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ABSTRACT 

 
Micro robotics has the potential to improve the efficiency and reduce cost of future 

multi-object instruments for astronomy.  This thesis reports on the development and 

evolution of a micro autonomous pick-off mirror called the Micro Autonomous 

Positioning System (MAPS) that can be used in a multi-object spectrograph.  The 

design of these micro-autonomous pick-off mirrors is novel as they are capable of high 

precision positioning using electromagnetic propulsion through utilising non-

conventional components and techniques.  These devices are self-driven robotic units, 

which with the help of an external control system are capable of positioning themselves 

on an instruments focal plane to within 24 µm.  This is different from other high 

precision micro robotics as they normally use piezoelectric actuators for propulsion.  

Micro robots have been developed that use electromagnetic motors, however they are 

not used for high precision applications. 

Although there is a plethora of literature covering design, functionality and capability of 

precision micro autonomous systems, there is limited research on characterisation 

methods for their use in astronomical applications.  This work contributes not only to 

the science supporting the design of a micro-autonomous pick-off mirror but also 

presents a framework for characterising such miniature mechanisms. 

The majority of instruments are presented with a curved focal plane. Therefore, to 

ensure that the pick-off mirrors are aligned properly with the receiving optics, either the 

pick-off mirror needs to be tipped or the receiving optics repositioned.  Currently this 

function is implemented in the beam steering mirror (i.e. the receiving optics).  The 

travel range required by the beam steering mirror is relatively large, and as such, it is 

more difficult to achieve the positional accuracy and stability.  By incorporating this 

functionality in the pick-off mirror, the instrument can be optimised in terms of size, 

accuracy and stability.  A unique self-adjusting mirror (SAM) is thus proposed as a 

solution and detailed.  

As a proof-of-concepts both MAPS and SAM usability in multi-object spectrographs 

was evaluated and validated.  The results indicate their potential to meet the 

requirements of astronomical instruments and reduce both the size and cost. 
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Chapter 1 – Introduction 

The purpose of this thesis is to describe the design, development and verification of the use of 

micro-autonomous pick-off mirrors (POMs) in the next generation of ground-based telescopes 

multi-object spectrographs.  These mirrors will be used to pick-off astronomical targets of 

interest and transfer the image to the Beam Steering Mirror (BSM) which passes the image 

through path correction and adaptive optics before delivering the image to the spectrograph for 

analysis.  This thesis describes two developments: a micro autonomous robot
1
 called the 

Micro-Autonomous Positioning Sub-System (MAPS) project and the development of a Self-

Adjusting Mirror (SAM)
2
.  For both developments, the designs were manufactured and 

characterised for their suitability in astronomical instrumentation. 

 

It was intended to use this research to determine if miniature robotics can be used as an 

alternative to current pick-off systems.  If successful this new technology could improve the 

overall design of multi-object spectrographs as they will no longer need to accommodate large, 

heavy pick-off systems.   

 

This chapter provides a short overview of the application area. 

1.1 Large Ground Based Telescopes 

Astronomers study the origins and evolution of the universe.  By using telescopes both in space 

and on the ground, the spectrum of light from stars is studied to help us understand what these 

objects are made off as well as to developed models to describe the dynamic behaviour of these 

most distant objects.  Advancements in technology, allowing for larger telescopes to be 

produced with beam splitters and/or fold mirrors and CCD detectors, have made it possible for 

astronomers to observe multiple objects simultaneously, thus lowering costs and increasing the 

efficiency of observations.  As the understanding of the universe increases and current 

technology is pushed to its limit, the need for more sensitive instruments to gain greater insight 

is required [1 - 3].  The collecting area and angular resolution are the key factors that determine 

a telescope’s capability; with the angular resolution dominating the design of telescopes until 

the primary mirror diameter reaches the atmospheric seeing limit [4].  At that point, the 

collecting area becomes the dominant factor requiring the primary mirror to be larger, which 

                                                           
1
 Funded by the Centre for Instrumentation (CfI) 

2
 Funded by Opticon FP-7 Work Package 5 



2 
 

allows the collection of more photons thus making the observation of fainter distant objects 

possible.  This has led to the development of concepts for extremely large telescopes such as 

the Thirty Metre Telescope (TMT), the Giant Magellan Telescope (GMT) and the European 

Extremely Large Telescope (E-ELT).  One of the most interesting of these future telescopes is 

the E-ELT as when completed it will be the largest optical and infrared ground-based telescope 

in the world [5, 6].  The E-ELT is being developed by the European Southern Observatory 

(ESO), which the UK ATC is a member of. 

 

Expected to be ready by 2024, the E-ELT will have a primary collecting mirror with a diameter 

of 38.5 m, built from 798 hexagonal segments.  The Multi-Object Spectrograph (MOS) 

instrument will be located at the Nasmyth Platform focal station (Figure 1-1) where the 

photons from the selected objects will be spectrally analysed. 

 

Figure 1-1: ELT Optical Design [7] 

 

1.2 Multi Object Spectrographs 

Spectroscopy is the separation of light into its constituent wavelengths for spectral analysis    

[8, 9], to study the chemical compositions of astronomical objects and to determine types of 

stars, galaxies and other astronomical objects.  By multiplexing the collected light on an 

instrument’s focal plane, multiple similar objects can be analysed simultaneously.  This is a 

more efficient method compared to studying each object sequentially.  Various types of multi-

object spectrographs (MOS) have been developed over the last couple of decades.  There are at 
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least three mainstream MOS instrument types currently deployed on various ground-based and 

space telescopes, namely: 

 Slit Masks (ensures maximum throughput) [8, 10 - 20] 

 Fibre Fed (highest number of astronomical objects can be observed simulataneously) 

[17, 21- 30]  

 Pick-Off Mirrors (POMs) (no loss of spatial information) [31] 

Figure 1-2 shows the current and planned deployment of MOS instruments.  Slit masks are 

commonly used due to their simplicity.  However, they suffer a major drawback, as plates must 

be pre-made for every observation.  This limits the re-configurability and versatility of the 

instrument. To address this there are configurable slit masks that utilise sliders or micro-

shutters but these are large mechanisms that need to cover the entire focal plane. 

 

Due to the increased number of objects that can be observed simultaneously compared to slit 

masks, fibre-fed instruments are now the de facto standard. There are two broad categories for 

the robotic positioning of fibres, one is sequential and the other parallel.  As the name suggests 

sequential positioners placed the fibres in position one at a time while the parallel method 

positions multiple fibres simultaneously.  Fibre-fed instruments suffer more photon loss than 

other types of multi-object instruments due to absorption within the fibres’ glass resulting in a 

lower throughput compared to that of slit masks.  

 

 

Figure 1-2: Trend Analysis of MOS Instruments [32] 
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For some science cases [33, 34], the spatial information is as important as the spectral 

information.  For these instruments, pick-off mirrors (POMs) are being developed, as slit 

masks do not provide spatial information quickly, and have a higher throughput compared to a 

fibre.  For a slit mask, the spatial resolution is determined from the dimension along the slit and 

by stepping the position of the slit providing multiple spectrum points.  This is slow compared 

to a fibre integral field unit as a bundle of fibres can each obtain a spectrum simultaneously and 

be combined to provide the spatial information.  The POMs are positioned in the same manner 

as fibres, namely ‘Pick and Place systems’ and ‘Robotic Arms’. 

 

Pick and place systems are typically through Cartesian or SCARA (Selective Compliance 

Assembly Robot Arm) robots. These types of positioning systems are capable of high 

repeatability.  An excellent example of a SCARA type robot is StarPicker (Figure 1-3), which 

is capable of positioning buttons to within 10 µm repeatedly.  StarPicker has an overall reach 

of 450 mm and can work at cryogenic temperatures.  It places magnetic buttons on the focal 

plate very precisely.  There are two focal plates so that during an observation the second plate 

can be configured for the next observation.  Typically the plates are mounted back-to-back 

such that at the completion of an observation the plates are flipped over maximising the 

observation time.  This robot weighs over 500 kg and is relatively heavy compared to the 

mirrors it is moving that only weight a few grams.   

 

 

Figure 1-3: Star-Picker [35] 
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Robotic arm positioners refer to arms where the end effector is a fixed mirror.  Geometrically 

the arm is composed of a single revolute joint and one prismatic joint, and could be categorised 

as a cylindrical arm.  This type of geometry is used in the K-band Multi Object Spectrograph 

(KMOS) (Figure 1-4), which is installed at the Very Large Telescope (VLT) in Chile.  These 

arms when fully retracted occupy a volume of 445 x 70 x 180 mm
3
 while each pick-off mirror 

is only 3 mm in diameter, showing that a large amount of real estate is being used to position a 

relatively small object. 

 

 

 
 

(a) 24 KMOS arms around the focal 

plane 

(b) Single KMOS Arm 

Figure 1-4: KMOS [31] 

 

Due to the positioning of the arms around the circumference of the focal plane, the maximum 

number of POMs within the instrument is constrained by how many arms can fit around the 

focal plane.  Regardless of this limiting factor, the arms are advantageous compared to the pick 

and place method as they can position all POMs concurrently allowing quick reconfigurations 

without the need of preparing focal plates beforehand.   

 

 

 

 

Table 1-1 summarises the advantages and disadvantages of both methods.  Unfortunately, for the 

MOS instrument currently under development for the E-ELT, robotic arms can no longer be 

considered due to the focal planes size and available volume.  Pick and place is still a viable 

option however it has long configuration times due to the sequential placement of POMs.  

These mechanisms need to be large and sturdy enough to reach the entire focal plate.  This 

means a relatively large mechanism in comparison to the POM.  
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Table 1-1: Positioner Summary 

Placement Technique Advantages Disadvantages 

Pick and Place Place POMs anywhere on 

the focal plane 

Long configuration times 

Clustering of POMs  Sequential placement of POMs 

Not a limiting factor for the 

number of POMs 

As the focal plane increases in 

size so does the pick and place 

mechanism, requiring sturdier 

supports 

Robotic Arms Parallel Configuration of 

POMs 

Limited number of POMs 

Short configuration times 

Cannot cluster POMs 

Flexural issues as reach 

increases 

Micro Autonomous Robot Place POMs anywhere on 

the focal plane 

Never been used for this 

application 

Clustering of POMs 

Parallel Configuration of 

POMs 
 

 

Given the constraints and the disadvantages of the aforementioned positioning methods, the 

idea of a micro-autonomous pick-off mirror was conceptualised (Figure 1-5).  Micro 

autonomous robots have not been used within MOS instruments and it was unknown if one 

could be developed that can precisely position pick-off components.  The concept consists of a 

pick-off mirror mounted on a small (20 mm x 20 mm) self-propelled base that communicates 

via a radio frequency link and does not need a tether to obtain power.  The robots will need to 

be capable of positioning and orientating themselves with high precision to ensure that they 

gather all the photons from the objects that are being studied.  Long exposure times are needed 

for the objects being studied because they are very faint.  This requires multiple frames to be 

stacked together to get a meaningful signal at the detector.  It is therefore essential that the 

photons from the source object are directed to the same part of the detector so that the signal 

being studied is not lost to noise. 
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Figure 1-5: Miniature Autonomous Robot Concept 

 

 

The research objectives were to determine if miniature mechatronics could be used to position 

pick-off optics with a high accuracy within Multi-Object Spectrographs (MOS), thus 

potentially lowering the costs of MOS instruments as they are currently positioned by 

relatively large bulky systems that are relatively expensive in comparison.  The goals for this 

work were: 

 Characterise the MAPS robot, critically analysing the design to determine whether 

miniature robots are suitable for high precision positioning within multi-object 

instruments for astronomy 

 Design a Self-Adjusting Mirror by adding functionality to the POM to correct for 

optical misalignments within MOS instruments 

 Characterise SAM to determine whether a miniature self-adjusting mirror can replace 

some of the BSM functionality resulting in a smaller and more cost effective solution 

 Prove that micro robotics can be used in  astronomy instrumentation 

  

Incoming light from 
astronomical object

Beam Steering 
Mirror

To  spectrograph
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This chapter has described the background and reason behind this research work.  It has also 

summarised the research objectives that were investigated.  Chapter 2 carries this concept idea 

forward by listing the requirements and describing the MAPS system design that lays down the 

foundation to determine if micro autonomous robots can be used to positon pick-off elements 

for astronomy.  In Chapter 3, the design of the micro autonomous robot is described, also 

highlighting the initial problems experienced and the methodology followed to achieve an 

operational robot.  Chapter 4 summarises the performance of the robot in terms of its required 

characteristics.  Chapter 5 describes the design and capabilities of a self-adjusting mirror, 

developed to determine if a miniature mechanism can be used to correct for the optical 

misalignment at the focal plane of a MOS instrument.   
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Chapter 2- Miniature Mechatronics for Astronomy Observations 

This chapter outlines the requirements for the micro autonomous positioning system (MAPS).  

These requirements act as the foundation that determines if micro autonomous robots can be 

used for the positioning of pick-off optics.  A review of the current-state-of-the-art technolgies 

is presented showing that there are currently no micro robots available for this astronomy 

application.  The overall system design is then presented and the chapter concludes with some 

initial concept ideas for the MAPS robot. 

 

Miniature mechatronics is a field of engineering that has been expanding, mainly enabled by 

the availability of microelectronic components.  A limiting factor is the supply of power to the 

robots.  Current day batteries that can physically fit within the footprint do not have sufficient 

energy storage capacity to power the robots.  This is due to the laws of scaling, as the energy 

density of batteries is related to the physical volume of the battery, which scales by ~L
3
 where 

L is considered to be a reference dimension of the battery [36].  The effects of scaling are not 

just limited to power, but to all aspects of the robot including the motor efficiency.   

 

Generally, miniature robots are ideal candidates for tasks that are in hard to reach places, 

repetitive, precise and potentially dangerous [37].  The inspiration for the development of small 

autonomous robots for these types of tasks comes from the potential applications they bring at 

a low cost [38] applications that include searching for survivors in burning buildings or rubble 

[39]; identifying defects within pipes [40, 41]; reporting on the conditions of locations that are 

hard to reach by a person and more.  Since miniature robots are showing promise for use in a 

wide range of applications including high precision work within scanning electron microscopes 

(SEM) they may be adaptable to meet the needs of astronomical instrumentation. 

2.1 Astronomers’ Requirements 

The primary functions required of the pick-off system for a MOS instrument are [42]: 

 Positioning POMs precisely for picking off science objects and reference stars to aid 

the adaptive optics system.  

 Ensuring that the POM and next optical element in the light path are aligned such that 

the astronomical objects imaged are centred on the surface of the next optical element. 
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Table 2-1 summarises the pick-off system’s performance requirements based on the EAGLE 

concept design being proposed for the E-ELT.  Although, these requirements can be met by 

current positioning systems they have their limitations (see section 1.2).  Therefore, miniature 

robots are being examined to determine their feasibility of meeting the same requirements 

without the disadvantages inherent to the current positioning systems. 

Table 2-1: Pick-Off System Performance Characteristics [42] 

Parameter Requirement 

Total Patrol Field Area ≥ 2000 mm x 1500 mm 

Number of Pick-Off-Mirrors ≥ 30  

Physical Pick-Off Mirror Diameter ~ 20 mm base with a 45° cut 

POM Positioning Within a science object’s patrol field with a 

resolution of ≤ 30 ± 5 µm 

POM Orientation 1 ± 0.1 mrad to align the centre of the POM 

to that of the receiving optics 

POM Positioning Repeatability POMs will be capable of returning to a 

previous set position to within 30 ± 5 µm 

Configuration Time Less than 300 seconds for every 3600 

seconds observation time, including time 

required to align POM with receiving optics 

Environment Temperature The pick-off system must be able to operate 

between temperatures of -20 and +10 °C.  

The requirements that govern the pick-off system are derived from the science requirements 

that the MOS instrument is developed to study.  This includes the number of pick-off mirrors 

that are determined from the amount of detectors available.  The pick-off mirrors physical size 

must allow POMs to be positioned to within 20 mm edge-to-edge of each other and be able to 

collect all the photons from the source object.  This was determined to be achievable with an 

Ø20 mm base diameter.  The positioning, orientation and positioning repeatability was 

determined based on what is needed to ensure that all the objects of interest’s photons is 

collected and delivered from the focal plane of the MOS instrument to the detectors via the 

correction optics.  

 

Miniature autonomous robots have been developed with a footprint within the physical POM 

diameter.  Therefore, a literature survey was conducted to determine if the currently developed 

miniature robots would be capable of meeting the astronomy instruments requirements. 
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2.1.1 Miniature Autonomous Robot Candidates for Astronomy 

Over the years, many small autonomous robots have been developed primarily for research; 

however there are few examples of commercially available autonomous robots for specific 

applications.  Table 2-2 and 2-3 present a summary of a selection of these robots.  Most of 

these robots are driven by piezoelectric or electromagnetic actuators.   

 

Table 2-2: Summary of Autonomous Robots (Electromagnetic) 

Robot Identification Application 

& 

Commercial 

Availability 

Driving 

Mechanism 

Designed 

for High 

Precision? 

Inchy, 

Jemmy & 

Smoovy 

[36] [43] 
 

Feasibility 

research 

projects 

Smoovy DC 

Motors, gears 

and wheels 

No 

Miniature 

Autonomous 

Robotic 

Vehicle 

(MARV) 

[44] 
 

Feasibility 

research 

project 

Smoovy DC 

Motor, 

pulleys and 

tracks 

No 

PICO 

[43] [45] 

 

Hobbyist 

developed. 

Commercially 

available light 

chasing robot 

DC Motor 

(Mobile 

Phone), 

worm gear to 

shafts with 

wheels 

No 

ANTS 

[46] 

 

Swarm 

robotics 

research 

DC Motor, 

gears and 

chain tracks 

Unlikely 

EMRoS 

Series 

(Monsieur, 

Monsieur II-

P, Nino, 

Ricordo, 

Rubie) [47] 
 

Company 

capabilities 

showcase, 

miniature 

technology 

research 

Homemade 

Ultra-

miniature 

stepper motor 

to wheels 

No 

Alice 

[36] [38] 

[48] 

 

Research and 

education 

Watch motor 

to wheels 

(one version 

with tracks) 

No 
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Table 2-3: Summary of Autonomous Robots (Piezoelectric) 

Robot Identification Application Driving 

Mechanism 

Designed 

for High 

Precision? 

NanoWalker 

[49] 

 

Research into 

STM 

applications 

such as 

manipulation 

and probing at 

a Nano scale 

Piezoelectric 

legs on a 

vibrating 

PowerFloor 

Yes – 0.3 

µm 

resolution 

miBot 

[50] 

 

SEM & FIB 

applications 

such as 

probing and 

manipulation 

at Nano to 

micro level 

Piezoelectric 

legs – 

Stick/slip 

principle 

Yes – 

Resolutions 

of 40 nm 

Stepping 

Mode (AC 

voltage) 

Starbugs 

[51] [52] 

 

Research for 

MOS 

applications 

within 

Astronomy 

Piezoelectric 

tube 

following the 

stick/slip 

principle 

Yes – Less 

than 4 µm 

Resolution 

Miniman 

[53] [54] 

 

Research for 

micro-

assembly 

robotics 

Piezo legs 

Yes – 20 

nm 

resolution 

 

 

 

Greater detail of these robots has been summarised in the critique diagrams Figure 2-1 and 2-2.  

The critique diagrams detail the types of sensors, motors and capabilities of each robot reported 

in Table 2-2Table 2-3.   It has been broken down into the robots attributes and issues in 

reference to the application of positioning optical components on a MOS instrument.  Like the 

summary tables, the critique diagrams have been separated into electromagnetic robots and 

piezoelectric robots based on their drive mechanism. 
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Figure 2-1: Critique diagrams of current micro autonomous electromagnetic robots 
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Figure 2-2: Critique diagrams of current micro autonomous piezoelectric robots 
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From the critique diagrams, it can be seen that the piezoelectric driven robots can achieve sub-

micron resolution, generally using the SEM environment that they have been developed for, 

within a footprint that is less than 30 mm
3
.  However, these robots were tethered to external 

control electronics and power supplies; limiting their travel range and presenting path-planning 

issues for multiple robots operating together.  The electromagnetic robots do not require a 

tether as the electronics are self-contained, but they have a short continuous run time, usually 

less than an hour.  These were also not designed for high precision tasks.   

