-
tion form CT and functional brain activity from MRI imaging.

• Template matching : Match a reference pattern or a model with an image. Example:
Registration of an image pattern with the model representation of the scene or atlas.

• Viewpoint registration (different views): Registration of a scene taken from different
viewpoints. Example: Depth or shape reconstruction in Computer Vision.

• Temporal registration: Registration of images of the same scene taken at differ-
ent time, under different imaging or physical conditions. Example: Detection and
monitoring of changes in a scene, object or specimen.

In our work we mainly focus on the task of temporal registration to expose changes
between subsequent images or perform image alignment of object position.

In general, image registration procedure consist of the four stages [ZF03], which are
similar to the common steps for object tracking (see Section 3.2.2):

• Feature detection. Detection of salient and distinctive features such as objects,
characteristic points, edges, contours, lines, corners, etc. Such features can be placed
manually or detected automatically.

• Feature matching. Establish the correspondence between the features detected in
the target and the reference image. To perform a matching procedure a number of
spatial constraints and similarity measures are used.
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• Transformation estimation. A mapping between the target and the reference image
is estimated according to established feature correspondences.

• Image resampling and transformation. As a final step, the images are transformed
towards each other using the estimated mapping function. For the mapping and
resampling of intensity values an appropriate interpolation techniques is used.

All the differences within images in terms of pixel positions or intensity values due
to the temporal changes or different acquisition conditions are referred as variations.
It is important to distinguish between distortions and other variations. Distortions are
variations which are the source of misregistration. Essentially it is the distortions between
images which we would like to remove by registration procedure and reveal the changes of
interest. These distortions might be caused by the image noise, intensity changes, sample
or detector movement or other unwanted effects [ZF03].

Another important aspect, is to distinguish between global/local transformations and
global/local variations [Bro92]. A global transformation is described by the same mapping
(e.g. single equation) and transforms the whole image. A local transformation maps dif-
ferent pixels according to their spatial localization. The same holds for variations: some
variations are due to the global process like camera misalignment or global sample move-
ment, and some variations correspond to local differences. To perform image registration
it is crucial to take into account which kind of transformation is applied for which kind
of variations. For instance, images may have local variations, but a global transformation
can be used to align for a global change to assist in revealing small local changes. We will
cover these aspects in a Section 3.2.3.5 where we discuss different registration strategies.
In the following section we describe all the relevant steps in image registration.

3.2.3.1 Feature Detection

A crucial step for image registration is the selection of feature descriptors. These features
should be distinct, well distributed over the image and robust under different image ar-
tifacts (e.g. noise, brightness changes, artifacts). It is possible to categorize most of the
registration techniques according to feature detection approach in the following way:

Area-based detection. Area-based methods do not perform a separate feature detection
step. Instead, these approaches perform the feature matching procedure directly, accord-
ing to a specific similarity measure. We discuss these methods in the next Section 3.2.3.2.

Feature-based detection. This approach is based on the detection of salient and distinc-
tive feature to perform image registration. Whole range of characteristic information
extracted from the image data can be used for this purpose. Such features might include:
specific points, lines, corners, contours, texture, geometric shapes, etc. An important
difference from the area-based methods is that this kind of features represent higher level
of information and could correspond to a physical model of the scene. The procedure
for feature detection is closely related to the similar task for object tracking discussed in
Section 3.2.2.2, so the same set of feature detection tools might be used.
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3.2.3.2 Feature Matching

After the features are detected, the next step is to perform feature matching. In this
section we describe the methods which will be used in the scope of this work.

Area-based matching. A first category of methods are called area-based methods. Such
methods are also known as correlation-like methods or template matching techniques
[ZF03]. As we already mentioned in the previous Section 3.2.3.1, these techniques com-
bine the feature detection and matching procedures. The images are registered without
characteristic data points, instead the whole image domain is used.

A classical approach for area-based registration is a cross-correlation, which is a statis-
tical method to find similarity between images. For a template T and target image I, the
two-dimensional cross-correlation function estimates the similarity for each translation
(u, v) by:

CC(u, v) =
∑
x,y

T (x, y)I(x− u, y − v)).

If the best template match with a target image is given at a translation of (i, j), the
cross-correlation function will have its peak at CC(i, j).

In the case, if the brightness of the image and template differs due to the varying
imaging conditions, the images can be first normalized. The normalized cross-correlation
is then given by:

NCC(u, v) =

∑
x,y(T (x, y)− µT )(I(x− u, y − v)− µI)√∑
x,y(T (x, y)− µT )2(I(x− u, y − v)− µI)2

,

where µT and µI are mean values of the template T and the image I respectively.
A similar, but more intuitive measure computes the sum of the squared differences

(SSD) between a template and an image:

SSD(u, v) =
∑
x,y

(T (x, y)− I(x− u, y − v))2.

Another variant of area-based techniques is the so-called sequential similarity detection
algorithm (SSDA). Which simply estimates an absolute differences between two images
being matched. This measure is given by:

SSDA(u, v) =
∑
x,y

|T (x, y)− I(x− u, y − v)|.

Area-based techniques are useful for images which are misaligned by rigid transfor-
mation, preferably a translation. For more complex geometrical transformation (e.g. fast
rotation) the model should be modified, which usually leads to a significant increase in
computation load due to the extended search space. Another disadvantage of the area-
based methods is a poor performance for noisy data or homogeneous images without
prominent details or structures. In these cases no distinct peak position could be esti-
mated. For example, low-contrast data with noisy background or rotated spherical shape
of the embryo with a lot of similar cell structures.
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Feature-based matching. For this class of techniques we assume that features in the ref-
erence and the target images are detected. The next step for feature-based matching is
to establish correspondences between them. There are a vast variety of methods to find
such correspondences. We do not contemplate to describe these algorithms. For the ex-
tensive overview of different matching techniques we refer the reader to surveys on image
registration methods [Bro92, ZF03]. One popular choice of feature-based matching tech-
nique is based on scale invariant feature transform (SIFT) [Low04]. These methods show
good performance for a broad range of transformation models between images. However,
their use exceeds the scope of the current work. In this work the feature correspondences
for sparse or dense points are provided by the optical flow method and described by the
computed displacement vector.

3.2.3.3 Transformation Estimation

After correspondences between features are established the mapping function which over-
lays the target image with the reference is constructed. The key component of the regis-
tration procedure is a type and properties of a spatial transformation which implements
such alignment. Since a wide range of transformation types may present within each
image, the registration technique is restricted by a particular transformation model or
parameters. This transformation should remove only those image variations, which are
the result of distortion and should be corrected. Other image difference (changes of inter-
est) should remain unaffected be the registration procedure and will be used for further
analysis.

As we already disccussed in the Section 3.2.3, transformation can be global and local.
The most common types of global transformations are rigid, affine, projective, perspective
and polynomial. Within our work the most useful model is rigid transform, which we use
to track objects that preserve their shape. Affine transformation is a more general type
of transformation and includes translation, rotation, scaling, similarity transformation,
reflection, shear mapping, and compositions of them. Here we enlist three main transfor-
mation models:

Global mapping models. The most common global transformation is a rigid transform,
which preserve all the geometric properties of the object. According to this transform
each point (x1, y1) of the first image is mapped to a point (x2, y2) of the second image in
the following way: (

x2

y2

)
=

(
tx
ty

)
+ s

(
cos θ − sin θ

sin θ cos θ

)(
x1

y1

)
,

where tx, ty are translation vector components, θ is a rotation angle and s is a scale factor.
A rigid transform with a scaling factor could be useful to register datasets acquired with
a cone beam geometry (with different object to beam distances).

To estimate a transformation and its parameters global mapping methods based on
point matching use a set of point correspondences. In this case, if a sufficient number of
control points are provided, it is possible to derive the parameters of the transformation
using two general methods:

• Approximation procedure estimates the overall transformation mapping in such a
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way, that matched points are aligned as close as possible. This is usually imple-
mented with statistical optimization methods, e.g. least square approximation. The
key assumption in this case, is that the matched points could be inaccurate, so the
transformation should satisfy all the matches in an optimal way.

• Interpolation procedure finds the transformation mapping so the feature points
match precisely and parameters in other locations are estimated using a special
relation. This method is useful in the case if fewer, but more accurate matches are
provided.

Local mapping models. A significant drawback of global approaches is that these methods
do not properly treat the transformations which are local. For this case a number of
specific or modified registration methods are used. In this work we do not use this type of
mapping models, so we opt to skip the description of such techniques. For the overview
of available methods the reader is referred to the works of [Bro92, ZF03].

Elastic registration. A fundamentally different approach for the registration of images
with complex or local distortions is not to use any parametric or global mapping func-
tions. The idea of elastic registration was introduced in a seminal work of Bajcsy and
Kovacic [BK89]. In this method an image is represented as an elastic model (rubber-
like) and transformations are described as deformation forces constrained by a stiffness or
smoothness. In the current work we use the results of optical flow to compute dense local
displacements to perform elastic registration. In our case the data constancy assumption
is serving as a metric for feature matching and smoothness constraint is a similar concept
as in the case of elastic registration. Note, that the optical flow parameters should be cho-
sen appropriately, depending on the task and amount of local variations to be corrected
or revealed.

3.2.3.4 Image Resampling

To apply a mapping transformation, which is computed in the previous steps, an ap-
propriate image resampling and interpolation have to be employed. This transformation
can be done in a forward and backward direction. The forward approach is hard to im-
plement and could produce data outliers (hole or overlaps) due to multiple mapping or
discretization problems. The backward registration is easier to implement and produce
good results.

There is a large number of choices for the interpolation procedure [PKT83, GU98].
For our task we use a backward registration by means of bilinear interpolation described
in Section 2.2.4.3. For the volumetric data we use a 3D variant of this transformation -
trillinear interpolation.

3.2.3.5 Image Registration Strategies

Here we summarize several strategies of image registration used in our data analysis
framework:

• Dense local registration via optical flow. Features - dense pixels, matching procedure
- dense optical flow, transformation - backward flow field interpolation. Application
example: Register two images to obtain the maximum similarity.
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• Dense global registration via optical flow. Global registration is achieved by using
a coarse representation of the flow field or input images, i.e. using an increased
smoothness constraints or presmoothing parameter. Features - dense pixels, match-
ing procedure - optical flow, transformation - backward flow field interpolation.
Application example: Register two images of the same scene to compensate for
global elastic changes to reveal local changes.

• Feature-based registration via optical flow. Features - sparse set of landmarks, match-
ing procedure - sparse optical flow correspondences, transformation - global transfor-
mation based on approximation or interpolation (see Section 3.2.3.3). Application
example: align images based on automatically distributed landmarks.

• Global image registration with correlation-based technique. Features - entire image
(image-based matching) , matching procedure - correlation-based techniques (SSDA
is a good choice, see Section 3.2.3.2 ). Application example: align images to com-
pensate for a global sample movement prior to the optical flow computation, which
is sensitive for small changes.
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Chapter 4

Computational Framework

In this chapter we describe our computational framework. First, we present the software
architecture which is implemented as a modular approach. Then we describe main re-
sponsibilities of individual components of each module. The second part is devoted to
high performance computing. First, we show a number of efficient numerical techniques
to speed up the computation process. Then we present an implementation of optical flow
methods on graphical processing units (GPUs), which enables us to process large datasets
in a reasonable time. In the last part of the chapter we describe visualization methods
which are implemented in our data analysis framework.

4.1 Software Framework

The software for optical flow computation and time-resolved data analysis is implemented
using C++ programming language, is modular and follows the object-oriented design
paradigm. The requirements for our implementation are high performance, platform
independence and strict control for types and memory management. Most of the com-
ponents are implemented within a single unified framework, if not stated otherwise (e.g.
some data analysis or data visualization packages are implemented as external routines).
In the following section we describe all the software components in more details.

4.1.1 Modules

Our optical flow computation and data analysis framework is designed as a modular
system. Each module is responsible for a specific class of functionality. A central part
of the framework is a CORE module, which contains classes and methods to perform the
optical flow computation. The integral class of this module is a Runner class which serves
as unifying interface and control routine between the core classes and external modules.
With such organisational architecture it is possible to minimize interdependence between
different parts. It also allows to simplify easily the extension or modification of the existing
functionality. The overall diagram of our framework is presented in Figure 4.1.

The developed software framework consists of the following modules:

• User interface

• Input / Output Library

77
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Figure 4.1: Optical flow computation and data analysis framework as a modular system.
Each model is responsible for a specific class of functionally. All modules are connected
and controlled via the Runner class of the CORE module.

• Filters

• Core

• Analysis

• Visualization

In the following part we describe the responsibility and essential functionality of each
of these modules.

User Interface Module. Provides an universal interface to setup and adjust the overall
workflow, select optical flow models, adjust computation parameters, as well as perform
further analysis of the optical flow results. It is implemented as a command line utility
and a settings file in a easy-to-read XML format1.

Input / Output Library Module. The module provides routines for data input and output.
This includes the work with settings files, statistics, image data, resulting vector fields
and other related information. The library allows to use the following data inputs:

• 2D / 3D image sequences using common image formats.

• RAW data. Using various data types: 8-bit, 16-bit, 32-bit.

1http://www.w3.org/XML/

http://www.w3.org/XML/
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• Batch processing. Allows to perform batch processing of long image sequences.
Several input modes are possible: masking mode with the specified image indexes;
a list of images; a list of image pairs.

Filters Module. The module contains various filter which are used during preprocess-
ing, data analysis or optical flow computation. The list of possible image filters includes:

• Gaussian smoothing. Implements image filtering via convolution with a Gaussian
function (See Section 3.1.1.2).

• Median filtering. Implements image filtering using a median filter (See Section
3.1.1.2).

• Image resampling. Using a number of methods: Averaging, Area-based resampling.

• Image interpolation. Available modes: nearest-neighbor, bilinear, trilinear, bicubic
interpolations [PKT83].

Core Module. This module is the central part of the framework and contains classes
and methods to perform the optical flow computation, as well as to connect and control
the classes from external modules.

• Image. Provides functionality to represent an image in various formats and dimen-
sions. The implemented types of images are: Image2D Image3D and ImageRGB.

• Scheme. The main class to impose data constancy assumption via the computation
of a motion tensor (See Section 2.1.2).

• Tensor. The class stores the entries of a motion tensor for 2D or 3D image data.

• Solver. The main class which performs numerical solution of the optical flow prob-
lem via solution of linear equations, which describe the minimum of the energy
functional.

• Result. This class stores the results of optical flow computation and contains meth-
ods to analyze them. In our framework two versions of the optical flow results are
implemented - Result2D and Result3D - for two-dimensional and three-dimensional
cases respectively.

Analysis Module. Contains a set of routines for further analysis based on optical flow
results. Some functionality implemented within the same framework and some as external
tools.

• Motion. A set of methods for further analysis of displacement fields. See Section
3.2.1 for theoretical description and Section 4.1.2.4 for the list of available function-
ality.

• Tracking. A module for points or objects tracking using the computed displacement
fields as a feature (See Section 3.2.2.2).

• Registration. A module for motion-based image registration (See Section 3.2.3).
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• Segmentation. Module for motion-based segmentation of moving objects. Thresh-
olding methods are implemented as part of our framework, more advanced methods
such as region-growing and level sets methods are implemented externally using
Fiji/ImageJ software2.

4.1.2 Components

4.1.2.1 Scheme Components

Scheme components intend to perform the construction of a data term by computation
of the corresponding motion tensor (See Section 2.1.2). A list of available data constancy
assumptions implemented as separate Scheme classes includes:

• Scheme[DataConstancy]. Performs a computation of a motion tensor for a given
constancy assumption. The complete list of available constancy constraint is pre-
sented in Section 2.1.2. The implemented constancy modes are DataConstancy

= {Grey, Gradient, GreyGradient, GradientNorm, Laplacian, LogDerivatives,
GreyRGB, GradientRGB}.

• SchemeNormalization. All the previously presented data constancy assumptions
(list DataConstancy) can be normalized according to the procedure described in
Section 2.1.3.4.

• SchemeCLG. All data assumptions DataConstancy can be convolved with the Gaus-
sian function to obtain a motion tensor which integrates the local information, to
obtain the so-called Combined-Local-Global approach (See Section 2.1.3.3).

• SchemeMultiChannel. This scheme allows to construct a data term using an arbi-
trary number of channels as the input (for example, 3-channel RGB color images).
This might be useful to incorporate images obtained using multiple contrast modal-
ities.

• Scheme3D. All the presented schemes can be implemented for 2D or 3D images.
Moreover, implementation for higher dimensions can be extended in a straightfor-
ward way.

4.1.2.2 Solver Components

The Solver classes perform numerical computation of the optical flow problem, solv-
ing a system of linear equations. Several algorithms are available in our computational
framework (See Section 2.2.3):

• SolverJacobi. Performs solution of a system of linear equations using a Jacobi
method (see Section 2.2.3.1). It is not an optimal solver methods in terms of perfor-
mance and requires large amount of iteration to converge to the optimal solution.
However, for the case of parallel computations, where each element of the matrix is
evaluated separately, this solver is more suited (see discussion in Section 2.2.3.1).

2http://imagej.net

http://imagej.net
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• SolverGauss. Solves a system of linear equations using a Gauß-Seidel method
presented in Section 2.2.3.2. It speed ups the computation time comparing with the
Jacobi methods, since all the entries of the approximation matrix are updated on
each iteration.

• SolverSOR. Performs the solution using a Gauß-Seidel method with the successive
overrelaxation technique, which is presented in the section dedicated to the advanced
numerical techniques (see Section 4.2.1.1).

• SolverMultiLevel. This solver implements a multi-level computation as described
in Section 2.2.5 and allows to perform high accuracy optical flow computation of
large displacements. On each individual computation level the SolverJacobi, the
SolverGauss or SolverSOR numerical solvers can be used.

4.1.2.3 Results Components

The responsibility of this module is to store and analyze the results of optical flow com-
putation. The following measurements are implemented:

• EndpointError. This measure is used to compare two vector fields in terms of a
distance between two vectors (See Section 2.1.1.2). Presently it is the most popular
measure to compare the computed results with a ground truth displacement field.

• AngularError. Computes the angular differences between two vectors (See Section
2.1.1.1).

• DataConstancyError. Computes a confidence measure based on the data constancy
error (See Section 2.1.5.3).

• EnergyError. Computes a confidence measure based on the residual energy of the
energy functional (See Section 2.1.5.2).

• UniquenessError. Computes a confidence measure based on the motion uniqueness
criteria (See Section 2.1.5.4).

• ConsistancyError. Computes a confidence measure based on the constancy be-
tween forward and backward flow fields (See Section 2.1.5.5).

• PredictionError. Computes a confidence measure based on the optimal prediction
principle (See Section 2.1.5.6).

• ErrorStatistics. For each of the error or confidence metrics presented above, a
complete set of statistical measure is extracted and can be used. These measures
include a minimum (min), a maximum (max), a mean (avg) and standard deviation
(std). Moreover, for the endpoint error metrics a set of robust statistics measures
is also available. They compute the percentage of pixels that have an error measure
larger then a certain amount of pixels. In particular, we compute R0.5, R1.0, and
R2.0 for the endpoint error, which corresponds to half, one and two pixels error
respectively.
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• ErrorRegions. For every error or confidence metric it is possible to evaluate their
statistics in various image regions to get insights how optical flow methods perform
in these regions. We provide the following regions of interest: whole image (All),
around motion discontinuities (Disc), in textureless regions (Untext), around data
artifacts (Err) or in an arbitrary region (Roi). All the regions of interest have to be
supplemented to the results analysis routine as binary masks.

4.1.2.4 Motion Analysis Components

These routines allow to perform further analysis of the computed motion field. The
following methods are implemented within our analysis framework:

• Magnitude. See Section 3.2.1.1.

• Phase. See Section 3.2.1.4.

• Curl. See Section 3.2.1.3.

• Divergence. See Section 3.2.1.2.

• Components. The module allows to save individual components of the computed
flow field for further analysis.

• Kinematics. Allows to extract kinematics components from a motion field. Under
assumption of a rigid motion this computational module requires as an input a set
of landmarks representing the object of interest, a center of coordinates and an
axis of rotation. As an output the component produces a translational (trans) and
rotational components (rot) of the object’s motion. An example of such motion
analysis is presented in Section 6.3.1.

4.1.2.5 Tracking Components

These components perform object tracking or tracking of individual points using the
results of optical flow computation. With the help of these routine it is possible to
perform the following tracking operations:

• Tracks. The tracking component takes as an input a set of initial points (landmarks)
and performs the tracking procedure using the results of optical flow throughout an
image sequence, specified by a number of frames. As an output a list of points
and their coordinates on each time frame is produced. A possibility to filter the
resulting tracks according to confidence measures, e.g. a consistency measure (See
Section 4.1.2.3), or according to the total distance is also available. An example of
this tracking procedure is presented in Section 6.3.1.

• TracksAmira. The same as the previous methods, but saves the output in a format
compatible with the Amira/Avizo software3.

• TracksVTK. The same as the previous methods, but saves the output in a Visual-
ization Toolkit (VTK) format4.

3http://www.fei.com/
4http://www.vtk.org/

http://www.fei.com/
http://www.vtk.org/
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4.2 High Performance Computing

In this section we discuss such an important aspect as high performance computing. Since
optical flow methods are very computationally demanding, an efficient implementation of
these techniques should be provided to guarantee that the data processing on a given
computational platform is feasible.

First, we discuss several numerical techniques, which allow to speed up the computa-
tion time. Then we focus our attention on the implementation of optical flow methods
on the GPU architecture.

4.2.1 Numerical Schemes

4.2.1.1 Successive-Overrelaxation

The convergence speed of the Gauß- Seidel method can be substantially improved by
performing Successive Overrelaxation (SOR) technique [You71, Saa03]. This is done via
extrapolation of the Gauß-Seidel result. If we denote by x̄ the result of Gauß- Seidel
method for the iteration step k + 1, the SOR technique then given by:

xk+1
i = (1− w)xki + w x̄k+1

i ,

where w ∈ [0, 2) is a relaxation parameter. Then, The Gauß-Seidel method can be
extended by the overrelaxation technique in the following way:

xk+1
i = (1− w)xki + w

1
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(bi −

∑
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∑
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For the value of relaxation parameter w = 1, the SOR method comes down to the original
Gauß-Seidel method. The choice of the relaxation parameter has a strong influence on
the convergence speed. A parameter w smaller then 1.0 allows to perform underrelaxation
which could lead to improved stability of the algorithm. For the values larger then 1.0
the method performs overrelaxation of the result and thus accelerate the convergence.
An optimal value of the relaxation parameter should be chosen according the the specific
task. For our applications we select values which are close to the maximum value, such
as w ∈ [1.9..1.95]. A major drawback of the method is a possible oversmoothning of the
resulting displacement fields.

4.2.1.2 Adaptive multi-level strategy

An interesting approach to decrease the computation time is to reduce the input on each
computation level. For this purpose the computed flow field is evaluated according to a
special criteria. For example one may use the fact that the flow field id varying slowly form
one computation level to another. This may highlight that the correct flow has already
been estimated. In such regions the computationally expensive energy minimization is
substituted by a simple interpolation from the results of previous computation levels.
Such approach was presented by the authors in [TBKP12] and allowed to significantly
reduce the computation time without serious impact on the accuracy of the overall result.
This approach can be especially advantageous for datasets with small or isolated objects
and dominance of the static background. In this cases an adaptive computation procedure
removes most of the irrelevant computations in the background region.
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4.2.2 GPU Computing

This section is dedicated to a GPU-based implementation of the optical flow algorithm.
First, we briefly discuss the key features of the GPU architecture [NVia, NVib]. Then we
introduce a GPU-based implementation that uses only one GPU device and is limited to
the datasets that can be fitted in the GPU memory. The main aspects of the implemen-
tation are discussed in details. Finally, we show how a single GPU device version can be
extended in order to process arbitrary large datasets.

4.2.2.1 GPU Computing Architecture

For the GPU implementation of 3D optical flow methods we choose a NVIDIA CUDA
technology5. However, all finding presented in the current section are valid or can be
implemented by means of other GPU platforms, for example, OpenCL6.

Host-device execution model

In general a GPU computing architecture is comprised of two essential parts - a host
and a device [NVia]. Alternative notation is a CPU for the host and a GPU for the
device. The host manages the device by scheduling control commands and sending them
to the device. The code execution on the host and the device can be done synchronously
or asynchronously. For the case of synchronous execution mode, the host waits until a
command is completed on the device and only after the continues to execute its pipeline.
If the control commands are scheduled in an asynchronous mode, the host receives the
control immediately after sending a command to the device. Such mechanism implements
a strategy, for which the host and the device can perform different tasks simultaneously.
All the commands sent by the host are queued for sequential execution on the device side.
In terminology of CUDA such queues are called streams. All the commands are executed
in issue-order and there is no possibility to run several commands within the same stream.
However, a single device has many processing streams which can be executed in parallel.

Device execution model

The commands to be send from the host to the device can be memory management
commands, such as memory allocation, deallocation or copy, and also control synchro-
nization or profiling commands. Additionally, the host can send a special command to
launch a kernel on the device. Kernels are the core elements of the GPU computing. A
kernel is a user-defined function which can be run on the device. All the kernel’s instruc-
tions are executed sequentially, while multiple copies of such kernels are run in parallel on
the device. The kernel code is written in the CUDA C-based language and then compiled
into a binary code for the specific GPU device [NVia].

Multiple kernels are organized in thread blocks, which in turn make a grid of thread
blocks. Both threads and thread blocks have unique indexes. Thread blocks and a grids
can be organized as one-, two- or three-dimensional structures. Only a limited amount
of thread can be run on a single GPU multi-processor. It is important to note, that the

5http://www.nvidia.com/object/cuda_home_new.html
6https://www.khronos.org/opencl/

http://www.nvidia.com/object/cuda_home_new.html
https://www.khronos.org/opencl/
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execution order of thread blocks and each thread within a block is not guaranteed.

Memory model

In the GPU computing the memory model is divided into a host memory (system mem-
ory) and device memory (GPU memory). Both parts have the direct access only to its
own memory resources.

There are several distinct types of GPU memory:

• Device memory is a global memory shared between all streaming multi-processors.
The access to the device memory has highest access latency, and therefore it is
the slowest type of memory. The device memory can be accessed by all threads.
Moreover, it can be accessed from the host by using memory management functions.
The aim of many optimization strategies is to minimize the amount of memory
accesses to the global memory and reduce the data transfer between the host and
the device.

• Texture memory is optimized for storing and accessing textures. This type of
device memory is read-only. Using this memory one can benefit from the built-in
hardware functionality (e.g. interpolation).

• Constant memory allows to store limited amount of constant data.

• Shared memory serves as a low latency storage accessible from all threads within
an individual block.

• Registers memory belong to the fastest GPU memory type. Each streaming multi-
processor has a limited amount of registers which are shared between all threads
within a thread block. Registers are used to store local variables of a single thread.

Clearly, each type of GPU memory has its pros and cons. To achieve maximum perfor-
mance we have to efficiently use all types of GPU memory and adjust the implementation
of the GPU-based parallel algorithm accordingly.

4.2.2.2 GPU implementation

To maximize the performance of GPU-based optical flow algorithm, we provide a first
GPU implementation, a full GPU version. In this version all data is stored in the GPU
memory. In this way the data transfer between the host and the device is minimized.
Cleary a limitation factor for this kind of implementation is the size of available GPU
memory. Now, we estimate the size of input frames which is possible to process using
such GPU method. For a 3D image with width × height × depth voxels, assuming that
each voxel is represented by a single-precision floating-point number, the size of such a
3D image is then equals to width × height × depth × 4 bytes. To solve the optical flow
problem we need 2 such volumes. Additionally, we need containers for the vector field
results, each having 3 flow components u, v and w. Moreover, we need auxiliary containers
to store intermediate results of the optical flow algorithm. In total we need to allocate 15
single-precision floating-point containers with the size width×height×depth× 4. Figure
4.2 gives a schematic overview of allocated data and the data transfer procedure.
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Figure 4.2: Data transfer between the host and the device for the GPU based implemen-
tation of the 3D optical flow algorithm. Image: [Kar15].

Then, we can estimate the maximum size of the input frame which is possible to
process using full GPU version:

15× pitch× height× depth× sizeof(float) ≤ N. (4.1)

As an example, if we have a GPU with 4GB of memory, we can process input volumes of
approximately 273MB, which corresponds to a volume with the sizes about 400×400×400
voxels. Obviously, such data sizes are not adequate, if we consider the processing of high-
resolution datasets. For large datasets it is then necessary to downsample the initial
data, which could lead to a significant loss in resolution and accuracy. To overcome this
limitation and enable the processing of large datasets in the next section we present an
extension of our GPU implementation.

