View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AFTI Scholar (Air Force Institute of Technology)

Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-23-2018

Cyber Data Anomaly Detection Using
Autoencoder Neural Networks

Spencer A. Butt

Follow this and additional works at: https://scholar.afit.edu/etd

Part of the Computer and Systems Architecture Commons

Recommended Citation

Butt, Spencer A., "Cyber Data Anomaly Detection Using Autoencoder Neural Networks" (2018). Theses and Dissertations. 1837.
https://scholar.afit.edu/etd/1837

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and

Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield @afit.edu.

https://core.ac.uk/display/277525684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F1837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F1837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F1837&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=scholar.afit.edu%2Fetd%2F1837&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/1837?utm_source=scholar.afit.edu%2Fetd%2F1837&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

CYBER DATA ANOMALY DETECTION
USING AUTOENCODER NEURAL NETWORKS

THESIS
Spencer A. Butt, Captain, USAF
AFIT-ENS-MS-18-M-113

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official policy or
position of the United States Air Force, Department of Defense, or the United States
Government. This material is declared a work of the U.S. Government and is not subject to

copyright protection in the United States

CYBER DATA ANOMALY DETECTION
USING AUTOENCODER NEURAL NETWORKS

THESIS

Presented to the Faculty
Department of Operational Sciences
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Spencer A. Butt, MS

Captain, USAF

March 2018

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-MS-18-M-113

CYBER DATA ANOMALY DETECTION
USING AUTOENCODER NEURAL NETWORKS

Spencer A. Butt, BS

Captain, USAF

Committee Membership:

Dr. Bradley Boehmke
Chair

Dr. Kenneth Bauer
Reader

AFIT-ENS-MS-18-M-113
Abstract

The Department of Defense requires a secure presence in the cyber domain to
successfully execute its stated mission of deterring war and protecting the security of the United
States. With potentially millions of logged network events occurring on defended networks daily,
a limited staff of cyber analysts require the capability to identify novel network actions for
security adjudication. The detection methodology proposed uses an autoencoder neural network
optimized via design of experiments for the identification of anomalous network events. Once
trained, each logged network event is analyzed by the neural network and assigned an outlier
score. The network events with the largest outlier scores are anomalous and worthy of further
review by cyber analysts. This neural network approach can operate in conjunction with alternate

tools for outlier detection, enhancing the overall anomaly detection capability of cyber analysts.

v

AFIT-ENS-MS-18-M-113

For my wife

Acknowledgments

First and foremost I would like to thank my research advisor, Dr. Brad Boehmke, for the
time and effort he put in to help me complete this thesis. His considerable contributions greatly
improved the quality of this work. I also need to thank Dr. Kenneth Bauer whom first introduced
me to neural networks. His early insights and recommendations led me down the research path
that would become the analytic foundation for this document. Thanks go to Dr. Raymond Hill

for his help with regression analysis.

Spencer A. Butt

Vi

Table of Contents

A DSETACT ettt e e e e e e e e et ———ee e e et e et —————————eteetaa————————————toonn—————aaereuanan, v
ACKNOWIEAZIMENLS.......ccuiiiiiiiieciie ettt e et e et e e e tae e s teeessbeeessaeeesaseeesnseeennseeesseaens vi
TADLE OF COMIEIILS ...eeeeeeee e e e et e e e e e e e e e e e e e eaeeeee e e e e e aaeeeaeeeaeaa e aaaaeeeeeeeenanaaaaeaeeaeaes Vil
LSt OF FIGUIES ...ttt ettt et ettt e b et e e bt e eabeenbeeenbeenseeenbeenseesnseenseannnes X
ST OF TADIES .ottt ettt et e e e e e e e e e e ee e e e e e e e e e e ee e e e e e e eeereeereeeeeeeeeeaeeeeeeeaees X1
Lo IEEOAUCTION ..ottt e e e e e e e e et e eeeeeeeeeeeeaanaaaeseeeeeanaannnaeeaeeeeenanns 1
Lol IVLOTIVALION et e e et e e e e e e e e e et e e e e e e e e e e e eaae e aeeeeeeeeeaaneaaaeeeeeeannans 2
1.2 RESEATCH GOAIS ... oo e e e e e e e e e e e e e e e e e e e aeeeeeeeenaans 3
1.3 ReSEAICH CONIIIDULIONSeeeeeeeeiieeeee et eeeaaaaeeeeeeenaen 4
1.4 Assumptions/LIMItatiOnscccceeeieeriiiiesiiieeeiieeeieeesieeeireeeereesseeeseeeeebeeeseseeesnseeennseas 4
| O 7521 s V£ 15 (o) o DS PT 4
II. Literature Review: Application DOmMAaINcceeeruieeiiieeiiieeiiee et sree e 6
2.1 CRAPLEr OVETVIEW ...ouviiuiiiiiiiiiieiiieeitete ettt ettt ettt ettt ettt et ettt et et nbe et enas 6
2.2 DODIN NEEWOTK ettt e e et e e e e e e e e e e e aaeeeeeeeeeaaeaaaaeeeeeeaeennaans 6
2.3 Intrusion DEtECtiON MOMELneeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e e eeeeeeaens 8
2.4 IDPS TaXONOMIYeeiiiiiiiiiiienieeieeete ettt ettt ettt sttt see e e b sene et esaneeneesaneeane 9
2.4.1 IDPS PerfOrmManCe IMBIEICS . .uvveiiieeeeiiieeiireeettee e e e e et e e e e e s s s e s aereteeessssasesraeeeeeesessanas 9
2.4.2 IDPS DeteCtion MEINOOvveeiiiieee ettt et e e e e e s s s e brreeeeeeenaaas 10
2.4.3 IDPS AUGIT SOUICE ...ciieeiiiieeeteeite ettt e e et e e e ettt et e e e s s s e r et e eeesssaserrrreeeeeeseneians 12
2.4.4 IDPS MONITOFING RALEoviiiieiieciieieee ettt e ne s 14
2.5 IDPS 0N DiStrIDULEd NETWOTKS ceeeeeieeeeeee e e e e e e e e e e e eeeeeeeeeeaenens 14
2.6 IDPS ANALYSIS .ottt sttt st st 16
III. Literature Review: Anomaly Detection Methods...........cccoeviiiiiiiiiiniiiiieieceeeee e 18
3.1 Chapter OVEIVIEW ..cccuvieiieiiiieiieeiieeitieeteetteeteesteeseteeseessseeseessseesseessseensaessseenseanssesnseens 18

vii

3.2 Anomaly Definition.......ccccoiiiiiiiiiiiiiiiiii ettt ettt ae bt e e esee s 18
3.3 Supervised and Unsupervised Data............ceccuieiiiiiiiniiiiiieieeieeieece et 25
34 IMETROMAS ..ttt et st 26
3.5 Artificial Neural NetWOrKS.ccceiieriiiiiiiiiiiereieee e 30
3.5. 1 BACKGIOUNTottt bbb 30
3.5.2 BI0IOGIC NEUIONouiiiiiiiieee ettt 32
3.5.3 AFLIICIAI NBUFON ...t 33
3.5.4 Feedforward Neural NEtWOIK...........coouiiiiiiiiiieiee e 35
3.5.5 BaCKPropagatioN........cociiiiiiiiieiis e 38
3.5.6 GENEIAIIZALION........iiiiiiiciiciee bbb 40
3.5.7 ACHIVALION FUNCHIONS ...t 43
3.5.8 HYPEIPAIAMELETS ..ottt 48
3.6 AULOCTICOUECTS.....euiiiieiieiiecetete ettt ettt et st b e et e bt et sae e be e 60
3.7 Hyperparameter Design of EXPerimentscocveviieiiieiiieiieniieiiesieeiee e 63
TV, MEthOOIOEY ...ttt ettt ettt be et eebeesaaeenbeesnseenseens 68
4.1 Chapter OVEIVIEW ...cccvieiiiieiieiieeiieeiieeieesteeteestteebeessteesseesseesseessseeseessseeseessseenseensns 68
4.2 Neural Network Data Preparation............cccueecuierieeiiienieeriienie e see e 69
4.3 Hyperparameter Screening Designed EXperiments............ccccueevverieenienieenieenieenieennne. 72
4.4 Hyperparameter Optimization Designed EXperimentsccceveveevienieeneenieenneennn. 78
4.5 Graphical Outlier DEtECTIONcccuieruiieiiieeiieiie ettt ettt seaeebee e 80
VL RESUIES ..ttt ettt h ettt b et et b et b et et nas 82
5.1 CRAPLET OVETVIEW ...eeeiiiiieiiiiieiiieeeieeeetteeeteeestteeseteesaaeesaaeesnsaeesnseeessseesnsseesnnseesnnseesnnns 82
5.2 Hyperparameter Screening RESUILScccoeeiiiiiiiiiiiiiiiiiciecie e 82
5.3 Hyperparameter Optimization ReSUILScccueivriiiiiiiiiiiiieeieecieeee e 87

viii

5.4 Final Anomaly Detection UANN.......cccciiriiiiiieiiieiierte sttt et sve bt sve e 92

VI. Conclusions and Recommendations..........cc.eeeereerierieniienienieneeieeeesiceie et 95

6.1 Conclusion and CONtriDULIONScc.eeruieiirieniieieeierie ettt s 95

6.2 Future ReSEarch..........oooiiiiiiiiii e 95
Appendix A: IDPS Features SUMIMATYc.eeeiuieiriieeiiieeiiee e eiiee ettt eieeesieeesveeesereesenseesnnseaens 97
Appendix B: D METDOARoooiiieteeee ettt ettt 100
AppendiX C: D METDO ..ottt st 101
AppendiX D: D METAR ..ottt ettt sttt e e et enaeenee 102
APPENdix E: D MET oottt et enneas 103
AppendiX F: D ME2DOARocoiiiiieeee ettt ettt ettt 104
AppendiX G: D ME2DOoociiiiiiiiiiitieteeee et e 105
Appendix H: D MEZ2AR ..ottt ettt ettt st e et et enae e 106
APPEendix [: D IME2 Lot et enaeas 107
Appendix J: D ME3DOARoooiieeeee ettt ettt 108
AppendiX K: D ME3DO ..ottt st 109
AppendixX L: D ME3AR ..ottt ettt st enaeenne 110
APPENdix M: D ME3 .ttt et e e nnaeeenaeas 111
Appendix N: Screening D METDOAR........ccooiiiiiiieieeeeeeeee et e 112
Appendix O: CCD Phase L........oiooiiieeiiieeeeeee ettt et e e e e save e e naneeenaeas 119
AppendixX P: CCD Phase Icoooiiiiiiiiieiececceeee ettt 123
BIDLIOGIAPNY ..o ettt e bt e nb e et e eabeebeeenaes 127

iX

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10

Figure 11

Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.

Figure 19.

List of Figures

Global (Point) ANOMALYccueiiiiiiieiieiee ettt ettt et ev e esbeeseaesane e 20
ContexXtual ANOMALYcccciiiiiiiiiieiieeie ettt ettt e e beesteeebeesseessneesaessseens 21
Contextual to Global ANOMALY........ccceecuieriiiiiiiiecieee e ens 22
ColleCtiVe ANOMALYccviiieiieiieeiieeiieete et ettt e et eseeeebe e et eesbeessaeeabeesseassseesaensseens 23
Collective, Global, and Global ANomalycccccveeiiieiiiiiiiiiiiieeeeeee e 24
Biologic Neuron adapted from [99]ccoeiiiiiiiiiiieiee e 32
Artificial Neuron adapted from [101]....ccooiiiiiiiiiiiiiiiee e 34
Feedforward Neural Network adapted from [103]........cccveiiiiiiiiniiniieieeeeeeeeeee, 35
Multiple Response FNN adapted from [103]cooooieiiiiiiiiieeiieieceeeeeee e 38
. NN Train and Test Flow adapted from [106].........cceovuiriiiriiiiieiiiiieieeeeee e 41
. FNN Training and Test Error adapted from [95], [100]......cccceovveriiienieniiieieeiienene 42
Threshold FUNCHON.......ccuiiiiiiiiiieeee e 44
Hyperbolic Tangent and Rectified Linear Unit Functionsc.cceceveeviriiencenennens 46
Undercomplete Autoencoder Nerual Network adapted from [103]..........ccceeeveennnnne. 61
ONE-HOt ENCOAING......eiiiiiiiiiiiiieiieie ettt sttt st s 71
Hyperparameter Dependencies...........coueveiriirierieiienienieeieeiesieeie st 74
Generalization Error of Hyperparameter Dependency UANNS........ccccecevienieeiennenne 84
Top 20 Hyperparameter Dependency UANNSs Generalization Errors............cc.c....... 85
Histogram of Outlier FActor SCOTES........coviviiiiiniiiiiieniteieciereeeee e 93

List of Tables

Table 1. NN Anomaly Detection Domain Areas, summarized from [34], [44], [49]....cccccoveeneenn. 29
Table 2. ANN Anomaly Detection Features...........cccvevviiiiieriieiiieiieeieeieecie et eiee e 69
Table 3. Main Effect Screening Test Design Factorsccvevvieiieiiieniieniieiecie e 73
Table 4. D-Optimal Main Effect Screening Design Metrics (00=0.05)c..cccceeverieninnenecnennne. 75
Table 5. Center Point Full Factorial Design Factors............ccveevvierieeiiieniienieeiecie e 77
Table 6. Numeric CCD Hyperparameter Factors and Levels.........ccocvevieriienieniiienienieeeeee 78
Table 7. Categorical CCD Hyperparameter Factors and Levels.........cccoccoevevieiieniiieniencieeniieees 79
Table 8. Hyperparameter Dependency UANN Results Summary............ccocveeviereiieniiencieeneennnnns 83
Table 9. Optimum Screening Design Hyperparameter Levelscccoevieviieiienciiiniienieeieeees 86
Table 10. CCD Optimum Hyperparameter Values...........ccoevveeiieriieiiieiienreeiee e eieesveeeeesneens 88
Table 11. CCD Hyperparameter Statistical Model Generalization Error Prediction.................... 88
Table 12. Phase II Numeric CCD Hyperparameter Factors and Levels..........cccoocvevieniieniiennnnns 89
Table 13. Phase II CCD Optimum Hyperparameter Values...........ccooceevuieriienieniieenienieeieeeins 90

Table 14. Phase II CCD Hyperparameter Statistical Model Generalization Error Predictions.... 90

Table 15. Phase II CCD Hyperparameter UANN Validation Test Resultscccccecevvereenenee. 91
Table 16. UANN Anomaly Detection Hyperparameter Valuescccceeveveerieniieniienieeniienienns 92
Table 17. Top 10 Outlier FACtOr SCOTES........covuiiiiiiiiiiieciieiteee ettt ens 94
Table 18. IDPS Log File Data SUMMATYc.cccieriiiiiieniieiieeie ettt sve et sae e eeae e 97
Table 19. D METIDOAR TeSt MALIIXcoecuiiiiiieiieniieeiieciie et eeite ettt seteeitesveenaeessseeseeseneenseas 100
Table 20. D METDO TSt MAIIX ...c.uieriiiiiieiieeiieiie ettt siee ettt seteeatesbeenseessseenseessseenseas 101
Table 21. D METAR TSt MAIIX ...c.veeiiieiieeiieeiieeiie ettt ettt steeaeesteenteesnseenseesnseenseas 102
Table 22. D MET TSt IMAIIX....ccuiiiiieiieiieeie ettt ettt ettt ettt steeteessbeensaessbeenseesnseenseas 103

xi

Table 23. D ME2DOAR TeSt MALIIXcoecuiiiiiieiieiieeiieciie et eite ettt steeaee e esaeessteeseeseveeseas 104

Table 24. D ME2DO TSt MAIIX ...cuvieruiiiiieiieeiieiteeieeeiee et esite ettt esteeaeesbeenseesnseenseesnseenseas 105
Table 25. D ME2AR TSt MALIIX ...c.veeiiieiieeiieeiieeiie ettt ite ettt seteeaeesbeenseessteenseesnaeenseas 106
Table 26. D ME2 TSt IMAIIX....ccuiiiieeiieiieeieetteete ettt et esite et steesteeaeessbeeseessseenseessseenseas 107
Table 27. D ME3DOAR Test DESIZNcccueeiiieiiiiiieiieeie ettt ettt 108
Table 28. D ME3DO TSt MAIIXuieiuiiiiieiieeiieiie ettt et esite ettt eteeaeesbeesseessseenseessseenseas 109
Table 29. D ME3AR TeSt MALIIX ...cveeiiieiieiiieeiieeiie ettt ettt ettt sete et s beeaeessteenseesnseenseas 110
Table 30. D ME3 TSt IMAIIX....cccuiiiiiiieeiieeie ettt ettt ettt ettt e seteeteeebeessaeesseenseesnseenseas 111
Table 31. Screening D MEIDOAR Test MatriXccccveeiuieeiieriieeiieiieeieeiie e enieeeeveeieeseve e 112
Table 32. CCD Phase 1 TeSt MALITX ...ccuevueerieiierieniieieniiesieeie sttt st 119
Table 33.CCD Phase II TeSt MALIIX ...ccccevueeriirieriieiieieniienieeie sttt ettt 123

xii

CYBER DATA ANOMALY DETECTION
USING AUTOENCODER NEURAL NETWORKS

I. Introduction

The United States military advanced technologies are lucrative targets for exploitation of
protected information by adversaries due to the high tactical advantage offered antagonists.
Publically acknowledged military cyber targets attacked by Chinese adversaries include, U.S
Transportation Command (TRANSCOM) networks, White House computer systems, National
Oceanic and Atmospheric Administration (NOAA) weather satellites supporting military
operations, Civil Reserve Air Fleet (CRAF) defense contractor computer systems and numerous
Department of Defense (DoD) computer systems housing designs for advanced military weapon
systems such as the F-35 Joint Strike Fighter, F/A-18, Patriot missile system, Littoral Combat
Ship Terminal High Altitude Area Defense (THAAD) missile, and more [1]-[3]. Additionally,
civilian infrastructure supporting military readiness are targets for malicious code (“malware”) as
evident by the Ukraine power outages in 2015 and 2016 [3], [4].

Recent trends in military adversary tactics have seen a shift from covert exploitations to
more overt attacks resulting the widespread dissemination of protected information. In 2016 11.5
million leaked accounting documents from the Mossack Fonseca Panamanian law firm appeared
online. In the most recent U.S president election, Democratic Party stolen information was
released in an apparent attempt to sway voter opinion [4], [5]. Finally, malicious actors
compromised the media company HBO computer networks, exploiting weaknesses in third-party
security systems, and managed to exploit 1.5 TB of their data, before announcing the

exploitation via email to technology magazine Wired [6].

Independent to the nature of information dissemination gained via cyber espionage, a
common theme is found, cyber adversaries extracted protected information prior to cyber-attack

detection.

1.1 Motivation

The U.S. heavily relies on the systems of cyberspace and the wider Internet as a whole
for commerce, defense operations, infrastructure industrial control systems, financial
management, transportation, and other critical services. The DoD is one of many U.S.
organizations who bare the shared responsibility for the defense of the U.S. homeland from
cyberspace attacks. The DoD currently operates the largest global network, composed piecemeal
of thousands of smaller networks stretching across the globe, collectively known as the
Department of Defense Information Network (DoDIN). The U.S. military is reliant on a secure
and robust DoDIN to conduct is overall mission [3], [7]. The agency sponsoring this research is
one of the many organizations responsible for protecting the U.S. from cyber threats and
ensuring the DoDIN is available to the DoD when required.

The sponsoring agency currently utilizes firewalls, and various intrusion detection and
intrusion prevention systems (IDPS) to detect cyber-attacks. The field of intrusion detection and
prevention sole purpose it to detect and defend against malicious network intrusion, with the
ultimate goal of preventing hostile actions before malicious code can be executed on defended
computer networks [8]. The dynamic and rapidly changing nature of the threats to the sponsor’s
defended networks necessitated the creation of analysis methods to detect novel and previously
undetected attacks. The sponsoring agency’s IDPSs generate log files containing details of
network traffic identified by the IDPS as suspicious. Creation of suspicious network log files

enables data mining intrusion detection techniques for cyber-attack detection. Gutierrez derived

techniques for transforming DoDIN IDPS log file data into time-oriented state vectors. His work
applied multivariate and graphical analysis techniques for outlier detection [9]. This research will

provide security experts a new tool for outlier detection, an autoencoder neural network (ANN).

1.2 Research Goals

Currently, analytic tools available to the sponsor for IDPS cyber-anomaly detection are
limited, for example, Gutierrez’s derived multivariate and graphical analysis techniques.
Additionally, manual review of IDPS log files by computer security experts are also available for
cyber log anomaly detection. The number of IDPS log files and the number of new files
generated during day-to-day operations of the DoDIN is too massive for manual review by the
limited computer security expert staff in any reasonable time frame. It is a widely accepted fact
that there does not exist a single best approach for detecting anomalies within data [10].
Commonly in the field of network intrusion prevention multiple analytic approaches are
employed to defeat attacks in the evolving threat environment [11]. The sponsor requires a
spectrum of analytic options for review and analysis of IDPS log files to maximize the
probability that adverse network activity is detected prior to successful adversary misconduct.

This research aims to reduce the time between the start of cyber-attacks by providing the
sponsor capabilities to distinguish attacks from normal network activity while minimizing the
number of misclassified network events. The use of a cyber anomaly detection ANN will aid the
sponsor through expeditious identification of potentially adverse network activity for further
evaluation by security experts. Specific research goals include:

1. Derive an ANN to characterize normal network activity and identify anomalous
activity in IDPS log file data

2. Develop a methodology to visualize cyber data characterization after ANN
analysis

3. Identify specific anomalous IDPS log files for subsequent review by network
security experts

There is no guarantee that anomalous IDPS log files are evidence of malicious cyber
activity. Identification of anomalous IDPS log files will however provide network cyber security

experts a starting point in their search for undetected network intrusions on the DoDIN.

1.3 Research Contributions

The goal of this research is to provide the sponsoring agency an expeditious methodology
to identify specific anomalous IDPS observations for review by computer security experts using
ANNs. We also provide a simple method for optimizing the performance of the anomaly
detection ANN using design of experiments (DOE). Within the field of NN research, we
introduce the use of multiple test and training datasets as a hyperparameter combined with DOE

testing as a NN regularization technique for unsupervised anomaly detection.

1.4 Assumptions/Limitations

The data used for this research is assumed to be a representative sample of the data the
sponsoring agency utilizes for detection of malicious activity during normal day-to-day
operations. The dataset is unsupervised, that is without any feature to indicate normal or
abnormal observations, therefore we assume that the vast majority of observations within the
dataset are observations corresponding to normal network behavior and anomalous observations

are rare within the dataset.

1.5 Organization
Chapter 2 provides the reader a literature review related to the field of network intrusion

detection, the sponsor’s network architecture, intrusion detection terminology, and intrusion

detection performance metrics. The literature review continues in the third chapter covering,
anomaly definition and types, a survey of anomaly detection methods utilized across multiple
domains, neural networks with a focus on hyperparameters, and concludes with a summary of
DOE testing methodology. Chapter 4 outlines the methodology utilized in this work to include,
dataset description and preprocessing, test design creation, and graphical detection of outliers.
Chapter 5 presents the results from ANN optimization and anomaly detection. We conclude in
chapter 6 with a brief summary of the contributions to the field of unsupervised anomaly

detection in the cyber domain and recommendations for follow-on research.

II. Literature Review: Application Domain

2.1 Chapter Overview

This chapter aims to provide the reader with a brief background into the makeup of the
sponsors’ defended networks. As these networks are real-world military assets, the network
structure presented should be taken as notional, albeit, representative. Following the network
description, we introduce Intrusion Detection Systems (IDS) by presenting a model of their
operation and briefly discussing required terminology pertaining to their employment. This

chapter concludes with a discussion of general IDS output.

2.2 DoDIN Network

There are multiple system components employed to protect computer systems on a
network, the firewall, IDS, Intrusion Preventions System (IPS), antivirus software, access control
schemes, authentication tools, and virtual private networks [12]-[16]. Despite the surplus of
technologies and software available for network security, it is a widely accepted fact amongst
network security experts that it is impossible to defend against all possible attacks. Furthermore,
it is cost prohibitive and technically infeasible to try and do so [13], [15], [17], [18]. The IDS and
IPS provide many of the same capabilities to network administrators, however there is a key
difference, an IDS is an automated detector which alerts administrators to the threat in network
traffic, whereas an IPS is an IDS with the additional capability to automatically stop potential
network security incidents without human intervention [19].

The National Institute of Standards and Technology defines a firewall as “devices or
programs that control the flow of network traffic between networks or hosts that employ

differing security postures [20]. ” Firewalls are software or physical network devices that isolate

a network from external sources by preventing traffic external to the network from reaching
computer systems on the network. Traditionally, firewalls were deployed only at the boundary
between the network and all external sources, and prohibited all inbound traffic not explicitly
allowed by the network administrator. Modern firewalls however, monitor and restrict network
traffic from exiting (egress filtering) as well as entering (ingress filtering) at multiple points
internal to, and at the boundary of, the protected network. Additionally, modern firewalls can
strip specific prohibited components from network traffic (i.e. removing email attachments), and
perform many of the same functions as IDS and IPS, such as monitoring, threat reaction, and the
generation of log files documenting suspicious network traffic for evaluation [12], [20].
Furthermore, firewalls also act as address managers for protected networks, enabling allowed
traffic to reach its intended destination within the network, without revealing the detailed internal
network structure to external sources [21].

All IDSs perform the same basic function, gather information about the protected system
in order to make a determination on the security status and alert network administrators when
violations are found automatically in real or near-real time; IPSs, upon detection of a security
violation, attempt to take action to mitigate or correct the violation in addition to alert generation.
Both IDS and IPS technologies, given a suspicious activity detection, generate log file for
subsequent evaluation by network administrators [13], [19], [22]-[25].

The IDS and IPS detection technologies are similar, furthermore, network administrators
responsible for IPS implementation may choose to disable automatic prevention features in IPS
forcing their operation as IDS. Firewalls also may be configured to generate log files pertaining
to potentially adverse network activity. Due to their similarity and to streamline composition,

henceforth, we will use the terminology IDPS to refer to IDS, IPS, and appropriately configured

firewall systems. Unless specifically stated otherwise, the use of IDPS will refer to any network
system or software that “automates the intrusion detection process [19],” and generates an alert
(or log) for subsequent analysis by network security experts.

Numerous IDPS sensors are positioned across the DoDIN. When potentially malicious
cyber data flows through an IDPS, the sensor generates an alert via a log file. Depending on the
vendor, the format of individual IDPS log files may be different between the various IDPS
systems on the DoDIN. Utilizing a data formatting tool known as a connector, IDPS log files
from individual sensors are reformatted into a common data structure and forwarded to a
Regional Cyber Center (RCC) [9]. RCCs maintain, operate, and defend the DoDIN within their
respective theater, or area of military operations [26]. RCCs aggregate data from the reporting
IDPSs using a Security Information and Event Management (SIEM) system. SIEM systems
consolidate IDPS log files, perform threat correlation, identify cyber threats, and report network
heath and status information to network security personnel [27]. Once data are aggregated at
theater RCCs, the information is passed via additional connectors to the Integration Center’s
(IC). ICs aggregate data globally from theater RCCs into a global SIEM, and once processed, the
global log file data is uploaded into a big data platform. This big data platform is a centralized

database for the processing, management, and analysis of the cyber log data [28].

2.3 Intrusion Detection Model

Denning presented the earliest work on detecting unauthorized activity on computer
systems using computer methods. Prior to Denning, intrusion-detection consisted of computer
security experts manually reviewing audit logs on printouts of computer system files. Printout
log files were not examined to prevent intrusions, they were only manually reviewed to close

existing vulnerabilities in computer systems [24]. IDS are important security tools that automate

intrusion-detection enabling rapid detection of computer compromises and improving the overall
security of the protected system [13], [17]-[19], [29]-[31]. The fundamental assumption
underpinning all IDS operations is simple, exploitation of a computer system is abnormal and
abnormal computer system operation can be detected by computer security analysts [22], [24].
Computer security personnel can use abnormal system activity to detect exploited computer
systems. Expedient detection of anomalous activity may lead to mitigation of cyber threats prior
to any damage being done to the system. Prior to Denning’s seminal work, Anderson derived
statistical methods for analyzing computer system audit data. Building on the work of Denning
and Anderson, other researchers experimentally showed two important results: analysis of a
computer user’s pattern of use can be used to discriminate between users, and analysis of
computer user behavior can be used to discriminate between normal and anomalous activity

[32]-[34].

2.4 IDPS Taxonomy

IDPSs are categorized according to many criteria to include: detection method, audit
source, detection paradigm, and monitoring rate [18], [31]. This section provides the reader with
an overview of the diverse IDPS technologies. Prior to embarking on the IDPS taxonomy review,
it is prudent to discuss the five performance measures used to evaluate IDPS capabilities:
accuracy, completeness, performance, timeliness, and fault tolerance [18], [25], [31], [35].
2.4.1 IDPS Performance Metrics

An accurate IDPS correctly categorizes a network attack as such and minimize the
number of false alarms, or the number of innocuous detections incorrectly flagged by the IDPS
as attacks. Complementary to the concept of accuracy, is that of completeness. A complete IDPS

detects all attacks. If an IDPS incorrectly classifies attack traffic as normal the detector has made

a false negative declaration [17]-[19], [23], [25], [31], [36]-[39]. Analysis of the IDPS
evaluation criteria of accuracy and completeness results in the following conclusion, IDPS
declarations can be categorized into one of four possible types, intrusive but not anomalous, not
intrusive but anomalous, not intrusive and not anomalous, and intrusive and anomalous.
Intrusive but not anomalous declarations (false negatives) occur when the IDPS incorrectly
categorizes anomalous traffic as normal activity. Not intrusive but anomalous declarations are
valid activities incorrectly flagged by the IDPS as suspicious. Not intrusive and not anomalous
are declarations by the IDPS which correctly identify valid computer actions as normal activity,
and intrusive and anomalous are IDPS declarations which are correctly identified as suspicious
computer activity [17].

IDPS performance refers to the rate at which the system can analyze network traffic and
dispense classification as legitimate or intrusive traffic. The earliest intrusion detection model
required that detection occur in real, or near-real time, therefore, processing speed is critical for
successful IDPS implementation [18], [22], [31]. Building on the idea of performance is the
concept of timeliness, a timely IDPS will quickly transmit intrusive traffic warnings to the
appropriate network security expert to mitigate attacks as quickly as possible. The final IDPS
performance measure is fault tolerance. IDPS are a part of the protected network, and therefore
should be hardened against cyber-attacks degrading their performance, or to put it another way,
tolerant to potential faults caused by cyber intrusion [18], [31].

2.4.2 IDPS Detection Method

The two broad classes of IDPS detectors are behavior-based, and knowledge-based.

Across the literature behavior-based IDPS are also referred to as: anomaly detectors, outlier

detectors, novelty detectors, deviation detectors, exception mining, and detection by behavior;

10

likewise, knowledge-based detectors are also referred to as: signature detectors, misuse-based
detectors, attack signature based detectors, and detection by appearance [8], [14]-[18], [25], [30],
[31], [36], [38]-[43]. Knowledge-based IDPS use knowledge collected from previously
identified network attacks and system vulnerabilities to actively look for network traffic utilizing
the previously identified exploits. When a previously categorized network attack is detected, an
alarm is raised and the attack mitigated. All network traffic not categorized as an attack is
assumed to be acceptable [17], [18], [25], [31], [41]. Alternately, behavior-based IDPS operate
on the assumption that network attacks can be identified by observing abnormal behavior of the
system. Behavior-based IDPS build a mock model of normal system operation, and any
sufficient deviation from the normal pattern of system activity will trigger an alarm. Any novel
network behavior, valid or malicious, will trigger behavior-based IDPS to flag the activity as
potentially intrusive [17], [18], [25], [31], [41].

Knowledge-based IDPS exhibit excellent accuracy for attack signatures defined with low
false alarm rates, however, given a previously unseen attack, a knowledge-based IDPS will fail
to classify the new attack as intrusive traffic leading to low completeness. In order for
knowledge-based IDPS to detect attacks, system administrators need to ensure that attack
definition files are updated regularly, a time consuming task given the rate at which new cyber-
attacks are developed globally. However, once a new attack is defined in a knowledge-based
IDPS, each new protected system gains the capability to defend networks against the identified
attack immediately upon instillation. Knowledge-based IDPS detected attacks provide network
security personnel detailed contextual analysis associated with the attack traffic, enabling
security personnel to easily make preventive or corrective actions on the network. Additionally,

knowledge-based IDPS have excellent fault-tolerance to previously defined attack traffic,

11

however, undefined and novel cyber-attacks have the capability to degrade knowledge-based
IDPS performance [8], [17], [18], [25], [31].

Behavior-based IDPS offer network security enhanced completeness through the
capability to detect previously unknown attacks, and detection of intrusions occurring within the
protected network (insider threats). Additionally, behavior-based IDPS show improved fault-
tolerance, as they are trained on normal network activity and malicious actors do not know what
network activities will trigger an alarm. However, as behavior-based IDPS require training on
normal activity, there exists the possibility that nefarious network activity is present in the data
used to build the model of normal activity. As a result the IDPS will learn malicious activity as
normal, decreasing the behavior-based accuracy. Furthermore, network activity is constantly
changing and evolving, requiring behavior-based IDPS retraining on new activity, a time
consuming process. Behavior-based detectors are prone to lower accuracy, exhibited by large
numbers of false positive declarations. Depending on the number and frequency of false positive,
it is possible that network security experts will ignore a true attack alarm, attributing it to another
false positive. Identification of the specific network traffic causing alarms in behavior-based
IDPS require review by network security personnel prior to classification as either approved but
anomalous network activity or, malicious activity [8], [17], [18], [25], [31]. Behavior-based
IDPS can contribute to the automatic detection of new attacks, although network security experts
must manually review suspect network traffic to make the final classification [18].

2.4.3 IDPS Audit Source

IDPS audit sources describe the source of the information, known as an audit log, utilized

by the system for security dispensation. IDPS are broadly divided into host-based and network-

based security systems.

12

Host-based IDPS monitor and analyze data collected on individual computers,
monitoring the instructions moving through the computer’s processor, logins, program
execution, file access history, etc. As their name implies, host-based IDPS are installed on
individual computer systems they are designed to protect. Host-based IDPS require excellent
completeness, timeliness and fault tolerance, and generally are individually tailored to defend a
specific system. If a computer protected with a host-based IDPS is compromised by a malicious
actor, and the compromise is not expediently detected, the compromising party may alter the
computer log files and/or modify the IDPS to prevent any/all detection of subsequent malicious
activity. As the earliest computer systems moved from standalone into a distributed architecture,
the IDPS architecture followed suit moving from host-based IDPS software installed on
individual machines, to independent hardware/software within the network environment [8],
[18], [31], [33], [40].

Network-based IDPS monitor and analyze data collected moving between computer
systems connected on a network. In the modern computer environment, the majority of access to
sensitive computer systems takes place over a computer network, necessitating the creation of
specialized systems to monitor traffic and identify hostile traffic [31]. Network-based IDPS
utilize the data contained within network packets to form the audit log. Analysis of the network
packets reveal malicious traffic on the network. Network-based IDPS are standalone units that
commonly operate without communicating with other sensors on the network, and are often not
the target of malicious traffic. As a result, the true target of the attack can often be obfuscated
leading to decreases in accuracy and completeness. Additionally, as the size of networks
continue to grow and traffic on networks rise, the use of network-based IDPS may induce

bottlenecks resulting in decreases in performance and timeliness [8], [18], [31], [40].

13

2.4.4 IDPS Monitoring Rate

In addition to the audit source and detection method IDPS classifiers, the monitoring rate
is used to categorize IDPSs. The monitoring rate refers to the way the system performs analysis
on the audit source. A continuous or dynamic monitoring IDPS operates in real-time, processing
each individual audit source event immediately upon receipt. The continuous monitoring system
continuously analyzes events in real-time and determines the hostility of each individual event
immediately. Static or period IDPSs do not operate in real-time, instead, they aggregate a batch
of audit source records and on a periodic basis evaluate the grouping of records for security

dispensation [18], [31].

2.5 IDPS on Distributed Networks

As previously discussed, the sponsor operates a series of IDPSs located across their area
of responsibility. Regardless of the specific taxonomy of each individual IDPS, suspect activities
are logged and data is aggregated via connectors to RCCs, the IC, and then the log files are
uploaded to the big data platform for analysis. Traditional network intrusion detection uses
independently operated IDPSs to defend a single computer or a standalone network. The
implementation of networked computer systems connected to the wider internet has led to the
development of cooperative attacks against individual systems or networks of systems.

A cooperative intrusion attack differs from a conventional attack in that a conventional
attack has one malicious actor targeting a computer or single networked system via one attack
vector, whereas in a cooperative attack there are multiple attack vectors. One attacker may use a
series of machines located around the world, or multiple attackers may coordinate efforts to
exploit a computer or networked system of machines, spreading attacks across multiple IDPS

sensors. The goal of the cooperative attack is to defeat conventional IDPS by diffusing the attack

14

across multiple IDPS sensors to obfuscate detection of the full attack taking advantage of the fact
that often IDPSs operate independently, not aware of activities occurring on other IDPS sensors
within the defended system [13], [41].

Detecting cooperative attacks across a distributed network system requires collecting
suspect activities from each IDPS operating within the defended system. Once the data is
collected, the log files can be aggregated, correlated and analyzed from each IDPS. Two primary
methods exist for analyzing IDPS data collected across the distributed network system,
centralized analysis and decentralized or hierarchical analysis. In centralized network intrusion
detection, all of the data from each IDPS sensor is collected to a single location for intrusion
detection analysis. In hierarchical network intrusion detection log files from each IDPS is first
aggregated into a domain, then forwarded to a single location for analysis. A domain is a
grouping of IDPS sensors located within the full decentralized network. IDPS sensors can be
grouped by geographic area, administrative control, commonality of protected systems and/or
required security for information on the network. Once data aggregation is completed at the
domain level, analysis is completed on the IDPS sensor information, and this information is then
forwarded up to a single location for follow-on analysis [41].

The sponsor operates many types and versions of IDPS sensors across their distributed
networks. The collection of IDPS sensors are from different vendors, running differing software
versions, record security events in differing formats, etc. and as a result there does not exist a
consistent message format between IDPSs at the device level. The sponsor utilizes the ArcSight
Common Event Format (CEF) to support aggregation of security log files from the numerous
IDPS sensors into the big data platform. The CEF provides the sponsoring agency a standardized

open log management format to consolidate applicable security logs into a common format for

15

analysis by network security experts [44]. Once security logs are collected into the centralized

big data database, the sponsor security experts can query the database for security investigation.

2.6 IDPS Analysis

The sponsoring agency consolidates IDPS security log files into the big data platform
daily. Each day, thousands to millions of security events take place on the sponsor’s distributed
networks and each of these events generates an IDPS log file. IDPS log files describe network
traffic which has been already classified as potentially hazardous, therefore the big data platform
is composed only of log files describing potentially malicious network actions. How then should
analysts parse down the daily thousands-to-millions of IDPS log files into a handful of logs for
review by network security experts?

Denning’s intrusion-detection model is predicated on the assumption that computer
security incidents are abnormal events when compared to the normal profile of computer usage
[33]. If we consider the spectrum of security events logged in the big data platform in a similar
manner to Denning’s perspective, by detecting those abnormal security events within the IDPS
log database we will detect those network security worthy of attention by network security
analysts. This view is predicated on the assumption that the most common network security
events are less threatening than rare network security events. While validating this assumption is
beyond the scope of this work, Chandola et al. [36] support this claim and state “anomalies in
data translate to significant (and often critical) actionable information in a wide variety of
application domains. For example, an anomalous traffic pattern in a computer network could
mean that a hacked computer is sending out sensitive data to an unauthorized destination.” Also
supported by Hodge and Austin [45] who state “An outlier may pinpoint an intruder inside a

system with malicious intentions so rapid detection is essential.” In order to expeditiously

16

identify potentially harmful attacks against the sponsor’s networks, analysts must identify

anomalous observations within the IDPS log files daily.

17

II1. Literature Review: Anomaly Detection Methods

3.1 Chapter Overview

This chapter summarizes common anomaly detection methodologies focusing on those
methods utilized in the field of cyber intrusion detection. After summarizing the various
methodologies, we focus on neural network (NN) approaches to anomaly detection. We conclude
this chapter with a brief summary of DOE and its application for identification of the optimum
hyperparameters for anomaly detection using NNs. To begin we first define anomaly detection,
identify the characteristics that make observations anomalies, and discuss supervised and

unsupervised datasets.

3.2 Anomaly Definition

Anomaly detection refers to finding specific data points, or observations, located within
datasets with characteristics not present elsewhere in the data. Specific non-characteristic
observations are called anomalies, outliers, novel events, noise, exceptions, etc. depending on the
specific application domain [10], [36], [45]. Within this text we will refer to anomalies and
outliers interchangeably and we utilize the outlier definition established by Grubbs [46]: “An
outlying observation, or “outlier,” is one that appears to deviate markedly from other members of
the sample in which it occurs.”