 

The study showed that robots within this volume can operate with high precision however it 

was clear that none of the existing robot developments were ideal for positioning POMs on the 

focal plane of a large astronomical instrument.  Based on the outcome of the review it was 

decided to develop a robot driven by small brushless DC motors as these have the potential to 

be driven making use of micro-stepping thus make high precision positioning  within a small 

form factor that does not require high-power control electronics possible. 

 

The high precision micro autonomous robots identified in the literature generally operate in 

environments like scanning electron microscopes and because of this the microscope can be 

used to guide the robot into a required position.  This means fewer bulky components are 

needed on the robot.  For these high precision micro robots, power was supplied externally 

through a tether allowing a continuous supply.  These high precision micro robots are not ideal 

for astronomy due to combination of the tethers and large operating arena.  The tethers make 

the path planning process more complicated as they become obstacles for other robots to cross.  

They could also block a robot by being in its required position.  However, the external 

metrology and power that these high precision robots used helped guide the overall system 

architecture of MAPS.   

 

2.1.2 MAPS Overall System Design 

The MAPS design comprises of three modules: command and control, robot(s) and power.   

Figure 2-3 shows how these modules interact. 
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Figure 2-3: MAPS System Architecture [55] 



17 
 

In this thesis, focus is placed on the mechanical design, manufacturing and assembly process of 

the robot and the power module, which is discussed in detail in Chapter 4.  The research focus 

is to determine if electromagnetic actuated micro robots can be developed for the high 

precision positioning of pick-off mirrors in astronomy.  The MAPS command and control 

module reported by Taylor [32] is used to control the robot remotely.  A summary of the 

command and control module’s operation is provided to aid in the understanding of the overall 

system. 

 

A micro robot specific requirement was created based on the astronomy requirements and 

overall system architecture detailed in section 2.1.  

  

2.2 MAPS Robot (MA-BOT) Requirements 

 

The MAPS robot requirements were derived from the pick-off system requirements Table 2-1.  

Table 2-4 summarises the key requirements for the robot [56]. 

 

Table 2-4: Driving Requirements for MAPS [57] 

Parameter Requirement Critical Parameters 

X – Y Positioning Accuracy ≤ 10 µm High 

Z – Axis Angular Resolution ≤ 1 mrad High 

Speed ≥ 10 mm/s Low 

Operation Time ≥ 8 hours per night Med 

Footprint ≤ 30 mm x 30 mm Med 

Height ≤ 60 mm Med 

Communication Range ≥ 4 m Low 

Environment Temperature Between -10 and +20°C Low 

 

The most important requirements are the positioning and angular resolution as these capture 

the photons needed by the scientists.  If the pick-off mirror is not positioned on the focal plane 

to within the stated parameters of Table 2-4 the vital photons needed do not reach the detector.   

The operation time and size of the micro robot was the next priority.  The operation time was 

determined from how long the instrument would be surveying the sky.  This requirement has a 

direct impact on the power module of the micro robot.  A power source would either need to 

have a large enough capacity to last at least 8 hours or intelligent power control.  This could be 
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achieved by putting the robot in a power saving mode once it is in position.  The footprint 

requirement was derived from the minimum clustering requirement needed by the science case 

which was 20 mm edge to edge assuming a Ø20 mm POM.  This translates to 40 mm centre to 

centre.  Therefore, the POM’s can at maximum be Ø40 mm.  The micro robots presented in the 

literature review are all within a footprint of 30 mm x 30 mm.  This provides an acceptable 

guideline for the maximum footprint of the robot. 

Finally, the communication and speed of the micro robot was determined from the 2 m 

diameter of the focal plane.  It is assumed that the robots may need to travel from one end of 

the focal plane to the other with 3 minutes to get into position.  Therefore, the robot needs to 

travel faster than 7 mm/s.  The 10 mm/s requirement was used to also provide time for fine 

positioning once the robot approximately reaches its position.  The communication module 

needs to at least be able to talk to a robot from the opposite end.  However, it is conceivable 

that the communications module at the command and control sub-system will not be located at 

the perimeter of the focal plane.  Therefore, a greater communication range is desirable. 

 

2.3 Concept Designs 

There is evidence from the micro robotics literature review (section 2.1.1) that electromagnetic 

driven micro robots have lower power consumption and simpler control electronics than Piezo 

driven micro robots.  Therefore, a Faulhaber Smoovy 0308B brushless DC motor with 03A 

125:1 planetary gear head was chosen [58, 59] to drive the robot, as a result of the literature 

review and its small size high-torque output.  By controlling the motor using pulse width 

modulation (PWM) control signal it is driven like a stepper motor [60].  The Smoovy motor’s 

datasheet [61] also indicates that it can be micro-stepped.  There are other motors available that 

meet the small size and torque requirements, however the Faulhaber Smoovy motors datasheet 

[61] indicates that it has the highest-torque output.  Based around the chosen motor three 

designs were explored that led to the development of the current robot.  The three designs are 

summarised in Table 2-5 including a list of the advantages and disadvantages of each design.   
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Table 2-5: Summary of investigated designs 

 C-Bot [62] T-Bot D-Bot 
 

 

 

 

Footprint, 

mm
2 

23.4 x 30.5 12 x 12 (Estimated)  30 x 30 

Steering 

Mechanism 

Rear wheeled drive 

Rack & Pinion 

Directly driven 

Differentially Steered 

Directly Driven 

Differentially 

Steered 

Number of 

Drive Motors 

1 Drive 

1 Steering 
2 2 

Advantages  No need to 

synchronise drive 

motors due to 

single drive motor 

 Turn on the spot 

 Fine turret stage 

 Turn on the spot 

 Few 

components 

required 

 Three point 

contact with 

ground 

Disadvantages  Small complex 

parts 

 Difficult to 

assemble 

 Cannot turn on the 

spot 

 Four contacts with 

the ground, not 

ideal in precision 

mechanics 

 High torque 

required 

 Motor side-load 

would be high 

 Concept has not 

allocated space for 

electronics 

 Four contacts with 

the ground (at the 

pulleys for the 

tracks) affects 

calibration [63] 

 Turning accuracy 

can be lower for 

tracks 

 Motor side-load 

too high 

damaging the 

motor 

Reason design 

was not chosen 

 Too complex to 

manufacture and 

assemble 

 Uncertain of its 

tip/tilt when moved 

to a position due to 

four ground 

contacts 

 Motor radial load 

would exceed 

acceptable 

allowance without 

an intermediate 

stage 

 Uncertain of its 

tip/tilt when moved 

to a position due to 

four ground 

contacts 

 Possible slipping 

 Motor radial 

load would 

exceed 

acceptable 

allowance 

without an 

intermediate 

stage 
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To ease the assembly process and lower the cost of manufacturing it is necessary to minimise 

the number and complexity of components.  After performing a parts count it was determined 

that a differentially steered robot will require less components compared to the C-Bot design.  

The C-Bot design requires more complex components such as the steering mechanism where 

small gears and layout may require linkages to the front wheels that are a few millimetres in 

size.  Components of this size are difficult to assemble manually with precision.  A 

differentially steered robot could use simpler components as the steering is incorporated with 

the drive section.  It also allows the robot to turn on the spot, which simplifies the path analysis 

required to configure the focal plane.  This difficulty in assembly highlights the problem with 

assembling robots within this size domain.  Robots these sizes are difficult to assemble as they 

are too large for micro assembly techniques and too small for common macro assembly 

techniques. 

 

D-Bot showed that directly driving the wheels from the selected Smoovy motors is not possible 

due to the high radial load; therefore an intermediate stage would be needed to protect the 

motors and the gear head.  The tank design of T-Bot could be adopted to protect the motors by 

controlling the belt’s tension.  The T-Bot design has four points of rigid contact between the 

robot and ground.  Compliancy would be required between the robot and the focal plane to stop 

the robot from rocking between two of these contacts [63].  This led to concerns that the POM 

could have varying physical angles between the mirrored surface and focal plane for different 

placements of the POM on the focal plane.  This angle could vary for the same robot at the 

same placement due to having more than three rigid contacts with the surface.  It would be 

uncertain which three contacts would be touching the surface each time the robot drives into 

position.  Therefore, each time the robot gets into position calibration would be required to 

ensure that the alignment between the POMs and receiving optics is within specification.   

 

Therefore, it was decided to make use of a modified D-bot design with an intermediate stage, 

described in chapter 3, to protect the Smoovy motors.  Three rigid contacts between the robot 

and focal plane will be used thus the physical mirror angle to the focal plane should be the 

same for all positions. 
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2.3.1 Command and Control Module 

The command and control module comprised of the metrology, wireless command and user 

interface.  Table 2-6 briefly defines the function of each component. 

Table 2-6: Command and Control Module Summary 

Module Sub-Systems Functional Description 

Wireless Command  RF Communication to transmit commands 

and receive status updates with the 

robot(s) 

 Communicate with all robots  

Workstation including software components  Receive image data from MMM 

 Identify each robot 

 Determine robot’s location 

 Path planning and command sending to 

the robots to get them to a required 

position 

 GUI interface for directing the robot(s) 

 Translate communications for users and 

robots 

Cameras  Image focal plane 

 Relay information to user interface  

The robot’s metrology has to be an off-board process due to a lack of space available within 

the robot.  Techniques such as current sensing and ultrasound triangulation were investigated 

but it was decided that optical imaging would provide the best measuring accuracy and requires 

the least volume [32].   

 

The following is a brief summary of the command and control module’s operation: 

 Lumenera cameras are used to image the entire focal plane. 

 A command is sent requesting a response from all active robots. 

 A centroiding algorithm determines the location of each robot by identifying and 

processing the target pattern of spots on top of the body of each robot. 

 To determine which robot is associated with a specific ID, commands are sent to each 

robot in turn and the centroiding process is repeated as to determine the exact position 

of each robot. 

A monochrome Lumenera Lw11059M with a Kodak JIA-11002 10.7 megapixel sensor was 

chosen for its low noise and high sensitivity.  The individual pixels of the sensor are 9 µm 

square pixels.  This combined with the centroiding software allows the cameras to measure the 

position of each robot to a resolution of 1 µm, which exceeds the required MAPS positional 

attainment of 10 µm.  This was determined using ambient light. 
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The control strategy consists of the command and control module following these steps: 

 Determine which available robot is closest to a desired position. 

 Compute the required commands to get the robot to this position. 

 Execute commands measuring the position of the robot between commands. 

 If the robots position is deviating from the desired position, the required commands are 

recalculated and issued to the robot. 

The metrology system was designed by a colleague at the UK ATC [32] and is not a part of 

this thesis.  

 

With each robot identified and their position’s ascertained, commands can be sent wirelessly to 

the robots through a graphical user interface (GUI).  The GUI was developed for research 

purposes to characterise the robot’s performance, it also included commands for fault 

diagnostics.  When implemented as part of an instrument, a template file with each robot’s 

position and orientation will be used.  The GUI allows commands to be sent to the robot(s) in 

either open or closed loop.  In open loop, the number of steps the robot should traverse in 

forwards, backwards or angular directions is used to direct the robot into position.  For the 

closed-loop control, desired locations are input as x-y and theta coordinates.  The control 

software determines the path which the robot should follow and also sends the required 

commands to the robot.  During the robot’s journey the metrology continually updates the 

control software with the robot’s actual positions such that corrective commands can be 

calculated and sent to the robot to ensure that the robot will reach its final position to within the 

specified accuracy. 

 

Chapter 2 showed that miniature autonomous robots can potentially be developed to meet the 

demanding requirements imposed by astronomical instrumentation.  The research shows that 

this is an application area that is currently not being addressed by miniature robots.  Although 

there are high precision miniature autonomous robots they do not currently meet the astronomy 

requirements.  The high precision robots were piezo driven requiring large electronics that are 

external to the robot.  This is because they require power greater than 100 volts to achieve 

actuation.  Thus requiring a wire ‘tether’ that would complicate path planning and positioning 

of the POM’s.  The electromagnetic driven robots have the electronics on-board due to their 

need for only a few volts to achieve actuation (~3 volts) and therefore do not require a tether.  

However, these robots have not been shown to be capable of high precision positioning.  From 

the literature survey it was decided to develop an electromagnetically propelled robot and this 
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survey indicated that the Smoovy DC motor was a suitable choice of motor for its high torque 

output and small size.  Various concept designs were detailed and indicated that a differentially 

steered robot design should be taken forward primarily due to it being easier to assemble.  The 

D-bot design was determined to be easier to assemble as the C-bot design was going to require 

small complex components that would be difficult to hold align and attach.  However, it may 

have been possible to design C-bot components to be less complex and is perhaps worth 

reviewing in the future. 

In chapter 3 the final concept design solution based around the D-Bot is described in more 

detail together with the manufacturing process that was developed to build these robots.  This 

design shows if it is possible to use a micro autonomous robot that is propelled by small DC 

motors for the high precision positioning of pick-off mirrors on astronomical instrumentation. 
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Chapter 3 – The MAPS Robot (MA-BOT1) 

This chapter details the design and characterisation of the first iteration of the robot which was 

battery powered.  This design is based on the D-Bot, however it has been altered to protect the 

motor as directly driving wheels was not possible due to the high radial load damaging the 

motors.  Also, due to the limited run time, a PowerFloor concept was trialled using an adapted 

robot, MA-BOT1.1.  This chapter concludes with a summary of the robots capabilities and 

limitations. 

3.1 The Design 

Figure 3-1 shows the CAD assembly model of the robot without the battery and electronics. 

 

 

Figure 3-1: MA-BOT1 CAD Model 

 

The two Smoovy motors (Figure 3-2) are arranged to independently drive the wheels that are 

aligned on a common axis.  This is achieved through a friction drive arrangement.  The friction 

drive arrangement was chosen over geared methods to overcome problems of backlash 

associated with gear systems.  Although, there will still be backlash of 4° inherent to the 

gearheads being used by the motor.  This translates to 0.5° at the robots wheel.  Although this 

design layout overcomes backlash after the motor’s gearhead it could be susceptible to slippage 

and increased wear.  Slippage normally occurs in friction drive mechanisms due to 

environmental factors such as water.  This should effect the robot as it will operate in a 

Chassis 

Pinion 

Wheel 

Smoovy Motor 

Spring Pin 

Electronics Support 

Cradle 

Mounting 

Bolt 
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controlled environment on the MOS instrument.  Each motor has a pinion attached to the 

output shaft of the gear head and is held in place with Loctite retainer.  The motors are slotted 

into the chassis as depicted in Figure 3-1 and typically held in place by a set screw which is a 

common macro assembly procedure. However early assemblies showed that the set screw 

could damage the motor, hence an interference fit was used. 

 

 

Figure 3-2: Smoovy 0308B Motor 
 

The chassis is a single piece of Delrin (Figure 3-3) with two relief slots cut at either end to 

form flexures or ‘hinges’ for the motor housings.  Delrin is an Acetal thermoplastic with low 

friction and low moisture absorption suited for creating precision parts for use in cryogenic 

applications.  It also has excellent strength and density compared to Nylon and ABS.  MOS 

instruments generally operate at cryogenic temperatures and, although the EAGLE instrument 

that is guiding this concept research is operating at room temperature, it was decided to use a 

material that could potentially be taken forward as a foundation for developing the robots to 

operate at cryogenic temperatures because many MOS instruments do operate at cryogenic 

temperatures.  A hinge (Figure 3-3) is used to provide control over the force between the motor 

and wheel, keeping it below 0.1 N to protect the motor shaft as dictated by the datasheet [64].  

A motor slides into each end of the chassis.  The relieved area allows movement of the motor 

in relation to the wheel.  To control the force between the motor pinion and the wheel, a grub 

screw is used (Figure 3-4).  The grub screw is tightened forcing the motor housing towards the 

wheel taking up the space of the relieved area.   
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Figure 3-3: MAPS Chassis 

 

 
Figure 3-4: Sectional View of Chassis Illustrating Grub Screw Interface 

 

 

Two steel dowels (Figure 3-5), used as axles, are press fit into counter-bores on opposite sides 

of the chassis.  The axles support the wheels, which are machined from Vespel, a self-

lubricating polyimide plastic chosen as it is a bearing material.  The wheel and dowel interact 

in the same fashion as a bushing on a rotating shaft.  The pressure-velocity (PV) value was 

calculated using equation (3-1) and compared to the Vespel PV value provided in the 

datasheets [65].  The symbols are defined in Table 3-1. 

 

𝑃𝑉 = 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ∗ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 =
𝑊

𝐿𝑑
∗

𝜋𝐷𝑛
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(3-1) 
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Table 3-1: Symbols used in (3-1) 

Symbol Definition Units 

PV Pressure-Velocity value used as a failure indicator MPa*m/s 

P Pressure based on the radial load (applied load from the 

motor) and projected area of contact with the shaft 

MPa 

V Sliding velocity is the velocity of the shaft surface in 

contact with the wheel 

m/s 

W Radial load applied to the wheel N 

L Contact length of the wheel bore on the shaft m 

d Diameter of hole on the wheel to accommodate the shaft m 

D Shaft diameter m 

n Rotational velocity of the wheel RPS (rotations 

per second) 

 

 

The PV value was calculated to be 0.1547x10
-3

 MPa*m/s, this is well within PV value of 0.875 

MPa*m/s provided by the material datasheet [65].  This suggests that the wheel should not 

wear at a significant rate.  Each wheel locates onto the axle and is retained with c-clips.  O-

rings act as tyres and are stretched onto annular grooves on the wheels (Figure 3-6).  The O-

ring is the point of contact with the motor’s pinion.   

 

 

 

  Figure 3-5: Axles 
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  Figure 3-6: Wheels 
 

A threaded hole on top of the chassis (Figure 3-3) serves as a mounting hole for the clamp 

(Electronics support cradle) that is bolted to the chassis (Figure 3-1).  The electronics are 

slotted into the cradle as shown in Figure 3-8.  The MAPS electronics modules were designed 

and built by Dreampact [66].  A 3.7 V, 110 mAh lithium-ion single cell battery powered the 

electronics.  It was capable of running two motors and was packaged into a 25 x 18.5 x 38 mm
3 

cube. 
 
Two threaded holes at each end of the chassis provide locations for the stabilisers, which 

were made from nylon tipped grub screws (Figure 3-9).  These are screwed into the chassis 

from the top to the bottom.  These are adjustable to ensure that three-points are always in 

contact with the ground, namely one of the stabilisers and the two wheels.  The maximum 

distance that a stabiliser can be set to is 1 mm. For every 0.01 mm difference between the two 

stabiliser heights (Figure 3-7) the POM angle will alter in reference to the ground by 0.076 

degrees.   

 

Figure 3-7: Stabiliser Heights 
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Figure 3-8: MA-BOT1 

 

 

 

 
Figure 3-9: Stabilisers 

 

 

 

Figure 3-10 shows four fully assembled robots.  The footprint of each robot is 20 mm x 20 mm. 

Mounted on the top of the electronics is the metrology targets. 
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Figure 3-10: Four Assembled Iteration 1 Robots 

 

 

3.2 Initial Design Assessment 

Before conducting detailed testing of the robot an initial assessment of the design was 

conducted.  This involved driving the robot and observing to see if there were unusual 

emergent properties.  For example, the grub screws being used to maintain a constant force 

between the motors and wheels was deemed unsuitable.  It was observed that when the robot 

followed a motion command at random intervals one of the wheels would slip causing erratic 

motion.  This was due to the eccentricities resulting from the wheels’ manufacturing process.  

To improve upon this, tighter tolerance control during the manufacturing of the wheels was 

required.  However, this may not completely eradicate the slippage.  Therefore, to improve the 

design it was decided to replace the grub screw with springs.  By using springs the flexure 

would alter in relation to the wheel maintaining a constant force between the motor and wheel, 

thus accommodating the slight variations within the wheel due to the manufacturing tolerances.  