4.2.2.3 Extension for large datasets

In this section we show how the 3D optical flow method can be extended to support
large datasets. The main idea of the proposed method is to implement the so-called data
partitioning strategy. We store the dataset and corresponding vector fields in the host
memory and transfer smaller portions to the device for parallel processing on GPU. In
this strategy, the host performs managing of the data partitioning, execution on the device
and collection of the results after each computation level. To perform data partitioning
we make the slicing of the original volumes and extend each data chunk with overlapping
regions, solve the data dependency problem. An example of such partitioning (slicing
along Z-axis) is presented in Figure 4.3.

Note, that in the previous implementation (full GPU version) the whole dataset, the
resulting vector fields and all auxiliary containers reside in the GPU memory and there is
only one data transfer operation from the host to the GPU. In our extended version data
is transferred between the host and the device before and after processing of each data
chunk. Therefore, data transfer can lead to serious performance issues and the bandwidth
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Figure 4.3: Data partitioning strategy. Slicing is done along the Z-axis with the overlap-
ping regions (a). Partitioning of voxels in the full volume with overlapping regions (b).
The overlapping regions that are outside the full volume are filled with ”mirrored” values.
Image: [Kar15].

between the host and the device become a limiting factor. In the next section we provide
quantitative performance analysis between CPU and GPU versions, as well as between
full and extended GPU versions.

4.2.2.4 Performance evaluation

To measure the performance of our GPU based 3D optical flow implementation we run the
method on datasets with different sizes. Instead of evaluating each individual component
of the algorithm, we present the execution time and memory consumption for the whole
computation pipeline. Moreover, we verify the correctness of the algorithms compared
with the original CPU implementation.

For the evaluation we use the computation hardware with the specifications presented
in Table 4.1.

CPU Test machine GPU Test machine

CPU Intel Xeon Processor X5675 Intel Xeon Processor E5-2637 v2

RAM 96 GB 64 GB

GPU — GeForce GTX 980 Ti

GPU Memory — 6 GB

CUDA Cores — 2816

Table 4.1: Technical specifications of computation machines used for the performance
evaluation.

We estimate how the size of the input data influences performance of 3D optical flow
method and the memory consumption by the computation routines. For the evaluation we
use datasets with the following sizes: 1003, 2003, 4003, 6003, 8003. As it was highlighted
previously for a GPU device with 4GB of memory the maximum size of the input data
is 4003. Therefore, datasets with sizes 1003, 2003 and 4003 can be processed using full
GPU method; while larger dataset - 6003, 8003, can be processed only using an extended
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version. Evaluation results for performance measurements and memory consumption are
presented in Tables 4.2 and 4.3 respectively.

Size

(voxels)

Execution time

(hh:mm:ss)

Speedup

relative to CPU verion

GPU

Full version

GPU

Extended vesion

CPU

Version

GPU

Full version

GPU

Extended version

1003 00:00:01 00:00:13 00:00:38 41.8 2.9

2003 00:00:03 00:00:42 00:06:02 112.4 8.6

4003 00:00:19 00:03:52 01:13:52 239.4 19.1

6003 — 00:11:48 02:47:53 — 14.2

8003 — 00:26:33 07:30:49 — 17

Table 4.2: Evaluation of execution time for dataset with different sizes 1003, 2003, 4003,
6003, 8003.

Size

(voxels)

GPU

Full version

GPU

Extended version

Device memory System memory Device memory System memory

1003 73 MB 19 MB * 57 MB

2003 586 MB 153 MB * 458 MB

4003 3.64 GB 1.19 GB * 3.58 GB

6003 — — * 12.07 GB

8003 — — * 28.61 GB

Table 4.3: Memory usage of the implemented framework. Note that the memory allocated
on the device is padded to satisfy alignment requirements. (*) For the extended version
the usage of the device memory is determined by the current needs for the sliced data
and available GPU memory.

From time measurements we see the following results - for small datasets ≤ 4003), full
GPU implementation gives the best performance. Clearly, the extended version provides
less performance compared to the full version due to data transfer operations between
the host and the device. However, for larger datasets (> 4003), the full version is no
longer functional, since the data cannot be fitted into the memory of the GPU, so the
data partitioning strategy of the extended version has to be used. In this case, the
extended version significantly outperforms the CPU version of the optical flow method.
The maximal performance speedup for the full version was 33.5, for the extended version
– 11.5. Therefore, we conclude that our 3D GPU-based implementation is efficient and
provides a significant reduction in the computation time for large 3D datasets.

4.3 Visualization

The section gives a brief summary of visualization methods for time-varying data and
results of optical flow computation which are available in our data analysis framework.
We implement three main visualization methods:
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• Vectors fields using glyphs visualization

• Scalar properties or other metrics using color pseudo-codes.

• Motion trajectories using track visualization

In the following part we describe in more details vector fields visualization using vector
glyphs and omit the description of other methods.

Vector Field

A simple yet effective method for visualization of vectors fields is a glyphs method. In
this case each vector of the displacement field is depicted as a glyph with a certain shape
and color.

For our implementation we use 3D cones. For the coloring of glyphs we use two modes:
the first one assigns a color according to the magnitude of a vector and the second mode
uses the direction of a vector. Both visualization using different coloring schemes are
presented in Figure 4.4.

In order to improve the usability of the 3D visualization tool we provide visualization
parameters that can be changed interactively. It is possible to adjust the sample grid Gx,
Gy, Gz, the glyphs scaling factor and the magnitude threshold. All different visualization
modes are presented in Figure 4.4. Moreover, it is possible to use the so-called jittered grid.
It allows to avoid possible artifacts associated with the regular grid (artifacts similar to
aliasing, when viewed from different angles). This improves the clarity of users perception
of different parts of the vector field. Comparison between a regular and a jittered grid
is given in Figure 4.4. All the visualization parameters can be adjusted interactively and
the changes are immediately rendered.

For the implementation of our visualization tool we use OpenGL7 as a 3D graphics
library, GLFW8 as a library for window and input management, GLM9 as a mathematics
library for graphics software and AntTweakBar10 as a light graphical user interface library.
All the libraries are cross-platform and free to use.

7https://www.opengl.org/
8http://www.glfw.org/
9http://glm.g-truc.net/

10http://anttweakbar.sourceforge.net/

https://www.opengl.org/
http://www.glfw.org/
http://glm.g-truc.net/
http://anttweakbar.sourceforge.net/
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a b
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Figure 4.4: Visualization of a 3D vector field. (a) Using magnitude of the vectors for
coloring. (b) Using direction of the vectors for coloring. (c) Regular grid, no threshold
of magnitude value. (d) Regular grid, threshold is applied. (e) Regular grid, decreased
number of grid points. (f) Jittered grid. Image adopted from: [Kar15].



Chapter 5

Evaluation on Synthetic Data

In this chapter we perform systematic experiments on synthetic data, designed to test the
performance of optical flow methods. In the beginning of the chapter we provide a taxon-
omy of X-ray data. Our classification includes evaluation of image quality, description of
data features and artifacts, as well as the description of motion models. Then, we present
synthetic datasets, which we employ for our experimental evaluation. Further, we dis-
cuss an important aspect of parameters optimization and describe the overall quantitative
evaluation procedure. We present a discussion on the performance, influence of prepro-
cessing, modelling of noise and data outliers and the use of confidence measures. For all
the experiments we outline important observations and draw the conclusions, which we
summarize in the end of the chapter.

5.1 Data Taxonomy

Since correspondence problems are highly ill-posed and challenging to solve, before any
data processing steps are performed, the input data should be systematically evaluated.
Its quality, description of the moving objects or the scene, and the motion model should
provided a basis for the choice of appropriate data preprocessing routines and optical
flow models. Moreover, we emphasize that the clear definition of the application and
description of the requirements on the algorithm should be specified.

One approach to evaluate the data is to perform an explicit quantitative description
of the input images. For example, compute a histograms of grey values and velocities,
provide the distribution of image derivatives, use noise estimators, etc. But, it is not
always possible to provide such an extensive description - noise estimation can be a
difficult task, the motion model prior to the optical flow computation is not known,
artifacts are difficult to estimate. In our case we aim to provide a systematic, yet simple
and consistent data classification model, which is handy to apply for a wide range of
datasets and applications.

In the rest of this section we enlist the most important aspects for our data taxonomy
classification. The first category is a description of the image quality.

91
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5.1.1 Image Quality

Image Noise

Noise is a fundamental characteristic of image data. The presence of noise affects the
image quality and deteriorates data analysis. To describe the image noise we consider
two parameters - the noise model and the amount of noise (or noise level).

Noise Model. Is an important characteristic, since it determines the choice of filtering
procedure and impose certain requirements on the design of optical flow models. Various
noise models that are important for our work are described in Section 3.1.1.1. For our
data taxonomy we distinguish the following noise models:

• Gaussian noise. This noise model is an approximation model and is frequently used
for synthetic datasets in a large body of work on optical flow methods. However,
as we have discussed earlier, this model does not adequately describe a physical
process of imaging, especially X-ray imaging.

• Poisson noise. That is the most important source of noise for X-ray images due to
the photon statistics and the detection process. Therefore, it is crucial to test the
performance of optical flow methods and the processing techniques on the type of
noise.

• Spike noise. An important noise model to evaluate the performance of computa-
tional methods with respect to data outliers.

• Granular noise. This type of noise is characterized by the varying size and the
unknown distribution function. The presence of such noise can be a result of a
preprocessing routine, e.g. tomographic reconstruction.

Examples of images contaminated with different noise are shown in Figure 5.1.

Noise Level. This parameter specifies the amount of noise. As it was already mentioned
in the previous section, adequate quantitative estimation of a noise level is a challenging
task. Even when such procedure is feasible to perform, it is not clear how to employ this
quantitative information to guide the design of processing procedures. For this reason, we
omit a measurable estimation of a noise level and proceed with a qualitative, empirical
estimation approach. For this purpose we distinguish the following noise levels:

• low: no noise or very little noise is present. In this case no special data treatment is
required and design choices for the optical flow model are not restricted to methods
that are robust with respect to noise.

• average: there is a considerable amount of noise, but the image features are well
discernible. A careful consideration of noise is required.

• high: image data is highly deteriorated with noise. An advanced noise filtering and
robust optical flow methods are mandatory to obtain reliable optical flow results.
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a b c

Figure 5.1: Examples of X-ray images containing different types of noise. (a) Radio-
graphic image with a large amount of the Poisson noise, as a result of a short exposure
time. (b) X-ray image with a good signal-to-noise ratio, but with a substantial amount
of the Spike noise (saturated pixels). (c) Radiographic image with the granular noise
resulting from a post-processing step of the raw data.

Image Contrast

We refer to the image contrast, as a general ability to distinguish between different image
structures. As we already pointed out in Section 3.1.3.1 the contrast-to-noise ratio (CNR)
is a more descriptive and useful measure to evaluate the contrast and its implications on
the data analysis, then the signal-to-noise ratio or solely image contrast measures.

In the same manner as for the classification of an image noise, we distinguish three
contrast levels:

• high: there is a pronounced difference in contrast of image features. This includes
a high amount of textures and regions with large values of image gradients. This
type of datasets is preferred for the data analysis and usually leads to an accurate
optical flow results.

• average: a contrast is enough to clearly distinguish between features of interest.
Moreover, a signal-to-noise ratio for the dataset is acceptable.

• low: different image features can be hardly distinguished. Additionally, a signal-
to-noise ratio is poor, which makes it difficult to enhance the contrast (e.g. using
histogram stretching) without augmenting the noisy part of a signal. This case is one
of the most challenging image analysis scenarios and an advanced data preprocessing
procedure is mandatory to retrieve useful information.

Examples of different contrast levels are shown in Figure 5.2.

5.1.2 Data Features

In this section of our data taxonomy we provide a set of parameters to describe a visual
appearance of the scene and its objects. Depending on the visual and morphological char-
acteristics of moving objects, different types of optical flow models and their parameters
might be optimal. In general, all the information about the scene should be identified
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a b c

Figure 5.2: Examples of X-ray images with different contrast levels. (a) Radiographic
image of aqueous foam with high contrast and good signal-to-noise ratio. (b) Tomographic
2D slice through a Sitophilus granarius beetle. The dataset has relatively low contrast
between internal structures and poor SNR. (c) Radiographic image of a semi-liquid alloy.
Contrast between liquid phase (bright part) and metal particles (dark spots) is very low.
Moreover, SNR ratio is very low.

and described in details. First, this imposes constraints on data constancy assumptions.
Second, it describes the requirements for the flow field. Finally, it states the task for
the optical flow computation - for which parts of the scene, which dynamical information
should be computed.

Here we list the main aspects of the description of a scene and its objects, that are
used in our data classification:

Object size. One of the basic characteristics of an object is its size. The distribution
of object sizes may vary a lot within a given dataset. For our classification we are inter-
ested to describe extreme values of object sizes, i.e. small and large objects. Additionally,
it is important to identify cases, when both categories of objects are present within the
same scene. Thus, we may distinguish the following categories of object sizes:

• small: if the objects of interest are small, a special care should be taken when
choosing computational methods and their parameters. For example, if we aim to
compute the optical flow on small features, the size of a median mask (See Section
2.2.6) should be adjusted accordingly, since it might eliminate the flow around such
small features. In a similar way, the large flow regularization parameters may lead
to an oversmoothing of the flow field, resulting in a loss of flow details for small
objects.

• average: by an average size we assume a range of sizes, which do not belong to the
extreme values of our categorization approach. In general, such kind of objects do
not introduce any restrictions on optical flow models.

• large: by a large object we define the object which size exceeds 10-20% of an image
size. In general, the computation of optical flow on large objects should not differ
from the objects of average sizes. However, there is an exception. If the object is
homogeneous (i.e. contains a small amount of details) and the task is to capture



5.1. DATA TAXONOMY 95

a dense flow field within this object, a large value of the smoothness parameter
is required. This can affect the computation in other image regions that contain
different data features. That is why the presence of large homogeneous objects
should be noted.

• mixed: for this case we consider a mixture of small and large objects. This situation
is the most challenging, since it requires the simultaneous optimization of parameters
for all objects sizes. It is a common problem in the literature that the small image
features get smudged because of a significant contribution from the smoothness term.
One way to deal with this problem is to use an adaptive smoothness (See Section
2.1.4.5) in different image regions. Another solution is a fusion of results obtained
using different model parameters that are specifically tuned for each object category.
In any case, a mixture of different objects sizes introduces a major problem for the
optical flow computation.

Object distribution. A spatial relationship between objects, i.e. objects density. To
describe the object distribution we use the following cases:

• sparse: in this situation the objects are distant from each other, separated by a
homogeneous background. Despite the fact that this situation might seem to be
easy to handle by optical flow methods, there are some pitfalls. The problem arises
from the homogeneous background which separates the objects. In this region there
is no contribution from the data term, i.e. aperture problem exists (See Section
1.4.2), so the smoothness term takes a lead. As a result, on the boundary between
an object and a background the oversmoothing problem might occur (which depends
on the chosen parameter for the flow regularization α). And if the object of interest
also appears to be details-free, even a larger value of the smoothness parameter is
required to precisely capture the motion within such object. In this situation severe
oversmoothing artifacts may occur. To summarize, a sparse object distribution
can be troublesome in conjunction with the low amount of object details (See next
characteristic of object features).

• normal: this case describes a normal situation for object distribution. Objects
might be close to each other or even share a common boundary, but the length of
this interface is much smaller, then the perimeter of the corresponding objects.

• dense: the objects are close to each other and share substantial amount of their
boundaries with other objects. Clearly, in this case a special attention should be
paid when choosing optical flow parameters that might lead to imprecise localization
of object boundaries. Such parameters include, the gradient constancy assumption
as a data term, the presmoothin parameter σ, the flow regularization parameter α,
the integration scale ρ and the mask size for the flow median filtering.

Object details. This characteristic describes the amount of image features or details for
the objects of a scene. We distinguish the following quantities of object details:

• low: small amount or no image details (homogeneous objects). For such objects the
optical flow computation may be a challenging task and the inappropriate choice of
the regularization parameter may lead to oversmoothness artifacts.
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• normal: this case describes an ideal situation. It means that the amount of image
gradients is sufficient to provide enough contribution to the data term. So, no
aperture problem exists in most image regions.

• high: in general, the more details an object has, the more information is available for
the data term. However, there might be some exceptions. For example, in [ZBW11]
the authors found out that repeating high-frequency image texture can cause aliasing
artifacts during the resampling procedure. As a result, the accuracy of optical flow
estimation in these regions can be substantially impaired. Thus, it is important to
describe such high-frequency textures and any other periodic structures beforehand.

5.1.3 Image Artifacts

In this section we present a description of various image artifacts, which affect results of
data analysis. All artifacts, if existing, should be treated by an appropriate processing
step or computed using a dedicated optical flow model. Here we provide a list of possible
image artifacts:

• Brightness variations. Brightness of X-ray images can be non-uniform spatially and
non-constant over time (See Figure 5.3). Since the main component of every optical
flow model is a data term, which imposes certain constancy assumptions on image
brightness or other image-based features, the presence of brightness variations is
crucial for the design of optical flow models.

• Ring artifacts. Damaged elements of a detector system cause individual pixels to
remain constant during an image acquisition and in particular during the tomo-
graphic scanning process. As a result, line structures on sinograms appear. After
the reconstruction is performed using the filtered backprojection algorithm these
lines form the so-called ring artifacts (See Figure 5.3). Such artifacts can signif-
icantly deteriorate the accuracy of data analysis. Thus, such artifacts should be
removed prior to motion estimation.

• Star artifacts. A non-linear relation between the attenuation coefficient in the ma-
terial and the intensity values measured by the detector system give rise to the
so-called beam-hardening artifacts. These artifacts appear along a geometric path
of the respective X-ray beam. After the reconstruction such artefacts appear ra-
dially around the boundaries of on object and are called star artifacts (See Figure
5.3). Usually, such artifacts are not so pronounced in the region within an object,
however, can lead to the incorrect flow estimation on the boundaries of an ob-
ject. As a possible remedy one can use a dedicated image reconstruction procedure,
which is more robust to the beam-hardening artifacts, i.e. algebraic reconstruction
techniques with a spatial image regularisation.

• Motion blur. For the conventional reconstruction methods such as the filtered-back
projection, it is assumed that the object is not changing during the acquisition
process, so one obtains radiographic projections of the same object from multiple
angles. But, this assumption is not always fulfilled. This could be a result of
sample motion due to poor experimental conditions, e.g. bad fixation of the sample.
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Additionally, the motion of a sample could be a part of the experiment, which aims
to study dynamical processes. In any case, the inconsistent projection data will
result in motion artifacts in the reconstructed volume. The amount of motion blur
and the specific steps to take it into account should be described prior to the actual
flow computation.

• Projective geometry. This kind of artifact is characteristic to the radiographic imag-
ing where 3D structures are projected into a 2D detector plane. This effect is
similar to the problem of occlusions in the classical optical flow. Such artifacts are
non-existing for tomographic data, in which a 3D information about the scene is
available. Projective geometry poses a major problem for optical flow computation,
since it deteriorates the data constancy assumption.

For our data taxonomy, if any of the above mentioned artifacts exists, we mark it as
a possible data challenge and provide a list of steps to compensate for it.

A list of examples of various image artifacts is shown in Figure 5.3

a b c

Figure 5.3: Examples of X-ray images with various image artifacts. (a) Radiographic
image of living embryo. Non-uniform brightness variations due to monochromator in-
stabilities. (b) Tomographic 2D slice through a Xenopus leavis embryo. Ring artifacts
are highly pronounced and severely degrade the image data. (c) Tomographic 2D slice
through a weevil incorporated in amber. Note star artifacts due to the beam hardening.

5.1.4 Motion Model

In order to compute motion one needs to describe which transformations the objects of
a scene undergo. In this section we list data properties, which are related to the motion
model. We distinguish the following characteristics:

Motion model. In general, a motion field is a vector-valued function of spatial coordinates.
For practical reasons, it is useful to describe a motion field by means of a simplified model
with fewer parameters. The most important motion models for our work are:

• translation: the simplest motion model described by a single displacement vector.
This transformation preserves the orientation of an object. In most cases this motion
model do not pose troubles for the computation of the optical flow.
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• rotation: is described by the axis of rotation and the angle of rotation. An important
aspect of this transformation is that not all data constancy assumptions are invariant
under it. For example, gradient constancy assumption, which contains directional
information 2.1.2. Clearly, this aspect should be taken into account for the selection
of data term.

• rigid (translation + rotation): this transformation corresponds to the standard mo-
tion model of a rigid body.

• non-rigid: this transformation is not represented by a parametric motion model.
Instead, the motion assumed to be local with a certain constraint on its smoothness
(e.g. elastic transformation) or unconstrained at all.

Motion range. Another important measure to describe the motion model is to specify the
range of velocities with which the objects of the scene move. We distinguish the following
motion rates:

• small displacement: typically in the range of 1-2 pixels. In this case the linearization
of the data term can be performed via the first-order Taylor expansion leading to a
convex formulation of the optical flow problem (See Section 1.4.2).

• large displacement: as soon as large values of object displacements are assumed, we
cannot employ linear data terms. This is why an appropriate computation strategy
have to be used (See Section 2.2.5). Also the optimal size for the coarsest resolution
level is an important factor (See Section 5.3.1.3).

• mixed: a scenario when both small and large displacements are present and are of
interest for the data analysis. For this case, the influence of the smoothness term
should be carefully controlled to preserve small displacements, which tend to be
smeared out in the vicinity of a fast motion. Additionally, one may consider the
adaptive smoothness approach (See Section 2.1.4.5) or a more sophisticated model
to respect small movements.

Motion discontinuities. It is important to describe the amount of motion discontinuities
within a scene. This characteristics plays a key role for the choice of the smoothness
constraint. Both spatial and temporal discontinuities should be reported. The following
scenarios are important for our data taxonomy:

• no discontinuities: for this case we assume a global motion of a scene, described by
the same motion model.

• normal amount: this situation corresponds to a normal case of optical flow com-
putation. There are always discontinuities between objects which are moving with
different velocities or directions. Moreover, there is always a motion boundary be-
tween the moving object and the static background. It is important to note, that
the smoothness assumption is always violated to some extent. The only aim of pre-
serving discontinuities via the appropriate choice of a smoothness term is to allow
for piecewise-smooth motion fields.



5.1. DATA TAXONOMY 99

• large amount: the cause of discontinuities is the same. i.e. the differences in motion
fields, but the amount of flow gradients is large, which requests a particular attention
for the choice of a smoothness approach and the corresponding parameters.

• occlusions: in the literature on optical flow methods occlusions between objects
or their parts is a major problem. As a result, in the occluded regions not only
the information for the data term is lost, but also strong motion discontinuities
occur. For X-ray imaging applications occlusions are not present for tomographic
datasets, since a 3D information about objects is available. The case when the
occlusion problem displays itself is a radiography method, where the projection of
3D structures into a 2D plane gives similar effects. Another important case is the
appearance or disappearance of information. This might be a new object entering
the scene or formation of a crack in a material, or the process of cell division. For
these cases both the data constancy and the motion consistency assumptions are
violated.

5.1.5 Results Characterization

To complete our data taxonomy we introduce another important topic - characterization,
or requirements, for the output of the optical flow. At this point we consider the following
important aspects:

Accuracy. No real-life optical flow application should be started without defining the
requirements for the accuracy of a result. It can be specified as an upper bound for an
average or a maximum error using a chosen error metric (e.g. endpoint error). After the
flow field is computed, the results have to be evaluated according to the imposed accu-
racy limits. This can be achieved by the comparison with a manual tracking, or using
automated confidence measures (See Section 2.1.5), or by checking the computed flow
with the a-priori information (in the case if motion of some objects is known or can be
deduced). Verification by visual means may also provide some clues about the accuracy
of the computed flow field, but cannot be considered as a reliable way to justify the cor-
rectness of the results. Without specification of error limits and subsequent quantitative
verification of the result, the computed flow field cannot be conclusive and trustworthy.

Density. Specifies whether a dense (i.e. available at every pixel) flow field is required
or a sparse representation, available at specified locations is sufficient for the given task.

• sparse: in some cases the requirement on the density of a flow field can be relaxed,
which can give a certain degree of freedom to choose model parameters and strategies
for the post-processing. For example, one can perform the averaging of the flow
vectors from multiple locations or make interpolation of the result using points of
high fidelity. These approaches can be especially beneficial for the case of challenging
datasets.

• dense: this is the default scenario for the classical optical flow formulation, where
the flow vector is computed for every pixel location.
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Motion components. Describes which feature of the motion field we are interested to
compute. If only one component of the motion field is of relevance, this might give some
flexibility to optimize model parameters.

• magnitude: if one is interested to estimate the amount of motion, the directional in-
formation is not very useful. An example of such scenario is the task of computation
of a time-to-impact in driver assistance systems.

• direction: f one is aimed to estimate directional distribution of the motion field. For
this case, the magnitude of the flow field is not relevant.

• full flow: that is the classical formulation of optical flow, when a flow vector, con-
taining both the direction and the magnitude, is required.

Consistancy. This requirement assumes the consistency of the computed flow field in a
forward (between the first image and the second) and backward directions. This condition
may be important for various tasks such as image registration and video processing. By
the consistency we imply that the flow is the same, but opposite in direction.

• forward: the classical formulation of optical flow, which determines the flow field
only in a forward direction.

• consistent: the motion field, computed in a forward and backward directions should
be consistent.

Motion boundaries. Before starting optical flow computation it is useful to specify how
motion boundaries around moving objects should be treated. Again, this property may
be different for various applications.

• strict: Accurate recognition of motion discontinuities is required. In this case a
spacial attention should be given to the features of a computation model, which
may lead to an oversmoothing or a coarsening of the motion boundaries.

• not strict: Overall (average) flow is more important and requirements on the precise
boundaries estimation are relaxed.

Computation time. An important requirement for an optical flow method is the time
required to perform the computation. This aspect can significantly influence the choice
of an optical flow model, its parameters and the overall accuracy. The requirement is
governed by a particular application.

• real-time: for some kind of applications such as driver assistant systems the com-
putation time is crucial. That is why the design of optical flow models is restricted
to high-performance methods.

• interactive: for some applications the real-time performance is not required, how-
ever, some feedback from an user is expected. For instance, if the user wants to
inspect the computed flow fields and adjust computation parameters.

• offline: for this case there are no limitation on the processing time, so the computa-
tion is completely offline. It means that the time complexity of an algorithm is not
taken into account and the accuracy of a result is the top priority.
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Data size. Describes the data size of the input and whether it is possible to process
using available memory resources and particular implementation. For the optical flow
problem at least two image frames and the flow field should be stored in the memory of
a computation unit. For more complex methods, such as a multi-level optical flow (See
Section 2.2.4), motion increments and resampled input images should be additionally
stored on each computation level. For some datasets, especially this is typical for a large
tomographic volumes, the input data and all variables required for an algorithm, do not fit
into the available memory. Thus, the input should be reduced (i.e. using downsampling
or cropping), leading to a possible loss of resolution and accuracy.

5.2 Experimental Data

In order to perform a systematic evaluation of different features of optical flow models,
test the results of data preprocessing routines and investigate the influence of image
artifacts, we need to have a set of synthetic test data for which a ground truth result
is known. To obtain such datasets for X-ray images one may proceed in two directions:
generate synthetic images exclusively for the X-ray data (see our data taxonomy Section
5.1) or, alternatively, one may use the existing datasets and model X-ray related image
properties, such as image noise, low contrast and artifacts. In this work we proceed with
the second approach and use synthetic datasets which are popular in the literature on
optical flow methods. Our choice is based on a number of advantages, associated with
the second approach. First, these datasets are extensively used and many optical flow
methods are already evaluated using them, which makes it easy to compare our results
with the previous work. Second, these datasets are publicly available, which can increase
the reproducibility of the results.

5.2.1 Synthetic Datasets

Here we describe synthetic datasets, which we choose for our experimental studies. In
total we include three datasets: two datasets depicting a real scenery and one synthetic
dataset.

First two image sequences were developed and presented in the work of [BSL+11].
The authors made an extraordinary effort to obtain a realistic non-rigid scenes for which
a highly accurate optical flow result is available. In this technique a scene is built from
real-life objects and each element of the scene is moved using a mechanical motion stage.
The authors applied a fine spatter fluorescent pattern to surfaces of all scene objects.
Then, the camera recorded a pair of high-resolution images under the ambient light and
the UV illumination (which revealed fluorescent particles). The ground truth is obtained
by tracking small image blocks in the high-resolution UV images to get integer-valued
motion correspondences. As a second step the authors refined the ground truth to the
sub-pixel precision using the Lukas-Kanade optical flow algorithm [LK81]. As a result, a
dense ground truth with a verified precision of about 1/10 pixel in the original size and
1/60 pixel in the downsampled size (used as the final result) is obtained.

Here we describe the selected datasets according to our data taxonomy (See Section
5.1).
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RubberWhale dataset. It contains several independently moving objects, various motion
types including non-rigid motion and rotation, different amount of textures. Evaluation
according to our data taxonomy yields:

• Image noise: There is no noise in this dataset, perfect imaging conditions.

• Contrast level : The image contrast is high, the separation between the objects is
good.