Anomalies within dataset can be attributed to one of two possible sources. An outlying
point may be an extreme, albeit normal, value of the system under study. Given a dataset is large
enough, analysts expect to see extreme valued observations as most systems worthy of study
exhibit variability in measures of interest to researchers. For example, a far-northern city

experiencing a day of unusual warmth during the winter months. While this may be a rare

18

occurrence, given a long enough period of study, we would expect to find periods with
temperatures sufficiently different than the mean as to indicate an outlier. Alternately, an outlier
may be attributed to some systemic failure of the experimental process or transcription error. For
example, a temperature sensor failing in a vehicle engine, or a transcription error while recording
data. We consider intrusion detection, or attempted intrusions, as a systemic failure of the
system. While anomalous observations must be attributable to one of the previously discussed
sources, domain expertise is required to determine to which source the anomaly should be
assigned [46].

Observations identified as outliers exhibit two properties. First, anomalous observations
are rare occurrences within the data. This property is somewhat obvious, given a sufficient
number of the same type of anomalous observations exist within a dataset, when taken
collectively these ‘anomalies’ would form a normal pattern within the data, and thus not be
anomalies. Second, anomalous points are distinct and sufficiently different from other
observations in the data with respect to the features used to describe the collection of
observations [36], [47]. If a potential anomalous point, described by features in the data is
indistinguishable from the other points in the data, then this point is merely a normal point.

There are two primary anomaly taxonomies, local and global. Local anomalies can be
subdivided into contextual (conditional), and collective anomalies. Global anomalies can be
found by observing the entirety of the available dataset, whereas local anomalies require
evaluation of points in relation to neighboring points [47]. The classification of anomalies into
their appropriate taxonomy is data dependent. Global (point) anomalies can occur in any dataset,
however local anomalies require that data contained with the set be somewhat related. Point

anomalies can easily be considered contextual anomalies if the points are analyzed with respect

19

to additional features within the data. Point anomalies can also be considered collective
anomalies if considered within a collection of related data [36].

An anomaly may be characterized as a global (also known as point) anomaly if the
individual observation is sufficiently different than the rest of the data. Global anomalies are the
simplest and the vast majority of research on anomaly detection is devoted to identification of

point anomalies [36], [47]. An example of a global anomaly is shown in Figure 1.

Global (Point) Anomaly

20

r-r-—--h-"h_‘
15 s A n s
L4 AA A ~,
I 4 . A A \l
10 s e
~
o o \‘ .: fl‘ " A "
= h‘-'-——---—'-.
o
g
-10 10 15 20 25

at
-~ k -
--—:——J"

B O

-15
Feature 1

Figure 1. Global (Point) Anomaly

The data points contained with the two dashed ellipses indicate the existence of two discrete
clusters of observations. In the Figure 1 example, the data points are described by Feature 1 and
Feature 2. The data point encircled by the solid black line is an example of a global (point)
anomaly, as its location in the feature-space is far separated from the two clusters, and, there

exists only one observation in the local neighborhood.

20

A contextual anomaly differs from a point anomaly in that a contextual anomaly is only
anomalous in some contexts, but not in others. The contextual component of the anomaly is the
structure of the data in the neighborhood of the anomalous point, what makes the point an outlier
is the behavior of that point in relation to that of its local context [36], [47]. Figure 2 depicts a

notional plot of Feature 1 and Feature 2.

Contextual Anomaly

/"":—:---'@
-’ -

20

I} 5 0 5
@ R 10 15

Feature 2
f——."\
®
}4\‘
. y
[(4
¢
° &
& o,
?"‘-."
(%]
o

Feature 1

Figure 2. Contextual Anomaly

Observe the groupings of like-points contained within the dashed circles. Note that a circle point
is located adjacent to the dash point grouping, highlighted by a solid circle, this circular-point is
a contextual anomaly due to its location adjacent to the dashed-point grouping. The anomalous
point is only anomalous conditioned on the type of neighboring points. If the anomalous point
was located within the circular-points region, this point would no longer be anomalous. Also

consider the figure if the dashed-points were removed from the plot as shown in Figure 3.

21

Contextual to Global Anomaly

20
15

10

"‘———--‘

L |
5 - S ~.
=~ P ®
§ f o‘ o\
< ‘l ® ‘l
.
/
-10 % A s /5 10 15 20
L 4 ’,
o e .

Feature 1

Figure 3. Contextual to Global Anomaly

In this case, the contextual anomalous point would still be considered an anomaly, however, now
we would categorize this point as a global (point) anomaly as the context of the removed dashed-
points is missing.

A collective anomaly is a set of data points that is anomalous in relation to the entirety of
the dataset. Each individual point within a collective anomaly may be normal in relation to the
dataset, however the proximity of these points to one another in relation to the behavior of the
data across the set results in a collective anomaly [36], [47]. Figure 4 depicts a notional plot of

temperature as a function of time.

22

Collective Anomaly

100
90
80

70

Temperature

60

S

Time

Figure 4. Collective Anomaly

The area encircled by the dashed-ellipse is an example of a collective anomaly. Observe the
periodic nature of the temperature across the time axis, there are regular occurring local
maximums and minimums. This normal pattern is not observed for the cycle identified within the
dashed-ellipse. This is an example of a collective anomaly. Please note that the temperatures in
this anomalous region fall with the normal range across the entirety of the dataset, what makes
these points anomalous is their collective contribution in distorting the normal periodic nature of
the temperature-time plot. Figure 5 depicts an example of a global, contextual and collective

anomaly.

23

Contextual, Global and Collective Anomaly

105
05
85
=
] 7L
§ 78
T
N
-~
s 65
=
=
=
T g
] o
L
£ o o
45 in
: -
-
:
35 UJ :
H -
:
.
-
-

Ll

.
s

* Time

Figure 5. Collective, Global, and Global Anomaly

Observe the anomalous region of the figure highlighted by the dashed-ellipse. Now we have
temperature values that fall greatly ouside the range of the temperature measures elsewhere in in
the data indicating a global (point) anomaly. Addiditonally, we observe two local minimums
seperated by a local maximum in rapid succession, with all other local minimums occuring in
regular periodic intervals. Figure 5 depicts a notional case where we are able to justify the
anomalous points as being of all three anomaly taxonomies.

The selection of an appropriate detection methodology is dependent on the type of
anomalies expected to be found in the data [36]. Ideally, we would like to apply an anomaly
detection methodology with the capability to detect all classes of anomalies (point, contextual,
and collective) with equal capability. In practice however, the capability of anomaly detection
methods to find outliers is dependent on the class of anomalies present in the data. Analysts must

carefully consider the nature of the expected anomalies prior to selection of an anomaly detection

24

mythology. Another important consideration to the choice of an anomaly detection method is the

availability and type of data.

3.3 Supervised and Unsupervised Data

Anomaly detection algorithms are often stratified into one of three methodologies based
on the type and availability of labeled data contained within the set. Labeling data in the context
of anomaly detection refers to identifying those observations within the dataset that are normal
and those that are outliers, also referred to as classifying data as normal or anomalous. This
action is often performed by a human expert with experience in the application domain
pertaining to the dataset. Depending on the domain, it may be impossible to obtain labeled data
for a representative set of all possible observations for both normal and anomalous cases, or it
may be prohibitively expensive to do so. Additionally, anomalous observations often vary over a
period of time [36]. There are many domains in which labeled data does not exist prior to
anomaly detection. The three anomaly detection methodologies are supervised anomaly
detection, semi-supervised anomaly detection, and unsupervised anomaly detection.

Supervised anomaly detection methods assume that there exists a fully labeled
representative dataset available. Generally, the anomaly detection algorithm is trained against the
labeled dataset to build a predictive model. Then a second dataset of unlabeled data is evaluated
using the predictive model to identify normal and anomalous observations [36]. Often the labeled
data is referred to as training data, and the unlabeled data as test data [47]. Authors caution,
supervised anomaly detection algorithms require static data. If the distribution of test data shifts
(often over time), then the supervised anomaly detection model must retrain on a new

representative training (labeled) dataset, which may or may not be available [45].

25

The availability of labeled data for all possible anomalous observations generally do not
exist. Often datasets only contain observations from the normal class are available. In this case
semi-supervised anomaly detection algorithms are used to detect outliers. Generally, semi-
supervised anomaly detection algorithms are trained on normal-only datasets to construct a
predictive model. Then, test data is presented, and observations deviating from the semi-
supervised predictive model are marked as anomalous observations [36], [47]. Semi-supervised
anomaly detection (also called one-class classification) defines a boundary of normal
observations, and any observation falling outside the boundary of normality is defined as an
outlier. Like the supervised anomaly detection methods, if the normal boundary is not static, then
the training algorithm must re-learn a new model on representative data [45].

The final anomaly detection methodology is the unsupervised case, where labeled data
does not exist. There is no training set, only the test set is available and within the test dataset
instances of both normal and anomalous observations may be present. Unsupervised anomaly
detection algorithms are required to differentiate normal and abnormal observations using the
fundamental attributes of the analyzed dataset. Generally, the unsupervised anomaly detection
methods assume there exist far fewer anomalous observations than normal observations. If this
assumption is violated, it is common to see an overly sensitive algorithm resulting in a high
number of normal points categorized as anomalous [36], [47]. Unsupervised anomaly detection
algorithms are forced to define a normal pattern. Observations falling within the normal pattern

are marked as normal, and observations falling outside the normal pattern as anomalous [45].

3.4 Methods

Anomaly detection is a challenging problem widely studied across multiple domains of

research. Anomaly detection methodologies generally proceeded in two phases. In the first

26

phase, we first define what constitutes normal behavioral patterns for the observations in the data
[36], [47]. The identification of the patterns within the data is commonly referred to as pattern
recognition [11]. In the second phase those points (anomalies) that do not match the normal
observations are identified as outliers. Anomaly detection methods generally output scores or
labels for each of the observations. Labeling-methods assign a qualitative (categorical) identifier
to each observation, generally normal-observation or anomalous-observation. Score-based
methods assign a quantitative value to each of the observations. Then domain-specific expertise
is applied to set a decision value, where scores less than the decision value are marked as
normal-observations, and values greater than the decision value are marked as anomalous-
observations [36], [47].

Prior to selecting the most appropriate anomaly detection method, analysts must take
multiple factors into consideration. First, they must consider the type of anomaly likely to be
present in the data, global, collective, and/or contextual. As discussed previously, there does not
exist a singular-best anomaly detection mythology for all anomaly-types. Secondly, the type and
amount of data available to the analysts is reviewed. Is the data supervised, semi-supervised or
unsupervised, additionally, is the data numeric, categorical, or mixed between the two? Often
analysts first examine previous anomaly detection methods employed in the domain specific area
of research.

Chandola et al. [36] provide a survey of numerous anomaly detection methods across
multiple domains to include methods used in network intrusion detection. Ahmed et al. [43]
build on Chandola et al.’s work, providing a more detailed study of the anomaly detection
methods for network intrusion. Patcha and Park [17] present the anomaly detection methods of

numerous commercial available IDPSs available to network administrators. Goldstein and

27

Uchida [47], present a detailed review of unsupervised anomaly detection methods across a
variety of application domains. Hodge and Austin, Agyemang et al., Markou and Singh, and
Beckman and Cook [10], [45], [48]-[50] likewise provide a summary of multiple anomaly
detection methods for supervised, unsupervised, and semi-supervised data. Within these
resources, the various strengths and weakness of the discussed anomaly detection methods are
compared and contrasted to one another.

Across the anomaly detection literature NN anomaly detectors are widely viewed to have
benefits above other detection methods. NNs (also commonly referred to as artificial neural
networks) have shown the capability to learn the complex relationship differentiating normal
from anomalous observations, using linear and non-linear combinations of the data features [11],
[16], [45]. Furthermore, NNs are widely adaptable to multiple domains, requiring little domain
expertise for implementation [11]. Generally, NNs make weak assumptions regarding the
distributions of the features [10], [51]. Alternate anomaly detection algorithms, such as
statistical-based approaches, require strong assumptions regarding the underlying distribution of
the features, limiting their applicability in the diverse set of features present in network anomaly
detection. Conversely, NNs adapt to the provided data structure and learn the potentially
complex relationships between features used to differentiate outliers from the normal data [11].
NN approaches have shown much promise in unsupervised anomaly detection. Whereas
conventional anomaly detection attempts to differentiate between two (or more) classes, NN
approaches develop conceptual representations of the data. Then, NN methods learn to

differentiate between the learned representations [52]. Due to their capability, NNs have seen

28

wide adoption as anomaly detectors in a variety of domain areas, Table 1 summarizes specific

instances of their usage.

Table 1. NN Anomaly Detection Domain Areas, summarized from [34], [44], [49]

Anomaly detection area Reference
Host-Based Intrusion [16]
Network-Based Intrusion [15], [53]-[60]
Credit Card Fraud [61]-[63]
Mobile Phone Fraud [64], [65]
Mechanical Fault [60], [66]-[73]
Structural Damage [74]1-[76]
Image Processing [60], [77]-[82]
Topics in Text Data [83]

Medical and Public Health [60], [66], [69], [84]

Robotics [85]
Manufacturing [86]
Object Recognition in Video [79]

Within the field of network anomaly detection, NNs are widely utilized as evident from
Table 1. Chandola et al. [36], cites 47 different anomaly detection applications of NNs, seven (of
the 47) of which are in the domain of network anomaly detection, and 14 (of the 47) which are

implemented using ANN architecture. The prolific use of ANNSs in multiple domains indicate

29

their superior capability as anomaly detectors. Markou and Singh [50] remark “The most striking
ability of the auto-encoder is the ability to implicitly learn the underlying characteristics of the
input data without any a priori knowledge or assumptions.” The authors summarize ANN uses
for anomaly detection in a variety of domains to include: detecting shorted windings in
operational turbine-generators, damage detection in offshore platforms, structural damage
detection in bridges, crack detection in structural beams, document classification, and detecting
changing environmental conditions. Japkowicz et al. [52] compared more traditional NN
anomaly detection approaches to the ANN. Their work examined CH-46 helicopter gearbox
faults, biologic molecular promotor recognition, and target identification in sonar data. The ANN
approaches outperformed traditional NN approaches on the helicopter and sonar target domains,
and performed comparably in the molecular promotor detection task. Within the network
intrusion detection domain, numerous authors have document successful ANN implementation
for anomaly detection for the purpose of detecting hostile network traffic to include: Hawkins et
al. [56], Williams et al. [87], Dondo et al. [88], [89], Dondo and Treurniet [90], Mukhopadhyay
et al. [91], Tuor et al. [92], and Mukhopadhyay and Chakraborty [93]. The availability of
numerous sources concerning the application of ANN within the field of network anomaly
detection is a strong indicator to their efficacy. ANN application in the numerous diverse
aforementioned domain areas underlies their capability regardless of the characteristics of the

underlying datasets.

3.5 Artificial Neural Networks

3.5.1 Background
NN’s are mathematical algorithms designed to complete a task via similar methods as

present in the mammalian brain. As opposed to being explicitly designed to solve a particular

30

problem, NNs (and artificial intelligence algorithms in general), gradually improve their own
performance on a given analytic task. NNs acquire knowledge by extracting useful information
from the data they are provided, through a process called learning (or training). As they learn,
NN adjust their own parameters to improve their performance [94]. Not being explicitly
programmed for a specific task, NNs are widely adaptable to a variety of problems in many
domain areas.

NNs were originally intended to be a mathematical model of the way in which the
mammalian brain solves tasks and learns. The purpose of using the mammalian brain as
inspiration for an analytic computational task is twofold. First, the animal brain is intelligent and
capable of solving a variety of complex tasks and problems using a diverse set of data. In
designing an algorithm which mimics the animal brain, early researchers hoped to recreate the
functional capabilities of the animal brain in an artificial (computer) environment. Second,
neuroscience researchers are deeply motivated to understand the brain, specifically, how a dense
cluster of interconnected unintelligent cells (neurons) are capable of working together to produce
intelligence. Neuroscientific researchers hoped by understanding how NNs learn to solve
problems and complete tasks, they would also obtain a greater understanding of the process by
which biologic learning occurs in animal brains [95].

Modern neuroscientific researchers no longer view NNs as an accurate method to
describe how the animal brain learns. Currently, there is not sufficient evidence to support the
claim that NN accurately model animal cognition. Even in some of the most well studied areas of
the brain, such as the area responsible for vision, there exist outstanding questions regarding how
the brain operates and learns [96]. The field of modern cognitive neuroscience is currently

researching the algorithms which govern learning in the animal brain. Recent research [97] in the

31

field indicates that a single, yet unknown, algorithm is responsible for solving all the problems
and tasks for which the animal brain is responsible. Additionally, neuroscientific research
indicates that animal intelligence is a function of the interactions between the individual
biologic-computational units of the brain (neurons) with one another [95]. The two important
insights gained from neuroscientific research, the single algorithm responsible for learning
globally across the animal brain, and intelligence through interaction between unintelligent
individual units, are the primary biologic influences for modern NN implementation. For both
NN and biologic intelligence, a large number of simple information processing units learn, and
once trained, are collectively able to solve complex problems and tasks [98].
3.5.2 Biologic Neuron

The basic unintelligent information processing unit of the mammalian brain is the

biologic neuron, shown in Figure 6.

—

Dendrites of
downstream neurons

Information Flow >

Figure 6. Biologic Neuron adapted from [99]

The neuron is composed of three primary components, the soma, dendrites, and axon. The soma
is the primary structural unit of the neuron, containing the cell’s nucleus (in green), and the

32

material required for transmitting biological signals. The neuron’s dendrites and axons connect
neurons to one another. Dendrites receive signals from preceding neurons upstream and axons
transmit information via electrochemical signals to subsequent neurons down streams. Axons
connect to dendrites through synapses, which are gaps in which electrochemical signals flow
from axons to dendrites. Biologic learning is accomplished via adjusting the effectiveness of the
signal transmission within individual synapses. Within the mammalian brain it is common to see
neurons interconnected to hundreds or even thousands of other neurons [94].

Early cognitive neuroscientific research into the operation of the biologic neuron assessed
that each neuron exhibited three characteristics which early NN practitioners attempted to
replicate. First, biologic neurons accumulate input signals from each connected neuron upstream.
Second, biologic neurons operate as all-or-nothing units. A neuron will only generates a response
signal if a sufficient number of input signals are received. Third, biologic neurons are capable of
adjusting the efficiency of individual synapses. While subsequent research indicates the
operation of individual biologic neurons to be more complex than originally assessed, these
original operating characteristics are present in current implementations of NNs [100].

3.5.3 Artificial Neuron

The artificial neuron, the analog to the biologic neuron, is shown in in Figure 7.
Information represented as the input signals x; (j = 1,2, ..., p), flows into the neuron from an
outside source. Each x; may be an individual observation within a dataset, however the input
signals into an artificial neuron may also be the output of a previous neuron upstream. We use X;
to represent an individual observation of p-features from the full dataset x € R"*? for n data
observations. Once a data observation (¥; € R *P) enters the artificial neuron, each feature

within the data observation is scaled by an individual weight. The individual weights on the input

33

signals function as the biologic neurons synaptic efficiency adjustment. Once the input signals
are scaled, the total contribution of all scaled input signals are summed. The summation
accumulates the contribution of each individually adjusted input signal as in the biologic neuron.
Once summed, the cumulative weights are then evaluated using an activation function, ¢. The
activation function is the method by which the all-or-nothing behavior of the biologic neuron is

implemented in artificial neurons.

ST T T /T | P e b

[. ; | I :
| | . . |
_ Dendrite 1§ Soma ; ; Axon |

Figure 7. Artificial Neuron adapted from [101]

The output from the artificial neuron, denoted hy; ; ,, (X;), is a function of the data observation

and the weights, bias and choice of activation function (¢). Note the existence of the b weight
associated with the +1 term known as the bias. This term can be thought of as the intercept of the

data, analogous to the intercept-term associated with linear regression [102].

34

3.5.4 Feedforward Neural Network

An individual artificial neuron has little capability to solve a complex problem, however
networks of artificial neurons have shown remarkable capability to solve a variety of problems.
The classic NN model is the called the feedforward neural network (FNN) (also called multilayer

perceptron (MLP)) and is shown in Figure 8.

L

Input Layer Hidden Layers Output Layer

th Hidden Layer =

[Information Flow > — _ t .

. | aie o
Neuron |- Artificial
Input | i Neuron 3

| 1 Hidden Layer | | 2% Hidden Layer

Neuron
Output |

Figure 8. Feedforward Neural Network adapted from [103]

Within Figure 8, each black circle corresponds to an individual artificial neuron as depicted in
Figure 7. The usage of the term network to describe NN imply that these algorithms are
compositions of multiple functions connected together. The feedforward moniker is applied to
these network as information flows in one direction only, from the input layer, through at least
one intermediate layer of one or more artificial neurons, to the output layer. Additionally, FNNs

do not contain any connections between non-consecutive layers, and every neuron in a preceding

35

layer has a connection to every neuron in the next [95]. Thus, the FNN is easily represented as a
directed acyclic graph as shown in Figure 8.

Within Figure 8, each solid black arrow represents a scalar weigh value applied to either
the input data, or the output of a preceding neuron. Let n; denote the number of layers in the

network, also called the FNN’s depth. In Figure 8 we have n; = k + 2 for k-hidden layers with

input-layer /; and output-layer [, ,. We define wl

i » as the weight associated with the connection

between neuron j in layer [, from neuron i in layer [+ 1. Using a similar convention, we define

bl.(l) as the bias for neuron i in layer [+ 1 [102]. For example examine the weight highlighted in

red, for this weight we observe Wi(? = w3(22) denoting the connection between the second neuron

(as indexed from the top of the figure) in layer 2 with the third neuron in layer 3.

FNN are best thought of as function approximators. Within the FNN shown in Figure 8,
the function to be approximated, is a mapping from the input data x, to the output measure y.
This mapping is represented by the functiony = f(x; 0), where 0 represents the weights and
biases within the network. During training (also called learning) the FNN is presented with
example labeled training data. For each training example, X;, an accompanying target value, y;, is
also provided for the i = 1, 2, ..., n labeled training input-output pairs. As the FNN is provided
with input-output data, the network adjusts the model weights and biases (@) through
backpropagation, resulting in the best function approximation [95].

The layers of artificial neurons between the input data layer and output layer are called
hidden layers. The number of artificial neurons in a single hidden layer is called the layer’s
width. In Figure 7, we denoted the scalar-output of an artificial neuron as a function of one
observation as hy p (X;). The output of an artificial neuron in a FNN is a function of the input

data (¥;) which is a vector corresponding the p-features of the data, the vector of scaling weights

36

(W), the bias term (b), and the selection of activation function (¢). Each artificial neuron
converts a vector of input signals to a scalar output. Aggregating all the artificial neurons in a

given hidden layer, [, allows us to define each hidden layer in a FNN as a vector-to-vector

function, f® (x* ; 5) The number of features of the input data into layer [(x*) is dependent on
the width (number of artificial neurons) in the preceding layer (I — 1) and the dimension of the
output vector is dependent on the width of layer 1. In a FNN with at least one hidden layer, the
overall approximation function is a composition of multiple vector-to-vector functions. For
example, a single-hidden layer FNN would have the composition
y=f(x; 0) = fOFADFD(x; 0))) with £ representing the input layer, f® the hidden
layer and f® as the output layer. Likewise for a two-hidden layer FNN we would have the
composition y = f(x; 8) = fO (P (FD(FD(x; 0)))), with layers £ and f Pas the
hidden layers. The depth of a FNN is defined by the depth of the function composition, which is
equivalent to the number of layers in the FNN [95]. The terminology of hidden implies that the
behavior of these layers is not explicitly specified by the provided labeled training data. Instead,
training the FNN through backpropagation, enables the network to select the appropriate vector-
to-vector functions resulting in the best overall approximation function for the presented training
data [95].

In Figure 8 we presented a FNN with a mapping from a vector described by a p-feature
input observation to a single scalar output value, y. FNN are easily adaptable to higher

dimensional output as shown in Figure 9.

37

Input Layer Hidden Layers | | Output Layer

)
I T I

| 15t Hidden Layer | ‘ 2% Hidden Layer | ‘ kth Hidden Layer ‘

Figure 9. Multiple Response FNN adapted from [103]

In this figure we present a mapping y = f(x; 0), where x € R"*P and y € R™"*4. There is no
limit to the dimensionality of the input data (¥; € R!*P), nor the accompanying target
values (J; € R1*X9) mathematically, although computational requirements for data processing
(memory, processing time etc.) may become limiting factors for large datasets. In the multiple
response FNN, backpropagation is utilized to adjust the FNN parameters to arrive at the best
function approximation.
3.5.5 Backpropagation

Hecht-Nielsen [104] described backpropagation as “a new tool for approximating
functions on the basis of examples.” Backpropagation is the process by which the changes to the

FNN weights and biases (@) are computed to improve the performance of the approximation

38

function. Backpropagation is not in itself a learning algorithm, it is simply a method for
computing the required changes to the each weight and bias in a FNN to improve the function
approximation. The quality of the approximation capability of a FNN is evaluated using the
objective function (also called cost function, loss function, error function) [95]. A common

objective function utilized in FNN is the total error, E, defined as

E =

q
X(yi,m _5;i,m)2 (1)

n
i=1m=1

N| =

where i is an index over all n training examples, m is an index over all g output measures, y is
the output from the FNN and y is the desired output provided in the dataset. Backpropagation
seeks to minimize E through the use of gradient descent by computing the partial derivative of E
with respect to each of weights and biases in the FNN.

Backpropagation proceeds in two phases, the forward-pass and then the backward-pass.
Prior to training, initial weights and biases in the FNN are assigned as pseudo-random values.
During the forward-pass the current weight and bias values are used to compute the FNN output

values for each training example, after which E is calculated. The error is then differentiated with

39

respect to each of the weight and bias terms in the FNN [105]. In the backward-pass, the weights

and biases (0) in the FNN are adjusted to reduce the total error, E as shown

o0E

AB = —77%

(2)

where 7 is the learning rate dictaing the magnitude in change to the weights. The learning rate
parameter is often governed by the learning algorithm selcted by the analyst to update the weight
and bias parameters in the NN, or can be manually set. Once the changes in the weights and bias

updates are calculated, the FNN parameters are updated according to

0,11 =6, + A0 3)

where 0, corresponds to the parameter values during the current training period and 0,4 are the
parameters for the next training period. Backpropagation continues cycling through the forward
and backward passess until a specified termination criteria, such as E being reduced to a
predetermined value, is met [106]. A more detailed examination of backpropagation in FNNs
can be found in [95], [104], [105], [107], [108].
3.5.6 Generalization

FNNs are useful only if they can accurately predict, or generalize, to novel data not
previously observed by the network during training. To estimate the predictive capability of a
FNN, we utilize a test dataset composed of labeled input-output pairs not used to adjust the
weight and bias parameters of the network during training. The test dataset are samples

independently and identically drawn from the same population as the training dataset. The

40

capability of FNNs to predict accurately on the test data is the network’s generalization
capability, and the error associated with the test dataset is known as the generalization error.
The goal of training FNNSs is to reduce the generalization error to a minimum [95].

FNN training continues using the selected learning algorithm and backpropagation until a
specified stopping criteria is reached. A common stopping criteria utilized in FNN research is to
continue training until the generalization error is less than a specified value, or until the change
of between successive iterations of the training algorithm, called epochs, is reduced below a
threshold. Alternately, training may continue for a fixed number of epochs, or for a fixed amount
of time. [95], [106], [109]. Figure 10 depicts a notional flow of the train and test process for

NNs.

Present Training
Data

forward pass — v

Compute Training
Error

]]

Compute Partial

Derivatives

backward pass —]
Update Weights via
Learning Rule

'

‘ Present Test Data l

'

l Compute Test Error l

. Ye s S tOpp 1 l'lg N o
Terminate Criteria
Met?

Figure 10. NN Train and Test Flow adapted from [106]

The training error will always decrease through subsequent iterations of the

backpropagation procedure, however this is not the case for the test error. The training and test

41

data are sample observations drawn from a larger population. FNN are trained to learn the
population mapping from the input data (x) to the output response (y) using only the training
data. There is a risk during training that the FNN will memorize the training data instead of
learning the appropriate population function approximation. This occurrence is known as
overfitting. Alternately, during training FNNs may fail to adequately learn the mapping from
input data to output resulting in high training error [95]. This is known as underfitting. Figure 11

displays a typical plot of the test and training error observed during FNN training.

A ,
— traming
——.— test
\-.\ Optimum
,_\-
\ Underfitting Overfitting
\ Zone Zone
!
i
,\ :!
error e /
N\ /
N /",
N .

N Generalization Gap
"+ttt
1 23 4567 8 91011121314151617 1819

epochs

Figure 11. FNN Training and Test Error adapted from [95], [106]

Observe in Figure 11 that prior to epoch 11 the training error and test errors can both be

reduced by additional training epochs. Premature termination of training before epoch 11 would

42

result in underfitting. At epoch 11, the gap between the training and test errors, known as the
generalization gap, are reduced to a minimum, indicating the weight and bias terms of the FNN
are at the optimum values resulting in the best possible function approximation. Any additional
training taking place after past epoch 11 results in a slight reduction of the training error at the
cost of a rapid increase in the generalization error indicating that the FNN is no longer learning
the population mapping, instead is memorizing the training dataset.
3.5.7 Activation Functions

The choice of activation function (¢) for the artificial neurons within FNN is a critically
important consideration. Recall, the activation function is designed to mimic the all-or-nothing
behavior of the biologic neuron, as such, it should suppress outputs from an artificial neuron
when the cumulative inputs are small, and generate an output signal given sufficient inputs. We
define the cumulative inputs of the weight-input sum product with the bias term as
z = b + X, x;w; for j inputs to a neuron. Early work in the NN field considered the threshold
function (Figure 12) as a potential artificial analog for the required biologic neuron behavior.
The threshold function outputs a value of zero for inputs below a threshold value t, and outputs a

value of one given inputs are greater than t. The threshold function is defined by

0 z<t
1 z=>t

(pThreshold(Z' t) = { (4)

A plot of the threshold function for t = 0.75 is shown in Figure 12.

43

Threshold Function

Threshold: t = 0.75

Figure 12. Threshold Function

As evident from Figure 12, the threshold function is not differentiable, consequently

gradient-based parameter update methods, such as backpropagation, are not applicable to NNs

using the threshold activation function. Weights and biases using the threshold function required

manual setting by human operators. Subsequent NN work utilized a linear activation function

defined by

(pLinear(h) =h (5)

whose derivative is given by

(p,Linear (h) =1 (6)

44

While not exhibiting the all-or-nothing behavior of the biologic neuron, as the linear activation
function is differentiable across the entire domain, these activation functions showed promise in
regression type-analyses. As the linear activation function is differentiable, gradient descent
methods, such as backpropagation, are available for adjusting the weight and bias parameters in
FNNs with linear activation functions. The linear activation function’s use in NN artechitecutres
is a composition of many linear functions forming a linear function approximation for the NN.
These linear models often have trouble learning highly non-linear functions, most famously
failing to learn the XOR function [95].

To overcome the limitations of the linear activation function NN practitioners began to
look at nonlinear activation functions such as the rectified linear unit (ReLU) function and the

hyperbolic tangent (tanh) function. The rectified linear activation function is defined as

0 h<0
Prerv(h) = {h h>0 (7)
with derivative given by
, 0 h<O0
Wraw®={] LI ®)

The hyperbolic tangent function is defined as

45

eh — o=h
Prann(h) = oh 1 g-h)
with derivative given by
(p,tanh(h) =1- (ptanh(h)z- (10)

A plot of the ReLU and hyperbolic tangent activation functions are depicted in Figure 13.

Hyperbolic Tangent Function Rectified Linear Function

Figure 13. Hyperbolic Tangent and Rectified Linear Unit Functions

The hyperbolic tangent closely resembles the threshold function shown in Figure 12,
however the function is differentiable across its domain, consequently, gradient based parameter

update methods are available for parameter training. Furthermore, as this is a nonlinear function,

46

FNNs using the hyperbolic tangent function are able to learn both linear and highly nonlinear
function approximations [95]. The hyperbolic tangent function is an example of a class of
functions known as squashing functions. Hornik et al. proved that given a FNN with a least one
hidden layer using neurons using a squashing function, are able to approximate any Borel
measurable function to any desire accuracy provided a sufficient number of hidden artificial
neurons are present [110].

The ReLU activation function is a modification to the linear activation function in which
the ReLU returns zero when the cumulative input is less than zero. The ReLU is nearly
differentiable across the entire domain with a discontinuity at h = 0 with the added benefit of a
computationally simple derivative, where defined. As the ReLLU is a nonlinear function, it is able
to approximate both linear and highly-nonlinear functions when used in NNs. As the ReLU
function is not differentiable across its entire domain, we can conclude that it is a nonpolynomial
function. Leshno et al. extended the work of Hornik et al. and proved a more general result,
given a FNN with a least one hidden layer using neurons with a nonpolynomial activation
function, these networks are able to approximate any Borel measurable function to any desired
accuracy provided a sufficient number of hidden artificial neurons are present [111].

Leshno et al, and Hornik et al. conclude that any failure of a FNN to adequately learn a
function approximation to the desired degree of accuracy can be attributed to insufficient
learning, an insufficient number of hidden neurons, or a stochastic (probabilistic) relationship
between the input-output data. Hornik et al. and Leshno et al. consider FNNs as universal
function approximators, however they note, the number of artificial neurons required to meet the
desired degree of accuracy (assuming a non-stochastic mapping between the input-output

features) is a question still to be answered [110], [111].

47

3.5.8 Hyperparameters

We have briefly discussed NNs and described the method underpinning all learning
processes. The specific manner in which NNs operate are controlled by model parameters known
as hyperparameters. The hyperparameters differ from the weight and bias parameters as the
hyperparameters are traditionally not adjusted during training, they are set prior to learning
activities and remain unchanged during the course of learning. Hyperparameters control the
behavior of the NN algorithm and hyperparameter setting values can have varying effects on the
final trained NN model as well as the overall performance of the function approximation. [95],
[112], [113]. The no free lunch theorem prescribes that no machine learning algorithm (to
include NNs) is always universally superior to any other [95], [114]. Consequently, despite the
universal function approximation capabilities of NNs with appropriate activation functions, NN
performance is dependent on the appropriate selection of hyperparameters controlling the
algorithms learning behavior.

We have previously discussed some common NN hyperparameters, such as the activation
function, number of hidden layers, number of neurons per layer, choice of objective function,
etc. We now describe the hyperparameters evaluated in this work.
3.5.8.1 Depth and Width

The universal approximation capability of NNs with one hidden layer using the
appropriate activation functions and a sufficient number of neurons was previously discussed in
section 3.5.3. It may require an exponential number of hidden neurons to approximate a function
to the desired degree of accuracy with a NN with only one hidden layer. Recent work in the NN
field empirically shows that superior results are obtained with deeper NNs in a variety of fields

[115]-[125]. The use of deeper architectures enables the NN to learn intermediate

48

representations of the data within the hidden layers during training. These learned intermediate
representations may be more advantageous to the function approximation desired for the NN
[95].

The number of hidden layers and the number of artificial neurons in each layer are
evaluated. These values are required to be integer values greater than one and we restrict the
number of neurons in any layer to be less than the number of features in the input layer of the
NN. As the depth of the NN architecture, and the number of artificial neurons increase, the
training time is expected to grow. Additionally, the number of neurons per layer and the depth of
the NN are hierarchically related, with only two-hidden layers there cannot be any artificial
neurons in the nonexistent third hidden layer.
3.5.8.2 Dropout

Dropout is a regularization method for preventing overfitting in NNs. Dropout is closely
related to bagging in which independent NN models, each created from different set of training
and test data, are averaged together in a final ensemble model [126]. Bagging is a
computationally expensive process for large NN architectures, dropout is a computationally
inexpensive method capable of scaling to large NNs with an exponentially large number of NN
ensembles [95].

During each training pass through the data with dropout, each input layer and hidden
layer neuron are randomly and independently assigned a masking probability, called the input
dropout rate and the hidden dropout rate respectively. If the masking probability is active the
output from those neurons is suppressed and training continues without the affected neurons
contribution to the NN. Subsequently, the NN is forced to adapt to the removal of the masked

information using the information from non-masked neurons in the network. Through subsequent

49

dropout training iterations of the NN, a large number of different NN structures are evaluated
and their results averaged together into a final ensemble mode. The dropout ensemble models are
not independent, each subsequent network shares information gained from previous NN
generations. Empirical results with NNs trained with dropout regularization indicate that dropout
is a superior regularization method compared to others in preventing overfitting and improving
regularization [95], [127].

Dropout, when employed, requires the specification of the input and hidden dropout rates
hyperparameters prior to training. These values are real-valued numbers greater than zero and
less than one. Differing values of the input and hidden dropout rates are evaluated in this work.
3.5.8.3 Learning Rate

The learning rate hyperparameter was previously discussed in section 3.5.5. This
parameter controls the size of the change in the weights and biases parameters updated during
training to minimize the objective function. Modification to the learning rate controls how
quickly the NN converges to an optimum value. Large learning rates may cause the objective
function, and thus total error, to increase during training, and small learning rate values will
result in slow learning [128].

Often during training the learning rate set at the start of training is too large once the
training error begins to approach its minimum value. Rate annealing is a method for gradually
decreasing the learning rate as the NN proceeds through training. The learning rate parameter is

decreased according to

Ui
= 11
1+ (N * 77amnealing) ()

Ne

50

where 7, is the updated learning rate of the tth iteration of training, 7 is the learning rate, N is the
number of training samples and 1,ppealing 18 the annealing rate, a hyperparameter to be specified
[109], [129].

In NNs with deep architectures a common problem observed is that the weight and bias
gradient of layers closer to the input layer of the network are often much smaller than the
gradient of the weight and bias parameters closer to the output layers. This phenomena is known
as the vanishing gradient problem. Consequently, as the number of layers of a NN, increase the
gradient updates back-propagated to the layers closest to the input layer grow small, slowing the
training of the weights and biases in these layers resulting in slow training of the NN overall. A
method to correct for the vanishing gradient problem is the introduction of a rate decay
hyperparameter which decreases the learning rate of layers later in the network, promoting
increased weight and bias updates in earlier layers. The change of the learning rates as a function

of the layer is given by

n(L) =nx (ndecay)L_l (12)

where n(L) is the learning rate of layer L, and 1gecay 18 the rate decay [109], [129].

The learning rate, rate annealing, and rate decay are hyperparameters evaluated in this
work. The learning rate requires a real-value number greater than one, whereas the rate annealing
and rate decay values require real-values greater than or equal to zero. Note, if the rate annealing
or rate decay values are set to a value of zero, this implies that these leaning enhancements are

not applied to during NN training.

51

3.5.8.4 Momentum

Momentum is a method to improve the training speed of NNs. Momentum enables prior
weight and bias parameter updates to influence future updates in the network. Parameter updates
resulting in a large change to the objective function in previous updates are retained in
subsequent updates to prevent the training algorithm from becoming stuck in local minimums

[109], [130], [131]. Momentum uses a velocity term defined by

0E
Vi1 = UV — Ua_at (13)

: . . .]
where pu is the momentum hyperparameter, v, is the current velocity, n the learning rate, and %

t
is the gradient of the parameters at the current iteration. The velocity modifies the future

parameter updates by
0r11 =0+ V141 (14)

NN training often proceeds quickly in early iterations of the learning algorithm and
subsequently begins to slow as local minima of the objective are encountered, therefore
momentum early in training is less important than momentum later. Momentum is often
increased to a maximum specified value according to the number of training iterations
completed. The momentum procedure is defined by three hyperparameters, momentum start,
momentum ramp, and momentum stable. The momentum start is the initial momentum, the

momentum stable is the final momentum value. The momentum ramp is the number training

52

examples over which the momentum start values is increased to the momentum stable value
[109].

The momentum start, stable, and ramp values are all hyperparameter values considered in
this work. The momentum start and stable values are required to be real values greater than or
equal to zero, and the momentum ramp values is required to be a positive integer value. Values
of momentum stable of zero indicate that the momentum will remain constant over the course of
training and when both momentum start and stable are both zero, momentum will not be a
method utilized in training.
3.5.8.5 Nesterov Accelerated Gradient

Nesterov accelerated gradient (NAG) is a modification to the classic momentum
algorithm. NAG incorporates the predicted gradient change of the NN parameters in the next
iteration of training, using first order gradient information in the current iteration. This
modification increases the learning rate for current iterations of training if the predicted future
gradient is large, and decreases the learning rate if the future gradient is predicted to be small
[129]. NAG modifies the velocity equation of momentum adding in an approximation for the

future gradients as shown

d
‘Dt+1 == ,let - T’% [Ot + M‘Ut]. (15)

Subsequent NN parameter updates are computed using the traditional momentum update
equation as shown in Equation (14) [131].

The use of NAG is a hyperparameter studied in this work.

53

3.5.8.6 Adaptive Learning

Manual configuration of the six hyperparameter settings required for the learning rate and
momentum training methods typically requires a tuning process by which subsequent iterations
of hyperparameters are tested against one another until the NN meets adequate performance.
Zeiler [128] devised an adaptive learning procedure in which the search for the best learning rate
and momentum hyperparameters is replaced by an algorithm called ADADELTA. ADADELTA
uses first order information to find appropriate learning rates on a per-feature basis. The Zeiler
adaptive learning algorithm requires the specification of two hyperparameters, epsilon and rho.
The epsilon hyperparameter is an adaptive form of the rate annealing hyperparameter from the
learning rate methodology, and the rho hyperparameter is similar to momentum and acts as a
memory of past parameter updates for subsequent iterations [109]. ADADELTA has empirically
demonstrated robustness to large gradients during training and large noise in the dataset.
Furthermore ADADELTA is adaptive to a wide variety of NN sizes. Specifics regarding the
ADADELTA algorithm can be found in [128].