The spring was chosen based on the outer diameter that could be accommodated by the chassis 

and by using a low enough spring rate so that the radial load on the Smoovy motor did not 

exceed the maximum allowable load provided in the datasheet [59].  An Ø2 mm spring was 

chosen with a 0.02 N/mm spring rate that provided a radial load of 0.062 N.  These springs are 

passed through holes in the chassis and are retained by pins that sit in machined grooves 

(Figure 3-11). 
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Figure 3-11: Spring Holes 
 

Another alteration to the design was required based on this initial design assessment.  Once the 

grub screws were replaced it was found that the robot, when sent a linear command, would 

travel in a circle.  On inspection of the design it was observed that the pinions were the primary 

cause of this circular motion. 

 

Originally the pinions, attached to the motor shafts, had an annular groove (crowned) to 

accommodate the O-ring of the wheel.  It was hypothesised that the wheels would find a 

position on the annular groove that would misalign the wheels to one another as shown in 

Figure 3-12.  Angle A is greater than Angle B resulting in the robot driving in a large circle.  

By replacing the pinions with non-crowned versions (Figure 3-13), that were grit blasted to 

increase the friction between the pinions and the O-rings, the issue was resolved suggesting 

that the hypothesis was correct. 

 

Figure 3-12: Illustration of wheel misalignment with motor pinion 

 

Spring 

Hole 

Machined 

Grooves 

Machined 

Grooves 

Spring 

Hole 



32 
 

 
Figure 3-13: Pinions Crowned and Non-Crowned 

  

 

Finally, during assembly and handling of the robot it became evident that the motor’s gear head 

was fragile.  The output shaft of the gear head is attached to a brass plate that is glued to a thin 

plastic casing housing the planetary gear stages as shown in Figure 3-14.  The brass plate, 

which is the sintered bearing and output shaft in Figure 3-14, would break from the casing 

when overloaded with a force greater than 0.1 N (10 grams) and the tiny gears would fall out.  

Due to this it was necessary to develop detailed handling and assembly procedures: 

 Attach pinions to the motor shaft. 

 Once the motor is located in the chassis and the wheels are attached the motor housing 

must not to be handled or touched. 

 When disassembling, the motors you first need to push the motors back into the 

housing to disengage the motors and wheels. 

 The motors should be the last component to be added to the robot during assembly and 

the first components to be removed during disassembly. 
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Figure 3-14: Gear head Assembly [61] 

 

3.3 Theoretical Performance 

The rotation of a Smoovy motor is controlled by issuing step commands; therefore it was 

essential to determine the relationship between the number of motor steps and the equivalent 

distance that the robot will travel from the manufacturer datasheets [59, 61] were consulted; the 

motor shaft rotates by 1.0472 mrad/step.  Given the size of the wheels (∅ 13.2 mm including 

O-ring tyre) and ∅ 1.8 mm motor pinion (Figure 3-15) the coupled ratio is 0.1.  Applying the 

equation of an arc to the wheel it was calculated that for a single motor step command the robot 

would travel 1 µm.  This does not take backlash inherent to the gear head into account and is 

considered later on in this thesis. 
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Figure 3-15: Schematic of wheel and pinion combination 

 

This linear equation is used to determine the relationship between the motor rotation and the 

rotational movement of the robot, which is based on the robot geometry, as illustrated in Figure 

3-16.  It is assumed that 𝑠𝑖𝑛𝜃 ≈ 𝜃 for single steps due to the short travel.  The rotation angle is 

𝜃 = tan−1 (
𝑆𝑖𝑛𝑔𝑙𝑒 𝑠𝑡𝑒𝑝 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

0.5𝑤
) where w is width between the wheels.  This means that the 

robot should rotate 85.7 µrad when commanded a single step. 

 

Figure 3-16: Rotational Step Theory 
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3.4 Actual Performance 

Open-loop tests were conducted to determine the linearity of the robot and its potential to meet 

the positional requirements on its own without assistance from the metrology module.  This 

test provided insights into the differentially steered friction drive design, highlighting the 

capabilities of the motors and chassis design.   

 

Due to the robot’s small size, non-contact measurement methods were preferred over other 

methods.  Therefore, a Nikon inspection microscope (Figure 3-17) was used to measure the 

location of three identifiable features on the robot as depicted in Figure 3-18.  The microscope 

has digitally encoded micrometres which were used to manipulate the x-y backlit glass surface.  

The test procedure is: 

1. Align crosshair with a distinguishing feature of the robot, such as a corner of the PCB. 

2. Zero the micrometres. 

3. Command the robot to move x steps forward to position 2 and take reading.  

4. Command robot to move x steps in the opposite direction and take reading. 

 

The test was repeated 16 times to ensure a good statistical sample has been taken and to 

average out any operator errors. 

 

 

Figure 3-17: MA-BOT1 Straight Line Repeatability Test Setup 
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Figure 3-18: Features measured using the Nikon microscope 
 

 

The maximum distance that the robot could be commanded to travel was limited by the x-y 

surface of the Nikon inspection microscope which is approximately 90 mm. 

 

 

Figure 3-19 shows the results for the 100-motor step and 7000-motor step tests done.  The 

measurement resolution for the Nikon microscope is less than 5 µm and is represented as error 

bars on the y-axis of the graphs.  The graphs show the distance travelled in the forward 

direction.  It is clear for all the various step tests that the robot did not travel the expected 

distance.  The offset between expected performance and actual performance also varied 

between the number of motor steps commanded (Figure 3-20).  The graphs show that the robot 

stops short of its expected travel by 33 ± 5 µm for both 100 and 7000 motor steps.  This was 

determined to be caused by the backlash inherent to the Smoovy motors gear heads and is 

characterised in detail later on in this thesis.  Due to the test methodology applied the backlash 

was not being removed. 
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(a) Distance Travelled for 100 Step Commands 

 

(b) Distance Travelled for 7000 Step Commands 
Figure 3-19: Sample of Repeatability Test Results 
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Figure 3-20: Deviation of Measured Results from Theoretical Prediction 

 

 

Unfortunately, due to the limitations of the measuring surface, larger runs could not be 

achieved to see how this error might have continued to propagate. 

 

Figure 3-20 shows the results from different number of Smoovy motor step tests.  The reverse 

motion of the robot provided the same results as the forward motion shown in Figure 3-19 with 

an average variation of 2 microns between the direction commands.  The results showed that 

the robot is repeatable in both directions with a standard deviation of 6 µm showing that it can 

meet the requirements of the application.  The deviation from the expected travel was due to 

backlash inherent to the motor’s gear head, as the test does not account for this.  According to 

the gear heads datasheet [64], there can be a maximum of 4° backlash present.  The motor is 

being pulsed to act like a stepper motor and the shaft will rotate by 7.5° per step.  This is being 

passed through a 125:1 planetary gearhead, therefore a single step at the output 0.06°.  This 

means that a maximum of 67 motor steps can be lost through backlash.  This has been tested 

and characterised further on.    

 

The repeatability of these results is highly encouraging as shown by Figure 3-21.  This is an x-

y position plot showing the deviation of the robots position from its original starting position 

on its return.  Ideally, in a perfect system the robot would have always returned to (0, 0).  The 

standard deviation of measured data sets is 6 microns which is less than what is required, 
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although the variation from the theoretical calculated distance is in the order of 32 microns for 

the 100-step test and 33 microns for the 7000-step test due to the backlash not being accounted 

for.  

 

 

Figure 3-21: Deviation plot of robot from starting position 

 

 

Figure 3-22 shows the measured results indicating the distance that the robot travelled for 

various numbers of steps.  This shows that a single step command for the robot should result in 

0.9 µm of travel.  The robot cannot move by a single step.  This is because the motor has to 

overcome the initial friction, however once the friction has been overcome, every additional 

step will result in 0.9 µm of travel.  Therefore any command of less than 30 steps will results in 

no movement.  If the robot is commanded to move by 30 steps, it will travel a distance of 0.9 x 

30 steps which is equivalent to 27 µm.  A 31 motor step command will move the robot 27.9 µm 

and a 32 motor step command 28.8 µm.  Figure 3-22 also shows a small difference between the 

expected and measured results.  It will be possible to compensate for this deviation once the 

system has been fully characterised. 
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Figure 3-22: Distance Travelled for X Steps 

 

Final note: If a robot was handled incorrectly in between tests it was found that the results 

could alter when tests were repeated.  The motor housing proved to be especially sensitive.  A 

repeatability test was conducted where the robot was commanded to move 1000 motor steps 

(900 µm).  The robot on average travelled 869 µm with a standard deviation of 6 µm, between 

measurements whereas on the next day, after handling the robot by touching the wheels, it 

travelled an average distance of 845 µm with a standard deviation of 51 µm.  These variations 

are due to the sensitive relationship between the pinion and wheel.  This emphasised the fragile 

nature of the robot indicating poor reliability and led to strict handling procedures being 

subsequently followed.  After following the strict procedures the repeatability was improved 

and a cover was added to stop operators from incorrectly handling the robot, thus improving 

the reliability.  

3.5 MA-BOT1.1 

At the inception of the idea to use micro-autonomous robots to position pick-off mirrors to 

pick-off light from astronomical target the idea was to provide each robot with wireless power 

sufficient to operate for six to twelve months without the need for human intervention. 

Batteries, induction power and a direct PowerFloor as a means to provide power have been 

evaluated.  The robots electronics are low voltage only requiring 3.7 V to operate.  The largest 
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power consumption is when the motors are operating as they require approximately 340 mA 

each.  During the linear tests, it was clear that it would not be possible to find a suitable battery 

that would last for the specified operational period. During the linear testing of the robot it was 

observed that the chosen battery provides approximately one hour of operation, while, the 

absolute minimum requirement is at least eight hours.  For the final design a battery only 

system was not envisaged.  As a result of the literature review (Chapter 2) it was clear that 

battery powered robots within this size domain will not be capable of delivering power to the 

robot and its electronics for longer than an hour.   

 

Induction charging was first contemplated as a replacement to the battery.  Due to the size of 

the focal plane (∅ 2.5 m), having a single large coil going around the perimeter charging the 

smaller coils on the robot would have been inefficient: the efficiency of induction charging is 

greater for coils of similar size and in close proximity to one another.  This could conceivably 

be achieved through a network of smaller coils that could be positioned underneath the focal 

plane.  However, the system would still be inefficient as energy is often lost in induction 

charging through Eddy currents that are generated in surrounding materials.  At the time, 

although the EAGLE instruments focal plane surface material was not finalised, it was highly 

probable that it would be a metal like steel due to its size and the stiffness required.  The Eddy 

currents generated in the steel plate would cause the material to heat up and would dramatically 

interfere with the science observations, due to the introduction of thermal turbulence at the 

entrance of the instrument.  As such for the time being induction charging was no longer 

considered. 

 

The PowerFloor concept was adapted from mobile phone technology (WildCharge [67]). The 

operating surface consists of two interlaced tracks that are positive and negative feeding 9.06 V 

constantly from a mains source, Figure 3-23.  This has been produced using standard PCB 

manufacturing processes. The copper tracks were plated with a 100 µm layer of gold to 

improve the current transfer between the tracks and the power pick-off points.  
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Figure 3-23: PowerFloor 

 

The robot picks up power through four beryllium copper leaf spring contacts, as shown in 

Figure 3-24.  Beryllium copper is used due to its electrical conductivity and as it is a common 

spring material.  Rivets at the end of the springs make the physical contact with the floor; the 

rivet-head diameter was chosen to be less than the gap distance between tracks to avoid 

shorting the positive power and negative power tracks.  The geometry of the contacts has been 

design such that regardless of the robot’s position and orientation there is always at least one 

contact on each track.  It does not matter which track a contact is on as the electronics have 

been designed to allow for switching.  

 

 

Figure 3-24: Power Brush PCB 
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The PowerFloor concept has shown excellent potential but when the robot is moving it was 

observed that the traction and continuity of the power contacts is susceptible to multiple 

variables.  This includes the robot’s weight, weight distribution, stabilisers’ height, stabilisers’ 

location and spring stiffness.  This is elaborated further in section 3.5.1 with the analysis of the 

PowerFloor’s continuity. 

 

Figure 3-25 shows the updated MA-BOT1, known as MA-BOT1.1.  MA-BOT1.1 was used to 

test the PowerFloor for power losses and their duration.  The power received from the 

PowerFloor was dissipated through a resistor and did not power the robot itself.  MA-BOT1.1 

was still powered by a battery so that it would continue moving across the PowerFloor.  To 

monitor the power received by the PowerFloor, trailing leads were attached to the power pins 

that would go from the power delivery PCB to the control electronics in MA-BOT1.1. 

 

 

Figure 3-25: MA-BOT1.1 

 

 

3.5.1 MA-BOT 1.1 PowerFloor Test 

The robot was moved 10,000 motor steps, in both forwards and reverse, and the duration of 

power losses recorded (Figure 3-26).  The robot was powered using the battery and used the 

power pick-ups to record if it could receive power from the PowerFloor.  .A bar plot of the 

power losses after 16 repetitions were produced to provide a statistical sample, Figure 3-27.   
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Figure 3-26: MA-BOT1.1 PowerFloor Test – A Single Run 

 

(a) Straight Line Motion Power Loss Durations 

 

(b) Rotation on the Spot Motion Power Loss Durations 
Figure 3-27: Bar Plot of Power Loss Durations 
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The different hatch orientations represent different directions of motion. For short motions of 9 

mm, the robot is able to move without power interruption on a regular basis.  Based on Figure 

3-27 the robot does not lose power often.  The power continuity is more reliable when the robot 

rotates on the spot compared to a linear motion.  However, it was found that for the same 

experiment for a longer straight-line motion (90 mm) power losses were more frequent, Figure 

3-28.  Power losses greater than 20 ms were detected for 25% of the runs in one direction and 

50% of runs in the opposite direction.  These power losses erase the robot’s memory requiring 

the system to follow a restart procedure to reacquire the robot which is time consuming and 

unsuitable for the application. 

 

 

Figure 3-28: 90 mm Travel Power Loss Duration 

 

 

To mitigate the increased downtime various possibilities were investigated: 

 Magnets integrated to the pick-ups – Increases contact force with PowerFloor. 

 Software Control – The external metrology system corrects for power losses. 

 Addition of Super Capacitors – Discharge during power losses to maintain robot’s 

motion.  

Small neodymium magnets were attached to the individual power pick-ups behind the rivet 

heads to attract the pick-ups towards the PowerFloor.  This was not a viable solution as the 

magnetic field interfered with the Smoovy motors.  Also due to the small footprint of the robot, 

the magnets were in close vicinity to one another resulting in them trying to attract to one 

another, which damaged the pick-ups. 
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The software was set to reacquire the robot when power losses were experienced that erased 

the robots memory.  A request was sent to the robot to determine if it was active.  If the robot 

did not respond then the robot had no power.  If a response was received the metrology module 

was used to find the robot and continue with the previous positioning algorithm.  However, 

occasionally the robot would not regain power, thus making a restart impossible. 

A super capacitor was added to attempt to bridge over long power losses.  A super capacitor 

was preferred over a battery because of its quick charge times and because it does not require 

additional circuitry.  The capacitance requirement, 4 mF, was determined based on the results 

shown in the previous figures.  There were no 9 V capacitors with this capacitance available 

that could be fitted inside the robot therefore two 5.5 V capacitors joined in series with an 8 mF 

capacitance were used.  These capacitors produced by ‘Cellergy’ were 12.5 x 12 x 3.1 mm
3
.  

The addition of super capacitors was still unable to overcome the power loss durations.   

The PowerFloor technology was fully incorporated into a newer version of the MAPS robot, 

which is presented in Chapter 4, after trialling the concept using a modified version 1 robot.  

This was used for the development of MA-BOT2, where a battery was added to compliment 

the PowerFloor as it provides greater autonomy to overcome the power loss issues.  MA-BOT1 

was powered with only a battery and this provided approximately 40 minutes of full autonomy.  

Hence a PowerFloor was added to the system.  It was found with MA-BOT1.1 that as the robot 

moves over the PowerFloor the power pick-ups could lose contact with the PowerFloor 

resulting in power losses lasting longer than 20 seconds.  The power losses would erase the 

robots memory resulting in commands needing to be sent once again to get it into the required 

position.  This was why the additional battery was required to overcome the power losses. 

Chapter 3 has shown that a differentially steered DC propelled miniature autonomous robot 

(MA-BOT1) can be built.  From the research test data it is clear that the robot design has the 

potential of meeting the 10 micron positioning requirement.  The robot had suffered from 

issues such as the pinions effect on the straight line performance.  This highlights how the 

interaction between components at this scale can have a large effect on the robots performance.  

This chapter also shows that a battery powered robot is unable to last the 8 hour duration time 

required in MOS instruments.  A PowerFloor was developed to provide the robot with 

continuous power.  However, it was found that as the robot travels across the PowerFloor it 

would lose power and reset its instructions.  This resulted in the need to combine the 

PowerFloor with a battery to power the robot continuously and be capable of overcoming 

power losses during motion that is detailed in chapter 4. 
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Chapter 4 – The MAPS Robot (MA-BOT2) 

A MA-BOT2 robot was developed based on the original design, however with the following 

enhancements: 

 Smaller electronics packaging. 

 Additional Smoovy motor to operate a turret for fine rotation process. 

 Power provided by a PowerFloor with a battery on-board as a back-up power source. 

The enhancements to the robot’s design were needed to provide continuous power for longer 

than 8 hours as required by the multi object spectrograph instruments.  The enhancements also 

provide a smaller form factor and fine rotation stage for higher accuracy orientations.  This 

chapter focuses on the changes that were made and concludes with the robot’s performance. 

4.1 MA-BOT2 On-Board Electronics 

The primary change from MA-BOT1 to MA-BOT2 was the electronics packaging and the 

development of a PowerFloor removing the robot’s need to be powered with batteries.  

Dreampact developed the new electronics packaging based on requests from the UK ATC that 

were determined from the documented tests discussed in chapter 3.  This included the removal 

of surplus connectors, addition of a third motor and easier to assemble layout.  The motivation 

to change the primary energy source was that it was unacceptable from an operational 

viewpoint to have to replace or charge batteries on a daily basis within an astronomical 

instrument.  Figure 4-1 shows the evolution from the first iteration robot to the second 

iteration. 

 

 

 

Figure 4-1: MAPS Robot Evolution 
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Since the first version of the electronics was a successful proof of concept, a second version 

(Figure 4-2) was developed to reduce the packaging size.  This was achieved by removing the 

USB port and pin connector that was no longer required.  To further aid with the size reduction 

the right-angle pin connectors that were originally used to connect the PCBs together were 

removed and flexible connectors were used between the boards so that the electronics could be 

folded into a cube.  The cube was then held in place using two ABS panels with machined 

grooves that press onto the PCB edges.  The resulting cube was 20 mm x 20 mm x 20 mm and 

was attached to the chassis through a central bolt that makes use of the existing threaded hole.  

Despite its smaller size, this second version of the electronics also provided the additional 

ability to control a third Smoovy motor for use with a fine alignment stage. 

 

 
 

(a) MA-BOT2 electronics opened out (b) MA-BOT2 electronics in cube 

arrangement 
Figure 4-2: MA-BOT2 Electronics 

 

 

4.2 Modifications to the robot 

To incorporate the power pick-up, power delivery PCB boards and MA-BOT2 electronics, 

minor changes to the chassis were required.  The chassis was reduced from 10mm to 8mm in 

height to accommodate the power pick-up PCB.  Two M1.6 threaded holes were added as 

attachment points for the power pick-up board.  To avoid increasing friction on the chassis 

between the motor housings and power pick-up board, a spacer was inserted between the two 

components.  The power pick-up board was joined to the power delivery PCB through wires 

that were soldered in place.  Figure 4-3 shows how the wires were routed between the power 

pick-up board and power delivery board along the chassis. 

