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Diagnostic and prognostic capabilities are one aspect of the many interrelated 

and complementary functions in the field of Prognostic and Health Management 

(PHM). These capabilities are sought after by industries in order to provide maximum 

operational availability of their products, maximum usage life, minimum periodic 

maintenance inspections, lower inventory cost, accurate tracking of part life, and no 

false alarms. Several challenges associated with the development and implementation 

of these capabilities are the consideration of a system’s dynamic behavior under 

various operating environments; complex system architecture where the components 

that form the overall system have complex interactions with each other with feed-

forward and feedback loops of instructions; the unavailability of failure precursors; 

unseen events; and the absence of unique mathematical techniques that can address 

fault and failure events in various multivariate systems. 

The Mahalanobis distance methodology distinguishes multivariable data 

groups in a multivariate system by a univariate distance measure calculated from the 



  

normalized value of performance parameters and their correlation coefficients. The 

Mahalanobis distance measure does not suffer from the scaling effect—a situation 

where the variability of one parameter masks the variability of another parameter, 

which happens when the measurement ranges or scales of two parameters are 

different.  

A literature review showed that the Mahalanobis distance has been used for 

classification purposes. In this thesis, the Mahalanobis distance measure is utilized for 

fault detection, fault isolation, degradation identification, and prognostics.  

For fault detection, a probabilistic approach is developed to establish threshold 

Mahalanobis distance, such that presence of a fault in a product can be identified and 

the product can be classified as healthy or unhealthy. A technique is presented to 

construct a control chart for Mahalanobis distance for detecting trends and biasness in 

system health or performance. An error function is defined to establish fault-specific 

threshold Mahalanobis distance.  

A fault isolation approach is developed to isolate faults by identifying 

parameters that are associated with that fault. This approach utilizes the design-of-

experiment concept for calculating residual Mahalanobis distance for each parameter 

(i.e., the contribution of each parameter to a system’s health determination). An 

expected contribution range for each parameter estimated from the distribution of 

residual Mahalanobis distance is used to isolate the parameters that are responsible 

for a system’s anomalous behavior. 

A methodology to detect degradation in a system’s health using a health 

indicator is developed. The health indicator is defined as the weighted sum of a 



  

histogram bin’s fractional contribution. The histogram’s optimal bin width is 

determined from the number of data points in a moving window. This moving 

window approach is utilized for progressive estimation of the health indicator over 

time. The health indicator is compared with a threshold value defined from the 

system’s healthy data to indicate the system’s health or performance degradation. 

A symbolic time series–based health assessment approach is developed. 

Prognostic measures are defined for detecting anomalies in a product and predicting a 

product’s time and probability of approaching a faulty condition. These measures are 

computed from a hidden Markov model developed from the symbolic representation 

of product dynamics. The symbolic representation of a product’s dynamics is 

obtained by representing a Mahalanobis distance time series in symbolic form.  

Case studies were performed to demonstrate the capability of the proposed 

methodology for real time health monitoring. Notebook computers were exposed to a 

set of environmental conditions representative of the extremes of their life cycle 

profiles. The performance parameters were monitored in situ during the experiments, 

and the resulting data were used as a training dataset. The dataset was also used to 

identify specific parameter behavior, estimate correlation among parameters, and 

extract features for defining a healthy baseline. Field-returned computer data and data 

corresponding to artificially injected faults in computers were used as test data. 
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Chapter 1: Introduction 

The desire for diagnostic and prognostic capabilities has been around for as 

long as humans have operated complex, expensive, and safety-critical equipment. 

Diagnostic and prognostic capabilities are two of the main constituents of Prognostic 

and Health Management (PHM) systems. PHM systems have been created to monitor 

system health, provide early detection of faults, identify failure modes, point out 

failure precursors, detect degradation, determine remaining useful life, and 

recommend maintenance/logistic responses [1].  

Any industry would like to have the maximum operational availability of their 

products and systems, minimum periodic inspections, a low number of spares, 

maximum usage life, accurate part-life tracking, and no false alarms. PHM can make 

such things possible. PHM is an approach that enables real-time health assessment of 

a system in its actual application conditions by sensing, recording, and interpreting 

environmental, operational, and performance-related parameters that are indicative of 

a system’s health [2].  

1.1 Background and Motivation 

The real-time health assessment of electronics has great importance due to its 

wide range of applications, from a battery safety circuit to system-of-systems 

readiness. Electronics, as components, subsystems, or products, are an integral part of 

many systems. Electronics provide functionality and performance through mechanical 

and electrical controls. Electronic systems with a long life-cycle ensure customer 

satisfaction and low liability at the manufacturer’s end. Increased warranties and the 
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severe liability of system failures make it desirable to analyze a system’s performance 

in the field and determine its operational availability, which is a new concept that is 

being incorporated into contracts in the heavy vehicle industry and the airline 

industry. In 2005, electronics prognostics was identified by Logistic management 

institute (LMI) as one of the most needed maintenance-related features, and a similar 

view was observed in the avionics industry [3][4]. 

The Department of Defense (DoD) outlined the importance of PHM 

implementation in its DoD 5000.2 policy document for defense acquisition. It states 

that “program managers shall optimize operational readiness through affordable, 

integrated, embedded diagnostics and prognostics, embedded training and testing, 

serialized item management, automatic identification technology, and iterative 

technology refreshment” [5].  

Often, quantification of degradation and fault progression in an electronic 

system is difficult since not all faults necessarily lead to system failure or 

functionality loss [1] [2]. In addition, there is a significant lack of knowledge about 

failure precursors in electronics [6]. With limited failure precursors and complex 

architecture, it is generally hard to implement a health monitoring system that can 

directly monitor all the conditions in which fault incubation occurs. The built-in test 

(BIT) and self-test abilities in a system were early attempts at providing diagnostic 

capabilities that were incorporated into a system’s structure [7]. But the applicability 

of these capabilities was limited to the failure definition embedded at the system’s 

manufacturing stage, whereas with recent developments in sensor and data analysis 

capabilities, the implementation of data-driven diagnostic systems that can adapt to 
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new failure definitions is now possible. The literature review in Chapter 2 shows 

various PHM approaches based on the data type and system information. 

A system’s health assessment is made by observing its multiple performance 

parameters. Dataset of very high dimensions presents an analytical challenge, since 

all non-trivial data mining and indexing algorithms degrade exponentially with 

dimensionality [8]. A high-dimensional dataset contains a lot of valuable information, 

while a lower dimensional measure is easier to comprehend and can be computed 

quickly. Consideration of correlations among performance parameters is 

advantageous as an electronic product experiences diverse environmental and use 

conditions. For example, the capacitance and insulation resistance of a capacitor vary 

with changes in ambient temperature. The effectiveness of a diagnostic or prognostic 

procedure increases by incorporating the change in relationship among performance 

parameters. Each performance parameter changes at a different rate due to changes in 

ambient conditions.  

A multivariate Mahalanobis distance (MD) [9], a unified parameter 

representative of system health, is used to capture the non-linear dynamics of an 

electronic system. Motivation of chose the Mahalanobis distance for this work came 

from its certain attributes and advantages over other available approaches. These 

attributes and advantages of Mahalanobis distance are as follows:   

• It reduces a multivariate system to a univariate system (simplifies system 

monitoring). 

• It is sensitive to inter-variable changes in a multivariate system, because it takes 

correlations between parameters into account. 
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• It does not suffer from a scaling effect and uses correlation among parameters in 

contrast to other distances such as the Manhattan distance, the Euclidean 

distance, and the Hamming distance.  

• It uses correlation matrix for fault diagnosis whereas the Hotelling T-square and 

the square prediction error indices use covariance. The covariance measure is 

not scaled on the same level and varies with change in measurement unit.  

• It reduces the analytical burden, because MD provides a number after 

combining information on all performance parameters, whereas other 

multivariate approach such as multivariate state estimation technique (MSET) 

provides an estimate for each parameter and needs analytical assessment of each 

parameter for a system’s health determination. 

• It provides higher dimensionality reduction compared to the principle 

component analysis (PCA), which also explains variance-covariance with fewer 

linear combinations of original parameters. But to calculate the principle 

components, all original variables are needed.   

The MD approach reduces the analytical burden because information on all 

the performance parameters is combined into a number (i.e., MD), which is utilized 

for system health assessment. The MD does not suffer from the scaling effect because 

it uses normalized data. The scaling effect describes a situation where the variability 

of one parameter masks the variability of another parameter; this happens when the 

measurement ranges or scales of two parameters are different [10]. The use of 

correlation among parameters for MD calculation also makes it sensitive to small 

change in performance parameters.  
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Betta [11] presented requirements for system monitoring, including 

establishment of a suitable threshold for fault diagnosis, to perform the continuous 

comparison of the system under analysis. Liu et al. [12] discussed the need to localize 

the component or subsystem that is the source of the anomalous behavior.  

In electronics, degradation occurs due to several mechanisms, including 

electromagnetic disturbance [13], electro-migration [14], and corrosion [15]. Yang et 

al. [16] discussed how a light emitting diode degrades with the increase in duty cycles 

under the typical dynamic working conditions pulse input.  

In the MD-based diagnostic approach, the traditional method of defining a 

threshold MD value is either based on personal judgment, a trade-off for lowering the 

economic consequences of misclassifications, or an MD value that corresponds to a 

known abnormal condition is chosen [17]-[20]. These traditional methods do not 

provide a generic framework to define a threshold MD value for fault identification. 

For the health degradation identification, application of MD has been limited 

[21][22]. The parameters used in these studies were either monotonously increasing 

or decreasing. Up until now, MD has not been utilized for fault isolation and 

prognostic purposes. 

The Mahalanobis distance has been used for various purposes in many 

different disciplines. It has been used for: 1) real-time process control, because MD 

combines all performance parameters into a number, which eliminates the need for 

analyzing each individual parameter; 2) health monitoring of a complex system 

whose system dynamics change rapidly, because MD can be computed for 

multivariate observations in quick succession; 3) qualifying a product for a particular 
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fault, because a unique threshold for each fault can be established; 4) clustering 

(unsupervised pattern recognition) where similar objects (measured samples) are 

grouped together; 5) discriminating a product from established/confirmed good 

product; 6) locating faults in a system; and 7) estimating probability of impending 

faults. 

Although Mahalanobis distance has been used for various applications, it has 

some limitations. These limitations are as follows: 1) the MD approach suffers from 

the masking effect if the training data contains a significant amount of outliers, 

because MD uses a sample mean and a correlation matrix, which can be influenced 

by a cluster of outliers; 2) the outliers can shift the sample mean and inflate the 

correlation matrix in a covariate direction. This is especially true if the n/p ratio is 

small, where n is the number of observations and p is the number of features; 3) the 

computation time increases in order of O(p2) for p-dimensionality of feature vectors; 

and 4) there are no guidelines for treating noise factors in the MD method. 

1.2 Research Scope and Objectives   

The use of a threshold MD that is either based on personal judgment or on an 

economic trade-off presents a challenge for the applicability of the MD-based 

diagnostic approach for a new system that has limited failure evidence. A 

probabilistic approach to define a threshold MD value when system faults are either 

unknown or known does not exist in the literature.  

A diagnostic approach would have wider applicability if it were capable of 

performing fault isolation in addition to fault detection. The fault isolation capability 
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enables identification of parameters that may have contributed to a fault. Until now, 

MD has not been used for fault isolation purposes.  

MD has been used to identify health degradation of a few systems. But the 

performance parameters of these systems were either monotonously increasing or 

decreasing. An MD-based approach for degradation identification of a system whose 

performance parameters do not exhibit a monotonous trend is not available.  

Until now, MD has not been utilized for any prognostic purposes. Enabling 

the use of MD to estimate failure probability and time to failure can increase the 

applicability of the MD approach to new application areas.  

The research goals are summarized in the following objectives: 

1. Develop a probabilistic approach to define a threshold MD 

a. to detect unknown faults, and 

b. to detect known faults. 

2. Develop an approach using MD to identify faulty parameters in order to 

perform fault isolation.  

3. Develop an approach using MD to detect system’s health degradation.  

4. Develop an approach using MD to estimate failure probability and time to 

failure.  

Objective 1 focuses on establishing a threshold MD value in order to classify 

a system as being healthy or unhealthy. A fault-specific threshold MD value is 

determined by minimizing an error function such that a product can be qualified 

against a specific known fault. A control chart for MD values is also constructed to 

detect trends and biasness in system health.  
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Objective 2 focuses on developing a method that enables fault isolation by 

identifying parameters that are associated with a fault. The distribution of residual 

MD values for each parameter is obtained, and a probabilistic range of each 

parameter’s contribution toward a healthy system’s MDs is estimated. These 

probabilistic ranges are used to identify parameters that are responsible for the 

anomalous behavior of a system. 

Objective 3 focuses on developing a methodology to detect a system’s health 

degradation. A moving window approach is utilized. In each assessment window a 

histogram of MD values is created to summarize the system’s performance. A health 

indicator, which is a weighted sum of a bin’s fractional contribution to the histogram, 

is calculated. As time progresses, new estimates of the health indicator are obtained 

and are compared with the degradation threshold value in order to detect degradation. 

Objective 4 focuses on defining and estimating prognostic measures for 

detecting anomalies in a system and predicting if and when the system will become 

faulty. The MDs are utilized as a time series signal and transformed into symbolic 

form so that a system’s behavior under different environmental and operational 

conditions can be represented using a hidden Markov model. This Markov model is 

then used to compute prognostic measures.  

1.3 Dissertation Overview 

The work is organized as follows. Chapter 2, which focuses on background 

literature, discusses different PHM approaches, previous studies based on 

Mahalanobis distance, and the mathematics involved in MD calculation. Chapter 3 

presents experimental details, data collection, and performance parameter 
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characterization. The collected data has been used as training data for case studies. 

Chapter 4 presents an approach for establishing a probabilistic threshold MD value in 

order to classify a system as being healthy or unhealthy. It also presents the creation 

of a control chart and an approach to establishing a fault specific threshold MD value.  

Chapter 5 presents an approach for isolating a fault by identifying parameters 

that are associated with that fault. Chapter 6 presents an approach for detecting 

degradation in a system’s health by means of a health indicator estimated by using 

MD values. Chapter 7 presents an approach for defining and estimating prognostic 

measures for detecting anomalies in a product and predicting if and when the product 

will become faulty. Finally, Chapter 8 lists the contributions of this thesis and 

possible future work. 
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Chapter 2: Literature Review 

2.1 Prognostics and Health Management 

Prognostics and health management is a combination of three concepts: 

enhanced diagnostics, prognostics, and health management. While a system performs 

its intended functions, enhanced diagnostics estimates the system’s health condition 

and provides a high degree of fault detection and fault isolation capability with a low 

false alarm rate. Prognostics involves the assessment of a system’s actual health 

condition followed by modeling fault progression, health degradation, performance 

prediction, and remaining useful life determination. Health management provides the 

capability to make intelligent, informed, and appropriate decisions about logistic 

actions based on diagnostics and prognostics information, available resources, and 

operational demand.  