• Object size: The scene depicts objects of various sizes, but no small objects are
present.

• Object distribution: Objects are distributed normally.

• Object details : Images contain objects with different amount of textures - some of
them are highly textured and some of them are more homogeneous. In general, all
objects have normal or high amount of details.

• Image artifacts : There are no image artifacts.

• Motion type: Several types of motion, including translation, rotation, non-rigid
motion are present within this dynamic scene. Note, that non-rigid movements
(on the blanket, see Figure 5.4) vary smoothly, so we do not expect it to cause
complications for the optical flow estimation.

• Motion range: Objects are moving with the mixed range of velocities, including
slow and fast motion.

• Motion discontinuities : There are occlusions between moving objects, but not very
strong ones.

A summary of evaluation of the RubberWhale dataset is given in Table 5.2. The
corresponding color codes to classify the influence of certain properties of input data
according to our data taxonomy are given in Table 5.1.

Table 5.1: Color codes to classify the influence of certain properties of input data according
to our data taxonomy.

Color Description

good the feature is advantageous for data processing

normal in general, the feature should not cause problems

challenge the feature presents a significant challenge

Hydrangea dataset. Contains a large, highly-textured object, which rotates with a fast
angular velocity in front of a large background. That background undergoes a transla-
tional movement. Evaluation according to our data taxonomy yields:

• Image noise: There is no noise in these images, perfect imaging conditions.

• Contrast level : The image contrast is high, the separation between the object and
the background is good.
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a b

c d

e f

Figure 5.4: Synthetic datasets used in the scope of this work for quantitative evaluation
of optical flow methods and preprocessing routines. (a,b) RubberWhale dataset. (c,d)
Hydrangea dataset. (e,f) New Marble dataset. Left column: First frame of the corre-
sponding image sequence. Right column: Ground truth motion field using color code.

• Object size: The scene depicts one object of a large size and large background.

• Object distribution: Only one object is moving in front of the background.

• Object details : The object (a plant) contains a lot of details (leaves). Background
is highly textured. Individual leaves, however, have not much details.

• Image artifacts : There are no image artifacts.

• Motion type: Translational motion of the background. Fast rotation of the object.

• Motion range: Objects are moving with approximately the same velocity range.
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Table 5.2: Evaluation of RubberWhale dataset.

Image Data Motion

noise: no size: average/large type: vary, non-rigid

contrast: high dist: norm range: mixed

artifacts: no detail: normal / high disc: occlusions

• Motion discontinuities : There is a substantial amount of occlusions around and
within the rotating object.

A summary of evaluation of the Hydrangea dataset is given in Table 5.3.

Table 5.3: Evaluation of Hydrangea dataset.

Image Data Motion

noise: no size: large type: rigid, rotation

contrast: high dist: norm range: small

artifacts: no detail: normal / high disc: flow discontinuities

New Marble dataset. It is a computer generated synthetic dataset, which contains two
marble blocks moving on a marble floor. This sequence is available at http://i21www.

ira.uka.de/image_sequences/. Evaluation according to our data taxonomy gives us:

• Image noise: There is no noise in these images, the scene is synthetically rendered.

• Contrast level : The image contrast is high.

• Object size: The scene depicts objects of normal size.

• Object distribution: Normal object distribution.

• Object details : Objects and background contains a lot of details.

• Image artifacts : There are no image artifacts.

• Motion type: Translational motion of two blocks, static background.

• Motion range: Objects are moving with similar velocities.

• Motion discontinuities : There are occlusions around moving objects.

A summary of evaluation of the Hydrangea dataset is given in Table 5.3.
All dataset are shown in Figure 5.4. As it is evident from comparing summary tables

for different datasets, the New Marble image sequence is the easiest sequence to process
in terms of image quality, data features and motion model. On the other hand, the
RubberWhale dataset impose more challenges for the optical flow estimation (different
motion types, occlusions), and the Hydrangea dataset is the most challenging in terms
of accuracy of the results on the boundaries of the moving object or their parts. Indeed,
the inspection of the quantitative results, obtained by the state-of-the-art optical flow
methods on these datasets, are in a good agreement with the qualitative estimation based
on our data taxonomy. This proves usefulness of our simple, yet adequate approach.

http://i21www.ira.uka.de/image_sequences/
http://i21www.ira.uka.de/image_sequences/
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Table 5.4: Evaluation of New Marble dataset.

Image Data Motion

noise: no size: average type: rigid

contrast: high dist: norm range: small

artifacts: no detail: high disc: occlusions

5.2.2 Modeling Properties of X-ray Data

In the current work to test the performance of data processing routines, choose the ap-
propriate optical flow models and their parameters we use synthetic data for which the
ground truth result is known. In this way we have a possibility to perform an exten-
sive quantitative evaluation of the devised techniques and deduce sound conclusions. To
achieve that we use synthetic datasets which are popular in the literature on optical flow
methods, are publicly available, and extensively studied. As the next step we simulate all
X-ray data related image properties, which account for different imaging scenarios. Note,
that we do not aim to produce realistically looking synthetic X-ray datasets, however,
such work could be useful. In this section we show our approach to model the most im-
portant properties of the X-ray data, which are image noise, low-contrast, illumination
changes, and image artifacts.

5.2.2.1 Image Noise

To perform experiments under different noise conditions we choose three noise models
presented in Section 3.1.1.1. We start our evaluation with a Gaussian model, which is
a popular choice to introduce noise artifacts. Then we proceed with a more physically
justified noise model - Poisson noise. It is important to compare how the Gaussian and
the Poisson noise models are differ and which implication it makes on the design of the
robust optical flow techniques. Then, we use a very specific Spike noise model that aims
to emulate the presence of data outliers, potentially caused by dead and saturate pixels.
Here we describe which parameters and implementations we use to model image noise:

• Gaussian noise. For the implementation of the Gaussian noise we used a plugin for
an open-source ImageJ/Fiji software [SACF+12, SRE12] called RandomJ, which is
freely available at the website: http://www.imagescience.org/meijering/software/
randomj/. We vary standard variation σ to achieve different noise levels. An exam-
ple of images contaminated with the Gaussian noise is shown in Figure 5.5.

• Poisson noise. For the implementation of photon noise according to the Poisson
distribution we used the same plugin as for the Gaussian noise. To produce images
with different level of Poisson noise we use different values of the mean value of the
Poission distribution µ.

• Spike noise. For the implementation of the Spike noise we used an open-source
ImageJ/Fiji software [SACF+12, SRE12]. By default the percentage of corrupted
pixels affected by the routine is 5%. To increase the amount of noise we run the
method multiple times.

http://www.imagescience.org/meijering/software/randomj/
http://www.imagescience.org/meijering/software/randomj/
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On Figure 5.5 we show an example of RubberWhale dataset contaminated with the
Gaussian noise. Histograms obtained from images with different noise levels reveal dra-
matic changes in the pixels content caused by noise. To check the performance of optical
flow methods on images with varying amount of noise and accuracy of the results depend-
ing on the noise level we run a simple experiment on all three datasets. We vary use the
Gaussian noise model and vary the standard deviation parameter. For all datasets we
show the average endpoint error (AEE) in three regions: for the whole image domain (All,
on motion discontinuities and within the homogeneous image regions (Untext). The eval-
uation results are shown in Figure 5.6. From these plots and inspection of the quantitative
results we can make the following observations and conclusions:

• The New Marble dataset is the simplest among our testing dataset and the optical
flow computation gives best results. Both errors in All, as well as in Disc and
Untext regions are the smallest. In turn, the RubberWhale and Hydrangea datasets
are much more challenging to process. Our data taxonomy allowed to predict such
results, since it highlights the characteristic properties of each dataset. Thus we,
again, make certain that our approach is practical.

• The performance of optical flow methods on all datasets is quite different, both in
terms of accuracy, as well as in influence of noise on the final result. For example,
for RubberWhale and New Marble datasets, the dependence is more or less linear.
For Hydrangea dataset more interesting behaviour takes place (see next). This con-
firms the rationale behind our data classification - every dataset should be carefully
analysed and treated with the optimum algorithm and parameters.

• As it can be expected, the performance in various image regions is different. The
most complicated cases are regions around object and motion discontinuities. How-
ever, this also depends on the noise level and original contrast of the input sequence.
For example, for Hydrangea dataset for noise levels more then σ = 12 in the region
of homogeneous background, high amounts of noise results in a incorrect motion
estimation and this becomes the dominant contribution to the overall error.

• There is a substantial statistical variability in the results depending on the con-
crete noise distribution. Note, that in some cases the results on images with higher
amount of noise are more accurate then on images with lower amount of noise. This
means that for the evaluation of noise it is not enough to make conclusions from
a single noise dataset. Instead, statistical measurements should be performed. As
a result, such measurement should include statistically sufficient number of experi-
ments and report the average value and the standard deviation as a result.

Datasets with synthetically added noise will be used for the quantitative evaluation in
the following sections :

• In Section 5.4.2.1 to show how noise affects the performance of optical flow and to
evaluate different noise reduction approaches presented in Section 3.1.3.

• In Section 5.4.1.1 to make a comparison between simple and higher-order data con-
stancy assumptions and draw the conclusions about which of them are more robust
w.r.t. to noisy data.
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a b c

Figure 5.5: Modeling noise for the Hydrangea dataset using the Gaussian noise model.
(a) First frame of the original image sequence. (b) Image with added Gaussian noise
with standard deviation σ = 20. (c) Image with added Gaussian noise with standard
deviation σ = 40. Bottom Row: Corresponding histograms. Note a dramatic change in
the grey value distribution as a result of noise.

• In Section 5.4.1.2 we evaluate the influence of incorporating the local information
into the data term (CLG approach).

• In Section 5.4.1.3 we study the result of data normalisation and its implication on
the accuracy of flow computation.

5.2.2.2 Contrast Level

Another important property to evaluate is contrast. Since the X-ray data exhibits a wide
range of image contrast levels (depending on imaging parameters), it is crucial to simulate
and estimate the influence of image contrast on the performance of optical flow methods.

To implement various contrast levels we take the original image sequence and reduce
the contrast via the histogram rebinning while keeping the original values of maximum
and minimum of the original histogram. An example of contrast reduction is illustrated
in Figure 5.7.

To justify the importance of investigation of contrast changes on the results of motion
estimation we perform an experiment in a similar fashion as we did with the previous
experiment. We take a fixed optical flow model (baseline method) and evaluate its per-
formance on the images with different contrast values, varying it from 100% of contrast
to 7.5%. The evaluation plots are shown in Figure 5.6. Analysing them we can make the
following conclusions:

• The shrinkage of the dynamic range and a loss of useful information causes a severe
degradation of the accuracy of optical flow results. For the substantial decrease in
contrast the performance drop is significant and can be compared with the influence
of noise. That is why even for low noise image data, an appropriate adjustment of
computation parameters is required.
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Figure 5.6: Evaluation of optical flow performance on noisy data with Gaussian noise.
For all datasets an average endpoint error (AEE) is shown in 3 regions: All region is
depicted as a green plot; Untext region as a blue plot and Disc region as a red plot.
Left: RubberWhale dataset. Middle: Hydrangea dataset. Right: New Marble dataset.
Method: Baseline algorithm (See Section 5.3.4).

a b c

Figure 5.7: Modeling datasets with low feature contrast. (a) First frame of the original
sequence. Contrast level C = 100%. (b) Image with the reduced contrast. Contrast level
C = 25%. (c) Contrast level C = 12.5%. Bottom Row: Corresponding histograms
showing a reduction in the dynamic range and, as a result, in the contrast level.

• Hydrangea dataset contains a large amount of textural information in all image
regions, as a result it is the easiest dataset to process, even in the case of low-
contrast data.

We will use the datasets with the low-contrast in the following experiments:

• In Section 5.4.2.3 to show how a decrease in the image contrast affects the per-
formance of optical flow , as well as to evaluate different contrast enhancement
approaches presented in Section 3.1.3.

• In Section 5.4.3.1 to check the performance of different data terms, make comparison
between them and draw conclusions about the data terms which are more robust
with respect to low-contrast data.
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Figure 5.8: Evaluation of optical flow performance on datasets with degraded contrast
level. For all datasets an average endpoint error (AEE) is shown in 3 regions: All region
is depicted as a green plot; Untext region as a blue plot and Disc region as a red plot.
Left: RubberWhale dataset. Middle: Hydrangea dataset. Right: New Marble dataset.
Method: Baseline algorithm.

• In Section 5.4.3.3 to evaluate the influence of robustification of the data term for
low contrast image data.

5.2.2.3 Brightness Changes

In this section we describe different types of illumination changes, which may occur in
X-ray data. Since the assumptions about brightness distribution of the scene and objects
is the core information for the construction of data terms, any changes in brightness or
illumination are important to take into account for the design of optical flow model or
data preprocessing.

In this work we consider the following models of illumination changes:

• Global additive illumination. For this case a constant value of A is added to every
pixel of the second image of the input sequence.

• Global multiplicative illumination. Every pixel of the second image frame is mul-
tiplied by a factor M . It is important to note, that changes in exposure time are
corresponding to global multiplicative brightness change, thus is very important to
model.

• Smooth spatial variation. We consider two patterns: ”Spot”, resembling changing
beam spot and ”Strips” pattern, simulating horizontal brightness flickering due to
instability of a monochromator.

Two spatial patterns intended to simulate the uneven brightness distribution are pre-
sented in Figure 5.9.

We use datasets with the simulated brightness changes for the following evaluation
experiments:

• In Section 5.4.2.2 to show the performance and usefulness of the brightness correc-
tions techniques.

• In Section 5.4.3.2 to check the performance of different data terms for various bright-
ness changes scenarios.
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Figure 5.9: Modeling illumination changes. (a) First frame of the original sequence. (b)
Second frame. (c) Difference between original images that shows amount of brightness
changes in a scene due to the actual movement. (d) The brightness pattern added to the
first frame. In this case its is transparent, so there is no modification of pixel values. (e)
A ”Spot” brightness pattern added to the second frame. (f) Image changes due to the
”Spot” brightness pattern. (g) The first part of the ”Strips” brightness pattern, added
to the first frame. (h) The second part of the ”Strips” brightness pattern. (i) Changes
due to the ”Strips” brightness pattern.

• In Section 5.4.3.3 to evaluate the influence of robustification of the data term for
low contrast image data.

5.2.2.4 Image Artifacts

The last step to complete our framework for quantitative evaluation is to provide the
simulation of image artifacts. As it was mentioned previously, there are two prevalent
artifacts in the X-ray data, which corrupt image data - ring artifacts and star (or streaks)
artifacts. The main requirement for the modelling of such artifacts is that their location
and the degree to which these artifacts affect the original data must be controlled. In this
work we employ a simple model using geometric shapes similar to original effects. We
control the placement of such artifacts and gradually increase the thickness of shapes to
influence the intensity of the artifacts.

In this work we use the following artifacts structures:

• Line shapes. These artifacts intended to mimic star artifacts (See Section 5.1.3).
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• Circular shapes. These artifacts intended to model ring artifacts (See Section 5.1.3).

• Dead pixels, dust and scratches artifacts. These artifacts are modelled using Spike
noise and were presented in Section 5.2.2.1.

Images with the artificially modelled artifacts intended to simulate image degradation
by means of ring or star artifacts are presented in Figure 5.10.

We use datasets with the simulated artifacts to perform quantitative evaluation in the
following experiments:

• In Section 5.4.3.4 to check the performance of the robust data term in the presence
of image artifacts.

• In Section 5.4.3.5 to evaluate the approach of median filtering and its influence on
the accuracy of the optical flow.

• In Section 5.4.3.6 to evaluate the performance of the data refinement procedure.

a b c

d e f

g h i

Figure 5.10: Modeling image artifacts. (a) First frame of original sequence. (b) Second
frame of original sequence. (c) Difference between original images that shows amount of
brightness changes in the original scene due to actual movement. (d) First image frame
with artifacts. The thickness of artifacts is A = 1 pixel. (e) Second image frame with
artifacts A = 1. (f) Corresponding image difference which reveals the affected areas. (g)
First image frame with artifacts. The thickness of artifacts is A = 4 pixels. (h) Second
image frame with artifacts A = 4. (i) Corresponding image difference.
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5.3 Optimization of Parameters

In the section dedicated to data taxonomy we described a variety of X-ray data. In the
previous section we showed how the performance of optical flow methods can be governed
by the choice of model parameters (on the example of noisy images 5.2.2.1 and low-contrast
data 5.2.2.2). Therefore, parameters optimization become a critical and challenging task.
For example, from the literature on optical flow methods it is well-known that appropriate
choice of the smoothness parameter is important to obtain desirable results. However,
there is remarkably little work on methods which allow to select or estimate optimal
parameters. Only recently in the work of [ZBW11] the authors presented an approach for
automatic smoothness parameters estimation based on the optimal prediction principle
(See Section 2.1.5.6). In our work we evaluate more approaches and confidence metrics
(See Section 2.1.5). In this section we discuss numerous aspects of parameter optimization.

5.3.1 Optimization of Individual Parameter

First we start with the evaluate and discussion of different model parameters of optical
flow computation. The aim is to identify the set of paramters which are general and allow
to obtain accurate and robust results. Selecting the best paramters we obtain a basis
for our baseline method which will be presented later in the chapter (See Section 5.3.4).
Moreover, during the evaluation we highlight the importance of such optimization and
provide a general guidance to perform it. Here we evaluate the most basis components
of optical flow computation, such as derivatives approximation, number of warping levels
and warping scale factor.

5.3.1.1 Derivatives Approximation

In Section 2.2.2 a number of alternatives to represent image derivatives were outlined.
Here we compare different stencil modes and draw the conclusions about their appropriate
usage for different image properties. For that, we consider two important aspects from
our Data Taxonomy Section 5.1, namely the influence of noise and low contrast (low
spatial image gradient). To check the performance on noisy data we restrict our study
to Gaussian noise model 3.1.1.1, since it introduces sufficient disturbances to the image
data. For the evaluation we fix all the model parameters (which were optimized ahead),
and vary only the computation schemes for derivatives approximation. The results for
noisy data are shown in Table 5.5 and for low-contrast data in Table 5.6.

With respect to noisy data we can make the following observations:

• Temporal averaging improves the results. From the evaluation result we conclude
that temporal averaging of is useful for both original and noise datasets and pro-
vided a robust scheme for derivatives. However, one should be confident that the
displacements between corresponding image pairs are small, so such step could be
performed. In the presence of large displacements we employ multi-level strategy,
discussed in Section 2.2.5. The appropriate choice for the warping scale and number
of warping levels we discuss in Section 5.3.1.3 and Section 5.3.1.2 respectively.

• Increased sensitivity of fourth-order derivatives to noise. Despite the facts, that
fourth-order derivatives approximation may lead to a significant improvements in
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accuracy for the original, noise-free images, it does not perform well on noise data.
In the presence of noise a second-order approximation performs better for all noise
levels. This might be explained by the increased sensitivity of the fourth order-
derivative scheme to noise.

Table 5.5: Comparison between spatial derivatives approximation schemes on noisy Rub-
berWhale dataset. The following computation schemes are compared: second-order,
second-order with temporal averaging, fourth order and fourth-order with temporal av-
eraging. An additive Gaussian noise with a zero-mean and standard deviations σ=0, 5,
10, 20 was introduced.

noise model error

all disc untext

σ = 0

2nd order 0.172 0.683 0.135

2nd order + temp 0.161 0.628 0.13

4th order 0.169 0.673 0.132

4th order + temp 0.157 0.605 0.127

σ = 5

2nd order 0.315 0.822 0.289

2nd order + temp 0.284 0.748 0.264

4th order 0.343 0.841 0.311

4th order + temp 0.304 0.751 0.273

σ = 10

2nd order 0.581 1 0.544

2nd order + temp 0.506 0.921 0.454

4th order 0.664 1.037 0.652

4th order + temp 0.593 0.951 0.564

σ = 20

2nd order 1.414 1.584 1.508

2nd order + temp 1.317 1.502 1.416

4th order 1.494 1.622 1.63

4th order + temp 1.45 1.576 1.6

We can make the following conclusions about influence of different derivatives approx-
imations on data with low contrast:

• Usefulness of temporal averaging. The same as for the case of noisy data, tem-
poral averaging show to be effective to improve the accuracy of the optical flow
computation.

• Improved accuracy using fourth-order derivatives. The accuracy of optical flow com-
putation is improved using fourth-order derivatives approximation.

The evaluation of derivatives approximation schemes on Hydrangea and New Marble
datasets shows similar outcomes. Summarizing both experimental results we may con-
clude the following: in the presence of substantial noise we choose second-order derivatives
with temporal averaging, if noise level is low or can be significantly reduced using prepro-
cessing step we opt to use fourth-order derivatives with temporal averaging.

5.3.1.2 Warping Levels

In order to deal with large displacements according to our multi-level computation strat-
egy (Section 2.2.5) one has to construct image pyramid. For that purpose a scaling
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Table 5.6: Comparison between spatial derivatives approximation schemes on Rubber-
Whale dataset with low contrast. The following computation schemes are compared:
second-order, second-order with temporal averaging, fourth order and fourth-order with
temporal averaging. A decrease to a contrast level of C=100%, 50%, 25%, 10% was
introduced.

contrast model error

all disc untext

C = 100%

2nd order 0.172 0.683 0.135

2nd order + temp 0.161 0.628 0.13

4th order 0.169 0.673 0.132

4th order + temp 0.157 0.605 0.127

C = 50%

2nd order 0.224 0.681 0.238

2nd order + temp 0.214 0.667 0.223

4th order 0.207 0.662 0.213

4th order + temp 0.193 0.64 0.195

C = 25%

2nd order 0.3 0.729 0.348

2nd order + temp 0.293 0.721 0.334

4th order 0.284 0.717 0.325

4th order + temp 0.275 0.707 0.308

C = 10%

2nd order 0.41 0.797 0.48

2nd order + temp 0.398 0.791 0.461

4th order 0.385 0.785 0.451

4th order + temp 0.372 0.776 0.427

function is used which transfers the original image version to a coarser resolution level
and interpolates the obtained results back to the finer computation level. Thus, on each
computation level k the image size is determined via:

Nk
d = N orig

d ηk,

where η is a warping scale parameter, Nd denotes the image size in the dimension d ∈
(x, y). In general, to get the best results and capture whole range of displacements
(including the fastest motion) one may downscale the image as much as possible. However,
for large images with small or moderate displacement values this strategy could result
in a substantial loss of performance in terms of computation time. In fact, the aim
is to downscale the original image in such a way, that the large displacements become
small-scale on the lowest resolution level, so the linearized data constancy assumption
can be employed. As soon as it is achieved, further downscaling provide no additional
improvement. We illustrate this situation on the RubberWhale dataset in Figure 5.11.
Ideally, if the motion model is know or can be deduced from the original image sequence,
it is possible to extract the optimal coarsest image size (e.g. number of warping levels)
automatically.

Here we propose to use two strategies:

• Estimation based on maximum velocity. We compute the coarsest resolution image
size via Nk = N orig ∗ Smax, where Smax = 1

max(w)
is a scale factor and max(w)

represents maximum displacement value for the current image pair.
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Figure 5.11: Dependence of optical flow accuracy on a number of levels (coarse scale size)
and a scaling factor η. Left: Improvement of average endpoint error for decreased image
size on the coarsest resolution level. All the parameters were fixed as for baseline method,
warping scale factor η = 0.95. Note, that these is no further improvement after a certain
scale factor is reached. Right: Improvement of average endpoint error for increasing
scaling factor. All the parameters were fixed as for baseline method, a number of required
warping levels is chosen according to a minimum possible coarsest image size.

• Estimation based on mean velocity. We compute in a similar manner as a previous
measure, but using mean velocity. Such measure can be reasonable in case if it
is known that objects are moving with similar velocities. To account for velocity
variations we include the standard deviation value of the velocities distribution. The
final measure reads Nk = N orig ∗ Smean, where Smean = 1

mean(w)+std(w)
.

We compare both measures in the Table 5.7. How we compute Sbest: we increase the
amount of warping levels (decreased image size on the coarsest resolution level) as long
as there is a substantial improvement (more then 0.001 for AEE measure and 0.1% for
RX1.0 measure).

Table 5.7: Comparison of methods to select an appropriate number of warping levels for
RubberWhale, Hydrangea and New Marble datasets.

dataset max mean std Sbest Smax Smean

RubberWhale 4.616 1.236 0.505 0.7 0.22 0.57

Hydrangea 11.12 3.48 1.452 0.57 0.09 0.2

New Marble 2.09 1.64 0.166 0.66 0.48 0.55

Conclusions about automated selection of coarsest resolution image size:

• Maximum-based measure provides good results. This measure provides a reasonable
precision and adapts to the image size and correctly handles largest displacements,
but computations on the coarsest levels introduced by the measure can be redun-
dant. This can be seen from the comparison between Sbest and Smax for the Hy-
drangea dataset. By default, if we are interested in computing an accurate optical
flow we choose this measure.
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• Mean-value improves the computation time. This measure improves the compu-
tation time by adapting image to the mean velocity magnitudes and consequently
considering less image levels. This measure is closer to the Sbest scale factor, however
could provide poor results for large displacements.

5.3.1.3 Warping Scale

In general, the warping scaling factor should be as small as possible to guarantee a smooth
transfer between warping levels. However, to small value will result in a very large number
of warping levels, hence find compromise. An influence of scaling factors on RubberWhale
dataset on the overall precision of optical flow is shown in Figure 5.11.

A range of values between 0.9 and 0.95 is a good compromise between accuracy and
running time.

5.3.2 Optimization of Multiple Parameters

In this section we generalize the idea of parameters optimization and extend it for multiple
parameters. To highlight the importance of optimization of all model parameters we show
several experiments related to three modes of smoothness, namely - data smoothness via
presmoothing parameter σ (See Section 1.4.2), flow smoothness α (See Section 2.1.4) and
integration scale ρ. First, we optimize one individual parameters, then a pair of smooth-
ness paramters, and finally all the paramters related to smoothness. The quantitative
results are presented in Table 5.8.

Analysing the results it is evident that all there smoothness parameters are crucial to
provide accurate and reliable optical flow and should be optimized simultaneously.

Table 5.8: Comparison between optimization of a single and simultaneous optimization of
several model parameters. As an example we use there kinds of smoothness parameters:
data smoothness via presmoothing parameter (σ), flow smoothness (α) and integration
scale (ρ).

number model error model parameters

all disc untext alpha sigma rho

one

optimize α 0.349 0.773 0.392 7.5 0.35 –

optimize σ 0.437 0.876 0.362 3.5 0.6 –

optimize ρ 0.305 0.833 0.314 3.5 0.35 4.6

two

optimize α, σ 0.342 0.773 0.351 7.0 0.5 –

optimize α, ρ 0.298 0.754 0.313 5.0 0.35 2.7

optimize σ, ρ 0.305 0.832 0.304 3.5 0.4 4.6

three optimize α, σ, ρ 0.297 0.757 0.299 4.75 0.4 3.1

5.3.3 Confidence-based Optimization

In the previous two section we have based our parameters optimization procedure on the
use of ground truth data, so we were able to compare the computed results with the real
ones. For the real life data (tasks) such information is not available. For this purpose
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a measure based on the confidence can be used. In Section 2.1.5 a number of possible
confidence measures were presented.

Here we demonstrate an example of comparison of metrics to evaluate the correctness
of the result using average endpoint error 2.1.1.2 and data constancy error 2.1.5.3. We
vary the paramter of the flow regularization α and measure both metrics. The results are
presented in Figure 5.15. As it can be observed, even without ground truth result it is
possible to judge the reliability of the results and choose a sub-optimal parameter based
on confidence-based optimization.

We further evaluate these measures in the experimental section 5.4.4 and draw con-
clusions about their appropriate usage.

5.3.4 Baseline Method

As it was discussed in the introductory part of the current section, dedicated to parameter
optimization, the performance of optical flow largely depends on the set of chosen of model
parameters. Since advanced optical flow methods tend to incorporate many features into
a single model, it is challenging to separate and evaluate the influence of the individual
setting. To provide a basis for a systematic comparison of different settings and model
parameters here we describe a baseline method which we use in the following experiments
section. In all parts where we refer to the baseline method we mean this set of settings.

Table 5.9: A list of all model parameters used for the baseline method. If not presented
explicitly, all the parameters of the baseline method correspond to the ones given in this
table.