 

ABS  
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Figure 4-3: Wire routing between power boards 

 

 

It was observed that MA-BOT1.1 would rock from front to back while moving during the 

power characterisation tests (Section 3.5.1).  Closer inspection revealed that this was due to the 

location of the stabilisers.  The positioning of the two stabilisers and central pick-up limited the 

pick-ups contact with the PowerFloor.  To remedy this, the power pick-off board was altered 

by moving the stabilisers back to a central axis between the wheels, as can be seen in Figure 

4-4. 

 
  

(a) (b) 
Figure 4-4: Stabiliser Locations for PowerFloor Robot (a) First Location, (b) New Location 
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The power pick-ups were originally designed to each provide 5 grams of downward force 

based on a 0.325 mm deflection.  This accumulates to a 20 gram upward reaction force.  At the 

time the robot weighed less than 20 grams, therefore the reaction force from the power pick-

ups raised the robot off its wheels causing a loss of traction.  To compensate, the power pick-

ups springs were reduced from 100 microns to 80 microns thick, making them less stiff 

resulting in a lower reaction force to 2.6 grams and a return of traction.  Another method to 

reduce the reaction force would have been to reduce the deflection, for a 100 micron thick 

spring the force increases by 1.56 grams for every 0.1 mm increase to the deflection. This is 

now 0.8 grams for every 0.1 mm change in deflection. 

 

To maintain power continuity additional weight was originally added to the robot in the form 

of 20 mm x 20 mm lead weights.  A copper weight was subsequently machined to fit between 

the power boards as can be seen in Figure 4-5.  Copper was chosen as it is relatively easier to 

machine compared to lead and is a highly dense material (8930 Kg/m
3
).  The copper weight 

lowered the centre of gravity, thus improving stability and increasing traction and power 

continuity.  Changing the chassis to a dense material such as copper was also considered thus 

removing the need for an additional component.  However, this would require a redesign of the 

chassis as the hinge was only suitable for a plastic material due to its better elasticity properties 

compared to a metal.  Therefore, it was decided to continue with the plastic chassis and add an 

additional weight component. 

 

The additional Smoovy motor added to the MA-BOT2 electronics was for the addition of a 

turret stage to the robot enabling the mirror to rotate independently of the chassis.  This was 

necessary as the robot has the potential to slip out of its x-y position as it rotates, which is not 

desirable.  The turret with its independent motion therefore simplifies the final positioning of 

the robot. 

 

The Fine Rotation Stage (FRS) is based on the same friction drive principle as the drive section 

of the chassis.  A Smoovy motor is forced towards the POM by a tension spring.  The pinion 

presses against an o-ring that is stretched over an annular groove on the POM.  The POM sits 

on a bearing that is press fit onto a piece of ABS.  The ABS also doubles as a panel that holds 

the electronics cube together.  A fully built FRS with electronics cube is illustrated in Figure 

4-5 and a schematic shown in Figure 4-6. 
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Figure 4-5: Second Iteration Robot with Copper Weight 

 

 

Figure 4-6: FRS with Electronics Cube Sub-Assembly 

 

A plastic cover was added to the robot to protect the electronics from shorting should the robot 

fall over due to an earthquake or come in contact with another robot.  Figure 4-7 shows a fully 

built MA-BOT2 including the cover and metrology target.  The small grey dots are the 

Gaussian profile spots that the metrology camera uses to precisely determine the robots 

location [32]. 
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Figure 4-7: MA-BOT2 

 

4.3 Expected Performance 

Testing showed that the relationship between the motor steps and distance travelled for MA-

BOT2 was the same as MA-BOT1 (Section 3.3) as the concept has not been changed.  

Although the robot’s drive concept was not changed the decision to repeat the tests was to 

ensure that the changes made to the robot did not affect the performance in an unforeseen 

manner.  The turret will have its own relationship between motor steps to output angle.  The 

pinion and mirror diameters are 1.8 mm and 22 mm respectively giving a ratio between the 

components of 0.08 meaning the POM rotates at 0.0048° per motor step (84 µrads/step).  The 

gear head has 4° of backlash inherent to it, which equates to 0.192° (3351 µrads).  This is the 

equivalent to 41 motor steps. 

4.4 Actual Performance – Open-Loop Straight Line 

The open-loop performance of the robot was tested first by commanding it to move in a 

straight-line.  The purpose was to confirm that the robot would maintain the same relationship 

between motor steps and distance travelled as seen with MA-BOT1 (section 3.3).  The robot 

was commanded to travel a considerably longer distance compared with the MA-BOT1 tests.  

This was made possible by using the PowerFloor.  To measure the robot’s path travelled a Faro 

laser beam tracker was used.  The laser beam tracker is capable of rotating around two 

perpendicular axes.  Encoders on each axis allow the tracker to know which direction it faces.  

The laser beam tracker measures the time it takes for photons it emits to be reflected back to it 

Metrology 

Targets 
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from the target object.  By knowing this distance and both angles it is able to calculate x, y, z 

coordinates using itself as a reference point.  Repeated measurements of the robot at a 

predefined fixed position indicated the tracker had a measurement repeatability of ~3 µm, 

Figure 4-8.  However, the measurement error of the laser tracker according to the datasheet is 

10 µm [68].  For the measurements the POM was replaced with a target mirror that the tracker 

locked onto and followed Figure 4-9. 

 

 

Figure 4-8: Faro Precision Measurements 

 

Figure 4-9: Target Mirror used to replace the POM 
The robot was located at a starting position at one end of the PowerFloor.  The following 

procedure was applied:  

1. Measure the starting position at one side of the PowerFloor 

2. Move the robot by 21,100 motor steps (18.99 mm) and measure the position 

3. Repeat Step 2 12 times as this takes the robot to the end of the PowerFloor 

4. Repeat steps 2 and 3 in the opposite direction 
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The robot was expected to follow a straight path making equidistant movements and then 

follow this path in reverse.  For each position the tracker took at least 16 measurements and the 

position was calculated by averaging the sixteen measurements.  The 18.99 mm travel was 

chosen as it would provide 12 positions for measurements before the robot has travelled the 

entire length of the PowerFloor. 

 

Figure 4-10 plots the robot’s motion across the PowerFloor during the test.  From the graph it 

is clear that the robot did not move in a straight line, instead it was curving to the left.  A 

similar deviation, although less pronounced was observed in the reverse direction.   

Table 4-1 is a summary of the results indicating that the robot deviates from an expected path 

by 39.4±0.003 mm.  The results show that when the robot is moved without feedback control it 

has a relatively high error due to its non-linear motion.  The angular error between the expected 

forward movement end position and actual end position from the forward movement was 

calculated to be 8 degrees.  It was determined that the positional deviation after compensating 

for the angular error was 4.6 mm.  

 

 

Figure 4-10: 21100 Step Results for 274300 Step overall travel 

 

 

 

0

50

100

150

200

250

300

350

400

0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

Y
-P

o
si

ti
o

n
, 

m
m

 

X-Position, mm 

21100 Step Motion 

Forward
Movement

Reverse
Movement

Starting Position

Expected Forward
Movement End
Position



55 
 

 

Table 4-1: Straight Line Test Results 

Direction Forwards Reverse 

Theoretical 

displacement, mm 

Between positions 18.99 18.99 

Total travel 246.87 246.87 

Measured 

displacement, mm 

Average between positions 18.557 18.268 

Total travel 241.241 237.484 

Deviation, mm Between expected and 

measured end positions 
39.461 33.444 

Between positions 1.34 1.629 

Deviation, % Between expected and 

measured end positions 
15.98 13.55 

Between positions 7.22 8.92 

From expected total travel 2.28 3.8 

 

 

The above test was repeated using a single 274,300 motor step command (Table 4-2) that 

would move the robot the same total distance as the sum of all the smaller motions.  This was 

to compare the robot’s performance between doing a single long run against shorter motions.  

Figure 4-11 indicates that the robot’s motion for the longer run follows a similar trend as the 

short runs.  The angular error was approximately 8 degrees and the positional error once 

compensated for was 3.294 mm. 

 

Table 4-2: 274300 Motor Step Straight Line Test Results 

Direction Forwards Reverse 

Displacement, mm Theory 246.87 

Tested 243.576 243.229 

Deviation, mm 3.294 3.641 

Deviation % 1.3 1.5 
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Figure 4-11: 274300 Step Motion 

 

 

 

The 274,300 motor-step test was repeated applying different motor clock rates to observe the 

effect that the speed of the motor has on the robots trajectory.  The expectation was that the 

robot would perform as it did previously which it did, Figure 4-12.  Note that the scaling of the 

graph exaggerates the curving of the robots motion.  Table 4-3 shows the averages from at least 

10 runs for each motor clock rate that was tested with the standard deviation between the runs.  

The results indicate that for the distance travelled there is a deviation of 1.6 mm between the 

varying clock rates.  This distance is comparable with the standard deviation on multiple runs 

at the same speed and given the large travel distance, this is not considered an appreciable 

difference, which suggests that altering the motor clock rate has little effect on the robot’s 

performance.  
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Figure 4-12: Robot’s Motion along the PowerFloor at 10,000 Hz Clock Rate 

 

Table 4-3: Linear Repetition from different clock rates 

Motor Clock 

Rate, Hz 

Avg. Forward Distance 

Travelled, mm 

Avg. Reverse Distance 

Travelled, mm 

Avg. Deviation 

on Return, mm 

2000 224.754 ± 0.843 225.682 ± 2.568 32.751 ± 2.568 

4000 225.901 ± 1.898 227.622 ± 2.609 21.848 ± 2.609 

6000 227.979 ± 0.998 229.818 ± 1.978 23.395 ± 1.978 

8000 227.298 ± 0.869 227.959 ± 1.761 23.085 ± 1.761 

10,000 228.888 ± 0.546 229.285 ± 1.573 23.839 ± 1.573 

Standard 

Deviation, mm 

1.648 1.616 4.405 

4.5 Actual Performance – Open-Loop Rotational Tests 

The differentially steered design of the MAPS robot means that it can turn on the spot.  A test 

was setup using a Lumenera camera that images the metrology targets on top of the robot.  The 

following procedure was executed: 

1. Measure the robot’s position and orientation 

2. Rotate the robot in one direction by x motor steps and measure the orientation 

3. Step 2 was repeated 16 times for a statistical sampling 

The test was completed using various motor step commands allowing a comparison between 

the expected output angles with the actual output.  The test also monitored the x, y position of 

the robot to determine slippage.  In an ideal system there would be no slippage however due to 

the tolerances with alignment of shafts, wheels and motors some slippage would be expected in 

practice.  It was difficult to predict how much slippage would occur as it depended on 

interactions between individual components.  

 



58 
 

Table 4-4 is a summary of the results obtained compared with the expected outcome.  There is 

negligible difference between the measured results and expected results as illustrated by Figure 

4-13.  The test shows that the robot will rotate by 79 ± 1 µrad/motor step. 

Table 4-4: Rotation Test Results 

Step Command Theory Angle, 

radians 

Clockwise Rotation 

Test Results, 

radians 

Anti-Clockwise 

Rotation Test Results, 

radians 

1000 0.078 0.078 0.078 

5000 0.389 0.391 0.391 

10000 0.778 0.782 0.783 

13333 1.037 1.046 1.045 

20000 1.556 1.57 1.569 

50000 3.89 3.922 3.924 

80000 6.224 6.277 6.276 
 

 

 

Figure 4-13: Angle to Step Relationship based on tested results 

 

Figure 4-14 is an example of the typical slippage results collected from the rotational tests.  

The graph shows a change in the robot’s x-y position from the initial starting position (0, 0) 

when conducting a rotation command, for this example it was 60 degree rotations.  The 

different markers are to indicate a complete rotation.  The results indicate a deviation within 40 

microns, this is due to slippage.  The measurement error of the camera is 0.9 µm and is not 

visible due to the graph’s scale.  This indicates that the robot is unable to turn on the spot and 
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maintain the positional requirement.  The x-y positional slippage is not systematic and cannot 

be calibrated out through software.  It is unlikely to be improved upon through hardware 

refinement and has led to the decision that a turret stage should be investigated as an alternative 

to turning on the spot. 

 

(a) Raw Data 
Figure 4-14: Rotational Slippage 60° Rotations 

 

Rotational testing of the robot was also used to determine the backlash inherent to the drive 

mechanism.  The test procedure was completed using 100 motor steps and the Lumenera 

camera following this process (Figure 4-15): 

1. Remove the backlash and measure the robots orientation. 

2. Command the robot to rotate 100 motor steps counter-clockwise and measure the new 

orientation. 

3. Rotate the robot 100 motor steps clockwise and measure the robot’s orientation. The 

difference in orientation between the initial and the final value is equivalent to the 

backlash.  The last orientation will be the starting point for the next measurement. 

4. The robot is rotated clockwise and the orientation measured.  It is then rotated counter-

clockwise and the orientation measured. This value with the new starting orientation is 

used to determine the backlash.  

5. Repeat steps 3 and 4 at least 10 times to get a statistical sample. 
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Figure 4-15: Chassis Backlash Test Procedure 

 

Figure 4-16 shows the results of ten measurements; the positive and negative sign convention 

on the y-axis denotes the robot’s rotation direction.  The camera’s measurement error is in the 

order of 35 µrad.  The measured backlash is approximately 3.7 mrad equating to 46±7 motor 

steps.  This needs to be compensated for as it is almost 4 times greater than the required 1 mrad 

resolution.  This can be compensated for by analysing the previous command that the robot 

followed and adjusting the next command accordingly. 

 

Figure 4-16: Rotational Backlash 

 

A Heriot Watt student project [69] repeated the test using straight-line motion and determined 

that the backlash is in the order of  44±9 motor steps.  It is clear that the results of both tests 

correlates well and that the inherent backlash of the robot is equal to that of the motors, which 

is equivalent to ~39 motors steps. 

3.5

3.55

3.6

3.65

3.7

3.75

3.8

0 2 4 6 8 10

M
e

as
u

re
d

 B
ac

kl
as

h
, m

ra
d

s 

Measurement 

Chassis Angular Backlash 

Clockwise

Anti-Clockwise

Avg. Clockwise



61 
 

4.6 Actual Performance – Open-Loop Turret Tests 

The turret that the POM sits upon was characterised to determine possible x-y position 

changes, the angle-to-step relationship and the inherent backlash.   

 

The turret was tested using the same test procedure as described in section 4.5. Table 4-5 and 

Figure 4-17 indicates the expected change in angle for specific motor step commands and the 

recorded results.  The turrets delta angle is almost the same as the robot’s coarse rotation as 

shown in Figure 4-17 and Figure 4-13.  This is due to the similar arrangement and ratios 

between the motors and O-rings.  Unlike the robot’s coarse rotation, the turret’s delta angle 

deviates slightly between clockwise and anti-clockwise motions.  This deviation between the 

rotation directions was measured to be ~40 µrad, which is insignificant in comparison to the 

angular accuracy specification of 1 mrad for the application. 

Table 4-5: Turret Results 

Motor Steps Theoretical Delta 

Angle, Radians 

Measured Delta 

Angle, Radians 

Difference between 

Theoretical and 

Measured Angle, 

Radians 

100 0.008 0.008 0.001 

500 0.042 0.040 0.002 

1000 0.084 0.082 0.002 

5000 0.419 0.400 0.019 

10000 0.838 0.807 0.031 

25000 2.094 2.020 0.074 

50000 4.189 3.976 0.213 

75000 6.283 6.010 0.273 

100000 8.378 8.033 0.344 

 
Figure 4-17: Turret Motor Steps to Delta Angle Relationship 
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Figure 4-18 shows the same test for the turret stage that was conducted on the chassis rotation.  

The graph shows the change in position relative to the starting point (0, 0) for 10,000 motor 

steps (48°).  The rotations are repeated 15 times showing that the x-y position varies within 4 

microns.  This is due to the assembly tolerances between the POM, bearing and the ABS base.  

To improve this, higher manufacturing tolerances for the assembly between parts would be 

required, increasing costs.  This is within the positioning repeatability requirement of 10 

microns; however it would only be acceptable if the robot was in position to take 

measurements within 6 microns.  This is because the turret would be altered after the robot has 

moved into the x, y position.  This increases the difficulty to achieve requirement on the 

current robot’s chassis design to meet a better than 6 micron positioning requirement.  

However, the turret has shown that its x, y slippage is better than trying to rotate the chassis.    

 

 

Figure 4-18: Turret x-y Position for changes in angle 

 

To measure the turret’s backlash the same procedure was applied as that used to the chassis 

backlash using 100 motor steps (~8.029 mrad).   
 

After repeat testing it was determined that the backlash was 3.491 mrad, which equates to 44 ± 

7 motor steps.  This coincides with the backlash values determined from the chassis tests.  This 

is sensible as the motor and the reduction gearing is the primary source of the backlash.  The 

friction drive interaction should be relatively backlash free [70]. 

 

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

Y
-P

o
si

ti
o

n
, 

m
ic

ro
n

s 

X-Position, microns 

Turret X-Y Position 

Measurement 
Uncertainty 



63 
 

 

4.7 Closed Loop System Tests 

A full closed-loop system test concludes the MAPS characterisation.  The closed-loop system 

differs from the open-loop test because it uses the command and control feedback that is a part 

of MAPS instead of a human operator to drive the robot into position.  The objective was to 

determine if the MAPS system was capable of positioning the robot as required in a multi-

object spectrograph instrument.  The following subsections details two methods (the dual 

camera and Faro tracker) to gain a deeper insight of the overall MAPS performance.  The 

difference between the two setups was the equipment used to record information, one utilised 

two cameras the other a Faro laser beam tracker.  The second method utilised the Faro laser 

beam tracker to independently determine the positional repeatability of the robot and monitor 

how it moves into position. 

 

4.7.1 Dual Camera Configuration 

Figure 4-19 depicts the test configuration using two cameras allowing for the detection of 

misalignment that could be due to positional error or robot tipping.  Two lasers are used to 

represent the light from two objects of interest.  A fully built robot, as it would be used in a 

Multi-Object Spectrograph reflects the photons from one of the lasers towards two targets via a 

beam splitter that separates the light into two directions with an equal amount of flux in each 

beam.  Both targets are set at different predefined distances from the beam splitter.  By having 

one target further away from the beam splitter than the other, tip and rotation of the POM will 

be emphasised by the camera.  The cameras are setup in the same manner as the targets at the 

second laser, as depicted in Figure 4-19.  The resolution of the measurement is dependent on 

the camera sensors resolution and the distance that the laser has to travel after being reflected 

from the robot, the greater the distance the higher the resolution. 
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Figure 4-19: Closed Loop Test Setup 
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First, the robot is positioned under the laser associated with the cameras and then at the targets.  

A recording is taken on each measurement target/camera for a reference point.  The metrology 

camera measures the position and orientation of the robot, which is the position that the robot 

will be commanded to move to.  Starting from the targets, the robot drives to the other laser 

position guided only by the metrology module, i.e. closed loop.  Once in position the location 

is recorded using the metrology module and targets/measurement cameras.  The test procedure 

invoked was: 

1. Align robot at the end position – measure the position with the measurement cameras 

and metrology camera 

2. Align robot at the start position – record position with the targets a metrology camera 

3. Send the robot to the average position determined from step 1 using the robot’s close 

loop feedback system 

4. Measure the final location using the metrology camera and measurement cameras 

5. Send robot to the average position determined from step 2 using the robot’s close loop 

feedback system 

6. Record the position  

7. Repeat steps 2 – 6 collecting a statistical sampling of results 

 

Tests were conducted for both the PowerFloor and a blank PCB to ascertain the robots 

positioning capabilities on different working surfaces. 

 

Figure 4-20 illustrates the type of results that will be viewed at the cameras and targets.  It 

highlights the robot’s errors in position, orientation and if there is tip when moving to a 

specific position: 

 Positional error can be seen only when the robot was misaligned in the direction 

towards the beam splitter.  This appears as an equal magnitude misalignment on both 

cameras (Figure 4-20(a)).   