Epsilon and rho are hyperparameters evaluated in this work. When ADAGRAD is
utilized as a learning rule, the six hyperparameters of learning rate and momentum are not
specified, however, ADAGRAD can use NAG to accelerate training.
3.5.8.7 Activation Function

Activation functions are discussed in section 3.5.7. The choice of ReLU or hyperbolic
tangent activation functions is a hyperparameter evaluated in this work.
3.5.8.8 Parameter Norm Penalties

Parameter norm penalties are a common form of regularization for NNs implemented to

prevent overfitting to training data. These methods work by reducing the capacity of the NN,

54

limiting the efficacy of the learned function approximation. The NN capacity is limited through

the introduction of a parameter norm penalty to the objective function as shown
Er = E + aQ(0) (16)

where Ep is the penalized objective function, E is the total error from Equation (1), Q(80) is a
function of the NN weights and biases, and « is the norm penalty hyperparameter [95].

The most widely implemented NN parameter norm penalty is L? regularization (also
called weight decay, ridge regression, or Tikhonov regularization) where the penalty function is

defined as

1
01,(0) :“L2§||9||% (17)

where ay, is the hyperparameter. L? regularization drives the weights and biases in the NN
toward zero. Considering the combined effect of the error and L? regularization, the only
parameters retained in the final NN are those associated with significantly gradient contributions
resulting in improvement to the objective function value. Parameters associated with gradient
directions along which the overall objective function will not significantly decrease, are decayed
toward zero [95].

L! regularization is used to impose sparsity on the final NN. Sparsity in this context being

values of the NN parameters with an optimal value of zero. The L! penalty function is defined as

55

1
2:1(0) :“L1§||9||1- (18)

where ay 4 is the corresponding hyperparameter [95].

The L! and L? regularization hyperparameters (ay; and ay,) are tested in this work. These
values are required to be greater than or equal to zero, with larger hyperparameter values
corresponding to a larger regularization effect. Hyperparameter values of zero correspond to the
removal of the regularization effect from the objective function.
3.5.8.9 Initial Weight Distribution and Data Scaling

The initial weight distribution describes the manner in which the random initial weight
and bias assignments are made in the NN. The scale of the features within the test and training
data describes the range of each feature within the data. The interplay between the values of the
initial parameters, the scale of each feature, and the activation function is an important
consideration.

Given the hyperbolic tangent activation function, the combined effect of the initial
parameter weights and scale of each feature should fall in the region where the hyperbolic
tangent is approximately linear, [-1, 1]. If the weights are too large or too small or the data is
scaled inappropriately, then the input into the activation functions will occur where the
hyperbolic tangent has small gradients, resulting in slow initial training. Assuming that the initial
parameter values and data scale result in activations occurring in the linear region of the
hyperbolic tangent activation function, learning will proceed quickly during the early training
iterations [130].

The ReLU activation function has a derivative of zero for inputs less than zero, and a

constant derivative for inputs greater than zero. When using the ReLU activation function it is

56

recommended that the effect of the initial weights and data scaling result in positive inputs to the
activation function ensuring that initial training progresses quickly. A common method is to
ensure initial inputs to the ReLU activation function are positive is to ensure that the bias units in
the NN are all initialized with a value of at least 0.10 [95], [130].

There are three common methods for NN weight initialization, drawing from a uniform
distribution on the [-1, 1] interval, drawing from a normal distribution with mean zero and
standard deviation of one, and drawing from an adaptive uniform distribution where the weight
initiation distribution is based on the number of weight and bias parameters in the NN [109].
Common methods for scaling feature within the test and training data are to scale each feature
with the datasets to values of [-1, 1], [-0.5, 0.5] or [0, 1]. The parameter initialization method
selected and the feature scaling are hyperparameters tested in this work.
3.5.8.10 Shuffle Training Data

NN learn most quickly when presented with novel data instances, therefore it is
preferable to continually train the networks with the most unfamiliar data [130]. We are currently
unaware of any method for determining real-time what observations from the training data are
the most novel. A simple heuristic to increase the probability that novel data is presented to NNs
during training is to randomize the training data presented.

Randomization of the order of the training data presented to the NN during training is a
hyperparameter evaluated in this work.
3.5.8.11 Minibatch Size

The minibatch size describes the number of training exemplars presented to the NN
before updates to the weight and bias parameters are made during training. Training methods

which update NN parameters after each individual training example are known as on-line

57

training methods. On-line training methods from a noisy approximation of the gradient direction
at the current NN parameter values. Training in which parameter changes are accumulated over
the entire training dataset are known as batch training methods. Batch training methods are able
to calculate the direction of the true gradient direction at the current NN parameter values.
Minibatch training requires the specification of the number of training examples to evaluate
before parameter updates are made. Minibatch training methods use a less noisy approximation
of the true gradient method than on-line methods, and as the size of the minibatch grows the
approximated gradient direction approaches the true gradient direction [132].

The minibatch size is a hyperparameter evaluated in this work. The minibatch size is
required to be an integer value between on and the number of training observations. A minibatch
size of one implies on-line learning, and a minibatch size equal to the number of training
examples implies batch learning.
3.5.8.12 Average Activation

The average activation imposes a sparsity constraint on the hidden layer neurons. This
sparsity constraint prevents the NN from learning an exact function approximation to the data,
requiring the NN to learn novel ways of representing data within the hidden layers. The average
activation increases the bias on neurons with large activations and decreases the bias on neurons
with small activations [102]. Recall the activation of each neurons in the NN can be represented

by

h= (p(Zv79?+b) (19)

58

where W is the vector of weights acting on the X data into the neuron, b is the bias, and ¢ is the
neuron’s activation function. When average activation sparsity is employed the bias terms for

each neuron are updated according to the following

bty1 = by — nB(hy — p) (20)

Where b, is the current bias value, b, is the updated bias value, 1 is the learning rate, £ is the
sparsity learning rate hyperparameter, h; is the current activation of the neuron and p is the
desired average activation of each neuron (a hyperparameter). The bias adjustments are made
after the backward pass in backpropagation [102].

Average activation with the sparsity learning rate (£) and desired average activation (p)
are hyperparameters evaluated in this work. The sparsity learning rate is required to be a real
number greater than or equal to zero, and the average activation is required to be a real number.
The desired average activation hyperparameter is tied to the choice of activation function which
dictates the possible range of output values of each neuron.
3.5.8.13 Max W?

The max W2 hyperparameter imposes an upper limit to the sum of the square of the
incoming weights values into each neuron in the network. This is similar to the L? regularization
discussed in section 3.5.8.8, however the max W2 imposes an upper limit to each individual
neuron and this hyperparameter is not a part of the NN objective function. Limiting the incoming
weights is especially useful when the unbounded ReLU activation function is utilized in the NN

to prevent weights from growing exponentially.

59

Max W2 is a hyperparameter evaluated in this work. The max W? value is required to be

a real number greater than zero.

3.6 Autoencoders

Goodfellow et al. [95] describes an autoencoder as “The quintessential example of a
representation learning algorithm.” Autoencoders, (also known as autoassociative NNs or
replicator NNs) are a type of FNN designed to perform an identity mapping of the input data. In
other words, ANNs copy the input data to the output data. The ANN is composed of two parts,
the encoder function mapping the input data into a representation internal to the NN, or code and
the decoder function mapping from the code space back to the original. Let h € R™*S represent
the code representation internal to the NN, the function h = fg;,c04. (%, @) is the mapping from
the natural data space (x € R™*P) to the code space (h € R™*¥), and the function
X = fpecode (I, @) is the mapping back to the natural space from the coded internal
representation [95].

ANNSs with the capacity to learn an exact identity mapping without error are not very
useful as there would be no modification to data already available for analysis. Autoencoders are
designed with constraints restricting their capability to approximate the identity function. By
limiting their capacity, the autoencoder is forced to prioritize which aspects of the data set to
learn to reproduce, in doing so, also learning properties of the data of interest to analysts. The
efficacy of autoencoders as a data analysis tool are dependent on the constraints placed limiting
their capability to exactly reproduce the data [95], [133].

The undercomplete autoencoder neural network (UANN) restricts the networks capacity
to learn an exact identity mapping by imposing a restriction on the dimensionality of the code

representation of the data. The restriction is obtained through the introduction of a bottleneck

60

layer in the NN as shown in Figure 14. The bottleneck layer has fewer neurons than the
input/output data, consequently the internal code representation of the data h € R™*S has a
smaller dimension than the input data, s < p. The internal dimensional reduction of the
bottleneck layer forces the NN recreate higher dimensional output data from the compressed
representation. In order for the ANN to minimize the resultant error during training, it must learn

the most salient features of the data to recreate the input data at the output layer.

r . 1

Input Layer | Bottleneck Layer Output Layer
1 .'_‘_l

encoder function: Code Layer decoder function
h= ’FErrcudc(x’ 8) h € R"™ x= fD?cadv(h’ 9)

Figure 14. Undercomplete Autoencoder Nerual Network adapted from [103]

The NN in essence compresses redundant information in the bottleneck layer, only
retaining the patterns in the data useful for differentiation of non-redundant information [52],
[95], [133]. As the capacity of the autoencoder is limited by the bottleneck layer, so too is the

capability of the network to retain information within the data used for differentiation of non-

61

redundant information. Consequently, the ANN will reproduce common data with less error than
rare (anomalous) data [56].

Autoencoders have seen wide adoption in data reduction tasks as well as information
retrieval tasks. In addition, autoencoders have also shown promise as a data preprocessing tool in
classification tasks such as computer image recognition [134]. Japkowicz et al. [52] was the first
to utilize ANN for the task of anomaly detection. Their research utilized supervised data sets for
anomaly detection. In the Japkowicz et al. approach, a semi-supervised data subset composed
entirely of non-anomalous observations was used to train the autoencoder. Once trained to the
normal data, the autoencoder was evaluated against the anomalous observations and compared to
other common anomaly detection methods. Compared to the traditional anomaly detection
methods, the autoencoder method performed better than or equal the other methods examined in
three different domain areas [52].

Hawkins et al. first used ANN to detect anomalies in an unsupervised dataset. The
datasets contained class labels, however during NN training, these labels were omitted from
consideration. The labels were only used to evaluate the performance of the NNs after training.
In the Hawkins et al. work, the datasets studied were first split into two distinct subsets, a
training and testing set of data. The training set being used for parameter updates, and the test set
for evaluating performance of the NN. The NN objective function used in Hawkins et al. was the

mean square error defined as

1 n P
MSE = —z Z(xi'j — fi,j)z (21)
np 4
i=1 j=1

62

where p is the number of features, n is the number of observations, x; ; is the true value of the
ith observation for the jth feature, and %; ; is the ANN predicted value.

In addition to using unsupervised datasets, the Hawkins et al. work introduced the
concept of using a score based method, known as the outlier factor (OF), for identifying outliers
in datasets analyzed with autoencoders. The outlier factor for each observation in the dataset is

the average reconstruction error over all features defined as

p
1 2
OFi = - (xi‘j - xi,j) (22)
p ijl

where p is the number of features, x; ; is the true value of the ith observation for the jth feature,
and X; ; is the ANN predicted value. The OF is evaluated for all observations in the dataset using
a trained autoencoder, with higher OF values considered to be more likely anomalous data [56].
The Hawkins et al. work, is the earliest found example of a purely unsupervised anomaly
detection method using ANNs. The autoencoder methods established in Hawkins et al. were
tested against traditional anomaly detection methods in Williams et al. using four datasets, one of
which was in the domain of network intrusion detection. In the Williams et al. work, the ANN
methods performed comparably to the traditionally anomaly methods tested and in the case of
network intrusion detection, the ANN method’s performance surpassed the alternate traditional

anomaly detection methods [87].

3.7 Hyperparameter Design of Experiments

Identification of the best hyperparameter settings for a NN is a non-trivial task.

Generally, the performance of multiple NNs with different hyperparameters are compared to one

63

another using the generalization error of the test dataset as a metric. The NN with the smallest
generalization error is declared the best, and those hyperparameters are selected as the optimum
for the particular problem and dataset analyzed. Also of interest to NN practitioners are the
computer resource required as well as the time required for NN training, both of which are
affected by the hyperparameters, but are also highly depended on the computer system used to
perform training [95]. Four basic approaches are employed for hyperparameter optimization,
manual, grid, random, and model-based.

Manual hyperparameter selection is perhaps the most widely utilized optimization
scheme. In manual optimization, NN subject matter experts manually select hyperparameter
values based on prior experience and run the NNs examining the generalization error for each
NN configuration. The NN subject matter experts continue to adjust the NN hyperparameters
until a suitable hyperparameter set is found in a serial trial-and-error process. Manual
hyperparameter selection can be an efficient process as the subject matter experts can quickly
diagnose deviations from the expected NN performance and make the appropriate corrections
[135]. The use of manual hyperparameter search is ill suited for NN novices, and limits the
reproducibility of results across differing datasets and research domains, however manual search
does give the NN subject matter experts insight into the effects of hyperparameters on the
learning process. Furthermore, manual search is a technically simple process and requires no
additional resources beyond those required to execute NN training [136].

The methods of grid and random hyperparameter selection are similar processes. Grid
search involves the selection of a small finite set of values for each of the hyperparameters of
interest. Then, a NN is trained for each Cartesian product of the set of values for each

hyperparameter. In the DOE literature this is known as a full factorial experiment. Each

64

combination of hyperparameter values is tested and the combination of hyperparameters with the
best generalization error is selected. In random hyperparameter search a marginal distribution for
each hyperparameter of interest is defined. Then hyperparameter values are randomly drawn
from the distributions, and a NN with those hyperparameter values is trained. Random search of
the hyperparameter space continues until a suitable set of hyperparameters is found, or a
predefined search time expires. Grid searches typically only allow a small number of
hyperparameters at a few levels to be explored due to the curse of dimensionality, as the number
of hyperparameters and the number of values for each hyperparameter increase, the total number
of potential NNs grows exponentially [95]. Random search methods are more efficient than grid
search in both the number of hyperparameters explored and have demonstrated superior
performance in selection of the hyperparameter values resulting in decreased generalization error
[136].

The selection of hyperparameters for a NN can be viewed as an optimization problem in
which we seek a set of hyperparameters, A, resulting in the smallest generalization error. In
model hyperparameter selection we construct a model approximation of the generalization error
as a function of the hyperparameters and use gradient-based optimization methods to determine
the optimal set of hyperparameter values for use in the NN [95]. There are numerous methods to
construct the hyperparameter-generalization model as discussed in [137]. Numerous authors
have used DOE as a method for determining the optimal hyperparameters for NNs in a variety of
domain areas as documented in [138]-[144], [145, Ch. 19], [146].

DOE is the scientific process of planning, executing, and analyzing experiments to ensure
that the appropriate data is collected to draw objectively valid conclusions regarding the

underlying process of study. A designed experiment is a series of individual tests in which

65

purposeful changes are made to factors to observe the effect on the measured response. A factor
is an independent variable with different levels which the experimenter changes to elicit a change
in the response. What distinguishes designed experiments from traditional experiments is in a
designed experiment the individual tests are selected strategically so when analyzed collectively
as an experiment, the experimenter gains the greatest amount of information regarding the
relationship between the factors and response, in the minimum number of experimental runs
[147].

In the context of NN hyperparameter optimization, the process of study we are interested
in is the relationship between the change in hyperparameters and the resultant generalization
error of the NN. The factors are the hyperparameters, the levels are the values of each
hyperparameter, and the response is the generalization error. A test is the evaluation of one NN
with the experimental prescribed hyperparameter settings. The hyperparameter designed
experiment is the set of all NNs evaluated.

The overall goal of a designed experiment is to fit a statistical model analytically
describing the relationship between the factors and the response. DOE utilizes analysis of
variance (ANOVA) to determine the statistical model. ANOVA enables the experimenter to
attribute changes in the response to individual changes to the levels of a factor. Once a suitable
analytic model relating the factors to the response is found, gradient-based optimization are
applied and the hyperparameter levels resulting in the lowest generalization error are estimated.
As the derived analytic model is only an approximation of the true function relating the
hyperparameters to the generalization error, there is uncertainty around the estimated
hyperparameter levels, validation testing is strongly advised. Additional information regarding

ANOVA can be found in [147], [148].

66

The core principal underpinning DOE methodology is the development of a sound
experiment. When constructing an experiment, the experimenter implicitly specifies the potential
forms of the final statistical model relating the factors to the response. Complex statistical
models with high-order interactions and nonlinear effects require experiments with a larger
number tests, whereas simple statistical models can be obtained with smaller experiments.
Classic DOE methods advocate for a sequential experimental process, in which simple smaller
experiments, called screening experiments, are first conducted to determine if factors affect the
response. Screening experiments enable the experimenter to remove factors that do have a
statistically and/or practical effect on the response thereby reducing the size of subsequent
experiments. Once insignificant factors are removed, follow-on experiments are used to
determine the appropriate statistical model relating the retained significant factors to the
response. Removing the insignificant factors enables the experimenter to disregard regions of the
experimental space where factors have no discernable impact on the response resulting in more

efficient experiments [147]. Additional information regarding DOE can be found in [147].

67

IV. Methodology

4.1 Chapter Overview

In this chapter we present the methodology employed to derive the ANN anomaly
detector for the IDPS log file dataset. We begin with a brief exploratory analysis of the IDPS log
dataset to select appropriate features from that dataset for use in UANN analysis. Once the
appropriate features are identified, the reduced dataset is adapted for us in a NN and split into
three distinct training and testing subsets for NN evaluation. Screening designed experiments are
employed to identify the categorical hyperparameter levels significant for minimization of the
generalization error. Once the categorical hyperparameter levels are identified we create
additional designed experiments to optimize the numeric hyperparameter values minimizing the
generalization error across the three training-testing subsets using statistical models. The
hyperparameter values are validated by comparing the statistical model predicted generalization
error to the actual generalization error obtained using UANNs with the statistical model
predicted optimum hyperparameter values. After identifying a validated set of optimum
hyperparameter values, we train an UANN with those values on the full dataset and calculate the
outlier factor score for each observation. We display the results graphically for subsequent
computer security expert analysis.

For the data preparation this work utilized the R programming language [149] and the
RStudio integrated development environment (IDE) [150]. We use JMP PRO software to build
the screening designed experiment test designs and perform statistical analysis [151]. The
MATLAB Statistics and Machine Learning Toolbox [152] is utilized for the creation of the

optimization experimental test design.

68

4.2 Neural Network Data Preparation

The IDPS log file data contains 50,000 data observations described by 93 features. Table
18 located in Appendix A, summarizes the number of unique observations, the number of
missing observations, and feature data type for each of the 93 features in the IDPS log file
dataset. Of the 93 features, 12 are constant valued, and are removed from the dataset without
loss of information. After discussions with the agency sponsoring this work, we select the

features shown in Table 2 for UANN anomaly detection.

Table 2. ANN Anomaly Detection Features

Number of Missing Number of Unique

Feature Class Observations Observations
CATEGORYBEHAVIOR character 205 14
CATEGORYOBJECT character 222 10
CATEGORYSIGNIFICANCE character 134 10
CATEGORY_ EVENT character 64 34
COUNTRY_SRC character 1192 49
EVENTID DEVICE character 0 23
EVENTNAME character 0 47
SEVERITY AGENT character 0 3
IP_ DST character 15701 25208
IP_SRC character 0 9063
PORT_DST integer 4409 7543
PORT _SRC integer 22255 4620
PRIORITY_EVENT integer 0 7
COUNT EVENT integer 0 565

The ANN dataset contains 50,000 observations described by the 14 features. To adapt the
dataset for use with NNs we first impute the missing observations. For the all character features

except IP_DST, we replace missing observations with the text string ‘missing’ using [149],

[150]. For each of the IP_DST, IP_SRC, PORT_DST and PORT_SRC features, we add a column

69

to the dataset with an indicator value of ‘1’ indicating missing data, and a value of ‘0’ for non-
missing data. Missing data imputation is completed with [153]. No additional features require
missing data imputation.

The IP_DST, IP_SRC features describe the destination and source IP addresses of the
network traffic generating the log file. Within the IDPS log file dataset the 32-bit IP addresses
are provided in the human readable notation, for example “127.012.252.001”, in which each
three-digit number grouping is the decimal representation of an 8-bit number. The IP addresses
are converted from the human readable notation into their 32-bit binary value representation
using [154]. The 32-bit binary numbers are then split into 32 unique integer valued columns
using [153], where each column corresponds to a digit of the binary number. Each unique IP
address in the final ANN dataset is represented by 33 columns, one column indicating missing
values, and 32 columns representing the 32-bit binary representation of the IP addresses.

The PORT_SRC and PORT_SRC features describe the computer port numbers of the
source and destination network traffic. The port numbers provided are the decimal representation
of 16-bit binary numbers. The decimal valued port number are converted to their 16-bit binary
representation using [155], then split into 16 unique integer valued columns using [153]. Each
port number in the final UANN dataset is represented by 17 integer valued columns, one column
indicating missing observations, and 16 columns representing the 16-bit binary representation of
the port number.

The remaining character columns are converted into numeric columns using one-hot
encoding. One-hot encoding creates an integer valued indicator column for every unique
observations within all character features. For each observation within a feature, the

corresponding indicator column where the observation value matches the indicator column

70

receives a value of “1” with all other indicator columns a value of “0”. Figure 15 depicts an

example of the one-hot encoding process using the notional character features of Animal and

Color.
Animal Color Animal_Dog Animal_Cat Animal_Missing Color_Black Color_Orange Color_Missing
Dog Black 1 0 0 1 0 0
Missing Black 0 0 1 1 0 0
Cat Orange One-Hot 0 1 0 0 1 0
Missing Missing 0 0 1 0 0 1
Dog Missing 1 0 0 0 0 1

Figure 15. One-Hot Encoding

As evident from Figure 15, the dataset after one-hot encoding retains the same number of
observations, however the number of features increases. One-hot encoding the remaining
character features in the IDPS log file dataset using [156] provides us our final UANN dataset
containing 50,000 observations described by 292 numeric features.

We continue NN data preparation by randomly splitting the UANN dataset into three test
and training subsets. Each subset contains all 50,000 observations, with 85% of observations
randomly assigned to the training set and the 15% remaining to the test set. We utilize multiple
sets of training and test data to ensure the final UANN selected performs well agnostic to the
random splitting process. Recall, the dataset is unsupervised and is likely to contain anomalous
observations. During splitting, there exists the chance that anomalous observations are assigned
to the training dataset. Consequently, the UANN may learn to reconstruct the anomalous data,
resulting in low outlier factor scores for those observations. Ensuring the UANN generalizes well
to all training-testing sets reduces the probability of learning the anomalous observations and

maximizes the regularization capability of the NN.

71

We conclude the UANN data preparation with data scaling. Each training and test subset

of data is independently scaled to the intervals discussed in section 3.5.8.9 using [157].

4.3 Hyperparameter Screening Designed Experiments

Screening designed experiments are used to identify the UANN hyperparameters which
significantly affect the generalization error. Utilization of screening experiments prior to
hyperparameter optimization improves the efficiency of subsequent experiments by only
focusing on the hyperparameters with significant effect on the generalization error. Table 3
summarizes the hyperparameters and the levels evaluated in the main effect screening designed

experiments.

72

Table 3. Main Effect Screening Test Design Factors

Hyperparameter Type Levels
Number of Hidden Layers Integer 1,2,3
Dropout Categorical True, False
Input Dropout Rate Continuous 0.2,0.8
Hidden Dropout Rate Continuous 0.2,0.8
Adaptive Rate Categorical True, False
Rho Continuous 0.9, 0.999
Epsilon Continuous 1E-10, 1E-6
Activation Function Categorical ReLU, Tanh
Neurons Per Hidden Layer Integer 73,213
Learning Rate Continuous 5E-5, 5E-2
Rate Annealing Continuous 0, 1E-4
Rate Decay Continuous 0,2
Momentum Start Continuous 0.25,0.75
Momentum Stable Continuous 0.9, 0.999
Momentum Ramp Continuous 500, 50000
Nesterov Accelerated Gradient Categorical True, False
L1 Continuous 0,1
L2 Continuous 0,1
Max W2 Continuous 5, 500
Initial Weight Distribution Categorical Uniform, Uniform Adaptive, Normal
Average Activation Continuous 0.05, 0.5
Sparsity Beta Continuous 0.5,2
Minibatch Size Integer 1, 10000
Shuffle Training Data Categorical True, False
Data Scale Categorical [0, 1], [-0.5, 0.5], [-1, 1]
Test/Training Set Categorical 1,2,3

Ideally, we would pursue one large designed experiment to screen all the
hyperparameters listed in Table 3, however this is not possible due to the existence of
dependencies amongst the hyperparameters. When adaptive rate is set to the value of true, then
we are required to also specify the rho and epsilon hyperparameters. If the adaptive rate is set to
false, the learning rate, rate annealing, rate decay, momentum start, momentum stable, and

moment ramp are required. The adaptive rate hyperparameter inherently affects which set of

73

hyperparameters require specification. Similarly, if dropout is set to true, we are required to
specify the input dropout rate, and the hidden dropout rate, whereas if dropout is set to false, the
dropout rates are not required. When testing more than one hidden layer we are required to
specify the number of hidden neurons for each hidden layer, and if dropout is set to true, we are
also required to specify a hidden dropout ratio for each hidden layer. Figure 16 outlines the
hyperparameter dependencies. In order to perform hyperparameter screening, we first must

identify the appropriate design considering the dependencies of the hyperparameters.

Number of
Hidden Layers
%\
Dropout Dropout Dropout
Tru False Trug- \Ealsc Trug- \Ealsc
e ™~ e ™~
Adaptive Adaptive Adaptive Adaptive Adaptive Adaptive
Rate Rate Rate Rate Rate Rate
I | | I [|
True‘ False True‘ False True False True False True False True False
+ + |
D MEIDOAR | | | D MEIAR | | D ME2DOAR| | | D ME2AR | || D ME3DOAR | | D ME3AR
D MEIDO - | D_MEI < | D_ME2DO [+ | D ME2 * D ME3DO < | D _ME3 e

Figure 16. Hyperparameter Dependencies

To account for the hyperparameter dependencies we specify 12 screening designed
experiments. Within Figure 16, each grey filled box corresponds to a different screening
experimental test design constructed using the hyperparameters and levels in Table 3. The test
designs are computer generated D-Optimal main effects only screening designs augmented with

computer selected center points, constructed using [151]. Computer generated designs are

74

utilized due to the mixture of continuous, categorical, and integer hyperparameters, as well as an
inconsistent number of levels tested for each hyperparameter. D-Optimal designs are utilized to
minimize the size of the confidence interval around each hyperparameter estimate. Each
screening experiment is designed to detect hyperparameter significance (¢ = 0.05 level) with
80% probability as shown in the power column of Table 4 which displays basic test design
information for each test design. We augment the main effects only design with additional center
points to achieve the desired hyperparameter power. The number of required center points and
the total number of required test points varies due to the changing number of hyperparameters
evaluated across the test designs. The D-Efficiency metric measures the relative D-optimality of
each test design compared to an ideal design. The 12 hyperparameter dependency test designs

are provided in Appendices B-M.

Table 4. D-Optimal Main Effect Screening Design Metrics (a=0.05)

Test Design Test Points Minimum Hyperparameter Power D-Efficiency

D MEIDOAR 30 88.3% 87.6%
D MEIDO 36 95.3% 88.6%
D MEIAR 30 90.1% 88.6%
D MEI1 32 88.5% 86.6%
D ME2DOAR 30 84.8% 86.3%
D ME2DO 36 93.6% 86.9%
D ME2AR 30 90.8% 88.8%
D ME2 36 95.2% 88.7%
D ME3DOAR 37 95.6% 86.4%
D ME3DO 37 92.4% 84.4%
D ME3AR 31 89.5% 86.6%
D ME3 37 95.4% 86.7%

75

After test design execution we utilize JMP to select the test design architecture with the
smallest generalization error for selection of the most promising mutually exclusive UANN
architecture for subsequent hyperparameter screening. The D ME1DOAR architecture is
identified as having the best generalization error (see section 5.2).

To screen the categorical hyperparameters of the D ME1DOAR design, we augment the
design with additional test points to detect 2-way interactions between hyperparameters and add
center points to the test design to detect possible curvature in the numeric hyperparameters. To
detect 2-way interactions amongst hyperparameter we use JMP’s design augmentation using D-
efficiency as the design generation criteria. Design augmentation for 2-way interaction adds 218
test points to the D ME1DOAR test design. In order to more robustly capture potential curvature
for continuous hyperparameters we construct a full factorial designed experiment for the
D MEI1IDOAR categorical features in which the continuous features are all set to the center point
value. Table 5 outlines the hyperparameters and levels for the full factorial center point design.
Hyperparameters marked with the superscript “+” are those factors which are fixed as a result of

the selection of the D MEIDOAR test design for augmentation.

76

Table 5. Center Point Full Factorial Design Factors

Hyperparameter Type Levels
Number Hidden Layers” Integer 1
Dropout” Categorical True
Input Dropout Rate Continuous 0.5
Hidden Dropout Rate Continuous 0.5
Adaptive Rate” Categorical True
Rho Continuous 0.99
Epsilon Continuous 1.00E-08
Activation Function Categorical ReLU, Tanh
Neurons Per Hidden Layer Integer 143
Nesterov Accelerated Gradient Categorical True, False
L1 Continuous 0.5
L2 Continuous 0.5
Max W2 Continuous 252.2
Initial Weight Distribution Categorical Uniform, Uniform Adaptive, Normal
Average Activation Continuous 0.275
Sparsity Beta Continuous 1.25
Minibatch Size Integer 5000
Shuffle Training Data Categorical True, False
Data Scale Categorical [0, 1], [-1, 1]
Test/Training Set Categorical 1,2,3

The center point full factorial design requires an additional 144 test points. The 2-way interaction
augmentation and the center point augmentation designs are added to the D ME1DOAR design
resulting in the addition of 362 additional test points to the 30 previously completed in during
D MEI1DOAR testing. The final hyperparameter screening design has 392 test points, and can
detect curvature as well as hyperparameter and all 2-way hyperparameter interaction effect
significance (@ = 0.05 level) with 99.9% probability. The full screening design is provided in
Appendix N.

We analyze the hyperparameter screening design using ANOVA at the « = 0.05 level of

significance. Our goal is to determine what levels of the categorical hyperparameters minimize

77

generalization error. In subsequent hyperparameter optimization we consider the numeric
hyperparameters, and only two categorical hyperparameters, the activation function, and the
test/training set. For the other categorical features, we set the hyperparameter values at the

screening design identified optimum levels.

4.4 Hyperparameter Optimization Designed Experiments

The goal of hyperparameter optimization is to determine the numeric hyperparameter
values resulting in the minimum generalization error. We use a conventional response surface
design, the orthogonal central composite design (CCD) created using [152], to optimize the
numeric hyperparameters. The CCD design selected for the numeric hyperparameter
optimization is based around a 2}.;v, fractional factorial requiring 128 factorial test points. To
maintain orthogonality the design is augmented with 22 axial points and 28 center points,

bringing the total test points for numeric hyperparameter optimization to 178. Table 6 lays out

the numeric hyperparameter levels tested in the CCD.

Table 6. Numeric CCD Hyperparameter Factors and Levels

Levels

Lower Axial Lower Factorial Center Upper Factorial Upper Axial

Hyperparameter -3.3635 -1 0 1 3.3635
Neurons Per Hidden Layer 10 32 42 52 73

Rho 0.800 0.870 0.900 0.930 1.000
Epsilon 1.00E-15 2.23E-13 3.16E-13 4.10E-13 1.00E-10
Input Dropout Rate 0.010 0.768 0.105 0.133 0.200
Hidden Dropout Rate 0.010 0.768 0.105 0.133 0.200

L1 0.00E+00 2.97E-06 1.00E-05 1.70E-05 1.00E-07
L2 0.00E+00 2.97E-06 1.00E-05 1.70E-05 1.00E-07
Max W2 1 2.405 3.000 3.595 5.000
Average Activation 0.005 0.021 0.028 0.034 0.050
Sparsity Beta 0.05 0.208 0.275 0.342 0.5
Minibatch Size 1 3513 5000 6487 10000

78

The 178 test point CCD numeric hyperparameter optimization experiment is replicated
for each activation function (ReLU and Tanh) level as well as replicated for each of the
test/training sets (1, 2, 3). Table 7 depicts the categorical hyperparameter levels tested in the

CCD optimization designed experiment.

Table 7. Categorical CCD Hyperparameter Factors and Levels

Hyperparameter Levels
Activation Function RelU, Tanh
Test/Training Set 1,2,3
Nesterov Accelerated Gradient True
Initial Weight Distribution Uniform
Shuffle Training Data True
Data Scale [0, 1]

The CCD hyperparameter optimization test design contains 1068 total test points and is provided
in Appendix O.

After executing the CCD designed experiment we use ANOVA to construct two
statistical models of the generalization error as a function of the hyperparameters. The first
model is the full model containing all hyperparameters (except test/train sets), all 2-way
hyperparameter interactions, and all numeric hyperparameter quadratic effects. The test/training
set is not considered as a hyperparameter to ensure the final statistical model fits well regardless
of the test/training set considered. The second model is a parsimonious model containing only
significant hyperparameters, interactions, and quadratic effects (¢ = 0.05 level). For both the
full and parsimonious statistical models, we use JMP to identify the optimum hyperparameter
values resulting in the lowest generalization error. We then use the statistical model predicted

optimum hyperparameter values to construct UANNs and validate the statistical model predicted

79

generalization error to the actual generalization error obtained using UANNs when tested against
all three test/training sets. If the generalization error of the statistical model is consistent with the
generalization error of the UANNSs, and the generalization errors are consistent for each of the
test/training sets we conclude hyperparameter optimization. If previous conditions do not hold,
we use the information gained from the statistical models to modify the hyperparameter levels
and execute a follow-on phase of hyperparameter optimization testing using a new 1068 test
point CCD. We continue to iterate through CCD experimental designs until a suitable set of
hyperparameter values are found resulting in consistent generalization error between test/training
sets and similar ANOVA model generalization error prediction with actual UANN generalization

CITors.

4.5 Graphical Outlier Detection

After finding the optimum hyperparameter values, we proceed with anomaly detection.
We first scale the entire UANN dataset into the optimum interval found during the
hyperparameter screening designed experiment. The dataset used for anomaly detection is not
split into training and test subsets, instead, to evaluate the UANN reconstruction performance we
use a random dataset. For each of the 292 feature within the UANN dataset, we randomly and
independently select one of the 50,000 data values. After sampling a data value from each
feature, we combine the randomly drawn data points into a random observation. We repeat this
process until we obtain the random dataset composed of 50,000 observations. This random
dataset is then scaled into the same interval as the UANN dataset.

ANN with a bottleneck layer are forced to reconstruct the most salient features of the
dataset from a compressed internal representation. Random data should have no salient features

when reconstructed by an UANN. Comparing the distribution of outlier factor scores points from

80

the real dataset and a random dataset enables us to validate that the UANN is effectively learning
the hidden structures within the real data.

We use the full scaled UANN dataset to train the UANN with the optimum
hyperparameter values obtained in the screening and optimization experimental designs. Once
the UANN is trained, we calculate the outlier factor score of each observation within the UANN
dataset and the random dataset. The outlier factor scores for each UANN dataset observation and
the random dataset are plotted on a histogram for visual identification of anomalous
observations. The UANN dataset outlier factor scores closest to the outlier factor score of the

random data are declared as anomalous observations.

81

V. Results

5.1 Chapter Overview

In this chapter we summarize notable results from the hyperparameter dependency
testing, hyperparameter screening ANOVA, and hyperparameter optimization ANOVA. We use
a confidence level of 0.05 for all statistical evaluations. The identified optimum hyperparameter
values are used to construct the UANN for anomaly detection. We present the histogram of the
UANN dataset outlier factor scores and the random data factor scores for anomaly detection. The
10 observations with the largest outlier factor scores are displayed.

The NNs in this work are constructed using the h20.ai software [158] within the RStudio
IDE [150], using the R programming language [149]. All UANNSs are trained using the MSE
objective function (Equation (21)). UANNSs are trained until we meet one of the following
training termination criteria: training time exceeds 1-hour (3,600 seconds), 100 training epochs,
the MSE of the training set decreases below 1 * 1078, or the training MSE fails to change by at

least 1 x 1078 for five consecutive epochs.

5.2 Hyperparameter Screening Results

A summary of the results of the hyperparameter dependency testing is displayed in Table
8. During UANN training we discovered using some hyperparameter values resulted in
exponential growth of the weight and bias with the network. This led to unstable NN
architectures where training was prematurely terminated. Generally we observe when the
adaptive rate hyperparameter is set to the true level, (test designs containing ‘AR’ within their

name) the stability of the UANN improves. This may be due to inappropriate hyperparameter

82

values for the momentum and learning rate, however, more testing is required to substantiate this
claim.
The average test dataset MSE (generalization error) is presented along with the standard
deviation for those UANNs which converged (left of dashed line). The D ME1DOAR and
D ME3DOAR designs show the lowest average generalization error and the lowest standard
deviations. Also notable is the poor average generalization error and large standard deviations of
the D ME1AR and D ME3AR designs. The poor performance of these designs is caused by a
few outlier points. The presence of the dropout (test designs containing ‘DO’ within their name),
appears to improve regularization as all the test designs with outliers do not utilize dropout.
After removing the outliers we obtain the average generalization errors and standard
deviation show right of the dashed line in Table 8. We observe average generalization errors and

standard deviations of the same magnitude across the 12 test designs.

Table 8. Hyperparameter Dependency UANN Results Summary

Average Standard | Average Standard

Test Unstable Test Deviation : Qutliers Test Deviation

Test Design Points NNs MSE Test MSE Removed MSE Test MSE
D_MEIDOAR 30 3 0.320 0.246 : 0 0.320 0.246
D_MEIDO 36 11 0.389 0.265 0 0.389 0.265
D_MEIAR 30 2 49.889 204.319 3 0.399 0.364
D_MEI 32 11 0.530 0.421 0 0.530 0.421
D_ME2DOAR 30 0 0.380 0.278 0 0.380 0.278
D_ME2DO 36 14 0.684 0.760 0 0.684 0.760
D_ME2AR 30 0 2.492 11.149 1 0.458 0.401
D_ME2 36 10 1.168 2.049 1 0.790 0.713
D ME3DOAR 37 1 0.322 0.238 0 0.322 0.238
D ME3DO 37 17 0.463 0.432 0 0.463 0.432
D_ME3AR 31 1 116.357 634.418 1 0.529 0.615
D ME3 37 16 1.242 2.937 1 0.606 0.390

83

Figure 17 depicts a plot of the generalization error for each of the 12 hyperparameter
dependency test designs after outlier removal. There is insufficient evidence to claim the

D MEIDOAR test design has the smallest average generalization error statistically.

Generalization Error vs Test Design

[}
=
= . *
N * ! d .
=
S . ° . .
=1 . . s .
o ') .]] » s
4] H $. s ! L
e 3§ % 3 i o+ ¢ 0 I
L]
N S I T T T T T T TR I
b (2 o /4 o] o - (2 " o - e~
= e [i = - a i = " a s
= — — O = o~ o) = o £ Q
N f 5) | il 24)) 54l nd o
:I :I E :| :I E :I :I E
:l :l SI
Test Design

Observations with test MSE greater than 3.37 Removed

Figure 17. Generalization Error of Hyperparameter Dependency UANNSs

Of the smallest 20 generalization errors observed, five (including the smallest observed

generalization error) are found to be from UANNSs within the D ME1DOAR test design, as

shown in Figure 18.

84

Top 20 Generalization Errors
01,)_ * = @
s *
. .
L .

= 0.114 .

=

=

N 0.104 i

==

5 .

o

O

5 0.09
L]
Lo I =A T o T o0 B = B B I o B o I o I e R o - = I o S T o o R S TR)
L T B T O T D =T = = e B A I
Tl 0 0T T e T T T =
¥ 2 R 2 Q0 0 M % & £ 2 O 2 &2 0 2 &8 &2
“ < J <0 Q0 <8 < g B << <A< 5
A= 0 A8 = =68 X 0o 2 o8 om0 e
:EE::::_:‘EE I:\E\KEE:\:\:
) — - e ot -
- = | = 2 2 =2 @ 0 T2 Hom = ¢, =2 | o -
H AR B AASEEAS Eg 2 o™ =
= - = = =527 2 | = & =2 = =) =
A ~! = n - :-J: A A

Test Design Point

Figure 18. Top 20 Hyperparameter Dependency UANNs Generalization Errors

Analysis in JMP indicates the D ME1DOAR hyperparameter dependency design contains the
most desirable generalization errors, therefore, the D ME1DOAR design is selected for
hyperparameter screening.