Model parameter Parameter name Symbol Value / Expression

Constancy assumption grey value Dgrey(I,w) (∇>3 Iw)2

Smoothness assumption flow-driven Sflow(u, v) ΨS(|∇u|2 + |∇v|2), ΨS(x) =√
x+ ε, ε = 0.001

Robust function Charbonnier
penalty

DR(I,w) ΨR((∇>3 Iw)2), ΨR(x) =√
x+ ε, ε = 0.001

Derivatives approximation second-order and
time averaging

Ix, Iy
(Ii+1,j,t+1−Ii−1,j,t+1)+(Ii+1,j,t−Ii−1,j,t)

4hx

Data normalization – Dnorm(I,w)
(∇>3 Iw)2

|∇2I(x,y,t)|2+η , disabled

Combined local-global – DCLG(I,w) Kρ ∗ (∇>3 Iw)2 , disabled

Median filtering – Mp(dw
k) p ∈ (3, 5) , disabled

Flow regularization smoothness param-
eter

α 3.5

Adaptive regularization – α(k) α, disabled

Presmoothing parameter standard deviation σ 0.35

Multi-level scheme warping levels k 15

Warping accuracy warping scale η 0.9
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5.4 Quantitative Evaluation

In this section we present a discussion on the performance, influence of preprocessing,
modelling of noise and data outliers and the use of confidence measures. For each ex-
perimental evaluation we discuss the advantages and shortcomings of the proposed pro-
totypes. All the results are presented in both a quantitative and a qualitative way. For
all the experiments we outline important observations and draw the conclusions, which
we summarize in the last section of the chapter (See Section 5.6). In the summary table
columns all, disc and untext show the best possible result for each region of statistics over
the whole range of evaluated parameters.

5.4.1 Experiments: Noise

5.4.1.1 Experiment: Data terms for noisy data

In this experiment we compare different data terms with respect to their performance on
noisy data. To model noise we choose there models - Gaussian, Poisson and Spike noise
(see Section 3.1.1.1), which aim to represent different noise scenarios. While Gaussian
noise is commonly used in the literature on optical flow to test the robustness of methods
in the presence of noise, it is still a simplified noise model. Poisson noise is a physically
based noise model and correctly describes X-ray data. Finally, Spike noise represents a
special type of noise with a severe level of image degradation and aims to model data
artifacts. Details on the implementation of noise models are given in Section 5.2.2.1. We
evaluate the performance of data constancy assumptions on noisy data and present our
results in Table 5.10. For the evaluation we use the baseline optical flow method with the
optimized smoothness parameter α and presmoothing parameter σ.

From the results of quantitative evaluation we can get the following conclusions:

• Gradient constancy assumption with the robust setting provides good results for both
Gaussian and Poisson noise models. It is reasonable to assume that a derivatives-
based constancy assumption will be more sensitive to noise, than a simple grey value
assumption. In the work of [Bru06] it was shown that, indeed, the gradient based
constancy assumption gives worse performance in comparison with the grey value
assumption. However, in the evaluation perform in [Bru06] the robust data term was
not used. From our performance analysis it is evident, that the gradient constancy
assumption in a robust setting provides better results even for large amounts of
noise in all image regions.

• Higher order derivatives are sensitive to noise for the Gaussian, Poisson and Spike
noise models. Both the Laplacian and Gradient norm constancy assumptions are
very sensitive to noise and provide poor results. Thus, these data terms are not
useful for X-ray data, which usually contains high amounts of noise. However, one
should note, that for noise-free images these data terms outperform the grey value
constancy assumption.

• Grey value constancy assumption is more robust for the Spike noise model. For the
Spike noise model the situation is different from the Gaussian noise model. In this
case, grey value constancy assumption is more robust to corrupted pixel data. One
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Table 5.10: Performance analysis of data terms on noisy data on the RubberWhale dataset.
Gaussian noise with zero mean and standard deviation values of σn = 0, 5, 10, 20 was
added. Poisson noise: Mean value of the Poisson random distribution P is 0, 50, 200,
400. Spike Noise: we randomly replace a certain percentage of pixels with black and the
same amount of pixels with white grey value. For the experiment an amount of S =0%
(no noise), 2.5%, 5.0%, 7.5% replaced pixels was used. Method: baseline, optimized for
σ = [0.15..2.5], α = [1.0..40].

model Gaussian noise Poisson noise Spike noise

σn error P error S error

all disc untext all disc untext all disc untext

grey

0

0.159 0.622 0.13

0

0.159 0.622 0.13

0 %

0.159 0.622 0.13

grad 0.11 0.526 0.073 0.11 0.526 0.073 0.11 0.526 0.073

lapl 0.127 0.566 0.077 0.562 0.075 0.13 0.562 0.075 0.13

norm 0.137 0.607 0.095 0.602 0.094 0.201 0.602 0.094 0.201

grey

5

0.26 0.722 0.261

50

0.391 0.798 0.479

2.5%

0.437 0.838 0.576

grad 0.233 0.689 0.242 0.383 0.799 0.416 0.543 0.92 0.614

lapl 0.273 0.712 0.303 0.496 0.851 0.646 0.965 0.74 0.099

norm 0.269 0.729 0.272 0.395 0.809 0.464 0.937 0.658 0.104

grey

10

0.346 0.774 0.359

200

0.449 0.848 0.554

5.0%

0.611 0.902 0.683

grad 0.331 0.767 0.346 0.44 0.852 0.497 0.67 0.992 0.732

lapl 0.411 0.802 0.48 0.596 0.917 0.777 1.04 0.904 0.101

norm 0.351 0.791 0.377 0.467 0.873 0.556 1 0.722 0.077

grey

20

0.474 0.866 0.567

400

0.538 0.897 0.634

7.5%

0.761 0.978 0.733

grad 0.462 0.866 0.545 0.53 0.907 0.589 0.761 1.031 0.71

lapl 0.57 0.922 0.68 0.748 0.98 0.955 1.083 0.847 0.098

norm 0.471 0.882 0.566 0.545 0.918 0.618 1.044 0.713 0.06
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may notice, that in some cases high order constancy assumptions perform better
in Disc and Untext image regions, however, this situation corresponds to the case
when the largest values for smoothing parameters α and σ are chosen. In this case
the image was oversmoothed, which is seen from the values of AEE measure in all
image regions.

• Grey value constancy assumption is more robust for the Spike noise model. For this
noise model the situation is different as for the Gaussian noise model. In this case,
the grey value constancy assumption is more robust with respect to corrupted pixel
data. One may notice, that in some cases high order constancy assumptions perform
better in Disc and Untext image regions, however, this situation corresponds to the
case when the largest values for smoothing parameters α and σ are chosen. In this
case the image was oversmoothed, which is seen from the values of AEE measure
in all image regions.

• Grey value constancy assumption is more robust for the Poisson noise model in the
regions of image discontinues. In general, the Poisson noise model is more chal-
lenging then the Gaussian noise model. This is due to the fact that the effect of
Gaussian noise can be effectively removed with an appropriate image smoothing.
Additionally, the evaluation of results shows that the grey value constancy assump-
tion provides better performance in the regions of image discontinues.

5.4.1.2 Experiment: Combined local-global approach

In this experiment we evaluate the performance of the Combined Local-Global (CLG)
approach on noisy data. In the literature on optical flow methods such approaches are not
commonly used, especially for synthetic datasets. However, as it was shown in the works
of [BWS02, BWS05], such approach can be beneficial in the presence of large amount of
noise. We extend the evaluation presented in [Bru06] and perform quantitative evaluation
for both the grey value and the gradient value constancy assumptions on Gaussian and
Spike noise models. The evaluation results on the RubberWhale dataset are presented
in Table 5.11. The evaluation results are similar for the Hydrangea and the New Marble
datasets and excluded from presentation.

Performance evaluation of Combined Local-Global (CLG) approach leads to the fol-
lowing conclusion:

• Integration of local information is useful to improve results on noisy data. For both
constancy assumptions and both noise models used for the evaluation, the Combined
Local-Global (CLG) approach gives significantly better results. The performance is
better even near the boundaries between moving objects (disc region). It can be
expected that in these regions a local integration may spoil the result, but it was
not the case. Additionally, the CLG model shows better performance on the Spike
noise model. As a result of this evaluation, we make a definite conclusion, that the
CLG model is useful for noisy X-ray images.

5.4.1.3 Experiment: Normalization of data term

In this section we investigate the influence of normalization of data terms. Such approach
is relatively novel, but is promising to correct the information in data term, which can be
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Table 5.11: Performance of the Combined Local-Global (CLG) approach on the Gaussian
and Spike noise models on RubberWhale dataset. Gaussian Noise with zero mean and
standard deviation values of σn = 5, 10, 20 was added. For Spike Noise an amount S of
2.5%, 5.0%, 7.5% replaced pixels was used. Method: baseline, optimized ρ in the range
[0.5..2.0], optimized σ in the range [0.35..1.5], optimized α in the range [3.0..40].

Gaussian noise Spike noise

model σn error S error

all disc untext all disc untext

grey

5

0.26 0.722 0.261

2.5%

0.437 0.838 0.576

grey+CLG 0.222 0.706 0.219 0.424 0.838 0.576

grad 0.233 0.689 0.242 0.543 0.92 0.614

grad+CLG 0.218 0.689 0.235 0.516 0.916 0.588

grey

10

0.346 0.774 0.359

5.0%

0.611 0.902 0.683

grey+CLG 0.299 0.755 0.3 0.609 0.909 0.685

grad 0.331 0.767 0.346 0.67 0.992 0.732

grad+CLG 0.308 0.769 0.328 0.657 0.981 0.744

grey

20

0.474 0.866 0.567

7.5%

0.761 0.978 0.733

grey+CLG 0.434 0.862 0.51 0.711 0.985 0.709

grad 0.462 0.866 0.545 0.761 1.031 0.71

grad+CLG 0.443 0.865 0.516 0.739 1.007 0.714

corrupted by noise or image artifacts. For the evaluation we restrict ourselves to a grey
value constancy assumption, however, normalization of other data terms can be performed
in a similar manner. Furthermore, we show the performance of data normalization only
on Gaussian noise model. The evaluation results on RubberWhale dataset are presented
in Table 5.12.

Results of performance evaluation of data term normalization approach are:

• Data normalization improves results on noisy data. As it was reasoned in Section
2.1.3.4, image locations with high gradient provide more contribution to the overall
energy of the data term and thus largely influence the estimation of optical flow.
Since such image gradient may be caused by data outliers such as noise or image
artifacts, the influence of high image gradient can be intentionally suppressed. From
the quantitative evaluation one can see, that the normalization step is indeed helps
to improve the results of optical flow.

• Data normalization approach outperforms the Combined Local-Global approach on
flow boundaries. It should be noted, that despite the fact that the CLG model gives
better overall performance and improves the result in untextured image regions, the
approach based on data normalization gives more accurate results on flow disconti-
nuities. This could be explained by the smoothing properties of local integration in
the motion tensor used in the CLG approach.

• Data normalization can be further combined with the CLG approach to improve
results. An important advantage of the data normalization approach, is that it
can be further combined with a CLG approach to improve the result of optical
flow computation. For all noise levels a combination of both approaches lead to a
significant improvement of the result in all image regions.
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Table 5.12: Performance analysis of normalization of data term on noisy data for the
RubberWhale dataset. Gaussian Noise with zero mean and standard deviation values of
σn = 0 (no noise), 5, 10, 20 was added. For the comparison we use a grey value constancy
assumption model without data normalization and without the CLG approach; a model
with the CLG; model with normalization of the data term; model with normalization and
the CLG approach. Method: baseline, model = {grey, grey + CLG, grey + norm, grey
+ norm + CLG}, optimized ρ in the range [0.5..2.0], optimized η in the range [0.1..5.0],
optimized σ in the range [0.35..1.5], optimized α in the range [0.5..40].

noise model error

all disc untext

σn = 0

grey 0.159 0.622 0.13

grey+CLG 0.142 0.602 0.11

grey+norm 0.14 0.582 0.111

grey+norm+CLG 0.143 0.615 0.113

σn = 5

grey 0.26 0.722 0.261

grey+CLG 0.222 0.706 0.219

grey+norm 0.226 0.706 0.225

grey+norm+CLG 0.218 0.711 0.215

σn = 10

grey 0.346 0.774 0.359

grey+CLG 0.299 0.755 0.3

grey+norm 0.303 0.764 0.3

grey+norm+CLG 0.29 0.772 0.29

σn = 20

grey 0.474 0.866 0.567

grey+CLG 0.434 0.862 0.51

grey+norm 0.457 0.854 0.523

grey+norm+CLG 0.448 0.859 0.513

5.4.2 Experiments: Preprocessing

5.4.2.1 Experiment: Noise reduction

In this section we evaluate the performance of noise reduction techniques and their in-
fluence on the accuracy of optical flow methods. An important question to answer in
this section is - does an advanced preprocessing procedure improves the results of optical
flow? The second important aspect is to reveal the most suitable filtering procedure for
the noise scenarios which are used in our evaluation.

We do not attempt to evaluate a large set of possible filtering procedure existing in
the literature. Instead, we restrict ourselves to a number of popular filters, which are easy
to implement. We evaluate four denoising filters, presented in Section 3.1.1.2:

• Gaussian smoothing

• Median filter

• Bilateral filter

• Anisotropic diffusion

For each individual filter we optimized its parameters and show only the best achievable
result in the final evaluation table. Quantitative comparison of denoising filters and
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influence on the accuracy of flow computation is presented in Table 5.13 and Table 5.14
and gives us the following results:

• Noise filtering of initial data can be helpful. As it can be observed from the result-
ing tables, for every noise model and all corresponding noise levels, some kind of
preprocessing filter always gave better results.

• For each noise model there is an optimal filtering procedure. Not surprisingly, a
Gaussian smoothing performed significantly better then any other methods on the
dataset with Gaussian noise. The same situation is true for the median filtering,
when it is applied on datasets with Spike noise. However, both filtering methods
failed to provide good results for datasets, for which they are not well suited.

• Gaussian filtering is a simple and effective filtering procedure. Despite its simplicity,
Gaussian smoothing still provides relatively good results. For Gaussian noise model
no filter could outperform it, even if all the parameters are carefully optimized.

• Gaussian filtering is useful to remove Poisson noise. Gaussian filtering shows better
performance to remove the Poisson noise then the other approaches.

• Usefulness of Anisotropic diffusion filtering for complex noise scenarios. It is in-
teresting to note, that anisotropic filter which performed relatively poor on both
Gaussian and Spike noise models, provides the best results in the case when both
models are combined (see Table 5.14). This could be explained by the fact that
anisotropic filtering combines smoothing properties of the Gaussian smoothing and
ability to filter data outliers as of the median filtering.

• The appropriate choice of a filtering procedure and its parameters is crucial, however,
a challenging task. From the extensive evaluation on multiple datasets and noise
models, we conclude that preprocessing of initial (raw) data is useful and allows to
achieve more accurate results. However, one should carefully investigate a proper
choice of appropriate filtering procedure based on extensive evaluation of the given
data.

5.4.2.2 Experiment: Non-uniform brightness correction

As the next step, we test the possibility to correct non-uniform brightness, which is a
crucial image degradation process affecting computation of optical flow. For this purpose
we compare performance of the grey value data term without preprocessing and the same
data term, but with prior non-uniform brightness correction. For the evaluation we use
the following brightness changes scenarios, described in Section 5.2.2.3:

• Additive brightness change: for this case a constant value of 30 is added to every
pixel of the second image of an input sequence.

• Multiplicative brightness change: every pixel of the second image frame is multiplied
by a factor of 1.5.
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Table 5.13: Performance analysis of noise reduction techniques on Gaussian, Poisson and
Spike noise models. Gaussian noise with zero mean and standard deviation values of σn =
5, 10, 20, 40 was added. Poisson noise: Mean value of Poisson random distribution P =
50, 200, 400, 800. For Spike noise an amount S = 2.5%, 5.0%, 7.5%, 10% replaced pixels
was used. Method: baseline, filter = {no filter,Gaussian,Median,Bilateral,Anisotropic},
σ = 0.35, optimized α in the range [0.5..40].

Gaussian noise Poisson noise Spike noise

filter σn error P error S error

all disc untext all disc untext all disc untext

No filter

5

0.256 0.719 0.255

50

0.323 0.761 0.361

2.5%

0.427 0.835 0.598

Gaussian 0.256 0.719 0.248 0.319 0.761 0.348 0.408 0.83 0.554

Median 0.279 0.753 0.263 0.339 0.791 0.367 0.206 0.7 0.169

Bilateral 0.26 0.73 0.25 0.321 0.762 0.351 0.453 0.849 0.631

Anisotropic 0.388 0.819 0.396 0.393 0.832 0.431 0.377 0.819 0.358

No filter

10

0.349 0.773 0.392

150

0.396 0.794 0.501

5.0%

0.519 0.897 0.671

Gaussian 0.342 0.773 0.346 0.392 0.794 0.478 0.516 0.895 0.65

Median 0.359 0.79 0.378 0.412 0.816 0.5 0.23 0.736 0.19

Bilateral 0.346 0.772 0.354 0.396 0.794 0.466 0.542 0.908 0.692

Anisotropic 0.407 0.817 0.43 0.45 0.834 0.538 0.463 0.867 0.603

No filter

20

0.489 0.865 0.599

400

0.468 0.841 0.576

7.5%

0.666 0.977 0.73

Gaussian 0.471 0.857 0.563 0.448 0.835 0.553 0.666 0.976 0.715

Median 0.495 0.867 0.573 0.474 0.848 0.591 0.263 0.769 0.214

Bilateral 0.483 0.863 0.579 0.45 0.835 0.552 0.692 0.988 0.746

Anisotropic 0.504 0.874 0.583 0.486 0.849 0.599 0.534 0.91 0.65

No filter

40

0.723 0.97 0.746

800

0.563 0.9 0.659

10%

0.836 1.096 0.812

Gaussian 0.625 0.937 0.648 0.537 0.889 0.63 0.834 1.093 0.771

Median 0.638 0.929 0.644 0.554 0.904 0.622 0.375 0.804 0.247

Bilateral 0.639 0.931 0.697 0.542 0.891 0.63 0.85 1.109 0.754

Anisotropic 0.631 0.928 0.647 0.556 0.882 0.659 0.604 0.955 0.73

• Pattern ”Spot”: this pattern simulates a spatial variation of beam intensity and is
implemented as an addition of the initial image with a spatially varying brightness
pattern (See Figure 5.9).

• Pattern ”Stripes”: this pattern aims to model brightness variation due to spatial
fluctuations of a light source and changing beam intensity. Different strip patterns
are added to the first and the second frame of the input sequence (See Figure 5.9).

For the preprocessing procedure we use the image leveling approach using the Gaussian
filter (see Section 3.1.2.4) with an optimized size of the spatial mask.

Comparison between a model with and without preprocessing of initial image sequence
is shown in Table 5.15.

From the evaluation of quantitative results we can make the following conclusion:

• Brightness correction procedure significantly improves results of optical flow in the
presence of brightness variations. It is obvious, that already for the case of addi-
tive brightness change, the constancy assumption of image brightness is violated,
which results in a very poor performance of this approach. Addition of a simple
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Table 5.14: Performance analysis of noise reduction techniques for complex noise sce-
narios (combination of the Gaussian and Spike noise models). For Gaussian Noise
with zero mean and standard deviation values of σn = 5, 10, 20, 40 was added. For
Spike Noise an amount S = 2.5% replaced pixels was used. Method: baseline, filter =
{no filter,Gaussian,Median,Bilateral,Anisotropic}, σ = 0.35, optimized α in the range
[0.5..40].

noise filter error

all disc untext

(σ=5) + S1

No filter 0.468 0.84 0.618

Gaussian 0.459 0.839 0.579

Median 0.299 0.774 0.274

Bilateral 0.475 0.845 0.623

Anisotropic 0.412 0.815 0.435

(σ=10) + S1

No filter 0.508 0.866 0.619

Gaussian 0.493 0.863 0.579

Median 0.384 0.801 0.43

Bilateral 0.51 0.868 0.62

Anisotropic 0.445 0.837 0.525

(σ=20) + S1

No filter 0.602 0.935 0.697

Gaussian 0.579 0.928 0.665

Median 0.544 0.902 0.63

Bilateral 0.6 0.934 0.694

Anisotropic 0.51 0.885 0.6

(σ=40) + S1

No filter 0.799 1.007 0.775

Gaussian 0.7 0.965 0.664

Median 0.687 0.953 0.656

Bilateral 0.741 0.972 0.733

Anisotropic 0.651 0.935 0.647

preprocessing step allows to correct corrupted images and significantly improves the
results.

• Multiplicative brightness change is the most complicated brightness change scenario.
From the analysis of results we see that the multiplicative brightness change is
the most challenging brightness variation scenario. It affects the results of optical
flow computation more severely. This is seen from the results on both original and
preprocessed images (see Table 5.15). The reason why ”Spot” and ”Stripes” patterns
were easier to correct is because these patterns introduce a smooth, gradual spatial
variation, which can be effectively corrected.

Quantitative evaluation of non-uniform brightness correction on the Hydrangea and
the New Marble image sequences gives similar results. We continue the experiments
on datasets with changing brightness in Section 5.4.3.2, where we examine data terms
suitable for such imaging situations. Additionally, we include results achieved in this
section to answer the question - which optical flow model is more useful to deal with
changing brightness - using a simple data term (brightness constancy assumption) and a
preprocessing step or using more advanced data terms specifically designed for the case
of varying brightness conditions.



126 CHAPTER 5. EVALUATION ON SYNTHETIC DATA

Table 5.15: Performance of non-uniform brightness correction on the RubberWhale
dataset. Four brightness patterns are used for the evaluation: additive, mul-
tiplicative, pattern ”Spot” and pattern ”Stripes”. Method: baseline, model =
{no filter,Gaussian leveling}, optimized σ in the range [0.15..1.5], optimized α in the
range [0.15..40].

brightness model error

all disc untext

additive
grey 1.179 1.234 1.137

filter + grey 0.128 0.581 0.089

multiplicative
grey 2.125 2.003 2.901

filter + grey 0.162 0.613 0.103

”Spot”
grey 1.839 2.246 1.699

filter + grey 0.128 0.581 0.088

”Stripes”
grey 1.062 1.318 0.816

filter + grey 0.132 0.584 0.093

5.4.2.3 Experiment: Contrast enhancement

In the following section we examine the possibility to correct image contrast in order to
enhance the visibility of image details and also to improve the accuracy of optical flow
computation. To achieve that we use two contrast correction techniques, presented in
Section 3.1.3:

• Histogram stretching

• Local contrast enhancement (CLAHE)

To check the performance of optical flow on low-contrast data and data with low
contrast-to-noise ratio (CNR) we use two datasets: low-contrast image data without noise
and low-contrast images with added Gaussian noise with standard deviation of σ = 5.
The quantitative comparison of contrast enhancement techniques is shown in Table 5.16.
From the evaluation we can provided the following conclusions:

• Contrast enhancement is not useful for noise-free images. Evaluation results show
that there is no additional gain in performance when the contrast enhancement is
used on a low-contrast, noise-free images.

• Contrast enhancement could be helpful for low-contrast images with noise. Even
when a small amount of noise is added to low-contrast images, a contrast-to-noise
ratio (CNR) (see Section 3.1.3.1) decreases dramatically. This results in a severe
degradation of image data. As the evaluation results show, contrast enhancement
can potentially be beneficial on the expense of amplifying noise. However, with
an appropriate use of robust optical flow model and denoising methods (Gaussian
smoothing for the case of the baseline method used in this evaluation test), this
could lead to the improved accuracy of optical flow computation.

• Performance of contrast enhancement depends on the statistics of noise distribu-
tion. It is important to note, that performance of local contrast enhancement in
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Table 5.16: Performance of local contrast enhancement methods on low-contrast data.
Contrast level of C = 100%, 50%, 25%, 12.5% is used to simulate low-contrast data. For
every contrast level two datasets are checked: with no noise and with σ=5 Gaussian noise
added to low-contrast images. Method: baseline, optimized σ in the range [0.15..2.0],
optimized α in the range [0.1..40].

no noise with noise

contrast filter error error

all disc untext all disc untext

100%
no filter 0.167 0.622 0.144 0.426 0.826 0.512

stretch 0.168 0.625 0.146 0.414 0.832 0.523

CLAHE 0.173 0.614 0.153 0.421 0.818 0.496

50%

no filter 0.185 0.64 0.153 0.528 0.878 0.647

stretch 0.186 0.645 0.156 0.515 0.878 0.656

CLAHE 0.188 0.636 0.17 0.507 0.867 0.593

25%

no filter 0.2 0.654 0.162 0.622 0.931 0.747

stretch 0.201 0.657 0.164 0.577 0.917 0.653

CLAHE 0.218 0.663 0.205 0.546 0.897 0.603

12.5%

no filter 0.211 0.664 0.176 0.673 0.962 0.722

stretch 0.211 0.669 0.177 0.654 0.951 0.72

CLAHE 0.235 0.677 0.228 0.613 0.926 0.708

the presence of noise can be unstable, depending on statistical properties of noise
distribution. This can limit application of contrast filtering techniques.

• The contrast-to-noise ratio (CNR) is a crucial quality measure for analysis of X-
ray data. For challenging X-ray data, especially for low-exposure or poor photon
statistics conditions, a contrast-to-noise ratio is the most important measure to asses
the image quality. This measure relates both image noise and image contrast.

5.4.3 Experiments: Artifacts

5.4.3.1 Experiment: Data terms for low-contrast data

In this section we check the performance of data terms on low-contrast data. One impor-
tant aspect of this experiment is to evaluate higher-order data terms, since they might be
more robust under degrading image contrast and, as a result, the reduced values of image
gradients. We model low-contrast data according to the procedure described in Section
5.2.2.2. Numerical results are shown in Table 5.17.

From the performance evaluation of different data terms we have the following results:

• Higher-order data terms provide better results for low-contrast images. As it could be
expected, constancy assumptions based on higher-order derivatives provide better
results in all image regions, since these data terms are more sensitive to vanishing
image gradients.

• Gradient value constancy assumption provides the best results for low-contrast data.
Data term based on the gradient constancy assumption outperforms all other data
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Table 5.17: Performance evaluation of different data terms for low-contrast data. Contrast
level of C = 100%, 50%, 25%, 12.5% is used to simulate low-contrast data. Method:
baseline, data term = {grey, gradient,Laplacian, gradient norm}, σ = 0.15, optimized α
in the range [0.1..10].

contrast data term error

all disc untext

100%

grey 0.155 0.61 0.128

grad 0.11 0.524 0.075

lapl 0.137 0.561 0.083

norm 0.135 0.6 0.095

50%

grey 0.165 0.612 0.147

grad 0.121 0.535 0.094

lapl 0.145 0.569 0.109

norm 0.143 0.603 0.115

25%

grey 0.184 0.629 0.158

grad 0.128 0.549 0.112

lapl 0.161 0.589 0.132

norm 0.147 0.611 0.134

12.5%

grey 0.219 0.654 0.18

grad 0.154 0.573 0.144

lapl 0.191 0.608 0.155

norm 0.174 0.625 0.163

terms in all image regions. Thus, we conclude that it is more suited for low-contrast
data.

• Lower values of the smoothness parameter are required for low-contrast data. From
the optimization procedure for the current evaluation we observe, that the lower the
image contrast is, the lower value of smoothness parameter should be chosen. This
could be in a contradiction with optimization strategy used to process noisy data,
where higher smoothness values allow to achieve better results. This fact should be
carefully addressed and taken into account in the case of processing low-contrast or
low-features image data with noise.

5.4.3.2 Experiment: Data terms for non-uniform brightness

In the experimental section 5.4.2.2 we evaluated how the preprocessing of initial data could
help to overcome problems with non-uniform brightness. In this section we examine data
terms and check their performance under different illumination conditions.

For the evaluation we use the same brightness changes scenarios, as were presented in
Section 5.2.2.3 and employed in the experimental section 5.4.2.2. Results of quantitative
analysis of different data terms on the RubberWhale dataset are shown in Table 5.18.

As it was already outlined in the experimental section 5.4.2.2, the most challenging
illumination conditions occur for multiplicative brightness changes. Note, that the log-
based data term outperformed other data terms for this case. To check the performance
of gradient and log-based data terms we evaluate the performance of both approaches for
different values of multiplicative factors. Results are shown in Figure 5.12.
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Figure 5.12: Comparison of gradient constancy assumption and log derivatives data terms
for different values of multiplicative factor. Log-based data terms are robust under mul-
tiplicative brightness changes for all scaling factors.

From the evaluation of data terms and the experiment on the influence of multiplicative
factor we can make the following conclusions:

• Gradient constancy assumption is the best data constraint for additive illumination
changes. This performance of gradient-based constancy assumption is not surpris-
ing, since derivatives are invariant w.r.t. global additive grey value changes. How-
ever, such situation is not realistic for X-ray imaging scenarios. For this reason, a
performance of data terms on additive brightness change has little value for practical
use on X-ray data.

• Log-derivatives based data term is robust with respect to multiplicative brightness
changes. Transformation of image data into logarithmic scale helps to overcome
problems with multiplicative brightness changes. Log-derivatives based data term
shows significantly better results in comparison with other data terms.

• Log-derivatives based data term outperforms gradient data term only for large val-
ues of multiplicative factor. The performance comparison of gradient-based and
log-derivatives based constancy assumptions on various multiplicative factors (see
Figure 5.12) reveals, that the log-based constancy assumption starts to outperform
the gradient constancy assumption for multiplicative factors greater than 1.2. It
is important to note, that the brightness changes equivalent to multiplication by
a factor greater than 1.5 are unlikely during image acquisition for a stable and
well-adjusted imaging setup. However, if it is the case, then the log-based image
derivatives data term is a suitable constancy assumption.