 Orientation error is viewed on both cameras as a change on the x-axis.  The magnitude 

is larger on the more distant camera (Figure 4-20(c)). 

 Tip error is viewed as a change on the y-axis by varying amounts between both cameras 

with the camera that is further away showing a larger change in position (Figure 

4-20(b)). 
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(a) Positional Deviation (b) Tip Variation 

 

(c) Rotational Variation 
Figure 4-20: Beam Spot Description 
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Figure 4-21 shows the output from both of the sensors overlaid onto the same scale from a 

single test using the dual camera setup.  This image is representative of where the laser 

influences the measurement cameras sensor and not the scale of misalignment.  A centroiding 

program was used to determine where the laser spots were on the sensors giving a 

measurement error of ±12 µrad.  Object ‘1’ within Figure 4-21 indicates the reference centroid 

that ideally if MAPS were operating perfectly it would always return to.  All other numbered 

objects are the offset of the measured centroids from both cameras.     

 

 

Figure 4-21: Normalised Image of Centroid Measurements on PowerFloor Surface 

 

 

Trigonometry determines the rotational misalignment of the robot to its target position with the 

delta x-axis from the reference image and the distance to the measurement camera.  Table 4-6 

shows an example of the results obtained.  The table shows eight measurements from a single 

test, showing that the metrological cameras deviation for the robots angle to be greater than 

what was being measured by the measurement cameras.  The results are within 1.7 mrad, 

which is within the precision setting applied for the tests. The angular results are promising 

with potential to meet the requirements. 

 



68 
 

Table 4-6: Angular Robot Misalignment 

Run Measured Angular 

Misalignment, 

Degrees 

Metrology Camera 

Measured Angular 

Misalignment, Degrees 

Deviation between Measured 

Misalignment and Metrology 

Camera, Degrees 

1 0.01 0.09 0.08 

2 0.01 0.06 0.05 

3 0.00 -0.01 -0.01 

4 0.02 -0.09 -0.07 

5 0.01 0.03 0.02 

6 0.02 0.07 0.05 

7 0.00 -0.04 -0.04 

8 0.01 -0.06 -0.05 
 

The PowerFloor includes a 0.1 mm bump at each track due to the insulation layer.  The other 

side of the PowerFloor is a smooth surface consisting entirely of an insulation layer.  It was 

necessary to determine if the PowerFloor’s bumps would affect the robot’s positioning 

therefore decided to repeat the test using the smoother underside of the board.  Table 4-7 

summarises the average tip angle and the standard deviations from the measurements.  The 

results show little variation between both sides of the PowerFloor.  The high standard deviation 

on the majority of the results indicates a high variation around the mean for each test.   The 

variation of position by the robot had negligible effect on the tip angle. 

Table 4-7: Measured Tip Angles 

Test 

Avg. Tip Angle 

for PowerFloor, 

Degrees 

Standard 

Deviation for 

PowerFloor, 

Degrees 

Avg. Tip Angle 

for Smooth 

Surface, 

Degrees 

Standard 

Deviation for 

Smooth 

Surface, 

Degrees 

1 -0.042 0.021 -0.015 0.019 

2 0.003 0.003 -0.018 0.014 

3 0.002 0.006 0.003 0.012 
 

These results show that the PowerFloor does not affect the positional performance of MA-

BOT2 any differently to that of it operating on a smooth floor.  The variation in tip is the same 

regardless of the operating surface.   

4.7.2 Faro Laser Tracker Setup 

The Faro tracker test procedure and setup is the same as the dual camera experiment (section 

4.7.1) excluding the measurement cameras and targets.  This test was not done on the smooth 

surface as the dual camera test showed negligible difference between the PowerFloor and 

smooth surface.  Positioning was monitored using the Faro tracker to independently determine 

the positional repeatability and gain a greater insight into the x-y positioning capabilities of the 

robot.  To accommodate the target mirror a plastic mount was attached to the top of the robot 



69 
 

replacing the POM.  Due to the 19.2 mm diameter of the target mirror it had to be attached 

facing vertically, otherwise some of the spots on the metrology target would be hidden from 

view.  To maintain line of sight between the robot and the Faro, an optically flat (λ/10) 

reference mirror reflected the Faro beam towards the robot to maintain line of sight, Figure 

4-22.  The Faro was set to take continuous measurements. 

 

 

Figure 4-22: Faro Tracker Alignment 

 

Figure 4-23(a) shows the normalised offset between the x-y reference position and the 

measured position of the robot on the PowerFloor.  Each measured position is the average of 

ten measurements taken with the metrology camera.  The markers are representative of the 

laser positions that the robot was commanded to reach.  It is clear that for both positions at 

either end of the PowerFloor, within the camera’s field of view, the robot would reach its 

position within a sphere of 22±3 µm.  As the metrology software was set to reach the position 

to an accuracy ≤ 24 µm this was an expected outcome.  However, it takes the metrology 

module between 10 to 20 attempts to position the robot within this accuracy.  This could 

suggest that the robot is finding its position randomly. 

 

The Faro laser tracker confirms this repeatability, Figure 4-23(b), as an external independent 

measuring source.  This extrapolates 3D coordinates based on the time it takes its internal laser 

to reflect from a target back to itself and reading this against two rotational encoders.  Note that 

the reference coordinates and measurement error of both devices are not the same because they 

are different measuring techniques.  
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(a) Metrology Camera Measurements 

 

(b) Faro Laser Tracker Measurements 
Figure 4-23: Robot Offset from Commanded Position for red & green laser positions 

 

 

As a further confirmation that the results measured by both devices coincide, the resultant 

distance between the lasers for each test run was calculated and compared, Table 4-8.  The 

repeatability is determined by taking the standard deviation for eight runs by the robot towards 

each laser.  The deviation between the measurements of both systems was less than 5 µm that 

is within the measurement error of the Faro (≤ 7 µm).  The results indicate that MAPS can 

potentially reach a position on the PowerFloor to within 17 µm.  
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Table 4-8: MAPS Robot Closed Loop Repeatability 

Test Post Reassembly 

1 2 3 4 

Average 

Standard 

Deviation 

Red Laser 

Repeatability, 

µm 

Metrology 

Camera 
19.3 17.2 16.0 8.3 15.9 

Faro 

Tracker 
16.5 22.0 18.5 5.0 15.1 

Green Laser 

Repeatability, 

µm 

Metrology 

Camera 
21.3 20.7 17.0 4.5 15.2 

Faro 

Tracker 
20.9 18.7 23.8 5.9 16.2 

Combined 

Repeatability 

of both 

Positions, µm 

Metrology 

Camera 
20.6 18.3 16.0 7.1 15.5 

Faro 

Tracker 
18.4 19.7 20.6 8.2 16.7 

Difference between 

Metrology Camera & 

Faro Repeatability, µm 

2.2 -1.4 -4.6 -1.1 -1.2 

4.8 Conclusions 

MA-BOT2 does not fully meet the MOS instruments requirements for the x-y fine positioning 

of ≤ 10 µm.  The robot however was able to repeatedly move to a position to within 24 microns 

as dictated by the control interface.  The overall optical error budget from the focal plane to the 

detector is ≤ 35 µm which includes all the optical components in the optical train to the 

detector.  Theoretically, if all components are perfectly aligned then the MAPS robot would 

have the 35 µm to position itself.  This suggests that if the other components can be positioned 

to within a higher tolerance for an acceptable cost then the positioning requirements of the 

robot can be relaxed.  However it would still be preferable to further refine the robot and 

improve its positional performance.  Table 4-9 is a summary of the actual, expected and 

required performance of MA-BOT2. 

Table 4-9: Summary of MABOT2 

Parameter Requirement Performance 

Expected Actual 

X – Y Positioning Accuracy ≤ 10 µm 1 µm ≤ 24 µm 

Z – Axis Angular Resolution ≤ 1 mrad 84 µrad 79 µrad 

Operation Time ≥ 8 hours per night Continuous Continuous 

Footprint ≤ 30 mm x 30 mm 30 mm x 30 mm 30 mm x 30 mm 

Height ≤ 60 mm 60 mm 50 mm 

Communication Range ≥ 4 m > 4 m > 4 m 

 

The MAPS research clearly indicates that pick-off components can be positioned to a high 

precision using electromagnetically propelled miniature autonomous robots and has the 
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potential to be a viable alternative to current positioning systems.  This also shows that 

electromagnetic autonomous robots can be a substitute for piezo driven robots for high 

precision applications that requires the robots to reach a location to within tens of microns.  

This provides the advantages of cheap low voltage electronics and no tether limiting the robots 

travel that is a common issue with piezo robots.  Currently, MAPS technology readiness level 

can be categorised as level 4, “Technology Development”.  Further research and technical 

development is required to bring the prototypes up to level 9 where they can then be deployed 

on MOS instruments.  This will require improving the angular shift that has been seen with the 

linear motion tests.  The assembly process needs to be automated to improve assembly 

tolerances such as wheel alignment on the dowels.  A “rolling road” test could be developed to 

analyse the performance of each of the wheels independently to indicate if one motor is driving 

the robot further than the other or if one motor is beginning motion noticeably sooner than the 

other.  

Table 4-10 compares the hardware cost for 25 MAPS robots against 25 KMOS arms.  A cost 

analysis between 25 robots and arms was chosen because currently the Very Large Telescope 

is using 25 KMOS arms.  To build 25 MAPS robots it will cost almost 2 percent of the cost to 

build 25 KMOS arms.  This demonstrates that MAPS is cheaper than another POM positioning 

system.  The KMOS arms cost more because they were designed to operate in cryogenic 

temperatures and include more optical components for the correction of the light’s path length.  

The MAPS robots are not required to operate at those temperatures or to correct the optical 

path length; this functionality is implemented by the MOS instrument further down the optical 

train. 

Table 4-10: Cost Comparison 

Hardware MAPS (£) KMOS (£) 

Motors including drivers 5,000 254,000 

Electronics 1,250 199,000 

Mechanical Components 7750 215,000 

Assembly 5,000 338,000 

Total Cost 19,000 1,006,000 
 

This use of miniature mechatronics has led to an investigation into expanding the pick-off 

mirror’s functionality with additional degrees of freedom and the capability to counter the tip 

of the POM.  Chapters 5 and 6 presents the design, build and characterisation of a self-

adjusting mirror that can be used for correcting optical misalignments associated with the non-

telecentric and non-concentric optical properties of a typical large instruments focal plane.   
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Chapter 5 - Self Adjusting Mirror 

MAPS demonstrated the potential to use miniature robotics for the placement of POMs where 

these mirrors can be used to pick-off astronomical targets for spectral analysis. To further 

reduce the size of MOS instruments the possibility of adding extra functionality to that of the 

Pick-Off-Mirror was investigated.  It is useful to reduce the overall size of the pick-off system 

especially at focal stations with limited back focal lengths, as there is limited room for 

compensation optics.  The majority of telescopes deliver curved optical focal planes to the 

focal stations.  Currently beam steering mirrors (BSMs) are used to align the light beam 

reflected from the pick-off mirror with the centre of the beam steering mirror.  Due to the 

curved focal plane the BSM requires a third degree of freedom, in a direction perpendicular to 

the focal plate (which is flat) to compensate for changes in the beam’s angle across the field, as 

reflected from the pick-off mirror.  For the E-ELT MOS instrument the travel range required 

by the beam steering mirror is 33.5 mm, and it is more difficult to achieve the positional 

accuracy and stability. More importantly the space available for the complete pick-off system 

is also very limited.  By incorporating this functionality in the pick-off mirror, the instrument 

can be optimised in terms of both the accuracy and stability.  This investigation resulted in the 

development, build and characterisation of a self-adjusting mirror (SAM).  The design work 

was carried out during a six-month placement at CSEM in Switzerland, while the build and 

characterisation work was completed at the UK ATC. 

 

This chapter lists the application requirements for the self-adjusting mirror.  These 

requirements drive the overall system design.  A review on the current state-of-the-art tip/tilt 

mirrors shows that it will be possible to use current MAPS technology to build miniature 

SAMs for use in astronomy.  Various implementations follow with a summary of the trade-off 

analysis discussing the SAM design chosen for further investigation.  The chapter concludes 

with the initial design ideas for the self-adjusting mirror.  The nomenclature for SAM are 

defined in the coordinate system definition unless otherwise stated. 

5.1 The Reason for SAM 

Most astronomical instruments gather light at the focal planes of telescopes – i.e. the region 

where light is brought to a focus and an image is formed.  In an ideal system the focal plane 

should be completely flat.  However for large instruments such as EAGLE this is not possible 

and the focal plane has a curvature equivalent to ~50 m radius due to the telescope’s optics.  As 
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discussed previously, pick off components such as POMs collect the photons from objects of 

interest and guide this light towards the next set of corrective optics before entering a 

spectrograph.  However, since the focal plane is curved when the light is collected at the POM, 

its reflection deviates away from the optical axis as shown in Figure 5-1. 

 

 

Figure 5-1: Optical Misalignment Description [32] 

 

 

In the current EAGLE design beam steering mirrors (BSMs) ensure that the optical axis 

between the pick-off mirror and the rest of the optical train is aligned.  BSMs are located 

around the perimeter of the focal plane (Figure 5-2(a)).   Each BSM implements three degrees 

of freedom: a rotational, linear and tip stage as illustrated in Figure 5-2(b).  

 

 

  

(a) 
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(b) 
Figure 5-2: (a) BSM arrangement around the focal plane, (b) BSM Design [57] 

 

 

Figure 5-2 shows that the BSM is quite large with a volume of ~2008156 mm
3
 and weighting 

in the order of 5.9 kg [71]. As there are 26 beam steering mirrors bulky support structures are 

needed to hold them in place.  It is proposed that by moving some BSM functionality to the 

POM will simplify the supporting structure as it can reduce the weight (each BSM would be 

3.3 kg lighter), reducing the overall weight of the MOS instrument.  This can be achieved by 

removing the tilt and linear function from the beam steering mirror and adding a rotation and 

tip function to the pick-off mirror.  Tip and tilt is corrected by combining the tip and rotation 

functionality of the POM with the rotation functionality of the BSM.  Figure 5-3 shows the 

simplified BSM. 

 

 

Figure 5-3: Simplified BSM 

 

5.2 Current Miniature Self Adjustable Mirrors 

Listed in Table 5-1 are currently commercial-of-the-shelf available mirrors.  Research findings 

concluded that multi degrees of freedom adjustable mirrors within a small footprint (≤ 50 mm
2
) 
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are currently not available.  Mostly these mirrors only incorporate a single degree of freedom.  

Therefore implying that multiple stages will have to be integrated together to provide all the 

functions required.  This will result in a unit that will be far too large.  There are commercially 

available examples of single-axis adjustable mirrors (galvanometers) that are used within laser 

systems. 

 

Table 5-1: Summary of Adjustable Mirrors 

Mirror Application Dimensions 

(mm) 

Minimum 

Step Size 

(µrad) 

Range 

(rad) 

Drive Method 

PI S-334 

[72] [73] 

[74] 

Commercially 

available 

tip/tilt mirror 

33 x 38 

+ 

50 x 30 x 14  

5 µrad 0.1 rad Piezoelectric 

Single Axis 

GMS [75] 

Laser imaging 

& etching; 

Confocal 

Microscopy – 

Commercially 

Available 

86.4 x 47.1 69.8 µrad 0.28 rad Information not 

available 

DynAXIS T 

[76] 

Laser 

Deflection – 

Commercially 

Available 

∅16.5 x 45 

(Without 

Mirror) 

8.5 Mirror 

Aperture 

Information 

not 

available 

± 0.21 

rad 

Magnetic 

Inertia Drive 

8300K [77] Commercial 

Scanning 

Technologies 

∅9.5 x 29.1 

(Without 

Mirror) 

7 Mirror 

Aperture 

8 µrads 0.7 rad DC Motor 

MEMS 

Micromirror 

[78] 

Commercial 

Product 

7.26 

Packaging 

∅4.2 mirror 

8.73 µrads ± 0.1 rad Electrostatic 

Actuator 

(TTP)-DM Commercial 

Product 

9.3 Mirror 

Aperture (331 

Hexagonal 

Segments) 

Information 

not 

available 

± 0.006 

rad 

Electrostatic 

 

 

From the review, galvanometers were identified as being the most suitable product available.  

These products are capable of small enough step sizes and reasonably large travel ranges.  

However these devices are limited in the number of degrees of freedom provided, while the 

volume envelopes are also much larger than the desired mirror footprint. 

 



77 
 

There are small (with an aperture in the order of 10 mm) MEMS mirrors that can be controlled 

precisely.  These MEMS mirrors use electrostatic actuation which requires high driving 

voltages and therefor the driving electronics would be larger than the volume of the POM.  It 

would require the electronics to be off-board with a tether to the mirror.  This is unsuitable for 

the same reason as it is unsuitable to tether the robots positioning the mirrors. 

 

The findings clearly indicate a current lack of availability of small fully self-contained mirrors 

that support multiple adjustable degrees of freedom within the required footprint to perform the 

high precision tasks required.  SAM will have the potential to fill this gap in the market. 

5.3 System Design 

Based on the overall system architecture design the requirements for the self-adjusting mirror 

were derived.  To derive the requirements it is important to identify all the functions required 

to implement the observation strategy to perform the science. 

 

 

Figure 5-4: Top-Level Function Diagram 

 

Defined in Figure 5-4 is an overview of the functions required to implement a typical 

observation strategy.  This thesis focusses on functions 2 and 3.  The method of positioning the 

POMs were described in the previous chapters, the rest of this thesis is dedicated to solving the 

problem of alignment between the POM and the BSM.  The locations of objects on sky to be 

studied are used to calculate the position where the POMs have to be placed on the focal plane.  

Once in position the POMs are aligned with its associated BSMs (for each observation, the 

path analysis determines the pairings of POMs and BSMs).  This alignment needs to be 

maintained for the duration of the observation.  The alignment needs to be maintained so that 

the light from the source object is received at the same part of the detector throughout the 

exposure otherwise the signal would be lost to noise.  The BSM directs the light received from 

the POM to the next component in the optical chain of the instrument (function 4).  This 

determines the tolerable drift over an observation period.   

 

The primary function of the self-adjusting mirror is to align the beam reflected from the POM 

with the centre of the BSM.  This alignment must be maintained throughout an observation.  
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Alignment is achieved through the rotation of both the POM and BSM around the ψ-axis 

followed by the pick-off mirror adjusting its angle (around the x-axis) of incidence. 

 

Function 3.0 is where the self-adjusting mirror technology would be used.  Figure 5-5 breaks 

function 3.0 down further.  Once the self-adjusting mirrors are put into place on the focal plane 

the POM will be rotated around the z- and x – axes to face the BSM.  At the same time the 

BSM is rotated around the z-axis to the POM.  Once the BSM and POM are adjusted the 

system confirms that both technologies are aligned.  This is done externally to SAM and is out 

with the scope of this thesis work.  If they are not aligned the process of adjusting both the 

BSM and POM is repeated until alignment has been achieved.  Once achieved alignment is 

maintained and monitored throughout a telescope’s observation period.  The light being 

collected by the POM is transmitted to the BSM and then towards the sensor where the light is 

integrated over a large exposure duration.  The integration of multiple images is required 

because the objects being studied are extremely faint.  Therefore, it is important that the 

photons from the object of interest align to the same part of the detector for the entirety of the 

observation.  This is why the alignment of the POM with the BSM is extremely important and 

must be maintained throughout the observation.  The results gathered are converted to a digital 

signal and stored for analysis by astronomers.  

 

The POM and BSM will return to a “start” position when an observation ends.  The shutdown 

procedure is the reverse of the observation procedures listed earlier.  Based on the functions 

that the self-adjusting mirror has to execute a design was developed.  The system architecture 

derived is depicted in Figure 5-6.  The self-adjusting mirror design builds on the micro 

autonomous positioning system, utilising a number of the existing building blocks, namely the 

command and control module with the exception of the alignment sensor, mirror and power 

delivery concept.  The resulting system architecture is very similar to that of MAPS as can be 

seen in Figure 5-6. 
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Figure 5-5: POM/BSM Configuration Functional Flow Diagram 
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Figure 5-6: SAM System Design Overview 

 

Once SAM is in position the PowerFloor, will work well because the problems experienced 

with the MAPS power delivery were all related to the robot having to move across the tracks. 

