449 research outputs found

    The design and characterisation of miniature robotics for astronomical instruments

    Get PDF
    Micro robotics has the potential to improve the efficiency and reduce cost of future multi-object instruments for astronomy. This thesis reports on the development and evolution of a micro autonomous pick-off mirror called the Micro Autonomous Positioning System (MAPS) that can be used in a multi-object spectrograph. The design of these micro-autonomous pick-off mirrors is novel as they are capable of high precision positioning using electromagnetic propulsion through utilising non-conventional components and techniques. These devices are self-driven robotic units, which with the help of an external control system are capable of positioning themselves on an instruments focal plane to within 24 μm. This is different from other high precision micro robotics as they normally use piezoelectric actuators for propulsion. Micro robots have been developed that use electromagnetic motors, however they are not used for high precision applications. Although there is a plethora of literature covering design, functionality and capability of precision micro autonomous systems, there is limited research on characterisation methods for their use in astronomical applications. This work contributes not only to the science supporting the design of a micro-autonomous pick-off mirror but also presents a framework for characterising such miniature mechanisms. The majority of instruments are presented with a curved focal plane. Therefore, to ensure that the pick-off mirrors are aligned properly with the receiving optics, either the pick-off mirror needs to be tipped or the receiving optics repositioned. Currently this function is implemented in the beam steering mirror (i.e. the receiving optics). The travel range required by the beam steering mirror is relatively large, and as such, it is more difficult to achieve the positional accuracy and stability. By incorporating this functionality in the pick-off mirror, the instrument can be optimised in terms of size, accuracy and stability. A unique self-adjusting mirror (SAM) is thus proposed as a solution and detailed. As a proof-of-concepts both MAPS and SAM usability in multi-object spectrographs was evaluated and validated. The results indicate their potential to meet the requirements of astronomical instruments and reduce both the size and cost

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation

    Design and Applications of Coordinate Measuring Machines

    Get PDF
    Coordinate measuring machines (CMMs) have been conventionally used in industry for 3-dimensional and form-error measurements of macro parts for many years. Ever since the first CMM, developed by Ferranti Co. in the late 1950s, they have been regarded as versatile measuring equipment, yet many CMMs on the market still have inherent systematic errors due to the violation of the Abbe Principle in its design. Current CMMs are only suitable for part tolerance above 10 μm. With the rapid advent of ultraprecision technology, multi-axis machining, and micro/nanotechnology over the past twenty years, new types of ultraprecision and micro/nao-CMMs are urgently needed in all aspects of society. This Special Issue accepted papers revealing novel designs and applications of CMMs, including structures, probes, miniaturization, measuring paths, accuracy enhancement, error compensation, etc. Detailed design principles in sciences, and technological applications in high-tech industries, were required for submission. Topics covered, but were not limited to, the following areas: 1. New types of CMMs, such as Abbe-free, multi-axis, cylindrical, parallel, etc. 2. New types of probes, such as touch-trigger, scanning, hybrid, non-contact, microscopic, etc. 3. New types of Micro/nano-CMMs. 4. New types of measuring path strategy, such as collision avoidance, free-form surface, aspheric surface, etc. 5. New types of error compensation strategy

    Assessing the optical configuration of a structured light scanner in metrological use

    Get PDF
    Structured light scanners for three-dimensional surface acquisition (SL scanners) are increasingly used for dimensional metrology. The optical configuration of SL scanners (focal length and baseline distance) influences the triangulation process, on which the scanners\u27 measurement principle relies. So far, only a limited number of studies has investigated the optical configuration\u27s influence on the accuracy of a SL scanner. To close this gap, this work presents a design of experiment in which the optical configuration of a SL scanner is systematically varied and its influence on the accuracy evaluated. Further, tactile reference measurements allow to separate random from systematical errors, while a special test specimen is used in two different configurations to ensure general applicability of the findings. Thus, this work provides support when designing a SL scanner by highlighting which optical configuration maximizes accuracy

    Non-contact free-form shape measurement for coordinate measuring machines

    Get PDF
    Precision measurement of manufactured parts commonly uses contact measurement methods. A Coordinate Measuring Machine (CMM) mounted probe touches the surface of the part, recording the probe’s tip position at each contact. Recently, devices have been developed that continuously scan the probe tip across the surface, allowing points to be measured more quickly. Contact measurement is accurate and fast for shapes that are easily parameterized such as a sphere or a plane, but is slow and requires considerable user input for more general objects such as those with free-form surfaces. Phase stepping fringe projection and photogrammetry are common non-contact shape measurement methods. Photogrammetry builds a 3D model of feature points from images of an object taken from multiple perspectives. In phase stepping fringe projection a series of sinusoidal patterns, with a phase shift between each, is projected towards an object. A camera records a corresponding series of images. The phase of the pattern at each imaged point is calculated and converted to a 3D representation of the object’s surface. Techniques combining phase stepping fringe projection and photogrammetry were developed and are described here. The eventual aim is to develop an optical probe for a CMM to enable non-contact measurement of objects in an industrial setting. For the CMM to accurately report its position the probe must be small, light, and robust. The methods currently used to provide a phase shift require either an accurately calibrated translation stage to move an internal component, or a programmable projector. Neither of these implementations can be practically mounted on a CMM due to size and weight limits or the delicate parts required. A CMM probe consisting of a single camera and a fringe projector was developed. The fringe projector projects a fixed fringe pattern. Phase steps are created by moving the CMM mounted probe, taking advantage of the geometry of the fringe projection system. New techniques to calculate phase from phase stepped images created by relative motion of probe and object are proposed, mathematically modelled, and tested experimentally. Novel techniques for absolute measurement of surfaces by viewing an object from different perspectives are developed. A prototype probe is used to demonstrate measurements of a variety of objects.Engineering and Physical Sciences Research Council (EPSRC) Grant No. GR/T11289/0