• Data preprocessing of initial image data significantly improves robustness against
artifacts related to changing brightness conditions. In the previous Section 5.4.2.2
we evaluated and discussed the usefulness of a non-uniform brightness correction.
In this section we compare the preprocessing approach with a model, which employs
advanced data terms designed to provide robustness against such kind of conditions.
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From the quantitative results presented in Table 5.18 one can observe, that prepro-
cessing approach provides a good general performance. It gives similar results with
the gradient constancy assumption on the multiplicative change dataset and out-
performs all data terms for patterns ”Spot” and ”Strips”. We want to emphasize
that such kind of brightness change conditions are more physically relevant and
more frequently occurring for the real life X-ray imaging experiments, then a global
additive or strong multiplicative brightness changes.

Table 5.18: Performance of non-uniform brightness correction on RubberWhale dataset.
Four brightness patterns are used for the evaluation: additive (+30), multiplica-
tive (×1.5), pattern ”Spot”, pattern ”Stripes”. Method: baseline, data term =
{grey, grey + Gaussian leveling, gradient, log-based derivatives}, optimized σ in the range
[0.15..1.5], optimized α in the range [0.005..150].

brightness data term error

all disc untext

additive

grey 1.143 1.17 1.056

filter + grey 0.128 0.581 0.089

grad 0.117 0.543 0.084

log 0.172 0.643 0.152

multiplicative

grey 1.212 1.204 1.12

filter + grey 0.162 0.613 0.103

grad 0.161 0.685 0.09

log 0.136 0.554 0.105

”Spot”

grey 1.238 1.219 1.113

filter + grey 0.128 0.581 0.088

grad 0.129 0.562 0.099

log 0.221 0.723 0.224

”Stripes”

grey 0.979 1.144 0.807

filter + grey 0.132 0.584 0.093

grad 0.153 0.594 0.118

log 0.242 0.748 0.197

5.4.3.3 Experiment: Robust data term for low-contrast data

In this experiment we check the influence of robustification of data terms for low-contrast
data. Since low-contrast data is characterized by small values of image derivatives, this
might affect the computation of a motion tensor. For such situation the quadratic pe-
nalization of a data constancy assumption might be beneficial, since it provides more
sensitivity to deviations from constancy assumptions. In this experiment we test this
hypothesis. For the evaluation we use both the grey value and the gradient value con-
stancy assumptions. The quantitative comparison between the original (quadratic) and
the robust penalizer functions of the data term on low-contrast data is shown in Table
5.19.

Results of quantitative comparison of both data terms are:

• For low-contrast image data the robust data term performs worse than the original
(quadratic) data term. From the performance analysis of robust data terms (both
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Table 5.19: Comparison of original (quadratic) and robust data term for low-contrast
data. Contrast level of C = 100%, 50%, 25%, 12.5% is used to simulate low-contrast
data. Method: baseline, model = {original, robust}, σ = 0.15, optimized α in the range
[0.1..10].

contrast data model error

all disc untext

100%

grey
original 0.169 0.628 0.131

robust 0.155 0.61 0.128

grad
original 0.139 0.565 0.089

robust 0.11 0.524 0.075

50%

grey
original 0.169 0.629 0.128

robust 0.165 0.612 0.147

grad
original 0.141 0.567 0.091

robust 0.121 0.535 0.094

25%

grey
original 0.169 0.63 0.125

robust 0.184 0.629 0.158

grad
original 0.14 0.57 0.096

robust 0.128 0.549 0.112

12.5%

grey
original 0.171 0.634 0.138

robust 0.219 0.654 0.18

grad
original 0.153 0.585 0.131

robust 0.154 0.573 0.144

the grey value and the gradient value constancy assumptions), one may observe
that the robust setting is not useful for all contrast levels. Starting from a contrast
level of C = 25% the grey value constancy assumption provides worse results and
starting from a level 12.5% gradient constancy assumption in a robust setting no
longer gives better results.

• Gradient constancy assumption outperforms the grey value constancy assumption in
a robust setting for low-contrast data. As it was already discussed in the previous
experiment, the gradient constancy assumption is more suited for low-contrast data,
since it is more sensitive to vanishing image gradients (as a result of contrast degra-
dation). The same holds for a model using the gradient based data term in a robust
setting. However, when the contrast drops down to 12.5% both data terms in a
robust setting provide worse result in comparison to a simple data term. Therefore,
we conclude that for low-contrast image data the original (quadratic) data term
should be employed or, alternatively, one may try to enhance the contrast using
techniques presented in Section 3.1.3.2 and examined in the experimental Section
5.4.2.3.

5.4.3.4 Experiment: Robust data term for images with artifacts

In this section we test the performance of robust data terms on image data with artifacts.
In the literature, the use of robust data term is well-studied for the original data containing
natural artifacts, such as occlusions [BA96, SRB10, BSL+11, ZBW11]. An important
addition of our study is that we introduce another structures, which aim to simulate
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artifacts frequently occurring for the real X-ray data. We control the placement of such
artifacts and regulate their effect by varying their thickness. Moreover, we check the
performance of optical flow computation in the regions around the artifact structures
(denoted as outliers).

Results of quantitative evaluation of the robust data term on different amounts of
artifacts on the example of a grey value constancy assumption are shown in Table 5.20.

Table 5.20: Comparison of original (quadratic) and robust data term using grey value
constancy assumption on images with data artifacts. Artifact structures with thickness of
A = 0 (no artifacts), 1, 2, 3 pixels are added to original images to simulate data outliers.
Method: baseline, data term = {original, robust}, optimized σ in the range [0.15..2.0],
optimized α in the range [1.0..40].

artifacts model error

all disc untext outliers

A0
original 0.166 0.632 0.127 0.156

robust 0.157 0.617 0.129 0.152

A1
original 0.294 0.803 0.302 1.04

robust 0.173 0.645 0.157 0.217

A2
original 0.495 0.924 0.586 2.527

robust 0.221 0.708 0.235 0.3

A3
original 0.694 1.142 0.797 3.915

robust 0.263 0.734 0.29 0.328

From the performance evaluation we conclude that:

• Robust data term significantly improves optical flow results in the presence of image
artifacts. As it was expected from the result of previous work, robust data terms
significantly improve the accuracy of optical flow. The performance improvement is
especially remarkable in the outliers regions. With the increased amount of artifacts
the importance of robust data term becomes even more prominent.

5.4.3.5 Experiment: Flow median filtering

We proceed with the experiment to test the performance of a median filtering of the
intermediate flow result (see Section 2.2.6). In the work of [SRB10, SRB14] the authors
already shown that the intermediate flow filtering allows to significantly improve the
accuracy of optical flow. For this reason we skip such evaluation and proceed with a more
challenging datasets. We assess the median filtering procedure in the presence of more
severe artifacts. For this purpose we use the same approach to distribute data artifacts as
in Section 5.4.3.4. For each artifacts level we evaluate the performance of different mask
sizes of the median filter. Moreover, we present evaluation results of the median filtering
procedure on two image sequences - RubberWhale and Hydrangea datasets, since these
datasets represent scenes with different sizes of moving objects. For the evaluation we use
a baseline model (see Section 5.3.4), which includes the usage of a robust data term.

Qualitative results using color coding are shown in Figure 5.13. One can see the
improved robustness of optical flow computation, especially in the regions around image
artifacts (regions outliers in experimental Table 5.21)
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c d

Figure 5.13: Performance evaluation of flow median filtering on RubberWhale dataset
with image artifacts of thickness A3. (a) First frame of degraded image sequence. (b)
Second frame of the sequence. (c) Baseline model without median filtering. (d) Optical
flow model with median filtering with a spatial mask size p = 9. Flow errors due to image
artifacts are significantly reduced.

Quantitative results are presented in Table 5.21. Evaluating the obtained results we
can make the following conclusions:

• Flow median filtering significantly improves optical flow results. As it was discussed
earlier, in the case when artifacts are present in image data, errors in the flow
estimation which originate already on coarse image scales are propagated via a
warping step to the next computation level. Then, the incorrect flow serves as an
initialization for optical flow estimation. As a consequence, errors are accumulated
during the incremental computation. The median filtering is an effective correction
procedure to suppress flow errors already on earlier computation levels.

• Large sizes of a median mask are useful to filter data outliers and improve overall
accuracy of optical flow. From the evaluation results on the RubberWhale dataset we
can conclude that large sizes of a median mask are useful to suppress data artifacts.
Surprisingly, it is also true for the original data with no additional artifact structures.
In this case, the best results were given by a robust model with the median filtering
with a spatial mask p = 9. With the increased amount of artifacts the importance
of median filtering becomes even more prominent. As a conclusion - the stronger
are the artifacts, the larger size of median mask is required.

• Optimum size of a median mask depends on the size of moving objects and the
amount of flow discontinuities. To compare the performance of a median filtering
with different sizes of spatial mask we also evaluated the Hydrangea dataset. This
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Table 5.21: Performance evaluation of the flow intermediate filtering on images with data
outliers. For the evaluation two image sequences are used: the RubberWhale and the
Hydrangea dataset, to check the performance of a median filtering for different sizes of
moving objects. Artifact structures with thickness of A = 0 (no artifacts), 1, 2, 3 pixels
are added to the original images to simulate data outliers. Method: baseline, size of a
median filter mask p = {nofilter, 3, 5, 7, 9}, optimized σ in the range [0.15..2.0], optimized
α in the range [1.0..40].

RubberWhale dataset Hydrangea dataset

artifacts filter error error

all disc untext outliers all disc untext outliers

A0

– 0.157 0.617 0.129 0.152 0.203 0.518 0.102 0.251

p = 3 0.152 0.594 0.126 0.148 0.2 0.51 0.101 0.247

p = 5 0.147 0.576 0.124 0.144 0.198 0.504 0.1 0.243

p = 7 0.144 0.56 0.122 0.141 0.197 0.505 0.1 0.242

p = 9 0.142 0.556 0.121 0.14 0.198 0.511 0.1 0.243

A1

– 0.173 0.645 0.157 0.217 0.209 0.529 0.105 0.278

p = 3 0.163 0.61 0.143 0.199 0.206 0.522 0.105 0.275

p = 5 0.155 0.588 0.137 0.186 0.203 0.517 0.104 0.27

p = 7 0.151 0.575 0.133 0.172 0.202 0.516 0.103 0.266

p = 9 0.148 0.567 0.13 0.161 0.203 0.521 0.103 0.264

A2

– 0.221 0.708 0.235 0.3 0.219 0.539 0.114 0.312

p = 3 0.205 0.66 0.217 0.291 0.215 0.535 0.113 0.309

p = 5 0.172 0.607 0.151 0.261 0.212 0.531 0.111 0.301

p = 7 0.157 0.579 0.137 0.194 0.209 0.529 0.109 0.293

p = 9 0.151 0.57 0.132 0.172 0.209 0.531 0.108 0.288

A3

– 0.263 0.734 0.29 0.328 0.23 0.548 0.122 0.342

p = 3 0.243 0.721 0.268 0.323 0.226 0.545 0.121 0.338

p = 5 0.201 0.649 0.177 0.314 0.22 0.542 0.119 0.33

p = 7 0.17 0.601 0.147 0.277 0.217 0.54 0.116 0.319

p = 9 0.158 0.582 0.139 0.211 0.215 0.54 0.114 0.309

dataset is characterized by small sizes of moving objects (plant leaves) and large
amount of flow discontinuities (See Section 5.2.1). As a result, for smaller amount
of artifacts, the smaller size of a median mask is optimal (See Table 5.21). However,
for the artifact level A3 a median filter with a large mask size of p = 9 provides the
best results.

The evaluation of the flow median filtering procedure on the New Marble dataset
provides similar performance results (not shown here).

5.4.3.6 Experiment: Data Refinement

In this experiment we evaluate the procedure of data refinement (see Section 2.1.3.5) as
an additional correction step. It intends to improve the robustness of optical flow around
strong data outliers. For the evaluation we use a baseline model, which already includes
a robust data term, but excludes other robust settings (e.g. the median filtering and the
CLG approach).

Analyzing qualitative results of optical flow shown in Figure 5.14 we can notice, that
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flow errors due to the strong image artifacts are almost completely eliminated. The
visual quality is more appealing than the corresponding results using the median filtering
approach (see Section 5.4.3.5 and Figure 5.13). Quantitative results are given in Table
5.22.

a b

c d

Figure 5.14: Performance evaluation of a data refinement procedure on the RubberWhale
dataset with image artifacts A3 = 3 pixels. (a) First frame of degraded image sequence.
(b) Second frame of the sequence. (c) Baseline model without data refinement. (d)
Optical flow model with data refinement. Flow errors due to image artifacts are almost
completely eliminated.

Results of our performance evaluation are:

• Data refinement significantly improves the accuracy of optical flow computation in
the presence of image artifacts. Quantitative evaluation of optical flow model with
data refinement reveals, that it is useful to weight down the contribution of a data
term in the regions of strong image artifacts. As a result, accuracy of optical flow
computation significantly improves.

• Data refinement outperforms the median filtering approach for smaller sizes of a
median mask (p < 9). From both qualitative (see Figure 5.14) and quantitative
(see Table 5.22) we can observe, that the data refinement approach outperforms the
robust model based on the flow median filtering (see Figure 5.13 and Table 5.21),
except for the case when a larger mask of median filter is used (p = 9).

• Data refinement is especially useful within or around regions with strong data out-
liers. When compared with median filtering approach using a large spatial mask size
(p = 9) data refinement approach provided significantly better results in the out-
liers regions, however was less accurate in other statistics regions (all, disc, untext).
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Table 5.22: Performance evaluation of the data refinement procedure on images with
data outliers. Artifact structures with thickness of A = 0 (no artifacts), 1, 2, 3 pixels
are added to the original images to simulate data outliers. Method: baseline, model =
{no refinement,with refinement}, optimized σ in the range [0.15..2.0], optimized α in the
range [1.0..40].

noise model error

all disc untext outliers

A0
no ref 0.157 0.617 0.129 0.152

refine 0.156 0.591 0.131 0.156

A1
no ref 0.173 0.645 0.157 0.217

refine 0.163 0.602 0.143 0.186

A2
no ref 0.221 0.708 0.235 0.3

refine 0.163 0.603 0.144 0.183

A3
no ref 0.263 0.734 0.29 0.328

refine 0.168 0.609 0.15 0.197

A straightforward improvement would be a combination of both approaches into a
single optical flow method. We evaluate this possibility in our final experiment (see
Section 5.5).

The evaluation of data refinement approach on Hydrangea and New Marble datasets
gives similar performance results (not shown here).

5.4.4 Experiments: Confidence Measures

In this section we switch from the evaluation of different optical flow models to an im-
portant topic of automated confidence measures. This quantitative information could be
obtained from the input image data and the computed flow field. As it was outlined
earlier in our work, this topic is not sufficiently covered in the literature on optical flow.
However, for analysis of real life data, especially in the case when it is diverse in its qual-
ity and challenging to analyze, the topic of confidence measures is particularly important.
With the appropriate use of such measures it is possible to evaluate the quality of the
computed result and automatically optimize the model parameters. In the recent works
of [SRB10, ZBW11] the authors demonstrated the benefits of such optimization.

In this section we evaluate a number of confidence measures presented in Section 2.1.5.
We do not present the evaluation of such measures as the gradient-based approach and
the motion uniqueness criteria in our final results, since these measures did not show
an adequate performance. In the current evaluation we test the following confidence
measures:

• Data Constancy Error (see Section 2.1.5.3)

• Forward-Backward Check (see Section 2.1.5.5)

• Optimal Prediction Principle (see Section 2.1.5.6)
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Additionally, we test the performance of confidence measures on different datasets
(with varying amount of noise) and optical flow models. We use the RubberWhale dataset
and the following list of computation models:

• Simple method C1: Horn and Schunck method + multi-level computation

• Advanced method C2: Model C1 + flow-driven smoothness

• Baseline method C3: C2 + robust data term (see Section 5.3.4)

• Robust method C4: C3 + median filtering + combined local-global approach

• Noisy images σ = 10: we added Gaussian noise with zero mean and standard
deviation values of σn = 10 to the original RubberWhale dataset. Method: robust
method C4

• Noisy images σ = 20: the same as the previous model, but with an increased level
of noise ( σ = 20). Method: robust method C4

For the evaluation we vary the value of the smoothness parameter α and compare
distribution values of each confidence metric with the distribution of the average endpoint
error provided by the ground truth result (AEE). Quantitative evaluation of confidence
measures on a selected number of experimental models is presented in Figure 5.15.

A summary of comparison between automatically selected smoothness parameter α
using a confidence measure and the optimal parameter given by the ground truth is
presented in Table 5.23.

Table 5.23: Comparison of confidence measures for optical flow models C1 − C4 on the
original RubberWhale dataset and datasets with noise. Gaussian noise with zero mean
value and standard deviation values of σn = 10, 20 was added. The optimal value of a
smoothness parameter α selected using the corresponding confidence measure approach
is shown. Methods: Simple method C1 (Horn and Schunck method + multi-level com-
putation); Advanced method C2 (Model C1 + flow-driven smoothness); Baseline method
C3 (C2 + robust data term); Robust method C4 (C3 + median filtering + combined
local-global approach). No optimization of model parameters σ, ρ was performed.

Method optim dev opp fbd

Method C1 55 15 24 15

Method C2 20 15 22 15

Method C3 4.4 1.4 1.6 1.4

Method C4 3.6 1.8 2 0.8

Method C4 + noise (σ =10) 6.1 0.7 4.5 0.5

Method C4 + noise (σ =20) 10.5 1.7 8.7 1.1

Results of performance evaluation are:

• Confidence measure based on the Optimal Prediction Principle is more accurate to
predict quality of optical flow computation. Based on the evaluation of all optical
flow models (see Table 5.23) we conclude that OPP measure gives the best results
to describe the quality of the computed flow field in the case when ground truth
result is not known.
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Figure 5.15: Comparison of confidence measures for different optical flow models on the
RubberWhale dataset. The value of the corresponding confidence metric is plotted over
a list of varying smoothness parameters α. First Row: Baseline method C3. Second
Row: Robust method C4. Third Row: Robust method C4 on noisy images (σ = 10).
Forth Row: Robust method C4 on noisy images (σ = 20). First Column: Average
endpoint error given by the comparison of the computed flow field with the ground truth
result (aee). Second Column: Data Constancy Error measure (dev). Third Column:
Confidence measure based on the Optimal Prediction Principle (opp). Forth Column:
Forward-Backward consistency check (fbd).

• Performance of confidence measures depends on the optical flow model and input
data. Such measures as the Data Constancy Error (dev) and Forward-Backward
Check (fbd) failed to provide optimal results. With an increase of noise this effect
magnifies. Note, that we do not optimized other parameters, such as σ, to show the
influence of an individual parameter. In general, all confidence measures performed
less stable on the datasets with noise, which could potentially limit their application.

• If a confidence measure based on the Optimal Prediction Principle cannot be applied
due to violation of its assumptions the next optimal confidence measure is based on
the Data Constancy Error. This measure performed less accurate in comparison with
OOP metric (see Table 5.23). However, this measure has a number of advantages:
there are no assumptions about an image sequence and a motion model, except
the ones incorporated in the data constancy assumption; it is general and could be
applied for any optical flow model.
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5.5 Models Comparison

So far we have experimented on individual components of optical flow models. In this
section we put all the successful model into a single technique. We examine step by step
how additional optical flow features improve the accuracy of results. We do not provide
the performance analysis on the original data, because it does not comply with the purpose
of this work, which is focused on a challenging X-ray data. Instead, we use a dataset with
a simulated Poisson noise (P = 200) and substantial amount of image artifacts. Starting
from the simplest approach - the Horn and Schunck method we gradually include other
optical flow features and end up with the most advanced and robust model.

For a shorter model notation we use the name of the previously introduced model and
give names of additional features. The final model combines all the robust features. We
evaluate the following optical flow models:

• Model M1: Classical Horn and Schunck model (see Section 1.4.2)

• Model M2 = M1 + flow-driven smoothness term (see Section 2.1.4.3)

• Model M3 = M2 + multi-level computation (see Section 2.2.5)

• Model M4 = M3 + robust data term (see Section 2.1.3.1)

• Model M5 = M4 + combined local-global approach (CLG) (see Section 2.1.3.3)

• Model M6 = M5 + median filtering of an intermediate flow result

• Model M7 = M6 + data refinement step (see Section 2.1.3.5) using the forward-
backward check method as a confidence map (see Section 2.1.5.5)

Table 5.24: Comparison of optical flow models M1 − M7 on the RubberWhale dataset
with added noise and image artifacts. Poisson noise: Mean value of Poisson random
distribution P = 200. Artifact structures with thickness of A = 2 pixels are added to
original images to simulate data outliers. In addition to a common average enpoint error
(AEE) we provide a robust statistics metric R1.0 (see Section 2.1.1.3), which helps to
judge about qualitative performance. Method: according to model Mi, optimized ρ in the
range [0.5..2.0], optimized σ in the range [0.35..2.5], optimized α in the range [3.0..2000].

model AEE error R1.0 statistics

all disc untext outliers all disc untext outliers

M1 = HS 0.599 0.963 0.72 0.704 17.9 36.7 24.8 25.1

M2 = M1+ flow-driven 0.784 1.011 1.014 1.125 26.6 35 41.2 41.2

M3 = M2+ warping 0.51 0.904 0.637 0.745 13.1 31.8 13.5 18

M4 = M3+ robust data term 0.43 0.834 0.522 0.462 9.8 29.6 9.4 9.9

M5 = M4+ CLG 0.378 0.829 0.406 0.416 9.4 29.4 9 10.2

M6 = M5+ median filtering 0.376 0.82 0.395 0.409 9.1 28.3 8.9 9.7

M7 = M6+ refinement 0.353 0.821 0.351 0.386 8.8 28.1 8.6 9.5

Analyzing the results which are given in Figure 5.16 and the corresponding quantitative
performance metrics from Table 5.24 we can make the following observations:
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Figure 5.16: Comparison of optical flow models M1 −M7 on the RubberWhale dataset
with added noise and image artifacts. (a) First frame of degraded image sequence. (b)
Second frame of the sequence. (c) Ground truth result. (d) Model M1: Classical Horn
and Schunck. (e) Model M2 = M1 + flow-driven smoothness term. (f) Model M3 = M2

+ multi-level computation. (g) Model M5 = M4 + robust data term + combined local-
global approach. (h) Model M7 = M5 + median filtering + data refinement step.
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• As it was expected, the simplest optical flow model gives the worst accuracy. The
flow magnitudes were not captured correctly, since no strategy to cope with large
displacements were employed. The optimal model parameters are the large pres-
moothing parameter σ and the large smoothness regularization parameter α. By
oversmoothning the initial data this helped to reduce the influence of data outliers
(see Figure 5.16d).

• An interesting aspect of our evaluation is that the flow-driven smoothness approach
performed significantly worse then a simple method using the homogeneous regu-
larization. Adaptive smoothness regularization was not sufficient to cope with data
outliers (see Figure 5.16e) and provide filling-in effect in homogeneous image regions
(see Figure 5.16e).

• With the incorporation of a multi-level computation technique the flow in homoge-
neous regions is estimated correctly (see Figure 5.16f). Moreover, the estimation of
the magnitude of the flow field improves.

• The use of the combined local-global approach significantly improves the robustness
of the optical flow method under noise and data artifacts (see Figure 5.16g).

• Addition of the median filtering of intermediate flow results between levels of a
coarse-to-fine computation strategy and subsequent selective refinement of the data
term weight according to the automated confidence measure further improves ro-
bustness against artifacts (see Figure 5.16h).

To summarize, for all testing datasets with artifacts (Poisson noise P = 200 and
artifact structures A2) we compare the performance of a baseline method M3 (see Section
5.3.4) with a robust optical flow method M7. The quantitative comparison is presented in
Table 5.25 and qualitative visualization of computed flow fields is given in Figure 5.17. For
all dataset the robust model, designed for challenging X-ray data provides significantly
better results as measured using the average endpoint error metric for the entire image.

Table 5.25: Comparison of optical flow modelsM3 andM7 on the RubberWhale, Hydrangea
and New Marble datasets with added noise and image artifacts. Poisson noise: Mean
value of Poisson random distribution P = 200. Artifact structures with thickness of A =
2 pixels are added to the original images to simulate data outliers. Average endpoint error
and Robust statistics are shown. Methods: according to models M3 and M7, optimized
ρ in the range [0.5..2.0], optimized σ in the range [0.35..2.5], optimized α in the range
[3.0..40].

AEE error R1.0 statistics

all disc untext outliers all disc untext outliers

RubberWhale
baseline 0.43 0.834 0.522 0.462 9.83 29.59 9.44 9.93

robust 0.353 0.845 0.351 0.39 9.1 30.26 8.8 10.2

Hydrangea
baseline 0.728 0.63 0.737 0.918 18.32 16.45 17.05 27.49

robust 0.343 0.632 0.279 0.413 5.84 15.98 4.19 8.02

New Marble
baseline 0.077 0.492 0.054 0.096 0.29 10.87 0 0.55

robust 0.067 0.523 0.051 0.086 0.41 14.81 0 0.74



142 CHAPTER 5. EVALUATION ON SYNTHETIC DATA

a b c

d e f

g h i

Figure 5.17: Comparison of advanced optical flow model M4 and robust optical flow model
M7 on RubberWhale dataset with added noise and image artifacts. (a) Ground truth flow
result for the RubberWhale dataset. (b) Flow field computed using M4 optical flow model.
(c) Flow field computed using the robust M7 optical flow model. (d) Ground truth flow
result for the Hydrangea dataset. (e) Flow field computed using M4 optical flow model.
(f) Flow field computed using the robust M7 optical flow model. (g) Ground truth flow
result for the New Marble dataset. (h) Flow field computed using M4 optical flow model.
(i) Flow field computed using the robust M7 optical flow model.

5.6 Evaluation Summary

In this section we provide a summary list of our quantitative experiments with synthetic
data presented in the current chapter. We enlist all the conclusions as it is stated in the
corresponding experimental section. This list of justified principles should serve us as a
general reference for the choice of appropriate optical flow models and their parameters.

Experiments: Noise

• Gradient constancy assumption with the robust setting provides good results for
both Gaussian and Poisson noise models.

• Higher order derivatives are sensitive to noise for the Gaussian, Poisson and Spike
noise models.
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• Grey value constancy assumption is more robust for the Spike noise model.

• Grey value constancy assumption is more robust for the Poisson noise model in the
regions of image discontinue.

• Integration of local information is useful to improve results on noisy data.

• Data normalization improves results on noisy data.

• Data normalization approach outperforms the Combined Local-Global approach
(CLG) on flow boundaries.

• Data normalization can be further combined with the CLG approach to improve
results.

Experiments: Preprocessing

• Noise filtering of initial data can be helpful.

• For each noise model there is an optimal filtering procedure.

• Gaussian filtering is a simple and effective filtering procedure.

• Gaussian filtering is useful to remove Poisson noise.

• Usefulness of Anisotropic diffusion filtering for complex noise scenarios.

• The appropriate choice of a filtering procedure and its parameters is crucial, however,
a challenging task.

Experiments: Artifacts

• Brightness correction procedure significantly improves results of optical flow in the
presence of brightness variations

• Multiplicative brightness change is the most complicated brightness change scenario.

• Contrast enhancement is not useful for noise-free images.

• Contrast enhancement could be helpful for low-contrast images with noise.

• Performance of contrast enhancement depends on the statistics of noise distribution.

• The contrast-to-noise ratio (CNR) is a crucial quality measure for analysis of X-ray
data.

• Higher-order data terms provide better results for low-contrast images.

• Gradient value constancy assumption provides the best results for low-contrast data.

• Lower values of the smoothness parameter are required for low-contrast data.
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• Gradient constancy assumption is the best data constraint for additive illumination
changes.

• Log-derivatives based data term is robust with respect to multiplicative brightness
changes.

• Log-derivatives based data term outperforms gradient data term only for large values
of multiplicative factor.

• Data preprocessing of initial image data significantly improves robustness against
artifacts related to changing brightness conditions.

• For low-contrast image data the robust data term performs worse than the original
(quadratic) data term.

• Gradient constancy assumption outperforms the grey value constancy assumption
in a robust setting for low-contrast data.

• Robust data term significantly improves optical flow results in the presence of image
artifacts.

• Flow median filtering significantly improves optical flow results.

• Large sizes of a median mask are useful to filter data outliers and improve overall
accuracy of optical flow.

• Optimum size of a median mask depends on the size of moving objects and the
amount of flow discontinuities.

• Data refinement significantly improves the accuracy of optical flow computation in
the presence of image artifacts.

• Data refinement outperforms the median filtering approach for smaller sizes of a
median mask (p < 9).