Therefore it can be concluded that for the purpose of evaluating SAM the PowerFloor will be 

adequate.  
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By implementing the functions listed in Figure 5-4 and Figure 5-5, the SAM requirements were 

derived and these are summarised in Table 5-2.  Both the goal and the desired requirements are 

captured in Table 5-2.  The ‘goal’ specifications define the minimum requirements that must be 

met for the application. 

 

Table 5-2: SAM Requirements 

Requirement Sub-Requirement 
Specification 

Comment 
Goal Desired 

Φ 

Tip Module 

Resolution ≤ 0.9 

mrad
 

≤ 0.2 mrad
 

Step increments for the Φ 

rotation. 

Range -17.5 

mrad to 

34.9 

mrad 

± 69.8 

mrad 

± denotes the max/min 

travel range. The mirror is 

expected to travel to 

angles within these 

values. 

Tolerable Drift ≤ 0.113 

mrad/hr 

≤ 25 

µrad/hr 

Based on an 8 hour 

observation 

Ψ 

Rotation 

Module 

Resolution ≤ 1 mrad ≤ 25 µrad Defined by BSM and 

POM requirements 

Range ± 3.142 

rad 

≥ 6.283 

rad 

Bi-directional would be 

acceptable. 

Tolerable Drift ≤ 0.125 

mrad/hr 

≤ 3.125 

µrad/hr 

Based on an 8 hour 

observation 

General Dimensions ≤ 40 mm 

x 40 mm 

x 80 mm 

≤ 20 mm x 

20 mm x 

50 mm 

Footprint is based on the 

current POM 

Design Type Modular To allow interfacing with 

different POS 

Power ≥ 8 hours PowerFloor used due to 

its ready development 

from MAPS 

Stability Period ≥ 8 hours Operation time is based 

on a single night’s 

operation. The drift is 

based on linear z 

allowances of the BSM 

Control Wired Wireless Mirror is operating in an 

environment not desirable 

for interaction with 

people.  

≥ 2 m ≥ 10 m 

Operating Plane Horizontal & Vertical Operating plane will vary 

± 90˚ 
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The tip and rotation range requirements were determined based on the geometry of a MOS 

instruments focal plane like EAGLE.  It is assumed that the BSM is aligned with the optical 

axis of the focal plane when the MOS instrument is built.  The tip module’s travel range 

depends on the radius of the optical field curvature and Snell’s law.  The angle at which the 

light reflects from a 45 degree mirror will deviate from the optical axis dependent on where the 

POM is positioned on the focal plane.  The tip module is altered around the x-axis to bring the 

optical path back into alignment with the optical axis.  The resolution is based on the minimum 

change required as the objects being studied would move across the sky during an observation.  

The dimensions of SAM are based on the POMs footprint requirements.  The POMs need to be 

able to be placed next to one another with a minimum separation distance of 40 mm from 

centre-centre.  This means that SAM cannot have a footprint greater than 40 mm
2
.  Power and 

stability need to last for longer than an observation period which is 8 hours per night.  SAM 

can be controlled either through wires or wireless.  It is more desirable to be wireless as this 

simplifies the placement of POMs as it removes trailing wires.  The wireless communication 

needs to be capable of sending and receiving information from POMs that can be located 

anywhere on the focal plane which is 2 m long.  Therefore, the communication range needs to 

be greater than at least 2 metres.  Each module’s tolerable drift has to be less than the 

resolution of the stage over the 8 hour observation period.  This keeps the signal on the same 

part of the detector throughout an entire observation. 

 

5.4 Potential Concepts 

Various ideas were considered and are based on mechanism designs described in, Table 5-3.  

In Table 5-3 each possible solution together with the advantages and disadvantages are 

described.  In addition a numerical trade-off method was used to select the most promising 

concept for evaluation.  This involved defining the key criteria that would influence the design 

and application of the solution.  Each criteria was proportioned a weight factor based on its 

importance.  The concepts were judged against each criterion by calculating a rating.  
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Table 5-3: Summary of Classical Mechanical Methods 

 Ratchet Mechanism Piston Actuated Full POM Adjustment NanoPositioner Int. Piezotube 

 

 

 
 

 

 
Operating 

Principle 

Ratchet mechanism locks 

mirror at specific angles. 

Lever is released and the disc 

rotates freely, lever comes 

down locking the mirror at an 

angle [79] 

Pistons push the back 

of the mirror causing 

rotation around a 

central point [79] 

Actuator pushes base of 

POM so mirror rotates at 

the base. Blade and 

spring added to guide 

and control the POM 

[79] 

Mirror is attached to a sphere 

that sits on three or six piezo 

legs. These actuators walk on 

the sphere causing it to change 

orientation [80] 

A piezo tube with a 45° 

cut has a mirror adhered 

to it. Electrodes within 

the tube deform the 

material to meet required 

angles [81] 

Advantages  Locks the mirror into an 

angle 

 Simple concept does not 

necessarily require an 

accurate motor 

 Simple design 

 Can possibly be 

created using a 

single piston 

 Provides more space 

for actuators 

 Nanometre resolution 

possible 

 Compact 

 Mechanically simple 

 Compact 

 Mechanically Simple 

 High precision 

Disadvantages  Resolution requirements 

dictate number of teeth 

required. 

 Assembly 

difficulties for more 

than one motor due 

to the space 

available 

 Increases the height of 

the overall POM 
 Need to manufacture 

actuators, commercially 

available ones not readily 

available 

 Requires large control 

electronics and a tether 

 Requires large 

control electronics 

 Requires a tether 
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The trade-off parameters used in the numerical trade off study were divided into three broad 

categories: 

 Project related items such as timescales, cost etc. 

 Technical performance parameters and how these compare with the requirements 

specifications. 

 Utilities such as ease of manufacturability, assembly, maintainability and reliability. 

 

A Measure of Effectiveness (MOE) model was created for each of the solutions.  The MOE 

model used the unit value functions defined in Table 5-4.  Non-technical parameters were 

scored out of ten, where 1 was considered poor and a 10 was given to solutions which matches 

the requirements exactly.  A weighting was applied and the scores totalled.  Weights were 

proportioned between the parameters with the most critical parameters being awarded the 

higher weight.  The concept with the highest total score determined the chosen solution. 

 

Table 5-4: Scoring Determination 

Form Equation Description 

Positive Score 𝑆𝑐𝑜𝑟𝑒 = [
𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑣𝑎𝑙𝑢𝑒
] 

Used when more of something is 

better than less of something 

Negative Score 𝑆𝑐𝑜𝑟𝑒 = [
𝑀𝑖𝑛𝑣𝑎𝑙𝑢𝑒

𝑉𝑎𝑙𝑢𝑒
] 

Used when less of something is 

better than more of something 
 

 

Table 5-5 shows the numerical analysis template used and  

 

Table 5-6 is the results of the numerical analysis.  The MOE section of Table 5-5 is the columns 

capabilities, score and weighted score.  

 

Table 5-5: Numerical Analysis Template 
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Table 5-6: Results of Numerical Analysis 

Conceptual Designs Ranking 

Concept Weighed Score (Out of 10) 

Piston Actuated 9.5 

Prismatic Joint/Motor 8.5 

Flexure Actuated 8.1 

Piezo Tube 7.6 

 

 

The NanoPositioner Int. concept (Table 5-3) was not included in the trade-off analysis as it 

would not have been feasible to develop and evaluate the actuators within the available 

timescale.  This was unfortunate as it is a very novel concept and appeared to be able to meet 

the requirements better compared with most of the other solutions.  Based on the outcome of 

the trade study it was decided that the piston actuated solution will be the best solution for 

further analysis and evaluation.  It was also clear that the research goals can be achieved within 

the time-scale of the study period.  The piston actuated solution, outperformed the other 

concepts in terms of its tip module.  It has the potential of a higher resolution than the other 

concepts.  The prismatic joint/motor concept would have a greater travel range however its 

resolution was expected to be poorer.  The travel range of the piston actuated design was 

greater than the requirement and the better resolution made it a more preferred option.   

 

5.5 SAM Computer Aided Design Evaluation 

Numerous piston actuated designs were digitally prototyped and analysed.  These CAD models 

are shown in Table 5-8 which also summarise the advantages and disadvantages of each 

design.  Based on the results the best solution (MK6) was chosen for further evaluation. 

 

  



86 
 

Table 5-7: Summary of SAM designs part 1 

 
 Footprint, 

mm
2
 

Tip Stage Rotation Stage Advantages Disadvantages 

MK1 

 

~25.5 x 18 

 Pre-loaded Flexure 

 Actuation motor - 

Squiggle SQL 1.8 RV 

(Ultrasonic Piezo 

Motor) encoder 

available 

 Actuation motor – 

SmarAct SR-2013-

S (Stick/Slip Piezo 

Motor) with built-in 

encoder 

 Direct Drive 

Arrangement 

 High resolution 

 Simple Design 

 Off-the-shelf 

Components, easily 

accessible 

 Expected tip travel 

range 0.1 radians 

 Rotary motor requires 

large control 

electronics 

 Would require a tether 

for electronics 

 Tip resolution is non-

linear due to proposed 

fitting angle 

MK2 

 

27 x 25 

 Pre-loaded Flexure 

 Actuation motor - 

Squiggle SQL 1.8 RV 

encoder available 

 Squiggle motor 

angled at 45° to the 

mirror 

 Hemisphere added to 

Squiggle motor for 

coupling purposes 

 Actuation motor – 

Faulhaber ADM 

0620 Stepper 

motor 

 Software can 

micro-step the 

motor 

 Connects to mirror 

via a worm and 

spur gear train 

 Relatively simple 

electronics 

 Self-contained 

electronics within POM 

 Linear response from 

tip stage 

 Inherent backlash 

between at each gear 

 Precision concerns 

due to component 

interactions 

 Multiple components, 

increased complexity 

 Mirror holder shape 

can generate 

unwanted torsion 

within the flexure 

MK3 

 

29.75 x 

29.75 

 Pre-loaded Flexure 

 Actuation motor - 

Squiggle SQL 1.8 RV 

(Ultrasonic Piezo 

Motor) encoder 

available 

 Squiggle motor angled 

to the mirror at 45° 

 Hemisphere added to 

for coupling purposes 

 Actuation motor – 

Brushless flat DC-

micromotor 

 Direct Drive 

Arrangement 

 Posic Encoder chip 

with code wheel 

for feedback 

 

 Potentially High 

resolution 

 Simple Design 

 Off-the-shelf 

Components 

 Self-contained 

electronics within POM 

 Linear response from 

tip stage 

 Uncertainty about 

motors precision 

although the external 

feedback should 

compensate 
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Table 5-8: Summary of SAM designs, part 2 

  Footprint, 

mm
2
 

Tip Stage Rotation Stage Advantages Disadvantages 

MK4 

 

29.75 x 

29.75 
 Pre-loaded Flexure 

 Actuation motor - 

Squiggle SQL 1.8 RV 

(Ultrasonic Piezo 

Motor) encoder 

available 

 Actuation motor – DC 

Gear Motor 

2619S006S R8:1 IE2-

16  

 Built-in encoder 

 Direct Drive 

Arrangement 

 

 High resolution 

 Simple Design 

 Off-the-shelf 

Components, easily 

accessible 

 Expected tip travel 

range 0.1 radians 

 Encoder feedback to 

maintain position 

 Rotary motor 

increases overall 

height to ~ 83 mm 

 Potential resolution 

issues 

 Backlash in the rotary 

motor, built-in 

encoder should 

compensate 

MK5 

 

30 x 30  Pre-loaded Flexure 

 Actuation motor - 

Squiggle SQL 1.8 RV 

(Ultrasonic Piezo 

Motor) in M3L 

Development kit 

 Actuation motor - 

Zero backlash stepper 

motor 

 Direct Drive 

Arrangement 

 Limited to ± 200° due 

to cabling 

 Self-contained 

electronics within 

POM 

 Linear response from 

tip stage 

 Compact design – 

electronics surround 

rotary motor 

 Development kit used 

for tip stage 

 Rotation is not 

continuous due to 

wiring between 

stages 

MK6 

 

30 x 30  Pre-loaded Flexure 

 Actuation motor - 

Squiggle SQL 1.8 RV 

(Modified M3L 

Development Kit) 

 Actuation motor – 

Smoovy 0515B with 

625:1 Planetary gear 

head 

 Friction Drive 

Arrangement 

 MicroE Systems 

optical encoder – 126 

µrad resolution 

 Potentially High 

resolution 

 Simple Design 

 Off-the-shelf 

Components 

 Self-contained 

electronics 

 Linear response from 

tip stage 

 Similarities to MAPS 

 Rotation is not 

continuous due to 

wiring between stages 
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From the early design investigation, it was decided to develop the MK6 further.  The MK6 was 

chosen because it uses the same friction drive concept applied on the MAPS robot and was 

more compact compared to the other concepts.  By using the same friction drive concept, it can 

be implemented using the same type of Smoovy motor, which is well characterised.  The motor 

selected is the Smoovy 0515B with 03A planetary gearhead, which is a slightly larger motor 

(diameter of 5 mm opposed to 3 mm) with a five times higher gear ratio (625:1 instead of 

125:1) providing a smaller single step size.  The larger motor was chosen because of how 

fragile the smaller one was found to be during the development of the MAPS robot.  This 

motor has a minimum step size of 0.2 mrad.  With friction drive it is possible to achieve a very 

compact design in comparison with the other designs evaluated.  The minimum step size is 

determined by the motor gear ratio and the size of the driven component responsible for the 

rotation of the mirror.  The size of the driven component allows for a higher resolution to be 

obtained for the rotation stage compared to the directly driven concepts.  If a slip ring is added 

between the tip module and rotation module continuous rotation will be possible.  However, a 

slip ring was not included in the first prototype as it was deemed unnecessary at this stage to 

extend the requirements to provide an N x 360° rotational stage.  For the tip module a Squiggle 

(piezo) motor was selected, because of the 1 µm minimum step size that can be achieved in 

closed loop using low voltage driving electronics.  A single step size of 1 µm in the design 

equates to a rotation of 51 µrad which is better than the 900 µrad requirement.  The Squiggle 

motor was also chosen because of its size (1.8 x 1.8 x 6 mm
3
).  The small size was helpful for 

fitting the motor into the limited packaging space that was available.  It was due to the motor 

choice that SAMs tip module exceeded the requirements detailed in Table 5-2.  It was not 

chosen for the rotation module because it is a linear motor.  It would have needed extra 

components and complexity to be made suitable for the rotation module.  Since this work has 

been carried out, Newscale Technologies have developed a new Squiggle motor is a rotary 

version of this one. 
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5.6 Description of evaluation model 

The evaluation model consisted of four modules: 

 Power 

 Rotation 

 Tip 

 Mirror 

The power module utilises the PowerFloor and as discussed previously is better suited to 

provide power to a static component such as SAM.  The modularity of the design means that 

the power module could be replaced with any receiver that is designed to fit within a casing 

with a 35 mm
2 

footprint.   

 

Three rigid contacts (rivets) act as feet that sit on the PowerFloor.  The head diameter of the 

rivet is less than the gap spacing between tracks to avoid shorts.  Due to the geometry of the 

rivets, a contact will always be made with each track by at least one rivet as long as the front 

face of the power module is perpendicular to the direction of the tracks this allowed the SAM 

power module to use three pick-off pins rather than the four that is required by the MAPS 

robot.  Figure 5-7 shows a 2D sketch of the rivet geometry and how it interacts with the 

PowerFloor.  The rivets are used to conduct the power from the floor (9.2 V) to the on-board 

power conditioning module.  These three rigid contacts provide greater stability of the device 

on the surface compared with the MAPS robot (combination of wheels, stabilisers and spring-

loaded power contacts). 

 

(a) Geometry of the rivets means one will also be on a required track 

Anode Cathode Gap between tracks 

SAM 

Footprint 

Rivets 
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(b) Track and rivet dimensions 

Figure 5-7: SAM Rivet Geometry 
 

 

The underside of the power module (Figure 5-8) is a PCB.  Counter bores on the PCB provide 

spaces for magnets to be press fitted.  All the magnets poles must face the same direction; this 

is to add a force that will hold SAM on the instrument as a steel plate is located underneath the 

PowerFloor.  Magnets are used to attach the rotation module on top of the power module.  

Magnets were used because it is easier and quicker to assemble and it can also be taken apart 

quickly if required.  This also eases assembly between modules compared to using bolts and 

other standard macro assembly techniques. 
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Figure 5-8: Power Module Underside 

 

The rotation module uses the 0515B Smoovy motor with a 06A planetary 625:1 reduction gear 

head to provide a step size of 0.21 mrad.  The friction drive arrangement is small and compact 

and allows enough space to accommodate the on-board electronics.  A pre-loaded aluminium 

flexure maintains a constant force of 0.13 N between the motor’s output shaft and the O-ring 

attached to the tip module as shown by Equation 6-1 that is explained further on in this section 

of the thesis.  Figure 5-9 shows the various components of the rotation module. 

 

 

(a) Spring Assembly 
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Motor Pinion 
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Spring Back Plate 

Spring Flexure 
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(b) Rotation Module Casing with Spring Assembly 

 

 

(a) Command & Control PCB 
(b) Command & Control PCB stack 

within Rotation Module Casing 
Figure 5-9: Rotation Module 

 

 

The tip module bearing is press fitted over a hollow aluminium cylinder, called the bearing 

holder, which is part of the Rotation Module (Figure 5-10).  This component is hollow to allow 

wires between the Rotation Module and Tip Module.  A bearing is used to facilitate rotation 

between a static part (The rotation module) and moving part (tip module).  A bearing was 

chosen as it has low friction and they are very resilient.  

 

The cut at the rear of the Rotation Module Lid is for the Chipcon optical encoder, [82].  The 

CE300-40 chip in combination with the R1910CE code wheel provides a measuring resolution 

of 126 µrad, which is seven times better than the requirement (Table 5-2).   

 

Rotation Module 

Casing 
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(a) Rotation Module Lid (b) Rotation Module Bearing Holder 

 

(c) Rotation Module Casing with Lid and Bearing Holder 
Figure 5-10: Rotation Module Lid 

 

 

 

An aluminium ring is fitted to the bottom of the tip module base and the code wheel is glued to 

it, as shown in Figure 5-11.  The code wheel is pressed into the aluminium ring and up against 

the base of the tip module.  The tip module’s base provides a flat surface that keeps the code 

wheel parallel to it.  Once the code wheel is in place and the tip module is attached to the 

rotation module (explained later), the code wheel is measured using the accompanying encoder 

chip.  However, it has not been successful to add the encoder as the alignment requirements are 

very tight.  Components such as the bearing provides motion that alters the code wheels 

parallelism with respect to the rotation module, this in turn loses alignment between the two 

components.  A stiffer design would be required to ensure alignment.  The ring has an annular 

groove that an O-ring is stretched over.   

Bearing 

Holder 

Chipcon 

Encoder CE300 
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(a) Underside of Tip Module with bearing 

 

(b) Underside of Tip Module fitted with friction ring and code wheel 
Figure 5-11: Tip Module 

 

A linear guide angled at 45° from the tip module base is glued into a groove.  The linear guide 

is angled at 45° to help maintain a smooth coupling between the linear guide and mirror 

module.  Although this is not a precise assembly method it does not matter for this part as long 

as it mates with the mirror module in a smooth consistent fashion.  The linear guide consists of 

two ground steel dowels that act as the slides for a gantry stage.  The gantry is made from 

Polytetrafluoroethylene (PTFE) also known as Teflon, mainly chosen for its low friction 

properties.  The linear guide consists of two dowels as depicted in Figure 5-12 to avoid torsion 

during movement.  Torsion is not possible because the dowels pass through the gantry at both 

ends constraining the gantry to a single axis linear motion.  Although this is technically over 

constrained, it was needed to provide stability during motion. 