Diagnostic techniques for a system are based on observational data taken from 

the system’s performance and its environment, while prognostic techniques are based 

on historical data, system knowledge, future usage, and future environmental 

conditions. Although the goals of diagnostics and prognostics are somewhat different, 

studying them separately is not practical. This is because prognostic methods are 

often built on the results of diagnostic methods. The following subsection provides a 

literature review of work related to electronic prognostics and Mahalanobis distance. 

The various models and algorithms for PHM are studied and can be grouped 

into four different categories based on available data type and system information:  

(1) statistical reliability–based approaches, (2) life cycle load–based approaches,  
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(3) state estimation–based approaches, and (4) feature extraction–based approaches. 

The following section presents the models and algorithms being used in PHM  

2.1.1 The Statistical Reliability–based Approach 

A statistical reliability–based PHM approach is appropriate for systems that 

have a sensor network that insufficiently monitors health conditions; that have a short 

life cycle with a low fault rate; are non-critical; and involve low risk. This approach 

assumes usage and environmental conditions have no effect and that knowledge of 

failure mechanisms is not required. This approach needs a system’s historical failure 

data and can be used for legacy systems, since failure and/or inspection data for 

legacy systems are often available in abundance to be used as input for statistical 

reliability models. However, for new products accelerated testing is required to obtain 

failure times. Accelerated testing may cause new or different failure modes to evolve 

under accelerated conditions.  

The Weibull distribution is the most appropriate statistical distribution for 

analyzing life data [23][24]. The lognormal distribution has also been used in many 

applications to analyze life data [24][25].  

Gebraeel [26] developed a degradation-modeling framework that combined 

reliability and degradation characteristics of a component’s population with real-time 

sensory information acquired through condition monitoring. A methodology was 

provided to compute and update residual life distributions of partially degraded 

components provided that the degradation model is in exponential form.  
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2.1.2 The Life Cycle Load–based Approach 

The life cycle environment of an electronic product consists of the assembly, 

storage, handling, and use of the product (application and operational loads), 

including the severity and duration of these conditions [27]. Various life cycle loads 

are due to environmental conditions such as temperature, humidity, pressure, 

vibration or shock, chemical environments, radiation, contaminants, and loads due to 

operating conditions such as current, voltage, and power. These loads may affect the 

reliability of the product either individually or in combinations with each other.  

Mathew et al. [28][29], presented remaining-life assessment of circuit cards 

inside the space shuttle solid rocket booster (SRB) based on vibration time history 

from the prelaunch stage to splashdown in conjunction with damage models. Vichare 

et al. [30][31], performed in-situ health monitoring of notebook computers and 

estimated the distributions of the load parameters, which were used to estimate 

damage accumulation and make a remaining life prediction. Tuchband et al. [32] 

utilized information of the life cycle loads of line replaceable units (LRUs) to 

estimate the readiness of LRUs to complete a mission. Zhang et al. [33] presented an 

enhanced prognostic model to predict the remaining useful life of electronic 

assemblies. The model utilizes environmental loads and in-situ performance 

measurements in conjunction with two baseline prediction algorithms: life 

consumption monitoring (LCM) and uncertainty adjusted prognostics (UAP).  

In the life cycle load–based approach, damage accumulation models for 

specific systems and components are formulated considering the usage profile (e.g., 

fatigue cycle as a function of operating conditions). Damage is often assumed to 
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accumulate at the same rate for a given stress level irrespective of the past, although 

experimental results have shown that damage can accumulate in a nonlinear manner 

[34]. As a result, many nonlinear damage theories have been proposed to account for 

the nonlinearity in damage accumulation. In general, Miner’s rule is recommended 

for its simplicity, versatility, and reasonable accuracy. 

2.1.3 The State Estimation–based Approach 

State estimation takes all the information collected by sensors and uses it to 

determine the underlying behavior of a system at any point in time. State estimation–

based techniques that can track the gradual degradation of systems can assist in 

providing intelligent control, detecting faults, and in predicting future faults. There 

are two parts to the state estimation techniques: modeling and training. The overall 

approach is to create a model and train the model with the data made available by the 

health monitoring of a system. Controls provided by an electronic system require 

reliable real-time estimation of its present state.  

Chinnam et al. [35] presented an approach based on the Hidden Markov 

Model (HMM) for autonomous diagnostics as well as prognostics. Camci et al. [36] 

used HMM for health-state forecasting.  

Pattern recognition algorithms, such as the multivariate state estimation 

technique (MSET) and sequential probability ratio test (SPRT), are used to identify 

signal degradation and provide a preliminary indicator of failure in servers. Lopez 

[37] used electronic prognostics consisting of a continuous system telemetry harness 

with SPRT and MSET algorithms for electronics prognostics. Urmanov et al. [38] 
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developed a failure precursor approach for early fault detection and fault prediction in 

computing servers.  

In the state estimation–based approach, by minimizing error between an 

estimate obtained from a model and measurement, future states can be predicted. The 

state estimation–based approach has been used successfully as a product maintenance 

strategy, but it has not been widely used for electronics prognostics. 

2.1.4 The Feature Extraction–based Approach 

Feature extraction–based PHM approaches derive features directly from 

routinely monitored systems’ operational data (e.g., calibration, power, vibration and 

acoustic signal, temperature, current, and voltage). These approaches assume that the 

data features are relatively constant unless a malfunctioning event occurs in the 

system. These approaches are based on the theory of pattern recognition and can be 

implemented at the system level or at the subsystem level. Generally, these 

techniques work for assessing system-level degradation, since a performance loss 

typically results from the improper functioning of multiple components and their 

interactions. These approaches require the availability of sensor information to assess 

the current health condition of a system or sub-system.  

Vichare et al. [31] monitored a time-load signal and processed it to extract the 

cyclic range (Δs), cyclic mean load (Smean), rate of change of load (ds/dt), and dwell 

time (tD). These outputs are used in fatigue damage accumulation models. Vichare et 

al. [39] suggested embedding the data reduction and load parameter extraction 

algorithms into a sensor module to reduce on-board storage space, lower power 

consumption, and provide uninterrupted data collection over longer durations.  
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Swanson [40] used data features to track system degradation and provide 

advance warning. Wu et al. [41] proposed an autoregressive integrated moving 

average (ARIMA) modeling and forecasting approach based on the Box-Jenkins 

model to predict the future health status of a machine. Urmanov [42] used an 

empirical model for remaining useful life prediction. Brown et al. [43][44][45] used a 

principle feature of a device to define a healthy profile under temperature cycling 

testing, and later used that profile for remaining useful life prediction. Sotiris et al. 

[46] used support vector machines and support vector regression to detect the health 

of multivariate systems based on training data representative of healthy operating 

conditions. 

Certain distance measures are used to classify a system into different groups. 

Some of the distance measures that have been used quite often are the Euclidean 

distance [47], the Mahalanobis distance, and the Bayesian distance [48]. Nearest 

neighbor algorithms are used to combine two closest groups in a new group and are 

based on distance measures. The Mahalanobis distance method and statistical pattern 

recognition have been applied in several areas as has been discussed earlier.  

2.2 Mahalanobis Distance 

Mahalanobis distance (MD) calculation was first developed to calculate 

distances between two groups in multivariate statistics (1936) [49]. In 2000 [9] and 

2001 [50], the Mahalanobis-Taguchi system was proposed, in which Taguchi’s design 

of experiment concept, orthogonal array, and signal-to-noise (S/N) ratio were used 

with the MD method to reduce the number of parameters to be used for MD 

computation. Thereafter, it has been used in various fields including medicine, 
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engineering, and economics. Some of the research works involving MD in the field of 

prognostics and health management are as follows. 

Nie et al. [51] found that the MD method was able to detect failures of the 

multilayer ceramic capacitors (MLCCs) in temperature-humidity-bias (THB) 

conditions.  

Srinivasan et al. [52] used MD to detect network intrusion and reduced the 

number of false alarms. The result was an improvement over conventional anomaly-

based intrusion detection systems. The approach was also capable in early detection 

of novel attacks. 

Musthpa et al. [53] used MD for damage detection in components of avionics. 

They successful detected damage 1 mm in size on these components unambiguously.  

Sohn et al. [54] developed an MD-based monitoring system that integrates 

hardware and software components to diagnose welded connections in a steel 

moment-resisting frame structure. This structure was susceptible to cracking during 

seismic loading and involved high cost for visual inspection of these joints. The MD 

of the potential outlier was checked against a threshold value, and the status of the 

structure was determined based on this comparison. They used a Monte Carlo method 

to determine the threshold value.  

Li et al. [55] proposed MD based hybrid contextual fire detection algorithm 

using airborne and satellite thermal images. The algorithm essentially treats fire 

pixels as anomalies in images. It utilizes the local background around a potential fire 

pixel in order to isolate the fire pixel. This approach improved accuracy up to 28% on 
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average for some of the images. In addition, they used MD to create fire probability 

images that were useful for fire propagation modeling.  

Aman et al. [56] proposed an MD-based model for detecting cost-prone 

classes in software development and maintenance. The model helped in improving 

the testing of object-oriented software programs that include a lot of sub-routines, 

components, reduced work force requirements, and correspond to other realistic 

restrictions.  

Sung et al. [21] used MD to consolidate multi-dimensional measured values 

such as discharge current, voltage, and luminance of a plasma display panel and 

converted them into a standard scale that was used to analyze measured data. It was 

found that the MD value was useful in evaluating the degree of degradation of the 

plasma display panel discharge cell.  

Chinnam et al. [22] studied the gradual degradation of a drill-bit during the 

drilling process. Two degradation signals, thrust force and torque, were used to 

analyze degradation. Ten features (five features per degradation signal) were used to 

obtain the Mahalanobis distance. These data features were obtained from the holes 

with “normal” degradation levels. Data from the last hole drilled prior to the tool 

breakage, representing “abnormal” degradation level, were used for the validation of 

the measurement scale. Subsequently, the useful features out of the ten under study 

were identified using orthogonal arrays and signal-to-noise ratios. A threshold value 

representing the 99th percentile of the MDs from the “normal group” showed 

significantly superior performance compared to any of the individual features studied. 
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MD has been widely used for classification purposes, such as Chinese 

characters [57], handwritten signatures [58], surface roughness [59], object 

trajectories [60], patterns in cluttered imagery [61], images [62], human emotions 

[63], and antenna radiation patterns [64].  

MD is also used in the manufacturing sector for manufacturing control 

systems [65], manufacturing process improvement [66], and quality control [50]. MD 

has also found applicability in service sectors where it is used for consumer vehicle 

ratings [67], for selectively displaying scenes from a sumo fight on a mobile phone 

[68], and for building benchmark tools to assess lean manufacturing processes [69]. 

Research conducted in the last couple of years are more focused on detection 

and classification problems. In a few cases MD has been used for system degradation 

identification when the objectives are targeted to a specific problem. The threshold 

value defined in every case is based on an expert’s judgment. The MD has not been 

explored for prognostic purposes.  

Mahalanobis Distance Calculation 

The Mahalanobis distance methodology distinguishes multivariable data 

groups by a univariate distance measure, which is calculated from the measurements 

of multiple parameters [9][70]. The MD value is calculated using the normalized 

value of performance parameters and their correlation coefficients, which is the 

reason for MD’s sensitivity.  

A dataset formed by measuring the performance parameters of a healthy 

product is used as training (or baseline) data in MD calculation. The collection of MD 

values for a healthy system is known as the Mahalanobis space. The performance 
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parameters collected from a product are denoted as Xi, where i = 1, 2, …, p. Here, p is 

the total number of performance parameters. The observation of the ith parameter, on 

the jth instance, is denoted by Xij, where i = 1, 2, …, p, and j = 1, 2, …, m; m is the 

total number of times an observation is made for all parameters. Thus, the (p × 1) 

data vector for the normal group is denoted by Xj, where j =1, 2, …, m. Each 

individual parameter in the data vector is normalized using the mean and the standard 

deviation of that parameter calculated from the baseline data. Thus, a parameter’s 

normalized values are: 
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Next, the values of the MDs are calculated for a healthy product: 
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Parameter Selection for Mahalanobis Distance Calculation 

Mahalanobis distance calculation uses the normalized value of parameters and 

the correlation between parameters. The normalization and the correlation coefficient 
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computation involve parameters’ mean (μ) and standard deviation (σ), which are 

measures of the variability or dispersion of a data set. Therefore, one should evaluate 

the mean and standard deviations and the correlation of parameters before 

considering a parameter for MD calculation.  

A system’s performance parameters can be qualitative and quantitative. 

Qualitative data is not expressed in terms of numbers, but rather by means of a natural 

language description, and this type of data is also referred to as categorical data. 

Taguchi and Jugulum have presented an approach for using qualitative data in MD 

[50].  Quantitative data is expressed in terms of numbers. These parameters can have 

measurements in different scales and units. Normalization of parameters removes 

these scaling and unit effects from the data. One should be careful during the 

computation of the parameter’s mean and standard deviations and correlation 

coefficients between parameters, because these values can corrupt the MD value. 

If a parameter is non-varying (i.e., σ = 0) then a parameter’s normalized value 

cannot be computed. At the same time, correlation between non-varying parameters 

and other parameters cannot be estimated. These two situations are undesirable for 

MD calculation, so only parameters that are varying (i.e., σ ≠ 0) should be considered. 

Also, a parameter that has very small variability (i.e., σ < #) should not be considered, 

as this variability may be due to measurement errors. A parameter that is non-varying 

provides no information about systems dynamic behavior and such a parameter could 

be used for other purposes such as to determine whether a system is operational or 

not.  

A parameter’s measurement can be a default value or a representation of the 
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system’s performance. Therefore, when analyzing a parameter measurement one 

should investigate for the parameter’s default value, if any. If a parameter’s default 

measurement is combined with a system’s performance measurement, the resulting 

parameter’s mean and standard deviations, and correlation coefficient could be 

misleading and may not reflect the true nature of system dynamics. If the difference 

between a default value and the smallest value of performance measurement is 

significantly higher than the difference between two consecutive values of 

performance measurements, the data set (i.e., population) can be grouped into two: 

one with a default value, where the number of parameters considered for MD 

calculation would be one less than total number of parameters considered otherwise, 

and other with all parameters, where number of parameters considered for MD 

calculation would be equal to the total number of parameters. A flow chart is 

presented (Figure 1) to explain the parameter selection procedure for MD calculation. 