• Data refinement is especially useful within or around regions with strong data out-
liers.

Experiments: Confidence Measures

• Confidence measure based on the Optimal Prediction Principle is more accurate to
predict quality of optical flow computation.

• Performance of confidence measures depends on the optical flow model and input
data.

• If a confidence measure based on the Optimal Prediction Principle cannot be applied
due to violation of its assumptions (linear motion, more then two frames available)
the next optimal confidence measure is based on Data Constancy Error.



Chapter 6

Applications in X-ray Imaging

In this chapter we show the application of the developed optical flow and data analy-
sis methods on a number of scientific problems from different research fields. For each
application we start by giving a short introduction to the subject of investigation. We
describe important aspects of the X-ray imaging setup and sample preparation. Then,
we give a short description of a problem and specify our tasks for data processing. We
evaluate each dataset according to our data taxonomy presented in Section 5.1. Then we
provide a detailed discussion on the usage of appropriate data preprocessing routines, de-
rive a suitable optical flow model, optimize model parameters and perform data analysis,
visualization and interpretation of the results.

6.1 Motion Analysis

6.1.1 Particles Fluid Dynamics in Semi-Solid Metals

6.1.1.1 Introduction

Semi-solid metals are two-phase mixtures, which exhibit unusual rheological properties
[Fle91]. Without stress they behave like elastic solids, but when a shear force is applied
a transition into a viscous mixture takes place.

The transition from a solid phase filled by liquid to a viscous state is accompanied
by the breakup of the solid skeleton into individual particles and clusters which can
flow independently. This breakup process is known as a thixotropic effect [SMF72]. In
comparison to high pressure die casting, semi-solid casting (SSC) is performed at lower
temperature conditions, which has a number of advantages [ZER+13].

The liquid phase is well-studied and can be described as a Newtonian fluid. However,
the flow properties and rheology of a solid-liquid mixture are poorly understood. As an
example, such characteristics as size and distribution of particles and their clusters, flow
properties, morphology of particle groups and events of breaking apart and solidify are
crucial to be considered for semi-solid casting.

A typical approach to study rheology of semi-solid metals is to use experimental
rheometers by measuring viscosity of a system. With the use of this technique systematic
studies were performed to evaluate the dependence on various parameters. However, these
studies are only statistical and do not provide enough information to describe and predict
the actual casting process. Therefore, in order to investigate more complex phenomena an
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in situ imaging method is required. For this purpose X-ray imaging methods are highly
appropriate due to the penetrating ability of the radiation.

6.1.1.2 Experimental Setup

The experiment was performed at a beamline station ID15a of the European Synchrotron
Radiation Facility (ESRF). For our experiment a high absorption contrast is required
to allow for high acquisition rates. For this purpose the high flux beamline ID15a was
chosen to carry out this study. ID15a beamline was operated in a white beam mode: the
radiation from the source was filtered by approximately 20 mm of silicon, resulting in a
photon flux density of approximately 1015 photons/mm/s.

The X-ray detector was an indirect system: an optical lens projects the luminescence
image of a scintillator screen via a mirror system onto the sensor of a CMOS camera. In
order to acquire images with high frame rates, a Photron SA1 camera is used, which is
based on a CMOS sensor with 1024 × 1024 pixels (size 20 µm) and a true dynamic range
of 800:1 grey levels (10 bit, with a 12 bit digitalization) (see Section 1.3.1 for details).

The experimental setup is shown in Figure 6.1. It consists of an in situ furnace with a
linear motor driving injection of the sample material and an imaging system. The furnace
is an aluminium case covered with vermiculite plates to shield the heat produced by four
Osram Xenophot 64635 HLX heating lamps (150 Watts, 15 Volts). A sheet of stainless
steel is attached to a linear stepping motor and serves as a piston, pushing downwards
into the sandwich structure at 20 mm/s velocity, thereby injecting the semi-solid material
into the channel.

Figure 6.1: Setup for fast radiography experiment on semi-solid alloys. (a) Experimental
hutch of the ID15a high energy beamline at the ESRF synchrotron facility with an in-situ
furnace and a detector system. (b) Close-up view into the sample environment: open
in-situ furnace, four Xenophot heating lamps, a linear stepping motor drives down the
piston into the sandwich structure, thus injecting the semi-solid material during in-situ
experiment. Image: [ZER+13]
.

The alloy Al-Ge32(wt.) was chosen for the experiment. The temperature for the SSC
process is 420C for solidus temperature and liquidus temperature of 550C. After each
experiment the samples were cooled down at the room temperature, extracted from the
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sandwich structure and carried for metallographic investigation under the light microscope
(see Figure 6.2). Further details on sample preparation and sample environment can be
found in the original publication [ZER+13].

a b

c d

Figure 6.2: Radiographic sequence showing frames 250, 350 and 450 of the right-angle
turn geometry. Images from (a) to (c) are 0.2 seconds apart. (d) Metallographic section
obtained after the experiment to verify structural changes. Image: [ZER+13].

The employed Photron SA1 camera can acquire up to 5400 images/s in a full frame
mode. Due to the optical magnification, the detector system operates with an effective
pixel sampling of 5.5 µm, which results in a spatial resolution of R > 11 µm (see Section
1.3.1). For the current study the acquisition rate was 500 images/s for the bottle-neck
geometry (Figure 6.3) and 1000 images/s for the right-angle (Figure 6.2).

6.1.1.3 Task for Data Processing

The main task for data processing is a quantitative investigation of complex flow dynamics
in semi-solid alloy systems. For this purpose we perform:

• Quantitative motion estimation to measure the velocity of solid particles, clusters
and air bubbles.

• Visualize trajectories to reveal flow patterns and interesting events during the cast-
ing process.

• Perform motion-based segmentation (using magnitude of the flow or flow direction
as a measure) to classify particles and allow for extensive morphological analysis.
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6.1.1.4 Data Evaluation

Prior to data processing and optical flow computation we perform an input data charac-
terisation according to our data taxonomy 5.1:

• Image noise: The dataset contains high amount of noise due to non-optimal imaging
conditions, in particular short exposure time. As a result we obtained image data
which is contaminated with high amount of Poisson noise. Additionally, there is
small amount of saturated (”dead”) pixels within image data. A proper treatment
of noise is mandatory. Moreover, an optical flow model which is robust under noise
is required.

• Contrast level : The image contrast is low, the solid particles and air bubbles are
hardly distinguishable from the background. A proper treatment of low-contrast
data is needed.

• Object size: The solid particles, clusters and air bubbles are of average size. There
are no small and large objects.

• Object distribution: Particles are distributed normally. In some cases the objects
are close to each other and in some cases they are distributed sparsely. The object
distribution should not pose a concern for data processing.

• Object details : Individual particles are of a homogeneous contrast, no details are
present. As a result, the main source of information for the data term are the
boundaries of each particles. In the case of particle clusters, which are moving con-
jointly the amount of details is higher and is composed of details of each individual
particle. In general, the amount of details within particles is not sufficient, that is
why the appropriate design of the smoothness term becomes important.

• Image artifacts : There are very strong variations of brightness both in the space
and time. There artifacts may pose a major problem for the optical flow estimation.
A proper data correction technique is mandatory.

• Motion type: The motion model may be classified as rigid. However, most of the
circular particles cannot undergo the rotational motion (it is not captured for circu-
lar shapes). More complex clusters of particles may rotate, which frequently occurs
during the solidification stage.

• Motion range: Motion of particles thorough out the process is slow, thanks to the
correctly chooses parameters for data acquisition, which allowed adequately sample
the process, yet avoid significant motion blur.

• Motion discontinuities : There is a certain amount of discontinuities between the
moving particles and clusters. However, this should not affect the computation
of flow fields in a substantial way. A more dangerous scenario is the presence of
occlusions between moving particles and their clusters, which can happen on later
stages of the thixocasting process.
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Table 6.1: Evaluation of the semi-solid alloys dataset.

Image Data Motion

noise: high size: average type: rigid

contrast: low dist: norm range: small

artifacts: brightness detail: low disc: occlusions

A summary of evaluation of this dataset is given in Table 6.1.

Requirements on the Results

Accuracy : For this dataset we do not need sub-pixel accuracy. The error in the range of
1-3 pixels is sufficient to accomplish the task for data processing.

Density : Dense flow fields are not mandatory. The correct estimation of the flow vector
for each particle is sufficient. The fact that this requirement is relaxed gives some degree
of freedom for the data preprocessing step - we can use much stronger filters to get rid of
noise and artifacts.

Motion components : The full flow is required, i.e. both the flow magnitude and the
flow direction.

Consistency : We do not pose any consistency constraints.

Motion boundaries : We do not aim to capture strict flow on the boundaries of parti-
cles and particle cluster. Again, this gives us the possibility to increase the influence of
the smoothness term and outcome the problem of low feature details.

Computation time: Computation time is not an issue, the processing is done offline.

Data size: A typical size of a single image frame is 1024 × 1024 pixels. An image
sequence can consist of up to 1000 time frames. There is no restriction on processing
due to the size of the input data - both image pairs are fitted into the memory and the
processing is done sequentially.

6.1.1.5 Data Analysis: Preprocessing

In order to improve the raw data and meanwhile preserve spatial and temporal details we
develop an preprocessing routine.

Flat- and dark-field correction. The routine starts with dark field filtering (3.1.2.2) to
correct for the fixed-pattern noise, including ”dead” and saturated pixels. Flat-field ra-
diograms are not available for this type of experiment, which is a typical limitation for
fast in situ experiments. Thus, temporal brightness variations have to be corrected by a
dedicated filtering step.
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Artifacts removal. Next we proceed with applying a 3D Hybrid median filter (Section
3.1.1.2) to eliminate the high contrast speckle noise and small image artifacts caused by
dust and scratches on the scintillator screen. For this procedure a number of time-lapse
frames are used (N = 5). The procedure effectively removes small artifacts.

Brightness variation correction. In order to equalize non-uniform brightness variations
we perform an image leveling using the median filter with a large spatial mask (Section
3.1.2.4). This part of the filtering process removes varying large-scale brightness patterns,
but retains local details.

Noise removal. Finally, we use an anisotropic diffusion filtering (Section 3.1.1.2) to elim-
inate the image noise and at the same time to enhance particle edges.

Background subtraction. To improve visual appearance of the filtered radiographs we
subtract background which contains no structural details to reveal only the semi-solid
material.
On Figure 6.3we show the result of our preprocessing procedure.

a b

Figure 6.3: Preprocessing of the original radiographic sequence. (a) Original radiograph.
(b) Filtered radiograph. The filtering procedure consists of noise removal, brightness
normalization, anisotropic diffusion filtering and background subtraction.

6.1.1.6 Data Analysis: Flow Computation

In order to compute flow fields we employed an advanced optical flow model, which takes
into account multiple image features (Section 2.1.2.5) and a priori information about
motion model. For the construction of the data term we assume the constancy of image
brightness (Section 2.1.2.2) and constancy of spatial intensity gradients (Section 2.1.2.3).
This joined assumption is more suitable for the motion estimation, if there is a small
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amount of spatial images features and objects are of low contrast. To provide robustness
against noise and data artifacts that remain after a preprocessing step, the data term
is extended by a combined local-global approach (Section 2.1.3.3). Since we do not aim
to capture fine details of moving particles, air bubbles and particle clusters, and the
correct estimation on a more coarse scale (particle shape) is sufficient, a large value of the
integration parameter in the range of ρ=[0.7...1.5] can be used.

For the motion constraint we choose a flow-driven smoothness approach (Section
2.1.4.3). The rather high image acquisition rate (500 images/s and 1000 images/s) results
in a smooth gradual motion of the constituents, from which we can benefit by introduc-
ing an additional spatio-temporal smoothness constraint (Section 2.1.4.4). In this way,
the final optical flow model takes into account motion between more than two successive
frames (N = 3). Furthermore, to separate the motion of the liquid front from the flow
of adjacent particles, the smoothness is adapted (see Section 2.1.4.5) to a spatial mask
covering the air-liquid interface.

In order to cope with a large range of flow velocities a coarse-to-fine computation
strategy is used (Section 2.2.5). In order to visualize the resulted flow fields we use a color
pseudo coding, which indicates the direction by color and the velocity by its brightness.

a b c

Figure 6.4: Flow computation during semi-solid casting using optical flow. (a) Filtered
radiographic projection. (b) Calculated flow map. According to the color wheel at the
bottom right a color shows direction and brightness encodes velocity. Arrows: (1) air
bubbles, (2) cluster of particles moving at high speed on the crest of the liquid front, (3)
a static particle around solidified region, (4) slowly moving bulk skeleton. (c) Projected
average velocity, integrated from frame 50 to frame 250. It shows the curved trajectories
of air bubbles, as well as several solid particle clusters which can be seen at the lower
right.
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6.1.1.7 Data Analysis: Flow Analysis

The results of optical flow computation on a bottle-neck sequence are shown in Figure
6.4. One can clearly distinguish between the liquid and the solid phase whereby the latter
appears darker due to the lower X-ray density of aluminium compared to the Ge-rich liquid
matrix. Air bubbles are difficult to distinguish from aluminium particles. Compared to
the latter, they descend at higher velocities and appear darker in the radiographs (arrow
1 in Figure 6.4b). Two or three small clusters of solid particles detached from the bulk
and move freely through the channel following the liquid-air interface (arrow 2 Figure
6.4b). One isolated particle appears to be completely static on this frame (arrow 3). The
expanding liquid forms a semi-circular crest of constant velocity, as it can be expected for
a Newtonian fluid. The movement of the solid bulk in the upper part of the radiograph is
slow, which is captured by the computed flow field in Figure 6.4c (indicated by arrow 4).
Evaluating the quantitative flow amplitude the liquid is found to advance at a maximum
speed of 3.1 mm/s, with the air bubbles descending at relatively high speed, up to 3.9
mm/s. The velocity of the particle cluster at the lower liquid-air interface is 1.6 mm/s,
and the average speed of the solid bulk in the upper part of Figure 6.4b remains less then
0.3 mm/s.

A projected time evolution of interior of semi-solid alloy is shown in Figure 6.4c.
Here, the average velocity was projected for each pixel over several hundred time frames,
i.e. integrating from frame 50 to frame 250, while removing the velocities of the liquid
front with a automatically extracted contour mask. The resulting color-coded velocity
projection shows dynamics of solid particles, clusters and air bubbles. The latter follow a
curved trajectory until the downwards directed pressure is balanced by the buoyant force
and their motion describes a hook trajectory.

a b

Figure 6.5: Example of turbulent motion in the right angle turn channel. (a) Input
radiograph with magnified region of interest. (b) Color-coded turbulent motion of a
single particle recorded over 23 frames. The arrows indicate the direction of particle
motion as well as the velocity amplitude (arrow length).

When the experiment is carried out with a different channel geometry (right-angle
turn) the flow behavior changes dramatically. The right-angle mold geometry was chosen
to create a more turbulent flow, in the hope that the flow of both liquid and solid phases
would be more conjoint compared to the bottleneck geometry. Judging from the metal-
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lographic sections of the final structure (see Figure 6.2d) the solid phase appears indeed
to stay closer to the liquid front. Furthermore, evaluation of visualized flow fields reveals
numerous particles which exhibit turbulent, Brownian-like motion. An example of such
event can be seen in Figure 6.5.

A spontaneous break-up of a larger particle cluster from the solid skeleton is displayed
in Figure 6.6. A large region of the solid phase, approximately 1.5 mm in diameter remains
frozen for approximately 35 ms (Figure 6.6), then suddenly the upper half of this cluster
moves at high speed into separate directions, indicated by velocity magnitude flares, while
the lower part of material remains still.

a b c

Figure 6.6: Example of sudden breakup of a larger cluster of particles, visualizing
thixotropic effect. Images show radiographs of the right-angle turn geometry with the
super-imposed velocity amplitude with brightness. (a) Frame 270, rectangle indicates a
region where only little motion of the solid phase is observed. (b) In frame 296 the solid
skeleton in the same region has become complete static (i.e. solidifies). (c) 34 frames
later (frame 330, 35 ms apart) the static structure breaks up into many parts.

6.1.1.8 Results

In situ experiments by means of fast X-ray radiography with the optical flow analysis
revealed a multitude of dynamical effects, particularly for right-angle turn geometry of
the flow channel. Here, isolated turbulent particle motion and transition from a frozen
solid skeleton to moving particle / clusters could be observed. This, we believe, is the
first visual proof of the thixotropic break-up during semi-solid injection.

For the bottleneck channel in the narrow part only few particles traverse the bottle-
neck, the remains accumulate at the entrance. The solid movement comes to a complete
halt, when the liquid has fully filled the recipient and compressed solid particles block
further flow through the channel. Our results clearly show the inter-particle as well as the
particle-wall friction to be the hindering force during semi-solid injections through thin
cavities.

On the contrary, both solid and liquid phase moved relatively conjointly through the
right-angle turn in the second experiment, which was found to locally exhibit turbulent
flow resulting in Brownian-like particle motion and breakup of larger clusters into smaller
particles. It appears that the less laminar flow of the liquid which takes place in such
channel-turns and -corners allows the solid skeleton to advance at a similar speed with
the liquid.
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These investigation extended by others geometries or introduction of additional com-
pounds, as well as temperature dependence studies should advance the understanding of
semi-solid casting technology.

6.1.2 Analysis of Morphogenesis in Frog Embryos

6.1.2.1 Introduction

A primary goal in biology is to understand the behavior of cells during the development
of an organism. One way to reach it is to image the actual morphological changes of em-
bryonic structures in vivo with sub-cellular resolution. Many morphogenetic events take
place in the process of embryogenesis. One particularly important stage is gastrulation,
a stage when a series of dramatic changes occur and coordinated cell movements results
in a transformation of a simple, homogeneous ball of cells into a complex multi-layered
organism [KDS03].

In model organisms, such as Xenopus laevis and zebrafish, cell movements, tissue
and organ formation have been studied by a number of well-established imaging meth-
ods: microscopy for explants and fixed embryos, in vivo using fluorescence microscopy
[KSWS08, HS09] or microscopic magnetic resonance imaging [PBV+07]. However, these
methods do not allow to visualize in vivo cell behavior in optically opaque living embryos
with micrometre-scale spatial resolution.

To overcome these limitation we use in vivo time-lapse X-ray microtomography, based
on a single-distance phase contrast and supplemented with a multi-scale motion analysis
to examine the process of embryonic development.

Phase-contrast imaging exploits high coherence and high intensity properties of the
radiation produced by modern synchrotrons. During early developmental stages verte-
brate embryos are composed of light chemical elements (comparable with water). As a
result, for hard X-rays phase changes in the transmitted wave dominate the effects of
attenuation of the intensity. This allows to avoid high dose deposition attributed to a
conventional X-ray absorption imaging, which is a crucial aspect for investigation of liv-
ing organisms. Due to a high penetration depth, high spatial and temporal resolution
phase-contrast microtomography is a genuine 3D imaging modality to visualize the whole
scale of embryonic structures: from organs, tissues and single cells, down to subcellular
structures such as nuclei and yolk platelets.

6.1.2.2 Experimental Setup

The experiment described in this work was performed at beamline station 2-BM-B of
Advanced Photon Source synchrotron facility (X-ray beam energy E = 30 keV, photon
flux density is ∼ 1012photons/s/mm2). The experimental setup was optimized for a low
dose deposition and longer observation time. Additionally, in order to avoid blurring
artifacts due to cells motion and obtain sufficient image contrast a compromise between
parameters of the acquisition process had to be made. After the phase retrieval algorithm
was applied on projection radiography, a filter-back projection tomographic reconstruc-
tion method was used to obtain a 3D distribution of electronic density of the sample.
The following parameters were used during the acquisition procedure: expose time per
projection is 15 ms, number of projections N = 2000, which yields a 18 s acquisition time
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for one tomogram with the continuous rotation of the sample. To obtain a time-lapse
images of the development process the waiting time between subsequent tomograms was
10 minutes. These time intervals were long enough to provide an adequate observation
time and sufficiently short to result in a gradual cell movement between the subsequent
time frames, which permits a reliable motion estimation. The steps of sample preparation,
such as in vitro fertilisation, embryo culture and staging were carried out as described in
[KKK+09]. The X-ray phase-contrast microtomography setup is shown in Figure 6.7.

Figure 6.7: Experimental setup for phase-contrast X-ray microtomography. A parallel
photon beam is produced by a synchrotron source. A monochromator is used to change
the properties of the beam. X-rays propagate over a distance d = 50m and interact with
a living Xenopus laevis embryo immersed in a buffer solution and suspended by agarose.
The sample is mounted on a rotation stage to perform a tomographic scan. The 2D
detector consists of a scintillator, converting X-rays into visible light, a mirror system, an
optical lens, and a CMOS camera with 2016 × 2016 pixel resolution and pixel size 11 ×
11 µm2, which yields an effective pixel size of ∆x = 2.2µm.

Figure 6.8 shows 3D renderings of a mid-sagittally cut tomographic volumes of an
embryo at the developmental stages 11.5, 12.0 and 12.5. Single cells, tissue layers and
important embryonic structures are distinguishable, including the blastopore, archenteron,
ventral and dorsal blastopore lips, blastocoel, blastocoel roof and floor, and the porous
cell network between archenteron and blastocoel. A detailed, step by step protocol for the
sample preparation, description of the experimental setup and data acquisition pipeline
could be found in [MEW+14].

6.1.2.3 Task for Data Processing

Morphogenesis is a complex process, it involves many diverse and tightly coupled cell
movements and tissue changes. The whole underlying dynamics can be captured by
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Figure 6.8: 3D time-lapse series of Xenopus laevis embryo during gastrulation stage.
Mid-sagittal (a-c) and mid-horizontal (d-f) cuts of embryo 3D renderings at stages 11.5
(0 min), 12 (62 min) and 12.5 (114 min). Tissue layers are labeled as follows: ectoderm
(blue), mesoderm (orange), and endoderm (green). The following structures are identified:
Animal pole (AP), Archenteron (ARC), Brachets cleft (BC), blastocoel (BLC), blastocoel
floor (BLCF), blastocoel roof (BLCR), blastopore (BP), dorsal and ventral sides (D, V),
dorsal and ventral blastopore lip (DBL, VBL), porous cell system between archenteron
and blastocoel (PS), ventral animal pole (VAP) and vegetal pole (VP).

optical flow methods. To analyze the entire multitude of morphogenetic movements and
events we use a multi-scale approach. In this approach we distinguish the following steps:

• Perform dense, quantitative motion estimation of individual cells and tissues. Vi-
sualize global patterns of morphogenesis during mid-gastrulation stage.

• Distinguish collective motion and motion of individual cells. Discriminate between
passive and active movements. Draw conclusions about cause-and-effect and depen-
dency of morphogenetic processes.

• Track individual cells, analyze their dynamics to investigate interaction mechanisms
between cells.

6.1.2.4 Data Evaluation

First, we evaluate our embryo datasets to identify possible problems and gather useful
information for the design of an effective data processing pipeline. This data classification
according to our data taxonomy 5.1 reads:
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• Image noise: The original radiograms contain high amount of noise due the short
exposure time, which was necessary to limit radiation damage to the sample. After
the tomographic reconstruction the noise issue is partially solved. However, the data
may still suffer from the presence of noise, that is why optical flow models which
are robust with respect to noise should be used.

• Contrast level : The image contrast in the reconstructed tomograms after the phase-
retrieval is sufficient. It is possible to distinguish between tissues, organs, individual
cells and even subcellular structures, such as nuclei. The good constrast level is
strong point of the dataset. (See Figure 6.12 a).

• Object size: The structures of each tissue or organ are individual cells of different
types. Most of the calls are small, some of the cells types (ectoderm) are even hardly
resolved. The size of objects can be a major problem for optical flow estimation.
(See Figure 6.12 a).

• Object distribution: Cells are closely packed to form a tissue or an organ. The cells
distribution can be classified as dense. Such allocation in a combination with the
small size of cells pose a major challenge for data processing. (See Figure 6.12).

• Object details : The amount of feature in tissues, organs or individual cells is high
(except very small cells of ectoderm). Again, this property is a strong point of the
dataset. (See Figure 6.12 a).

• Image artifacts : There are very strong variations of brightness in the original ra-
diographs (See Figure 6.9). The variations appear as horizontal stripes which are
shifting in time. The artifacts are severely degrading the original data. After the re-
construction brightness inhomogeneities cause very pronounced ring artifacts. There
artifacts pose a major problem for the optical flow estimation. The use of proper
brightness and ring artifacts correction techniques is mandatory.

• Motion type: The motion of tissues, organs and individual cells is non-rigid. Cells
may deform and change their shape. Such changes, however, do not occur rapidly
and can be assumed to be locally smooth.

• Motion range: Motion of cells is slow and there is not much variation in the motion
range. The frame rate of the detector system was adequate to capture morphogenetic
movements.

• Motion discontinuities : There are a lot of motion discontinuities between the moving
cells. Adjusted structures can move in completely different direction.

A summary of evaluation of embryo dataset is given in Table 6.2.

Requirements on the Results

Accuracy : For this dataset we require accurate results. The error in the range of 1-2
pixels would be sufficient, but exceeding values should be eliminated from the results or
indicated.
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Table 6.2: Evaluation of the embryo dataset.

Image Data Motion

noise: average size: small type: non-rigid

contrast: high dist: dense range: small

artifacts: brightness, rings detail: high disc: high

Density : Dense flow fields are mandatory to capture differences in cells motion.

Motion components : The full flow is required, i.e. both the flow magnitude and the
flow direction.

Consistency : We do not pose any consistency constraints.

Motion boundaries : We aim to capture strict flow on the boundaries of moving cells.
This information is crucial to analyze cell-to-cell behaviour.

Computation time: Computation time is not an issue, the processing is done offline.
But taking into account he size of tomographic datasets (see next point), it would be a
big advantage to perform the computation on GPU to speed up the process.

Data size: The original size of a single tomogram is 2016 × 2016 × 2016, which cor-
responds to 32 Gb of floating-point data. This tremendous amount of data is impossible
to process on CPU in a reasonable time. That is why data should be reduced or processed
using GPU technology. Even in this case memory management is a major challenge.

6.1.2.5 Data Analysis: Preprocessing

For the experiment described in this section the imaging conditions were optimized for
a low-dose scenario and a strict compromise have been made between data quality and
embryo viability. As a consequence, the dataset possess all kind of image degradation
artifacts and is very challenging to analyze. Here we enlist data preprocessing steps to
remove artifacts and improve signal-to-noise ratio as a preparation step for further data
analysis.

Removal of hot/dead pixels and brightness variations. The procedure starts with a re-
moval of hot and dead pixels (Section 3.1.2.2). A single dark field image D is computed
using a median of 60 dark-field images D1...D60, recorded independently (to acquire im-
age statistics). Then, flat-field images and original radiographs are dark-field corrected by
taking a difference between the image D every flat field image, as well as with the original
radiograph. Due to cooling-induced thermal instabilities of the multilayer monochroma-
tor at the 2-BM-B beamline a temporally varying horizontal stripe brightness pattern
significantly degrades the image quality. A crucial step is the correction of the initial ra-
diographs and the flat-field images prior to any image reconstruction procedure. For this
purpose before the flat-field correction grey values in each pixel along a given horizontal
line are normalized to the mean value in this line (Section 3.1.2.4). After the image level-
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ing of flat-fields images a single flat-field image F is calculated as a median. Normalized
radiographs are then flat-field corrected using image F . Individual steps of the filtering
procedure are shown in Figure 6.9.

Figure 6.9: Removal of brightness variation artifacts, flat-field and dark-field correction.
(a) Raw projection radiograph. (b) Flat-field image. (c) Dark-field image. (d) Projec-
tion radiograph with brightness artifacts removed. (e) Flat field image with brightness
artifacts removed. (f) Flat- and dark-field corrected projection image with brightness
artifacts removed.

Ring-artifact removal. Because of short exposure times and, as a consequence, low count
rates, the CMOS camera sensor produces characteristic vertical stripe artifacts. Since
such patterns are sensor related and independent of the angle of rotation, they give rise
to ring artifacts in the reconstructed volume. Ring artifacts can be effectively filtered in
polar coordinates, in which circular brightness patterns become straight lines and can be
easily identified. To implement this a filtering procedure is performed in the Fourier do-
main. As a first step, the Fourier transformation along horizontal and angular coordinates
is done. Then, grey values of the plane corresponding to a zero angle are substituted by
median values of adjacent planes. As a final step, an inverse Fourier transformation is
computed to obtain a stack of filtered sinograms. Figure 6.10 shows results of the ring
artifacts removal procedure.

Phase retrieval. To extract a 3D distribution of refractive index a simple linear phase
retrieval is performed [PN98].

Tomographic Reconstruction. The final step of data processing is 3D tomographic re-
construction using the filtered back-projection method (See Section 1.3.2.2). Since the
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a b c

Figure 6.10: Removal of ring artifacts. (a) A horizontal slice through the reconstructed
volume (no ring artifacts filtering was used). (b) Reconstructed slice with the ring ar-
tifacts reduction procedure applied. (c) Difference between processed and unprocessed
images shows the removed ring artifacts.

number of acquired projections is sufficient and an efficient data preprocessing pipeline is
established, we achieve a good quality tomographic reconstruction.