Bearing Tip Module 

Base 

Code Wheel 

Friction 

Ring 

O-Ring 
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The squiggle motor pushes the gantry that in turn pushes the back of the Mirror Module.  The 

linear motion of the Squiggle motor is transformed into a rotational motion by the flexure that 

attaches the mirror module to the tip module (described later).  A Squiggle motor is a 

piezoelectric motor that’s operation is based on the ultrasonic principle [83].  The Squiggle 

motor combines a hall sensor which is used to provide feedback regarding the relative 

movement of the stage and is used to control the stage closed-loop.  A brass rivet attached to 

the gantry improves coupling between the linear guide and the Mirror Module as it is a curved 

surface pressing against a flat surface during motion.  The linear motion of the Squiggle motor 

translates to an angular rotation for the mirror around the x-axis.  Figure 5-12 shows a CAD 

model of the complete linear guide sub-assembly. 

 

 

Figure 5-12: Linear Guide Assembly 

 

The Tip Module Cover is a sheet metal part that is bolted around the perimeter of the base, 

Figure 5-13.  The cover overhangs past the bottom of the Tip Module Base to cover the 

interface between the rotation module and tip module. 
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Figure 5-13: Tip Module Cover 

 

The mirror holder was designed to hold an Edmund Optics 
1

4
𝜆 precision optical flat mirror.  The 

mirror is glued in place.  During the gluing process the mirror is forced towards two alignment 

fillets shown in Figure 5-14.  These alignment fillets press against the curved surface of the 

mirror providing a precise location for the mirror within the mirror holder. 

 

 

Figure 5-14: Mirror Holder 

 

Figure 5-15 is a block representation of the mirror and flexure which is used to attach the 

mirror module to the base of the tip module.  Figure 5-15 distinguishes the two interactions 

taking place with the flexure due to the tip and mirror module.   
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𝛽𝐹 =
6𝐹𝐿2

𝐸𝑏ℎ3
 𝛽𝑀 =

12𝐹𝐿𝑙

𝐸𝑏ℎ3
 

(a) Point Force Deflection (b) Bending Moment Deflection 
Figure 5-15: Breakdown of Forces 

 

The equations provided in Figure 5-15 are combined to find the deflection of the flexure with 

respect to its geometry, material and the force being applied to it, (5-1). 

𝛽 = 𝛽𝐹 + 𝛽𝑀 
 

𝛽 =
6𝐹𝐿2

𝐸𝑏ℎ3
+

12𝐹𝐿𝑙

𝐸𝑏ℎ3
 

 

𝛽 =
𝐹(6𝐿2 + 12𝐿𝑙)

𝐸𝑏ℎ3
 

(5-1)  

 

The minimum allowable thickness for the flexure in Aluminium and BeCu are 100 µm and 80 

µm respectively.  An initial set of dimensions was chosen based on the minimum footprint size 

of the POM.  Flexure geometry values were evaluated to determine an acceptable force that the 

motor could move without being damaged.  Due to the thickness having the highest impact it 

was first altered until limitations were reached. 

 

The minimum thickness was too stiff for the Squiggle motor.  The next dimension altered was 

increasing the length to reduce the required force.  Based on the room available within the 

footprint a maximum length of 4 mm was possible.  This results in an acceptable force for the 

actuator, Table 5-9, however there is little margin for error.  It is preferred that the actuator 

only be required to push ≤ 0.2 N to provide a safety margin.  Therefore, the breadth was 

reduced to further lower the required force providing a safety margin of 1.5, Table 5-9. 
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Table 5-9: Results from Varying Breadth 

 Travel 

Range 

(Rads) 

Flexure 

Breadth, 

b (mm) 

Force 

Location, 

L (mm) 

Flexure 

Length, 

l (mm) 

Flexure 

Thickness, 

h (µm) 

Force 

Required, 

Al 

Flexure 

(N) 

Force 

Required, 

BeCu 

Flexure 

(N) 

Various 

Breadths 

0.14 16 13.688 4 100 0.2 0.34 

0.14 15 13.688 4 100 0.19 0.32 

0.14 14 13.688 4 100 0.18 0.3 

0.14 13 13.688 4 100 0.17 0.28 

0.14 12 13.688 4 100 0.15 0.26 

0.14 11 13.688 4 100 0.14 0.23 

0.14 10 13.688 4 100 0.13 0.21 
 

Aluminium meets the required force for any breadth ≤ 16 mm.  BeCu does not meet the 

requirements for a 100 µm thick flexure and needs to be 80 µm thick for any breadth below 18 

mm. 

 

Based on the findings from Table 5-9 it was decided to manufacture the flexure at the minimal 

breadth of 10 mm to provide the actuator with the largest safety factor.  The force required for 

Aluminium and BeCu with this breadth is 0.13 N and 0.11 N respectively.  Figure 5-16 shows 

the flexure that was designed.  The hole in the centre is used so that the breadth dimension can 

be split between the two ends of the flexure thus improving torsional rigidity. 

 

Figure 5-16: Mirror Flexure 

Length 

Breadth 

Mounting Holes 
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For the rotation module, the thickness was constrained to the requirements for the tip module 

for quick manufacturing.  The width was not reduced below 15 mm because of torsion within 

the flexure.  The flexure was produced with a 6.7 mm to provide a 0.05 N and 0.042 N, for 

Aluminium and BeCu, side load between the Smoovy motor and mirror module.  The 

acceptable side load for the Smoovy motor is 0.3 N.  

 

Figure 5-17 shows two SAM units, the silver one was the test prototype and the black one 

would be the finished anodised product.  The anodise coating is to avoid unwanted stray light 

affecting the objects being studied within a MOS instrument.  Appendix B provides the bill of 

materials for the construction of a SAM module has been added to. 

 

  

(a) Silver SAM Prototype (b) Anodised Black SAM, Finished Product  

Figure 5-17: SAM  

5.7 The Expected Performance 

The performance of the SAM is separated into the tip and rotation modules.  The primary 

objective for the testing of tip and rotation modules was to determine:  

 Travel range 

 Individual step capabilities, i.e. resolution 

 Accuracy, repeatability and hysteresis 
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5.7.1 Tip Module 

Position commands relative to the hard stop were sent to the Squiggle motor.  The hard stop 

provides a maximum and minimum location that the Squiggle motor can reach and has a range 

between 0.001 mm to 4.28 mm.  The mirror’s angle is calculated based on the geometry of the 

actuator.  Figure 5-18 presents the theoretical linear relationship for the Squiggle motor 

positional control.  A trendline has been added that indicates that the positioning resolution is 

approximately 0.052 mrad (0.003°) which is within the 0.9 mrad requirements.  The maximum 

range that the tip module is designed for is 216 mrad, which exceeds the 70 mrad requirement. 

 

 

Figure 5-18: Tip Module Theoretical Results 

 

5.7.2 Rotation Module 

The test objectives for the rotation module are similar to that of the tip module, which was to 

characterise the stage in terms of the: 

 Travel range 

 Minimum step size and 

 Backlash 

To determine the step to angle relationship; the backlash and achievable resolution the 

rotational module was used in an open-loop control mode.   
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The relationship between the motor steps and delta angle is based on the ratio between the 

motor pinion (∅ 2.85 mm) and tip module’s friction ring (∅ 26 mm), which is 0.11.  The 

Smoovy 0515B motor with a 625:1 reduction gear head is designed to provide a minimum step 

size of 0.21 mrad/step rotation at the output shaft.  In the friction drive arrangement, the 

expected relationship is 23.1 µrad/step.  

5.8 Actual Performance 

5.8.1 Tip Module 

An optical method was used to test SAM because it was a non-contact method that would 

provide a low measurement error.  However its field-of-view was not large enough for the full 

range of motion.  A contact method (described later in this section) was used to measure the 

entire travel range.  For the optical method, a laser was set perpendicular to the ground surface 

and the beam was reflected from the mirror towards a Lumenera Lw11059M, which was used 

to record an image of the beam spot.  A MatLab script was then used to find the centroid of the 

spot.  This was repeated for various Squiggle motor positions and the change of centroid 

positions was used to determine the change in angle.  

To start the laser is reflected off of SAM towards one edge of the camera sensor; the full spot 

needs to be imaged for the image processing to function properly.  The test methodology used 

is outlined below: 

1. Record initial position. 

2. Command unit to move 1070 µm (1
st
 measuring position on the camera). 

3. Record the first position. 

4. Command unit to the 2
nd

 measuring position on the camera  (2140 µm) 

5. Record the second position. 

6. Repeat steps 4 and 5 until the spot can no longer be imaged 

The last measurement point in the forward direction will be used as the starting point, to 

measure the performance of the unit when commanded in the reverse direction.  The final 

measured point should be equal to that of the starting position.  This process was repeated a 

number of times, so that measurement errors can be averaged out.  

 

The maximum travel distance that the Squiggle motor could be sent to during the test was 1050 

microns.  The range was limited by the cameras field-of-view (FOV) which is determined by 

the physical size of the cameras sensor.  The range was segmented into four, thus providing 

five measurement positions.  Figure 5-19 shows the average results of 16 measurements for 



102 
 

each Squiggle motor position.  The standard deviation between the 16 measurements for each 

position was ≤ 17.45 µrad.  

 

 

Figure 5-19: Optical Method Output 

 

 

A linear response was expected; however, as can be seen in Figure 5-19, the recorded results 

were not.  A further investigation was carried out and is explained later in this section.  The 

deviation from the theory could be because the mirror’s centre of rotation lies below the mirror 

rather than at the mirror’s own centre.  To confirm this hypothesis a Zemax ray-trace model 

was constructed, Figure 5-20, indicating the expected response of the light beam reflected from 

SAM to the sensor. 
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Figure 5-20: Zemax model 

 

 

Figure 5-21 shows the actual image of where the laser intersects the sensor and that predicted 

by Zemax, as can be seen, there is good correlation between the two. 

 

  
(a) Zemax Diagram (b) Overlaid Image of Measured Results 

Figure 5-21: Comparison of Zemax and Measured Output 
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Figure 5-22: Zemax and Experimental Results Comparison 

 

Figure 5-22 plots the Zemax output of the light beam on the sensor against the experimental 

results showing deviations as high as 17.5 mrad.  These deviations are likely to be a 

mechanical issue within the tip module and are explained further on in this section.  The 

measurement error was 0.05 mrads and has no bearing on the deviation that can be seen in the 

graph. 

 

The optical method was capable of high resolution measurements, however was not capable of 

measuring the entire travel range thus a contact method involving the Coordinate Measuring 

Machine (CMM) was used.  This would measure the mirrors angle in relation to the tip 

module’s base and not the light path, which the optical method focuses on. 

 

A Mitutoyo B706 CMM, capable of measuring a position to within 1.5 µm, was used to 

measure the mirror module’s angle in relation the horizontal plane.  SAM’s tip module was 

clamped to the CMM surface on an optical breadboard.  Four points on the top surface of the 

optical breadboard were used to generate a reference plane.  The mirror was set at its minimum 

position and four points measured on a single surface of the mirror holder creating a plane.  

The angle between this plane and the reference plane was recorded.  The Squiggle motor was 

set to different positions and the mirror module’s new planes measured to determine the angle.  

Figure 5-23 is the test setup for the contact method with the CMM. 
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Figure 5-23: CMM Test Setup 

 

Figure 5-24 compares the experimental results with the theoretical mirror angles showing a 

deviation.  The error for the change in mirror angle measured with the CMM varies for the 

different Squiggle motor positions.  Generally, the greater the Squiggle motor position the 

greater the measurement error.  This was because the mirror module is more susceptible to 

external forces such as the CMM’s probe.  On average across all the measurement positions the 

error was 0.87 mrad, with the highest measurement error did not exceeding 1.4 mrad. 

 

Figure 5-24: Comparison of CMM Measurements and Expected Results 
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Figure 5-25 shows the mirror performance measured with both the CMM and camera.  The 

camera measurements have been compensated to remove a deviation that was expected 

between the two data sets, as the optical set of results shows the change in the light path’s 

angle and the CMM set shows the actual movement of the mirror’s surface in relation to the 

base.  This confirms that it is because the centre of rotation for the tip module is located below 

the mirror as described by Figure 5-21.  It shows that the output from both the light path and 

the actual mirror position follow the same pattern for the set of positions measured, indicating a 

mechanical error within the tip module mechanism.   

 

 

Figure 5-25: Comparison of Optical & CMM Results 

 

It is likely that the cause of this non-perfect linear motion is due to a juddering motion at the 

linear guide.  This is due to sticking caused by torsional motion as the PTFE gantry slides up 

the dowels.  The magnet used for the encoder at this stage is attached to the PTFE gantry.  If 

the gantry is juddering along the dowels (rails) of the linear guide it will shift the magnet over 

the hall sensor generating a higher error.  The sensor will indicate that the guide is in the 

correct position even when it is slightly out of position as is being seen in Figure 5-24.  The 

measured results follow the theory with an error of the angle that is within 1.75 mrad up to the 

2100 µm position.  The error increases for larger positions and can be as high as 0.02 radians at 

the 3150 µm position.  Finer tolerances between the mating parts of the linear guide can be 

used to improve its performance and reduce the error.  Removing the encoder from monitoring 

the Squiggle motor’s position and putting this capability at the rotation point of the mirror 
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would allow an improvement in positioning accuracy.  The motor can be driven open loop with 

step commands instead of position commands. 

 

In its current form the error is within an acceptable level for the applications required travel 

range of up to the 0.122 radians.  Figure 5-26 is the combination of the measured results from 

the optical and mechanical graphs.  The graph also includes the Zemax raytrace and theory 

described in Figure 5-18.  

 

Figure 5-26: Combined Tip Module Graph 

 

The optical method has a higher measurement resolution and was used to measure the 

minimum incremental steps of the tip module.  It measures an angle to within 1.4 mrad and the 

required resolution of the module is 0.9 mrad.  The cameras in the optical method can be 

arranged to be more sensitive at detecting small angle changes within the SAM.  The further 

the cameras are from the SAM, the greater the sensitivity.  The same test procedure was 

applied as that used on the optical tests for the travel range with the step size command being 

altered to be 1 µm. 

 

To observe possible hysteresis a similar procedure to what was described was applied; SAM’s 

mirror angle was altered in one direction with single micron Squiggle steps, an image was 

taken at each position until 10 µm steps had been covered.  The measurements were repeated 
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with the Squiggle motor moving in the opposite direction from this new position.  This was 

repeated for 20 positions in this direction so that the original starting position was overshot.  

From the new end position, the Squiggle motor was micron stepped in its original direction ten 

times.  The result should be a return to the original output angle. 

 

Figure 5-27 shows a set of measurements taken from the centre of the camera sensor.  This is 

typical over the repeat sets of testing. It shows that for every individual micron step the 

Squiggle motor moved the change in angle was repeatedly 78.54 ± 5 µrad.  When the motor’s 

direction is reversed, it is clear that for the first step motion the delta angle is less than 78.54 

µrad but instead is ~17.45 µrad, a difference of 61.09 µrad.  This is due to the ±0.5 µm 

accuracy of the encoder at the Squiggle motor and friction within the linear guide.  It is known 

that for every 1 µm change of the Squiggle motor, the change in angle is 50.6 µrad (Figure 

5-26). This is acceptable as the application requires the angle resolution to be ≤ 0.9 mrad, 

therefore the Squiggle motor can meet this requirement by being stepped in 2 µm increments. 

 

 

Figure 5-27: Single Squiggle Motor Step Motions 

 

Figure 5-28 shows the change in angle for single Squiggle step motions at either end of the 

camera sensor, indicating its repeatability.  The point of interest with the results is the 

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

D
e

lt
a 

M
e

as
u

re
d

 A
n

gl
e

, m
ra

d
s 

Delta Squiggle Position, microns 

SAM TM Hysteresis 

Dir. 1 First Set

Dir 2 First Set

Dir. 2 Second
Set

Dir. 1 Second
Set



109 
 

resolution value.  At the bottom of the camera sensor, the value was 66.32 µrad and at the top 

of the sensor, this was 90.76 µrad, a difference of 24.43 µrad.  It was determined that the 

resolution from the centre of the sensor was 78.54 µrad.  This highlighted that the current SAM 

design resolution alters as the mirror angle varies.  This is caused by the light being received at 

SAM shifting in x, y position as the mirror alters its tip angle.  This variation has had little 

effect with the SAM tip module reaching commanded angles because of the much greater than 

required resolution, meaning that SAM meets the requirements.  The resolution is also still well 

within the applications required ≤ 0.9 mrad. 

 

(a) Individual Stepping at the Bottom of the Sensor 

 

(b) Individual Stepping at the Top of the Sensor 
Figure 5-28: Individual Stepping Results 
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The tip stage has shown that it meets its expected performance mechanically but due to the 

centre of rotation it is not ideal optically.  A Zemax model was produced to re-evaluate and 

confirm that SAM meets the travel range requirement, which it does.  Figure 5-29 shows SAM 

receiving the light at the focal plane of a MOS instrument and reflecting to towards a BSM.  

Various angles including the two extremes of SAM’s travel range, the dark blue beam and light 

green beam are illustrated.  The beams overshoot the BSM’s location showing that SAM can 

reflect the light to reach the BSM. 

 

Figure 5-29: Zemax Ray-trace of SAM in EAGLE 

 

Although the current SAM design has sufficient travel, there is concern with the varying 

resolution at different motor positions.  Therefore, two techniques were devised that could 

improve the SAM tip module from an optical point of view. 

 x-y Linear Stage Addition 

 Mirror Module Re-design 

 

Two linear stages can be stacked underneath the rotation module to operate perpendicular to 

one another.  The linear stages would correct for the light’s offset in position as the mirror 

changes angle.  This would increase the SAM unit height and complexity. 

 

Another solution is to adapt the mirror module by moving the centre of rotation to be in line 

with the central axis of the mirror.  An investigation into redesigning the mirror module 

without affecting the other modules resulted in Figure 5-30. 
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Figure 5-30: Mirror Module Re-Design 

 

 

 

To move the rotation to the mirror axis it was required to alter the flexure so that it was going 

across the mirror.  The Squiggle motor pushes against the holder producing a torsional force 

across the flexure.  To highlight the motor’s position in relation to the mirror a sketch has been 

provided in Figure 5-31(a) & (b).  Figure 5-31(c) highlights the new location of the flexure and 

the axis of rotation.  Instead of bending like a cantilever beam, like the current tip design, the 

flexures are twisted around this axis and is characterised by Equation 5-2 below.  By rotating 

the mirror around this axis the receiving light at this mirror will have linear changes as the 

Squiggle motor is used. 
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(a) Side illustration of redesigned tip 

module 

(b) Isometric illustration of redesigned tip 

module 

 

(c) New flexure location 
Figure 5-31: Illustration of SAM Torsion Rotation 

 

Equation (5-2) determines the maximum angle achievable based on a set force applied solely 

by the motor, 0.2 N.  The modulus of rigidity, G, is 26.95 GPa for aluminium [84] and K is the 

torsional stiffness constant.  For a rectangular cross section K cannot be assumed to be the 

polar moment of inertia like it is with a circular beam.  This is because sections of the beam 

warps when a torsional force is applied [85].  The torsional stiffness constant, equation (5-3, 

for a rectangular cross-section adjusts for the warping [85].  Table 5-10 details the symbol 

definitions used. 
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𝜃 =
𝑇𝐿

𝐾𝐺
 

(5-2)  

𝐾 = 𝑎𝑏3 [
16

3
− 3.36

𝑏

𝑎
(1 −

𝑏4

12𝑎4
)] 

(5-3) 

Where the variables are: 

Table 5-10: Torsion Equation Variables 

Variable Definition Units 

θ Deflection Angle Radians 

T Torque N.mm 

L Length mm 

K Torsional Stiffness Constant m
4
 

G Modulus of Rigidity GPa 

a Half of the breadth of the 

flexure 

mm 

b Half of the height of the 

flexure 

mm 

 

From the above equations, it was determined that a flexure with the following properties would 

provide a travel range of 0.107 rad: 

 Length = 2 mm 

 Breadth = 4 mm 

 Height/Thickness = 100 µm  

This expected angle was confirmed through Finite Element Analysis (FEA) using Inventor 

2014.  It showed, based on the same material properties applied in Mathcad, that the rotation at 

the mirror centre is 98 mrad.  It also showed that the mirror undergoes a displacement along the 

mirror plane towards the tip module’s base.  At the centre of the mirror, this has been 

determined to be 7.8 µm and would have negligible effect on the output. 