The need to consider parameter analysis before MD calculation is illustrated by a few 

simulated case studies.  
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value parameter)
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N Y
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eliminate the variability 
caused by measurement error 

 

Figure 1: Selection of parameters (training/test data) for MD 
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Case I: A parameter is constant (i.e., σ = 0) 

Two parameters, x and y, are chosen, where y has a constant value and x varies 

linearly. Standard deviation for y is 0 and correlation coefficient between x and y 

cannot be computed. Therefore, Mahalanobis distance cannot be computed using 

parameter x and y since these parameters do not have correlation. 
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y 40 0 

x 17 3 
- 

Here y is equal to 40 and x 

varies from 12 to 21. 

Parameters x and y have no 

correlation. 

Case II: A parameter has one-step increment 

Two parameters x and y is chosen, where y has a step increment at 5th observation 

from 0 to 40 and x varies linearly. The parameter y can be treated as categorical 

parameter with level 1 (y = 0) and 2 (y = 40) and MD can be computed, or y can be 

treated as continuous parameter, or y can be considered as parameter that has a 

default value (=0). MD values do not vary by considering y parameter as categorical 

or continuous parameter because correlation coefficient remains same and parameters 

are normalized. But, parameter y has a default value and two data group is formed 

then MD can not be computed for either group. This highlights the need of parameter 

analysis before considering them for MD calculation.  
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one step and x from 12 to 21. 

MD values are as follows 

considering all 10 

observations for the training. 

Observation 1 2 3 4 5 6 7 8 9 10
MD  
(x, y: 1, 2) 1.4 0.7 0.5 0.7 1.4 1.4 0.7 0.5 0.7 1.4
MD  
(x, y: 0, 40) 1.4 0.7 0.5 0.7 1.4 1.4 0.7 0.5 0.7 1.4 

 

Case III: A parameter has more than one step increment  

Two parameters x and y are chosen, where y has a larger increment at the 2nd 

observation from 0 to 30 followed by smaller increments to 35 and 40, and x varies 

linearly. The parameter y can be treated as a categorical parameter with several levels 

one for each increment, or y can be treated as a continuous parameter, or y can be 

considered as a parameter that has a default value (=0). MD value varies by changing 

numeric values corresponding to each step. Considering y as a categorical parameter 

when y has multiple steps is not advisable, because a number of pseudo parameters 

will increase, which are equal to the number of levels considered for parameters 

minus 1. Also, consideration of multiple categorical levels reduces the effect of step 

size and becomes insensitive to values falling between step ranges. But, if an 

assumption is made that parameter y has a default value (=0), two data groups are 

formed.  When a parameter has multiple steps, considering steps that are closer for 

training improves the effectiveness of the MD method. This is illustrated by the MD 
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values for each observation considering two different training data. Although the first 

two observations are different from the rest of the observations, categorizing them 

into training reflects these observations are similar to the rest of the population, which 

is misleading. Considering that other observations are similar identifies these two 

observations as dissimilar, which is true, as can be observed from the data plot. 

Therefore, analyzing each parameter is important before considering them for MD 

calculations.     
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Training 1: observation 1 to 10 

Training 2: observation 3 to 10 

Here y varies from 0 to 30 in 

one step and is followed by 

smaller increments, x from 

12 to 21. MD values are 

calculated considering two 

training data set. 

 

Observation 1 2 3 4 5 6 7 8 9 10
MD  
(Training 1) 1.6 2 1.2 0.4 0.5 0.1 0.4 0.3 0.8 1.7
MD  
(Training 2) 125.8 140.6 1.1 1.3 0.5 0.1 1.5 0.5 0.6 1.8 
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Chapter 3: Experimental Details and Characterization of 

Performance Parameters 

 
Electronic products can be monitored by assessing their performance indices 

[30][39]. These indices from a pristine system can define the baseline performance of 

that system, and the baseline can be used later for identifying degradation or failures. 

Early detection of a problem based on baseline performance will allow preventative 

action to be taken in order to avoid problems.  

The definition of reliability warrants that a product must perform its intended 

functionality to be considered reliable under stated conditions. The functionality of a 

product can be assessed by monitoring its performance parameters. Building 

knowledge of the performance parameters’ variability is essential in order to make 

informed reliability decisions [71]. To perform prognostics for an electronic product 

it is necessary to develop an understanding of its performance under various usage 

and environmental conditions.  

In this characterization study, notebook computers, which are complex 

electronic products, were used to perform experiments under various environmental 

and usage conditions. Based on the suggested operating conditions of various 

notebook manufacturers, a range of environmental conditions was chosen for the 

experiment. Usage conditions were decided based on a report by the U.S. Department 

of Commerce [72]. A combination of usage conditions was not considered in this 

work, because there was the assumption that a user does not often use certain types of 
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applications concurrently. For example, a user would not open Word and Excel files 

simultaneously. A user generally only accesses one software application at a time.  

A flow chart for establishing a baseline is shown in Figure 2. The baseline 

establishing procedure starts with functional evaluations of a product under 

consideration. This evaluation process helps to identify the critical components to be 

monitored, germane performance parameters, and expected outcomes after 

considering usage conditions, feasibility and limitations, and economic variability. In 

the data acquisition process a product’s performance is monitored using built-in, 

embedded, or external sensors and stored after performing data cleaning. In this work, 

performance parameters are monitored and recorded using data collection software. 

Correlation between parameters is obtained to study the influence of parameters on 

one another. Such correlation also serves as a pointer for parameter selection during 

empirical equation development. In the statistical measurement step, a performance 

parameter’s features including mean, standard deviation, distance measures, Eigen 

values, and other metrics that are extracted to represent a product’s health. The 

variability of each performance parameter is addressed by establishing an empirical 

relationship between the performance parameters. These equations along with the 

statistical measures are used to establish the baseline performance of the parameters. 

The baseline can be used to detect system’s deviation from normal operation and for 

determining prognostic distance.   
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Figure 2: Baseline construction flow chart 

3.1 Data Collection Software 

For this experiment, software was developed to collect real-time performance 

parameter information from the notebook computers without any user intervention. 

The software was coded in C++ programming language. The software interacted with 

the computers’ basic input-output system (BIOS) to retrieve performance parameter 

information. It periodically wrote this information in log files (.txt format). These 

performance data were grouped into three categories, as shown in Table 1. The 

software also collected the notebook computers’ hardware information, which 

included each computer’s service tag, model number, BIOS version, maximum 

central processing unit (CPU) speed, video controller, size of the hard drive, hard 

drive make/model number, and size of the system’s random access memory (RAM). 

The computer’s mechanical usage information records how many times a button/key 

was pressed, an optical disk drive (ODD) was swapped, a battery was inserted and/or 



 

 28 
 

removed, and when docking has occurred. Mechanical usage information was 

obtained every five minutes. 

Table 1: Parameters Monitored in Notebook Computers 

Parameter Unit Frequency 

1. Device Information   

Battery’s relative state of charge 

(RSOC) 
% 1 min 

Battery current mA 1 min 

Battery voltage mV 1 min 

Fan speed RPM 1 min 

LCD brightness % 1 min 

2. Thermal information   

CPU temperature °C 30 sec 

Videocard (i.e., graphic processing 

unit) temperature 
°C 30 sec 

Motherboard temperature °C 30 sec 

3. Performance management 

information 
  

CPU power state, C1/C2/C3 state % 5 sec 

CPU usage % 5 sec 

CPU throttling % 5 sec 

Memory usage capacity pages per sec 5 min 
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A CPU’s performance management information includes its power saving 

states (C1, C2, and C3), CPU usage, and CPU throttling. C1, C2, and C3 are 

processor power states, commonly known as the power saving states [73]. These 

states are the processor’s sleeping state, where the processor consumes less power 

and dissipates less heat than in its active state. They represent the percentage time a 

processor spends in the low-power idle state (i.e., C1, C2, and C3 are a subset of the 

processor’s total idle time). In the C1 power state, the processor is able to maintain 

the context of the system caches and has its lowest exit latency. The C2 power state 

has lower power and higher exit latency than the C1 power state. In the C2 power 

state, the processor is able to maintain the context of the computer’s caches. The C3 

power state offers improved power savings and higher exit latency over the C1 and 

C2 states. In the C3 power state, the processor is unable to maintain the coherency of 

its caches. CPU usage is a measure of how much time the CPU spends on a user’s 

applications and high-level Windows functions, and it is measured in terms of 

percentage (%CPU). CPU throttling is a feature that adjusts CPU speed in run-time. 

CPU throttling sets the maximum CPU percentage to be used by any process or 

service, thereby ensuring that no process can consume all of the CPU’s resources at 

the expense of other users or processes. Often, CPU throttling is performed to 

accommodate an excessive work request and to manage CPU temperature. The 

memory usage capacity, measured in pages per second, is the number of requested 

pages needed to run applications that were not available in the random access 

memory (RAM) and that had to be read from or written to the hard disk to make room 

in the RAM for other pages.  
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3.2 Experimental Setup 

Experiments were performed on ten identical notebook computers 

representative of the 2007 state of the art in notebook computer performance and 

battery life (nearly 3.5 hrs on a single battery). The computers were exposed to a set 

of environmental and usage conditions representative of the normal life cycle profile 

and likely extremes. The performance parameters were monitored in situ during the 

experiment. Operational temperatures for most notebook computers are in the range 

of 5°C to 45°C; this experiment was conducted in the temperature range of 5°C to 

50°C. For the experiment, six different environmental conditions were tested (see 

Table 2)  

The duration for each test was based on the type of power applied. When a 

computer was powered by an AC adapter (when the battery was fully charged), the 

test duration was 3.5 hrs. When a computer was powered by an AC adapter (when the 

battery was fully discharged), the test duration was determined by the time it took for 

the battery to fully charge. When the battery alone powered the laptop, the test 

duration was determined by the time it took for the battery to fully discharge. Tests 

were conducted in a temperature-humidity chamber and in an ambient room 

environment. 

For each temperature/humidity combination, four usage conditions and three 

power supply conditions were applied. Factorial experiments were designed to study 

the effect of each factor on the response variable, as well as the effects of interactions 

between factors. Table 3 lists all 72 experiments. Each computer was powered on for 
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30 min before starting each experiment, and the computers were kept at room 

temperature between each test.  

Table 2: Environmental Conditions 

Temperature-Humidity 

E1. 5ºC with uncontrolled RH 

E2. 25ºC with 55% RH 

E3. 25ºC with 93% RH 

E4. 50ºC with 20% RH 

E5. 50ºC with 55% RH 

E6. 50ºC with 93% RH 

 

Table 3: Experiments Performed 

Power Setting Usage Level
Environmental 

Condition 

AC adapter 

(when battery is fully charged) 
U1 – U4 E1 – E6 

AC adapter 

(when battery is initially fully 

discharged) 

U1 – U4 E1 – E6 

Battery only U1 – U4 E1 – E6 

A set of software for the experiments was installed on the computers, along 

with Windows XP Professional operating system, Microsoft Office, Front Page, 
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WinRunner, Spybot, Winamp, Real Player, Visual Studio, Java 5, Minitab, iTunes, 

Adobe Photoshop, MATLAB, Winzip, and McAfee Antivirus. A script file was 

written using WinRunner software to simulate user activity. The antivirus application 

McAfee v8.0 was configured to run on the laptops all of the time. 

The same environmental and usage conditions were applied to each of the ten 

computers to achieve time synchronization between the computers and the software 

application responses. Each notebook’s power mode was always set to ON. The 

screen saver and hibernation options were disabled to prevent these functions from 

occurring during the experiment. The wireless capability of the computer was 

disabled due to the limited wireless connectivity inside the temperature-humidity 

chambers. Four levels (U1, U2, U3, and U4) of computer usage were chosen: 

1. Idle system (U1) - In this category the operating system was loaded, all windows 

were closed, and user input from the keyboard or mouse and the optical drive was 

disabled. USB and Firewire peripherals were not attached.  

2. Office productivity (U2) - This usage condition was designed to simulate an 

office environment. The simulator read a Word document and prepared a new 

Word document. The simulator opened the file explorer and located a file to be 

opened. It opened a “technology benchmark report” Word document of 88 pages. 

The simulator read the document, using the arrow keys to page up and page down, 

and selected a paragraph to copy. The simulator opened a new document from the 

Word toolbar and pasted the copied section into a new document. The simulator 

resized both documents to toggle between them. It switched to the original 

document, read pages, copied additional paragraphs, and pasted them into the new 
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document. The simulator also typed a new paragraph into the new document. 

With these activities, the simulator created a five-page document and saved it. 

Then it saved the file by invoking the “save as file” explorer and providing a file 

name for the new document. The simulator performed a cleanup by resizing and 

closing all of the opened documents. It then removed the new files from the 

desktop and pasted them into another folder. Finally, the simulator closed all of 

the opened file explorer windows.  

3. Media center (U3) – This usage condition was designed to simulate entertainment 

conditions. The Winamp (v5.24) media player was started from the start menu. 

The file explorer window was opened in Winamp. MP3 music files were stored 

on the hard drive and selected to play in Winamp. The music was stopped after 4 

min, then the Winamp player window was shut down. The Real media player 

(v10.5) was started from the start menu. The file explorer window was opened to 

select video files in Real player. Video files from a DVD were selected by 

maneuvering through the file explorer window and then played in Real player. 

Movie screens were resized to full screen. The movie was turned off after 90 min 

and Real player was closed. 

4. Game mode (U4) – In this category, the usage condition was designed to simulate 

gaming. Quake Arena II was started from the start menu and the single player 

option was selected to start the game. After an hour of play, the game was stopped 

and exited.  
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3.3 Data Collection and Analysis Procedure 

For each set of test conditions, a time log was maintained. Data were 

continuously collected in each notebook computer and stored in a separate database. 

A set of statistical metrics—including the mean, the median, the mode, the standard 

deviation, the minimum, the maximum, the kurtosis, the skewness, and the 95% 

confidence interval—were calculated for each parameter for each set of experiments, 

with their corresponding environmental, usage, and power-setting conditions. 

Kurtosis and skewness were used to determine the normality of each dataset The 

mean values of the performance parameters were used to calculate the Pearson 

correlation coefficient.  

3.4 Baseline of Performance Parameters 

To create a baseline of system performance, each performance parameter was 

analyzed. Analysis of the performance parameters revealed that they did not 

necessarily follow any parametric distribution over the range of experiments. 

Environmental factors such as temperature, humidity, and applications (software) 

running on the system have a significant influence on the performance parameters. 

Therefore, non-parametric methods such as histograms, kernels, orthogonal series 

estimation, or the nearest neighbor method must be used to estimate the probability 

density function. Histograms and kernel density were used for this study.  

