221 research outputs found

    Review on Intrusion Detection System Based on The Goal of The Detection System

    Get PDF
    An extensive review of the intrusion detection system (IDS) is presented in this paper. Previous studies review the IDS based on the approaches (algorithms) used or based on the types of the intrusion itself. The presented paper reviews the IDS based on the goal of the IDS (accuracy and time), which become the main objective of this paper. Firstly, the IDS were classified into two types based on the goal they intend to achieve. These two types of IDS were later reviewed in detail, followed by a comparison of some of the studies that have earlier been carried out on IDS. The comparison is done based on the results shown in the studies compared. The comparison shows that the studies focusing on the detection time reduce the accuracy of the detection compared to other studies

    Wind Turbine Fault Detection: an Unsupervised vs Semi-Supervised Approach

    Get PDF
    The need for renewable energy has been growing in recent years for the reasons we all know, wind power is no exception. Wind turbines are complex and expensive structures and the need for maintenance exists. Conditioning Monitoring Systems that make use of supervised machine learning techniques have been recently studied and the results are quite promising. Though, such systems still require the physical presence of professionals but with the advantage of gaining insight of the operating state of the machine in use, to decide upon maintenance interventions beforehand. The wind turbine failure is not an abrupt process but a gradual one. The main goal of this dissertation is: to compare semi-supervised methods to at tack the problem of automatic recognition of anomalies in wind turbines; to develop an approach combining the Mahalanobis Taguchi System (MTS) with two popular fuzzy partitional clustering algorithms like the fuzzy c-means and archetypal analysis, for the purpose of anomaly detection; and finally to develop an experimental protocol to com paratively study the two types of algorithms. In this work, the algorithms Local Outlier Factor (LOF), Connectivity-based Outlier Factor (COF), Cluster-based Local Outlier Factor (CBLOF), Histogram-based Outlier Score (HBOS), k-nearest-neighbours (k-NN), Subspace Outlier Detection (SOD), Fuzzy c-means (FCM), Archetypal Analysis (AA) and Local Minimum Spanning Tree (LoMST) were explored. The data used consisted of SCADA data sets regarding turbine sensorial data, 8 to tal, from a wind farm in the North of Portugal. Each data set comprises between 1070 and 1096 data cases and characterized by 5 features, for the years 2011, 2012 and 2013. The analysis of the results using 7 different validity measures show that, the CBLOF al gorithm got the best results in the semi-supervised approach while LoMST won in the unsupervised scenario. The extension of both FCM and AA got promissing results.A necessidade de produzir energia renovável tem vindo a crescer nos últimos anos pelas razões que todos sabemos, a energia eólica não é excepção. As turbinas eólicas são es truturas complexas e caras e a necessidade de manutenção existe. Sistemas de Condição Monitorizada utilizando técnicas de aprendizagem supervisionada têm vindo a ser estu dados recentemente e os resultados são bastante promissores. No entanto, estes sistemas ainda exigem a presença física de profissionais, mas com a vantagem de obter informa ções sobre o estado operacional da máquina em uso, para decidir sobre intervenções de manutenção antemão. O principal objetivo desta dissertação é: comparar métodos semi-supervisionados para atacar o problema de reconhecimento automático de anomalias em turbinas eólicas; desenvolver um método que combina o Mahalanobis Taguchi System (MTS) com dois mé todos de agrupamento difuso bem conhecidos como fuzzy c-means e archetypal analysis, no âmbito de deteção de anomalias; e finalmente desenvolver um protocolo experimental onde é possível o estudo comparativo entre os dois diferentes tipos de algoritmos. Neste trabalho, os algoritmos Local Outlier Factor (LOF), Connectivity-based Outlier Factor (COF), Cluster-based Local Outlier Factor (CBLOF), Histogram-based Outlier Score (HBOS), k-nearest-neighbours (k-NN), Subspace Outlier Detection (SOD), Fuzzy c-means (FCM), Archetypal Analysis (AA) and Local Minimum Spanning Tree (LoMST) foram explorados. Os conjuntos de dados utilizados provêm do sistema SCADA, referentes a dados sen soriais de turbinas, 8 no total, com origem num parque eólico no Norte de Portugal. Cada um está compreendendido entre 1070 e 1096 observações e caracterizados por 5 caracte rísticas, para os anos 2011, 2012 e 2013. A ánalise dos resultados através de 7 métricas de validação diferentes mostraram que, o algoritmo CBLOF obteve os melhores resultados na abordagem semi-supervisionada enquanto que o LoMST ganhou na abordagem não supervisionada. A extensão do FCM e do AA originou resultados promissores