Prior to conducting a more comprehensive screening experiment, we analyzed the
D MEIDOAR experiment using ANOVA. Analysis revealed the most signifigant
hyperparameter to the generalization error was the data scale. Scaling the data to the [-1, 1]
interval produced signficantly worse generalization error. For subsequent testing we removed
this level from the data scale hyperparameter, and augmented the D MEIDOAR design as
discussed in section 4.3.

Analysis of the D ME1DOAR screening designed experiment used forward stepwise

regression in which only model terms with a significance less than the « = 0.05 level are

85

included. The initial models evaluated contained significant outliers, which were removed. After
outlier removal the forward stepwise regression was recompleted. The outlier removal and
stepwise regression was repeated until a suitable model was found. The derived statistical model
required the removal of 10 outliers. This model contained all categorical hyperparameters except
for shuffle training data and all numeric hyperparameters except for the L2 hyperparameter.
These model terms were added to the model, despite their lack of significance, to obtain the final
model for the screening experiment design. Non-significant model terms are retained to identify
the hyperparameter levels with the lowest generalization error for all evaluated hyperparameters.
We analyzed the statistical model to determine the hyperparameter values resulting in the

smallest estimated generalization error. The identified values are displayed in Table 9.

Table 9. Optimum Screening Design Hyperparameter Levels

Hyperparameter Level
Input Dropout Rate 0.2
Hidden Dropout Rate 0.2
Rho 0.9
Epsilon 1.00E-10
Activation Function Tanh
Neurons Per Hidden Layer 73
Nesterov Accelerated Gradient True
L1 0
L2 0
Max W2 5
Initial Weight Distribution Uniform
Average Activation 0.05
Sparsity Beta 0.5
Minibatch Size 10000
Shuffle Training Data True
Data Scale [0, 1]
Test/Training Set 2

86

We used the numeric hyperparameter values from Table 9 to generate the levels for numeric
hyperparameter optimization (section 4.4). The categorical hyperparameters from the table are
set to their optimal screening values for numeric optimization, except for the activation function

and the test/training set which are retained as test design factors for additional evaluation.

5.3 Hyperparameter Optimization Results

Leveraging the information gained in the hyperparameter screening designed experiment
we developed a CCD to optimize the numeric hyperparameters. The hyperparameter levels tested
are provided in Table 6 and Table 7. We analyzed the CCD design in two ways. The first
analysis method used forward stepwise regression in which only model terms with a signifigance
less than the @ = 0.05 level are included. This reduced model with only significant terms is
called the parsimonious model. The second analysis method, called the full model, used all
hyperparameters, 2-way hyperparameter interactions and numeric hyperparameter quadratic
effects. For both the full and parsimonious models, we removed 23 outliers prior to finalizing the
statistical models. For both statistical models we determined the optimum hyperparameter values

resulting in the smallest generalization error, the values are provided in Table 10.

87

Table 10. CCD Optimum Hyperparameter Values

Hyperparameter Full Parsimonious
Activation Function Tanh Rectifier
Neurons Per Hidden Layer 73 73
Rho 0.8 0.999999
Epsilon 1.00E-10 5.01E-11
Input Dropout Rate 0.2 0.105"
Hidden Dropout Rate 0.01 0.010
L1 0.000017 1.00E-5"
L2 0 1.00E-5"
Max W2 1 1
Average Activation 0.005 0.0275"
Sparsity Beta 0.5 0.275"
Minibatch Size 10000 5000

A

In the parsimonious model hyperparameter models marked with a superscript are
those hyperparameters not significant, however are included at their center point values to

specify all required hyperparameters in the UANN. The statistical models estimated

generalization error and the corresponding 95% confidence intervals are provided in Table 11.

Table 11. CCD Hyperparameter Statistical Model Generalization Error Prediction

Predicted Mean Full Parsimonious
Test MSE -4.4230 -0.3791

Lower CI -7.6661 -0.4636

Upper CI -1.1799 -0.2946

The statistical models for both the parsimonious and full analyses predict a negative

generalization error with a negative upper confidence bound. Any UANN using the

88

hyperparameters in Table 10, are guaranteed to result in generalization error greater than or equal
to zero, therefore we conclude these statistical models are not suitable for hyperparameter
optimization and validation testing is not required. Leveraging the information gained from the
first phase of CCD testing, we modified the hyperparameter levels to the values shown in Table
12 and conducted a second phase of numeric hyperparameter optimization. The phase I CCD

test design is provided in Appendix P.

Table 12. Phase II Numeric CCD Hyperparameter Factors and Levels

Levels
Lower Axial Lower Axial Lower Axial Lower Axial Lower Axial

Hyperparameter -3.3635 -1 0 1 3.3635
Neurons Per Hidden Layer 39 73 83 93 127
Rho 0.723 0.760 0.780 0.800 0.847
Epsilon 7.23E-11 8.47E-11 1.20E-10 1.71E-10 4.05E-10
Input Dropout Rate 0.002 0.008 0.009 0.100 0.340
Hidden Dropout Rate 0.002 0.008 0.009 0.100 0.340
L1 4.33E-09 1.00E-06 1.00E-05 1.00E-04 2.31E-02
L2 4.33E-09 1.00E-06 1.00E-05 1.00E-04 2.31E-02
Max W2 0.005 0.021 0.000 3.595 5.000
Average Activation 0.005 0.021 0.028 0.034 0.050
Sparsity Beta 0.05 0.208 0.275 0.342 0.5
Minibatch Size 1 3513 5000 6487 10000

As in the first phase of CCD we derive a parsimonious and full statistical model and
identify the hyperparameter values resulting in the minimum generalization error, shown in

Table 13. Phase II CCD testing did not result in any outliers for any of the evaluated UANNS.

&9

Table 13. Phase II CCD Optimum Hyperparameter Values

Hyperparameter Full Parsimonious
Activation Function Rectifier Rectifier
Neurons Per Hidden Layer 39 127
Rho 0.7128 0.78"
Epsilon 7.23E-11 7.23E-11
Input Dropout Rate 0.0024 0.009"
Hidden Dropout Rate 0.0336 0.009"
L1 0.0231 2.31E-02
L2 0.0231 0.0001"
Max W2 0.127 0.9166
Average Activation 0.05 0.0342"
Sparsity Beta 0.5 0.05
Minibatch Size 10000 5000

A

Parsimonious model hyperparameter models marked with a superscript are those
hyperparameters not significant, however are included at their center point values to specify all

required hyperparameters in the UANN. The phase II CCD statistical models estimated

generalization error and the corresponding 95% confidence intervals are provided in Table 14.

Table 14. Phase II CCD Hyperparameter Statistical Model Generalization Error Predictions

Predicted Mean Full Parsimonious
Test MSE -2.5171 0.0607

Lower CI -79.3716 0.0540

Upper CI 74.3374 0.0674

The full statistical model predicted generalization error predicts a negative mean value,
however the confidence interval around the mean contains positive values. This is most likely
due to the size of the interval. The parsimonious model has a positive predicted mean

generalization error, and the corresponding confidence interval does not contain zero. There is

90

sufficient evidence to validate the statistical models performance using UANNs with the
optimum numeric hyperparameters in Table 13.

We trained 12 validation UANNSs using the Table 13 hyperparameters, six UANNS using
the optimum hyperparameters for the full model and six using the hyperparameters for the
parsimonious model. For each of the three test/training subsets, we construct two UANNS for

validation. The validation UANN generalization errors are displayed in Table 15.

Table 15. Phase II CCD Hyperparameter UANN Validation Test Results

Test/Train Set Full Model Test MSE Parsimonious Model Test MSE

1 0.1101 0.0568
2 0.1024 0.0540
3 0.1075 0.0573
1 0.1102 0.0566
2 0.1021 0.0541
3 0.1074 0.0574

Evaluation of the UANN generalization errors shown in Table 15 show consistent
performance across the three train/test sets of data. The UANN’s trained with the parsimonious
statistical model hyperparameters outperform the full statistical model hyperparameters for each
of the sets of data. The phase II CCD parsimonious model optimum hyperparameter values align
closely with the validated performance of UANNSs across the three test/training sets of data.
Comparing the confidence intervals of the full model [0.1028, 0.1104] to the interval for the
parsimonious model [0.0544, 0.0577], we observe the parsimonious model has a statistically
significantly lower generalization error. We terminated our hyperparameter optimization phase

and used the parsimonious optimum hyperparameters to train the UANN for anomaly detection.

91

5.4 Final Anomaly Detection UANN

The anomaly detection UANN is trained using the MSE objective function (Equation
(21)). For anomaly detection we modify the training termination criteria to the following:
training time exceeds 10-hours (36,000 seconds), 10,000 training epochs, the MSE of the
training set decreases below 1 = 10712, or the training MSE fails to change by at least 1 * 10712

for five consecutive epochs. The hyperparameter levels used for anomaly detection are presented

in Table 16.

Table 16. UANN Anomaly Detection Hyperparameter Values

Hyperparameter Value
Number Hidden Layers 1
Dropout True
Input Dropout Rate 0.009
Hidden Dropout Rate 0.009
Adaptive Rate True
Rho 0.78
Epsilon 7.23E-11
Activation Function Rectifier
Neurons Per Hidden Layer 127
Nesterov Accelerated Gradient True
L1 0.0231
L2 1.00E-04
Max W2 0.9166
Initial Weight Distribution Uniform Adaptive
Average Activation 0.3412
Sparsity Beta 0.05
Minibatch Size 5000
Shuffle Training Data True
Data Scale [0, 1]

After training we used the UANN to compute the outlier factor score (reconstruction
MSE) of each observation of the ANN dataset, and the 50,000 random data observations. The

resulting outlier factor scores are depicted in Figure 19.

92

Histogram of Outlier Factor Scores
2500+
2000- 7~
5
15001 B
3
1000
=
500 =
S 01 -
=
© 4000-
3000- e
=3
2000+ o
S
1000- =
0- ! !
] Ty = i}
= ~ wy -
S =) = =)
o o) [o
QOutlier Factor Score (MSE)
Full View

Figure 19. Histogram of Outlier Factor Scores

Examination of the outlier factor scores reveals a distinct separation between the random
data and a majority of the actual data, indicating that the UANN is learning the prominent
patterns with the ANN dataset. The random data, which should contain no patterns, is
reconstructed poorly in comparison to the real data, resulting in a normal distribution
appearance. The outlier factor scores in the right-tail of the real data distribution overlap with the
random data outlier factor score distribution. The real data observations in the overlap region are

data points which are reconstructed by the ANN no better than random data. These observations

93

are those most likely to be anomalies. We present the top ten observations with the greatest

outlier factor scores in Table 17.

Table 17. Top 10 Outlier Factor Scores

Outlier Rank Observation Number Outlier Factor Score

1 2182 0.059870
2 6391 0.055390
3 23235 0.053769
4 8012 0.052579
5 10759 0.052290
6 8098 0.051338
7 8414 0.051317
8 378 0.051035
9 14908 0.050599
10 2711 0.050502

94

VI. Conclusions and Recommendations

6.1 Conclusion and Contributions

In this work we present a NN based approach to anomaly detection designed to augment
current detection methods employed by the sponsoring agency, enhancing their capability to
detect malicious network activity prior successfully adversary misconduct. Using an UANN
enables the sponsor to identify specific anomalous observations for further analysis by computer
security experts. A DOE testing process provides a simple method for identifying and selecting
the optimal UANN hyperparameters for anomaly detection. The use of multiple test and training
sets of data enhances the regularization capability of the UANN. Finally, the graphical depiction
of the real and random data validates the UANN is effectively learning the hidden structures

within the real data.

6.2 Future Research

We recommend the following topics for future research. In this work we employed a
sequential DOE process, first screening and selecting the significant categorical hyperparameters
using D-Optimal computer generated designs, and then optimizing the numeric hyperparameters
using CCDs. The goal of sequential testing being the efficient identification of the optimum
hyperparameter values. Future work should examine the utility and efficiency of using computer
generated space filling designs for optimal hyperparameter identification.

The IDPS log file dataset is primarily composed of categorical features, which require
encoding to a numeric representation prior to NN analysis. Using one-hot encoding increases the
number of features of the NN dataset and reduces the utility of current NN methods for

determining feature importance. It is recommended that future research identify a more efficient

95

categorical feature encoding methodology to reduce the number of features required in the NN
dataset. Additionally, future work should identify a method for determining feature importance
agnostic to the categorical feature encoding system employed.

The ANN explored in this work all contained an under-complete bottleneck layer in
which we restricted the number of neurons to be smaller than the number of input features.
Alternate ANNSs exist in which the number of neurons in the hidden layers are not restricted.
Instead, stronger regularization and sparsity hyperparameters are utilized to restrict the capability
of NN to perfectly recreate the input data at the output layer. Additional research should examine
the capability of sparse, over-complete ANNSs to perform anomaly detection.

Plotting the outlier factor scores of the real IDPS data along with randomly generated
data provides a simple, intuitive method for the identification of anomalous observations within
the dataset. Real data observations with outlier factor scores of the same magnitude as random
data scores are reconstructed poorly by the anomaly detection autoencoder and are considered
anomalous observations. An outlier factor score for each real data observation is obtained. Future
research should identify a robust method for automatically determining an appropriate cutoff
outlier factor score value such that scores lower than the cutoff value are considered normal, and
score greater than the cutoff are considered anomalous.

Finally, we utilized the h20.ai software for construction of all NNs. While an excellent
choice for novice NN practitioners, the h20.ai software is limited for ANN implementations.
Prior to real-world implementation, additional research should examine software alternatives

such as, Tensorflow, Keras, MXNet, etc.

96

Appendix A: IDPS Features Summary

Table 18. IDPS Log File Data Summary

Number of Missing

Number of Unique

Feature Class Observations Observations
Id character 0 49984
Timestamp numeric 0 16
Data Type character 0 1
Visibility character 0 1
ACTIONTAKEN_DEVICE character 49997 2
ARCSIGHTAGENTTYPE character 0 1
ASN_DST character 21303 59
ASN_SRC character 9395 284
ASSETID CUSTOMER character 45701 2
AUDITTRAIL_EVENTANNOTATION character 0 3
CATEGORYBEHAVIOR character 205 14
CATEGORYGROUP character 27749 3
CATEGORYOBIJECT character 222 10
CATEGORYOUTCOME character 213 4
CATEGORYSIGNIFICANCE character 134 10
CATEGORYTECHNIQUE character 48829 9
CATEGORY_EVENT character 64 34
COCOM_DST character 18170 6
COCOM_SRC character 2634 7
COUNTRYCODE_DST character 18255 7
COUNTRYCODE_SRC character 7638 42
COUNTRY_DST character 18165 11
COUNTRY_SRC character 1192 49
COUNT_EVENT integer 0 565
EVENTID DEVICE character 0 23
EVENTNAME character 0 47
EXTERNALID_CUSTOMER character 45701 2
FILENAME character 530 41
FILEPATH character 530 40
FLAGS_EVENTANNOTATION character 49998 2
GEOCODE_DST character 18383 22
GEOCODE_SRC character 14588 84
GEOLOCATIONNAME DST character 18383 67
GEOLOCATIONNAME_SRC character 14589 264
HOSTNAME_AGENT_FQDN character 0 1
HOSTNAME_AGENT_FQDN_REVERSE character 0 1
HOSTNAME DEVICE FQDN character 64 6
HOSTNAME_DEVICE_FQDN_REVERSE character 64 6

97

Number of Missing

Number of Unique

Feature Class Observations Observations
HOSTNAME _DST character 47468 328
HOSTNAME DST REVERSE character 47468 328
HOSTNAME SRC character 47722 144
HOSTNAME SRC _REVERSE character 47722 144
IPBRANCHCATEGORY_DST character 18165 3
IPBRANCHCATEGORY_SRC character 1192 3
IP_AGENT character 0 1
IP_AGENT_ORIGINAL character 0 2
IP_DEVICE character 0 1
IP_DST character 15701 25208
IP_SRC character 0 9063
LABEL_STR _CUSTOMI1_HBSSALERTS character 33240 6
LABEL_STR_CUSTOM2_ HBSSALERTS character 115 3
LABEL_STR _CUSTOM3_HBSSALERTS character 42494 4
LABEL_STR_CUSTOM4 HBSSALERTS character 42496 3
LABEL _TIME CUSTOMI1_HBSSALERTS character 49948 3
LATITUDE_DST numeric 18346 81
LATITUDE_SRC numeric 1192 405
LOCALITY character 0 1
LONGITUDE DST numeric 18346 82
LONGITUDE_SRC numeric 1192 404
ORGANIZATION_OWNER_DST character 22569 44
ORGANIZATION_OWNER_SRC character 32557 99
PORT_DST integer 4409 7543
PORT_SRC integer 22255 4620
POSTALCODE_DST integer 18383 81
POSTALCODE_SRC character 25117 236
PRIORITY_ASSET integer 0 1
PRIORITY_EVENT integer 0 7
PRODUCTNAME character 0 1
SEVERITY_AGENT character 0 3
SEVERITY_DEVICE character 0 1
STR_CUSTOMI1_HBSSALERTS character 33267 23
STR_CUSTOM2_HBSSALERTS character 115 36
STR_CUSTOM3_HBSSALERTS character 42494 3211
STR_CUSTOM4 HBSSALERTS character 42493 5
TIME_CUSTOMI!1_HBSSALERTS POSIXt 49950 47
TIME_END POSIXt 0 26467
TIME_END EVENTANNOTATION POSIXt 0 26467
TIME_MODIFIED_EVENTANNOTATION POSIXt 0 19724
TIME_RECEIPT EVENTANNOTATION POSIXt 0 19696

98

Number of Missing

Number of Unique

Feature Class Observations Observations
TIME_STAGEUPDATE_EVENTANNOTATION POSIXt 0 19724
TIME_START POSIXt 0 26508
TYPE_EVENTSOURCE character 0 2
URI_CUSTOMER character 43144 4
URI_DEVICE character 717 2
URI_DST character 16016 76
URI_SRC character 3871 207
USERNAME DST character 49944 6
USERNAME_SRC character 49989 2
VENDORNAME DEVICE character 0 1
VERSION_AGENT character 64 4
VERSION_DEVICE character 64 3
VERSION_EVENTANNOTATION integer 0 2
ZONENAME AGENT character 64 3

99

Appendix B: D ME1DOAR

Table 19. D MEIDOAR Test Matrix

5
= 5 =
5 g E
3 g k) g =
5 £ E C- E 5 8 ;
=t 5 = s =1 on
E 5 < 2 2 =} 3 3 ” g 2 - ~
s & 5 5] < @ < = L £ m 3
S P z 2 a a = ° > 2 = S 3 17] 32
=] z = 2 a = = = g & s)] = = = <
2 g o 2 g s 3 = | g z 2 g 4 & 2 Ei 2 H
E > £ & 2 B E 5 oo 2 £ LI B g & E & ¢ :
RectifierWithDropout 73 0.9 1.00E-10 TRUE 02 0.8 0 1 5 Uniform 0.5 2 1 TRUE [0, 1] 2 0.1093 0.0566 50.1
RectifierWithDropout 219 0999 1.00E-10 FALSE 02 02 0 0 500 Normal 0.5 0.5 1 FALSE [-0.5,0.5] 201990 02470 1289
TanhWithDropout 219 0.999 1.00E-10 TRUE 0.8 0.2 1 0 5 Uniform 0.5 2 10000 TRUE [-1,1] 2 0.5553 0.5505 189.2
RectifierWithDropout 73 0.9 1.00E-10 FALSE 02 02 1 0 5 Uniform Adaptive 0.05 2 10000 TRUE [-0.5,0.5] 301968 02448 1144
TanhWithDropout 219 0.9 1.00E-10 TRUE 0.2 0.8 0 1 5 Normal 0.5 0.5 1 FALSE [-1,1] 3 0.4964 0.2873 124.3
TanhWithDropout 219 0.999 1.00E-06 FALSE 0.2 0.2 1 1 5 Uniform Adaptive 0.5 2 1 FALSE [0, 1] 1 0.1927 0.1465 263.5
RectifierWithDropout 219 09 1.00E-10 FALSE 02 02 0 1 500 Normal 0.05 2 10000 TRUE [-1,1] 107995 0.9707 89.1
TanhWithDropout 73 0999 1.00E-10 FALSE 08 02 1 1 5 Normal 0.05 0.5 10000 FALSE [-1,1] 2 05584 05614 100.6
TanhWithDropout 219 0.999 1.00E-10 TRUE 02 08 1 0 500 Uniform Adaptive 0.5 2 10000 FALSE [-0.5,0.5] 2 01990 0.2469 1559
TanhWithDropout 219 0.999 1.00E-10 FALSE 0.2 0.8 0 0 5 Uniform 0.05 0.5 1 TRUE [0, 1] 1 0.0979 0.0436 117.0
RectifierWithDropout 73 0.999 1.00E-06 TRUE 02 08 1 1 500 Normal 0.05 2 1 TRUE [-1,1] 2 07960 09878 117.1
TanhWithDropout 73 0.9 1.00E-06 TRUE 02 02 0 0 500 Uniform 0.5 2 10000 FALSE [-1,1] 1 04586 0.2954 60.0
RectifierWithDropout 219 0.999 1.00E-06 TRUE 0.8 0.8 0 0 5 Normal 0.05 2 10000 FALSE [0, 1] 1 Exp Growth
RectifierWithDropout 73 0.9 1.00E-06 TRUE 08 02 1 0 5 Normal 0.5 0.5 1 TRUE [-0.5,0.5] 1 01999 02427 1159
RectifierWithDropout 219 0.999 1.00E-06 TRUE 08 02 0 1 500 Uniform Adaptive 0.5 0.5 10000 TRUE [0, 1] 302230 0.1950 56.8
TanhWithDropout 73 0.999 1.00E-10 TRUE 08 08 0 1 500 Uniform Adaptive 0.05 0.5 1 TRUE [-0.5,0.5] 1 01215 0.0748 30.9
RectifierWithDropout 73 0.999 1.00E-10 FALSE 0.8 0.8 0 0 5 Uniform Adaptive 0.5 2 1 FALSE [-1,1] 3 Exp Growth
TanhWithDropout 219 09 1.00E-06 FALSE 08 0.8 0 1 5 Normal 0.5 2 10000 TRUE [-0.5,0.5] 2 01152 0.0711 136.2
RectifierWithDropout 219 0.999 1.00E-06 TRUE 02 08 1 1 5 Uniform 0.05 0.5 10000 FALSE [-0.5,0.5] 3 Exp Growth
RectifierWithDropout 219 09 1.00E-06 FALSE 08 0.8 1 0 500 Uniform Adaptive 0.05 0.5 1 TRUE [-1,1] 2 07960 0.9878 53.9
TanhWithDropout 73 0999 1.00E-06 FALSE 02 08 1 0 500 Normal 0.5 0.5 10000 TRUE [0, 1] 3 01657 0.1173 34.8
TanhWithDropout 73 0.9 1.00E-06 TRUE 02 02 0 0 5 Uniform Adaptive 0.05 0.5 10000 FALSE [0, 1] 2 0.0818 0.0315 58.9
TanhWithDropout 219 0.9 1.00E-10 TRUE 0.8 0.2 1 0 500 Normal 0.05 2 1 FALSE [0, 1] 3 0.1944 0.1469 270.5
TanhWithDropout 73 0999 1.00E-06 FALSE 08 02 0 1 500 Uniform 0.05 2 1 FALSE [-0.5,0.5] 301320 0.0910 69.8
RectifierWithDropout 73 09 1.00E-10 FALSE 08 08 1 1 500 Uniform 0.5 0.5 10000 FALSE [0,1] 1 01790 0.1474 26.3
RectifierWithDropout 146 0.9495 1.00E-08 ~ FALSE 05 05 05 0.5 2525 Uniform Adaptive ~ 0.275 1.25 5000 FALSE [-0.5,0.5] 101999 0.2427 89.8
TanhWithDropout 146 0.9495 1.00E-08 TRUE 05 05 05 05 2525 Uniform 0.275 1.25 5000 TRUE [-1,1] 2 04637 03660 105.6
RectifierWithDropout 146~ 0.9495 1.00E-08 ~ FALSE 05 05 05 05 2525 Normal 0.275 1.25 5000 FALSE [0,1] 301741 0.0753 67.4
TanhWithDropout 146 0.9495 1.00E-08 TRUE 05 05 05 05 2525 Uniform Adaptive 0.275 1.25 5000 TRUE [-0.5,0.5] 1 01416 0.1386 1741
RectifierWithDropout 146 0.9495 1.00E-08 FALSE 0.5 05 05 0.5 2525 Uniform 0.275 1.25 5000 FALSE [-1,1] 2 0.7959 0.9878 98.7

100

Table 20. D ME1DO Test Matrix

Appendix C: D ME1DO

5
5 g =
> = -2
3 g k) g S
§ £ . 2 e E CH- i i g .
5] = 3 & = a 3 &0
E s % : 5 ¢ £ : T F & " 2 T2 5 £ ¢z : g 2 3
=] 2 £ g 2] =] =]) A = =z & 2 = @ 151 5] 2] = 2}
e £ 0§ £ &t & & & %5 £ % E E T f g 3§ 3 & @ g
2 > = = s = = = : E E 5 a8 2 e & s & 8 g 8 E__# 2
RectifierWithDropout 219 0.0005 0 0 075 0.9 500 FALSE 02 038 0 1 5 Uniform Adaptive 0.5 0.5 10000 YES [0,1] 2 01612 0.1168 122.1
TanhWithDropout 219 0.05 0.0001 2 075 0.999 50000 FALSE 02 038 0 0 500 Normal 0.05 2 1 NO [0, 1] 2 0.0963 0.0449 101.4
TanhWithDropout 219 0.05 0 2 075 0.999 50000 FALSE 0.8 038 1 0 5 Uniform 0.5 2 1 YES [-1,1] 1 0.5668 0.4733 64.0
TanhWithDropout 73 0.0005 0 2 075 0.999 500 TRUE 08 02 0 1 5 Normal 0.5 0.5 1 NO [-1,1] 2 04426 0.2455 37.6
TanhWithDropout 73 0.0005 0.0001 2025 0.999 500 TRUE 02 08 0 0 5 Uniform Adaptive 0.05 0.5 10000 YES [-1,1] 1 0.4944 0.2823 32.5
RectifierWithDropout 219 0.0005 0.0001 0 025 0.9 500 FALSE 08 02 0 0 5 Uniform Adaptive 0.5 2 1 NO [-0.5,0.5] 1 04254 0.5315 55.2
TanhWithDropout 73 0.0005 0 0 075 0.9 500 TRUE 08 08 1 0 500 Uniform 0.5 2 10000 NO [0, 1] 304038 03679 26.2
RectifierWithDropout 73 0.05 0.0001 2 0.75 0.999 50000 FALSE 0.8 0.8 1 1 S Uniform Adaptive 0.05 0.5 10000 NO [0, 1] 3 Exp Grwoth
TanhWithDropout 219 0.0005 0.0001 2 075 0.9 50000 FALSE 08 02 1 1 5 Normal 0.05 2 10000 NO [0, 1] 1 0.1943 0.1518 75.9
RectifierWithDropout 73 0.05 0.0001 0 075 0.999 50000 TRUE 08 08 0 0 5 Normal 0.5 0.5 1 NO [-0.5,0.5] 301973 0.2452 13.6
TanhWithDropout 73 0.05 0.0001 0 075 0.9 500 FALSE 02 02 0 0 5 Normal 0.05 2 10000 YES [-1,1] 309690 1.0076 33.8
RectifierWithDropout 219 0.0005 0.0001 0 075 0.999 500 FALSE 02 02 1 0 500 Uniform 0.05 0.5 1 NO [-1,1] 2 07980 0.9878 35.1
TanhWithDropout 73 0.0005 0.0001 2 025 0.9 50000 FALSE 02 02 0 1 500 Uniform 0.5 0.5 1 YES [-0.5,0.5] 3 0.1047 0.0577 1942
RectifierWithDropout 219 0.0005 0 0 025 0.999 50000 TRUE 08 02 0 1 500 Normal 0.05 2 10000 YES [-1,1] 307892 0.9810 320
RectifierWithDropout 73 0.05 0.0001 2 025 0.999 500 TRUE 02 02 0 0 500 Uniform 0.5 2 10000 NO [0, 1] 1 Exp Grwoth
RectifierWithDropout 73 0.0005 0 2 0.75 0.999 500 FALSE 0.8 0.8 0 0 500 Uniform Adaptive 0.05 2 1 YES [-0.5,0.5] 3 Exp Grwoth
RectifierWithDropout 219 0.05 0.0001 2 0.75 0.9 50000 TRUE 0.8 0.2 1 0 500 Uniform Adaptive 0.5 0.5 10000 YES [-1,1] 2 Exp Grwoth
TanhWithDropout 73 0.05 0.0001 0 025 0.999 500 TRUE 08 02 1 1 5 Uniform Adaptive 0.05 2 1 YES [0,1] 2 0.1880 0.1315 35.0
TanhWithDropout 219 0.0005 0 2 025 0.9 50000 TRUE 08 08 0 0 500 Uniform Adaptive 0.05 0.5 1 NO [0, 1] 3 0.1058 0.0510 78.6
RectifierWithDropout 219 0.05 0 2 0.25 0.9 500 TRUE 0.2 0.2 1 0 5 Normal 0.5 0.5 1 YES [0, 1] 3 Exp Grwoth
RectifierWithDropout 73 0.05 0 2025 0.9 500 FALSE 08 038 1 1 500 Normal 0.05 0.5 1 NO [-1,1] 1 Exp Grwoth
RectifierWithDropout 73 0.0005 0 2 025 0.9 50000 TRUE 02 08 1 0 5 Normal 0.05 2 10000 NO [-0.5,0.5] 2 Exp Grwoth
TanhWithDropout 73 0.05 0 0 075 0.9 50000 TRUE 02 02 1 0 500 Uniform Adaptive 0.05 0.5 1 YES [-0.5,0.5] 1 0.1951 0.2264 93.2
TanhWithDropout 219 0.05 0 2 025 0.999 500 FALSE 02 02 1 1 500 Uniform Adaptive 0.5 2 10000 NO [-0.5,0.5] 302764 03532 94.2
RectifierWithDropout 73 0.05 0 0 025 0.999 50000 FALSE 08 02 0 0 5 Uniform 0.05 0.5 10000 YES [0,1] 202002 0.1524 9.2
RectifierWithDropout 219 0.0005 0.0001 0 025 0.9 50000 TRUE 02 08 1 1 5 Uniform 0.05 2 1 NO [-1,1] 307971 0.9907 31.1
RectifierWithDropout 219 0.05 0.0001 2 0.75 0.9 500 TRUE 0.8 0.8 0 1 500 Uniform 0.05 2 1 YES [-0.5,0.5] 2 Exp Grwoth
RectifierWithDropout 73 0.0005 0.0001 0 075 0.999 50000 TRUE 02 08 1 1 500 Normal 0.5 2 1 YES [0,1] 1 0.2021 0.1567 354
TanhWithDropout 219 0.05 0 0 075 0.999 500 TRUE 02 08 0 1 5 Uniform 0.05 0.5 10000 NO [-0.5,0.5] 1 0.1941 0.1751 126.9
TanhWithDropout 219 0.0005 0.0001 0 025 0.999 500 FALSE 08 038 1 0 500 Normal 0.5 0.5 10000 YES [-0.5,0.5] 2 05994 0.5091 56.9
TanhWithDropout 73 0.05 0 0 025 0.9 50000 FALSE 02 038 0 1 500 Uniform Adaptive 0.5 2 1 NO [-1,1] 2 0.7451 0.9155 51.0
RectifierWithDropout 73 0.02525 0.00005 1 0.5 0.9495 500 FALSE 0.5 0.5 0.5 0.5 252.5 Uniform Adaptive 0.275 1.25 1 NO [-0.5,0.5] 1 Exp Grwoth
TanhWithDropout 219 0.02525 0.00005 1 0.5 09495 50000 TRUE 05 05 05 05 2525 Uniform 0.275 1.25 10000 YES [-1,1] 2 04452 03373 86.0
RectifierWithDropout 73 0.02525 0.00005 1 0.5 0.9495 500 FALSE 0.5 0.5 0.5 0.5 2525 Normal 0.275 1.25 1 NO [0, 1] 3 Exp Grwoth
TanhWithDropout 219 0.02525 0.00005 1 0.5 09495 50000 TRUE 05 05 05 05 2525 Uniform Adaptive ~ 0.275 1.25 10000 YES [-0.5,0.5] 1 0.1425 0.1408 88.7
RectifierWithDropout 73 0.02525 0.00005 1 0.5 0.9495 500 FALSE 05 05 05 05 2525 Uniform 0.275 1.25 1 NO [-1,1] 2 Exp Grwoth

101

Appendix D: D ME1AR

Table 21. D ME1AR Test Matrix

= 3 E £ - z
2 g g Z £ S 3
. 5 2 2] bt 2 £ £ . ~
5 £ N o 2 s 2 3 £ 2 g g 2 g
: E 5 ¢ 3 : f 2 g 2 & = 3 2 g
i 2 2 2 P 5 a4 £ E i & s 2 g 5 E £ = s
Tanh 219 0.9 1.00E-10 TRUE 1 1 500 Normal 0.5 0.5 10000 TRUE [0, 1] 2 0.1952 0.1474 173.5
Rectifier 73 0.9 1.00E-10 TRUE 1 1 5 Uniform Adaptive 0.05 2 1 TRUE [0, 1] 1 0.1411 0.0918 26.6
Rectifier 219 0.999 1.00E-06 TRUE 0 0 5 Uniform 0.05 0.5 10000 TRUE [0, 1] 2 Exp Growth
Rectifier 219 0.999 1.00E-06 TRUE 0 1 5 Normal 0.5 2 10000 FALSE [-0.5,0.5] 3 0.1973 0.2452 3333
Tanh 219 0.9 1.00E-06 TRUE 1 0 5 Uniform Adaptive 0.5 2 1 FALSE [-0.5,0.5] 2 0.1835 0.2240 252.4
Rectifier 73 0.9 1.00E-10 FALSE 0 0 5 Normal 0.05 2 10000 TRUE [-0.5,0.5] 2 0.2084 0.2445 96.0
Tanh 219 0.999 1.00E-10 TRUE 0 0 500 Normal 0.05 0.5 1 TRUE [-0.5,0.5] 1 0.9833 0.1138 175.3
Tanh 73 0.9 1.00E-10 FALSE 1 1 5 Uniform 0.5 0.5 1 TRUE [-0.5,0.5] 3 0.1973 0.2452 78.2
Rectifier 73 0.9 1.00E-06 FALSE 0 1 500 Normal 0.5 0.5 1 FALSE [0, 1] 2 0.5075 0.0456 52.4
Tanh 219 0.999 1.00E-10 FALSE 1 0 5 Normal 0.5 2 1 FALSE [0, 1] 1 0.1919 0.1493 189.3
Rectifier 73 0.999 1.00E-06 FALSE 1 0 500 Normal 0.5 2 1 TRUE [-1,1] 3 5.0486 0.9810 114.9
Tanh 219 0.999 1.00E-10 FALSE 0 1 5 Uniform 0.05 2 1 FALSE [-1,1] 2 0.3047 0.1248 408.3
Rectifier 219 0.9 1.00E-06 TRUE 0 1 500 Uniform 0.5 2 1 TRUE [-0.5,0.5] 1 343.0929 425.1880 251.3
Tanh 73 0.9 1.00E-06 TRUE 1 1 5 Normal 0.05 0.5 10000 FALSE [-1,1] 1 0.5712 0.5733 120.8
Rectifier 219 0.9 1.00E-10 TRUE 1 0 5 Uniform 0.5 2 10000 TRUE [-1,1] 3 0.7872 0.9713 416.9
Tanh 73 0.999 1.00E-10 TRUE 0 1 500 Uniform Adaptive 0.5 2 10000 TRUE [-1,1] 2 0.3385 0.1622 1443
Tanh 219 0.9 1.00E-06 FALSE 0 0 500 Uniform Adaptive 0.05 2 10000 TRUE [0, 1] 3 0.1366 0.0551 132.7
Rectifier 73 0.999 1.00E-10 TRUE 1 0 500 Uniform 0.05 2 10000 FALSE [-0.5,0.5] 2 0.1987 0.2490 188.4
Rectifier 73 0.999 1.00E-10 TRUE 0 0 5 Uniform Adaptive 0.5 0.5 1 FALSE [0, 1] 3 0.0951 0.0087 88.9
Tanh 73 0.9 1.00E-06 TRUE 0 0 500 Uniform 0.05 0.5 1 FALSE [-1,1] 3 0.8398 0.0267 79.6
Rectifier 219 0.999 1.00E-10 FALSE 1 1 500 Uniform Adaptive 0.05 0.5 10000 FALSE [-0.5,0.5] 3 0.5335 0.6877 227.7
Tanh 73 0.999 1.00E-06 FALSE 1 1 500 Uniform 0.5 2 10000 FALSE [0, 1] 1 0.1763 0.1306 55.4
Rectifier 219 0.9 1.00E-10 FALSE 0 0 500 Uniform Adaptive 0.5 0.5 10000 FALSE [-1,1] 1 1.7077 2.1248 192.3
Tanh 73 0.999 1.00E-06 FALSE 0 0 5 Uniform Adaptive 0.5 0.5 10000 TRUE [-0.5,0.5] 1 0.2684 0.3105 47.8
Rectifier 219 0.999 1.00E-06 FALSE 1 1 5 Uniform Adaptive 0.05 0.5 1 TRUE [-1,1] 2 Exp Growth
Tanh 146 0.9495 1.00E-08 FALSE 0.5 0.5 2525 Uniform Adaptive 0.275 1.25 5000 FALSE [-0.5,0.5] 1 0.1478 0.1517 195.8
Rectifier 146 0.9495 1.00E-08 TRUE 0.5 0.5 252.5 Uniform 0.275 1.25 5000 TRUE [-1,1] 2 1038.7930 1244.1760 274.2
Tanh 146 0.9495 1.00E-08 FALSE 0.5 0.5 252.5 Normal 0.275 1.25 5000 FALSE [0, 1] 3 0.1688 0.1186 106.0
Rectifier 146 0.9495 1.00E-08 TRUE 0.5 0.5 252.5 Uniform Adaptive 0.275 1.25 5000 TRUE [-0.5,0.5] 1 0.4310 0.5247 221.6
Tanh 146 0.9495 1.00E-08 FALSE 0.5 0.5 252.5 Uniform 0.275 1.25 5000 FALSE [-1,1] 2 0.4577 0.3432 157.4