Different power supply sources (battery, AC adapter) had no apparent effect 

on the performance parameters of the computer, which is discussed later in section 6. 

To produce histograms for performance parameters, calculate statistics, estimate 
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correlation coefficients, and derive empirical equations, data was collected from a 

sample set of 10 computers, which were powered by AC adapters (when the batteries 

were fully charged) and operated under all four usage conditions (U1 – U4). The 

correlation coefficient between parameters expresses the strength and direction of a 

linear relationship between parameters. The correlation coefficients between 

performance parameters are given in Table 4 and Table 5. In the tables, only 

significantly correlated (p-value less than 0.05) parameters, and the corresponding 

correlation coefficients between those parameters are given. Table 4 shows 

parameters related to the battery performance of the notebook computers, and Table 5 

contains parameters related to computer performance.  

An empirical equation for each parameter was given in order to calculate the 

expected values of the parameters. To construct an empirical equation for each 

performance parameter, the correlated performance parameters, which describe the 

most variable of the dependent parameters, were considered. Abbreviations used for 

the different parameters are given in Table 6. 

Table 4: Correlation Coefficients for Battery Performance Parameters 

 Power source Battery life RSOC Current Voltage %C2 state

Power source 1 -0.49 -0.75 0.58 -0.27 - 

Battery life -0.49 1 0.51 -0.88 0.63 0.26 

RSOC -0.75 0.51 1 -0.56 0.75 - 

Current 0.58 -0.88 -0.56 1 -0.62 - 

Voltage -0.27 0.63 0.75 -0.62 1 - 

%C2 state - 0.26 - - - 1 
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Table 5: Correlation Coefficients for Notebook Performance Parameters 

 
Fan 

speed 

CPU 

temp

Motherboard 

temp 

Videocard 

temp 

%C2 

state

%C3 

state

%CPU 

usage 

%CPU 

throttle

Ambient temp 0.92 0.74 0.96 0.67 0.35 -0.63 0.52 0.43 

Ambient 

humidity 
0.25 0.26 0.34 0.23 - - - - 

Usage level - 0.36 - 0.44  -0.62 0.74 -0.48 

Fan speed 1 0.78 0.95 0.77 0.48 -0.75 0.61 0.22 

CPU  temp 0.78 1 0.86 0.98 0.60 -0.81 0.66 -0.22 

Motherboard 

temp 
0.95 0.86 1 0.81 0.45 -0.70 0.56 0.23 

Videocard 

temp 
0.77 0.98 0.81 1 0.61 -0.85 0.70 -0.33 

%C2 state 0.48 0.60 0.45 0.61 1 -0.46 - -0.30 

%C3 state -0.75 -0.81 -0.70 -0.85 -0.46 1 -0.93 0.20 

%CPU usage 0.61 0.66 0.56 0.70 - -0.93 1 - 

%CPU throttle 0.22 -0.22 0.23 -0.33 -0.30 0.20 - 1 

Table 6: Abbreviations Used for Performance Parameters 

CT = CPU temperature C3 = % C3 state 

MT = Motherboard temperature C2 = % C2 state 

VT = Video card temperature T = Ambient temperature 

FS = Fan speed H = Ambient humidity 

CPU = % CPU usage CTh = % CPU throttle 
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3.4.1 CPU Temperature 

A histogram for the CPU temperature is presented in Figure 3. Although the 

computer was ON, the CPU temperature in a few instances was observed to be below 

room temperature. This was attributed to the ambient temperature. It was verified by 

the minimum temperature mentioned in the column of the 5°C test condition of Table 

7. Means, standard deviations, and the range of CPU temperatures in different 

ambient temperature conditions are given in Table 7. An empirical equation for the 

CPU temperature as a function of fan speed, motherboard temperature, and video card 

temperature is  

CT = -21.6 – 0.0025*FS +0.44*MT+0.87*VT    (5)  
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Figure 3: Frequency chart for CPU temperature 
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Figure 4: Probability density of residual CPU temperature for healthy product 

A histogram of residuals obtained from estimated and observed CPU 

temperature is presented in Figure 4. Approximately 94% of the variation in CPU 

temperature is represented by the probability density function of residual data. This 

suggests that the regression equations can be used for the purpose of comparison, but 

cannot be relied upon completely. Similar observations were made for other 

performance parameters as well. 

Table 7: Statistics for CPU Temperature 

 All data points 5°C 25°C 50°C 

Mean 

Std Dev 

46.7 

12.7 

29.6 

5.0 

43.3 

4.1 

54.8 

3.5 

Minimum 

Maximum 

9.0 

70.0 

9.0 

70.0 

22.0 

70.0 

29.0 

70.0 
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3.4.2 Motherboard Temperature 

A histogram for the motherboard temperature is presented in Figure 5. Means, 

standard deviations, and the range of motherboard temperatures in different ambient 

temperature conditions are shown in Table 8. An empirical equation for the 

motherboard temperature as a function of ambient temperature, fan speed, CPU states 

C2 and C3, and CPU temperature is  

MT= 9.59 + 0.22*T + 0.005*FS + 0.53*CT - 0.22*C2 + 0.10*C3  (6) 
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Figure 5: Frequency chart for motherboard temperature 

Table 8: Statistics for Motherboard Temperature 

 All Data Points 5°C 25°C 50°C 

Mean 

Std Dev 

56.8 

13.1 

32.7 

5.2 

53.0 

3.2 

67.4 

1.9 

Minimum 

Maximum 

25.0 

74.0 

25.0 

52.0 

28.0 

62.0 

35.0 

74.0 
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3.4.3 Videocard Temperature 

A histogram for the video card temperature is presented in Figure 6. Means, 

standard deviations, and the range of videocard temperatures in different ambient 

temperature conditions are shown in Table 9. An empirical equation for videocard 

temperature as a function of CPU state C3, CPU temperature, and CPU throttles is 

VT = 24.6 + 0.81*CT - 0.06*C3 - 0.08*CTh      (7) 

0

5

10

15

20

25

30

25 30 35 40 45 50 55 60 65 70 75 80 85

Temperature (°C)

%
 F

re
qu

en
cy

0

5

10

15

20

25

30

25 30 35 40 45 50 55 60 65 70 75 80 85

Temperature (°C)

%
 F

re
qu

en
cy

 

Figure 6: Frequency chart for videocard temperature 

Table 9: Statistics for Video Card Temperature 

 All Data Points 5°C 25°C 50°C 

Mean  

Std Dev    

57.0 

12.1 

42.0 

19.0 

53.9 

8.8 

66.1 

2.4 

Minimum 

Maximum 

26.0 

83.0 

26.0 

76.0 

35.0 

80.0 

41.0 

83.0 
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3.4.4 Fan Speed 

A histogram for fan speed is presented in Figure 7. Fan speed is a parameter 

that increases and decreases in steps. Fan speed predominantly depends on 

motherboard temperature but is fine-tuned based on CPU temperature. Fan speed is 

categorized and shown in Table 10. An empirical equation for fan speed as a function 

of ambient temperature, CPU temperature, motherboard temperature, percentage CPU 

usage, CPU state C3, and CPU throttle is  

Fan speed  

= 0          when T < 25°C 

= 1506+26.2*T - 81.4*CT + 113*MT - 10.9*CPU -19.5*C3-25.8*CTh  

 when T ≥ 25°C      (8) 
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Figure 7: Frequency chart for fan speed 

Fan speed can be grouped into four categories based on motherboard 

temperature, and is given in Table 10.  In each category, the startup fan speed 

depends on the CPU temperature.  



 

 42 
 

Table 10: Fan Speed Characterization 

Category 
Motherboard 

temperature (°C) 

Fan speed 

(RPM) 

CPU temperature 

(°C) 

Sub-speed

in group 

 min max min max min max  

1 15 50 0 0 7 64 NA 

2 51 55 2422 2561 33 63 12 

3 56 58 2859 3463 41 62 12 

4 59 72 3903 4031 41 64 3 

3.4.5 C2 State 

A histogram for the CPU state (C2) is presented in Figure 8. Means, standard 

deviations, and the range of the CPU state C2 in different ambient temperature 

conditions are shown in Table 11. An empirical equation for CPU state C2 as a 

function of ambient temperature, fan speed, CPU state C3, CPU temperature, 

motherboard temperature, and videocard temperature is  

C2 = 0.52*T + 0.01*FS + 0.97*CT - 2.56*MT + 0.72*VT + 0.35*C3  (9)  

Table 11: Statistics for CPU State 2 (C2) 

 All Data Points 5°C 25°C 50°C 

Mean 

Std Dev 

7.5 

6.1 

4.6 

7.3 

6.1 

5.8 

9.3 

5.8 

Minimum 

Maximum 

0 

62 

0 

59 

0 

62 

0 

57 
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Figure 8: Frequency chart for C2 state 

3.4.6 C3 State 

A histogram for the CPU state (C3) is presented in Figure 9. Means, standard 

deviations, and the range of CPU states, C3, in different ambient temperature 

conditions are shown in Table 12. An empirical equation for the CPU state C3 as a 

function of ambient temperature, fan speed, CPU state C2, CPU usage, CPU throttle, 

motherboard temperature, and videocard temperature is  

C3 = 109 - 0.007*FS + 1.15*MT - 1.09*VT - 1.34*C2 - 0.83*CPU - 0.34*CTh    (10) 



 

 44 
 

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

% time in C3 state

%
 F

re
qu

en
cy

≤
0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90 100

% time in C3 state

%
 F

re
qu

en
cy

≤

 

Figure 9: Frequency chart for C3 state 

Table 12: Statistics for CPU State 3 (C3) 

 All Data Points 5°C 25°C 50°C 

Mean 

Std Dev 

47.3 

32.8 

72.5 

35.2 

65.6 

33.4 

26.7 

16.4 

Minimum 

Maximum 

0 

100 

0 

99 

0 

100 

0 

99 

3.4.7 CPU Usage 

A histogram for the CPU usage is presented in Figure 10. Means, standard 

deviations, and the range of percentage CPU usage in different ambient temperature 

conditions are shown in Table 13. An empirical equation for the percentage CPU 

usage as a function of the CPU states C2 and C3 and CPU throttle is  

%CPU usage = 96.2 - 2.09*C2 - 0.94*C3 - 0.15*CTh  (11) 
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Figure 10: Frequency chart for CPU usage 

Table 13: Statistics for Percentage CPU Usage 

 All Data Points 5°C 25°C 50°C 

Mean 

Std Dev 

31.2 

28.7 

14.2 

22.2 

17.8 

22.5 

45.8 

28.3 

Minimum 

Maximum 

0 

100 

0 

100 

0 

100 

0 

100 

3.4.8 Usage Level 

The usage level for a notebook computer did not show a strong linear 

relationship with any individual performance parameter, but showed a weak 

correlation with several parameters. Therefore, for usage level a non-linear empirical 

relationship was defined as a function of various performance parameters. It was also 

found that the usage load on the computer could not be established by just knowing 

the name of the application running on the system. Characterization of the usage level 

is based on ambient temperature, humidity, and CPU parameters such as CPU states 
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C2 and C3, CPU usage, and CPU throttle. Approximately 94% of the variation in 

usage level is represented by the probability density function of residual data. A 

normality plot of the residual of the usage level is shown in Figure 11, which shows 

that the residuals were following normal distribution. Usage level for this study was 

discretized into four values, and the estimated value was rounded to the nearest 

integer value for comparisons. The empirical equation for the usage level is non-

linear in nature and can be expressed as  

Usage Level = 8.65 - 0.006*H + T*(0.17 + 0.0004*C2*C3 - 0.0004*C2*CPU - 

0.0014*C2*CTh -  0.0001*C3*CPU) – T2*(0.005 - 0.0001*CPU - 0.00002*C2*CTh) 

– CPU*(0.319 - 0.034*C2 + 0.0012*C22- 0.0001*C32 - 0.00002*C3*CPU) + 

C22*(0.0200 - 0.0015*C3 + 0.002*CTh) - 0.0009*C32        (12) 
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Figure 11: Residual plot of usage level 
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3.5 Influence of Environmental, Usage and Power Setting on % CPU 

Usage 

A system’s performance parameters will often respond uniquely to 

environmental factors. Analysis was performed on the experimental data to determine 

the effects of different environmental and usage conditions on performance 

characteristics. Total CPU usage is a measure of how much time the CPU spends on 

user applications and high-level operating system (Windows) functions. Even when 

the CPU usage is 0% the CPU is still performing basic system tasks, like responding 

to mouse movements and keyboard input. The total CPU usage measures the amount 

of time the CPU spends on all tasks, including Windows. This is very useful when 

evaluating system performance problems based on a specific program. %CPU usage 

in this study was measured by the operating system, and collected by monitoring 

software.  

The notebook computers were powered by any one of the three possible 

power supply methods: AC adapter - while battery was fully charged, battery, and AC 

adapter - while battery was initially discharged. To neutralize the effect of different 

environmental and usage conditions, data from all of these conditions were 

considered together to observe the effect of the power source. Variations in average 

CPU usage among different power states were not more than 3% and fell within one 

standard deviation for each power state. The mean and one standard deviation are 

plotted in Figure 12. The figure shows that average CPU usage (%) did not depend on 

the power source of the computer, although the spread in CPU usage (%) in the AC 

adapter condition was greater. To capture more variability in the performance 
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parameters, the data corresponding to the AC adapter power setting conditions were 

analyzed.  
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Figure 12: Variability of %CPU usage with different power source 

The change in CPU usage with different usage/load conditions at room 

temperature is shown in Figure 13. Figure 14 shows the variability in CPU usage by 

metric mean and standard deviation as a function of the usage level in the entire range 

of environmental conditions. This validated the assumption that it is necessary to 

have different usage/load conditions to baseline the health of a product.  
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Figure 13: Variability in %CPU usage with different use conditions at room 

temperature 
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Figure 14: Variability of %CPU usage with different usage levels 

Figure 15 shows the CPU usage metric mean and standard deviation as a 

function of different environmental conditions. Similarly, this validated the 

assumption that it was necessary to have different environmental conditions to 

baseline the health of a product. Again, because the spread was larger for certain 

usage conditions, it may be possible to select conditions preferable to baseline healthy 

conditions.  
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Figure 15: Variability of %CPU usage with different environmental conditions 

The combined effects of different usage levels under various environmental 

conditions on percentage CPU usage are presented in Figure 16. Use level 4 differs 

significantly from the other usage levels, regardless of environmental conditions. 
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Except for high temperature and humidity conditions, all of the use conditions show 

results very close to each other. This study found that it is possible to use 

50oC/20%RH as a baseline for the CPU usage test to cover the full range of 

environmental and usage conditions of the notebook computer.  
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Figure 16: Percentage CPU usage in different ranges 

Based on the characterization and behavior of each performance parameter 

under various environmental and usage conditions, system diagnostics can be 

performed using univariate techniques, such as time series, or by a go/no-go decision 

based on the differences in the parameters or by using a multivariate distance–based 

approach, such as the Mahalanobis distance method. The multivariate approach 

mentioned above considers the correlation of parameters and transforms the 

multivariate problem into a univariate problem, which is easier to interpret for 

decision-making and prognostic purposes. For system prognostics, multivariate 

methods in conjunction with the time series technique can be used. 