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    Smart Substation Network Fault Classification Based on a Hybrid Optimization Algorithm

    Get PDF
    Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods

    Smart Substation Network Fault Classification Based on a Hybrid Optimization Algorithm

    Get PDF
    Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods

    DEVELOPMENT OF DIAGNOSTIC AND PROGNOSTIC METHODOLOGIES FOR ELECTRONIC SYSTEMS BASED ON MAHALANOBIS DISTANCE

    Get PDF
    Diagnostic and prognostic capabilities are one aspect of the many interrelated and complementary functions in the field of Prognostic and Health Management (PHM). These capabilities are sought after by industries in order to provide maximum operational availability of their products, maximum usage life, minimum periodic maintenance inspections, lower inventory cost, accurate tracking of part life, and no false alarms. Several challenges associated with the development and implementation of these capabilities are the consideration of a system's dynamic behavior under various operating environments; complex system architecture where the components that form the overall system have complex interactions with each other with feed-forward and feedback loops of instructions; the unavailability of failure precursors; unseen events; and the absence of unique mathematical techniques that can address fault and failure events in various multivariate systems. The Mahalanobis distance methodology distinguishes multivariable data groups in a multivariate system by a univariate distance measure calculated from the normalized value of performance parameters and their correlation coefficients. The Mahalanobis distance measure does not suffer from the scaling effect--a situation where the variability of one parameter masks the variability of another parameter, which happens when the measurement ranges or scales of two parameters are different. A literature review showed that the Mahalanobis distance has been used for classification purposes. In this thesis, the Mahalanobis distance measure is utilized for fault detection, fault isolation, degradation identification, and prognostics. For fault detection, a probabilistic approach is developed to establish threshold Mahalanobis distance, such that presence of a fault in a product can be identified and the product can be classified as healthy or unhealthy. A technique is presented to construct a control chart for Mahalanobis distance for detecting trends and biasness in system health or performance. An error function is defined to establish fault-specific threshold Mahalanobis distance. A fault isolation approach is developed to isolate faults by identifying parameters that are associated with that fault. This approach utilizes the design-of-experiment concept for calculating residual Mahalanobis distance for each parameter (i.e., the contribution of each parameter to a system's health determination). An expected contribution range for each parameter estimated from the distribution of residual Mahalanobis distance is used to isolate the parameters that are responsible for a system's anomalous behavior. A methodology to detect degradation in a system's health using a health indicator is developed. The health indicator is defined as the weighted sum of a histogram bin's fractional contribution. The histogram's optimal bin width is determined from the number of data points in a moving window. This moving window approach is utilized for progressive estimation of the health indicator over time. The health indicator is compared with a threshold value defined from the system's healthy data to indicate the system's health or performance degradation. A symbolic time series-based health assessment approach is developed. Prognostic measures are defined for detecting anomalies in a product and predicting a product's time and probability of approaching a faulty condition. These measures are computed from a hidden Markov model developed from the symbolic representation of product dynamics. The symbolic representation of a product's dynamics is obtained by representing a Mahalanobis distance time series in symbolic form. Case studies were performed to demonstrate the capability of the proposed methodology for real time health monitoring. Notebook computers were exposed to a set of environmental conditions representative of the extremes of their life cycle profiles. The performance parameters were monitored in situ during the experiments, and the resulting data were used as a training dataset. The dataset was also used to identify specific parameter behavior, estimate correlation among parameters, and extract features for defining a healthy baseline. Field-returned computer data and data corresponding to artificially injected faults in computers were used as test data

    Cyber Data Anomaly Detection Using Autoencoder Neural Networks

    Get PDF
    The Department of Defense requires a secure presence in the cyber domain to successfully execute its stated mission of deterring war and protecting the security of the United States. With potentially millions of logged network events occurring on defended networks daily, a limited staff of cyber analysts require the capability to identify novel network actions for security adjudication. The detection methodology proposed uses an autoencoder neural network optimized via design of experiments for the identification of anomalous network events. Once trained, each logged network event is analyzed by the neural network and assigned an outlier score. The network events with the largest outlier scores are anomalous and worthy of further review by cyber analysts. This neural network approach can operate in conjunction with alternate tools for outlier detection, enhancing the overall anomaly detection capability of cyber analysts