102

Appendix E: D ME1

Table 22. D MEI Test Matrix

2
. 3 £ g

£ 2 : % g g 5 5

ER- s F £ £ E i “ z < 2 5 £ s E . 2 3

= Z £ g 2 £] = 2 z % z 2 © S 5] 2] s %)

g e s 2 % 2 2 B z = S - = 2 e = E 3 5

b5 2] 2 £ 3 S S B - a 5 Z 2 g £ Z £ 3 3 E E z

< z =} & 4 = = = 2 = = | < 1951 = 7} a = = = =
Rectifier 219 0.05 0 0 075 09 500 FALSE 0 0 500 Uniform 0.05 2 10000 FALSE [0, 1] 2 02002 01524 214
Tanh 73 0.0005 0o 2 075 09 50000 TRUE I 0 500 UniformAdaptive 005 0.5 10000 FALSE [0,1] 101907 01481 424
Tanh 73 0.05 0 2 025 099 500 FALSE 0 0 5 Uniform 005 05 10000 FALSE [-0505] 3 07330 05845 337
Tanh 7 005 00001 2 075 0999 50000 TRUE 1 1 5 Uniform 0.05 2 I TRUE [0,1] 201799 01317 397
Tanh 219 005 00001 0 025 09 50000 FALSE 0 1 5 Uniform Adaptive 0.5 2 10000 FALSE [0, 1] 3001213 00662 904
Tanh 219 0.05 0 0 025 09 50000 FALSE 1 0 5 Uniform Adaptive 005 0.5 1 TRUE [-11] 206703 07057 976
Rectifier 73 00005 00001 2 075 09 50000 FALSE 0 0 5 Normal 05 05 I FALSE [-05,05] 2 Exp Growth
Tanh 73 0.0005 0 0 075 0.9 500 FALSE 1 1 5 Uniform 0.5 2 | FALSE [1,1] 1 09951 09208 927
Tanh 219 00005 00001 2 025 0.9 500 TRUE 0 0 500 Uniform 0.5 210000 TRUE [-1,1] 2 12134 01351 1125
Rectifir 73 0.0005 0 2 075 0999 50000 FALSE 0 1 500 Uniform Adaptive 0.5 210000 TRUE [-1,1] 3 Exp Growth
Tanh 73 005 00001 0 075 0.9 500 TRUE 0 1 500 Normal 005 05 I TRUE [-1,1] 3 15958 16597 340
Rectifir 219 0.0005 0 2 025 0.9 500 TRUE 1 1 5 Uniform 05 05 I TRUE [0,1] 3 Exp Growth
Rectifier 219 0.0005 0 0 075 0999 500 TRUE 0 0 5 Uniform Adaptive 0.05 2 1 TRUE [0.1] 1 01527 00827 418
Rectifier 73 005 00001 0 075 0.9 500 TRUE 10 5 Uniform Adaptive 0.5 210000 TRUE [0.505] 3 01973 02452 141
Tanh 73 00005 00001 2 025 0999 500 FALSE 1 0 500 Normal 0.05 2 I FALSE [0,1] 3001946 01471 386
Tanh 73 0.0005 0 0 025 09 50000 TRUE 01 5 Normal 0.05 2 10000 TRUE [0.505] 1 03712 02800 532
Tanh 219 005 00001 2 075 0999 500 FALSE 1 0 5 Normal 05 05 10000 TRUE [-1,1] 1 05472 05238 1294
Tanh 219 00005 00001 0 075 0999 50000 FALSE 1 I 500 Uniform 005 05 10000 TRUE [-0505] 3 09482 01752 98.0
Tanh 219 0.0005 0 0 025 0999 50000 TRUE 1 0 500 Normal 0.5 2 I FALSE [-05,05] 3 08846 07999 926
Rectifir 73 0.05 0 0 025 0999 500 FALSE 1 1 500 Normal 05 05 10000 TRUE [0,1] 2 Exp Growth
Rectifier 219 0.05 0 2 075 09 50000 TRUE 1 1 5 Normal 0.05 2 10000 FALSE [-1,1] 3 Exp Growth
Rectifir 73 00005 00001 0 025 0999 500 TRUE 1 1 5 Uniform Adaptive 005 0.5 10000 FALSE [-1,1] 2 08532 11193 191
Rectifier 219 005 00001 2 025 0.9 500 FALSE 1 I 500 Uniform Adaptive 0.05 2 I TRUE [-0505] 1 Exp Growth
Rectifier 73 005 00001 0 025 0999 50000 TRUE 0 0 500 Uniform 05 05 | FALSE [1,1] 1 Exp Growth
Tanh 219 0.05 0 2 075 0999 500 TRUE 0 1 500 Uniform Adaptive 05 05 I FALSE [-05,05] 2 02808 03514 921
Tanh 146 002525 000005 1 05 09495 5000 FALSE 05 05 2525 Uniform Adaptive 0275 125 5000 FALSE [0.50.5] 1 01372 01313 743
Rectifier 146 0.02525 0.00005 1 0.5 09495 5000 TRUE 05 05 2525 Uniform 0275 125 5000 TRUE [-1,1] 2 Exp Growth
Tanh 146 002525 000005 1 05 09495 5000 FALSE 05 0.5 2525 Normal 0275 125 5000 FALSE [0,1] 301580 01069 539
Rectifir 146 002525 000005 1 05 09495 5000 TRUE 0.5 05 2525 Uniform Adaptive 0275 125 5000 TRUE [-05,05] 1 Exp Growth
Tanh 146 002525 000005 1 05 09495 5000 FALSE 05 05 2525 Uniform 0275 125 5000 FALSE [-1,1] 2 05155 04084 156.6
Rectifier 219 00005 00001 2 025 0999 50000 FALSE 0 1 5 Normal 005 05 10000 FALSE [0,1] 1 Exp Growth
Rectifier 73 0.0 0 2 025 0999 50000 FALSE 0 0 5 Uniform Adaptive 005 2 1 TRUE _ [-L1] 3 Exp Growth

103

Appendix F: D ME2DOAR

Table 23. D ME2DOAR Test Matrix

-« 3
- E 5
S 3 PR E s
£ E 3 % & i = 2 < 8 £ [
= 5 5 2 3 19 S = S)53 L2 ‘3 g m —
= o [& 5] < m = = -2 £ m B
g P « z < A a a = o =1 = S s 7] 32
2 2 £ = o a = = = > n 2 5] @ 3 = s = 4
2 g 8 = gz 2 3 g z 5 7 £ £ s S 3 e g 3
2 2 2 Z & 2 £ £ & 5 9 = £ z & s z 8 s & £ £ 3
TanhWithDropout 73 73 0.9 1.00E-10 FALSE 0.2 0.8 0.2 0 1 5 Uniform Adaptive 0.5 0.5 10000 FALSE [0, 1] 2 0.1218 0.0707 114.4
TanhWithDropout 73 73 0.999 1E-10 FALSE 0.2 0.2 0.2 0 0 500 Uniform Adaptive 0.5 2 1 TRUE [-0.5,0.5] 3 0.1132 0.0613 58.4
TanhWithDropout 73 219 0.999 1E-10 TRUE 0.8 0.2 0.8 0 1 5 Uniform 0.05 0.5 10000 TRUE [0, 1] 3 0.1240 0.0693 121.7
RectifierWithDropout 219 219 0.9 0.000001 FALSE 0.8 0.8 0.2 0 0 5 Normal 0.5 0.5 10000 TRUE [-0.5,0.5] 3 0.1973 0.2452 146.2
TanhWithDropout 73 219 0.9 1E-10 FALSE 0.8 0.8 0.8 1 0 500 Uniform 0.05 2 10000 FALSE [-0.5,0.5] 1 0.1607 0.1265 85.6
TanhWithDropout 219 219 0.999 0.000001 FALSE 0.2 0.8 0.2 1 1 500 Normal 0.5 0.5 10000 FALSE [0, 1] 1 0.9093 0.8467 158.9
RectifierWithDropout 73 73 0.999 0.000001 FALSE 0.2 0.8 0.8 1 0 5 Uniform 0.5 0.5 10000 TRUE [-1,1] 1 0.7995 0.9707 31.5
TanhWithDropout 73 73 0.999 0.000001 TRUE 0.2 0.2 0.2 0 0 5 Normal 0.05 2 1 FALSE [-1,1] 1 0.5277 0.3071 81.6
RectifierWithDropout 73 73 0.9 0.000001 FALSE 0.8 0.2 0.2 1 1 500 Uniform 0.5 2 1 TRUE [0, 1] 2 0.3539 0.4133 18.1
TanhWithDropout 219 73 0.9 1E-10 TRUE 0.8 0.2 0.8 1 0 500 Normal 0.5 0.5 1 TRUE [0, 1] 1 0.1516 0.1064 84.7
TanhWithDropout 73 219 0.9 0.000001 FALSE 0.2 0.2 0.8 1 1 500 Uniform Adaptive 0.5 0.5 1 FALSE [-1,1] 3 0.5390 0.5253 135.8
RectifierWithDropout 73 73 0.9 1E-10 TRUE 0.2 0.2 0.2 1 1 500 Normal 0.05 0.5 10000 FALSE [-0.5, 0.5] 3 0.1973 0.2452 54.5
RectifierWithDropout 73 219 0.9 1E-10 TRUE 0.8 0.8 0.2 0 1 500 Uniform Adaptive 0.05 0.5 1 TRUE [-1,1] 1 0.7995 0.9707 119.7
TanhWithDropout 219 73 0.9 1E-10 TRUE 0.8 0.8 0.2 1 1 5 Uniform 0.5 2 1 FALSE [-1,1] 3 0.5577 0.5581 107.0
RectifierWithDropout 219 73 0.999 1E-10 FALSE 0.2 0.8 0.8 0 1 500 Uniform 0.05 0.5 1 FALSE [0, 1] 3 0.1482 0.0958 46.5
RectifierWithDropout 73 219 0.999 1E-10 TRUE 0.2 0.8 0.8 1 1 5 Normal 0.5 2 1 TRUE [-0.5, 0.5] 2 0.1990 0.2470 82.8
TanhWithDropout 219 73 0.999 0.000001 FALSE 0.8 0.8 0.8 0 1 500 Normal 0.05 2 10000 TRUE [-1,1] 2 0.5532 0.3683 70.3
RectifierWithDropout 219 219 0.9 1E-10 TRUE 0.2 0.2 0.8 0 0 500 Uniform 0.5 2 10000 FALSE [-1,1] 2 0.7960 0.9878 98.7
RectifierWithDropout 219 219 0.999 1E-10 FALSE 0.8 0.2 0.2 1 0 5 Uniform Adaptive 0.05 0.5 1 FALSE [-1,1] 2 0.7960 0.9878 192.1
TanhWithDropout 219 219 0.9 0.000001 FALSE 0.2 0.2 0.2 0 1 5 Uniform 0.05 2 1 TRUE [-0.5,0.5] 1 0.1115 0.0826 354.0
RectifierWithDropout 219 219 0.999 0.000001 TRUE 0.2 0.8 0.2 1 0 500 Uniform Adaptive 0.05 2 10000 TRUE [0, 1] 3 0.2015 0.1541 36.7
TanhWithDropout 219 73 0.9 0.000001 TRUE 0.2 0.8 0.8 1 0 5 Uniform Adaptive 0.05 0.5 1 TRUE [-0.5, 0.5] 2 0.1977 0.2449 129.0
RectifierWithDropout 73 219 0.9 0.000001 FALSE 0.8 0.8 0.8 0 0 5 Normal 0.05 2 1 FALSE [0, 1] 3 0.1285 0.0743 24.7
TanhWithDropout 73 219 0.999 0.000001 TRUE 0.8 0.8 0.2 0 0 500 Uniform 0.5 0.5 1 FALSE [-0.5,0.5] 2 0.7441 0.6657 200.5
RectifierWithDropout 219 73 0.999 0.000001 TRUE 0.8 0.2 0.8 0 1 5 Uniform Adaptive 0.5 2 10000 FALSE [-0.5, 0.5] 1 0.1999 0.2427 56.4
RectifierWithDropout 73 146 0.9495 1E-08 FALSE 0.5 0.5 0.5 0.5 0.5 252.5 Uniform Adaptive 0.275 1.25 5000 FALSE [-0.5,0.5] 1 0.1999 0.2427 74.4
TanhWithDropout 146 219 0.9495 1E-08 TRUE 0.5 0.5 0.5 0.5 0.5 252.5 Uniform 0.275 1.25 5000 TRUE [-1,1] 2 0.5031 0.4075 147.1
RectifierWithDropout 146 73 0.9495 1E-08 FALSE 0.5 0.5 0.5 0.5 0.5 252.5 Normal 0.275 1.25 5000 FALSE [0, 1] 3 0.1378 0.0843 25.8
TanhWithDropout 219 146 0.9495 1E-08 TRUE 0.5 0.5 0.5 0.5 0.5 252.5 Uniform Adaptive 0.275 1.25 5000 TRUE [-0.5,0.5] 1 0.1411 0.1366 164.2
RectifierWithDropout 146 146 0.9495 1E-08 FALSE 0.5 0.5 0.5 0.5 0.5 252.5 Uniform 0.275 1.25 5000 FALSE [-1,1] 2 0.7960 0.9878 89.0

104

Appendix G: D ME2DO

Table 24. D ME2DO Test Matrix

- £
5 5 g £

i 3 : 2 g E & 2 ¢ S 3

g g £ H iz i 3 % i G z T %

< 5008 g E > £ £ g 2 & £ £ 2 : z =z & o £ = =

5 s 5 o 2 g E E E N s &8 4 - 5 < a = K] 2 g o 2 3

g 2 z ki g & o £ £ g a = = g z % 2z H o B £ 2 = 2)

z R E P e £ £ E 2 0z 2 2 < g 5t % g s PR g 2 g

5 5 3 g g g s 5 s g E 2 2 - a 5 £ g i £ E g g % g £ 2

< = & & = = = Z 5 = = 2 = S < % = 7 a = = = =)
RectifierWithDropout 219 219 0.05 0 0 025 0.9 500 YES 0.8 0.8 0.8 0 0 5 Uniform 0.5 0.5 1 TRUE [0, 1] 0.2080 0.2004 89.0
RectifierWithDropout 73 219 0.0005 0.0001 0 0.75 0.999 500 NO 02 0.8 0.2 1 1 5 Uniform 0.05 2 1 TRUE [-1.1] 2 3.3649 38718 85.1
TanhWithDropout 73 219 0.05 0.0001 0 0.75 0.9 50000 YES 02 0.8 0.8 1 1 500 Uniform 0.05 0.5 1 TRUE [0, 1] 3 0.4961 0.4367 73.4
RectifierWithDropout 73 219 0.0005 0.0001 2 025 0.9 50000 NO 0.8 0.8 0.8 1 1 5 Uniform Adaptive 0.5 0.5 1 FALSE [-0.5,0.5] 3 Exp Growth
TanhWithDropout 219 73 0.0005 0.0001 0 0.75 0.999 50000 NO 08 08 0.8 1 0 500 Normal 0.05 2 10000 FALSE [0, 1] 2 0.6078 0.5537 422
TanhWithDropout 219 73 0.0005 0 2 0.75 0.999 500 NO 08 08 0.8 0 1 500 Uniform Adaptive 0.5 0.5 10000 TRUE [-1.1] 3 0.5544 0.3587 59.1
RectifierWithDropout 219 219 0.05 0 2 0.75 0.999 50000 NO 08 02 0.8 1 1 5 Uniform Adaptive 0.5 2 1 TRUE [0, 1] 1 Exp Growth
TanhWithDropout 219 73 0.0005 0.0001 2 025 09 500 NO 08 02 02 1 0 5 Uniform 0.05 0.5 1 FALSE [-1.1] 1 0.5670 0.5435 64.1
TanhWithDropout 73 73 0.0005 0 2 025 0.999 50000 YES 02 08 02 0 0 5 Uniform Adaptive 0.5 2 1 FALSE [0, 1] 3 0.1464 0.0918 514
TanhWithDropout 219 73 0.05 0 0 0.75 09 50000 NO 08 02 02 1 1 5 Uniform 0.05 0.5 10000 FALSE [0, 1] 3 0.5201 0.4673 172.7
RectifierWithDropout 219 73 0.05 0.0001 2 0.75 0.9 50000 YES 02 02 0.8 0 1 500 Uniform Adaptive 0.05 0.5 1 FALSE [-1.1] 2 Exp Growth
RectifierWithDropout 219 219 0.0005 0.0001 0 025 0.9 50000 NO 02 02 0.8 0 0 5 Normal 0.5 2 10000 TRUE [-1,1] 3 1.1031 1.2566 49.7
TanhWithDropout 73 219 0.05 0.0001 2 0.25 0.999 500 NO 0.8 0.2 0.8 0 1 500 Uniform 0.5 2 10000 FALSE [-0.5,0.5] 2 0.1166 0.0734 121.4
RectifierWithDropout 73 73 0.0005 0.0001 0 0.25 0.999 500 YES 0.8 0.2 0.2 1 1 500 Uniform Adaptive 0.5 0.5 10000 TRUE [0, 1] 2 0.2019 0.1733 226
RectifierWithDropout 73 73 0.0005 0 2 0.25 0.9 500 NO 0.2 0.8 0.8 0 1 5 Normal 0.05 2 1 FALSE [0, 1] 2 Exp Growth
TanhWithDropout 219 219 0.0005 0 0 0.25 0.999 50000 YES 0.2 0.2 02 0 1 5 Uniform Adaptive 0.05 2 10000 FALSE [-0.5,0.5] 2 0.1587 0.1573 201.4
RectifierWithDropout 219 73 0.05 0.0001 0 0.75 0.999 500 YES 0.8 0.8 0.2 0 1 5 Normal 0.5 2 1 FALSE [-0.5,0.5] 3 2.0879 2.2916 388
TanhWithDropout 73 73 0.05 0.0001 2 0.25 0.999 50000 YES 0.2 0.8 0.8 1 0 5 Uniform 0.5 2 10000 TRUE [-1.1] 1 Exp Growth
RectifierWithDropout 73 219 0.05 0 0 0.25 0.999 500 YES 0.8 0.2 0.8 1 0 500 ‘Normal 0.05 2 1 FALSE [-1.1] 3 Exp Growth
RectifierWithDropout 73 73 0.0005 0 0 0.75 0.999 50000 NO 0.2 0.2 0.8 0 0 500 Uniform 0.5 0.5 1 FALSE [-0.5,0.5] 1 0.8997 1.0413 19.0
RectifierWithDropout 73 219 0.05 0.0001 2 0.75 0.999 500 NO 0.2 0.2 0.2 0 0 5 ‘Normal 0.05 0.5 10000 TRUE [0, 1] 3 Exp Growth
RectifierWithDropout 73 73 0.05 0 2 0.75 09 50000 YES 0.8 0.2 0.2 1 0 5 Normal 0.5 0.5 10000 TRUE [-0.5,0.5] 2 Exp Growth
RectifierWithDropout 219 73 0.05 0.0001 0 0.25 0.999 500 NO 0.2 0.8 0.8 1 0 5 Uniform Adaptive 0.05 0.5 10000 FALSE [-0.5,0.5] 1 0.2350 0.2916 484
TanhWithDropout 219 219 0.05 0 2 0.75 0.9 500 NO 0.2 0.8 0.2 1 0 500 Uniform Adaptive 0.5 2 1 TRUE [-0.5,0.5] 2 Exp Growth
RectifierWithDropout 219 73 0.0005 0 2 0.25 09 500 YES 0.2 0.2 0.8 1 1 500 Uniform 0.05 2 10000 TRUE [-0.5,0.5] 3 Exp Growth
TanhWithDropout 219 219 0.0005 0 2 0.25 0.999 50000 YES 0.8 0.8 0.2 0 1 500 Normal 0.05 0.5 1 TRUE [-0.5,0.5] 1 0.1306 0.0727 86.4
TanhWithDropout 73 73 0.0005 0.0001 0 0.75 0.9 500 YES 0.8 0.2 0.8 0 0 5 Uniform Adaptive 0.05 2 1 TRUE [-0.5,0.5] 1 0.1934 0.2315 338
RectifierWithDropout 219 219 0.0005 0.0001 2 0.75 0.9 500 YES 0.8 0.8 0.2 0 0 500 Uniform 0.5 2 10000 FALSE [0, 1] 1 Exp Growth
RectifierWithDropout 73 73 0.05 0 0 025 0.9 50000 NO 08 08 02 0 1 500 Uniform Adaptive 0.05 2 10000 TRUE [-1.1] 1 1.1055 1.3403 29.1
TanhWithDropout 73 219 0.0005 0 0 0.75 0.9 500 YES 02 0.8 0.8 1 1 5 Normal 0.5 0.5 10000 FALSE [-1.1] 1 0.7534 0.8925 65.6
TanhWithDropout 219 73 0.05 0.0001 0 025 09 500 NO 02 02 02 1 1 500 Normal 0.5 2 1 TRUE [0, 1] 1 0.9379 0.8907 136.7
RectifierWithDropout 73 146 0.02525 0.00005 1 0.5 0.9495 10000 NO 0.5 0.5 0.5 0.5 0.5 252.5 Uniform Adaptive 0275 125 5000 FALSE [-0.5,0.5] 1 Exp Growth
TanhWithDropout 146 73 0.02525 0.00005 1 0.5 0.9495 10000 YES 0.5 0.5 0.5 0.5 0.5 252.5 Uniform 0.275 125 5000 TRUE [-1.1] 2 0.5102 0.4059 811
RectifierWithDropout 146 73 0.02525 0.00005 1 0.5 0.9495 10000 NO 0.5 0.5 0.5 0.5 0.5 252.5 Normal 0275 125 5000 FALSE [0, 1] 3 Exp Growth
TanhWithDropout 73 146 0.02525 0.00005 1 0.5 0.9495 10000 YES 0.5 0.5 0.5 0.5 0.5 252.5 Uniform Adaptive 0275 125 5000 TRUE [-0.5,0.5] 1 0.1412 0.1400 55.0
RectifierWithDropout 146 146 0.02525 0.00005 1 0.5 0.9495 10000 NO 0.5 0.5 0.5 0.5 0.5 252.5 Uniform 0.275 125 5000 FALSE [-1.1] 2 Exp Growth

105

Appendix H: D ME2AR

Table 25. D ME2AR Test Matrix

—_ ol _§
B 5 32 g
gz S £
3 3 = 2 g
= = =]] s o = A
s & < < - K] < @ = & 2 g m 2 3
g & 5 : = z ® 2 F 2 3 £ % = <
2 = = = 2 = 5 Z = =) = = = £ o]
g El E 2 z Z o F] = g g & E] =]]] E 3
< Z & i3] =] N = il < %) = 7] a = = = =
Rectifier 73 219 09 1.00E-10 FALSE 0 1 500 Normal 05 05 10000 FALSE [-1,1] 307892 13015 5194
Tanh 219 73 0999 0.000001 TRUE 0 1 5 Uniform 0.05 210000 TRUE [-0.5,0.5] 3 01116 00782 1932
Tanh 73 219 09 1.00E-10 TRUE 1 1 5 Uniform Adaptive 05 05 10000 TRUE [-0.5,0.5] 2 01990 02469 267.9
Tanh 209 73 09 0.00001 FALSE 1 1 5 Uniform 0.5 210000 FALSE [-1,1] 305621 05920 2129
Tanh 73 73 0999 1.00E-10 FALSE 0 1 500 Uniform 05 05 1 TRUE [0,1] 1 01303 00570 80.8
Tanh 73219 0999 0.000001 TRUE 1 1 500 Normal 005 05 1 FALSE [-1,1] 309009 06980 785
Rectifier 219 73 09 1.00E-10 TRUE 0 0 5 Normal 05 05 1 FALSE [-0.5,05] 301973 02452 1858
Rectifier 73 219 09 0.00001 FALSE 0 0 5 Uniform Adaptive 0.05 2 1 TRUE [0,1] 301391 01243 386
Tanh 73 73 0999 1.00E-10 TRUE 1 0 500 Uniform Adaptive 0.5 2 1 FALSE [0,1] 301940 01465 947
Tanh 219 219 09 0.00001 FALSE 1 1 500 Normal 0.5 2 1 TRUE [-0.5,05] 2 01971 02450 186.5
Rectifier 219 219 0999 1.00E-10 TRUE 0 1 5 Normal 0.5 210000 TRUE [0,1] 1 01065 00487 2333
Tanh 219 219 0999 1.00E-10 TRUE 0 0 500 Uniform Adaptive 0.05 2 10000 FALSE [-1,1] 2 07322 00025 5398
Rectifier 219 219 0999 1.00E-10 FALSE 1 0 500 Uniform 005 05 10000 TRUE [-0.5,0.5] 3 614845 02452 936.1
Rectifier 73 73 09 0.000000 TRUE 0 0 500 Uniform 0.5 210000 TRUE [-1,1] 2 07960 09878 1018
Tanh 29 73 09 0.000000 TRUE 1 0 500 Normal 005 05 10000 TRUE [0,1] 1 01883 0.1458 106.1
Rectifier 73 73 09 0.000000 TRUE 1 1 500 Uniform Adaptive ~ 005 05 10000 TRUE [-1,1] 1 07995 09707 1212
Rectifier 219 73 0999 0.000001 FALSE 1 1 5 Uniform Adaptive 05 05 10000 FALSE [0,1] 2 01784 01302 206
Rectifier 73 219 0999 0.000001 TRUE 1 0 5 Uniform 0.5 2 1 FALSE [-0.5,0.5] 1 01999 02427 1623
Tanh 73 73 0999 0.000001 FALSE 0 0 5 Normal 005 05 10000 FALSE [-0.5,0.5] 2 03265 02865 552
Rectifier 73 73 0999 1.00E-10 FALSE 1 1 5 Normal 0.05 2 1 TRUE [-1,1] 2 11760 1.0003 1229
Tanh 219 219 0999 0.000001 FALSE 0 0 5 Uniform Adaptive 05 05 1 TRUE [1,1] 1 08793 06679 90.1
Rectifier 219 73 09 1.00E-10 FALSE 0 1 500 Uniform Adaptive 0.05 2 1 FALSE [-0.5,0.5] 1 02003 02427 3486
Rectifier 219 219 09 0.000000 TRUE 0 1 500 Uniform 005 05 1 FALSE [0,1] 2 17685 00514 444
Tanh 73219 09 1.00E-10 FALSE 1 0 5 Uniform 0.05 2 10000 FALSE [0,1] 1 01921 0.1496 261.0
Tanh 29 73 09 1.00E-10 TRUE 1 0 5 Uniform 005 05 1 TRUE [1,1] 2 05503 05414 179.8
Tanh 146 73 09495 1.00E-08 FALSE 0.5 05 2525 Uniform Adaptive 0275 125 5000 FALSE [-0.5,0.5] 1 01479 0.518 2027
Rectifier 219 146 09495 1.00E-08 TRUE 05 05 2525 Uniform 0275 125 5000 TRUE [-1,1] 2 07960 09878 2347
Tanh 73 146 09495 1.00E-08 FALSE 0.5 05 2525 Normal 0275 125 5000 FALSE [0, 1] 301676 01174 1120
Rectifier 146 219 09495 100E-08 TRUE 05 0.5 2525 Uniform Adaptive ~ 0275 125 5000 TRUE [-0.5,0.5] 1 01999 02427 2237
Tanh 146 146 09495 1.00E-08 FALSE 0.5 0.5 2525 Uniform 0275 125 5000 FALSE [-1,1] 2 04645 03675 3243

106

Appendix I: D ME2

Table 26. D ME2 Test Matrix

.
5 o) 2 =
> > S S
4 3 S 2 s
.g -°§ —“S = 2 g %_i. ‘g g a8 -
g = = 2 2 a g & 3
E T £ % : 5§ £ 5 £ o 2 < 2 3z £ PR 8 3
E £ £ g < & 8 g g g = z 2 Z Z 2 4 £ = = 4 ‘
2 5 5 £ 2 2 £ £ £ 2 %] 5 £ E g s 2 7 g g g
2 z z 3 e e ‘ = ‘ z 59 = el = & s & a8 e e i £ z
Tanh 73 73 0.05 0.0001 2 075 0.9 500 TRUE 0 1 500 Normal 0.5 2 10000 FALSE [-1,1] 1 0.5849 0.3710 99.0
Rectifier 219 73 0.0005 0 0 075 0.9 50000 TRUE 1 1 5 Normal 0.05 0.5 10000 TRUE [0, 1] 1 2.3330 2.4207 359
Tanh 219 73 0.0005 0 2 075 0.9 50000 FALSE 1 1 5 Uniform 0.5 2 10000 TRUE [-0.5,0.5] 3 0.1970 0.2449 94.3
Tanh 73 73 0.0005 0 2 075 0.999 50000 FALSE 0 0 500 Uniform Adaptive 0.05 2 1 TRUE [-1,1] 2 0.8703 1.0864 117.3
Rectifier 219 219 0.0005 0 0 075 0.9 500 TRUE 0 0 500 Uniform Adaptive 0.5 2 1 TRUE [-1,1] 1 1.5367 1.9243 177.0
Rectifier 219 219 0.0005 0.0001 2025 0.9 50000 FALSE 0 0 5 Uniform 0.05 0.5 10000 FALSE [-1,1] 1 Exp Growth
Rectifier 73 219 0.0005 0 2025 0.999 500 FALSE 1 1 500 Normal 0.5 0.5 1 TRUE [-1,1] 3 Exp Growth
Tanh 219 219 0.0005 0.0001 2025 0.999 50000 TRUE 0 1 500 Normal 0.05 0.5 10000 TRUE [0, 1] 2 0.1806 0.0527 476.3
Tanh 219 73 0.0005 0.0001 2025 0.9 500 TRUE 1 1 500 Uniform 0.05 2 1 FALSE [-0.5,0.5] 2 0.1989 0.2469 111.9
Tanh 73 219 0.0005 0 2 075 0.9 500 TRUE 0 1 5 Uniform Adaptive 0.05 0.5 1 FALSE [0,1] 1 0.1133 0.0587 93.4
Tanh 219 73 0.0005 0.0001 0 075 0.999 50000 FALSE 0 0 5 Normal 0.5 2 1 FALSE [0,1] 3 0.6135 0.1539 65.4
Rectifier 219 73 0.05 0 0 0.25 0.9 500 TRUE 0 0 5 Normal 0.05 0.5 1 TRUE [-0.5,0.5] 3 Exp Growth
Rectifier 219 73 0.05 0 2 0.25 0.9 50000 FALSE 1 0 500 Uniform Adaptive 0.5 0.5 1 FALSE [0, 1] 2 Exp Growth
Rectifier 219 219 0.05 0.0001 0 075 0.999 500 FALSE 1 1 5 Uniform Adaptive 0.05 2 10000 TRUE [-1,1] 2 1.6315 1.9952 88.3
Tanh 73 219 0.05 0 0 025 0.999 500 FALSE 1 1 5 Uniform 0.05 2 1 FALSE [0,1] 1 0.6568 0.6433 172.4
Rectifier 73 219 0.0005 0.0001 2 075 0.999 500 TRUE 1 0 5 Normal 0.5 2 1 FALSE [-0.5,0.5] 2 Exp Growth
Rectifier 219 219 0.05 0 2 075 0.999 500 TRUE 0 0 500 Uniform 0.05 2 10000 FALSE [0,1] 3 Exp Growth
Rectifier 73 73 0.0005 0.0001 0 025 0.9 500 FALSE 1 0 500 Uniform 0.5 2 10000 TRUE [0, 1] 1 10.6115 10.7605 222
Rectifier 73 73 0.05 0.0001 2 075 0.999 50000 TRUE 1 0 500 Uniform 0.05 0.5 1 TRUE [-0.5,0.5] 1 Exp Growth
Tanh 73 219 0.0005 0.0001 0 025 0.9 50000 TRUE 1 0 5 Uniform Adaptive 0.05 2 1 FALSE [-1,1] 3 0.7341 0.8570 116.8
Rectifier 73219 0.05 0 0 075 0.9 50000 FALSE 0 1 5 Uniform 0.5 0.5 1 FALSE [-0.5,0.5] 2 2.5956 2.7942 73.4
Rectifier 73 73 0.0005 0.0001 0 075 0.999 500 FALSE 0 1 500 Uniform Adaptive 0.05 0.5 10000 FALSE [-0.5,0.5] 3 0.4655 0.5504 78.2
Tanh 73 219 0.05 0 2025 0.9 50000 FALSE 0 0 500 Normal 0.05 2 10000 TRUE [-0.5,0.5] 1 0.8379 0.7369 141.1
Rectifier 73 219 0.05 0.0001 0 025 0.9 50000 TRUE 0 1 500 Uniform Adaptive 0.5 2 10000 TRUE [0, 1] 2 0.4443 0.4514 514
Tanh 73 73 0.0005 0 0 025 0.999 500 TRUE 0 0 5 Uniform 0.5 0.5 10000 TRUE [-1,1] 2 1.4089 1.1992 60.7
Tanh 219 73 0.05 0 0 075 0.9 500 FALSE 1 0 500 Normal 0.05 0.5 10000 FALSE [-1,1] 2 1.4902 1.6014 51.6
Tanh 73 219 0.05 0.0001 2 075 0.9 500 FALSE 1 0 5 Uniform Adaptive 0.5 0.5 10000 TRUE [0, 1] 3 0.1845 0.1366 89.6
Rectifier 73 73 0.05 0 2 0.25 0.999 50000 TRUE 1 1 5 Uniform Adaptive 0.5 2 10000 FALSE [-1,1] 3 Exp Growth
Tanh 219 219 0.05 0.0001 0 0.75 0.9 50000 TRUE 1 1 500 Uniform 0.5 0.5 1 TRUE [-1,1] 3 1.5229 1.6427 93.4
Tanh 219 73 0.05 0.0001 2 0.25 0.999 500 FALSE 0 1 5 Uniform Adaptive 0.5 0.5 1 TRUE [-0.5,0.5] 1 0.1468 0.0929 114.4
Tanh 219 219 0.0005 0 0 025 0.999 50000 TRUE 1 0 500 Uniform Adaptive 0.5 0.5 10000 FALSE [-0.5,0.5] 1 0.1887 0.2193 309.6
Tanh 146 73 0.02525 0.00005 1 0.5 09495 10000 FALSE 05 05 2525 Uniform Adaptive ~ 0275 125 5000 FALSE [-0.5,0.5] 1 0.1378 0.1320 61.5
Rectifier 146 73 0.02525 0.00005 1 0.5 0.9495 10000 TRUE 05 05 2525 Uniform 0275 125 5000 TRUE [-1,1] 2 Exp Growth
Tanh 73 146 0.02525 0.00005 1 0.5 09495 10000 FALSE 05 05 2525 Normal 0275 125 5000 FALSE [0, 1] 3 0.1592 0.1081 61.1
Rectifier 73 146 0.02525 0.00005 1 0.5 0.9495 10000 TRUE 05 05 2525 Uniform Adaptive 0275 1.25 5000 TRUE [-0.5,0.5] 1 Exp Growth
Tanh 146 146 0.02525 0.00005 1 0.5 09495 10000 FALSE 0.5 0.5 2525 Uniform 0275 125 5000 FALSE [-1,1] 2 0.5163 0.4091 203.1

107

Appendix J: D ME3DOAR

Table 27. D ME3DOAR Test Design

. 2

= = = P 3 2 2 2 _§ . s

i § 2 E oz o2 02 2 £ S 5

E £ E B E S %2 & i 2 E B 3 £ 2

= 5 5 5 2 g & & & B 3 bt @ B o £ - ~

£ % 5 % 2 2 a a a o 2 i 2 el = b g 2 Z 3

g £ £ g 5 ¢ S § § % = z & £ 2 2 2 £ z F ¢ .

E g g g = g 5 2 2 2 ~ E g 2 2 =) e g = e g 4

] 3 3 3 2 Z 3 E 2 OE O OE - o« g 2 2 g £ 2] i 3 £ g]

< z 4 i3] z) = o=l = =2 = =) < %) = 7] a = = = =) z
RectifierWithDropout 73 219 73 0.999 1.00E-10 TRUE 0.2 0.8 0.8 0.8 1 0 500 Uniform 0.5 0.5 1 FALSE [0, 1] 2 0.1934 0.1456 373
RectifierWithDropout 73 73 73 0.999 0.000001 FALSE 0.8 0.2 0.2 0.8 0 1 500 Uniform Adaptive 0.5 0.5 1 TRUE [-0.5,0.5] 2 0.1990 0.2470 41.7
RectifierWithDropout 219 219 219 0.9 0.000001 TRUE 0.2 0.2 0.8 0.2 1 0 500 Uniform 0.5 2 1 TRUE [-0.5,0.5] 1 0.1999 0.2427 156.3
TanhWithDropout 219 73 73 0.999 1E-10 FALSE 0.8 0.2 0.8 0.2 0 0 5 Uniform 0.05 0.5 1 FALSE [-1,1] 3 0.4854 0.2663 186.3
TanhWithDropout 219 73 73 0.999 0.000001 TRUE 0.2 0.8 0.2 0.2 0 1 500 Uniform 0.05 0.5 10000 TRUE [0, 1] 1 0.1296 0.0766 123.4
RectifierWithDropout 73 73 219 0.999 1E-10 FALSE 0.2 0.8 0.2 0.2 0 0 500 Normal 0.05 0.5 10000 TRUE [-0.5,0.5] 1 0.1999 0.2427 85.8
TanhWithDropout 219 73 219 0.9 0.000001 TRUE 0.8 0.2 0.8 0.8 0 0 500 Normal 0.05 2 10000 FALSE [0, 1] 2 0.1417 0.0914 183.0
TanhWithDropout 73 219 219 0.9 1E-10 TRUE 0.8 0.8 0.2 0.8 1 0 5 Uniform Adaptive 0.05 0.5 10000 FALSE [-0.5,0.5] 1 0.1998 0.2426 130.9
TanhWithDropout 219 219 73 0.9 1E-10 FALSE 0.2 0.2 0.8 0.8 1 1 500 Normal 0.05 0.5 1 TRUE [-0.5,0.5] 3 0.1432 0.1220 117.9
TanhWithDropout 73 219 73 0.999 1E-10 TRUE 0.8 0.2 0.8 0.2 0 1 500 Uniform Adaptive 0.05 2 1 TRUE [0, 1] 1 0.1269 0.0727 77.0
TanhWithDropout 73 73 219 0.9 0.000001 FALSE 0.8 0.8 0.8 0.2 1 1 500 Uniform 0.05 0.5 1 TRUE [-1,1] 2 0.5512 0.5569 116.4
RectifierWithDropout 73 73 219 0.9 1E-10 FALSE 0.2 0.2 0.2 0.2 1 1 500 Uniform Adaptive 0.5 2 1 FALSE [0, 1] 3 0.1966 0.1491 76.7
RectifierWithDropout 219 219 73 0.9 0.000001 TRUE 0.2 0.2 0.2 0.2 0 0 5 Uniform Adaptive 0.05 0.5 10000 FALSE [-0.5,0.5] 2 0.1990 0.2470 173.4
TanhWithDropout 219 73 73 0.9 0.000001 FALSE 0.2 0.2 0.2 0.8 1 1 5 Uniform 0.5 0.5 10000 FALSE [0, 1] 1 0.1858 0.1435 86.7
RectifierWithDropout 219 219 73 0.999 1E-10 FALSE 0.8 0.8 0.2 0.2 1 1 500 Uniform 0.05 2 10000 FALSE [-1,1] 2 0.7960 0.9878 79.6
TanhWithDropout 219 73 219 0.999 1E-10 TRUE 0.2 0.8 0.2 0.2 0 1 5 Normal 0.5 2 1 FALSE [-0.5,0.5] 2 0.1153 0.0690 200.5
RectifierWithDropout 73 219 73 0.9 0.000001 FALSE 0.2 0.8 0.8 0.8 0 1 5 Normal 0.05 2 1 FALSE [-1,1] 1 0.7995 0.9707 31.4
RectifierWithDropout 219 73 219 0.9 1E-10 FALSE 0.8 0.2 0.2 0.8 0 0 5 Uniform 0.05 2 1 TRUE [0, 1] 1 0.1436 0.0892 35.2
RectifierWithDropout 73 73 73 0.999 1E-10 FALSE 0.2 0.2 0.8 0.8 1 0 5 Normal 0.05 2 10000 TRUE [0, 1] 2 0.1825 0.1361 15.2
RectifierWithDropout 73 73 73 0.9 1E-10 TRUE 0.8 0.8 0.8 0.8 0 1 5 Uniform 0.5 2 10000 TRUE [-0.5,0.5] 3 0.1972 0.2450 41.8
TanhWithDropout 73 219 73 0.9 0.000001 FALSE 0.8 0.8 0.2 0.2 0 0 500 Normal 0.5 0.5 1 FALSE [0, 1] 3 0.1517 0.0983 84.7
TanhWithDropout 73 219 219 0.999 0.000001 FALSE 0.2 0.2 0.2 0.8 0 1 500 Uniform 0.05 2 10000 FALSE [-0.5,0.5] 3 0.1150 0.0848 121.0
TanhWithDropout 73 219 219 0.999 1E-10 TRUE 0.2 0.2 0.2 0.8 0 0 5 Uniform 0.5 0.5 1 TRUE [-1,1] 2 0.4669 0.2605 136.6
RectifierWithDropout 219 219 219 0.999 0.000001 TRUE 0.8 0.8 0.2 0.8 1 1 5 Normal 0.05 0.5 1 TRUE [0, 1] 3 0.1691 0.1214 38.1
RectifierWithDropout 219 73 219 0.9 1E-10 TRUE 0.2 0.8 0.8 0.8 0 1 500 Uniform Adaptive 0.05 0.5 1 FALSE [-1,1] 1 0.7995 0.9707 62.4
RectifierWithDropout 73 73 219 0.999 0.000001 TRUE 0.8 0.2 0.8 0.2 1 1 5 Normal 0.5 0.5 10000 FALSE [-1,1] 1 0.7995 0.9707 110.5
TanhWithDropout 219 219 73 0.9 1E-10 TRUE 0.8 0.2 0.2 0.8 1 0 500 Normal 0.5 2 10000 TRUE [-1,1] 1 0.5172 0.4839 80.1
RectifierWithDropout 219 219 219 0.999 0.000001 FALSE 0.2 0.8 0.8 0.8 0 0 500 Uniform Adaptive 0.5 2 10000 TRUE [-1,1] 3 0.7892 0.9810 79.3
TanhWithDropout 219 73 73 0.999 0.000001 FALSE 0.8 0.8 0.8 0.8 1 0 5 Uniform Adaptive 0.5 2 1 FALSE [-0.5,0.5] 1 Exp Growth
TanhWithDropout 219 219 219 0.9 1E-10 FALSE 0.2 0.8 0.8 0.2 0 1 5 Uniform Adaptive 0.5 0.5 10000 TRUE [0, 1] 2 0.1213 0.0701 100.7
TanhWithDropout 73 73 73 0.9 0.000001 TRUE 0.2 0.8 0.2 0.2 1 0 5 Uniform Adaptive 0.05 2 1 TRUE [-1,1] 3 0.5543 0.5408 143.9
RectifierWithDropout 146 73 146 0.9495 1E-08 FALSE 0.5 0.5 0.5 0.5 0.5 0.5 252.5 Uniform Adaptive 0.275 1.25 5000 FALSE [-0.5,0.5] 1 0.1999 0.2427 75.5
TanhWithDropout 146 73 146 0.9495 1E-08 TRUE 0.5 0.5 0.5 0.5 0.5 0.5 252.5 Uniform 0.275 1.25 5000 TRUE [-1,1] 2 0.5068 0.4063 139.1
RectifierWithDropout 146 146 146 0.9495 1E-08 FALSE 0.5 0.5 0.5 0.5 0.5 0.5 252.5 Normal 0.275 1.25 5000 FALSE [0, 1] 3 0.1713 0.1159 81.4
TanhWithDropout 146 146 146 0.9495 1E-08 TRUE 0.5 0.5 0.5 0.5 0.5 0.5 252.5 Uniform Adaptive 0.275 1.25 5000 TRUE [-0.5,0.5] 1 0.1410 0.1367 106.4
RectifierWithDropout 73 146 73 0.9495 1E-08 FALSE 0.5 0.5 0.5 0.5 0.5 0.5 2525 Uniform Adaptive 0.275 1.25 5000 FALSE [-0.5,0.5] 1 0.1999 0.2427 47.0
TanhWithDropout 73 146 73 0.9495 1E-08 TRUE 0.5 0.5 0.5 0.5 0.5 0.5 252.5 Uniform 0.275 1.25 5000 TRUE [-1, 1] 2 0.5072 0.4093 71.9