 

 51 
 

3.6 Summary and Conclusions 

This chapter outlines an approach to baseline a commercial electronics 

product by considering an electronic product’s life-cycle profile. This approach could 

be applied to any system and emphasizes utilizing embedded sensors. It also 

highlights the need to understand the correlation between and the variability of 

performance parameters. 

To assess environmental and usage conditions associated with electronic 

products for prognostics, automated program scripts were written to perform typical 

user activities. These scripts also provided an opportunity to expose all of the 

computers to a similar workload during the experiment. These scripts reduced the 

uncertainty that could have arisen due to variations in user activity. The user activity 

was simulated by defining different usage levels.  

The experiments were designed to evaluate variations and trends as well as 

determine the greatest value a parameter can attain in various usage and 

environmental conditions. The variability of performance parameters was defined 

using an empirical relationship as a function of other performance parameters. 

In this study, no external sensors were used in order to avoid any possibility of 

electromagnetic interference, electrostatic discharge, and change in the failure 

mechanism. Software was built to collect data from the system BIOS, where 

information from different embedded sensors was collected. This software interfered 

minimally with system performance.  

Analysis of the experimental data revealed that several computer performance 

parameters were significantly correlated. However, the battery performance 
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parameters were not significantly correlated to notebook computer performance 

parameters except the C2 state parameter. This made sense because one would expect 

longer battery life if the CPU operated in the power saving mode. Various 

performance parameters were dependent on the ambient temperature, humidity, and 

product usage. The performance parameters were multi-modal in nature, and a 

parametric method could not be used for density estimation of performance 

parameters over the entire range of the experiment. The presence of multiple modes 

was also observed in performance parameters of an electronic assembly [7]. One 

should analyse the data before assuming a certain probability density function for the 

component or system for the entire range of applications in various environments. 

Non-parametric methods, such as histograms, kernels, orthogonal series estimation, 

and the nearest neighbour method, can be used to estimate the probability density 

function for multi-modal data.  

A linear empirical model for each performance parameter is defined in the 

paper. These empirical models construct a simple formula that will predict what value 

will occur for a parameter of interest when other related parameters take given values. 

This relationship can assist in system diagnostics, because a probability density 

function of the residuals (i.e., the differences between expected and observed 

parameters) obtained for a healthy product can be used for comparison. The 

probabilistic estimate of deviation from healthy condition of a product would give an 

indication of the severity of an abnormality. The baseline approach that provides the 

ability to estimate deviation also sets a platform for performing prognostics.  
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Using empirical equation developed in the paper can provide estimated value 

of parameters and parameters’ residual value can be obtained by taking difference 

between the estimated and the observed value. A time-series of parameters’ residual 

can be formed by associating time information to these residuals. A complete history 

on a system’s health can be built by collecting information on systems operation in its 

entire life cycle. For real-time prognostic assessment, a Markov state model from the 

various states of a system health can be developed.  

In this study, notebook computers were chosen as representatives of complex 

electronic products. This approach has more significance for a product or system that 

does not go through hardware changes due to mission criticality and cost, such as 

satellites and aircraft. For a product that has many variants because of using similar 

components with different capacities, a new baseline should be established. However, 

the analysis of data collected on the variants of a product after subjecting it to a set of 

experiments may provide a scaling factor for each parameter of interest. These 

scaling factors can be used for defining baseline of other variants of a product instead 

of running the entire suite of experiments. 
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Chapter 4: Fault Identification Approach 

Quantification of degradation and fault progression in an electronic system is 

difficult since not all faults necessarily lead to system failure or functionality loss 

[1][2]. In addition, there is a significant lack of knowledge about failure precursors in 

electronics [6]. With limited failure precursors and complex architecture, it is 

generally hard to implement a health monitoring system that can directly monitor all 

the conditions in which fault incubation occurs.  

The health of a system is a state of complete physical, structural, and 

functional well-being and not merely conformance to the system’s specifications. A 

health assessment of electronic products can be performed at the product level, at the 

assembly level, or at the component level [74]. The health assessment procedure 

should also consider various environmental and usage conditions in which a product 

is likely to be used.  

The built-in test (BIT) and self-test abilities in a system were early attempts at 

providing diagnostic capabilities incorporated into a system’s own structure. Gao and 

Suryavanshi have catalogued applications of BIT in many industries including 

semiconductor production, manufacturing, aerospace, and transportation [7]. BIT 

system applicability is limited to the failure definition embedded at the system’s 

manufacturing stage, whereas with developments in sensor and data analysis 

capabilities, the development and implementation of data-driven diagnostic systems 

that can adapt to new failure definitions are now possible.  

Today, a product’s health can be assessed in many ways, including by 

monitoring changes in its performance parameters, which are used to characterize a 
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system’s performance; by monitoring canaries (structures that have equivalent 

circuitry but are calibrated to fail at a faster rate than the actual product); and by 

estimating accumulated damage based on physics-of-failure modelling [75]. 

Performance parameter analysis uncovers the interactions between performance 

parameters and the influence of environmental and operational conditions on these 

parameters. In the absence of fault-indicating parameters, health assessment can be 

performed by combining 1) damage estimate information obtained from physics-

based models that utilize data from environmental and operating conditions, and 2) 

failure precursor information extracted from data-driven models [76]. A product’s 

historical data on intermittent failures (i.e., failures that cannot be reproduced in a 

laboratory environment [77]) should be included in a product’s health assessment. 

Sun Microsystems developed the Continuous System Telemetry Harness 

(CSTH) for collecting, conditioning, synchronizing, and storing computer systems’ 

telemetry signals [78]. The Multivariate State Estimation Technique (MSET) 

provides an estimate of each parameter, and these estimates are later used for 

decision-making using the Sequential Probability Ratio Test (SPRT) and hypothesis 

testing. The Mahalanobis Distance (MD) approach considered in this chapter is a 

distance measure in multi-dimensional space that considers correlations among 

parameters [9]. The use of the MD approach over the MSET will reduce the 

analytical burden, because the MD approach provides a number for a system’s health 

determination after combining information on all performance parameters, whereas 

MSET provides an estimate for each parameter and needs analytical assessment of 

each parameter for a system’s health determination.  
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Other distance-based approaches that have been used for diagnostics and 

classification include Manhattan distance, Euclidean distance, Hamming distance, 

Hotelling T-square, and square prediction error. Manhattan distance is the distance 

between two points measured along axes at right angles. It has been used to classify 

text via the N-gram approach [79]. Euclidean distance is the straight-line distance 

between two points and can be calculated as the sum of the squares of the differences 

between two points. The Hotelling T-square and square prediction error are used in 

principal component analysis for representing statistical indices [80]. The Hotelling 

T-square is a measure that accounts for the covariance structure of a multivariate 

normal distribution and is computed in reduced model space, which is defined by a 

few principal components (i.e., the number of principal components used is less than 

the number of original parameters) [81]. The squared prediction error (SPE) index is a 

measure that is computed in the residual space that is not explained by the model 

space [82]. 

The Manhattan distance, Euclidean distance, and Hamming distance do not 

use correlation among parameters and suffer from a scaling effect, in contrast to 

Mahalanobis distance. The scaling effect describes a situation where the variability of 

one parameter masks the variability of another parameter, and it happens when the 

measurement ranges or scales of two parameters are different [10]. In order to remove 

the scaling effect (i.e., eliminate the influence of measurement units) the data should 

be normalized. The Hotelling T-square and the square prediction error indices are 

calculated in reduced dimensions (i.e., information loss) and use covariance as 

opposed to a correlation matrix, which is one reason to consider using MD for fault 
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diagnosis. MD calculation uses the normalized values of measured parameters, which 

eliminates the problem of scaling. MD also uses correlation among parameters, which 

makes it sensitive to inter-parameter “health” changes. For example, consider a set of 

multi-parameter points that are equidistant (i.e., estimated by Euclidean distance) 

from a sphere around a location. This location is defined by the arithmetic mean of 

those points in multi-dimension space. The Mahalanobis distance stretches this sphere 

to even off the respective scales of the different dimensions and account for the 

correlation among the parameters.  

The performance data of some electronic systems are multi-dimensional, such 

as multi-functional radio-frequency communication devices, infrared imaging 

cameras, and hybrid silicon complementary metal oxide semiconductor (CMOS) 

circuits [83]. While a high-dimensional dataset contains a lot of valuable information, 

one-dimensional measures are easier to comprehend and can be computed in quick 

succession.  

Consideration of correlations among performance parameters is advantageous 

as an electronic product experiences diverse environmental and uses conditions. For 

example, the capacitance and insulation resistance of a capacitor vary with changes in 

ambient temperature. The effectiveness of a diagnostic procedure increases by 

incorporating the change in relationship among performance parameters. This is 

because each performance parameter changes at a different rate with changes in 

ambient conditions.  

In an MD-based diagnostic approach, a healthy baseline and a threshold MD 

value are needed to classify a product as healthy or unhealthy. In the MD-based 



 

 58 
 

diagnostic approach, traditional methods to define a threshold MD value are either 

based on personal judgment or traded off to lower the economic consequences of 

misclassifications, or an MD value is given that corresponds to a known abnormal 

condition [17]-[20]. These traditional methods do not provide a generic framework to 

define a threshold MD value for fault identification. The proposed diagnostic method 

does not require the definition of a faulty product during training and fault isolation, 

unlike other methods such as clustering and supervised neural networks that require 

a-priori knowledge of the types of faults during training [84]. When unforeseen types 

of faults occur, supervised neural networks or clustering approaches may fail to 

deliver correct decision on systems health [84].  

The MD approach suffers from the masking effect if the training data contains 

a significant amount of outliers [85]. This is because MD uses a sample mean and a 

correlation matrix that can be influenced by a cluster of outliers. These outliers can 

shift the sample mean and inflate the correlation matrix in a covariate direction. This 

is especially true if the ‘n/p’ ratio is small, where ‘n’ is the number of observations 

and ‘p’ is the number of features. Another issue is related to the computation time 

needed to reach O(p2) for p-dimensionality of feature vectors [86].  

This chapter provides a probabilistic approach for defining warning and fault 

threshold MD values in order to improve upon the traditional approaches where 

threshold MD values are decided by experts. Since MD values do not follow any 

distribution and have positive values, a Box-Cox transformation was applied to the 

MD values to obtain a normally distributed transformed variable. The transformed 

variable was used to construct a control chart and to define threshold values to detect 
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faults. An optimized MD value, using an error function, was obtained to qualify a 

product against a particular fault. The residual, which is the difference between a 

parameter’s estimated and observed values, was calculated to isolate faulty 

parameters. A product’s health was classified by comparing its MD value, which was 

computed for each observation, with a threshold MD value.  

For fault diagnosis, Betta [11] presented requirements including system 

monitoring; establishment of a suitable threshold; and estimation of residuals, which 

can be obtained by the continuous comparison of the system under analysis with 

another system or by taking the differences between measured and expected 

quantities. The following section illustrates an MD-based diagnostic approach that 

meets these requirements, including the creation of a healthy baseline from measured 

data, an approach to define a threshold for fault detection, and a residual-based 

approach to identify faulty parameters. 

4.1 Diagnostic Approach 

The anomaly detection approach (Figure 17) starts with performance 

parameter monitoring. For a test product, the MD value for each observation is 

calculated using the performance parameters’ mean, standard deviation, and a 

correlation coefficient matrix that is obtained from the training data (Figure 18). The 

calculated MD value is then compared with a threshold MD value (τ), which is 

established from a baseline to classify the product as being healthy or unhealthy. 

Then, if the product were to be classified as unhealthy, further processing would be 

performed to isolate the faulty parameter(s) in order to establish reasons for the fault. 
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The process to define the baseline and the threshold MD values is discussed in the 

following sections. 
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Figure 17: Fault detection approach 
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Figure 18: Mahalanobis distance calculation using test data 

4.2 Healthy Baseline using Mahalanobis distance and Empirical model 

A product’s performance range is defined by measurements made of its 

performance parameters in different operating conditions. The combination of 

performance parameters can be summarized by a distance measure. A baseline 
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consists of an MD profile, a threshold MD value, and the empirical models of 

performance parameters. The process of constructing a baseline is shown in 

 Figure 19.  
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Figure 19: Baseline establishment methodology 

The baseline construction process starts with the functional evaluation of a 

product. Based on a failure modes, mechanisms, and effects analysis (FMMEA) of a 

product, parameters that represent product performance should be selected for 

monitoring [1]. These parameters are monitored during the operation of a set of 

healthy products under various environmental, operational, and usage conditions. The 

collected information on parameters forms a data set that is used to train and calculate 

the statistical features of each parameter. For MD calculation, performance parameter 

data are normalized and a correlation coefficient matrix is formed. The correlation 

coefficient between two parameters expresses the linear dependency of one parameter 

on the other and the direction of the dependency. The MD values corresponding to 

each observation in the training data are calculated, and this group of MD values 
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forms the Mahalanobis space (MS). From the MS, the min-max range, mean, and 

standard deviation of MD values are obtained to explain the variability of a healthy 

product’s performance in terms of MD values.  

Empirical models of performance parameters are developed in the absence of 

analytical models. Training data are used to compute the correlation coefficients 

between different parameters and identify parameters to be used for empirical models. 

The linear modeling approach was chosen because of its simplicity and effectiveness 

without losing much model-fitting accuracy. One can use non-linear models for 

parameter estimation, but non-linear models need relatively complex learning 

algorithms to fit the underlying relationship among parameters [87]. In our 

application, the training data, collected under various operation conditions of a set of 

healthy products, are linear. Thus, a linear model for each performance parameter is 

developed as a function of other related performance parameters (Chapter 3). Linear 

models are considered appropriate due to their simplicity and considerable fit (i.e., 

>90%) to the experimentally collected data. These models are used for isolating 

parameters that are behaving far differently from expectations. 

4.3 Threshold Determination 

In this section, a probabilistic approach is presented to determine two types of 

threshold MD values. First, a generic threshold for detecting any type of fault or 

anomaly present in a product based on the MDs obtained from the training data is 

determined. Second, a fault-specific threshold for detecting the presence of a 

particular fault based on historical data related to a particular fault is determined. The 

second threshold can be considered a second-tier fault isolation process. 
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4.3.1 Generic Threshold Determination 

An approach for determining a generic threshold—an MD value—for fault 

diagnosis is shown in Figure 20. The MDs are always positive, but they do not 

generally follow a normal distribution. The Box-Cox power transformation can be 

used to transform a variable that has positive values and does not follow a Normal 

distribution into a normally distributed transformed variable [88]. The Box-Cox 

transformation is defined as follows: 
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where the vector of data observations is x = x1, …xn and x(λ) is the transformed data. 