    Developing a meso-scale non-contact measuring method based on vision system : calibration of CCD camera

    Get PDF
    In developing a vision based measuring system, the camera’s precision has always been the bottleneck, and often being discussed. The combination of digital camera, narrow angle, relatively big distortions and focus to infinity cause some difficulties in camera calibration, as a result none of the existing camera calibration techniques is perfectly suitable for this purpose. This research compared three types of CCD camera calibration techniques namely Bouget’s Calibration Toolbox, Zhang’s Calibration Toolbox and Heikkilla’s Calibration Toolbox. The purpose is to select the most suitable camera calibration technique to fulfill the needs of users according to their desired applications. Aside from camera calibration, optimization of parameters such as effective focal length and coordinate of principle point for intrinsic parameter as well as extrinsic parameters comprises of rotation matrix and translation were performed. Experimental data for both calibration and optimization were collected to further explain the experimental results. Statistical analyses such as T-Test and ANOVA were conducted on the collected data using Minitab and EXCEL software. The results of this research indicated that the best calibration technique (toolbox) for calibrating Omron F500 CCD Camera for the purpose of measuring dimensions of meso-scale component is the Heikkilla’s Calibration Toolbox

    An electromagnetic tracker system for the design of a dental superstructure

    Get PDF
    Nowadays, different techniques are available for manufacturing full-arch implant-supported prosthesis, many of them based on an impression procedure. Nevertheless, the long-term success of the prosthesis is highly influenced by the accuracy during such process, being affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of a 3D electromagnetic motion tracking system as an acquisition method for modeling such prosthesis. To this extent, we propose an implant acquisition method at the patient mouth, using a specific prototyped tool coupled with a tracker sensor, and a set of calibration procedures (for distortion correction and tool calibration), that ultimately obtains combined measurements of the implant's position and angulation, and eliminating the use of any impression material. However, in the particular case of the evaluated tracking system, the order of magnitude of the obtained errors invalidates its use for this specific application.This work has been supported by FCT – Fundação para a Ciência e Tecnologia in the scope of the Ph.D. grant SFRH/BD/68270/2010 and the project EXPL/BBB-BMD/2146/2013

    A Low-Cost and Low-Tech Solution to Test for Variations Between Multiple Offline Programming Software Packages.

    Get PDF
    This research paper chronicles the attempt to bring forth a low-cost and low-tech testing methodology whereby multiple offline programming (OLP) software packages’ generated programs may be compared when run on industrial robots. This research was initiated by the discovery that no real research exists to test between iterations of OLP software packages and that most research for positional accuracy and/or repeatability on industrial robots is expensive and technologically intensive. Despite this, many countries’ leaders are pushing for intensive digitalization of manufacturing and Small and Mediumsized Enterprises (SMEs) are noted to be lagging in adoption of such technologies. The research consisted of creating a test utilizing commonplace and inexpensive measuring devices in dial indicators to test the X, Y and Z axes of movement on a Fanuc R-2000iC/165F industrial robot. Unfortunately, the robot in question was unable to produce consistent results so that the research could be properly examined. It is assumed that the inconsistency could be linked to wear on the physical robot due to it having been utilized in heavy industrial work prior to being donated to the University where this research was conducted. Recommendations for future research and methods whereby the research could be refined are presented in the final chapter

    Optimised multi-camera systems for dimensional control in factory environments

    Get PDF
    As part of the United Kingdom’s Light Controlled Factory project, University College London aims to develop a large-scale multi-camera system for dimensional control tasks in manufacturing, such as part assembly and tracking. Accuracy requirements in manufacturing are demanding, and improvements in the modelling and analysis of both camera imaging and the measurement environment are essential. A major aspect to improved camera modelling is the use of monochromatic imaging of retro-reflective target points, together with a camera model designed for a particular illumination wavelength. A small-scale system for laboratory testing has been constructed using eight low-cost monochrome cameras with C-mount lenses on a rigid metal framework. Red, green and blue monochromatic light-emitting diode ring illumination has been tested, with a broadband white illumination for comparison. Potentially, accuracy may be further enhanced by the reduction in refraction errors caused by a non-homogeneous factory environment, typically manifest in varying temperatures in the workspace. A refraction modelling tool under development in the parallel European Union LUMINAR project is being used to simulate refraction in order to test methods which may be able to reduce or eliminate this effect in practice
    • …
    corecore