108

Appendix K: D ME3DO

Table 28. D ME3DO Test Matrix

z
FEE 2
= = < z 3 o © £

= 5 5 5 2 " 2 2 g £ =

3 RN £ E g g : £ £ £ 2 2 3

s 2 2 2 g 2 £ 3 2 5 g 5 g

g E & £ o g 3 i 3 g = 1 & i : £ s % H

= 5 g g & K] z £ £ £ 2 2 2 g g & 3 2 2 o £ w =

g = = = = £ g E El El N £ a 3 a o 3 <] 5 £ 2 E @ g 3

H R £ E FE g g E S 5 5 s E z 5 2z 2 2 4 £ E z < ;

s 2 g g E e 2 £ H] g £ 5 2 2 2 %] £ z £ g = S % E 2 4

5 3 3 54 g 3 1 S S S E 2 =1 = o=t - ~ k] = 2 g £ 2 z 3 E g g z

< Z Z Z = 4 4 = = = Z K] =} =} ==} = = = £ < 1) = 71 a =3 =3 =) =) Z
TanhWithDropout 7 7 0.05 0.0001 2 0.999 500 FALSE 08 08 0 1 5 Uniform Adaptive 05 05 I FALSE [0.1] I 01434 00895 1520
TanhWithDropout 219 219 0.05 0.0001 0 0999 50000 FALSE 08 08 1 1 500 Normal 0.05 2 10000 TRUE [L11] 312125 12576 1143
TanhWithDropout 7 7 0.0005 0 0 0999 50000 FALSE 08 02 0 0 5 Normal 05 05 1 TRUE 1.1 3 09941 10959 428
TanhWithDropout 219 7 0.0005 0 2 09 500 FALSE 02 08 0 1 5 Uniform 05 05 10000 FALSE 301369 00908 1018
RectifierWithDropout 73 73 0.0005 0.0001 0 09 500 FALSE 02 02 0 1 500 Uniform 0.05 2 I FALSE 1 Exp Growth
RectifierWithDropout 219 73 0.05 0 2 09 500 FALSE 02 08 0 0 5 Uniform Adaptive 0.05 05 10000 TRUE 2 Exp Growth
RectifierWithDropout 73 219 0.0005 0.0001 2 09 50000 FALSE 02 02 0 5 Uniform Adaptive 05 2 10000 FALSE Exp Growth
RectifierWithDropout 219 219 0.0005 0.0001 2 0.999 500 FALSE 02 02 1 500 Normal 05 05 10000 TRUE Exp Growth
TanhWithDropout 219 219 0.05 0.0001 0 0.999 500 TRUE 02 08 0 5 Normal 05 05 I FALSE 2 01886 02104 1148
TanhWithDropout 219 73 0.05 0.0001 0 09 500 TRUE 02 02 0 5 Normal 0.05 2 1 TRUE 302683 02389 1696
TanhWithDropout 7 7 0.0005 0.0001 0 09 50000 TRUE 02 08 0 1 500 Uniform Adaptive 0.05 05 10000 TRUE 101988 02415 523
TanhWithDropout 7 219 0.0005 0 2 0999 50000 TRUE 02 02 0 1 5 Uniform 0.05 2 10000 TRUE 2 01280 00770 1819
RectifierWithDropout 219 7 0.05 0 2 09 50000 TRUE 02 08 0 1 500 Normal 05 2 I FALSE 3 Exp Growth
RectifierWithDropout 7 219 0.05 0 0 0.999 500 TRUE 02 02 1 1 5 Uniform Adaptive 0.05 05 I FALSE 3 14734 18216 710
RectifierWithDropout 73 73 0.05 0.0001 2 09 500 TRUE 08 02 0 1 5 Normal 0.05 05 10000 FALSE 2 Exp Growth
RectifierWithDropout 73 219 0.05 0 2 09 50000 FALSE 08 08 0 0 500 Uniform 0.05 05 1 TRUE 3 Exp Growth
TanhWithDropout 219 219 0.05 0 0 09 50000 TRUE 08 02 1 5 Uniform 05 05 10000 FALSE 07843 0.8849 1408
TanhWithDropout 7 7 0.05 0 0 0.999 500 FALSE 02 08 0 500 Uniform 05 10000 FALSE Exp Growth
RectifierWithDropout 73 73 0.0005 0 0 09 500 TRUE 08 08 0 5 Normal 05 2 1 TRUE 03801 04558 260
RectifierWithDropout 219 219 0.0005 0 0 0.999 500 TRUE 08 08 0 5 Uniform Adaptive 0.05 2 10000 FALSE 01722 01433 1424
RectifierWithDropout 219 7 0.05 0 0 09 50000 FALSE 08 02 1 5 Uniform Adaptive 05 05 1 TRUE 2 01943 01879 354
TanhWithDropout 7 219 0.0005 0 2 09 500 FALSE 08 08 1 5 Normal 0.05 2 I FALSE 2 0545 05417 704
TanhWithDropout 219 73 0.0005 0 2 0.999 500 TRUE 08 02 1 500 Uniform Adaptive 0.05 05 1 TRUE 30192 02439 1251
TanhWithDropout 7 219 0.05 0 2 09 500 TRUE 02 02 0 500 Uniform Adaptive 05 2 1 TRUE Exp Growth
RectifierWithDropout 73 219 0.0005 0.0001 0 09 500 TRUE 02 08 1 500 Uniform 05 05 1 TRUE Exp Growth
RectifierWithDropout 73 73 0.05 0 2 0999 50000 FALSE 02 02 0 500 Normal 0.05 05 10000 FALSE Exp Growth
RectifierWithDropout 219 219 0.05 0.0001 2 0999 50000 FALSE 02 02 1 5 Uniform 0.05 2 1 TRUE Exp Growth
TanhWithDropout 219 219 0.0005 0.0001 0 09 500 FALSE 08 02 0 500 Uniform 0.05 05 10000 FALSE 3 08759 08255 672
RectifierWithDropout 219 73 0.0005 0.0001 2 0999 50000 TRUE 08 02 0 500 Uniform Adaptive 05 2 I FALSE 2 Exp Growth
RectifierWithDropout 73 73 0.05 0.0001 2 0.999 500 TRUE 08 08 0 5 Uniform 05 2 10000 TRUE 3 Exp Growth
TanhWithDropout 219 7 0.0005 0.0001 2 09 50000 TRUE 02 08 0 5 Uniform 0.05 0s I FALSE 05645 0.5406 412
RectifierWithDropout 146 146 002525 0.00005 09495 10000 FALSE 05 05 05 2525 Uniform Adaptive 0275 125 5000 FALSE 1 Exp Growth
TanhWithDropout 146 146 002525 0.00005 09495 10000 TRUE 05 05 05 2525 Uniform 0275 125 5000 TRUE 2 05085 04052 816
RectifierWithDropout 73 73 002525 0.0000 09495 10000 FALSE 05 05 05 2525 Normal 0275 125 5000 FALSE Exp Growth
TanhWithDropout 7 73 002525 0.00005 09495 10000 TRUE 05 05 05 2525 UniformAdaptive 0275 125 5000 TRUE 1 01410 01370 434
RectifierWithDropout 143 143 002525 0.00005 09495 10000 FALSE 05 05 05 2525 Uniform 0275 125 5000 TRUE Exp Growth
TanhWithDropout 143 143 002525 0.00005 09495 10000 FALSE 05 05 05 2525 Uniform 0275 125 5000 TRUE 3 01633 01126 89.7

Appendix L: D ME3AR

Table 29. D ME3AR Test Matrix

g 8 8 g 8
R | g 3 5

o = = = L 0 = <

2 2 3 3 g z) a =

b3 =l =] = 13 = o0 Q

= 5 5 5 2) S 3 @ F ° £ . —

8 5 % 5 = o 2 < 2 5 e E g 2 a]

g g 35 i g g = z - 2 4 £ g = e .

3 = = = = L < £ 14 = = S = 1) k]

i F 3 F 3) g -« E: 2 g g £ E £ i] E E g

< & m =} o = K| < %) = % o = = = =
Tanh 219 73 219 0.9 1.00E-10 FALSE 0 0 5 Normal 0.5 0.5 1 TRUE 70 [0, 1] 3 0.1426 0.0241 373.1
Rectifier 73 73 219 0.999 1E-10 TRUE 0 0 500 Normal 0.5 0.5 10000 TRUE PM.5 [-0.5,0.5] 2 0.1990 0.2470 231.5
Rectifier 73 219 219 0.999 0.000001 TRUE 0 1 5 Normal 0.5 2 10000 FALSE PMI [-1,1] 3 0.7892 0.9810 216.3
Tanh 219 219 73 0.9 1E-10 TRUE 0 0 5 Normal 0.05 2 10000 TRUE PM1 [-1,1] 1 0.7317 0.0312 419.3
Rectifier 219 219 73 0.999 0.000001 FALSE 1 0 5 Uniform 0.5 0.5 10000 TRUE PM1 [-1,1] 3 0.7892 0.9810 135.8
Rectifier 219 219 73 0.999 1E-10 TRUE 1 1 500 Normal 0.5 0.5 1 FALSE PM.5 [-0.5,0.5] 1 34753776 0.2431 130.2
Tanh 219 73 73 0.999 1E-10 TRUE 0 1 5 Uniform Adaptive 0.5 2 10000 FALSE PM.5 [-0.5,0.5] 3 0.1171 0.0689 199.8
Rectifier 73 73 73 0.9 0.000001 TRUE 0 0 500 Uniform Adaptive 0.05 0.5 10000 FALSE 70 [0, 1] 3 0.2015 0.1541 333
Rectifier 219 73 73 0.999 0.000001 TRUE 1 0 500 Uniform Adaptive 0.05 2 1 TRUE PM1 [-1,1] 2 0.7960 0.9878 157.9
Tanh 73 219 73 0.9 0.000001 FALSE 1 1 5 Normal 0.05 0.5 10000 FALSE PM.5 [-0.5,0.5] 2 0.1974 0.2448 150.8
Rectifier 219 73 219 0.9 0.000001 TRUE 1 1 5 Uniform 0.05 0.5 1 TRUE PM.5 [-0.5,0.5] 3 0.1973 0.2452 296.7
Rectifier 219 73 219 0.999 0.000001 FALSE 1 0 5 Normal 0.5 2 1 FALSE 70 [0, 1] 1 Exp Growth
Tanh 73 219 73 0.999 0.000001 TRUE 0 1 5 Uniform Adaptive 0.5 0.5 1 TRUE 70 [0, 1] 2 0.2493 0.2019 113.8
Rectifier 73 219 73 0.999 1E-10 FALSE 0 1 500 Uniform 0.05 2 1 TRUE 70 [0, 1] 3 3.4005 0.1231 75.2
Tanh 73 73 73 0.9 0.000001 TRUE 1 1 500 Uniform 0.5 2 10000 TRUE 70 [0, 1] 1 0.1885 0.1458 145.1
Tanh 73 73 219 0.999 1E-10 FALSE 1 1 5 Uniform Adaptive 0.05 0.5 10000 TRUE PM1 [-1,1] 1 0.5978 0.6197 328.2
Tanh 219 219 219 0.999 0.000001 FALSE 0 0 500 Uniform 0.05 0.5 10000 FALSE PM.5 [-0.5,0.5] 1 0.8275 0.6808 197.6
Rectifier 73 73 73 0.9 1E-10 FALSE 1 0 5 Uniform 0.5 2 10000 FALSE PM.5 [-0.5,0.5] 2 0.1990 0.2470 131.8
Rectifier 73 219 219 0.9 0.000001 FALSE 0 0 5 Uniform Adaptive 0.5 2 1 TRUE PM.5 [-0.5,0.5] 1 0.1999 0.2427 269.8
Tanh 219 73 219 0.9 0.000001 FALSE 0 1 500 Uniform 0.5 2 1 FALSE PMI [-1,1] 2 0.6421 0.4375 124.6
Rectifier 73 73 73 0.9 1E-10 FALSE 0 1 5 Uniform 0.05 0.5 1 FALSE PMI [-1,1] 1 0.7995 0.9707 113.0
Tanh 73 73 73 0.999 0.000001 FALSE 1 0 500 Normal 0.05 2 1 TRUE PM.5 [-0.5,0.5] 3 0.1889 0.2325 141.9
Tanh 73 219 219 0.9 1E-10 TRUE 1 0 500 Uniform Adaptive 0.5 0.5 1 FALSE PMI [-1,1] 3 0.5508 0.5391 2525
Rectifier 219 219 219 0.9 1E-10 FALSE 1 1 500 Uniform Adaptive 0.05 2 10000 TRUE 70 [0, 1] 2 0.5539 0.5059 51.9
Tanh 73 219 219 0.999 1E-10 TRUE 1 0 5 Uniform 0.05 2 1 FALSE 70 [0, 1] 2 0.1927 0.1449 282.4
Tanh 146 73 146 0.9495 1E-08 FALSE 0.5 0.5 252.5 Uniform Adaptive 0.275 1.25 5000 FALSE PM.5 [-0.5,0.5] 1 0.1479 0.1518 246.2
Rectifier 146 146 146 0.9495 1E-08 TRUE 0.5 0.5 252.5 Uniform 0.275 1.25 5000 TRUE PM1 [-1,1] 2 0.7960 0.9878 211.0
Tanh 73 146 73 0.9495 1E-08 FALSE 0.5 0.5 252.5 Normal 0.275 1.25 5000 FALSE 70 [0, 1] 3 0.1683 0.1181 105.2
Rectifier 146 73 146 0.9495 1E-08 TRUE 0.5 0.5 252.5 Uniform Adaptive 0.275 1.25 5000 TRUE PM.5 [-0.5, 0.5] 1 0.1999 0.2427 210.4
Tanh 146 146 146 0.9495 1E-08 FALSE 0.5 0.5 252.5 Uniform 0.275 1.25 5000 FALSE PMI [-1,1] 2 0.4847 0.3690 292.0
Rectifier 146 146 146 0.9495 1E-08 FALSE 0.5 0.5 252.5 Uniform Adaptive 0.275 1.25 5000 TRUE PM1 [-1,1] 2 0.7960 0.9878 264.8

110

Appendix M: D ME3

Table 30. D ME3 Test Matrix

5 8 & E £
3 3 3 ° E =
g 5 5 5 2 = g g
S 3 3 3 ") = g z S a
S & & o: £ 03 2 %% % 2 : CON- B 5 3
S - - P o £ S 2 2 2 > o S = Gl 9 4 3
k- z z Z Z g 2 g £ g 3 g = & 2z - o 3 2 2 = 2
Z Z g g £ 2 2 H £ £ H % £ 5 g 2 E E E =z £ 2 g
2 2 2 2 3 g = - = Z s 8 = | . & = Z E & & £ £ g
Tanh 73219 219 0.0005 0 0 075 0.999 50000 TRUE 1 0 5 Uniform 0.5 0.5 10000 TRUE Z0 [0, 1] 3 0.5461 04418 219.1
Tanh 219 219 219 0.0005 0.0001 2075 0.9 500 FALSE 0 0 Normal 0.5 2 10000 TRUE PM.5 [-0.5,0.5] 1 0.1728 0.0265 2623
Tanh 219 73 73 0.05 0.0001 0 075 0.9 50000 TRUE 1 0 Normal 0.5 2 1 TRUE PM1 [L1] 2 1.0530 11766 133.1
Rectifier 73219 73 0.05 0.0001 0 025 09 50000 TRUE 0 0 500 Uniform 0.05 0.5 1 TRUE PM.5 [-0.5,0.5] 3 Exp Growth
Tanh 73 73219 0.05 0.0001 2025 09 50000 FALSE 1 0 500 Uniform Adaptive 0.5 2 10000 TRUE PM1 [L1] 3 Exp Growth
Rectifier 219 73 73 0.05 0 0 025 0.999 500 FALSE 0 0 5 Normal 0.05 2 10000 TRUE Z0 [0, 1] 3 Exp Growth
Tanh 73 73 73 0.0005 0 0 025 0.9 500 TRUE 1 1 500 Uniform Adaptive 0.5 2 10000 TRUE Z0 [0, 1] 1 0.2041 0.1509 1729
Rectifier 73 219 73 0.0005 0 2075 0.999 500 TRUE 1 0 5 Uniform Adaptive 0.05 2 1 TRUE PM1 [L1] 3 Exp Growth
Tanh 219 219 73 0.0005 0.0001 2025 0.9 500 FALSE 1 0 5 Uniform 0.05 0.5 1 FALSE ZO [0, 1] 2 0.1929 0.1451 2217
Tanh 73219 219 0.0005 0 0 025 0.999 500 FALSE 1 1 5 Normal 0.5 0.5 1 TRUE PM.5 [-0.5,0.5] 3 0.5100 04898 1749
Tanh 73219 219 0.05 0.0001 0 025 0.999 500 TRUE 0 0 5 Uniform Adaptive 0.05 0.5 10000 FALSE PMI L1 2 0.8728 0.9731 166.7
Tanh 219 219 219 0.0005 0 2025 0.999 50000 FALSE 0 1 500 Uniform 0.05 2 10000 TRUE PM.5 [-0.5,0.5] 2 0.1588 0.1090 1523
Rectifier 219 219 219 0.05 0 2025 0.999 50000 TRUE 1 0 5 Uniform Adaptive 0.5 2 1 FALSE PM.5 [-0.5,05] 1 Exp Growth
Tanh 73 73219 0.0005 0 0 025 0.9 500 TRUE 0 0 500 Uniform 0.05 2 1 FALSE PMI [-1.1] 1 1.6169 15385 1147
Tanh 73 73 73 0.05 0 2075 0.999 500 FALSE 0 0 500 Uniform Adaptive 0.5 0.5 1 FALSE PMS5 [-05,05] 2 Exp Growth
Tanh 219 73 219 0.05 0 2075 0.9 500 TRUE 1 1 500 Normal 0.05 0.5 1 TRUE PM.5 [-0.5,0.5] 2 0.7833 06322 1624
Rectifier 219 73 73 0.0005 0.0001 2025 0.999 50000 TRUE 0 1 5 Uniform Adaptive 0.5 0.5 1 TRUE Z0 [0, 1] 2 Exp Growth
Rectifier 219 73219 0.0005 0.0001 0 075 0.999 500 FALSE 0 0 500 Uniform 0.5 0.5 1 TRUE PM1 [L1] 1 Exp Growth
Rectifier 73219 219 0.05 0.0001 2075 0.999 500 TRUE 1 1 500 Normal 0.05 0.5 10000 TRUE Z0 [0, 1] 1 Exp Growth
Rectifier 73 73219 0.0005 0 0 075 0.9 50000 TRUE 0 0 5 Normal 0.5 0.5 10000 FALSE PM.5 [-0.5,0.5] 2 139523 14.6947 86.0
Tanh 73219 73 0.05 0 2025 0.9 50000 FALSE 0 0 500 Normal 0.5 0.5 1 FALSE ZO [0, 1] 1 0.9935 0.9505 67.7
Tanh 73 73 73 0.05 0.0001 0 075 0.999 50000 FALSE 1 1 5 Uniform 0.05 2 10000 FALSE PM.5 [-0.5,05] 1 0.4810 04975 1538
Rectifier 73 219 73 0.0005 0.0001 0 025 0.999 50000 FALSE 1 1 500 Normal 0.5 2 1 FALSE PMI [1] 2 Exp Growth
Rectifier 219 73219 0.05 0 2025 0.9 500 FALSE 1 1 5 Uniform 0.5 0.5 10000 FALSE PMI [1] 3 Exp Growth
Rectifier 219 219 219 0.05 0 0 075 09 50000 FALSE 1 0 500 Uniform Adaptive 0.05 2 10000 FALSE ZO [0, 1] 2 0.6663 0.6738 2085
Tanh 219 219 219 0.05 0.0001 0 075 0.999 500 TRUE 0 1 500 Uniform 0.5 2 1 FALSE ZO [0, 1] 3 1.0596 1.0204 1929
Rectifier 219 219 73 0.0005 0.0001 0 075 0.9 500 TRUE 1 1 500 Uniform Adaptive 0.5 0.5 10000 FALSE PM.5 [-0.5,0.5] 3 0.5662 0.5834 98.9
Tanh 219 219 73 0.05 0 0 075 0.9 50000 FALSE 0 1 5 Uniform Adaptive 0.05 0.5 1 TRUE PM1 [1] 1 0.7409 0.8497 91.2
Tanh 219 73 73 0.0005 0 2075 0.999 50000 TRUE 0 0 500 Normal 0.05 0.5 10000 FALSE PMI [-1.1] 3 0.6943 0.4295 62.7
Rectifier 73219 73 0.05 0 2075 0.9 500 TRUE 0 1 5 Uniform 0.5 2 10000 TRUE PM1 [1] 2 Exp Growth
Rectifier 73 73219 0.0005 0.0001 2075 09 50000 FALSE 0 1 5 Uniform Adaptive 0.05 2 1 FALSE ZO [0, 1] 3 Exp Growth
Tanh 146 73 146 0.02525 0.00005 1 0.5 09495 10000 FALSE 0.5 0.5 2525 Uniform Adaptive ~ 0275 125 5000 FALSE ~ PM.5 [-0.5,05] 1 0.1380 0.1322 88.9
Rectifier 146 73 146 0.02525 0.00005 1 0.5 09495 10000 TRUE 05 05 2525 Uniform 0275 125 5000 TRUE PM1 [1L1] 2 Exp Growth
Tanh 73 146 73 0.02525 0.00005 1 0.5 09495 10000 FALSE 0.5 05 2525 Normal 0275 125 5000 FALSE ZO [0, 1] 3 0.1560 0.1047 439
Rectifier 73146 73 0.02525 0.00005 1 0.5 09495 10000 TRUE 0.5 05 2525 Uniform Adaptive 0275 125 5000 TRUE PM.5 [-0.5,0.5] 1 Exp Growth
Tanh 146 146 146 0.02525 0.00005 1 0.5 09495 10000 FALSE 0.5 0.5 2525 Uniform 0275 125 5000 FALSE PMI [1L1] 2 0.5192 0.4088 1438
Rectifier 146 146 146 0.02525 _ 0.00005 1 0.5 09495 10000 FALSE 0.5 0.5 2525 Uniform 0275 1.25 5000 FALSE __ PMI [-1.1] 2 Exp Growth

111

Appendix N: Screening D ME1DOAR

Table 31. Screening D ME1DOAR Test Matrix

g
5 K] s
& 5 £

= _=] % 2 ..E g

8 2 E g 2 2 g a .

E 3 % 3 2 E g £ Z

5 s 8 E 2) 5 2 @ £ 2

< 3 < & & &) <] < & 2 £ =2 a 3

2) = = o = o > 2 S = 2] %]

E g g & a 5 = = £ Z g P 3 g g s & .

£ : . % g 3z 2 g 3 - T B - - 5

E 2 = & 2 £ E 5 84 = E i & s z 8 g 8 8 £ £ 2
RectifierWithDropout 219 0.999 1E-10 FALSE 0.2 0.2 0 0 500 Normal 0.5 0.5 1 FALSE [-0.5, 05] 2 0 0.1990 0.2470 128.9
RectifierWithDropout 73 0.9 1E-10 FALSE 0.2 0.2 1 0 5 Uniform Adaptive 0.05 2 10000 TRUE [-0.5, 05] 3 0 0.1968 0.2448 114.4
TanhWithDropout 219 0.999 1E-10 TRUE 0.2 0.8 1 0 500 Uniform Adaptive 0.5 2 10000 FALSE [-0.5, 05] 2 0 0.1990 0.2469 155.9
RectifierWithDropout 73 0.9 0.000001 TRUE 0.8 0.2 1 0 5 Normal 0.5 0.5 1 TRUE [-0.5, 05] 1 0 0.1999 0.2427 115.9
TanhWithDropout 73 0.999 1E-10 TRUE 0.8 0.8 0 1 500 Uniform Adaptive 0.05 0.5 1 TRUE [-0.5, 05] 1 0 0.1215 0.0748 30.9
TanhWithDropout 219 0.9 0.000001 FALSE 0.8 0.8 0 1 5 Normal 0.5 2 10000 TRUE [-0.5, 05] 2 0 0.1152 0.0711 136.2
RectifierWithDropout 219 0.999 0.000001 TRUE 0.2 0.8 1 1 5 Uniform 0.05 0.5 10000 FALSE [-0.5, 05] 3 0 Exp Growth
TanhWithDropout 73 0.999 0.000001 FALSE 0.8 0.2 0 1 500 Uniform 0.05 2 1 FALSE [-0.5, 05] 3 0 0.1320 0.0910 69.8
RectifierWithDropout 146 0.9495 1E-10 FALSE 0.5 0.5 0.5 0.5 2525 Uniform Adaptive 0.275 1.25 5000 FALSE [-0.5, 05] 1 1 0.1999 0.2427 89.8
TanhWithDropout 146 0.9495 1E-10 TRUE 0.5 0.5 0.5 0.5 2525 Uniform Adaptive 0.275 1.25 5000 TRUE [-0.5, 05] 1 1 0.1416 0.1386 174.1
RectifierWithDropout 73 0.9 1E-10 TRUE 0.2 0.8 0 1 5 Uniform 0.5 2 1 TRUE [0, 1] 2 0 0.1093 0.0566 50.1
TanhWithDropout 219 0.999 0.000001 FALSE 0.2 0.2 1 1 5 Uniform Adaptive 0.5 2 1 FALSE [0, 1] 1 0 0.1927 0.1465 263.5
TanhWithDropout 219 0.999 1E-10 FALSE 0.2 0.8 0 0 5 Uniform 0.05 0.5 1 TRUE [0, 1] 1 0 0.0979 0.0436 117.0
RectifierWithDropout 219 0.999 0.000001 TRUE 0.8 0.8 0 0 5 Normal 0.05 2 10000 FALSE [0, 1] 1 0 Exp Growth
RectifierWithDropout 219 0.999 0.000001 TRUE 0.8 0.2 0 1 500 Uniform Adaptive 0.5 0.5 10000 TRUE [0, 1] 3 0 0.2230 0.1950 56.8
TanhWithDropout 73 0.999 0.000001 FALSE 0.2 0.8 1 0 500 Normal 0.5 0.5 10000 TRUE [0, 1] 3 0 0.1657 0.1173 348
TanhWithDropout 73 0.9 0.000001 TRUE 0.2 0.2 0 0 5 Uniform Adaptive 0.05 0.5 10000 FALSE [0, 1] 2 0 0.0818 0.0315 58.9
TanhWithDropout 219 0.9 1E-10 TRUE 0.8 0.2 1 0 500 Normal 0.05 2 1 FALSE [0, 1] 3 0 0.1944 0.1469 270.5
RectifierWithDropout 73 0.9 1E-10 FALSE 0.8 0.8 1 1 500 Uniform 0.5 0.5 10000 FALSE [0, 1] 1 0 0.1790 0.1474 26.3
RectifierWithDropout 146 0.9495 1E-10 FALSE 0.5 0.5 0.5 0.5 2525 Normal 0.275 1.25 5000 FALSE [0, 1] 3 1 0.1741 0.0753 67.4
RectifierWithDropout 219 0.999 1E-10 FALSE 0.2 0.2 0 0 500 Normal 0.5 0.5 1 FALSE [-0.5, 05] 2 0 0.1990 0.2470 118.1
RectifierWithDropout 73 0.9 1E-10 FALSE 0.2 0.2 1 0 5 Uniform Adaptive 0.05 2 10000 TRUE [-0.5, 05] 3 0 0.1969 0.2448 87.9
TanhWithDropout 219 0.999 1E-10 TRUE 0.2 0.8 1 0 500 Uniform Adaptive 0.5 2 10000 FALSE [-0.5, 05] 2 0 0.1990 0.2469 151.5
RectifierWithDropout 73 0.9 0.000001 TRUE 0.8 0.2 1 0 5 Normal 0.5 0.5 1 TRUE [-0.5, 05] 1 0 0.1999 0.2427 92.8
TanhWithDropout 73 0.999 1E-10 TRUE 0.8 0.8 0 1 500 Uniform Adaptive 0.05 0.5 1 TRUE [-0.5, 05] 1 0 0.1206 0.0753 48.9
TanhWithDropout 219 0.9 0.000001 FALSE 0.8 0.8 0 1 5 Normal 0.5 2 10000 TRUE [-0.5, 05] 2 0 0.1065 0.0753 943
RectifierWithDropout 219 0.999 0.000001 TRUE 0.2 0.8 1 1 5 Uniform 0.05 0.5 10000 FALSE [-0.5, 05] 3 0 0.1973 0.2452 80.0
TanhWithDropout 73 0.999 0.000001 FALSE 0.8 0.2 0 1 500 Uniform 0.05 2 1 FALSE [-0.5, 05] 3 0 0.1376 0.0969 74.1
RectifierWithDropout 146 0.9495 1E-10 FALSE 0.5 0.5 0.5 0.5 2525 Uniform Adaptive 0.275 1.25 5000 FALSE [-0.5, 05] 1 1 0.1996 0.2425 103.6
TanhWithDropout 146 0.9495 1E-10 TRUE 0.5 0.5 0.5 0.5 2525 Uniform Adaptive 0.275 1.25 5000 TRUE [-0.5, 05] 1 1 0.1438 0.1425 88.3
RectifierWithDropout 73 0.9 1E-10 TRUE 0.2 0.8 0 1 5 Uniform 0.5 2 1 TRUE [0, 1] 2 0 0.1095 0.0580 47.6
TanhWithDropout 219 0.999 0.000001 FALSE 0.2 0.2 1 1 5 Uniform Adaptive 0.5 2 1 FALSE [0, 1] 1 0 0.1757 0.1247 112.9
TanhWithDropout 219 0.999 1E-10 FALSE 0.2 0.8 0 0 5 Uniform 0.05 0.5 1 TRUE [0, 1] 1 0 0.0973 0.0433 1143
RectifierWithDropout 219 0.999 0.000001 TRUE 0.8 0.8 0 0 5 Normal 0.05 2 10000 FALSE [0, 1] 1 0 Exp Growth
RectifierWithDropout 219 0.999 0.000001 TRUE 0.8 0.2 0 1 500 Uniform Adaptive 0.5 0.5 10000 TRUE [0, 1] 3 0 0.2323 0.2114 27.0
TanhWithDropout 73 0.999 0.000001 FALSE 0.2 0.8 1 0 500 Normal 0.5 0.5 10000 TRUE [0, 1] 3 0 0.1618 0.1118 27.6
TanhWithDropout 73 0.9 0.000001 TRUE 0.2 0.2 0 0 5 Uniform Adaptive 0.05 0.5 10000 FALSE [0, 1] 2 0 0.0820 0.0319 58.5
TanhWithDropout 219 0.9 1E-10 TRUE 0.8 0.2 1 0 500 Normal 0.05 2 1 FALSE [0, 1] 3 0 0.1945 0.1471 250.2
RectifierWithDropout 73 0.9 1E-10 FALSE 0.8 0.8 1 1 500 Uniform 0.5 0.5 10000 FALSE [0, 1] 1 0 0.1489 0.0942 45.0
RectifierWithDropout 146 0.9495 1E-10 FALSE 0.5 0.5 0.5 0.5 2525 Normal 0.275 1.25 5000 FALSE [0, 1] 3 1 0.2859 0.1194 66.8
TanhWithDropout 219 0.9 0.000001 FALSE 0.8 0.8 0 0 5 Uniform Adaptive 0.5 0.5 1 FALSE [-0.5, 05] 3 0 0.1327 0.0781 69.0
RectifierWithDropout 219 0.9 0.000001 FALSE 0.8 0.2 1 0 500 Uniform 0.05 0.5 10000 TRUE [-0.5, 05] 2 0 0.1990 0.2470 112.2
TanhWithDropout 219 0.999 1E-10 FALSE 0.8 0.2 1 1 5 Normal 0.05 0.5 10000 TRUE [0, 1] 2 0 0.1950 0.1472 121.4
RectifierWithDropout 73 0.9 0.000001 FALSE 0.2 0.2 0 1 500 Normal 0.05 2 10000 FALSE [-0.5, 05] 1 0 0.1999 0.2427 55.8
TanhWithDropout 73 0.999 1E-10 TRUE 0.8 0.2 1 0 5 Uniform 0.5 2 10000 FALSE [-0.5, 05] 2 0 0.1990 0.2469 46.8

112

RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout

0.000001
0.000001
0.000001

0 00O~ —~ O~ O~ 0O~ 0000—~0—~O0—~000—~00 OO0 —~HMHO =~ —~O = —E~OO =~ 00 —~O00—~00 — ——m O —— O — —

— O 0O~ 00O~ OO0~ OO = Ot = OO~ OO = OO~ e~ OO~ —~ O —mO—~ OO0 = m e O —m—m O = O — O

Uniform Adaptive
Normal

Uniform

Uniform

Uniform

Normal

Normal

Normal

Uniform

Uniform

Uniform Adaptive
Normal

Uniform Adaptive
Normal

Uniform

Uniform Adaptive
Uniform Adaptive
Uniform Adaptive
Uniform

Uniform Adaptive
Normal

Uniform

Normal

Uniform

Uniform

Normal

Uniform Adaptive
Uniform

Uniform Adaptive
Normal

Uniform Adaptive
Uniform

Uniform Adaptive
Uniform

Normal

Uniform

Uniform Adaptive
Uniform

Normal

Uniform Adaptive
Uniform

Normal

Uniform

Uniform Adaptive
Uniform

Uniform Adaptive
Normal

Uniform

Normal

Uniform Adaptive
Uniform Adaptive
Uniform Adaptive
Uniform

Uniform Adaptive
Uniform Adaptive
Uniform

Uniform Adaptive
Normal

Normal

Normal

Uniform Adaptive
Uniform

Normal

Normal

113

10000

10000

10000

10000
10000

10000

10000

10000
10000
10000
10000
10000
10000
10000
10000

10000
10000

10000
10000
10000
10000

10000

[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]

SO W A, RRNWWER —~RWRRNWR —WWER—ERWR———WWR—RWE—RWL—NERRNWRRNWE — W WRNWWWWN— NN

S N R - R i = I N R R I R e e e - - N =R =Rl R I Y R =R N NS =R R

0.1849
0.1962
0.1683
0.1723
0.1891
0.1000
0.1965
0.1973
0.1922
0.1726
0.1082
0.1947
0.1041
0.1082
0.1964
0.1971
0.4641
0.1990
0.1990
0.1051
0.1990
0.9769
0.1999
0.1071

0.1649
0.1990
0.1919
0.1406
0.1967
0.1366
0.1372
0.1990
0.1951
0.1963
0.1997
0.1008
0.1999
0.1884
0.0696
0.1990
0.1999
0.1990
0.1670
0.1972

0.1798
0.1018
0.1283
0.0919
0.1862
0.1840
0.0916
0.1934
0.2866
0.1515
0.0949
0.1584
0.1990
0.0927
0.1294
0.1102
0.1990
0.1249

0.1447
0.2428
0.1318
0.2036
0.1419
0.0440
0.1491
0.2452
0.1433
0.0844
0.0530
0.1468
0.0673
0.0545
0.2426
0.2451
0.5658
0.2469
0.2470
0.0501
0.2470
0.9561
0.2427
0.0408

0.1837
0.2469
0.1493
0.0902
0.2447
0.1402
0.0880
0.2470
1.0528
0.1488
0.2422
0.0623
0.2427
0.1408
0.0194
0.2470
0.2427
0.2469
0.0937
0.2452

0.1353
0.0502
0.0730
0.0392
0.1446
0.1439
0.0427
0.1508
0.3573
0.0958
0.0565
0.1081
0.2470
0.0485
0.0769
0.0571
0.2470
0.0726

Exp Growth

Exp Growth

TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout

0.000001

o000~ O~ 0O~ 0O~ 000~ — 0~ 00—~~~ —~0—R—H—HO0O—~—~—~0—~—O0—~—~—~—~000—~0000000O—~0O—~——0—~0—~00

[= R I S = T R R R R S e = = T = T R Yy gy

Normal

Uniform Adaptive
Normal

Uniform

Uniform Adaptive
Normal

Uniform

Uniform Adaptive
Uniform

Normal

Uniform Adaptive
Uniform Adaptive
Uniform

Uniform

Normal

Uniform Adaptive
Normal

Normal

Normal

Uniform Adaptive
Uniform

Uniform Adaptive
Normal

Uniform Adaptive
Uniform

Uniform

Uniform Adaptive
Uniform Adaptive
Uniform

Normal

Normal

Normal

Normal

Uniform

Normal

Normal

Uniform Adaptive
Uniform

Uniform

Uniform Adaptive
Uniform

Normal

Uniform Adaptive
Uniform Adaptive
Uniform Adaptive
Uniform

Normal

Uniform

Normal

Uniform

Uniform

Uniform Adaptive
Uniform

Uniform

Uniform Adaptive
Normal

Uniform Adaptive
Uniform

Normal

Uniform Adaptive
Normal

Normal

Normal

Normal

Uniform Adaptive

114

[0, 1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[0,1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0,1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[0,1]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0,1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5,05]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]

RN — LW AR LW AR~ —WRWAERDWWARRFRR SRR~ WE SRR WARNWRD—WLWAWERRRDWRWEWWLRDWL— W

SR R == R R R S e R R R - - i R I R R N - - i I - RN N I)

0.1241
0.1116
0.1406
0.1973
0.1990
0.1973
0.1973
0.1973
0.2512
0.0991
0.1487
0.1140
0.2039
0.1963
0.1598
0.1999
0.1973
0.1999
0.1973
0.1371

0.1081
4.7390
0.1950
0.1999
0.1519
0.1374
0.1987
0.1969
0.1919
0.1973
0.1997
0.1694
0.1990
0.1322
0.7250

0.1935
0.1373
0.1973
0.1973
0.1951

0.1001
0.1877
0.1147
0.0785
0.1998
0.8313
0.1597
0.6835
0.2073
0.1997
0.0941
0.1940
0.1372
0.1822
0.1250
0.1716
0.0951
0.1973
0.1241
0.3926
0.0888
0.2665

0.0729
0.0572
0.1415
0.2452
0.2470
0.2452
0.2452
0.2452
0.3100
0.0569
0.0989
0.0768
0.1059
0.1996
0.0690
0.2427
0.2452
0.2427
0.2452
0.0862

0.0640
0.7351
0.1472
0.2427
0.1033
0.0872
0.2466
0.2389
0.1493
0.2452
0.2427
0.1151
0.2470
0.0847
0.0843

0.1510
0.0896
0.2452
0.2452
0.2408

0.0449
0.2294
0.0608
0.0354
0.2426
0.2832
0.1563
0.3396
0.1572
0.2425
0.0639
0.1514
0.0898
0.1396
0.0742
0.1288
0.0410
0.2452
0.0689
0.2464
0.0449
0.3146

Exp Growth

Exp Growth

Exp Growth

RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout

0.000001

CcCoococOoO—~—~ 00O~ O0OO—~—~ O~~~ O~~~ —~ 000000~~~ 00—~ —~ 00—~ —~O -~ O0—~0—~0—~0—~000——r—r—0Oo

SR = R R R = T = = R e R e I N L= e = R = T T i R R R R R I I I R R e

Normal

Uniform

Normal

Uniform

Uniform

Uniform Adaptive
Uniform

Uniform

Uniform

Uniform Adaptive
Normal

Uniform

Uniform

Normal

Normal

Normal

Normal

Uniform

Uniform

Normal

Uniform Adaptive
Uniform Adaptive
Uniform Adaptive
Uniform Adaptive
Uniform

Uniform Adaptive
Normal

Uniform Adaptive
Normal

Uniform

Normal

Uniform Adaptive
Uniform

Uniform Adaptive
Uniform

Normal

Normal

Normal

Uniform Adaptive
Normal

Uniform

Uniform

Uniform Adaptive
Uniform

Normal

Uniform

Uniform Adaptive
Normal

Normal

Uniform Adaptive
Uniform Adaptive
Uniform

Uniform Adaptive
Uniform

Normal

Uniform Adaptive
Uniform

Uniform

Normal

Normal

Uniform

Uniform Adaptive
Uniform Adaptive
Normal

Uniform

115

10000
10000
10000

10000

10000

10000

10000

10000

10000

10000

10000

10000

FALSE

[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]

R0 — LWL W WWWWWRRNNWL———LWLWEL PR W PR e WR— WK —W——RWERRDWWWENDW— WL WL W

SR R = I N = R == R R R R R N - - i I i R S = =R Rl N R N i i N ==

0.1990
0.1019
0.1972

0.1589

0.1997
0.1281
0.1199
0.1999
0.1446
0.1965
0.1195
0.1990
0.0872
0.1990
0.1380
0.6182
0.1486
0.9906
0.1010
0.1774
0.1976
0.1832
0.1363
0.1360
0.1821
0.1965
0.0978
0.1990
0.1999
0.1695
0.1983
0.1965
0.1999
0.1999
0.1093
0.1250
0.1016
0.1999
0.1031
0.1662
0.1823
0.1973
0.1971
0.1613
0.1424
0.9349
0.1894
0.1052
0.1990
0.1926
0.1969
0.1400
0.1973
0.1962
0.1365
0.1139
0.1866
0.1225
0.1273
0.1999
0.1249
0.0996
0.1990