The power λ is obtained by maximizing the logarithm of the likelihood function (14): 
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The normality of x(λ), a transformed variable, is confirmed by plotting it into 

a normal plot. The mean (µx) and standard deviation (σx) of the transformed variable 

are used to determine the control limits of an x-bar chart. A threshold value 

corresponding to the warning limit (µx+2σx) and a threshold value corresponding to a 

fault alarm (µx+3σx) are defined. Since higher MD values are of concern from an 

“unhealthiness” perspective, the upper portion of the control chart is of importance 

for identifying changes in system health. Rules from quality control, including bias 

and variance identification, can be used [89].  



 

 64 
 

Rules for identifying trend, bias, and faults

Mahalanobis distance values from healthy system

Transform MD values into a variable that exhibits normality

Define control limits for the transformed variable 

Threshold Mahalanobis distance for diagnosis

Rules for identifying trend, bias, and faults

Mahalanobis distance values from healthy system

Transform MD values into a variable that exhibits normality

Define control limits for the transformed variable 

Threshold Mahalanobis distance for diagnosis

 

Figure 20: An approach for defining threshold MD value 

4.3.2 Fault-Specific Threshold Determination 

A normally distributed transformed variable, which corresponds to MD 

values, can be used to determine Type I and Type II errors [19]. A Type I error, often 

referred to as a false positive, is a statistical error made in testing the health of a 

product where the product is healthy but is incorrectly determined to be unhealthy. A 

Type II error, often referred to as a false negative, is a statistical error made in testing 

the unhealthiness of a product where a product is determined to be healthy when it is 

not. Figure 21 illustrates Type I and Type II errors using a variable’s distribution for a 

healthy and an unhealthy system, where the healthy distribution is defined from the 

training data, and the unhealthy distribution is defined from the data representing a 

specific fault in a system.  

For a known fault, an optimal transformed variable can be defined such that 
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the combined error (i.e., the sum of Type I and Type II errors) remains minimal (i.e., 

the shaded region in Figure 21), and an MD value corresponding to the optimal 

transformed variable (x) is calculated. For a healthy product, the probability of having 

MD values higher than the threshold value is the number of observations that produce 

an MD value higher than the threshold MD value divided by the total number of 

observations for a healthy product. Similarly, for an unhealthy product, the 

probability of having an MD value less than the threshold value is the number of 

observations that produce MD values less than the threshold MD value divided by the 

total number of observations for an unhealthy product. The threshold value (τx) of a 

transformed variable for detecting a known anomaly is established using the 

following error function (ε): 

( )
uh

x n
e

n
e 21 +=τε    (16) 

where τ is the threshold, e1 is the number of observations classified as unhealthy in 

the healthy population (nh), and e2 is the number of observations classified as healthy 

in the unhealthy population (nu). The threshold value is obtained by minimizing the 

error function (i.e., by choosing a different value for τx).  
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Figure 21: Illustration of threshold value calculation 

4.4 Case Study 

Experiments were performed on ten state-of-the-art (2007) notebook 

computers that were produced by the same manufacturer. As part of the test plan, it 

was necessary to assess the performance of the products under various environmental 

and usage conditions. The computers used for this study were exposed to different 

environmental and usage conditions during the experiments, and their performance 

parameters were monitored in-situ. Since not all conditions could be tested, certain 

extreme and nominal conditions were included. The software usage conditions—a set 

of computer users activities representative of typical computer uses—were defined 

[72]. These usage conditions were executed through a script file, where all user 

activities were encoded.  

To study the variability in performance parameters, experiments were 

conducted under six different environmental conditions, as shown in Table 2. The test 

temperature range was from 5°C to 50°C, which was wider than the specified 
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operating and storage temperature range of the computer in order to include variation 

in operating conditions beyond the manufacturer-specified range. In each 

environmental (temperature-humidity combination) condition, four usage conditions 

and three power supply conditions were considered [82]. The test duration depended 

upon the way the computer was powered. When the computer was powered by an AC 

adapter and the battery was fully charged (relative state of charge (RSOC) = 100%), 

the test ran for 3.5 hrs. When the computer was powered by an AC adapter when the 

battery was fully discharged (i.e., RSOC < 4%)), the test duration was determined by 

the time the battery took to fully charge (RSOC = 100%). When the computer was 

powered by its battery only, the test duration was determined by the discharge (RSOC 

< 4%) time. The tests were conducted in a temperature-humidity chamber and in a 

room-ambient environment. Table 3 shows all 72 experiments. Each computer was 

turned on for 30 minutes before the experiment was started. The computers were kept 

at room temperature between each test for 30 minutes. 

The correlation coefficients among performance parameters were calculated. 

Only significant correlation coefficients (for which the Pearson probability was less 

than 0.05) between two performance parameters are shown in Table 5. The training 

data was formed by eight correlated performance parameters (listed in Table 5). The 

parameters measured were fan speed (speed of a cooling fan in rpm), CPU 

temperature (measured on the CPU die), motherboard temperature (measured on the 

top surface of the printed circuit board near the CPU), videocard temperature 

(measured on the graphics processor unit), %CPU usage (measure of how much time 

the processor spends on a user’s applications and high-level Windows functions), and 
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%CPU throttle (measure of the maximum CPU percentage to be used by any process 

or service, thereby ensuring that no process can consume all of the CPU’s resources 

at the expense of other users or processes). The parameters C2 and C3 are power 

saving states of the CPU in which the processor consumes less power and dissipates 

less heat than in the active state [90]. C2 and C3 represent the percentage time a 

processor spends in the low-power idle state and are a subset of the processor’s total 

idle time. In the C2 power state, the processor is able to maintain the context of the 

computer’s caches. The C3 power state offers improved power savings and higher 

exit latency over the C2 state. In a C3 power state, the processor is unable to maintain 

the coherency of its caches. All the parameters mentioned in Table 5 were sampled at 

different rates: CPU operation at every 5th second, and temperatures and fan speed at 

every 30th second.  

The Mahalanobis distance for each observation in the training dataset was 

calculated using Equation (3). According to the flow chart shown in Figure 19, a 

healthy baseline was defined using MD values and empirical models of performance 

parameters. The training data was comprised of approximately 25,000 observations. 

The distribution of these MD values corresponding to the training data is shown in 

Figure 22. Empirical models for each performance parameter were developed as 

functions of other performance parameters using training data. The “residuals” of 

each parameter were calculated by subtracting the estimated value from the observed 

value. For example, an empirical model for CPU temperature as a function of fan 

speed, motherboard temperature, and video card temperature is presented in Equation 

6. 
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The residual analysis of CPU temperature indicated that a probability density 

plot of CPU temperature residuals (Figure 4) represents 94% of the variability in the 

CPU temperature. The residual analysis indicated that the mean residual for fan speed 

was up to 500 rpm. Similarly, the mean residual for the CPU temperature was 5˚C, 

and for the motherboard and videocard temperature it was 8˚C. Similar empirical 

models for other parameters have been developed [91].  

Two types of threshold MD values were determined. First, a generic threshold 

to detect faults at the product level was developed, and second, a specific threshold 

for detecting the presence of a particular fault was developed. For generic threshold 

value determination, the Box-Cox transformation was applied on the training MD 

values, and an optimized value of λ (= -0.2) was obtained by maximizing the 

likelihood function defined earlier. The plot of λ and the likelihood function f(x, λ) is 

shown in Figure 23.  

Mahalanobis Distance

Pe
rc

en
ta

ge
 o

bs
er

va
tio

n

4.83.62.41.20.0

16

14

12

10

8

6

4

2

0

Mahalanobis Distance

Pe
rc

en
ta

ge
 o

bs
er

va
tio

n

4.83.62.41.20.0

16

14

12

10

8

6

4

2

0

 

Figure 22: Histogram of MD values for healthy population 
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Figure 23: Plot of λ and likelihood function f(x, λ ) 

The optimal λ value was used to obtain a normally distributed transformed 

variable (x) from the training MD values. The normal probability plot of x is shown in 

Figure 24. A control chart for fault identification was developed where control limits 

were calculated using the mean and standard deviations of the transformed variable, 

x. A warning limit and a fault limit corresponding to µx+2σx and µx+3σx were defined. 

For fault identification, two rules were used: first, one or more points fall above the 

fault limit (i.e., µx+3σx), and, second, two (or three) out of three consecutive points 

are within the fault and warning limits (i.e., Zone A). From the training data only one 

data point fell above the fault limit, and 1.5% of the data fell in Zone A (i.e., above 

the warning limit). The threshold MD values corresponding to the warning limit and 

fault limit were 3.4 and 9.1, respectively. Quality control rules were applied to 

determine the bias and trend in the data along with the identification of faults [89]. 

Data exhibits a trend if six (or more) consecutive points are increasing or decreasing. 

Data exhibits biasness if nine (or more) consecutive points fall on one side of the 

central line (i.e., µx). Since MD values increase with abnormality, data that fall above 

the central line of the control chart are of more concern.  
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Figure 24: Normal probability plot of transformed variable x 

A set of data obtained from one test notebook computer, which was field-

returned, were plotted on the control chart constructed for the transformed value (x), 

and the quality control rules were applied. The observations made (Table 14) were as 

follows: 62.1% of the data were above the failure alarm limit (µx+3σx) (i.e., 62.1% of 

the data indicates the presence of faults in the test system) in comparison with 0% for 

a healthy system. And 37.8% of the data were within Zone A (i.e., 37.8% of the data 

indicates the tendency of the test system to be faulty) in comparison with 1.5% for a 

healthy system. This also indicates that 99.9% of the data were above the warning 

limit, µx+2σx,, in comparison with 1% for a healthy system. At 96% of the time, the 

data indicated the presence of a trend in the test system in comparison to 2% for a 

healthy system. All test data (i.e., 100%) were on one side of the average, which that 

indicated the presence of biasness in the test system in comparison to 33% for a 

healthy system. The marginal difference between a healthy system and the test system 
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suggested that the test system had problems, which is identified using the fault 

isolation approach.  

Table 14: Percentage of Alarms Raised by Different Rules 

No. Rules Healthy Test 

1 
One or more points fall outside 

control limits 
0 62.1 

2 
Two (or three) out of three 

consecutive points are in Zone A 
1.5 37.8 

3 
Six (or more) consecutive points 

are increasing or decreasing 
2 96.0 

4 
Nine (or more) consecutive points 

are on one side of the average 
33 100 

The MD values corresponding to the baseline (i.e., healthy) and the test 

computer are shown in the Figure 26. Both sets of MD values obtained from the 

training and test data sets were transformed into normally distributed variables. To 

detect a specific fault, a threshold MD value corresponding to that fault was defined 

using the error function approach discussed earlier. 
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Figure 25: Control limits for fault identification 

 

Figure 26: MD value for a baseline and a test system 

An optimal threshold MD value,τ, was calculated by minimizing the error 

function (Equation (16)).  The amount of error,ε, considering different MD values is 

shown in Figure 27. In this study, the optimal MD threshold value, τ, was 4.70, and 
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the error, ε(τ), was 0.025 (i.e., 2.5% misclassification, where 1.8% was contributed 

by the training data and 0.7% was from the test data). Higher misclassification of 

training data suggests that the defined threshold value was conservative in nature 

because the healthy product was misclassified more than the unhealthy product.  

The validity of the defined threshold value was evaluated by calculating the 

misclassification of training data and test data at various threshold values (Figure 28). 

The graph in Figure 28 indicates that lowering the threshold value resulted in an 

increase in the number of observations from the training data being classified as 

faulty (misclassification of healthy data as unhealthy data increased). Similarly, 

increasing the threshold value resulted in an increase in the number of observations 

being classified as healthy from the test data (misclassification of unhealthy data as 

healthy data increased). Large-percentage changes in misclassification were not 

observed even after changing (increasing or decreasing) the threshold value of MD by 

10%, and so the threshold value can be considered robust. 

The performance parameter residuals were used to isolate the parameters that 

were responsible for the drift in the health of the test computers. A few test data 

samples are presented in Table 15, where the parameters measured (M) and estimated 

(E) values are shown. From the residual analysis, it was observed that the residual of 

the fan speed was greater than expected in 90% of the instances, and in 10% of the 

instances the residual of the temperature parameters were greater than expected. The 

fan was judged faulty based on the residual analysis, and this judgment was verified 

by investigation of raw data.  

The case study demonstrated that the methodology presented was capable of 
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identifying faults. A baseline generated from experimental data can be used to 

successfully analyze the onset of a fault and the eventual failure of a similar 

computer. The diagnostic approach can be applied to any product, but the case study 

results (and the baseline) cannot be extrapolated to all products and their variations. It 

would be expected that the product developers would develop baselines for their 

products of interest.  
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Figure 27: Optimal threshold evaluation 
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Figure 28: Robustness evaluation of threshold value 
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Table 15: Estimated Values of the Parameters  

Observation 

number 
MD Fan speed CPU temp 

Motherboard 

temp 

Videocard 

temp 

  M E M E M E M E 

4001 7 0 17 54 44 51 43 50 60 

5001 11 0 1167 65 57 60 50 60 73 

6001 9 0 903 65 60 62 58 62 68 

7001 9 0 757 66 60 62 58 62 69 

8001 9 0 1043 66 60 62 57 62 70 

9001 10 0 1184 67 61 63 53 63 71 

... ...  ... ... ... ... ... ... ... 

12001 10 0 1410 67 61 63 64 63 70 

4.5 Summary and Conclusions 

This chapter presents a data-driven diagnostic approach that utilizes 

Mahalanobis distance (MD). Instead of using expert-opinion-based threshold MD 

value, a probabilistic approach was developed to establish threshold MD values in 

order to classify a product as being healthy or unhealthy. An error function was 

defined and minimized in order to determine a reference MD value to identify the 

presence of a specific fault in a product. Once faults are detected, a set of specific 

threshold values developed using the residuals of the performance parameters can be 

used for isolating known faults. This chapter demonstrated that the distribution of the 
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residuals of performance parameters can be used to isolate parameters that exhibit 

faults. 

This chapter presented an approach to construct an MD control chart from a 

system’s performance data. The control chart enables continuous monitoring of a 

system’s health using the MD value calculated from the system’s performance data. 

This MD control chart concept can also be used by the manufacturing industry for 

continuous process monitoring instead of following several performance parameter 

control charts.  