6.1.2.6 Data Analysis: Flow Computation

Even after an extensive pre-processing procedure, time-lapse sequences are still challeng-
ing to analyze in terms of automated techniques. For the reliable computation of flow fields
we use a robust 3D variational optical flow method. For the modeling of the data term
we choose the constancy of pixel brightness (Section 2.1.2.2). Since embryonic structures
contain a lot of image details which are highly textured, and the grey value constancy
assumption is more robust in the presence of noise, there is no benefit to use the gra-
dient constancy assumption (as we concluded in our experimental evaluation). For the
regularization of the motion field we use the flow-driven smoothness assumption (Section
2.1.4.3).

Before motion computation the input images are smoothed using a Gaussian filter
with a large spatial mask (optimal choice is in the range σ = [1.2 . . . 2.0]). To further
improve the performance with respect to noisy data, we incorporate a local-global ap-
proach (Section 2.1.3.3), that takes into account image data from a local neighborhood.
The optimal values for the integration scale parameter are in the range ρ = [0.5 . . . 1.2].
We use a multi-level computation procedure (Section 2.2.5) to capture the entire range
of cell velocities. The number of warping levels and the warping scale parameter are the
same as for the baseline method (Section 5.3.4). A median filtering of the flow fields at
the intermediate computation levels is a crucial step to exclude data outliers due to the
existing image artifacts. In general, we can also use a forward-backward checking as an
automated confidence measure (Section 2.1.5.5) to discard flow vectors which are not re-
liable. As a result of optical flow computation, we obtain a dense 3D velocity field, which
we use for further analysis. A visualization of the computed optical flow is given in Figure
6.11, using sparse 3D vector glyphs. The assessment of the accuracy of the optical flow
computation we present in the section, dedicated to cell tracking (See Section 6.1.2.8).
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Figure 6.11: 3D time-lapse series of Xenopus laevis embryo during mid-gastrulation. (a-
c) Mid-sagittally halved embryo renderings at stages 11.5 (0 min), 12 (62 min) and 12.5
(114 min). (d-f) Velocity fields on a 180-mm thick 3D slab centred about the cutting
planes of (a-c). Colour bar indicates velocity magnitude representation.

6.1.2.7 Data Analysis: Flow Analysis

As we already mentioned when stating the tasks for data processing , morphogenesis
involves hierarchical, multi-scale cell movements. The whole range of underlying dynamics
can be captured by the optical flow method and expressed as a dense motion field −→v .
We pursuit a multi-level strategy for motion analysis and investigate: i) global, collective
aspects of the displacement field −→v , ii) its local differential behavior and iii) a long range
individual cells behavior using cell trajectories.

The computed motion fields for time-lapse series of Xenopus laevis embryo during a
mid-gastrulation reveal global patterns of cell movements. These patterns comprise sev-
eral morphogenetic processes, including rotation of the vegetal endoderm (white arrow-
head in Figure 6.11g), involution of the mesendoderm at the dorsal and ventral blastopore
lips (white arrows in Figure 6.11d), and migration of the mesendoderm on the blastocoel
roof towards the animal pole (red arrowhead in Figure 6.11d). By stage 12, prominent
horizontal movement within the endoderm layer is observed on the ventral side of the
embryo (Figure 6.11e). Additionally, a number of interesting events can be observed:
rapid migration of leading-edge head mesendodermal cells on the blastocoel roof, a bulk
movement of the mesendoderm towards the animal pole, and local cell dispersion due to
the onset of archenteron formation. After the dorsal and ventral edges of the mesendo-
dermal mantle make contact and cover the blastocoel, an overall halt of cell movements
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is observed on the ventral side (Figure 6.11f, stage 12.5). It is important to note, that
before these studies, most of such morphogenetic processes in Xenopus laevis were never
captured in-vivo and quantitatively analyzed with high resolution and accuracy.

For the next level in our hierarchical motion analysis approach, we examine a differ-
entiated cell and tissue movements using a phase of the motion field (See Section 3.2.1.4).
This measure defined as a magnitude of the spatial gradient of the motion field v = (vx, vy)
and is given by P = |∇v|2, where |f | =

√
f 2
x + f 2

y denotes the spatial magnitude and
∇ = (∂x, ∂y) the spatial gradient. Small values of measure P indicate smooth, collective
motion, while large values capture local changes in velocity magnitude and/or variations
in the direction of v. In addition, we use a magnitude of the motion field |v| (See Section
3.2.1.1) to analysis an activity level of cells in a particular time point.

Figure 6.12: Collective/differentiated motion and cells activity analysis. (a, d) 2D slices
through tomographic volumes at times 0 and 52 min. (b, e) Magnitude |v| of the velocity
field on a sagittal slice for two subsequent time frames. (c, f): Field P for the same slice
and times frames.

Figure 6.12 shows a mapping of magnitude and phase of the motion field measures.
Using these visual maps it is possible to analyze, interpret and draw conclusions about
casual relations between different morphogenetic movements and events. Contour C en-
closes a large, collectively moving cell mass (Figure 6.12a), extending from the vegetal
region (C1, Figure 6.12c) along the posterioranterior axial mesendoderm and endoderm
on the dorsal side (C2, Figure 6.12c).

The movement of cells within the C1 region is mostly collective (small values of P ),
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driven by blastopore closure. But in region the C2, a similar velocity magnitude is a
result of involution of the dorsal mesendoderm (note the transition from C1 to C2 in
Figure 6.12c).

Interestingly, despite the fact that the motion magnitude in region C2 is similar,
cells do not move coherently. The relative cell motion within C2 can be attributed to
mediolateral intercalation associated with convergent extension. This can explain the
acceleration (Figure 6.12 g, h) of the anterior cells within C (Figure 6.12a) towards the
animal pole. Another interesting observation is a velocity gap (i.e. discontinuity) in region
C3 (Figure 6.12a). It is seen from comparing Figures 6.12a and 6.12b in C3 region. This
gap indicates active migration of the leading-edge cells in the small region A (Figure
6.12a,b) which was reported in the studies with explants.

Cells with individual movements are also discernible: cells (I1) crawl on the blastocoel
floor (Figure 6.12c,d), and a single cell (I2) migrates on the endodermal cell mass (Figure
6.12f).

6.1.2.8 Data Analysis: Tracking

In order to analyze individual cells behaviour for a longer time period we perform cell
tracking. We use an automated tracking algorithm based on points tracking and optical
flow (See Section 3.2.2). Cell trajectories are obtained by time integration of a 3D flow
field, starting with manually selected initial positions. As objects we identify the centers
of cell nucleus, lining both sides of archenteron walls (Figure 6.13). We checked the accu-
racy of the optical flow algorithm by comparing automatically estimated cell trajectories
with the corresponding trajectories tracked manually by the user expert. For an average
traveled distance 58 µm over four successive volumes used for the trajectory computation,
the average error was 4 µm, which roughly matches the resolution limit of 4.4 µm. This
indicates a reliability of the optical flow computation.

Figure 6.13: Trajectories and velocities of single cells lining the archenteron. (a)
parasagittal slice at 52 min with highlighted cell pairs lining the region along the archen-
teron. (b-e), trajectories of these cell pairs (top row) and associated velocity components
in x-y (parasagittal) plane (bottom row; left cell: red, right cell: blue; solid: x-component,
dashed: y-component).

After trajectories of moving cells are estimated by our automated tracking procedure,
parameters of their dynamics and interaction can be studied. The two cell pairs most
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proximal to the animal pole (Figure 6.13a,b) and the blastopore (Figure 6.13a,e) display
near-parallel trajectories in the direction of mesendodermal mantle, which is an indicator
of collective motion. In contrast, for cell pairs occupying more medial positions along
the posterior-anterior extent of elongation a distinct directional variation is prominent
(Figure 6.13c,d). For the anterior cells (Figure 6.13c) there is a large difference between
radial and tangential displacement. This large horizontal displacement is a consequence
of the onset of archenteron inflation and vertical component is a result of active push from
the side of vegetal cell mass. The dynamical characteristics are quantified and visualized
in Figure 6.13.

6.1.2.9 Results

The results presented in this section demonstrate that phase-contrast X-ray microtomog-
raphy, combined with optical flow and multi-level motion analysis, is a powerful tool for
4D in vivo investigation of embryonic development. Analysis of differentiated motion
allows to distinguish between active or passive tissue and cell movements, giving insights
into how collective morphogenetic events are powered by individual cell behaviour. Such
studies can advance our understanding of the molecular mechanisms and biomechanical
processes which drive embryogenesis.

6.2 Temporal Changes Detection

6.2.1 Stability Study During Foaming Process

6.2.1.1 Introduction

The production, characterization and application of foams and cellular structures has
attracted increasing attention in the recent decade. Foams and cellular structures exhibit
remarkable properties, such as high strength and mechanical stiffness, low density and
the ability to absorb large amounts of energy. The porous materials are widely used for
a broad range of industrial, medical and scientific applications.

During a foaming process a complex interplay of different physical phenomena takes
place. Such processes include: liquid drainage, coalescence, coarsening, topological reor-
ganization, pore inflation and many others. A sudden instability in a film leading to its
disappearance is called coalescence. Such process triggers two (or more) neighbor bubbles
to merge onto a single one by the rupture of separating film walls. Coalescence events are
the major phenomena which affects the spatio-temporal stability of the foam.

An understanding of the underlying processes of foaming dynamics is a challenging
task that is important for future technological progress. Theoretical models of drainage
and coalescence are available in the literature [BR97, Ire09]. However, the adequacy of
these models with real physical phenomena is still far from being completely established.
A number of experimental studies for different variety of foams have been performed to
investigate coalescence events, for example, using conductivity profiles, acoustic measure-
ments, neutron and visible-light scattering [MEH+12]. Bubble collapses in transparent
aqueous foams can also be captured using a visible-light system [RCAVAH03]). However,
these techniques have their limitations and do not allow to detect and quantify coalescence
with high spatial and temporal resolution.
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X-ray imaging is particularly well-suited for the study of opaque materials. High-
intensity synchrotron X-ray radioscopy was exploited to obtain real-time images of foam-
ing metals [BSHB01].

The use of computed tomography already has proven to be a powerful tool to study
the 3D structure of foams, with the primary focus on morphological and physical prop-
erties [HBP+05, RHB+09] . However, tomography imposes constraints on the temporal
resolution due to the requirement of 3D data acquisition. Therefore, in situ 3D imaging
could be realized only for sufficiently stable foams, in which structural changes occur on
a time scale that is longer than the duration of a single tomography scan. Compared
with the coarsening process due to gas diffusion between bubbles, coalescence is a much
faster event and therefore requires higher data acquisition rates for an adequate process
representation.

Sample environment (e.g. heat chambers, high-pressure devices) could also restrict
the rotation of a sample during tomographic acquisition.

In this work we employ in situ synchrotron radiography to observe the evolution of
foams with high temporal and spatial resolution [GMRH+08, RGMS+10]. To perform
an automated and reliable quantification of coalescence events in radiographic images we
develop a detection procedure based on optical flow methods.

6.2.1.2 Experimental Setup

The experiments were conducted at the ID19 beamline [WTB+10] of the European Syn-
chrotron Radiation Facility (ESRF) in Grenoble, France. The details of a sample prepa-
ration and experimental conditions are given in Table 6.3.

Table 6.3: Experimental conditions and sample environment used for the studies of dif-
ferent foams at ID19 beamline [WTB+10]

Foam Sample X-ray en-
ergy

Detector
pixel size

Frame
rate

Conditions

Aqueous
foam
6.2.1.9

Aqueous solution with
0.1% dishwasher liquid

17.7 keV 1.75 µm 3 Hz Foaming in a test tube
at room temperature

Metal
foam
6.2.1.10

AlSi7 powder mixed
with TiH2 (0.5 wt%)

33 keV 40 µm 2 Hz Foaming in a steel
mold, and furnace at T
' 998 K

Polymer
foam
6.2.1.11

Polydimethylsiloxane
(PDMS)

20 keV 2.8 µm 10 Hz Foaming in a test tube
at room temperature

To identify coalescence events, a data acquisition frame rate is an important aspect.
In the current work, in order to implement a coalescence event detection procedure, we
assume that we are able to follow the structural changes which are not related to a sudden
film ruptures (e.g. foam expansion, coarsening, smooth displacements, etc). Thus, the
coalescence events can be attributed to the discontinuous (untrackable) part of the foaming
process.
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6.2.1.3 Task for Data Processing

Perform estimation of coalescence event in metal foams during formation process using
a sequence of radiographic images. Evaluate spatial and temporal distribution of coales-
cence events.

In order to perform estimation of coalescence events a previously described occlusion
detection approach was applied. The following list of aims should be accomplished:

• Quantify a number of coalescence events within a single pair of subsequent images

• Evaluate quantitative distribution of coalescence events during foam evolution

• Perform analysis of spatial distribution of coalescence events

• Study different visualization and analysis approaches to get insights about overall
foam stability: in both temporal and spatial domain.

6.2.1.4 Data Evaluation

Prior to any data processing steps we evaluate the metal foam dataset according to our
data taxonomy 5.1:

• Image noise: The original radiograms contain low amount of noise.

• Contrast level : The image contrast in is sufficient. It is possible to distinguish
between different bubbles and identify borders. (See Figure 6.14).

• Object size: Foam bubbles are of different sizes, ranging from very large to very
small. Additionally, an important structure to identify are bubbles boundaries,
which are typically several pixels thick. This means that the objects sizes are mixed
and we should pay additional attention to preserve such structures during image
preprocessing and optical flow computation stages.

• Object distribution: Foam constituents are distributed densely, which complicates
the task of bubbles identification and optical flow computation.

• Object details : Despite the fact, that the foam itself is highly textured, the individual
bubbles are homogeneous and contain no details. The most characteristic feature
of each bubble is its outline.

• Image artifacts : A number of saturated pixels, as well as artifacts caused by dust
and scratches on the scintilator screen are present. That is why an artifact removal
procedure is required.

• Motion type: The motion of foam and its constituents is non-rigid, non-linear,
including expansion and contraction. During bubble collapses events a dramatic
rearrange of foam bubbles may occur. Tracking of such events is the core idea
behind our approach on coalescence events estimation (see next sections).

• Motion range: The arrangements (when linear) and foam expansion is a slow,
smooth event. However, during coalescence events very large displacements are
possible.
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• Motion discontinuities : There are a lot of motion discontinuities between bubbles.
During coalescence events the temporal continuity of object motion is highly vio-
lated.

A summary of evaluation of foams dataset is given in Table 6.4.

Table 6.4: Evaluation of foam datasets.

Image Data Motion

noise: average size: mixed type: non-rigid, non-linear

contrast: average dist: dense range: small

artifacts: low detail: low disc: high

Requirements on the Results

Accuracy : For this dataset we do not require accurate for optical flow estimation itself.
As it is stated in the task for data processing (See Section 6.2.1.3), we aim to estimate
the coalescence events instead.

Density : Dense flow fields are mandatory to capture differences temporal flow and recog-
nise the shape of collapsed bubbles.

Motion components : In general, no flow components are required for the final result.
However, the estimation technique employed in this work makes use of a full vector rep-
resentation.

Consistency : The assumption, that the flow vectors are consistent in the forward and
backward directions is the main idea behind our estimation approach.

Motion boundaries : We do not aim to capture strict flow boundaries of moving bub-
bles.

Computation time: Computation time is not an issue, the processing is done offline.

Data size: The size of a single radiographic image after scaling and cropping the re-
gion of interest is 1024 × 388 pixels. The processing is done sequentially and can be
performed either on CPU or GPU.

6.2.1.5 Data Analysis: Preprocessing

In order to correct uneven brightness patterns and get rid of artifacts, caused by the
dust and scratches on the scintillator screen, we perform flat- and dark-filed correction as
described in Section 3.1.2.2. Further data pre-processing is not required, since the noise
level and image contrast allow to proceed with the data analysis.
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6.2.1.6 Data Analysis: Events Detection

The violation of data constancy assumption attributed to coalescence events results in
errors in optical flow computation. The image features which cause this are treated
by conventional optical flow methods as data outliers which should be eliminated or
suppressed, e.g. using robust data term 2.1.3.1. In our approach we employ the detection
or evaluation of discontinuous features in optical flow field to capture coalescence events.

A naive approach for the event detection is to assume a slow motion of objects, such as
pixels displacements u, v are small. Thus, a high value of difference between the successive
image frames, which is greater than a predefined threshold:

|f(x, y, t+ 1)− f(x, y, t)| > T,

indicates for the position x, y an occurrence of a coalescence event. The naive approach
fails to discriminate between foam motion accompanied by geometrical distortions (e.g.
expansion, coarsening) and bubble collapses, thus it is restricted to relatively static foams.

The naive detection model can be extended by applying a set of morphological op-
erators on the result of difference image to filter structures presumably originated from
foam’s motion. In the work of [GMFB04] a similar approach was used to improve the
detection of coalescence events by means of image difference. As a result, the amount
of incorrectly detected events is reduced. However, this approach discriminates changing
structures only based on their shape and size and still do not take into account motion,
thus is prone to fail for fast movements within foam constituents.

The concept of a static or slowly changing foam can be extended by a more physically
realistic assumption of linear motion. For a local image region it is assumed that objects
can shift globally. The computed displacements ∆x,∆y are then used to perform a
motion-compensated difference:

|f(x+ ∆x, y + ∆y, t+ 1)− f(x, y, t)| > T,

which indicates motion-aware temporal changes at the image location x, y. A popular
choices for global motion estimation are correlation-based techniques. In general, simple
implementations of correlation approach show only average performance. In order to cope
with rotational motion, large pixel displacements, more sophisticated modifications of the
correlation method are required.

An alternative method to deal with large displacements is based on Fourier analysis.
According to the Fourier shift theorem the moving image regions have identical amplitude
spectra. Exploiting this, a high difference value:

|FT{f(x, y, t+ 1)}| − |FT{f(x, y, t)}| > T,

indicates the presence of a coalescence event. This approach was used by [MHB09]. The
major drawback of the method is similar to that of correlation-based methods, i.e. non-
linear distortions or motion are not taken into account, despite the fact that such events
are highly probable owing to expansion and deformation of pores. This leads to mistaken
attribution of these deformations/movements to coalescence events.

In this work for the motion computation we use variational optical flow methods, ex-
tensively discussed in Chapter 2. Two alternative approaches might by used to detect
coalescence events: motion-compensated difference and forward-backward check 2.1.5.5.
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We propose to use a forwardbackward check for the construction of an improved coales-
cence event detector. For trackable (only motion, no film ruptures) image features the
vector fields should be consistent in forward and backward direction. High values of the
forward-backward discrepancy vector are give a robust indicator revealing bubble col-
lapses. The advantages of the proposed optical flow based approach are: a high accuracy
of motion estimation, robustness against noise and small artifacts, and the possibility to
select an appropriate model for the given imaging conditions and motion types.

6.2.1.7 Data Analysis: Motion Estimation

For the data term we choose brightness constancy assumption 2.1.2.2, since this constraint
is highly violated during coalescence event. An important optical flow model setting is
the integration of combined local-global approach 2.1.3.3 into a data term. This allow to
reduce artifacts arising from superposition of internal foam structures on the radiographic
image plane. A large integration scale parameter should be used in an optimal range of
ρ = [0.7...2.0]. A crucial design aspect of our coalescence detector is that we intentionally
choose a non-robust setting (quadratic) for data term over a robust one. In this way,
optical flow model becomes more sensitive for violation of data constraints, which signifi-
cantly improves the performance of the forwardbackward check method. In order to solve
for large displacements a multi-level computation scheme is employed 2.2.5 according to
baseline algorithm 5.3.4.

6.2.1.8 Data Analysis: Performance

To evaluate the performance of coalescence detection methods we consider these tech-
niques as binary classifiers, which decide for each pixel location whether or not coalescence
event happened. For each classifier we count hits and false alarm events (Wickens, 2001).
With this approach we define the true positive rate (TPR, sensitivity) as:

TPR = TP/P,

where TP is the number of correctly attributed events normalized by the total area of
coalescence event P , and the false positive rate (FPR, fall-out) as:

FPR = FP/N,

where FP is the number of mistakenly attributed events normalized by the total area
of no coalescence N . To make quantitative performance analysis we employ a simple
simulation model which takes into account foaming with linear, fast motion and expansion,
accompanied with coalescence event. To implement it, we take a 3D tomographic image
of a real metal foam and generate a radiographic projection using a ray-tracing algorithm
(Figure 6.14). Then, the dataset was translated with a constant velocity and elastic
deformation was performed to model foam expansion. A coalescence event is modelled
by setting the material density to zero within a spherical region. A series of radiographic
images, emulating temporal evolution of foams, is generated in this way.

The quantitative evaluation of several coalescence detectors is given in Figure 6.14.
The curves represent the receiver operation characteristic (ROC) of a given method,
which maps the false positive (fall-out) and true positive rates (sensitivity) for different
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Figure 6.14: Example of ROC curves analysis of coalescence detection methods. Left:
Simulated radiograph. Right: ROC curves on simulated data for the simple differ-
ence approach (d), the difference approach extended with morphological operations (c),
the Fourier shift detection approach (b) and variational optical flow with the forward-
backward check (a).

thresholds parameters. The dashed line denotes the ROC curve for the worst possible
detector, which classifies the events equivalently to a random guess with the uniform
distribution.

For the comparison we check the performance of four coalescence detectors: (i) a
simple difference approach, (ii) difference extended by morphological filtering, (iii) Fourier
shift detection method [MHB09], and (iv) our proposed variational optical flow approach
combined with a forward backward check.

Inspecting the ROC characteristics it is evident that both difference-based approaches
are unable to provide high detection quality. As a single measure of method accuracy we
may use an area under the ROC curve (AUC). For difference-based methods it does not
attain 0.7, while based on the theory of signal detection the value 0.75 assumed to be a
acceptable classifier [Swe88]. Motion-aware Fourier shift detection is much more reliable
even for the sequence with non-linear distortions (AUC = 0.93). The proposed method,
based on high accuracy optical flow based, significantly outperforms other methods. Its
estimated AUC value is in the range of 0.97-0.98 for all input sequences, which is close to
ideal detector.

In the next section we demonstrate a number of studies, in which optical flow combined
with the forwardbackward check is used as an analysis tool to perform coalescence studies
and to assess the stability of evolving foams. In particular, we consider aqueous, metal
and polymer foam samples monitored by X-ray radiography.

6.2.1.9 Results: Aqueous Foams

The first application example of the devised optical flow detection technique is an auto-
matic detection and registration of individual pore collapses. For our X-ray experiment
on aqueous foams we generated a long radiographic sequence consisting of 500 frames and
depicting the evolution of foam. Due to high stability of the sample only a few collapses
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occur throughout the whole sequence. On Figure 6.15 we present two typical cases of
bubble rearrangements.

Figure 6.15: Detection of single coalescence events in aqueous foam. Top Row: Displace-
ment of foam constituents, no coalescence events. Bottom Row: Collapse of a bubble
combined with the motion of foam interior. (a, b) and ( f, g): original successive radio-
graphs; (c, h): difference images between the two successive frames; (d, i): coalescence
maps produced by the Fourier shift detection; (e, j): coalescence maps produced by the
optical flow based. Both difference images (c, h) contain strong motion-related artifacts,
which are also partly present in (d, i), while the map (j) correctly identifies the underlying
bubble collapse and gives no false detections

The top row of Figure 6.15(a)(e) corresponds to the case where only displacements
of foam constituents are present and no coalescence events happen. The images in the
bottom row in Figure 6.15(f)(j) show the collapse of a bubble combined with the motion of
surrounding constituents between the successive frames Figure 6.15(f, g). The difference
method in Figure 6.15(c, h) do not make the detection correctly since it produces a
lot of false alarms because of structural motion and distortions. The detection method
using Fourier analysis (Myagotin et al. 2009) performs better (Figure 6.15(d, i)), but
still includes a number of artifacts. The developed approach is able to distinguish pore
collapses from simple rearrangements in a much reliable manner (Figure 6.15(e, j)) This
is also constituent with the results of performance evaluation using ROC curves analysis
on synthetic dataset (see Section 6.2.1.8).

6.2.1.10 Results: Metal Foams

In this section we show in situ coalescence analysis of metal foaming and capture spatial
distribution of bubble collapses, which allows to assess evolution of foams for different mold
geometries. In the following experiment two baking cups made from steel are used. We
select two mold geometries for which completely different foaming behavior is presumed
- wedge-shaped and L-shaped molds, each 10 mm in depth. On Figure 6.16 a time-lapse
sequences of foaming process and estimated velocity vector fields are shown. At the
beginning samples expand mostly on the left-hand side producing bumps of semi-liquid
material. This is a result of a non-uniform heating inside the molds. With the course of
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Figure 6.16: Estimated velocity fields for two metal foaming geometries at different expan-
sion stages. Left column: foaming in a wedge-shaped mold. Right column: foaming in
an L-shaped mold. Plots (e) and (j) show integral coalescence distributions. The vertical
coalescence event profiles reveal a lower events fraction in the bottom foam layers, where
film thinning is slowed down by a liquid material flow from upper layers.

time the right-hand foam front overtakes that on the left-hand side. In the final expansion
stage we observe a slow continuous flow of the foamed material oriented parallel to the
inclined border in the wedge-shaped mold (Figure 6.16(d)) and along the cavity to the left
and upwards in the L-shaped one (Figure 6.16(i)). As expected, foams in wedge-shaped
and L-shaped molds behaved differently.

Now we investigate spatial distribution of coalescence events. For this purpose we
constructed integral coalescence maps for both samples. The corresponding plots are
demonstrated in Figure 6.16(e) and Figure 6.16(j). Additionally, the horizontal and verti-
cal integral coalescence distribution histograms are plotted. A vertical event distribution
reflects a smaller number of collapses on the bottom and a higher fraction of events in the
middle part of samples, as to be expected. The downward liquid flows (induced mostly by
gravitational forces) supply the bottom layers of the foam with liquid melt. This delays
the thinning of the bottom foam films, and produces the vertical gradient of coalescence
events. The estimated data are well in accordance with data estimated earlier (Babcsan
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et al., 2007).
The horizontal plots reveal an anomalous and unpredictable effect. One recognizes

a high fraction of coalescence events on the right-hand side of the wedge-shaped sample
(Figure 6.16e)); in the plot (j) in Figure 6.16 we observe an increased fraction of coa-
lescence events in the middle and on the left- and right-hand sides of the mold. The
corresponding image regions are highlighted by the grey rectangles in Figure 6.16. The
possible interpretation of this effect could be a low foam stability due to significant friction
forces between the upward moving foam front and the steel mold. Friction forces pro-
mote film stretching and additional topological rearrangements of the foam films which
destabilize the foam structure, especially at the molds faces. The important result of this
observation is that already during the manufacturing stage of lightweight components one
can predict the locations of possible detachments of the metal foam from the requested
profile.

6.2.1.11 Results: Polymer Foams

A common receipt to improve the stability of foams is to include solid particles in the
liquid phase. The particles are thought to increase the viscosity of the liquid and thus
stabilize cell walls (Verdejo et al., 2009). In this section we analyze this technique by
comparing unfilled and filled silicone polymer foams. To provide quantitative information
about foam stability we analyze temporal distribution of coalescence events.

For the experiment foaming takes place at room temperature as an exothermic re-
action. Foaming takes place at room temperature as an exothermic reaction. Aligned
multiwalled carbon nanotubes (MWNT) were synthesized in-house by a chemical vapour
deposition (CVD) technique. The carbon nanotubes were dispersed by high shear mixing
in the polymethylhydrogensilane reactant. The two compounds were then mixed at a 1:1
ratio for 1 min. To study foam stability we consider two samples containing 0 and 0.2
wt% of nanotubes (MWNT), called hereafter CONT and CVD, respectively.

In order to quantify coalescence processes, a running average for the coalescence rate
(a)(t) and integral coalescence fraction A(t) are plotted for both samples in Figure 6.17.

Figure 6.17: Coalescence rates for two kinds of polymer foams. Left: CONT sample
(0 wt% of MWNT nanotubes). Right: CVD sample (0.2 wt% of MWNT nanotubes)
(all characteristics are given in arbitrary units). A lower slope of the integral coalescence
fraction A(t) in the case of the CVD foam shows evidence of a higher stability of the foam
filled with nanoparticles.

The former measure corresponds to the number of pixels covering detected coalescence
area. The latter is the total coalescence rate (a)(t) integrated over a time period [0, t]. The
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formal definitions and interpretations for these characteristics are given in Myagotin et al.
(2009). For both samples, already short after the onset of foaming the first coalescence
events are detected which are represented by peaks on the coalescence rate (a)(t) plot.
With the course of time the two samples evolve differently. Exploring the plots, it becomes
evident that in the case of CONT foam sample relatively rare events happen with rather
high amplitude (large detected area) which indicates large coalescing bubbles.