 

The analysis has indicated a difference between expected rotations of 9.041 mrad.  On closer 

inspection at the flexure, it shows that it displaces in a parallel direction to the applied force of 

the Squiggle motor.  This displacement is 0.54 mm at the centre of the mirror.  This accounts 

for the difference between rotations from the expected Mathcad calculations.  The rotation of 

0.098 rad still encompasses the entire BSM. 

 

This change in mirror design would provide a constant linear resolution throughout the travel.  

Expected travel range is 0.098 rad and resolution of 0.105 mrad for micron steps. 
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5.8.2 Rotation Module Tests 

The rotation module is bi-directional and is limited through software to avoid damage between 

the wire links that go between the tip and rotation modules.  To cover the entirety of the focal 

plane SAM would need to be able to rotate in either direction by > 3.142 rad, making ≤ 3.491 

rad an acceptable goal. 

 

Due to the small size of the mechanism, an optical method was chosen to evaluate the rotation 

module to lower errors.  A high-resolution black and white Lumenera camera was setup to 

image SAM from above, Figure 5-32(a).  A pattern of spots is adhered to the centre of the tip 

module base.  Images taken by the camera are processed to determine the orientation of the 

spot pattern, Figure 5-32(b).  Each spot has a Gaussian profile that the software uses to 

determine the centre of the spots.  A best-fit circle passing through the centre of each of the 

spots and it is the centre of this larger circle that determines the x, y centre of the target.  The 

spot pattern has two spots grouped away from the rest to indicate a ‘front’.  

 

 
(a) Rotation Module Test Setup 



115 
 

 
(b) Measurement Targets 

Figure 5-32: Optical Measuring System 

 

 

This setup has an angular measurement resolution of 17.5 µrad.  This is acceptable as the 

required resolution is 1 mrad and the expected resolution is 0.2 mrad.  The following was the 

test procedure: 

1. The SAM was set to its home position 

2. The orientation recorded 

3. The mirror was rotated by n steps and its position recorded 

4. The mirror was rotated by a further n steps and the position recorded 

5. Step four was repeated until five new orientations are achieved 

6. The module was then rotated by n steps in the opposite direction and the position 

recorded 

7. Step 6 was repeated 10 times 

8. The module was then reversed once again by x steps and the position recorded 

9. Step 8 was repeated 5 times 

 

The compiled results from the various step tests provide an indication of the expected change 

in angle for a specific step command.  Figure 5-33 shows the results of both clockwise and 

anti-clockwise rotations. 

 

Gaussian 

Spots 
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Figure 5-33: RM Smoovy Motor Step to Angle Relationship 

 

 

Both directions indicate the same relationship that each step is equal to 7 µrad.  The results are 

encouraging as it repeatedly follows this relationship. However, the results differ from the 

theoretical by approximately a factor of 3, indicating a higher resolution compared to what 

would have been expected.  It was determined that this was being caused by the electronics 

software on the drive chip.  The chip receives the commands through the wireless 

communications and translates it to a form that can be processed and turned into pulse 

commands for the motor.  The commands were being translated incorrectly and sending one 

third fewer pulses to the motor.  Figure 5-34 reinforces this showing multiple measurements 

taken in both directions after a 10,000 motor step command.  The standard deviation between 

the measurements was determined to be less than 0.35 mrad.  It shows that the rotation 

module’s change in angle for a 10,000 step command was equal to 70 mrads in either direction.  

It also shows that this is highly repeatable and is typical of results collected for different step 

amounts that were also measured. 
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Figure 5-34: Repeatability of 10,000 Step Command 

 

The mirror’s x-y position would change during a rotation.  Figure 5-35 illustrates that this shift 

is within a radius of 300 µm and was due to the misalignment of the measurement target with 

the centre of rotation.  Once this was compensated for it was found that when SAM rotates it 

would shift its x, y position by 6.7 µm.  It depends on the capabilities of a MOS instruments 

POM positioning system whether or not this is acceptable.  If used in combination with MAPS 

for EAGLE, this would be acceptable assuming MAPS can get into position to within 3.4 

microns. 

 

Figure 5-35: Mirror’s X-Y Shift during rotation 
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The rotation module has a resolution requirement of ≤ 1 mrad with no reliable rotations below 

75 motor steps.    This was due to the required build-up of inertia within the motor to overcome 

the friction within the overall rotation module.  At 75 motor steps and above the module 

rotated after each command as illustrated by Figure 5-36.  The results show that the resolution 

is within 1 mrad.  However, the repeatability is not consistent.  During testing it was observed 

that the module upon executing a command would sometimes rotate again.  By monitoring the 

electronics with an oscilloscope it was determined that the electronics is engaging an interrupt 

program and repeating an initial start-up command.   

 

(a) 

 

(b) 

Figure 5-36: Resolution Test Results 
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5.9 Conclusions 

The current SAM design is capable of guiding the light from a science object towards a BSM 

through the use of a rotation and tip module.  Table 5-11 compares the requirements, expected 

performance and tested results, both optical and mechanical where applicable. 

Table 5-11: SAM Capabilities 

Module Parameter Requirement Theoretical Tested – 

Mech. 

Tested – 

Optic. 

Tip 

Travel 

Range 

≥ 0.07 rad 0.216 rad 0.225 rad N/A 

Resolution ≤ 0.175 mrad 52.36 µrad 52.36 µrad 0.105 mrad 

Rotation 

Travel 

Range 

± 3.142 rad ≤ 3.491 rad ± 3.491 rad N/A 

Resolution ≤ 1 mrad 0.17 mrad ≤ 1 mrad N/A 
 

Although the current design meets the application requirements, the resolution of the tip 

module does change at different Squiggle motor positions.  This is within acceptable limits and 

is due to where the centre of rotation for the mirror is located.  Ideally, it should be in line with 

the centre of the mirror surface, so that as the mirror angle changes the light being reflected 

does not alter in x-y position on the mirror surface.  This is considered more ideal as the 

resolution would be the same regardless of the Squiggle motors position.  Solutions have been 

presented that can take this into account: 

 x-y Linear Stage 

 Mirror Module Redesign 

The x-y linear stage is a solution requiring additional hardware to be added to the SAM.  

Ideally, an off-the-shelf linear mechanism that can be applied directly would be best as the 

development of a precise linear guide is costly.  Another solution explored was redesigning the 

mirror module, which does not require additional hardware.  A design was proposed using a 

torsional flexure with the current tip module.  However, it does not have the same travel range 

as the current design (0.225 rad) it is capable of 0.098 rad, which still exceeds the application 

requirement of ≥ 0.07 rad.  The current design has 3 times more travel available to it because of 

the travel range provided by the Squiggle motor in this configuration. 

 

This study shows that a self-adjusting mirror can be developed to accurately correct for optical 

misalignment within multi-object instruments.  Chapter 6 takes the information collected from 

this chapter and expands with the possibility of combining MAPS and SAM into a single 

integrated solution for the positioning of POMs and correcting of optical misalignment.   
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Chapter 6 – Conclusion and Future Work 

This research set out to determine if miniature mechatronic mechanisms could be used to 

position pick-off mirrors within multi-object instruments for astronomy, resulting in the 

development of such a robot and designing the framework for the characterisation of it and 

similar robots.  The research also set out to determine if the functionality of the pick-off mirror 

could be enhanced to lessen the demands of beam steering mirrors.  This led to the following 

goals: 

 Characterise the MAPS robot, critically analysing the design to determine whether 

miniature robots are suitable for high precision positioning within multi-object 

instruments for astronomy 

 Design a Self-Adjusting Mirror by adding functionality to the POM to correct for 

optical misalignments within MOS instruments 

 Characterise SAM to determine whether a miniature self-adjusting mirror can replace 

some of the BSM functionality resulting in a smaller and more cost effective solution 

 Prove that the use of micro robotics can be used in  astronomy instrumentation 

 

This work has shown that optical components such as pick-off mirrors can be positioned with a 

high precision (within tens of microns) using electromagnetically propelled miniature robots 

instead of piezoelectric ones.  It has also shown that dead reckoning is not suitable for this type 

of application and closed-loop feedback is required.  This thesis also showed that light path 

misalignments can be corrected using miniature adjustable mirrors as the pick-off mirrors, thus 

lessening the complexity of the beam steering mirrors in multi object spectrographs.  Finally, 

this work has provided techniques for characterising miniature mechatronic mechanisms such 

as miniature robots for astronomy applications. 

 

MAPS is a POM positioning system that incorporated an autonomous robot to meet the 

demanding requirements of the next-generation extremely-large telescopes.  Multiple concepts 

were investigated for a MAPS and a specific design was developed and characterised.  The 

research concluded that there are two possible categories of miniature robots that will be 

suitable for use in astronomical instruments namely: piezoelectric or electromagnetic driven 

robots.  An electromagnetic propelled robot was developed as part of this study as it did not 

require hard lines to external electronics as described in Chapter 1.  Miniature electromagnetic 
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robots had not previously been developed for high precision positioning tasks.  The 

differentially steered robot that was developed is capable of high precision positioning, 

however the robot does not meet the high demands of MOS instruments although it shows 

potential.  Table 6-1 shows the key requirements and compares this with the measured 

performance of the current design.  A differentially steered robot design was chosen as it would 

be easier to assemble with fewer complex components. 

Table 6-1: EAGLE/MAPS Requirement/Capabilities Comparison 

 EAGLE Requirement MAPS Capability 

X – Y Fine Positioning ≤ 10 µm ≤ 20 µm 

Z – Axis Angular Precision ≤ 1 mrad ≤ 1.4 mrad 

Required Operation Time ≥ 8 hours Continuous 

Footprint ≤ 30 mm x 30 mm 30 mm x 30 mm 

Height ≤ 60 mm 50 mm (without POM) 

The research determined that the robot can be positioned to within 20 microns, a capability that 

has only been reported with piezoelectric robots.  This showed that electromagnetic propelled 

miniature robots are capable of high precision positioning tasks within tens of microns.  

However, this did not meet the needs of the proposed MOS instrument.  It was reported in 

Chapter 4 that the baseline requirement controlling the precision of the positioning of the POM 

could potentially be relaxed if the receiving optics could be assembled to a higher tolerance.  

Although this may be a possibility it is not ideal and the current design should be refined to 

find methods to improve the overall performance.   

 

The PowerFloor technology that was adapted from a mobile phone charger design has proven 

to be an interesting power delivery method.  This technology provides continuous power 

without constraining the robot’s position or orientation.  This was due to the need for the robot 

to operate for longer than 8 hours which is unusual for robots this size.  The untethered 

miniature robots normally utilise a battery and only operate for less than an hour.  The 

PowerFloor technology demonstrated within this study shows that miniature robot’s that 

cannot have trailing wires can be powered continuously and still maintain full mobility.  

However, this technology still requires a small battery within the robot to overcome power 

losses during motion.  This is due to the dynamic nature of the robot and it is perhaps possible 

for future robots to be designed that utilise the PowerFloor without a battery.  This would 

require improving the interaction of the pick-ups with the PowerFloor.  This may be achieved 

through redundancy by having more pick-ups than necessary to ensure that at any one time two 

or more points should be in contact with each track.  It was also suggested within the research 
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that this can be improved by adjusting the parallelism of the power pick-up PCB with the 

PowerFloor.  

MAPS has benefited the UK ATC with increased expertise and a knowledge base for miniature 

mechanisms that includes using a PowerFloor to provide continuous power over a large 

operating area, and an optical metrology system that can be used on various other projects.  

The expertise gained from MAPS and in particular with the miniature Smoovy motors is being 

applied to a Fibre-Fed Spectrograph currently under development.  Astronomical targets will 

be picked-off by positioning fibres in exact positions on the focal plane using individual 

miniature 2-DOF robotic arms. 

Based on the MAPS experience it was also possible to develop SAM.  As SAM does not 

require the same amount of autonomy as MAPS, it lessens the complexity, however it was 

decided that encoders should be included within SAM, so it was certainly not a trivial task to 

design such a miniature precision mechanism.  One challenge was finding suitable motors that 

have the balance of force, size, power and supporting control electronics.  The Smoovy motor 

chosen was the size larger than that used in the MAPS robot this was due to the resolution 

requirement.  Based on the experience gained with the MAPS Smoovy motor it was possible to 

adapt this to the SAM’s rotation module with relative ease. 

The tip module utilises a Squiggle motor that has proven very capable, although care is 

required with the linear guide.  A summary of the results obtained in comparison to the 

expected results is provided in Table 6-2.  The table shows that SAM meets the requirements 

for this application. 

Table 6-2: SAM Capabilities 

Stage Capability Requirement Expected Results Achieved Results 

Tip 

Travel Range ≥ 45.4 mrad ≤ 0.216 rad ≤ 0.225 rad 

Resolution ≤ 0.9 mrad ≥ 0.175 mrad 

≥ 0.11 mrad 

(optically) 

≥ 52.4 µrad 

Rotation 

Travel Range ≥ 6.283 rad ± 3.491 rad ± 3.491 rad 

Resolution ≤ 1 mrad ≥ 0.19 mrad 

≤ 1 mrad with 

indications of 0.4 

mrad 

Through testing, it was showed that the reflected light had a varying resolution for different tip 

angles due to the location of the centre of rotation.  Techniques were outlined that can mitigate 

the impact of this although the current design was still able to meet the application 

requirements.   
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6.1 MAPS & SAM Compared 

Table 6-3 provides a comparison between the two projects highlighting their similarities and 

differences. 

Table 6-3: Miniature Astronomical Pick-Off Technologies 

 MAPS SAM 

  

How are they 

interconnected? 

Purpose Self-Positioning 

POMs 

Self-adjust POM for 

optical field 

curvature 

corrections 

Similarities Friction Drive 

Concept 

Friction Drive 

Rotation Stage 

Smoovy Motor Smoovy Motor 

(Rotation Stage – 

Larger Model) 

Self Sufficient POM 

Potential to operate on various optical 

MOS instruments 

Evolution of 

Technology 

Positions the POM 

for desired science 

case 

Alters the reflection 

angle at the POM to 

ensure reception of 

photons by detector 

How do they 

improve current 

MOS 

instruments? 

Science Increase the amount 

of objects surveyed 

Ensures objects are 

surveyed 

Instrumentation Lessen the size & weight of the overall 

MOS instrument 

Lower overall cost 

What has this technology proved? Miniature 

autonomous robots 

can be used to 

deploy POMs 

Miniature 

mechanisms can be 

used to correct for 

optical 

misalignment 

What has been developed? Robots that carry 

POMs, however 

require improved 

precision & 

reliability 

Mirrors capable of 

correcting OFC but 

require a single 

rotation stage within 

a BSM 

What is the next step? Improve/re-design 

the robot 

Incorporation of 

another DoF for 

new application 

possibilities 
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6.2 Precision Autonomous Mirror 

Finally, it is an interesting exercise to consider how SAM and MAPS could be combined to 

form PAM the Precision Autonomous Mirror.   

 

Due to the size of the SAM, the MAPS robot footprint would need to be increased to 

incorporate the self-adjusting mirror.  The increased size would provide space for the larger 

Smoovy 0515B motor to be used instead of the 0308B.  The larger motor has a higher 

reduction gear head; higher torque output and is more robust allowing for greater radial loading 

compared to the current MAPS Smoovy motor.  It utilises the same drive electronics as the 

smaller motor meaning that the current MAPS electronics would not need to be altered.  The 

larger motor would also suffer from the problem of needing a minimum number of motor steps 

before motion will begin has shown by its use in the SAM rotation module.  If the minimum 

motor steps are the same as the previous motor, which is possible as they are both of the same 

construction, then the higher reduction gear head means that the resolution will be better, 

potentially meeting the MOS requirements for positional accuracy. 

 

To ease with assembly and manufacturing a belt driven configuration for the friction drive 

setup was analysed.  A belt driven design could possibly ease assembly by removing the 

challenges associated with assembling the current designs springs and the fragility of the 

motors.  The biggest concern for a belt driven design is possible slippage.  Belt slippage would 

affect the linear performance of the robot.  Slippage means missing steps during motion 

resulting in the robot undershooting its target position, directly affecting the positional 

accuracy.  Although, metrology can compensate for this, it is not desirable to have slipping 

within the robot.  The primary cause of slippage within belt driven systems is environmental 

factors such as dust and water lubricating the belt lowering the friction with the pulley.  As the 

robot operates on an environmentally controlled instrument the likelihood of contaminates 

affecting the belt is low.  A toothed belt can also be used reducing chances of slippage 

occurring. 

 

Figure 6-1 shows the PAM concept, the MAPS section of the robot is the two bottom boxes.  

The drive module is copper so that the chassis incorporates the weight from the current MAPS 

robot.  The robot’s footprint has increased to 45 mm x 45 mm to accommodate the 35 mm
2
 

SAM footprint.  The robot replaces the power module on the SAM and they are joined together 

through the existing magnets.  This increase in footprint means extra internal space that can 
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accommodate the battery and electronics (upper section).  The power pick-up PCB is located 

towards the front of the chassis.  It is altered so that only three of the pick-ups are spring 

loaded, and the one at the front of the robot is fixed.  This fixed pick-up doubles as the 

stabiliser that the robot’s weight will favour.  The CoG is set so that the weight distribution 

favours the front stabiliser.  A spring plunger acts as a rear stabiliser forcing the balance back 

towards the front of the robot if there is any rocking.  Magnets added to the bottom of the 

chassis generate a downward pulling force. 

 

 

 
Figure 6-1: Belt Driven Robot Concept 

 

 

 

SAM’s control remains separate to PAM allowing both to operate as standalone devices.  The 

MAPS metrology targets would need to be added to the top of the SAM for the current MAPS 

metrology module.  This could potentially be etched into the SAM cover. 
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6.2.1 Going One Step Further 

Miniature spectrometers are seeing a surge in development [86].  If these spectrometers 

continue development focussing on making them more sensitive with a higher spectral 

resolution, there could be a time when they operate within telescopes.  MAPS-like robots could 

carry the miniature spectrometers into position instead of POMs, which merely reflect light 

into a spectrograph.  Such a breakthrough in this technology could simplify telescopes but it is 

not at that stage yet.  However, this would require advances from the robot as well.  Current 

spectrometers are cryogenically cooled to reduce detector noise and limit the thermal 

background noise within the science channels.  This would require the hypothesised miniature 

spectrograph robot to be capable of operating at temperatures around 100 K for the near-IR 

(lower temperatures for longer wavelengths).  Figure 6-2 is a concept of the miniature robot 

spectrograph designed at the UK ATC.  This model utilises the ∅5 mm Smoovy motor and a 

Hamamatsu mini spectrograph  [86] 

 

 

 

Figure 6-2: Mini Robot Spectrograph Concept 
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6.2.2 Closing Remarks 

The technologies developed over the course of this research have shown that there is great 

potential for the use of miniature mechanisms for high-precision work in the field of 

astronomy.  It has also shown that electromagnetically propelled robots are capable of high 

precision tasks to within tens of microns, an alternative to piezo driven robots.  This provides 

the benefits of simpler low voltage electronics that thereby removes the need for a tether to an 

external electronics rack.  This presents a path that could allow future instruments to be made 

smaller.  By reducing the size of instruments it might be possible for instruments to share a 

focal plane allowing simultaneous observations.  It is remarkable to think that something so 

small could potentially have a huge impact on the design of future astronomical instruments.  
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Appendix A– MAPS Assembly and BOM 
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Appendix B- SAM BOM 
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