Rules for detecting faults and observing trends and biases in a system’s 

performance are presented in this chapter. The ability to identify trend and biasness in 

the data will enable the development of new tests to identify flawed system and 

processes. The ability to detect trends and biasness in system health by observing a 

control chart constructed for MD values will allow for the detection of changes in a 

product’s health before it experiences failure. 

The case study on notebook computers demonstrates that the approach to 

define threshold MD value is a major improvement. The defined thresholds were able 

to detect faults in a product with 99% accuracy. In a known fault condition, a specific 

threshold was defined, which classified a product with 97.5% accuracy (i.e., 2.5% 

error). The residuals analysis of the performance parameters identified the fan as a 

problem 90% of the time. The temperature parameters that are correlated to the fan 

operation identified as a problem 10% of the time. The results demonstrated that the 

suggested approach for defining a threshold MD value for the diagnostic approach 
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was able to identify faults. The residual-based parameter isolation approach identified 

the cause of the problem.  

MD is a good health measure that summarizes multiple monitored parameters 

that are correlated as a number. With the modifications presented in this chapter, MD 

will benefit manufacturers in controlling the quality of their products and processes 

on-line or off-line.   
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Chapter 5: Fault Isolation Approach 

 

System application areas call for enhanced safety, reliability, and 

maintainability in ways that reduce their vulnerability to serious failures and failures 

of their host systems. The increasing complexity of systems and their use in a wide 

range of environmental conditions increases the burden on system designers and 

maintainers to develop effective tools to provide a system’s real time health 

assessment [92]. Prognostics and health management (PHM) involves continuous, 

autonomous, real-time monitoring of a system’s health by means of embedded or 

attached sensors with a minimal level of manual intervention in order to evaluate the 

system’s actual life-cycle conditions, determine the advent of failure, and mitigate 

system risks [1] [33]. For health management and the development of fault-tolerant 

systems, realization of system failure, recognition of failure sites, and quantification 

of damage are essential [31]. An effective health management tool’s basic 

requirements include identification of faults and failures and fault isolation [12].  

A fault is an unexpected deviation from acceptable behavior of at least one 

performance property of a system. Failure is a permanent interruption of a system’s 

functionality or a time lag in the system’s expected functionality under specified 

operating conditions. Realization of a system failure is not always easy because some 

faults may not lead to the loss of functionality of a system; therefore, definition and 

characterization of faults is required in the fault detection process. Fault isolation is 

the determination of the type and location of a fault, and it follows fault detection 
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[93][12][94]. Identification of performance parameters is essential for locating the 

faulty components that are responsible for a system’s failure, because one or more 

performance parameters might provide precursors to the failure [39]. Identification of 

parameters that are indicating faults is an important step in the fusion prognostics 

approach [96]. These parameters are then utilized for damage estimation through 

physics-of-failure models and for identifying the presence of a trend in a system’s 

performance. For better estimation of the remaining useful life of a system, the output 

from the PoF and data-driven methods can be combined [97]. The combined output 

will have better estimates and less uncertainty.  

Fault isolation methods are broadly grouped into two classes: model-based 

and data-based. Model-based methods are generally functionality-dependent: system 

functionality is modeled into mathematical form and residuals obtained from model 

are connected to specific faults [98][99]. These methods are based on a deterministic 

process model that must be correct for a system’s proper functionality. This approach 

is suitable for isolating specific known faults. On the other hand, data-based methods 

rely on performance parameter measurements. For fault detection, the definitions of 

thresholds are based on the measurements made during a system’s healthy operation. 

For fault isolation, different abnormal health states of a system are defined using data 

collected when a system was operating abnormally in order to distinguish different 

faults. Fault isolation is accomplished by comparing a system’s current health state to 

the known regions of the system’s healthy state space. Some data-based approaches 

consider the contribution of particular states to the overall shift from healthy states to 

identify and isolate faults [100][101].  
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The data-based fault isolation approach includes dimensionality reduction 

techniques, state-based techniques, regression techniques, and techniques based on 

distance measures. One of the dimensional reduction techniques, principle component 

analysis (PCA), has been used for handling large amounts of data [102]. In the PCA 

approach, reduction in dimensionality results in information loss [103][102]. In this 

technique, the contributions of different parameters to a distance measure are 

analyzed to identify faulty parameters. However, a parameter contributing more does 

not indicate that the parameter is exhibiting anomalous behavior because these are the 

parameter’s contributions in the variability of an observation.  

State-based techniques define state models for parameters in order to capture 

linear or nonlinear characteristics of a system’s performance parameters. The analysis 

of residuals obtained from parameters’ observed and estimated values from the state 

model are used for characterizing faults [104]. In this characterization process, a 

model is defined for each fault type to isolate the fault. However, these fault-specific 

models are only useful for identifying specific known faults. The regression model of 

performance parameters is another approach to obtain a parameter’s estimate, but it 

often fails to control the measurement error and intervening variables [105]. 

Distance-based methods have been used for fault detection. The Mahalanobis 

distance (MD) has been used for fault detection in computers [106][82]. In addition, 

MD has also been used for fault isolation where data from both healthy and unhealthy 

systems were used to isolate faults [107].  

This chapter presents a new fault isolation approach using residual MD. This 

work on fault isolation is different from and improvement over earlier work presented 
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in previous chapter. Here individual parameters contribution to system health (i.e., 

represented by MD) is utilized to estimate residual for each parameters [107]. 

Whereas the previous chapter, the difference between estimated and observed value 

of each parameter were used to calculate residuals for each parameter. The MD is 

selected because of the two major advantages: first, MD reduces a multivariate 

system to a univariate system without losing information; and second, MD is 

sensitive to inter-variable changes in multivariate system parameters. It includes all 

observed performance parameters in defining the health of a system (i.e., no 

information loss in the health estimation process). The proposed method uses only 

health data during training and fault isolation does not require information on faulty 

conditions, so it does not depend on any specific fault type. The first stage in this 

method is to create a baseline using MDs to detect faults. The second stage is to 

create residual bounds using residual MDs to identify faulty parameters. The 

approach defines the threshold bounds on MD residuals for parameters, which are 

estimated from healthy data. The residual for each parameter (i.e., impact of each 

parameter on MD) is obtained by performing experimental analysis planned by the 

Design of Analysis (DoA) based on Design of Experiments (DoE). The design of 

experiment concept has been used to determine parameters that contribute most to 

Mahalanobis distance [108].  

Experiments were performed on computers in order to validate the proposed 

method. Two kinds of threshold were generated from the healthy population for the 

proposed fault isolation method, and a case study was conducted to demonstrate and 

validate the approach. The experimental details, the algorithmic approach to fault 
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isolation, and three case studies are discussed in later sections of this chapter. MD has 

been discussed in previous chapters and DoA is briefly described below. 

Design of Analysis 

In this chapter, a new analysis process namely Design of Analysis (DoA) is 

developed for identifying the influence of an input parameter on an output. DoA 

provides a structured, organized method for determining the relationship between 

different input parameters affecting a process and the output of that process. In this 

approach, makes observations on parameters influence are made methodically as 

directed by a systematic table, which is based on the Design of Experiments (DoE) 

[108]. The systematic table is designed by a set of parameter combinations, which is 

varied systematically. In order to perform fault isolation, DoA implements “one 

change at a time” because it allows to make a judgment on the significance of an 

input variables for the output. Each set of parameter combination in the systematic 

table of DoA is referred as an analytical run in the chapter. The parameters that 

influence the process output (i.e., MD) are identified.  

5.1 Faulty Parameter Isolation Methodology 

The first step in the proposed method is to identify the fault, and the second 

step is to isolate the fault by identifying the parameter indicating the fault. The fault 

detection approach (Figure 17) starts with the monitoring of the system’s 

performance parameters under different life cycle scenarios. A system’s life cycle 

includes different environmental and usage conditions. In the data acquisition 

process, a product’s performance is monitored using built-in, embedded, or external 
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sensors, and data is stored after data scrubbing. The performance parameters collected 

during a healthy system’s operation under different usage conditions makes healthy 

training data. For fault detection, a system’s health is classified by taking the MD 

value corresponding to each observation (i.e., performance parameter vector) and 

comparing it to a threshold MD value (τ), which is determined from a set of training 

(healthy) data. In a situation where a system is classified as unhealthy, which is based 

on a sequence of continuous faulty observations, further investigation is performed to 

identify the fault type using the fault isolation approach. 

The fault isolation approach discussed here is based on the residual MD value. 

The MD value for each observation is calculated for every analytical run decided in 

DoA. The residual MD value for each parameter is obtained by taking the difference 

between MDs corresponding to two sets of analytical run, which are different in terms 

of a parameter’s absence. The distribution of residual MDs is formed from training 

(i.e., healthy) data and is used to decide the threshold residual MD value (ΔMDτ) for 

each parameter. The threshold defining procedure (Figure 29) starts with constructing 

an orthogonal analytical run in DoA by considering “one change at a time.” The 

training data for these experiments are extracted from the healthy data set collected 

after monitoring healthy systems. For each analytical run the MD value for each 

observation is calculated, where MDp represents an MD calculated considering that 

all parameters are present, and MDia is an MD where parameter i is absent. Test 

systems are monitored and analyzed in a similar way. The residual MD value for each 

parameter corresponding to each observation is compared with each parameter’s 

residual threshold.   
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The residual MD corresponding to a parameter i is represented by ΔMDi. The 

ΔMDi is obtained by subtracting the MDp from MDia for each observation. The 

distribution of ΔMDi for a parameter represents that parameter’s contribution to MD. 

A threshold value (ΔMDiτ) corresponding to a 95% bound on the ΔMDi for each 

parameter is defined as an expected range of ΔMD for parameter i. Figure 30 

illustrates the distribution and threshold bound for a parameter. The upper bound (i.e., 

+ΔMD) on ΔMD indicates changes in performance but no loss in information, 

whereas the lower bound (i.e., –ΔMD) indicates a loss in information, because the 

MD value should increase when there is an abnormality. Since negative ΔMD 

represents a loss in information due to the absence of a parameter during MD 

calculation, a parameter with a ΔMDi below the lower bound of the threshold range 

(ΔMDiτ) is picked as the potentially faulty parameter.  

Construct orthogonal design of analysis (DoA)

Use training data from healthy system to analyze each run of DoA

Calculate MDp when all 
parameters are present  

Calculate MDia when one 
parameter i is absent

Calculate residual MD (ΔMDi) when a parameter i is absent 
(i.e., ΔMDi = MDia – MDp)

Calculate 95% “bounds” (ΔMDiτ) for all parameters

Construct orthogonal design of analysis (DoA)

Use training data from healthy system to analyze each run of DoA

Calculate MDp when all 
parameters are present  

Calculate MDia when one 
parameter i is absent

Calculate residual MD (ΔMDi) when a parameter i is absent 
(i.e., ΔMDi = MDia – MDp)

Calculate 95% “bounds” (ΔMDiτ) for all parameters  

Figure 29: Parameter isolation: threshold determination for parameters 

(∆MDiτ) 
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Figure 30: Threshold determination 

The procedure for isolating a faulty parameter for a test system is shown in 

Figure 31. Every observation from a test system is analyzed for each parameter. The 

ΔMDi, where i represent a parameter, for each test observation is calculated and 

compared with the parameter’s threshold, ΔMDiτ. The parameter with a ΔMDi below 

the lower bound of the threshold range (ΔMDiτ) is picked as the candidate for the 

faulty parameter, and the highest –ΔMDi is determined to be the faulty parameter. 

Figure 32 indicates that several parameters are candidates for being considered faulty 

(P2, P4, P6, and P8), and a parameter that has the highest negative ΔMD is chosen as 

the faulty parameter (P2). Other parameters are evaluated as well in order to validate 

the faulty parameter identification.  
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Use test data for each run of design of analysis

Calculate MDp when all 
parameters are present  

Calculate MDia when one 
parameter i is absent

Calculate residual MD (ΔMDi) when parameter i is absent

Compare residual MD (ΔMDi) with 95% “bounds” (ΔMDiτ)

Faulty parameter: parameter with highest –ΔMDi

Choose potentially faulty parameters (i.e., ΔMD < 2.5% bound)

Use orthogonal design of analysis (DoA)

Use test data for each run of design of analysis

Calculate MDp when all 
parameters are present  

Calculate MDia when one 
parameter i is absent

Calculate residual MD (ΔMDi) when parameter i is absent

Compare residual MD (ΔMDi) with 95% “bounds” (ΔMDiτ)

Faulty parameter: parameter with highest –ΔMDi

Choose potentially faulty parameters (i.e., ΔMD < 2.5% bound)

Use orthogonal design of analysis (DoA)

 

Figure 31: Parameter isolation (test data evaluation) 

P1
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P2
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P5
P4

P6
P7

P8
0-ve +ve2.5% 97.5%  

Figure 32: Isolating faulty parameter in an observation based on ΔMD. 

To identify the faulty parameter, the residual MD for that parameter is 

compared with the threshold residual MD. A parameter is determined to be faulty if 

the probability estimate of being faulty is significantly higher than other parameters. 

Expert knowledge is used to determine a faulty parameter if several parameters are 

identified as being equally faulty. This is another approach to understanding system 

failure.  
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5.2 Case Study 

This fault detection and faulty parameter isolation methodology was applied 

to computers in order to demonstrate and validate the suggested method. Experiments 

were conducted on ten brand new identical computers with the assumption that these 

computers were representative of healthy systems. The data from these computers 

were used to define a healthy baseline and to study the parameters’ behaviors. The 

parameters measured were fan speed (speed of a cooling fan in rpm, P1), CPU 

temperature (measured on the CPU die, P2), motherboard temperature (measured at 

the top surface of the printed circuit board near the CPU, P3), videocard temperature 

(measured on the graphics processor unit, P4), %CPU usage (measure of how much 

time the processor spends on a user’s applications and high-level Windows functions, 

P5). The C2 (P6) and C3 (P7) are power saving states of the CPU where the processor 

consumes less power and dissipate less heat than in the active state [30]. They 

represent the percentage time a processor spends in the low-power idle state and are a 

subset of the processor’s total idle time. In the C2 power state, the processor is able to 

maintain the context of the computer’s caches. The C3 power state offers improved 

power savings and higher exit latency over the C2 state. In the C3 power state, the 

processor is unable to maintain the coherency of its caches. The %CPU throttle (P8) 

is a measure of the maximum CPU percentage to be used by any process or service, 

thereby ensuring that no process can consume all of the CPU’s resources at the 

expense of other users or processes. The CPU operation was measured at every 5th 

second, and temperatures and fan speed were measured at every 30th second. These 

parameters are referred to as P1 through P8 in the following discussion.  
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The experiment was designed to replicate the real-time usage of computers. The 

computers were exposed to six environmental conditions, as shown in Table 2. For 

each temperature-humidity combination, four usage conditions and three power 

supply conditions were considered. A set of user activities was defined to execute 

different usage conditions of the computers. Details on the experimental setup and 

training data collection can be found in the Chapter 2. In total, 72 experiments were 

conducted. The same usage conditions were applied simultaneously to all computers 

in order to achieve time synchronization between computer and software application 

responses. The computer’s power mode was always set to ON. The screen saver and 

hibernation options were disabled to prevent these functions from occurring during 

the experiment.  