The integral coalescence of the CVD sample, in contrast, is a more linearly increasing
function, which shows an almost constant number of low-intensity film ruptures per unit
time. Comparing the two samples one may notice that the CONT foam exhibits a sig-
nificantly higher integral coalescence than CVD sample. These observations support the
hypothesis that, owing to an increased viscosity of the liquid or decoration of the cell walls
by the nanoparticles, capillary drainage in the filled sample is significantly reduced. This
in turn leads to a reduced film thinning rate and to more stable liquid films separating
the bubbles, and consequently to more stable foams.

By the systematic use of X-ray radiography combined with optical flow it is possible
to analyze coalescence processes for a diversity of foam types. By introducing a concept
of the forwardbackward check we are able to increase reliability of detection reliability
and improve quantification of coalescence events. The presented approach is suitable
for the detection and localization of individual film or bubble collapses, as well as for
the estimation of spatial and temporal distributions of the coalescence events. These
studies can provide insights about the underlying processes of foaming dynamics which is
important for understanding of physics of foams and their production.
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6.3 Tracking

6.3.1 Kinematics Analysis of Joint Parts in Living Insect

6.3.1.1 Introduction

Arthropods are the most numerous species and constitute more then 80% of all animals.
Biologists have a major interest in studying their morphological diversity and related
physiology. However, remarkably little is known about their functional morphology. The
main reason is, until recently there has been no imaging method, which allows in vivo
investigation of internal structures in 3D and real-time for non-transparent organisms
such as most arthropods.

For optically opaque living organisms X-ray imaging methods are ideal techniques due
to the high penetration ability of the radiation. For static specimens synchrotron-based
X-ray computed microtomography (SR-µCT) has proven to be a powerful tool to study
arthropod morphology [WSL08]. To analyze in vivo dynamics of internal structures se-
quences of 2D X-ray projection radiographs were recorded. However, in this case the
depth information is lost, structures are superimposed, which complicates their identifi-
cation and analysis.

Recently, a system for in vivo X-ray cine-tomography was designed, which aims
to investigate previously inaccessible 3D morphological dynamics with feature sizes in
the micron range and with temporal resolution down to a fraction of a millisecond
[dSREvdKB14]. An important component of the X-ray 4D cine-tomography is not only
an image acquisition system, realized by means of ultra-fast SR-µCT, but also an au-
tomated data processing and motion analysis procedures. This combination allows to
provides complete 4D quantitative information on the functional morphology of the living
specimen.

6.3.1.2 Experimental Setup

Data acquisition was performed at the TOPO-TOMO beamline at the ANKA synchrotron
facility operated by Karlsruhe Institute of Technology. A white X-ray beam was filtered
by 0.2 mm aluminum plate giving a photon energy window of 9.6 - 24 keV with the
maximum flux density at 14.5 keV.

The indirect X-ray detector system was optimized to achieve an effective pixel size of
was 1.2 µm, with a field of view of 2.464 mm. A camera system is a pco.dimax CMOS
camera with 2016×2016 pixel resolution.

Static overview radiographs (Figure 6.18c) and reconstructed tomographic images
(Figure 6.18d) were acquired using a detector system equipped with a Photron SA1.1
camera. The resulting pixel size was 6.6 µm, with a field of view of 6.6 mm. These images
were used to examine the insect’s internal structures and identify location of the region
of interest (screw-and-nut joint system, see arrows in Figure 6.18d).

To acquire in vivo tomograms of moving weevil and roughly estimate parameters of its
motion, the specimen was imaged with a temporal resolution of 20 tomograms per second
by continuous rotation with 10 revolutions per second. The camera recording frame rate
was 5.000 frames per second and 250 projections were used per tomogram. The distance
between sample to detector was 50 cm.
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Figure 6.18: In vivo X-ray 4D cine-tomography experiment. (a) Photograph of Sitophilus
granarius, dorsal view. (b) Experimental set-up for ultra-fast X-ray microtomography
showing bending magnet (1), rotation stage (2), fixed specimen (3) and detector system
(4). (c) Radiographic projection. (d) 3D rendering of the reconstructed volume with
thorax cut open and revealing hip joints (arrows).

As the last level of our data acquisition pipeline we recorded high resolution radio-
graphs of moving hip joint region (Figure 6.19a-c) while the specimen was continuously
rotating with 3.25 revolutions per second. The images were recorded with a rate of 1500
frames per second. To acquire one tomogram we used 200 radiographs, instead of 250 for
high-speed tomographic setup, the resulting temporal resolution was 7.5 tomograms per
second. The sample to detector distance was 20 cm. A combination of these parameters
was a good compromise between fast acquisition time and image resolution, which allowed
us to study both structure and dynamics of the screw joint.

Additionally, after in vivo data acquisition, the same specimen was scanned post
mortem (Figure 6.19d) to obtain high-quality static volumes of the joint region. For
this case we increased the exposure time and 1000 projections were collected with a frame
rate of 100 frames per second.

6.3.1.3 Task for Data Processing

The main task for data processing is a quantitative kinematics analysis of two parts of a
hip joint: coxa (hip) and trochanter.

For this purpose we perform:

• Motion estimation to track individual parts of the hip joint.

• Visualize morphological structures in 3D.

• Extract kinematics parameters: global coxa movement, rotation of the trochanter
and translation of the trochanter inside the coxa.

6.3.1.4 Data Evaluation

Before we proceed with a development of a data processing workflow, which is required
to accomplish the task of quantitative estimation of kinematics in the joint system of a
living bug, we evaluate the screw joint dataset according to our data taxonomy: 5.1:
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• Image noise: The original radiograms contain high amount of noise due the short
exposure time, which was necessary to limit radiation damage to the sample. After
the tomographic reconstruction the amount of noise is reduced. However, the image
data still suffers from the presence of noise. Therefore a dedicated preprocessing
routine to perform noise reduction is required. Moreover, an optical flow model
which is robust with respect to noise should be used.

• Contrast level : The image contrast is low, different structures of the joint system
are hardly resolved between each other (See Figure 6.19). A proper treatment of
low-contrast data is needed. The employed optical flow model should be adjusted to
low-contrast data. The insufficient contrast is the major challenge of this dataset.

• Object size: The structures the joint system are of different sizes. In general, ac-
cording to our data classification, they can be describe as average.

• Object distribution: Different parts of the joint system are distributed normally.

• Object details : The amount of feature in various parts of inner structures is not
sufficient. All parts are depicted as homogeneous structures (See Figure 6.19). Low
amount of image details is the second main challenge of this dataset.

• Image artifacts : The main source of image artifacts is motion blur. Since during this
in vivo experiment, the bug was moving, the acquisition parameters were adjusted
in such a way that to achieve a compromise between dose, temporal resolution,
image contrast and signal-to-noise ratio. As a result, temporal resolution was not
sufficient to allow to follow fast movements in real time. After the image recon-
struction motion-related artifacts emerge. In order to compute reliable optical flow
the artifacts should treated. Otherwise, the artifacts could obstruct the successful
application of optical flow methods.

• Motion type: The motion of the screw joint and other structures is strictly rigid.
The trochanter (an actual screw) undergoes fast rotation, as well as the translation
within the coxa part (a box that contains the screw). Using the rigidity assumption
we can design a special tracking procedure, which allows to overcome problem with
image artifacts or insufficient amount of image details (see next sections).

• Motion range: Rotation of the trochanter structure is very fast, depending on a
distance to the axis of rotation. However, the translational part of the movement
is relatively slow. These aspects should be taken into account when modeling a
motion estimation procedure.

• Motion discontinuities : The amount of motion discontinuities is normal and should
not cause any problems for the optical flow estimation.

A summary of evaluation of screw joint dataset is given in Table 6.5.

Requirements on the Results

Accuracy : For this dataset we require accurate results. Since the main task is to recon-
struct the kinematics of the screw joint system over period of time, we require accuracy
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Table 6.5: Evaluation of the screw joint dataset.

Image Data Motion

noise: high size: average type: rigid

contrast: low dist: norm range: mixed

artifacts: motion detail: low disc: norm

not only between two successive frames, but also for the whole motion cycle. The error
in the range of 1-2 pixels would be sufficient for a pair of images, but exceeding values
should be eliminated from the results or indicated. For the whole sequence the error of
more then 5-7 pixels is already a substantial mistake, if the structure have displaced for
around 20 pixels. In other world the total error depends on the total displacement and
should not exceed 25%.

Density : Dense flow fields are not required, since the main task is to reconstruct mo-
tion components (rotation and translation) during the movement. The fact that this
requirement is relaxed gives the possibility to evaluate the computed flow field, filter
unreliable flow vectors using internal confidence measures and perform analyses of flow
components using a sparse flow field.

Motion components : The full flow is required, i.e. both the flow magnitude and the
flow direction.

Consistency : The assumption, that the flow vectors are consistent in the forward and
backward directions is the main idea behind our approach to filter unreliable flow vectors
(see the description of data processing workflow).

Motion boundaries : We do not aim to capture strict flow on the boundaries of mov-
ing structures. Only general information about each structure is required - location,
translation and rotation from the previous frame.

Computation time: Computation time is not an issue, the processing is done offline.
Taking into account the size of tomographic datasets, it is advantageous to perform the
computation on GPU.

Data size: The original size of a single tomogram is 601 × 621 × 551, which corresponds
to 6.13 Gb of floating-point data. Each pair of the image sequence can be completely
stored only in the memory on CPU. For high-performance computing an extended GPU
computation routine must be used. (see Section 4.2.2.3)

6.3.1.5 Data Analysis: Preprocessing

Flat-filed correction. Before tomographic reconstruction, the original radiographs were
normalized by flat field correction 3.1.2.2.

Noise filtering. Due to the short exposure time during fast acquisition process the images
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are contaminated with high amount of noise. Prior to tomographic reconstruction we per-
form a noise filtering. Another challenge with respect to image quality is a low separation
contrast between different structures. This should be taken into account for the design of
filtering procedure. As an example, image denoising using the Gaussian low-pass filtering
is a common approach (see Section 3.1.1.2). However, the filter restores the pixel value
by averaging its spatial neighborhood, thus blurring important image details. For this
reason an edge-preserving filtering approach is desirable.

In the review of image denoising algorithms a non-local means algorithms (NLM) was
presented [BCM05]. It was shown that NLM algorithm gives minimum mean-square error
between the noisy and the uncorrupted image for signal-independent additive white noise.
Additionally, in the comparison with other methods such as Gaussian filter, anisotropic
filter and total variations (TV), NLM algorithm showed better performance.

However, as we discussed in Section 3.1.1.2 for X-ray data the most influential noise
model is described by a Poisson distribution, and Poisson noise is not independent of
the signal intensity, as required for NLM methods. For this reason we perform a noise
variance equalizing transformation before noise filtering. After the noise removal by NLM
algorithm, feature details are preserved and high-frequency noise is significantly decreased.

Tomographic reconstruction. 3D image reconstruction is performed using the filtered
back-projection method (see Section 1.3.2.2) using a Ramp filter [Buz08]. This approach
differs from a conventional filtering during back projection procedure, when Shepp-Logan
or the Hamming filters are used [Buz08]. Both filters allow to reduce noise by dumping
high spatial frequencies. However, in our preprocessing procedure we use a separate noise
filtering step, which allows us to employ a non-windowed filter function. As a consequence,
image feature are better preserved, as required for motion estimation. The reconstructed
3D images can still be degraded by motion artifacts, since no motion-aware reconstruc-
tion was used. To tackle with the remaining artifacts a robust optical flow computation
method is employed.

6.3.1.6 Data Analysis: Motion Computation

To capture dynamics of the screw-and-nut system we develop a robust 3D variational op-
tical flow method. It is designed to be robust against image artifacts and yet be sensitive
to low-contrast image details represented different structures. For the data term we use
constancy of image brightness 2.1.2.2. Instead of using a common total variation (TV)
approach to model the data term (robust approach 2.1.3.1), we employ quadratic penal-
ization to enhance the contribution of image gradients (representing boundaries between
structures), which were deliberately and carefully preserved throughout the entire image
processing and reconstruction pipeline (see noise filtering and reconstruction steps). Since
motion artifacts could still appear within image data, to discard them we selectively model
data constancy using an automated confidence measure based on cross-checking 2.1.5.5.
A first computation of optical flow is performed to localize data outliers and construct a
confidence map for each pixel position. This confidence map is then applied during the
second run of optical flow algorithm to reduce the contributions from problematic image
areas and thus to refine the motion field 2.1.3.5. We further improve robustness of data
term against noise using a combined localglobal approach 2.1.3.3, which takes in account
an information from a local region. Large value of integration scale is used, with the op-
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timal value in the range ρ = [0.7 . . . 1.5]. For the regularization of the motion field we use
a combined image and flow-driven smoothness method 2.1.4.6. This approach imposes
more strict smoothness constraints inside homogeneous image regions, but preserves mo-
tion boundaries near separate structures. Again, large values of smoothness parameters
are required to give reliable results.

To capture the entire range of movements, including fast rotation of the trochanter,
we use a multi-level computation procedure. The parameters are the same as for baseline
model 5.3.4. Between computation levels we use median filtering 2.2.6 with large spatial
mask (m = 5) to suppress data outliers from coarser levels.

Figure 6.19: Morphological dynamics and kinematics analysis of the screw joint during
defensive movement. (a-c) Time-lapse sequence of tomographic slices for times 0, 400 and
800 ms, respectively. (d) Tomographic slice of post mortem scan with increased exposure
time and, as a result, image contrast. (e) Manual labeling of coxa (green) and trochanter
(yellow). (f) 3D model of the screw joint based on manual labeling. (g) 3D motion
field computed from 0 ms and 130 ms and represented as 3D glyphs colored according to
magnitude

6.3.1.7 Data Analysis: Tracking

To perform a fully automated tracking of individual parts of the screw joint we use the
results of optical flow computation on subsequent volume images. For the first frame of
in vivo image sequence we automatically distribute 70 and 130 landmarks for coxa and
trochanter, respectively. Part of the landmarks (50 %) were placed using a grid with
equal spacing to uniformly cover both joint parts. The locations for rest of landmarks
were selected based on image edges 3.2.2. For each landmark Lt(x) at a time frame t, the
corresponding landmark on time frame t+ 1 is provided by the displacement vector u(x).

In order to improve accuracy of the tracking procedure we filter unreliable trajecto-
ries using a forward-backward cross-check 2.1.5.5. This method ensures consistency of
tracking results computed in forward and reversed directions by evaluating the difference
between the location of initial landmark and its position followed in opposite direction a
possible errors could be identified (see Figure 6.20). We eliminate data points with the
discrepancy of forward-backward check of more then 3 pixels tracked throughout the en-
tire sequence. As an additional constraint we perform rigidity check by analyzing relative
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spatial arrangement of landmarks 3.2.2.3. We filter out 30% of landmarks showing the
most deviations from rigidity constraint. The remaining high-confidence landmarks are
used to estimate global transformations of moving joint parts.

source pixel

tracking result

error

– forward tracking – backward tracking

Figure 6.20: Cross-checking principle.

6.3.1.8 Data Analysis: Kinematics

For the estimation of global transformation between two sets of landmarks and extrac-
tion of motion components we use a dedicated Python module for matrix transformations
http://www.lfd.uci.edu/~gohlke/. A transformation matrix Mt, which performs rigid
transform of landmark positions between successive time frames, was calculated using
Kabsch algorithm [Kab76] (See Section 3.2.3.3). The resulting matrix was then decom-
posed to extract translational and rotational components (Figure 6.21i).

For the trochanter part, displacement towards the coxa and rotation angles are eval-
uated with respect to its longer axis on the first time frame. To check the accuracy
of automated tracking via motion analysis we compared it with a manual tracking per-
formed by the expert. We achieved an average error for coxa displacement of 0.7 pixels
with the average / maximum actual displacement of 3.7 / 5.2 pixels; an average error for
trochanter displacement of 3.7 pixels with the average / maximum actual displacement of
10.7 / 18.0 pixels; an average error of trochanter rotation of 2.5 degrees with the average
/ maximum actual rotation of 55.4 / 94.8 degrees. Such performance in terms of accuracy
was sufficient for a fully automated tracking procedure.

To visualize morphological parts in dynamics the 3D volumes of the static and the
first frame of in-vivo scans were imported into the data analysis software Amira 5.4. Coxa
and trochanter parts were then labeled manually. Next, coxa and trochanter from the
static scan were aligned manually to match the first frame of the in vivo scan. The high
quality labeled data from the static scan was then transformed according to its actual
motion calculated during kinematics analysis from the previous step 6.3.1.8. As a result
we obtain an in vivo quantitative morphological dynamics of moving joint parts.

6.3.1.9 Results

In this work we capture 4D spatio-temporal information about complex kinematics in
living insect using optical flow and automated tracking, which allows us to visualize the
functionality of internal structures (Figure 6.21). To determine quantitative characteris-
tics of screwing process we separate the angular velocities from translational motion of
trochanter inside the coxa. The results show that the trochanter rotated within 0.8 s
around 92.9 degrees clockwise (from the view point of an outside observer) 6.21. The

http://www.lfd.uci.edu/~gohlke/
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Figure 6.21: Morphological dynamics and kinematics analysis of the moving screw joint.
Top row: In vivo dynamics of joint parts based on the 3D segmented static model
6.19f and automated tracking with motion analysis 6.19g. Bottom row: Analysis of
kinematics. Global displacement of the whole screw-and-nut system with respect to the
main body (green plot); fast translation of the trochanter inside the coxa (blue plot);
linear rotation (screwing process) of the trochanter (yellow plot).

rotation was accompanied with an inward translation along the axis of rotation of 94.4
µm (Figure 6.21). The relation between rotary and translatory movements appears to
be nonlinear, which can be a consequence of comparatively wide opening space observed
between the trochanteral and coxal thread. Such type of motion is unlikely for the narrow
hip joints described for Trigonopterus oblongus [vdKVBR11], as the defensive strategy
of the genus relies on more narrow type of screw joints. Therefore, the current studies
also provide an evidence for the functional variability of the constriction of leg joints in
weevils, which can be closely related to their ecology.

A X-ray 4D cine-tomography has been proven to be a promising tool to study mor-
phological dynamics in millimeter-sized animals such as insects and can be employed to
investigator other biological specimens and processes.
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Summary and Outlook

7.1 Conclusions

In this work we investigated the application of optical flow methods in the field of X-ray
Imaging. We conclude that optical flow methods are well suited for automated analysis
of time-resolved X-ray data for a wide range of scientific problems. As a core technique
we use the variational optical flow methods. A variety of existing models - both for the
design of data terms and the flow field regularization, the robustness under noise and
changing brightness conditions, the subpixel precision, the well-posdeness of a solution
and possibility to compute all types of motion, makes variational optical flow a flexible
and an effective tool.

Depending on an application, an imaging technique, a data acquisition protocol and a
type of the investigated process, the input X-ray data may be immensely diverse. That is
why, in contrast to classical optical flow applications, where a visible light imaging is used
to obtain a high-resolution, low-noise, color images, no single optical flow method can
be universally and effectively used. Therefore, a dedicated motion estimation procedure
should be developed and implemented for each application class. This procedure should
take into account all properties related to the input data, the process of investigation and
requirements on the results.

To get insights about the performance of each optical flow model for a particular
imaging condition, we performed quantitative studies on the synthetic data. Based on an
extensive evaluation of experimental data we learned a number of principles and aspects
which are integral for the analysis of X-ray images:

• The gradient based approach, compared with the image brightness constancy, has
an advantage of robustness under spatio-temporal brightness variations. However,
it is reasonable to assume that derivatives-based gradient constancy assumption
will be more sensitive to noise, than the data assumption on brightness values.
Our performance analysis revealed that gradient constancy assumption in a robust
setting provides better results then the grey value constancy even for large amounts
of noise. This makes gradient based data term a superior model for most cases.

• Our experiments show that the robust data term provides worse performance for
low-contrast data, then the quadratic terms. This is in contradiction to popular
state-of-the-art optical flow models [BSL+11], which employ robust data term as a
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default setting for most application scenarios. We conclude, that in the case of a
low-contrast data a dedicated optical flow model should be employed. Furthermore,
the preprocessing step to enhance the image contrast shows to be a useful strategy.
However, a special care should be devoted to the noise properties of the input data,
especially to such parameter as a contrast-to-noise ratio (CNR).

• The usage of quadratic data term can be beneficial to capture data outliers, if one is
interested to recognize appearing/disappearing information. This can be useful for
various applications such as analysis of bubble collapses in foams, crack propagation
in materials or structures, and changes in other morphological properties.

• Usefulness of data preprocessing. For difficult image quality scenarios - high noise,
low-contrast, presence of artifacts - it makes sense to augment the optical flow com-
putation with a dedicated image preprocessing. Our experiments with the synthetic
datasets clearly indicate this. Interestingly, in some cases, a simpler optical flow
model with a highly optimized preprocessing step may provide better results then
an advanced method with the explicit modeling of challenging data. This can be
explained by a more efficient decoupling of interrelated problems - denoising, bright-
ness correction and motion estimation. As a result, such decoupling may give more
degrees of freedom for the optimization process.

To justify the choice of a processing workflow we provide a systematic data taxonomy
on which we base the selection of the appropriate optical flow model.

Additional advantage of optical flow methods which we evaluated in this work is a
possibility to use confidence measures to ensure the accuracy of results and to simplify
optimization of model parameters. Such feature is crucial for practical applications, es-
pecially taking into account the variability of X-ray data.

On top of the optical flow techniques, we implemented an extensive framework for
further analysis of optical flow results. Based on the result of optical flow we are able
to perform motion analysis, object tracking, image registration and motion-based object
recognition.

The implementation of the developed techniques incorporates advanced numerical
schemes and computations on Graphical Processing Units (GPU). Thereby, the process-
ing of a vast amount of X-ray data is feasible. This is especially important for analysis of
3D tomographic datasets.

After we establish methods for motion estimation and data analysis, and implement
efficient computation routines we apply the devised techniques to a number of exemplary
scientific problems from various research fields. These examples include flow analysis
and particle segmentation in semi-solid alloys, analysis of morphogenesis in living frog
embryos, coalescence events estimation and stability studies during the foaming process,
and tracking of morphological dynamics in living insects. For all presented applications
an automated, robust and accurate analysis of time-resolved data was central to get
important insights about the given research topic. Therefore, we conclude that optical
flow is a promising tool for automated data analysis, which can be effectively used for a
wide range of other scientific problems in the fields of Medical Imaging, Material and Life
Sciences, and Quality Engineering.
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7.2 Further work

Despite the fact that nowadays the optical flow is the established field, there is still a
plenty of space for further development. Here we describe a number of promising direc-
tions and aspects, which could improve the accuracy of optical flow methods and advance
their applicability for challenging data, such as X-ray images.

Advanced optical flow techniques. Novel optical flow methods are constantly being de-
veloped in the field of Computer Vision, as well in the applied fields (e.g. Medical Image
Processing). Some of the promising methods include - modeling temporal coherence
[VBVZ11], motion and segmentation methods [BSL+11], optical flow based on superpix-
els [AMK13].

Modeling of motion blur. A proper modeling of motion blur within the optical flow frame-
work could significantly improve the results and allow to perform quantitative motion
analysis for faster processes and events, thus reducing the limiting factor of the maximum
possible frame rate. Some works already propose a number of possibilities using a special
optimization strategy [SB09].

Joint motion estimation and segmentation. If images can be segmented into coherently
moving regions, many of the presented methods can be used to accurately estimate the
flow within such regions. From the other hand, if the flow were accurately known, seg-
menting it into coherent regions would be feasible. Therefore, a joint motion estimation
and image segmentation should be a major improvement for both tasks.

Motion in multilayers. The use of parametric models that estimate motion in layers
[JB93, WA93, JBJ96] is a promising concept to properly apply optical flow on radio-
graphic images, where 3D structures overlap due to the protective geometry.

Incorporation of geometrical constraints on motion. In the case when a sparse optical
flow result is sufficient (e.g. for estimation of rigid motion), the use of geometrical con-
straints on a set of sparse landmarks could improve the robustness of the results. A similar
approach was used in this work in Section 6.3.1. It was implemented as separate post-
processing step. However, such procedure can be explicitly modelled within a variational
optical flow framework.

Fusion of different contrast modalities. Multiple image assumptions might be useful in
order to incorporate information obtained using different contrast mechanisms, for ex-
ample an absorption contrast and contrast from phase- and dark- field imaging. Taking
into account more physically meaningful information should enhance the credibility of the
data term.

Learning optical flow methods. Instead of tuning parameters of the optical flow man-
ually or using a brute-force search, one may use learning methods to train the optical flow
on a set of training datasets. A number of such methods already been proposed [SLB08].

Combination of optic flow with ART reconstruction methods. Incorporate the problem
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of dense optical flow estimation with algebraic reconstruction techniques [GBH70] into a
single computational framework.

Data correction using motion-based in-painting. Recover missing information in radio-
graphic images (e.g. corrupted by dust or scratches in the detector optics) using a motion
based in-painting [WPUB11]

Database for medical and microscopy imaging and optical flow. Middlebury database
for the evaluation of optical flow techniques has led to rapid improvements and under-
standing of optical flow methods [BSL+11]. A similar approach could be of great use for
the field of Medical Imaging. Such work on for the X-ray data is ongoing.

More advanced optimization methods. Instead of iterative methods used in this work,
application of more advanced optimization techniques, such as multigrid methods [ST82,
BD96], could lead to a significant performance speed up.

More applications of optical flow methods. As we stated in the concluding section of
our work, optical flow methods are general and well-suited for a number of scientific tasks
in various research fields. Therefore, more application from the fields outside of the native
Computer Vision are foreseen and expected to give useful results. The fields which can
benefit from a thorough and systematic use of optical flow methods are Medical Imaging,
Material Science and Quality Engineering.
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5. S. Zabler, A. Ershov, A. Rack, F. Garćıa-Moreno, T. Baumbach, J. Banhart. Par-
ticle and liquid motion in semi-solid aluminium alloys: a quantitative in situ micro-
radioscopy study. Acta Materialia, vol. 61, issue 4, 12441253 (2013)

6. A. Myagotin, A. Ershov, L. Helfen, R. Verdejo, A. Belyaev and T. Baumbach.
Coalescence analysis for evolving foams via optical flow computation on projection
image sequences. Journal of Synchrotron Radiation, 19, 483-491 (2012)

7. V. R. Altapova, A. Ershov, T. d. S. Rolo, E. Reznikova, J. Mohr, Yu. L. Pivovarov,
V. F. Pichugin, G. T. Baumbach. Imaging Methods and Their Application at ANKA
Light Source. Journal of Surface Investigation: X-ray, Synchrotron and Neutron
Techniques. Volume 6, Number 3 394-397 (2012)
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regger, D. Pelliccia, P. Vagovic, and F. Xu. Moderne 2-d und 3-d ab-
bildende rntgenverfahren mit synchrotronstrahlung. Testing, Material-
pruefung/Materials, 51:642–651, 2009.

[Bro92] Lisa Gottesfeld Brown. A survey of image registration techniques. ACM
Comput. Surv., 24(4):325–376, December 1992.

[BRS+08] O. Betz, A. Rack, C. Schmitt, A. Ershov, A. Dieterich, L. Körner,
D. Haas, and T. Baumbach. High-speed x-ray cineradiography for ana-
lyzing complex kinematics in living insects. Synchrotron Radiation News,
21(5):34–38, 2008.

[Bru06] A. Bruhn. Variational Optic Flow Computation – Accurate Modelling
and Efficient Numerics. PhD thesis, Department of Mathematics and
Comptuer Science, Saarland University, Germany, July 2006.

[BSHB01] J. Banhart, H. Stanzick, L. Helfen, and T. Baumbach. Metal foam evolu-
tion studied by synchrotron radioscopy. Applied Physical Letters, 78:1152–
1154, 2001.



BIBLIOGRAPHY 191

[BSL+11] Simon Baker, Daniel Scharstein, J.P. Lewis, Stefan Roth, Michael J.
Black, and Richard Szeliski. A database and evaluation methodology
for optical flow. International Journal of Computer Vision, 92(1):1–31,
2011.

[Buz08] Thorsten M. Buzug. Computed tomography from photon statistics to mod-
ern cone-beam CT. Springer, Berlin, 2008.

[BW05] A. Bruhn and J. Weickert. Towards ultimate motion estimation: combin-
ing highest accuracy with real-time performance. In Computer Vision,
2005. ICCV 2005. Tenth IEEE International Conference on, volume 1,
pages 749–755 Vol. 1, 2005.

[BW06] A. Bruhn and J. Weickert. A confidence measure for variational optic flow
methods. In Reinhard Klette, Ryszard Kozera, Lyle Noakes, and Joachim
Weickert, editors, Geometric Properties for Incomplete data, volume 31,
pages 283–298. Springer Netherlands, 2006.

[BWF+05] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnörr. Vari-
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