0.2470
0.0669
0.2451

0.1114

0.2425
0.0732
0.0597
0.2427
0.0901
0.1491
0.0759
0.2470
0.0346
0.2470
0.0987
0.5455
0.0965
0.3397
0.0476
0.1298
0.2392
0.1353
0.0826
0.0762
0.1343
0.2441
0.0482
0.2470
0.2427
0.1259
0.2402
0.1491
0.2427
0.2427
0.0581
0.0723
0.0540
0.2427
0.0483
0.1216
0.1456
0.2452
0.2448
0.1070
0.1409
0.9493
0.1421
0.0531
0.2469
0.1448
0.2452
0.0766
0.2452
0.1487
0.0835
0.0653
0.1383
0.0733
0.0702
0.2427
0.0766
0.0458
0.2470

55.5
126.3
323

103.9

Exp Growth

Exp Growth

TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout

OO = O

c— oo~~~

Normal

Uniform Adaptive
Uniform Adaptive
Normal

Uniform

Uniform Adaptive
Uniform

Uniform

Uniform Adaptive
Uniform Adaptive
Normal

Normal

Normal

Uniform Adaptive
Uniform

Normal

Uniform

Uniform Adaptive
Normal

Uniform

Normal

Uniform Adaptive
Uniform

Normal

Normal

Uniform

Uniform

Uniform

Uniform

Uniform

Uniform Adaptive
Uniform Adaptive
Normal

Normal

Uniform Adaptive
Normal

Normal

Uniform

Uniform

Uniform

Uniform Adaptive
Uniform Adaptive
Uniform Adaptive
Uniform

Normal

Uniform

Uniform

Normal

Uniform Adaptive
Uniform

Uniform Adaptive
Normal

Normal

Uniform Adaptive
Uniform Adaptive
Uniform Adaptive
Uniform

Normal

Normal

Normal

Normal

Normal

Normal

Uniform

Uniform

116

[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]

e R R R e e e e R e R e e e S, , 000000000

0.1863
0.1999
0.1211

0.1286

0.1850
0.1999
0.1630
0.1733
0.1607
0.2061
0.1396
0.1996
0.1647
0.1627
0.1364
0.1622
0.1972
0.1918
0.1644
0.1574
0.1329
0.1999
0.1277
0.1424
0.1614
0.1603
0.1971
0.1630
0.1261
0.1500
0.1407
0.1390
0.1400
0.1406
0.1509
0.1619
0.1649
0.1270
0.1279
0.1973
0.1608
0.1628
0.1342
0.1221
0.1624
0.1651
0.1427
0.1999
0.1697
0.1990
0.1656
0.1424
0.1268
0.1392
0.1640
0.2636
0.1989
0.1392
0.1739
0.1412
0.1641
0.1308

0.1413
0.2509
0.0858

0.1284

0.1779
0.2427
0.1136
0.0776
0.1130
0.0816
0.1402
0.2426
0.0807
0.1126
0.0787
0.1129
0.2452
0.0751
0.1139
0.0817
0.0728
0.2427
0.0741
0.1401
0.1132
0.1120
0.2453
0.1152
0.0740
0.0757
0.1418
0.1405
0.1407
0.1406
0.0761
0.1125
0.1143
0.0747
0.0765
0.2452
0.1104
0.1135
0.0756
0.0768
0.1130
0.1146
0.1414
0.2427
0.0793
0.2469
0.1149
0.1412
0.0763
0.1404
0.1133
0.0814
0.2470
0.1394
0.0738
0.1454
0.1137
0.0813

48.0
157.0
67.7

107.2

Exp Growth

Exp Growth
Exp Growth

RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout

Uniform Adaptive
Uniform Adaptive
Uniform

Uniform

Uniform Adaptive
Uniform Adaptive
Uniform

Uniform Adaptive
Uniform

Uniform

Uniform Adaptive
Uniform Adaptive
Uniform Adaptive
Normal

Uniform Adaptive
Normal

Normal

Uniform Adaptive
Uniform Adaptive
Normal

Normal

Uniform

Uniform Adaptive
Normal

Uniform

Uniform

Uniform Adaptive
Uniform Adaptive
Normal

Uniform Adaptive
Normal

Uniform Adaptive
Normal

Normal

Normal

Uniform Adaptive
Uniform Adaptive
Uniform Adaptive
Uniform

Uniform Adaptive
Normal

Uniform

Uniform Adaptive
Uniform

Uniform Adaptive
Uniform Adaptive
Normal

Normal

Uniform

Uniform

Uniform Adaptive
Normal

Uniform

Uniform Adaptive
Uniform Adaptive
Uniform

Uniform Adaptive
Uniform

Uniform Adaptive
Normal

Uniform

Uniform

Uniform

Normal

Normal

117

FALSE
FALSE
FALSE
FALSE
TRUE

FALSE
TRUE

FALSE
TRUE

FALSE
FALSE
FALSE

[-0.5, 05]
[-0.5, 05]
[0,1]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[-0.5,05]
[0, 1]
[0,1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[0,1]
[-0.5, 05]
[0, 1]
[0.5,05]
[-0.5, 05]
[0.5,05]
[0, 1]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[0,1]
[0, 1]
[-0.5,05]
[-0.5, 05]

e e m RN W R WW— — EWWe —~ W, WWRRN—~WRNRNW—WWWR——SRRRWNR—WW—LRRNWW—R—WRN—— R — W —

0.1998
0.1990
0.1365
0.1625
0.1426
0.1643
0.1999
0.1997
0.1390
0.1990
0.1973
0.1426
0.1990
0.1625
0.1401
0.1973
0.1990
0.1343
0.1291
0.1428
0.1973
0.1401
0.1626
0.1394
0.1407
0.1597
0.1637
0.1620
0.1624
0.1323
0.1391
0.1653
0.1398
0.1973
0.1619
0.1401
0.1392
0.1990
0.1362
0.1407
0.1994
0.1987
0.1392
0.1971
0.1318
0.1626
0.1643
0.1423
0.1426
0.1371
0.1972
0.1997
0.1620
0.1998
0.1973
0.1401
0.1990
0.1431
0.1321
0.1989
0.1392
0.1392
0.1305
0.1998
0.1427

0.2427
0.2470
0.0755
0.1132
0.1416
0.1149
0.2427
0.2427
0.1379
0.2470
0.2452
0.1404
0.2470
0.1148
0.1417
0.2452
0.2470
0.0774
0.0752
0.1427
0.2452
0.1397
0.1147
0.1426
0.1399
0.1106
0.1143
0.1126
0.1142
0.0782
0.1390
0.1148
0.1380
0.2453
0.1136
0.1410
0.1411
0.2470
0.0740
0.1405
0.0765
0.2470
0.1405
0.2452
0.0783
0.1146
0.1137
0.1399
0.1408
0.0742
0.2452
0.2428
0.1143
0.2427
0.2452
0.1383
0.2470
0.1412
0.0777
0.2470
0.1402
0.0721
0.0775
0.2427
0.1391

97.1
63.4
292
108.8
144.0
80.5
60.3
115.9

RectifierWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout
TanhWithDropout
TanhWithDropout
RectifierWithDropout
RectifierWithDropout

Uniform Adaptive
Uniform Adaptive
Uniform

Normal

Uniform

Uniform

Uniform Adaptive
Uniform

Normal

Normal

Normal

Uniform

Uniform Adaptive
Normal

Uniform

Normal

Uniform Adaptive
Uniform

Normal

Uniform

Normal

Uniform

Uniform

[0, 1]
[0, 1]
[-0.5, 05]
[0, 1]
[0, 1]
[-0.5, 05]
[-0.5, 05]
[-0.5, 05]
[-0.5,05]
[0, 1]
[-0.5, 05]
[-0.5,05]
[-0.5, 05]
[0,1]
[0, 1]
[0, 1]
[0, 1]
[0,1]
[-0.5, 05]
[-0.5, 05]
[0, 1]
[-0.5, 05]
[-0.5, 05]

SO WR — W m L —m W = =N WL W W N W —

0.1328
0.1310
0.1990
0.1648
0.1624
0.1402
0.1420
0.1970
0.1973
0.1631
0.1420
0.1998
0.1389
0.1667
0.1620
0.1809
0.1632
0.1375
0.1999
0.1392
0.1650
0.1985
0.1999

0.0774
0.0753
0.2470
0.1141
0.1129
0.1378
0.1391
0.2452
0.2452
0.1138
0.1390
0.2427
0.1412
0.0739
0.1139
0.0761
0.1155
0.0708
0.2439
0.1406
0.1145
0.2468
0.2427

118

Table 32. CCD Phase 1 Test Matrix

Appendix O: CCD Phase I

| R - .
: A A
= = = £ 2 2 3
5 < = B . £ E= E= 2 z 2
T E 3 B < N 3 3 3 g E E
5 3 S S 5 2 2~ & o & e £ — £~ £ o
% 2 a o P a T 4f 8f 8% 8§ 8EF 4:
& g 2 5 =] £ g S& & SE =& FE SE
g o Z] 3 % 8 5 E 72 72 72 2 2 22 22
z = = o5 3 3 > < & > = = e £ e e e [=
42 0.899999 3.16E-13 0.105 0.105 0.00001 0.00001 3 0.0275 0.275 1 0.1217 0.1216 0.1180 0.1156 0.1122 0.1179
52 0.8702691 223E-13 0.0767563 0.1332437 297E-06 2.97E-06 2.405396 0.020812 0.20812 3513 0.1113 01099 0.1122 0.1111 0.1074 0.1125
3209297289 4.1E-13 0.1332437 0.1332437 297E-06 2.97E-06 2.405396 0.020812 0.20812 3513 0.1174 0.1127 0.1165 0.1136 0.1098 0.1141
3209297289 223E-13 0.0767563 0.0767563 0.000017 2.97E-06 2.405396 0.020812 0.20812 3513 0.1202 0.1163 0.1266 0.1190 0.1116 0.1167
52 0.8702691 4.1E-13 0.1332437 0.0767563 0.000017 2.97E-06 2.405396 0.020812 0.20812 3513 0.1063 0.1076 0.1081 0.1020 0.0990 0.1000
52 09297289 4.1E-13 0.0767563 0.0767563 2.97E-06 0.000017 2.405396 0.020812 0.20812 3513 0.1091 0.0982 0.1026 0.1070 0.0996 0.1061
32 0.8702691 223E-13 0.1332437 0.0767563 2.97E-06 0.000017 2.405396 0.020812 0.20812 3513 0.1215 0.1206 0.1303 0.1145 0.1091 0.1128
32 0.8702691 4.1E-13 0.0767563 0.1332437 0.000017 0.000017 2.405396 0.020812 0.20812 3513 0.1191 0.1176 0.1186 0.1177 0.1094 0.1137
52 09297289 223E-13 0.1332437 0.1332437 0.000017 0.000017 2405396 0.020812 0.20812 3513 0.1096 0.1054 0.1067 0.1127 0.1091 0.1114
52 09297289 223E-13 0.0767563 0.0767563 2.97E-06 2.97E-06 3.594604 0.020812 0.20812 3513 0.221 0.1159 0.1281 0.1180 0.1134 0.1170
32 0.8702691 4.1E-13 0.1332437 0.0767563 2.97E-06 2.97E-06 3.594604 0.020812 0.20812 3513 01252 0.1216 0.1290 0.1183 0.1099 0.1156
32 0.8702691 223E-13 0.0767563 0.1332437 0.000017 2.97E-06 3.594604 0.020812 0.20812 3513 0.1295 0.1280 0.1219 0.1207 0.1174 0.1228
52 09297289 4.1E-13 0.1332437 0.1332437 0.000017 2.97E-06 3.594604 0.020812 0.20812 3513 0.1177 0.1188 0.1172 0.1183 0.1174 0.1170
52 0.8702691 4.1E-13 0.0767563 0.1332437 2.97E-06 0.000017 3.594604 0.020812 0.20812 3513 0.1227 0.1098 0.1249 0.1184 0.1136 0.1202
3209297289 223E-13 0.1332437 0.1332437 2.97E-06 0.000017 3.594604 0.020812 0.20812 3513 0.1280 0.1251 0.1402 0.1430 0.1129 0.1220
3209297289 4.1E-13 0.0767563 0.0767563 0.000017 0.000017 3.594604 0.020812 0.20812 3513 0.1247 0.1181 0.1261 0.1220 0.1161 0.1176
52 0.8702691 223E-13 0.1332437 0.0767563 0.000017 0.000017 3.594604 0.020812 0.20812 3513 0.1431 0.1275 0.1216 0.1192 0.1158 0.1207
32 0.8702691 4.1E-13 0.0767563 0.1332437 297E-06 2.97E-06 2.405396 0.034188 0.20812 3513 0.1204 0.1136 0.1261 0.1115 0.1135 0.1125
52 0.9297289 223E-13 0.1332437 0.1332437 297E-06 297E-06 2405396 0.034188 0.20812 3513 0.125 0.1039 0.1206 0.1207 0.1120 0.1169
52 09297289 4.1E-13 0.0767563 0.0767563 0.000017 2.97E-06 2.405396 0.034188 0.20812 3513 0.1103 0.1038 0.1071 0.1109 0.0980 0.1069
32 0.8702691 223E-13 0.1332437 0.0767563 0.000017 2.97E-06 2.405396 0.034188 0.20812 3513 0.1296 0.1141 0.1168 0.1117 0.1090 0.1114
3209297289 223E-13 0.0767563 0.0767563 2.97E-06 0.000017 2.405396 0.034188 0.20812 3513 01201 0.1113 0.1189 0.1143 0.1046 0.1112
52 0.8702691 4.1E-13 0.1332437 0.0767563 2.97E-06 0.000017 2.405396 0.034188 0.20812 3513 0.1092 0.1001 0.1148 0.1021 0.0966 0.1009
52 0.8702691 223E-13 0.0767563 0.1332437 0.000017 0.000017 2.405396 0.034188 0.20812 3513 0.1154 0.1082 0.1124 0.1109 0.1095 0.1111
32 09297289 4.1E-13 0.1332437 0.1332437 0.000017 0.000017 2.405396 0.034188 0.20812 3513 0.1179 0.1143 0.1208 0.1150 0.1072 0.1130
3209297289 4.1E-13 0.0767563 0.0767563 2.97E-06 2.97E-06 3.594604 0.034188 0.20812 3513 0.1282 0.1207 0.1233 0.1191 0.1157 0.1203
52 0.8702691 223E-13 0.1332437 0.0767563 2.97E-06 2.97E-06 3.594604 0.034188 0.20812 3513 0.1228 0.1231 0.1302 0.1189 0.1147 0.1170
52 0.8702691 4.1E-13 0.0767563 0.1332437 0.000017 2.97E-06 3.594604 0.034188 0.20812 3513 0.1229 0.1187 0.1240 0.1156 0.1162 0.1189
3209297289 223E-13 0.1332437 0.1332437 0.000017 2.97E-06 3.594604 0.034188 0.20812 3513 0.1278 0.1262 0.1308 0.1242 0.1144 0.1240
32 0.8702691 223E-13 0.0767563 0.1332437 2.97E-06 0.000017 3.594604 0.034188 0.20812 3513 0.1470 0.1252 0.1270 0.1207 0.1160 0.1207
52 09297289 4.1E-13 0.1332437 0.1332437 2.97E-06 0.000017 3.594604 0.034188 0.20812 3513 0.1246 0.1232 0.1336 0.1213 0.1182 0.1199
52 09297289 223E-13 0.0767563 0.0767563 0.000017 0.000017 3.594604 0.034188 0.20812 3513 0.1291 0.1164 0.1238 0.1185 0.1151 0.1107
32 0.8702691 4.1E-13 0.1332437 0.0767563 0.000017 0.000017 3.594604 0.034188 0.20812 3513 0.1287 0.1174 0.1252 0.1166 0.1133 0.1241
52 09297289 4.1E-13 0.0767563 0.1332437 297E-06 2.97E-06 2.405396 0.020812 0.34188 3513 0.1053 0.1044 0.1083 0.1158 0.1011 0.1158
32 0.8702691 223E-13 0.1332437 0.1332437 297E-06 297E-06 2405396 0.020812 0.34188 3513 0.1234 0.1182 0.1189 0.1134 0.1100 0.1130
32 08702691 4.1E-13 0.0767563 0.0767563 0.000017 2.97E-06 2.405396 0.020812 0.34188 3513 0.221 0.1114 0.1195 0.1089 0.1003 0.0979
52 0.9297289 223E-13 0.1332437 0.0767563 0.000017 2.97E-06 2405396 0.020812 0.34188 3513 0.1123 0.1090 0.1089 0.1125 0.1042 0.1102
52 0.8702691 223E-13 0.0767563 0.0767563 2.97E-06 0.000017 2.405396 0.020812 0.34188 3513 0.1069 0.1059 0.1152 0.1148 0.1127 0.1045
3209297289 4.1E-13 0.1332437 0.0767563 2.97E-06 0.000017 2405396 0.020812 0.34188 3513 0.1301 0.1130 0.1184 0.1107 0.1019 0.1100

119

0.9297289
0.8702691
0.8702691
0.9297289
0.9297289
0.8702691
0.9297289
0.8702691
0.8702691
0.9297289
0.9297289
0.8702691
0.8702691
0.9297289
0.8702691
0.9297289
0.9297289
0.8702691
0.8702691
0.9297289
0.9297289
0.8702691
0.9297289
0.8702691
0.8702691
0.9297289
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.8
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999
0.899999

2.23E-13
4.1E-13
4.1E-13
2.23E-13
4.1E-13
2.23E-13
2.23E-13
4.1E-13
2.23E-13
4.1E-13
2.23E-13
4.1E-13
2.23E-13
4.1E-13
4.1E-13

3 16E-13

0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.105

0.105

0.1332437
0.1332437
0.0767563
0.0767563
0.1332437
0.1332437
0.1332437
0.1332437
0.0767563
0.0767563
0.1332437
0.1332437
0.0767563
0.0767563
0.0767563
0.0767563
0.1332437
0.1332437
0.0767563
0.0767563
0.1332437
0.1332437
0.1332437
0.1332437
0.0767563
0.0767563
0.105

0.105

0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
0.00001
0.00001
0.00001
0.00001
0

0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001

0.000017
0.000017
2.97E-06
2.97E-06
2.97E-06
2.97E-06
0.000017
0.000017
0.000017
0.000017
2.97E-06

0 00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001

2.405396
2.405396
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604

[o%)

LI L2 LY LY LI L) LY L) LY LI L) LY L) L) LD L) L) LWL W LW WL W W W W — W

0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.0275
0.005
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275

120

0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.05
0.275

0.1268
0.1111
0.1199
0.1285
0.1250
0.1225
0.1266
0.1230
0.1309
0.1205
0.1201
0.1106
0.1181
0.1166
0.1239
0.1138
0.1112
0.1219
0.1331
0.1260
0.1361
0.1282
0.1466
0.1269
0.1287
0.1266
0.1171
0.1217
0.0895
0.1263
0.1247
0.1277
0.1245
0.1657
0.1258
0.1444
0.1190
0.1241
0.1234
0.1292
0.1202
0.1233
0.1224
0.1264
0.1278
0.1163
0.1266
0.1240
0.1197
0.1183
0.1181
0.1284
0.1246
0.1258
0.1240
0.1182
0.1311
0.1226

0.1122
0.1119
0.1193
0.1214
0.1202
0.1294
0.1206
0.1264
0.1340
0.1169
0.1131
0.1045
0.1092
0.1116
0.1192
0.1102
0.1005
0.1181
0.1234
0.1122
0.1136
0.1212
0.1214
0.1198
0.1143
0.1205
0.1190
0.1181
0.0832
0.1184
0.1198
0.1141
0.1152
0.1598
0.1202
0.1406
0.1119
0.1281
0.1193
0.1158
0.1158
0.1174
0.1184
0.1156
0.1169
0.1164
0.1243
0.1133
0.1186
0.1209
0.1170
0.1198
0.1167
0.1130
0.1162
0.1162
0.1193
0.1117

0.1230
0.1054
0.1192
0.1245
0.1261
0.1334
0.1236
0.1248
0.1325
0.1181
0.1161
0.1126
0.1145
0.1159
0.1185
0.1112
0.1071
0.1183
0.1262
0.1331
0.1169
0.1273
0.1290
0.1200
0.1264
0.1314
0.1159
0.1213
0.0860
0.1204
0.1211
0.1174
0.1198
0.1609
0.1267
0.1462
0.1220
0.1244
0.1228
0.1214
0.1196
0.1209
0.1224
0.1209
0.1224
0.1205
0.1184
0.1174
0.1175
0.1167
0.1228
0.1233
0.1205
0.1182
0.1231
0.1200
0.1241
0.1190

0.1219
0.1115
0.1231
0.1203
0.1235
0.1222
0.1183
0.1231
0.1289
0.1175
0.1160
0.1093
0.1147
0.1083
0.1139
0.1073
0.1187
0.1140
0.1191
0.1151
0.1192
0.1198
0.1197
0.1234
0.1206
0.1209
0.1178
0.1204
0.0925
0.1213
0.1170
0.1380
0.1166
0.2972
0.1150
0.1269
0.1194
0.1192
0.1207
0.1193
0.1185
0.1215
0.1176
0.1163
0.1183
0.1173
0.1153
0.1167
0.1232
0.1176
0.1200
0.1187
0.1146
0.1156
0.1176
0.1157
0.1162
0.1200

0.1118
0.1055
0.1096
0.1153
0.1143
0.1170
0.1193
0.1142
0.1203
0.1120
0.1084
0.1033
0.1057
0.1025
0.0999
0.1065
0.0996
0.1092
0.1160
0.1068
0.1178
0.1148
0.1168
0.1179
0.1062
0.1140
0.1153
0.1186
0.0865
0.1089
0.1133
0.1298
0.1113
0.2853
0.1114
0.1181
0.1093
0.1100
0.1099
0.1102
0.1035
0.1092
0.1144
0.1081
0.1088
0.1097
0.1120
0.1142
0.1064
0.1072
0.1171
0.1108
0.1101
0.1115
0.1083
0.1129
0.1092
0.1039

0.1124
0.1049
0.1161
0.1191
0.1222
0.1188
0.1196
0.1191
0.1257
0.1156
0.1181
0.1063
0.1113
0.1062
0.1046
0.1063
0.1058
0.1162
0.1239
0.1154
0.1221
0.1182
0.1202
0.1213
0.1193
0.1169
0.1120
0.1172
0.0888
0.1184
0.1185
0.1355
0.1198
0.3013
0.1117
0.1204
0.1177
0.1121
0.1132
0.1201
0.1131
0.1203
0.1186
0.1181
0.1126
0.1135
0.1130
0.1142
0.1175
0.1105
0.1165
0.1168
0.1159
0.1154
0.1162
0.1143
0.1103
0.1157

0.899999

0.899999

0.899999

0.899999

0.899999

0.899999

0.899999

0.999999

0.899999

0.899999

0.899999

0.899999

0.899999

0.899999

0.899999

0.899999

0.8702691
0.9297289
0.9297289
0.8702691
0.9297289
0.8702691
0.8702691
0.9297289
0.9297289
0.8702691
0.8702691
0.9297289
0.8702691
0.9297289
0.9297289
0.8702691
0.8702691
0.9297289
0.9297289
0.8702691
0.9297289
0.8702691
0.8702691
0.9297289
0.9297289
0.8702691
0.8702691
0.9297289
0.8702691
0.9297289
0.9297289
0.8702691
0.9297289
0.8702691
0.8702691
0.9297289
0.8702691
0.9297289
0.9297289
0.8702691
0.8702691
0.9297289

3.16E-13
3.16E-13
3.16E-13
3.16E-13
3.16E-13
3.16E-13
3.16E-13
3.16E-13
1E-10

3.16E-13
3.16E-13
3.16E-13
3.16E-13
3.16E-13
3.16E-13

0.105

0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437

0.105

0.0767563
0.0767563
0.1332437
0.1332437
0.1332437
0.1332437
0.0767563
0.0767563
0.1332437
0.1332437
0.0767563
0.0767563
0.0767563
0.0767563
0.1332437
0.1332437
0.0767563
0.0767563
0.1332437
0.1332437
0.1332437
0.1332437
0.0767563
0.0767563
0.1332437
0.1332437
0.0767563
0.0767563
0.0767563
0.0767563
0.1332437
0.1332437
0.0767563
0.0767563
0.1332437
0.1332437
0.1332437
0.1332437
0.0767563
0.0767563
0.1332437
0.1332437

0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.0000001
0.00001
0.00001
0.00001
0.00001
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017

2. 97E 06

0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.0000001
0.00001
0.00001
0.00001
2.97E-06
2.97E-06
2.97E-06
2.97E-06
0.000017
0.000017
0.000017
0.000017
2.97E-06
2.97E-06
2.97E-06
2.97E-06
0.000017
0.000017
0.000017
0.000017
2.97E-06
2.97E-06
2.97E-06
2.97E-06
0.000017
0.000017
0.000017

2. 97E 06

W) WL W W W WL WWWWW

3

2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
3.594604
3.594604

121

0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.05
0.0275
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812

0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188

0.1268
0.1217
0.1196
0.1203
0.1228
0.1288
0.1078
0.1090
0.0932
0.1148
0.1233
0.1209
0.1166
0.1356
0.1221
0.1202
0.1235
0.1176
0.1077
0.1255
0.1220
0.1111
0.1204
0.1155
0.1278
0.1389
0.1246
0.1265
0.1273
0.1138
0.1199
0.1248
0.1137
0.1167
0.1250
0.1202
0.1069
0.1285
0.1260
0.1108
0.1256
0.1328
0.1516
0.1237
0.1384
0.1261
0.1243
0.1210
0.1223
0.1053
0.1177
0.1170
0.1251
0.1110
0.1055
0.1189
0.1282
0.1186

0.1184
0.1153
0.1178
0.1165
0.1152
0.1137
0.0972
0.0942
0.0951
0.1223
0.1170
0.1167
0.1123
0.1272
0.1170
0.1170
0.1155
0.1039
0.0985
0.1146
0.1195
0.1038
0.1097
0.1127
0.1281
0.1241
0.1172
0.1202
0.1278
0.1156
0.1183
0.1223
0.1066
0.1113
0.1178
0.1045
0.1000
0.1165
0.1153
0.1021
0.1236
0.1266
0.1276
0.1115
0.1167
0.1222
0.1220
0.1170
0.1190
0.1042
0.1056
0.1102
0.1152
0.1064
0.1003
0.1152
0.1248
0.1125

0.1181
0.1222
0.1264
0.1419
0.1221
0.1199
0.1064
0.1016
0.1031
0.1246
0.1216
0.1412
0.1163
0.1488
0.1217
0.1177
0.1201
0.1110
0.1045
0.1257
0.1280
0.1210
0.1103
0.1204
0.1284
0.1272
0.1243
0.1329
0.1352
0.1203
0.1230
0.1270
0.1092
0.1168
0.1243
0.1084
0.1114
0.1218
0.1186
0.1068
0.1260
0.1239
0.1276
0.1217
0.1206
0.1250
0.1210
0.1192
0.1177
0.1079
0.1130
0.1159
0.1160
0.1132
0.1002
0.1231
0.1271
0.1155

0.1180
0.1144
0.1184
0.1167
0.1174
0.1205
0.1138
0.0879
0.0837
0.1173
0.1211
0.1172
0.1177
0.1243
0.1176
0.1187
0.1172
0.1135
0.1162
0.1177
0.1187
0.1095
0.1078
0.1095
0.1201
0.1243
0.1180
0.1184
0.1285
0.1138
0.1187
0.1183
0.1123
0.1135
0.1146
0.1120
0.1140
0.1195
0.1076
0.1110
0.1224
0.1200
0.1220
0.1185
0.1171
0.1206
0.1427
0.1227
0.1113
0.1044
0.1174
0.1191
0.1173
0.1167
0.1140
0.1120
0.1217
0.1181

0.1134
0.1135
0.1097
0.1124
0.1073
0.1102
0.1084
0.0821
0.0781
0.1124
0.1192
0.1117
0.1081
0.1208
0.1113
0.1118
0.0999
0.0999
0.1040
0.1071
0.1120
0.1026
0.1019
0.1043
0.1188
0.1187
0.1114
0.1181
0.1200
0.1100
0.1163
0.1104
0.1014
0.1042
0.1126
0.1083
0.1066
0.1141
0.1002
0.0995
0.1190
0.1156
0.1177
0.1122
0.1078
0.1173
0.1168
0.1199
0.1043
0.0948
0.1092
0.1070
0.1033
0.1028
0.0996
0.1078
0.1170
0.1115

0.1167
0.1131
0.1153
0.1154
0.1119
0.1158
0.1107
0.0866
0.0822
0.1108
0.1229
0.1149
0.1107
0.1240
0.1141
0.1140
0.1045
0.1139
0.1124
0.1099
0.1157
0.1086
0.1053
0.1104
0.1171
0.1207
0.1055
0.1196
0.1246
0.1188
0.1233
0.1197
0.1034
0.1065
0.1136
0.1134
0.1106
0.1205
0.1057
0.1070
0.1200
0.1199
0.1223
0.1187
0.1172
0.1192
0.1198
0.1228
0.1116
0.1099
0.1079
0.1119
0.1129
0.1180
0.1048
0.1120
0.1238
0.1183

0.9297289
0.8702691
0.9297289
0.8702691
0.8702691
0.9297289
0.9297289
0.8702691
0.8702691
0.9297289
0.8702691
0.9297289
0.9297289
0.8702691
0.8702691
0.9297289
0.9297289
0.8702691
0.9297289
0.8702691
0.8702691
0.9297289
0.899999

2.23E-13
4.1E-13
4.1E-13
2.23E-13
4.1E-13
2.23E-13
4.1E-13
2.23E-13
4.1E-13
2.23E-13
2.23E-13
4.1E-13
2.23E-13
4.1E-13
4.1E-13
2.23E-13
4.1E-13
2.23E-13
2.23E-13
4.1E-13
2.23E-13
4.1E-13
3.16E-13

0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.0767563
0.1332437
0.105

0.0767563
0.0767563
0.0767563
0.0767563
0.1332437
0.1332437
0.0767563
0.0767563
0.1332437
0.1332437
0.1332437
0.1332437
0.0767563
0.0767563
0.1332437
0.1332437
0.0767563
0.0767563
0.0767563
0.0767563
0.1332437
0.1332437
0.105

0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
2.97E-06
2.97E-06
0.000017
0.000017
0.00001

2.97E-06

0.00001

3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
2.405396
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3.594604
3

0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.0275

0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.275

0.1269
0.1266
0.1244
0.1211
0.1269
0.1201
0.1030
0.1233
0.1209
0.1171
0.1142
0.1160
0.1331
0.1074
0.1269
0.1264
0.1247
0.1316
0.1243
0.1258
0.1278
0.1216
0.1208

0.1137
0.1216
0.1257
0.1211
0.1137
0.1218
0.1014
0.1234
0.1149
0.1078
0.1056
0.1131
0.1140
0.1018
0.1182
0.1282
0.1231
0.1162
0.1215
0.1219
0.1250
0.1131
0.1204

0.1251
0.1335
0.1249
0.1204
0.1201
0.1244
0.1027
0.1253
0.1205
0.1102
0.1148
0.1150
0.1281
0.1103
0.1246
0.1351
0.1220
0.1211
0.1221
0.1380
0.1253
0.1174
0.1194

0.1233
0.1211
0.1195
0.1291
0.1176
0.1222
0.1111
0.1210
0.1166
0.1176
0.1153
0.1170
0.1210
0.1004
0.1211
0.1218
0.1176
0.1268
0.1242
0.1202
0.1212
0.1210
0.1201

0.1161
0.1106
0.1128
0.1075
0.1129
0.1166
0.0970
0.1089
0.1100
0.1063
0.1053
0.1086
0.1050
0.0925
0.1172
0.1187
0.1174
0.1119
0.1175
0.1162
0.1152
0.1157
0.1141

0.1150
0.1169
0.1168
0.1217
0.1179
0.1236
0.1048
0.1121
0.1102
0.1126
0.1100
0.1129
0.1140
0.1013
0.1217
0.1247
0.1199
0.1098
0.1206
0.1183
0.1245
0.1189
0.1198

122

Appendix P: CCD Phase 11

Table 33.CCD Phase II Test Matrix

5 s & & & &

z £ = = 2 2 2

5 £ E k=

3 g & £ 2 2 2 2 z 2

2 -4 5 s © = = = =] = =

T B g & s N 3 8 8 g El El

5 g 5 131 3 n o o— ~ o o == =)

~ g A < Q = S= P= P= [E= [E= m .5

s S -] s Z 2 == = e = e = e = e = e

E ° '; E} 2 %3 8 g g % 3 % 3 % 7 %3 %3 % %

z = ti) R I 4 i = < & = e e e e Eo e o e e e

83 0.78 1.2E-10 0.009 0.009 0.00001 0.00001 0.8 0.0275 0.275 1 0.0879 0.0753 0.0805 0.0754 0.0693 0.0728
93 0.76 8.47E-11 0.0081 0.01 0.000001 0.000001 0.6 0.020812 0.20812 3513 0.0847 0.0748 0.0792 0.0761 0.0720 0.0754
73 0.8 1.71E-10 0.01 0.01 0.000001 0.000001 0.6 0.020812 0.20812 3513 0.0898 0.0748 0.0828 0.0777 0.0742 0.0776
73 0.8 8.47E-11 0.0081 0.0081 0.0001 0.000001 0.6 0.020812 0.20812 3513 0.0850 0.0759 0.0826 0.0786 0.0742 0.0776
93 0.76 1.71E-10 0.01 0.0081 0.0001 0.000001 0.6 0.020812 0.20812 3513 0.0899 0.0732 0.0810 0.0761 0.0721 0.0755
93 0.8 1.71E-10 0.0081 0.0081 0.000001 0.0001 0.6 0.020812 0.20812 3513 0.0906 0.0726 0.0815 0.0757 0.0713 0.0751
73 0.76 8.47E-11 0.01 0.0081 0.000001 0.0001 0.6 0.020812 0.20812 3513 0.0861 0.0762 0.0842 0.0787 0.0746 0.0779
73 0.76 1.71E-10 0.0081 0.01 0.0001 0.0001 0.6 0.020812 0.20812 3513 0.0869 0.0752 0.0821 0.0786 0.0747 0.0781
93 0.8 8.47E-11 0.01 0.01 0.0001 0.0001 0.6 0.020812 0.20812 3513 0.0840 0.0740 0.0789 0.0756 0.0716 0.0752
93 0.8 8.47E-11 0.0081 0.0081 0.000001 0.000001 1 0.020812 0.20812 3513 0.0843 0.0707 0.0783 0.0700 0.0651 0.0693
73 0.76 1.71E-10 0.01 0.0081 0.000001 0.000001 1 0.020812 0.20812 3513 0.0903 0.0722 0.0820 0.0738 0.0688 0.0729
73 0.76 8.47E-11 0.0081 0.01 0.0001 0.000001 1 0.020812 0.20812 3513 0.0875 0.0728 0.0820 0.0741 0.0689 0.0734
93 0.8 1.71E-10 0.01 0.01 0.0001 0.000001 1 0.020812 0.20812 3513 0.0863 0.0699 0.0797 0.0704 0.0657 0.0692
93 0.76 1.71E-10 0.0081 0.01 0.000001 0.0001 1 0.020812 0.20812 3513 0.0842 0.0705 0.0804 0.0721 0.0668 0.0699
73 0.8 8.47E-11 0.01 0.01 0.000001 0.0001 1 0.020812 0.20812 3513 0.0834 0.0716 0.0824 0.0728 0.0692 0.0723
73 0.8 1.71E-10 0.0081 0.0081 0.0001 0.0001 1 0.020812 0.20812 3513 0.0849 0.0724 0.0816 0.0731 0.0682 0.0720
93 0.76 8.47E-11 0.01 0.0081 0.0001 0.0001 1 0.020812 0.20812 3513 0.0834 0.0707 0.0780 0.0720 0.0663 0.0712
73 0.76 1.71E-10 0.0081 0.01 0.000001 0.000001 0.6 0.034188 0.20812 3513 0.0873 0.0747 0.0821 0.0786 0.0747 0.0779
93 0.8 8.47E-11 0.01 0.01 0.000001 0.000001 0.6 0.034188 0.20812 3513 0.0826 0.0738 0.0803 0.0755 0.0715 0.0751
93 0.8 1.71E-10 0.0081 0.0081 0.0001 0.000001 0.6 0.034188 0.20812 3513 0.0901 0.0730 0.0814 0.0758 0.0715 0.0751
73 0.76 8.47E-11 0.01 0.0081 0.0001 0.000001 0.6 0.034188 0.20812 3513 0.0842 0.0757 0.0818 0.0789 0.0746 0.0782
73 0.8 8.47E-11 0.0081 0.0081 0.000001 0.0001 0.6 0.034188 0.20812 3513 0.0828 0.0763 0.0811 0.0783 0.0741 0.0777
93 0.76 1.71E-10 0.01 0.0081 0.000001 0.0001 0.6 0.034188 0.20812 3513 0.0901 0.0734 0.0806 0.0761 0.0720 0.0756
93 0.76 8.47E-11 0.0081 0.01 0.0001 0.0001 0.6 0.034188 0.20812 3513 0.0833 0.0743 0.0786 0.0762 0.0719 0.0758
73 0.8 1.71E-10 0.01 0.01 0.0001 0.0001 0.6 0.034188 0.20812 3513 0.0901 0.0742 0.0808 0.0783 0.0741 0.0778
73 0.8 1.71E-10 0.0081 0.0081 0.000001 0.000001 1 0.034188 0.20812 3513 0.0884 0.0725 0.0826 0.0745 0.0684 0.0723
93 0.76 8.47E-11 0.01 0.0081 0.000001 0.000001 1 0.034188 0.20812 3513 0.0829 0.0709 0.0790 0.0714 0.0669 0.0711
93 0.76 1.71E-10 0.0081 0.01 0.0001 0.000001 1 0.034188 0.20812 3513 0.0829 0.0698 0.0780 0.0716 0.0662 0.0707
73 0.8 8.47E-11 0.01 0.01 0.0001 0.000001 1 0.034188 0.20812 3513 0.0876 0.0719 0.0825 0.0733 0.0684 0.0720
73 0.76 8.47E-11 0.0081 0.01 0.000001 0.0001 1 0.034188 0.20812 3513 0.0950 0.0735 0.0812 0.0747 0.0689 0.0733
93 0.8 1.71E-10 0.01 0.01 0.000001 0.0001 1 0.034188 0.20812 3513 0.0849 0.0711 0.0805 0.0708 0.0659 0.0696
93 0.8 8.47E-11 0.0081 0.0081 0.0001 0.0001 1 0.034188 0.20812 3513 0.0836 0.0690 0.0811 0.0698 0.0657 0.0691
73 0.76 1.71E-10 0.01 0.0081 0.0001 0.0001 1 0.034188 0.20812 3513 0.0853 0.0729 0.0867 0.0738 0.0687 0.0729
93 0.8 1.71E-10 0.0081 0.01 0.000001 0.000001 0.6 0.020812 0.34188 3513 0.1049 0.0774 0.0891 0.0758 0.0717 0.0754
73 0.76 8.47E-11 0.01 0.01 0.000001 0.000001 0.6 0.020812 0.34188 3513 0.0925 0.0795 0.0871 0.0793 0.0747 0.0783
73 0.76 1.71E-10 0.0081 0.0081 0.0001 0.000001 0.6 0.020812 0.34188 3513 0.1026 0.0794 0.0893 0.0792 0.0746 0.0782
93 0.8 8.47E-11 0.01 0.0081 0.0001 0.000001 0.6 0.020812 0.34188 3513 0.0947 0.0771 0.0858 0.0763 0.0718 0.0753
93 0.76 8.47E-11 0.0081 0.0081 0.000001 0.0001 0.6 0.020812 0.34188 3513 0.0916 0.0778 0.0856 0.0767 0.0721 0.0758
73 0.8 1.71E-10 0.01 0.0081 0.000001 0.0001 0.6 0.020812 0.34188 3513 0.0998 0.0787 0.0890 0.0786 0.0740 0.0778

0. 7127283
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78

8.47E-11
1.71E-10
1.71E-10
8.47E-11

0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.00001
0.00001
0.00001
0.00001
4.33E-09
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001

0.0001
0.0001
0.000001
0.000001
0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.000001
0.000001
0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.000001
0.000001
0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.00001
0.00001
0.00001
4.33E-09
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001

0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.0275
0.005
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275