    Reconstruction Error and Principal Component Based Anomaly Detection in Hyperspectral imagery

    Get PDF
    The rapid expansion of remote sensing and information collection capabilities demands methods to highlight interesting or anomalous patterns within an overabundance of data. This research addresses this issue for hyperspectral imagery (HSI). Two new reconstruction based HSI anomaly detectors are outlined: one using principal component analysis (PCA), and the other a form of non-linear PCA called logistic principal component analysis. Two very effective, yet relatively simple, modifications to the autonomous global anomaly detector are also presented, improving algorithm performance and enabling receiver operating characteristic analysis. A novel technique for HSI anomaly detection dubbed multiple PCA is introduced and found to perform as well or better than existing detectors on HYDICE data while using only linear deterministic methods. Finally, a response surface based optimization is performed on algorithm parameters such as to affect consistent desired algorithm performance

    Machine learning for network based intrusion detection: an investigation into discrepancies in findings with the KDD cup '99 data set and multi-objective evolution of neural network classifier ensembles from imbalanced data.

    Get PDF
    For the last decade it has become commonplace to evaluate machine learning techniques for network based intrusion detection on the KDD Cup '99 data set. This data set has served well to demonstrate that machine learning can be useful in intrusion detection. However, it has undergone some criticism in the literature, and it is out of date. Therefore, some researchers question the validity of the findings reported based on this data set. Furthermore, as identified in this thesis, there are also discrepancies in the findings reported in the literature. In some cases the results are contradictory. Consequently, it is difficult to analyse the current body of research to determine the value in the findings. This thesis reports on an empirical investigation to determine the underlying causes of the discrepancies. Several methodological factors, such as choice of data subset, validation method and data preprocessing, are identified and are found to affect the results significantly. These findings have also enabled a better interpretation of the current body of research. Furthermore, the criticisms in the literature are addressed and future use of the data set is discussed, which is important since researchers continue to use it due to a lack of better publicly available alternatives. Due to the nature of the intrusion detection domain, there is an extreme imbalance among the classes in the KDD Cup '99 data set, which poses a significant challenge to machine learning. In other domains, researchers have demonstrated that well known techniques such as Artificial Neural Networks (ANNs) and Decision Trees (DTs) often fail to learn the minor class(es) due to class imbalance. However, this has not been recognized as an issue in intrusion detection previously. This thesis reports on an empirical investigation that demonstrates that it is the class imbalance that causes the poor detection of some classes of intrusion reported in the literature. An alternative approach to training ANNs is proposed in this thesis, using Genetic Algorithms (GAs) to evolve the weights of the ANNs, referred to as an Evolutionary Neural Network (ENN). When employing evaluation functions that calculate the fitness proportionally to the instances of each class, thereby avoiding a bias towards the major class(es) in the data set, significantly improved true positive rates are obtained whilst maintaining a low false positive rate. These findings demonstrate that the issues of learning from imbalanced data are not due to limitations of the ANNs; rather the training algorithm. Moreover, the ENN is capable of detecting a class of intrusion that has been reported in the literature to be undetectable by ANNs. One limitation of the ENN is a lack of control of the classification trade-off the ANNs obtain. This is identified as a general issue with current approaches to creating classifiers. Striving to create a single best classifier that obtains the highest accuracy may give an unfruitful classification trade-off, which is demonstrated clearly in this thesis. Therefore, an extension of the ENN is proposed, using a Multi-Objective GA (MOGA), which treats the classification rate on each class as a separate objective. This approach produces a Pareto front of non-dominated solutions that exhibit different classification trade-offs, from which the user can select one with the desired properties. The multi-objective approach is also utilised to evolve classifier ensembles, which yields an improved Pareto front of solutions. Furthermore, the selection of classifier members for the ensembles is investigated, demonstrating how this affects the performance of the resultant ensembles. This is a key to explaining why some classifier combinations fail to give fruitful solutions
    corecore