0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.05
0.275

0.0897
0.1023
0.0977
0.0903
0.0928
0.0872
0.0880
0.0900
0.0933
0.0983
0.0899
0.1025
0.0939
0.1030
0.1017
0.0909
0.1040
0.0919
0.0950
0.0918
0.0837
0.0944
0.0950
0.0868
0.0962
0.0905
0.0712
0.0884
0.1063
0.0902
0.0872
0.0924
0.0936
0.0865
0.0886
0.0949
0.0911
0.0915
0.0875
0.0897
0.0918
0.0900
0.0892
0.0888
0.0881
0.0905
0.0913
0.0865
0.0861
0.0906
0.0865
0.0871
0.0902
0.0889
0.0869
0.0840
0.0877
0.0882

0.0787
0.0774
0.0789
0.0759
0.0781
0.0743
0.0745
0.0793
0.0764
0.0762
0.0793
0.0776
0.0768
0.0779
0.0793
0.0759
0.0773
0.0802
0.0754
0.0745
0.0740
0.0763
0.0765
0.0723
0.0751
0.0765
0.0617
0.0753
0.0951
0.0756
0.0761
0.0747
0.0763
0.0737
0.0750
0.0808
0.0751
0.0754
0.0751
0.0757
0.0756
0.0758
0.0748
0.0757
0.0757
0.0753
0.0762
0.0756
0.0770
0.0748
0.0755
0.0752
0.0756
0.0747
0.0758
0.0758
0.0750
0.0766

0.0866
0.0870
0.0817
0.0853
0.0877
0.0845
0.0869
0.0855
0.0919
0.0843
0.0867
0.0879
0.0852
0.0898
0.0882
0.0843
0.0886
0.0850
0.0881
0.0811
0.0828
0.0877
0.0880
0.0873
0.0843
0.0887
0.0693
0.0813
0.1009
0.0825
0.0827
0.0815
0.0821
0.0850
0.0835
0.0929
0.0810
0.0834
0.0794
0.0840
0.0800
0.0815
0.0804
0.0791
0.0816
0.0798
0.0849
0.0820
0.0817
0.0832
0.0816
0.0830
0.0788
0.0802
0.0841
0.0846
0.0825
0.0817

0.0787
0.0771
0.0716
0.0751
0.0747
0.0722
0.0728
0.0744
0.0753
0.0707
0.0792
0.0766
0.0766
0.0788
0.0793
0.0760
0.0769
0.0791
0.0749
0.0718
0.0722
0.0747
0.0754
0.0719
0.0736
0.0747
0.0733
0.0739
0.0990
0.0743
0.0735
0.0742
0.0755
0.0737
0.0747
0.0841
0.0743
0.0742
0.0739
0.0743
0.0737
0.0749
0.0741
0.0744
0.0733
0.0749
0.0745
0.0740
0.0742
0.0745
0.0740
0.0747
0.0749
0.0744
0.0750
0.0733
0.0746
0.0745

0.0744
0.0723
0.0666
0.0682
0.0685
0.0664
0.0656
0.0698
0.0698
0.0657
0.0743
0.0721
0.0721
0.0743
0.0746
0.0716
0.0717
0.0750
0.0695
0.0656
0.0662
0.0697
0.0686
0.0673
0.0660
0.0685
0.0689
0.0692
0.0956
0.0691
0.0690
0.0690
0.0688
0.0696
0.0701
0.0790
0.0693
0.0688
0.0696
0.0692
0.0695
0.0693
0.0693
0.0692
0.0690
0.0691
0.0689
0.0693
0.0692
0.0692
0.0691
0.0688
0.0690
0.0693
0.0691
0.0690
0.0694
0.0694

0.0781
0.0762
0.0702
0.0723
0.0720
0.0707
0.0705
0.0740
0.0748
0.0697
0.0781
0.0761
0.0758
0.0779
0.0782
0.0752
0.0752
0.0784
0.0749
0.0700
0.0697
0.0738
0.0736
0.0714
0.0702
0.0731
0.0726
0.0731
0.0991
0.0731
0.0730
0.0729
0.0736
0.0732
0.0738
0.0826
0.0732
0.0728
0.0732
0.0728
0.0732
0.0729
0.0730
0.0729
0.0734
0.0729
0.0731
0.0737
0.0731
0.0730
0.0731
0.0728
0.0729
0.0738
0.0735
0.0734
0.0733
0.0734

0. 8472717
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.78
0.76

0.8
0.8
0.76
0.8
0.76
0.76
0.8
0.8
0.76
0.76
0.8
0.76
0.8
0.8
0.76
0.76
0.8
0.8
0.76
0.8
0.76
0.76
0.8
0.8
0.76
0.76
0.8
0.76
0.8
0.8
0.76
0.8
0.76
0.76
0.8
0.76
0.8
0.8
0.76
0.76
0.8

1.2E-10
1.2E-10
1.2E-10
1.2E-10
4.05E-10
1.2E-10
1.2E-10

171E 10

0. 0336359
0.009

0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.0231
0.00001
0.00001
0.00001
0.00001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001

0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.00001
0.0231
0.00001
0.00001
0.00001
0.000001
0.000001
0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.000001
0.000001
0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.000001
0.000001
0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.000001
0.000001
0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.000001
0.000001
0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.000001
0.000001

14727171

0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.0275
0.05
0.0275
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.020812

0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.20812
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188

0.0889
0.0878
0.0865
0.0878
0.0875
0.0903
0.0883
0.0900
0.1054
0.0846
0.0834
0.0819
0.0835
0.0977
0.0858
0.1037
0.0921
0.0832
0.0921
0.0858
0.0849
0.0909
0.0839
0.0892
0.0853
0.0844
0.0821
0.0898
0.0887
0.0821
0.0856
0.0898
0.0857
0.0877
0.0846
0.0892
0.0913
0.0860
0.0880
0.0827
0.0845
0.0849
0.0884
0.0840
0.0837
0.0883
0.0873
0.0822
0.0923
0.1007
0.0934
0.1018
0.1030
0.0908
0.1040
0.0897
0.0929
0.0932

0.0747
0.0754
0.0751
0.0750
0.0750
0.0749
0.0702
0.0742
0.0746
0.0723
0.0747
0.0661
0.0709
0.0729
0.0751
0.0780
0.0768
0.0741
0.0726
0.0757
0.0754
0.0729
0.0746
0.0747
0.0733
0.0708
0.0730
0.0714
0.0721
0.0703
0.0722
0.0722
0.0747
0.0745
0.0755
0.0724
0.0724
0.0752
0.0750
0.0745
0.0712
0.0718
0.0725
0.0698
0.0709
0.0727
0.0716
0.0712
0.0792
0.0781
0.0777
0.0791
0.0796
0.0770
0.0778
0.0790
0.0778
0.0753

0.0805
0.0821
0.0806
0.0810
0.0829
0.0809
0.0778
0.0811
0.0859
0.0809
0.0838
0.0761
0.0815
0.0836
0.0804
0.0881
0.0824
0.0790
0.0799
0.0838
0.0815
0.0810
0.0793
0.0818
0.0807
0.0812
0.0803
0.0790
0.0826
0.0794
0.0790
0.0834
0.0790
0.0813
0.0826
0.0792
0.0798
0.0829
0.0821
0.0804
0.0805
0.0838
0.0862
0.0786
0.0780
0.0816
0.0823
0.0801
0.0845
0.0887
0.0857
0.0898
0.0907
0.0831
0.0892
0.0871
0.0879
0.0824

0.0742
0.0745
0.0741
0.0744
0.0750
0.0748
0.0707
0.0728
0.0736
0.0737
0.0749
0.0742
0.0713
0.0792
0.0748
0.0773
0.0784
0.0755
0.0758
0.0786
0.0781
0.0762
0.0761
0.0785
0.0736
0.0714
0.0708
0.0735
0.0745
0.0702
0.0710
0.0729
0.0758
0.0785
0.0783
0.0762
0.0756
0.0782
0.0785
0.0759
0.0706
0.0747
0.0750
0.0707
0.0715
0.0731
0.0727
0.0713
0.0787
0.0766
0.0766
0.0779
0.0790
0.0766
0.0759
0.0788
0.0758
0.0703

0.0692
0.0692
0.0693
0.0692
0.0691
0.0691
0.0651
0.0680
0.0690
0.0694
0.0700
0.0711
0.0675
0.0692
0.0690
0.0697
0.0744
0.0715
0.0715
0.0747
0.0741
0.0719
0.0720
0.0740
0.0681
0.0661
0.0659
0.0689
0.0688
0.0655
0.0654
0.0692
0.0718
0.0741
0.0742
0.0721
0.0715
0.0747
0.0746
0.0715
0.0652
0.0696
0.0695
0.0662
0.0665
0.0676
0.0681
0.0665
0.0743
0.0722
0.0723
0.0744
0.0746
0.0718
0.0717
0.0747
0.0696
0.0656

0.0729
0.0735
0.0731
0.0731
0.0733
0.0729
0.0690
0.0717
0.0728
0.0734
0.0737
0.0743
0.0709
0.0735
0.0735
0.0741
0.0779
0.0750
0.0751
0.0782
0.0775
0.0755
0.0755
0.0776
0.0722
0.0701
0.0705
0.0725
0.0729
0.0696
0.0692
0.0734
0.0756
0.0777
0.0778
0.0757
0.0750
0.0780
0.0781
0.0751
0.0700
0.0731
0.0729
0.0695
0.0705
0.0728
0.0719
0.0704
0.0779
0.0760
0.0761
0.0779
0.0783
0.0753
0.0756
0.0783
0.0733
0.0697

8.47E-11
1.71E-10
1.71E-10
8.47E-11
1.71E-10
8.47E-11
1.71E-10
8.47E-11
1.71E-10
8.47E-11

1.2E-10

0.0081

0.0081
0.01
0.0081
0.01
0.0081

0.0081
0.01
0.0081
0.01
0.0081

0.0081
0.01
0.0081
0.01
0.0081

0.0081
0.01
0.009

0.0081
0.0081
0.0081
0.0081
0.01
0.01
0.0081
0.0081
0.01
0.01
0.01
0.01
0.0081
0.0081
0.01
0.01
0.0081
0.0081
0.0081
0.0081
0.01
0.01
0.009

0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.000001
0.000001
0.0001
0.0001
0.00001

0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.000001
0.000001
0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.000001
0.000001
0.000001
0.000001
0.0001
0.0001
0.0001
0.0001
0.00001

0.020812
0.020812
0.020812
0.020812
0.020812
0.020812
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188
0.034188

0.0275

0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188
0.34188

0.275

0.0876
0.0929
0.0951
0.0925
0.0918
0.0891
0.1040
0.0922
0.1016
0.0916
0.0920
0.1007
0.0917
0.1046
0.0914
0.0950
0.0946
0.0888
0.0863
0.0964
0.0885
0.0933
0.0881

0.0734
0.0776
0.0766
0.0747
0.0757
0.0755
0.0774
0.0813
0.0785
0.0769
0.0758
0.0779
0.0795
0.0771
0.0770
0.0771
0.0765
0.0751
0.0755
0.0777
0.0754
0.0730
0.0765

0.0869
0.0878
0.0845
0.0861
0.0859
0.0869
0.0896
0.0852
0.0874
0.0843
0.0834
0.0886
0.0842
0.0879
0.0833
0.0858
0.0900
0.0844
0.0844
0.0890
0.0863
0.0821
0.0805

0.0721
0.0742
0.0762
0.0712
0.0721
0.0742
0.0769
0.0791
0.0797
0.0766
0.0772
0.0790
0.0794
0.0769
0.0716
0.0749
0.0768
0.0705
0.0743
0.0745
0.0752
0.0710
0.0740

0.0654
0.0694
0.0685
0.0669
0.0666
0.0683
0.0715
0.0748
0.0747
0.0717
0.0721
0.0743
0.0743
0.0723
0.0672
0.0689
0.0683
0.0666
0.0659
0.0696
0.0698
0.0653
0.0695

0.0696
0.0733
0.0735
0.0713
0.0718
0.0727
0.0751
0.0786
0.0786
0.0754
0.0763
0.0777
0.0781
0.0760
0.0703
0.0725
0.0735
0.0713
0.0695
0.0726
0.0742
0.0695
0.0730

126

[1]

2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Bibliography

A. Sood and R. Enbody, “U. S. Military Defense Systems : The Anatomy Of Cyber
Espionage By Chinese Hackers,” Georg. J. Int. Aff., 2016.

ATT Security, “What Every CEO needs to know about cybersecurity Decoding the
adversary,” ATT Cybersecurity Insights, vol. 1, pp. 1-36, 2015.

US Department of Defense, “The DoD Cyber Strategy.” U.S. Department of Defense, p.
42,2015.

M. Alvarez, N. Bradley, P. Cobb, S. Craig, R. Iffert, L. Kessem, J. Kravitz, D. McMillen,
and S. Moore, “IBM X-Force Threat Intelligence Index 2017 The Year of the Mega
Breach,” no. March, pp. 1-30, 2017.

Symantec, “Internet Security Threat Report,” 2017.

B. Barrett, “Game of Thrones Leak Puts Unreleased Script and Other HBO Shows Online
| WIRED,” WIRED, 2017. [Online]. Available: https://www.wired.com/story/game-of-
thrones-leak-hbo-hack/. [Accessed: 01-Aug-2017].

DoD, “FACT SHEET: THE DEPARTMENT OF DEFENSE (DOD) CYBER
STRATEGY.” DoD, p. 2, 2015.

H. E. Poston, “A brief taxonomy of intrusion detection strategies,” Natl. Aerosp. Electron.
Conf. Proc. IEEE, pp. 255-263, 2013.

R. J. Gutierrez, “A Tabulated Vector Approach For Log-Based Anomaly Detection,” Air
Force Institute of Technology, 2017.

M. Markou and S. Singh, “Novelty detection: A review - Part 1: Statistical approaches,”
Signal Processing, vol. 83, no. 12, pp. 2481-2497, 2003.

A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: a review,” |IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp. 4-37, 2000.

C. H. (John) Wu and J. D. Irwin, Introduction to Computer Networks and Cybersecurity.
Boca Raton: CRC Press/Taylor & Francis Group, LLC, 2013.

V. Kumar, “Parallel and Distributed Computing for Cybersecurity,” IEEE Distrib. Syst.
Online, vol. 6, no. 10, pp. 1-9, 2005.

S. Agrawal and J. Agrawal, “Survey on anomaly detection using data mining techniques,”
Procedia Comput. Sci., vol. 60, no. 1, pp. 708-713, 2015.

C. Manikopoulos and S. Papavassiliou, “Network intrusion and fault detection: A
statistical anomaly approach,” IEEE Commun. Mag., vol. 40, no. 10, pp. 76-82, 2002.

127

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

A. Ghosh, J. Wanken, and F. Charron, “Detecting anomalous and unknown intrusions
against programs,” Comput. Secur. Appl. Conf. 1998. Proceedings. 14th Annu., pp. 259—
267, 1998.

A. Patcha and J. M. Park, “An overview of anomaly detection techniques: Existing
solutions and latest technological trends,” Comput. Networks, vol. 51, no. 12, pp. 3448—
3470, 2007.

H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion-detection
systems,” Comput. Networks, vol. 31, no. 8, pp. 805-822, 1999.

K. Scarfone and P. Mell, “Guide to Intrusion Detection and Prevention Systems (IDPS)
Recommendations of the National Institute of Standards and Technology,” Nist Spec.
Publ., vol. 80094, p. 127, 2007.

K. Scarfone and P. Hoffman, “Guidelines on firewalls and firewall policy:
recommendations of the National Institute of Standards and Technology,” NIST Spec.
Publ., p. 74, 2009.

R. G. Bace, Intrusion Detection, 2nd ed. University of Michigan: Macmillan Technical
Publiishing, 2000.

D. E. Denning, “An Intrusion-Detection Model,” IEEE Trans. Softw. Eng., vol. 13, no. 2,
pp. 222-232, 1987.

A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A Comparative Study of
Anomaly Detection Schemes in Network Intrusion Detection,” Proc. 2003 SIAM Int.
Conf. Data Min., pp. 25-36, 2003.

J. R. Yost, “The March of IDES: Early History of Intrusion-Detection Expert Systems,”
IEEE Ann. Hist. Comput., vol. 38, no. 4, pp. 42-54, 2016.

A. K. Marnerides, A. Schaeffer-Filho, and A. Mauthe, “Traffic anomaly diagnosis in
Internet backbone networks: A survey,” Comput. Networks, vol. 73, pp. 224-243, 2014.

“theatre,” Cambridge Dictionary. [Online]. Available:

https://dictionary.cambridge.org/dictionary/english/theatre?a=british. [Accessed: 08-Nov-
2017].

D. Swift, “A Practical Application of SIM/SEM/SIEM Automating Threat Identification.”
SANS Institute InfoSec Reading Room, p. 39, 2001.

T. J. Bihl, W. A. Young I, and G. R. Weckman, “Defining, Understanding, and
Addressing Big Data,” Int. J. Bus. Anal., vol. 3, no. 2, pp. 1-32, 2016.

P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez, “Anomaly-

based network intrusion detection: Techniques, systems and challenges,” Comput. Secur.,
vol. 28, no. 1-2, pp. 18-28, 2009.

128

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

C.F.Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, “Intrusion detection by machine learning:
A review,” Expert Syst. Appl., vol. 36, no. 10, pp. 11994-12000, 2009.

H. Debar, “An introduction to intrusion-detection systems,” Proc. Connect, pp. 1-18,
2000.

D. Anderson, T. Frivold, and A. Valdes, “Next-generation Intrusion Detection Expert
System (NIDES): A summary,” SRI Int., no. May 1995, p. 47, 1995.

D. E. Denning, “An Intrusion-Detection Model,” IEEE Trans. Softw. Eng., vol. SE-13, no.
2,pp. 118-131, 1987.

J. P. Anderson, “Computer security threat monitoring and surveillance,” 1980.

P. A. Porras and A. Valdes, “Live Traffic Analysis of TCP/IP Gateways,” Proc. 1998
ISOC Symp. Netw. Distrib. Syst. Secur. NDSS98, 1998.

V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput.
Surv., vol. 41, no. September, pp. 1-58, 2009.

M. Rich, “Evaluating Machine Learning Classifiers For Hybrid Network Intrusion
Detection Systems,” Air Force Institute of Technology, 2017.

J. M. Estevez-Tapiador, P. Garcia-Teodoro, and J. E. Diaz-Verdejo, “Anomaly detection
methods in wired networks: A survey and taxonomy,” Comput. Commun., vol. 27, no. 16,
pp. 1569-1584, 2004.

E. Biermann, E. Cloete, and L. Venter, “A comparison of Intrusion Detection systems,”
Comput. Secur., vol. 20, no. 8, pp. 676—683, 2001.

P.-L. D. Elike Hodo, Xavier Bellekens, Andrew Hamilton and C. T. and R. A. Ephraim
lorkyase, “Threat analysis of IoT networks Using Artificial Neural Network Intrusion
Detection System,” 2016 3rd Int. Symp. Networks, Comput. Commun., pp. 1-6, 2016.

A. Jones and R. Sielken, “Computer system intrusion detection: A survey,” Comput. Sci.
Tech. Rep., pp. 1-25, 2000.

J. Song, H. Takakura, Y. Okabe, and K. Nakao, “Toward a more practical unsupervised
anomaly detection system,” Inf. Sci. (Ny)., vol. 231, pp. 4-14, 2013.

M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly detection
techniques,” J. Netw. Comput. Appl., vol. 60, pp. 19-31, 2016.

H. Packard and E. Development, “HPE Security ArcSight Common Event Format
Implementing ArcSight Common Event Format CEF).” Hewlett Packard Enterprise, p.
28, 2016.

V.J. Hodge and J. Austin, “A Survey of Outlier Detection Methodoligies,” Artif. Intell.

129

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Rev., vol. 22, no. 1969, pp. 85-126, 2004.

F. E. Grubbs, “Procedures for Detecting Outlying Observations in Samples,”
Technometrics, vol. 11, no. 1, pp. 1-21, 1969.

M. Goldstein and S. Uchida, “A Comparative Evaluation of Unsupervised Anomaly
Detection Algorithms for Multivariate Data,” no. April, pp. 1-31, 2016.

M. Agyemang, K. Barker, and R. Alhajj, “A comprehensive survey of numeric and
symbolic outlier mining techniques,” Intell. Data Anal., vol. 10, no. 6, pp. 521-538, 2006.

R. J. Beckman and R. D. Cook, “Outlier s,” Technometrics, vol. 25, no. 2, pp.
119-149, May 1983.

M. Markou and S. Singh, “Novelty detection: A review - Part 2:: Neural network based
approaches,” Signal Processing, vol. 83, no. 12, pp. 2499-2521, 2003.

R. Lippmann, “An Introduction to Computing with Neural Nets,” IEEE ASSP Mag., vol.
4, no. 2, pp. 4-22, 1987.

N. Japkowicz, C. Myers, and M. Gluck, “A novelty detection approach to classification,”
Proc. Fourteenth Int. Jt. Conf. Artif. Intell., pp. 518-523, 1995.

Z. Zhang, J. Li, C. N. Manikopoulos, J. Jorgenson, and J. Ucles, “A hierarchical anomaly
network intrusion detection system using neural network classification,” pp. 333338,
2001.

K. Labib and R. Vemuri, “NSOM: A real-time network-based intrusion detection system
using self-organizing maps,” Networks Secur., pp. 1-6, 2002.

R. Smith, “Network-Based Intrusion Detection Using Neural Networks,” New York, pp.
1-18.

S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier Detection Using Replicator
Neural Networks,” in Proceedings of the 4th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK 2000), 2000, pp. 170-180.

C. Kruegel, G. Vigna, and G. Kruegel, Christopher and Vigna, “Anomaly detection of
web-based attacks,” Proc. 10th ACM Conf. Comput. Commun. Secur., vol. 3, no.
November, p. 251, 2003.

M. Ramadas, S. Ostermann, and B. Tjaden, “Detecting Anomalous Network Traffic with
Self-organizing Maps,” Recent Adv. Intrusion ..., vol. 2820, pp. 36—54, 2003.

J. Ryan and M. Lin, “Intrusion Detection with Neural Networks,” Adv. Neural Inf.
Process. Syst., pp. 943-949, 1998.

J. Chen, S. Sathe, C. Aggarwal, and D. Turaga, “Outlier Detection with Autoencoder

130

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Ensembles,” SIAM Conf. Data Mining., pp. 90-98, 2017.

E. Aleskerov, B. Freisleben, and B. Rao, “Cardwatch: A neural network based database
mining system for credit card fraud detection,” in Computational Intelligence for
Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/IAFE 1997, 1997, pp.
220-226.

S. Ghosh and D. L. Reilly, “Credit card fraud detection with a neural-network,” in System
Sciences, 1994. Proceedings of the Twenty-Seventh Hawaii International Conference on,
1994, vol. 3, pp. 621-630.

J. R. Dorronsoro, F. Ginel, C. Sgnchez, and C. S. Cruz, “Neural fraud detection in credit
card operations,” IEEE Trans. Neural Networks, vol. 8, no. 4, pp. 827-834, Jul. 1997.

P. Barson, S. Field, N. Davey, G. McAskie, and R. Frank, “Detection of fraud in mobile
phone networks,” Neural Netw. World, vol. 6, no. 4, pp. 477484, 1996.

M. Taniguchi, M. Haft, J. Hollmén, and V. Tresp, “Fraud detection in communication
networks using neural and probabilistic methods,” in Acoustics, Speech and Signal
Processing, 1998. Proceedings of the 1998 IEEE International Conference on, 1998, vol.
2, pp. 1241-1244.

C. M. Bishop, “Novelty detection and neural network validation,” IEE Proceedings -
Vision, Image, and Signal Processing, vol. 141, no. 4. p. 217, 1994.

I. Diaz and J. Hollmén, “Residual generation and visualization for understanding novel
process conditions,” in Neural Networks, 2002. IJCNN’02. Proceedings of the 2002
International Joint Conference on, 2002, vol. 3, pp. 2070-2075.

T. Harris, “Neural network in machine health monitoring,” Prof. Eng., 1993.

S. Jakubek and T. Strasser, “Fault-diagnosis using neural networks with ellipsoidal basis
functions,” in American Control Conference, 2002. Proceedings of the 2002, 2002, vol. 5,
pp. 3846-3851.

S. P. King, D. M. King, K. Astley, L. Tarassenko, P. Hayton, and S. Utete, “The use of
novelty detection techniques for monitoring high-integrity plant,” in Control Applications,
2002. Proceedings of the 2002 International Conference on, 2002, vol. 1, pp. 221-226.

T. Petsche, A. Marcantonio, C. Darken, S. Hanson, G. Kuhn, and I. Santoso, “A neural
network autoassociator for induction motor failure prediction,” Advances in Nural
Information Processing Systems 8, pp. 924-930, 1996.

T. Verwoerd and R. Hunt, “Intrusion detection techniques and approaches,” Comput.
Commun., vol. 25, no. 15, pp. 1356-1365, 2002.

A. Ypma and R. P. W. Duin, “Novelty detection using Self-Organizing,” Fac. Appl.
Physic, 1996.

131

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

J.M. Ko, Y.Q.Ni, J. Y. Wang, Z. G. Sun, and X. T. Zhou, “Studies of vibration-based
damage detection of three cable-supported bridges in Hong Kong,” 2000.

C. Surace and K. Worden, “Novelty detection in a changing environment: A negative
selection approach,” Mech. Syst. Signal Process., vol. 24, no. 4, pp. 1114-1128, 2010.

K. Worden, “STRUCTURAL FAULT DETECTION USING A NOVELTY MEASURE,”
J. Sound Vib., vol. 201, no. 1, pp. 85-101, Mar. 1997.

Y. Bengio and Y. Lecun, “Scaling Learning Algorithms towards Al,” Large Scale Kernel
Mach., no. 1, pp. 321-360, 2007.

M. M. Moya and D. R. Hush, “Network Constraints and Multiobjective Optimization for
One Class Classification,” Neural Networks, vol. 9, no. 3, pp. 463-474, 1996.

S. Singh and M. Markou, “An approach to novelty detection applied to the classification
of image regions,” IEEE Trans. Knowl. Data Eng., vol. 16, no. 4, pp. 396407, 2004.

R. O. B. Saunders and J. S. Gero, “A curious design agent,” Key Cent. Des. Compult.
Cogn., pp. 345-350, 2001.

G. C. Vasconcelos, M. C. Fairhurst, D. L. Bisset, and K. Ct, “A bootstrap-like rejection
mechanism for multilayer perceptron networks,” in 1l Simposio Brasileiro de Redes
Neurais, 1995, pp. 167-172.

C. L. Wilson, J. L. Blue, and O. M. Omidvar, “Neural network auto-associator and
method for induction motor monitoring,” in World Congress on Neural Networks
Proceedings 11, 1996, pp. 151-158.

L. M. Manevitz, M. Yousef, N. Cristianini, J. Shawe-Taylor, and B. Williamson, “One-
Class SVMs for Document Classification,” J. Mach. Learn. Res., vol. 2, pp. 139-154,
2001.

S. Roberts and L. Tarassenko, “A Probabilistic Resource Allocating Network for Novelty
Detection,” Neural Comput., vol. 6, no. 2, pp. 270-284, 1994.

P. Crook and G. Hayes, “A Robot Implementation of a Biologically Inspired Method for
Novelty Detection,” Proc. Towards Intelligent Mobile Roberts Conference, 2001.

J. Himberg, J. Ahola, E. Alhoniemi, J. Vesanto, and O. Simula, “The Self-Organizing
Map as a tool in knowledge engineering,” Pattern Recognit. soft Comput. Paradig., pp.
38-65,2001.

G. Williams and R. Baxter, “A comparative study of RNN for outlier detection in data
mining,” IEEE Int. Conf. Data Min., no. December 2002, pp. 1-16, 2002.

M. G. Dondo, N. Japkowicz, and R. Smith, “AutoCorrel: a neural network event
correlation approach,” Data Mining, Intrustion Detect. Inf. Assur. Data Networks Secur.,

132

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

vol. 6241, April, p. 62410N, 2006.

M. G. Dondo, P. Mason, N. Japkowicz, and R. Smith, “AutoCorrel II: a neural network
event correlation approach.,” Data Mining, Intrusion Detect. Inf. Assur. Data Networks
Secur., vol. 6570, April, p. 65700H, 2007.

M. Dondo, “Investigation of a Neural Network Implementation of a TCP Packet Anomaly
Detection System,” Defense R&D Canada Technical Memorandum, no. 2004-208, May,
2004.

Mukhopadhyay Indraneel and Chakraborty Mohuya, “Artificial Neural network Modeling
of Intrusion Detection & Prevention System,” IEM Int. J. Manag. Technol., vol. 2, no. 1,
pp. 107-110, 2012.

A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S. Robinson, “Deep Learning for
Unsupervised Insider Threat Detection in Structured Cybersecurity Data Streams,” AICS -
Artif. Intell. Cyber Secur., no. 2012, pp. 224-231, 2017.

I. Mukhopadhyay and M. Chakraborty, “Hardware Realization of Artificial Neural
Network Based Intrusion Detection &amp; Prevention System,” J. Inf. Secur., vol. 5,
no. 4, pp. 154-165, 2014.

A. K. Jain and J. Mao, “Artificial Neural Network: A Tutorial,” Communications, vol. 29,
pp. 31-44, 1996.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

B. A. Olshausen and D. J. Field, “How Close Are We to Understanding V1?,” Neural
Comput., vol. 17, no. 8, pp. 1665-1699, 2005.

L. von Melchner, S. L. Pallas, and M. Sur, “Visual behavior mediated by retinal
projections directed to the autitoriy pathway,” vol. 404, no. 6780, pp. 871-876, 2000.

B. Widrow and M. A. Lehr, “30 Years of Adaptive Neural Networks: Perceptron,
Madaline, and Backpropagation,” Proc. of the IEEE, vol. 78, no. 9, pp. 1415-1442, 1990.

Q. Jarosz, “File:Neuron Hand-tuned.svg,” Wikimedia Commons, 2009. [Online].

Available: https://commons.wikimedia.org/wiki/File:Neuron Hand-tuned.svg. [Accessed:
14-Dec-2017].

P. Winston, “6.034 Artificial Intelligence,” Massachusetts Institute of Technology: MIT
OpenCourseWare, 2010. [Online]. Available: https://ocw.mit.edu.

A. Castrounis, “Artificial Intelligence, Deep Learning, and Neural Networks Explained,”
InnoArchiTech, 2016. [Online]. Available: https://www.innoarchitech.com/artificial-
intelligence-deep-learning-neural-networks-

explained/?utm_source=kdnuggets&utm medium=post&utm_content=postlink&utm_ca
mpaign=republish. [Accessed: 09-Jan-2018].

133

[102] A. Ng, CS 294A Sparse autoencoder Lecture Notes. Stanford, CA: Stanford University,
2011.

[103] D. Tanikic and V. Despotovic, “Artificial Intelligence Techniques for Modelling of
Temperature in the Metal Cutting Process,” in Metallurgy - Advances in Materials and
Processes, InTech, 2012.

[104] R. Hecht-Nielsen, “Theory of the Backpropagation Neural Network,” Proc. Int. Jt. Conf.
Neural Networks, vol. 1, pp. 593605, 1989.

[105] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, pp. 533536, 1986.

[106] K. Bauer, OPER 685 (Applied Multivariate Analysis) Course Notes. Wright-Patterson
AFB, OH: Air Force Institute of Technology, 2016.

[107] G. E. Hinton, “Connectionist learning procedures,” Artif. Intell., vol. 40, no. 1-3, pp. 185—
234, Sep. 1989.

[108] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal Representations by
Error Propagation,” San Diego, 1985.

[109] A. Candel, E. LeDell, V. Parmar, and A. Arora, Deep Learning With H20, Fifth., March.
Mountain View, CA: H20.ai, Inc., 2016.

[110] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.

[111] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function,” Neural
Networks, vol. 6, no. 6, pp. 861-867, 1993.

[112] M. Claesen and B. De Moor, “Hyperparameter Search in Machine Learning,”
arXiv:1502.02127v2, Apr. 2015.

[113] Y. Bengio, “Practical recommendations for gradient-based training of deep architectures,”
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 7700 LECTU, pp. 437478, 2012.

[114] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE
Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, 1997.

[115] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy Layer-Wise Training of
Deep Networks,” Adv. Neural Inf. Process. Syst., vol. 19, no. 1, p. 153, 2007.

[116] D. Erhan, P.-A. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, “The Difficulty of
Training Deep Architectures and the Effect of Unsupervised Pre-Training,” Aistats, vol. 5,
pp. 153-160, 2009.

134

[117] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” Proc. 26th
Annu. Int. Conf. Mach. Learn. - ICML 09, vol. 2, no. 1, pp. 1-8, 2009.

[118] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E. Lavoie, X.
Muller, G. Desjardins, D. Warde-Farley, P. Vincent, A. Courville, and J. Bergstra,
“Unsupervised and Transfer Learning Challenge: a Deep Learning approach,” JIMLR W&
CP Proc. Unsupervised Transf. Learn. Chall. Work., vol. 27, pp. 97-110, 2012.

[119] D. Ciresan, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column deep neural network
for traffic sign classification,” Neural Networks, vol. 32, pp. 333-338, 2012.

[120] A. Krizhevsky, I. Sutskever, and H. Geoffrey E., “ImageNet Classification with Deep
Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst. 25, pp. 1-9, 2012.

[121] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. Lecun, “Pedestrian detection with
unsupervised multi-stage feature learning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., pp. 3626-3633, 2013.

[122] C. Couprie, C. Farabet, L. Najman, and Y. LeCun, “Indoor Semantic Segmentation using
depth information,” arXiv:1301.3572v2, Mar. 2013.

[123] S.E. Kanou et al., “Combining modality specific deep neural networks for emotion
recognition in video,” Proc. 15th ACM Int. Conf. multimodal Interact. - ICMI ’13, pp.
543-550, 2013.

[124] L. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-digit Number
Recognition from Street View Imagery using Deep Convolutional Neural Networks,”
CoRR, vol. abs/1312.6, pp. 1-13, 2013.

[125] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., vol. 07-12—June, pp. 1-9, 2015.

[126] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp. 123-140, 1996.

[127] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
Simple Way to Prevent Neural Networks from Overfitting,” J. Mach. Learn. Res., vol. 15,
pp- 1929-1958, 2014.

[128] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” 2012.

[129] B. Singh, S. De, Y. Zhang, T. Goldstein, and G. Taylor, “Layer-Specific Adaptive
Learning Rates for Deep Networks,” arXiv:1510.04609v2, vol. 2, no. 1, Oct. 2015.

[130] Y. A. LeCun, L. Bottou, G. B. Orr, and K. R. M??ller, “Efficient backprop,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol.
7700 LECTU, pp. 9-48, 2012.

135

[131] L Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and
momentum in deep learning,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. -
Proc., no. 2010, pp. 8609-8613, 2013.

[132] D. R. Wilson and T. R. Martinez, “The general inefficiency of batch training for gradient
descent learning,” Neural Networks, vol. 16, no. 10, pp. 1429-1451, 2003.

[133] M. A. Kramer, “Autoassociative neural networks,” Comput. Chem. Eng., vol. 16, no. 4,
pp. 313-328, 1992.

[134] G. E. Hinton, “Reducing the Dimensionality of Data with Neural Networks,” Science, vol.
313, no. 5786, pp. 504-507, 2006.

[135] J. Bergstra, D. Yamins, and D. D. Cox, “Making a Science of Model Search,”
avXir:1209.5111vl1, vol. 1, pp. 1-11, Sep. 2012.

[136] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” J. Mach.
Learn. Res., vol. 13, pp. 281-305, 2012.

[137] P. Koch, B. Wujek, O. Golovidov, and S. Gardner, “Automated Hyperparameter Tuning
for Effective Machine Learning,” SAS514-2017, pp. 1-23, 2017.

[138] S. Yang and G. Lee, “Neural network design by using Taguchi method,” J. Dyn. Syst.
Meas. Control, vol. 28, no. 1, pp. 6-9, 1999.

[139] J. F. C. Khaw, B. S. Lim, and L. E. N. Lim, “Optimal design of neural networks using the
Taguchi method,” Neurocomputing, vol. 7, no. 3, pp. 225-245, 1995.

[140] G. E. Peterson, W. E. Bond, D. C. Clair, and S. R. S. Aylward, “Using Taguchi’s Method
of Experimental Design to Control Errors in Layered Perceptrons,” IEEE Trans. Neural
Networks, vol. 6, no. 4, pp. 949-961, 1995.

[141] Y. S. Kim and B. J. Yum, “Robust design of multilayer feedforward neural networks: An
experimental approach,” Eng. Appl. Artif. Intell., vol. 17, no. 3, pp. 249-263, 2004.

[142] F. Sanchez Lasheras, J. A. Vilan Vilan, P. J. Garcia Nieto, and J. J. del Coz Diaz, “The
use of design of experiments to improve a neural network model in order to predict the

thickness of the chromium layer in a hard chromium plating process,” Math. Compult.
Model., vol. 52, no. 7-8, pp. 1169-1176, 2010.

[143] M. S. Packianather, P. R. Drake, and H. Rowlands, “Optimizing the parameters of
multilayered feedforward neural networks through Taguchi design of experiments,” Qual.
Reliab. Eng. Int., vol. 16, no. 6, pp. 461-473, 2000.

[144] F.J. Pontes, G. F. Amorim, P. P. Balestrassi, A. P. Paiva, and J. R. Ferreira, “Design of

experiments and focused grid search for neural network parameter optimization,”
Neurocomputing, vol. 186, pp. 22-34, 2016.

136

[145] E. Alpaydin, Introduction to Machine Learning, 2nd ed. Cambridge, Mass: MIT Press,
2010.

[146] B. Wujek, P. Hall, and F. Giines, “Best Practices for Machine Learning Applications,”
SAS2360-2016, pp. 1-23, 2016.

[147] D. C. Montgomery, Design and Analysis of Experiments, 8th ed. Hoboken, NJ: Wiley,
2012.

[148] D. C. Montgomery, E. Peck, and G. Vining, Introduction to Linear Regression Analysis,
5th ed. Wiley, 2012.

[149] R Core Team, “R: A Language and Environment for Statistical Computing.” R
Foundation for Statistical Computing, Vienna, Austria, 2017.

[150] RStudio Team, “RStudio: Integrated Development Environment for R.” RStudio, Inc.,
Boston, MA, 2017.

[151] “JMP Pro.” SAS Institute Inc., Cary, NC, 2017.

[152] The MathWorks Inc, “MATLAB Statistics and Machine Learning Toolbox Release
2016b.” Natick, MA, 2016.

[153] H. Wickham, “tidyverse: Easily Install and Load ‘Tidyverse’ Packages.” 2017.

[154] R. Robertson, F. Tran, J. Mejia, and C. Mourani, “IPtoCountry: Convert [P Addresses to
Country Names or Full Location with Geoplotting.” 2016.

[155] H. Bengtsson, “R.utils: Various Programming Utilities.” R package version 2.6.0, 2017
[Online]. Available: https://cran.r-project.org/package=R.utils.

[156] M. Kuhn, “caret: Classification and Regression Training.” R package version 6.0-78,
2017. [Online]. Available: https://cran.r-project.org/package=caret.

[157] H. Wickham, “scales: Scale Functions for Visualization.” R package version 0.5.0, 2017.
[Online]. Available: https://cran.r-project.org/package=scales.

[158] The H20.ai Team, “h20: R Interface for H20.” R package version 3.16.0.2, 2017.
[Online]. Available: https://cran.r-project.org/package=h2o.

137

REPORT DOCUMENTATION PAGE OMB NG oA 0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
22-03-2018 Master’s Thesis Aug 2016 - March 2018
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER
Cyber Data Anomaly Detection Using Autoencoder Neural Networks

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER
Butt, Spencer A. Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN) AFIT-ENS-MS-18-M-113
2950 Hobson Way, Building 640
WPAFB OH 45433-8865

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Cyber Command ARCYBER
LTC Cade M. Saie, PhD
8825 Beulah St 11. SPONSOR/MONITOR’S REPORT
For Belvoir, VA 22060 NUMBER(S)

cade.m.saie.mil@mail .mil

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution A. Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

14. ABSTRACT

The Department of Defense requires a secure presence in the cyber domain to successfully
execute its stated mission of deterring war and protecting the security of the United States.
With potentially millions of logged network events occurring on defended networks daily, a
limited staff of cyber analysts require the capability to identify novel network actions for
security adjudication. The detection methodology proposed uses an autoencoder neural network
optimized via design of experiments for the identification of anomalous network events. Once
trained, each logged network event is analyzed by the neural network and assigned an outlier
score. The network events with the largest outlier scores are anomalous and worthy of further
review by cyber analysts. This neural network approach can operate in conjunction with
alternate tools for outlier detection, enhancing the overall anomaly detection capability of
cyber analysts.

15. SUBJECT TERMS
Cyber anomaly detection, Intrusion detection, Neural networks, Autoencoder, Anomaly
detection, Intrusion detection, Intrusion protection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
1. OF ABSTRACT OF PAGES Dr. Raymond Hill
19b. TELEPHONE NUMBER (include area
U U U raymond.hill.2@us.af.mil

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

	Air Force Institute of Technology
	AFIT Scholar
	3-23-2018

	Cyber Data Anomaly Detection Using Autoencoder Neural Networks
	Spencer A. Butt
	Recommended Citation

	Microsoft Word - Spencer_Butt_Thesis_28_Feb_2018.docx