The Mahalanobis distance (MD) values were obtained for the experimental 

(i.e., training) datasets. These values were used to determine a threshold MD value 

(=5.8) for a healthy system [107]. The threshold was used to compare the MD values 

of test systems to determine the health state or presence of faults. Once the presence 

of a fault was established, the next objective was to isolate the parameter that was 

responsible for the fault in the computer.  

For this study, since eight parameters were being analyzed, nine analytical 

runs (Table 16) were defined. The first analytical run included all eight parameters for 

MD calculation. Subsequently, eight (A2 to A8) more analytical runs were defined by 

eliminating one parameter at a time. Each cell entry in Table 2 represents a 

parameter’s status in the MD calculation: “1” means that a parameter was included, 

and “0” means that a parameter was excluded from the MD calculation. Subtracting 
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the first analytical run’s MD from other analytical experiments’ MD values gave the 

quantitative measure (ΔMDi = MDia – MDp) of a parameter’s contribution to MD 

value. For each observation, the ΔMDs resulting from the absence of different 

parameters are shown in Figure 33. For every run, the MD corresponding to each 

observation was calculated, which gave the ΔMD for the parameters.  From the 

training data, the ΔMD for each observation was calculated and sample distributions 

of the ΔMDs for four parameters are shown in Figure 34. The ΔMDs followed 

Normal distribution, and a 95% confidence range for ΔMD was estimated to define a 

threshold boundary (as shown in Figure 30) for each parameter in order to isolate the 

faulty parameters [107]. A parameter that had the highest negative ΔMD was 

identified as the faulty parameter (Figure 32) in each observation. A parameter that 

was identified as the highest number of times as being faulty was isolated as the 

faulty parameter.  
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Figure 33: ΔMD values for one observation of training data 
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Table 16: Orthogonal Design of Experiment 

Performance Parameters 
Analysis 

P1 P2 P3 P4 P5 P6 P7 P8 

A1 1 1 1 1 1 1 1 1 

A2 0 1 1 1 1 1 1 1 

A3 1 0 1 1 1 1 1 1 

A4 1 1 0 1 1 1 1 1 

A5 1 1 1 0 1 1 1 1 

A6 1 1 1 1 0 1 1 1 

A7 1 1 1 1 1 0 1 1 

A8 1 1 1 1 1 1 0 1 

A9 1 1 1 1 1 1 1 0 
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Figure 34: ΔMD distribution of four different parameters 
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In a lab setup controlled experiments were conducted where two known faults 

were injected into the computer and monitored data were analyzed by the approach 

discussed earlier to verify that the proposed methodology was able to isolate 

parameters related to these faults. Data from one field returned computer was 

analyzed as well to verify the approach. In the first controlled experiment, the 

videocard was externally heated using a kapton flex heater (1in × 1in placed on top of 

the videocard chip). In the second experiment, a gap was created between the CPU 

and the heat pipe used to transfer heat from the CPU to the heat exchanger. These two 

scenarios were created to simulate problems with the thermal interface material used 

for the CPU and videocard. In these two cases, one would expect the proposed 

approach to detect videocard temperature and CPU temperature parameters as faulty. 

In all these cases, more than 95% of the test data’s MD values were higher than the 

threshold MD (=5.8), which indicated that the test computer had an anomaly. 

The experimental procedure of externally heating the videocard was as 

follows: computer was turned ON for a while to stabilize its performance, and then 

the heater was powered ON to heat the videocard. As the computer was turned ON, 

its components started heating up gradually but stabilized in a while and this behavior 

was reflected in MD values as well (Figure 35). The MD values increased up to the 

100th observation and then it stabilized by the 170th observation. Thereafter the 

external heater was powered ON and the MD values started increasing. The first 

objective was to check that the anomaly detection methodology identified the 

problem at the system level when the heater was turned ON. Then the parameter that 

was related to this anomaly was identified. For the experiment presented in Figure 35 
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an anomaly was identified at the 173rd observation and the videocard temperature 

parameter was isolated immediately. The experiment was repeated three times to 

check the repeatability of the results and the computer was turned OFF after each trial 

to let it cool down. 
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Figure 35: MD values corresponding to a fault injection in the videocard 

experiment 

A similar procedure was followed for the second controlled experiment. In 

this experiment the computer was turned ON for a while to stabilize its performance 

parameters, and then a gap between the CPU and the heat pipe was created by 

unfastening the screw used to secure the heat pipe on top of the CPU. The assumption 

was that by doing this the thermal conductivity would be reduced and the CPU 

temperature would increase. For the experiment, trend in MD values was similar to 

Figure 35. The CPU temperature was identified as the faulty parameter in this case. 

The experiment was repeated three times to check for repeatability. In each 

experiment the computer’s performance parameter information was collected for 5 

minutes after turning the heater ON and after creating the gap between the CPU and 
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the heat pipe. The percentage observation indicating faulty parameters is presented in 

Table 17. The percentage observation was computed as the ratio of the number of 

observations indicating faulty parameters to the total observations considered during a 

test.  

To check the validity of the proposed approach, five thousand data points 

from a field-returned computer were analyzed. Figure 36 shows the MDs of healthy 

computers (lower plot) and the test computer (above plot). The MD plot indicates that 

the computer had a problem right from the beginning of the period during which data 

was collected. A drop in MD value at around the 2700th observation was due to the 

rebooting of the computer, and the MD value gradually increased again. The 

proposed approach identified the presence of a fault and identified two parameters—

fan speed and videocard temperature—as the faulty parameters since these two 

parameters had a higher percentage of observations (73% and 24%, respectively) 

indicating them as faulty parameters (Table 17). Of these two parameters, fan speed 

was more likely to be faulty because if the videocard temperature was increasing the 

fan should have been operating more, and the correlation (≈ 0.8) between these two 

parameters also supports that. Based on the system knowledge the fan was adjudged 

as faulty and it was verified with the project sponsor.  

Throughout the experiments, the computer was functionally fine even with the 

presence of a fault. In the experiment on the videocard, videocard temperature was 

identified as the faulty parameter with 95% confidence. In this case, CPU temperature 

also rose and was detected as faulty. However, the percentage difference between 

these two parameters of being faulty was significantly, and the videocard temperature 
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was adjudged as the faulty parameter. In the other experiment where a gap between 

the CPU and the heat pipe was created, the CPU temperature parameter was identified 

as faulty with 100% confidence.  
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Figure 36: Comparison of MDs of field-returned computer with baseline 

In the analysis of data from the field-returned computer, 73% of the 

observations indicated fan speed as the faulty parameter, 24% of the observations 

indicated videocard temperature as the faulty parameter, and 3% of the observations 

indicated CPU temperature as the faulty parameter.  

A fan failure could raise the temperature of the CPU, motherboard, and 

videocard. The reason for the identification of some temperature parameters as faulty 

lies in the cooling mechanism used for the computer, the correlation of temperature 

parameters with ambient conditions, and percentage CPU usage. The CPU has its 

own thermal management schemes and controls its temperature rise to protect the 

chip, whereas the videocard and the motherboard do not have such thermal 

management. The motherboard temperature is highly correlated (≈0.96) to ambient 
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temperature. If the computer had been used in room temperature, the motherboard 

temperature would not have changed significantly and would not have been identified 

as faulty due to the presence of other temperature parameters. Another reason that  

 

Table 17: Percentage of Observations Indicating Faulty Parameters 

Experiments 

 

Videocard heating 
Gap between CPU 

and the heat pipe 

Field-

returned 

computer

Parameters 
Trial 

1 

Trial 

2 

Trial 

3 

Trial 

1 

Trial 

2 

Trial 

3 
 

P1 - Fan speed 0 0 0 0 0 0 73 

P2 - CPU 

temperature 
6 4 4 100 100 100 3 

P3 - Motherboard 

temperature 
0 0 0 0 0 0 0 

P4 - Videocard 

temperature 
94 96 96 0 0 0 24 

P5 - %C2 state 0 0 0 0 0 0 0 

P6 - %C3 state 0 0 0 0 0 0 0 

P7 - %CPU usage 0 0 0 0 0 0 0 

P8 - %CPU 

throttle 
0 0 0 0 0 0 0 
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contributed to identifying the videocard temperature parameter as faulty was the 

restart of the computer at the 2,700th data point (Figure 36). Here, a drop in MD value 

was observed because the computer shutdown by itself and was then restarted 

manually. This resulted in temporary fan start-up and a drop in three temperatures. 

However, these temperatures were above the nominal/expected value of the CPU and 

videocard temperatures during that period. Therefore, these temperatures were 

identified as anomalous. Further investigation of the data set also indicated that the 

fan was not functioning well, and it was verified by the company that the fan was not 

working properly. Therefore, it can be affirmed that this new approach did identify 

the faulty parameter of the computer.  

5.3 Summary and Conclusions 

The chapter presented a new approach for isolating parameters that indicate 

system faults. The approach expands the applicability of Mahalanobis distance (MD) 

from fault detection to fault isolation. The main advantage of the approach, over other 

approaches, is that it includes all the parameters for MD calculation (i.e., no 

information loss due to dimensionality reduction), does not require data from 

unhealthy systems and does not need to create a MD scale for fault isolation. Rather, 

a threshold bound for each parameter based on healthy training data is defined.  

A set of experiments was conducted to establish the “healthy” or “normal” 

operation from a set of notebook computers subjected to a range of usages and 

environmental conditions. The MD-based faulty parameter identification method was 

used to identify the fault and associated parameters. Two different types of faults 



 

 98 
 

were injected in order to verify the fault isolation approach presented in this chapter. 

In these cases, the methodology succeeded in identifying the correct faulty parameter 

with high confidence of 95% and more. A field-returned computer was evaluated as 

well, and a parameter associated with cooling component was identified as faulty 

73% of times and probability of cooling component being faulty increased to 95% 

after considering the experts knowledge. These results were verified by manual 

analysis of the data files. Faults were detected within a minute of fault injection, and 

parameter associated with the fault was identified subsequently. The results showed 

that the suggested approach provides quick fault detection capability at a system level 

and isolates parameter associated with faults for in-situ or offline analysis.  

Identification of parameters will assist in root cause analysis of the anomalies. 

Identification of parameter associated with fault will help in identifying failure 

modes, failure site, and the critical failure mechanisms acting within the product. 

These parameters are will be used for damage estimation through Physics-of-failure 

models, quantification of product’s performance shift and establishment of trends in 

the performance shift. The results obtained from two methods will be fused to 

estimate accurate remaining useful life with less uncertainty. 
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Chapter 6: Health Degradation Identification Approach 

 
A considerable body of knowledge exists on prognostics and health 

management of mechanical and structural systems, particularly with respect to 

establishing precursors (such as changes in vibration signatures and variations in 

acoustic level due to wear) for detecting degradation [109][110]. Degradation in 

electronics is much more difficult to detect and analyze than degradation in most 

mechanical systems and structures due to the complex architecture of electronics, the 

interdependency of component functionality, and the lack of monitoring sensors due 

to the miniaturization of most electronic devices and products.  

Techniques for diagnostics and prognostics in electronic products include the 

use of statistical models [1], physics-of-failure-based life-consumption models [27], 

state estimation models [111], and data-driven models [112]. These techniques can be 

applied at any of the six levels of electronics defined by Gu et al.[74]: 1) chip and on-

chip sites; 2) parts and components that cannot be disassembled; 3) interconnects and 

circuit boards; 4) enclosures and chassis; 5) entire electronic product; and 6) multi-

electronic products and external connections between them. Degradation 

identification at any of these six levels can reduce an electronic system’s reliability. 

Anomalies in a product may have been caused during the manufacturing 

process, or they may evolve over time due to wear-out. Identification of anomalies 

and their progression provides advance warning and precursors for failures; enables 

condition-based maintenance in place of scheduled maintenance; and reduces the life 

cycle cost of equipment by decreasing inspection costs, downtime, and inventory.  
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The objective of this chapter is to provide a method to detect degradation in an 

electronic product’s performance. A multivariate distance measure, Mahalanobis 

distance (MD) [9][82], is used to represent product performance in a reduced 

dimension. MD was selected for two reasons: first, MD reduces a multivariate system 

to a univariate system; and second, MD is sensitive to inter-variable changes in a 

multivariate system [21][22].  

In a situation where a product’s monitored performance parameters exhibit 

trends, the derived distance measure, MD, will also show a trend. However, there is 

also a need to translate product performance parameters that do not exhibit trends and 

are correlated to the product’s health. Due to these two constraints, MD values alone 

cannot be directly used as an indicator of health. A novel method is proposed that 

defines a new metric, a health indicator that assesses the changes in a histogram of 

MD values over time. This health indicator can be used to reliably detect degradation 

and diagnose faults. 

A histogram is a graphical representation of a frequency distribution in which 

the height of the bins represents the observed frequencies. The choice of bin-width 

primarily controls the representation of the actual data. Our health indicator is defined 

using the histogram bins’ fractional contributions (FC) and a weight assigned to the 

bins. Any change in a bin’s FC results in a change in the health indicator, which is 

used to distinguish unhealthy products from healthy ones.  

The binning process reduces noise by grouping MDs that represent similar 

performance. The “sudden” presence of an MD value in a bin that is highly weighted 

would indicate an abrupt change in a system’s performance. The tracking of a bin’s 
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FC is useful in detecting no-fault-found (NFF) types of faults (faults that suddenly 

appear and then disappear, often associated with intermittent failures) and also in 

identifying trends. 

The following section describes the degradation identification methodology. 

The section includes details on the estimation of MD, optimal bin-width for 

constructing a histogram, health indication, and a threshold for degradation detection. 

A case study is then presented to demonstrate the capability of the proposed 

methodology to perform real-time product monitoring. Ten computers were tested in 

a set of environmental and operational conditions. Eight performance parameters 

were monitored. The collected data was used to define a healthy baseline and 

threshold for the computers. A computer with an artificially injected fault was also 

monitored. The methodology was validated by testing the data with the injected fault 

against the healthy data.  

6.1 Degradation Identification Methodology 

The physical degradation of a product can result in shifts in performance 

parameters and can be analyzed by monitoring these parameters. MD provides an 

opportunity to unite performance parameters’ data and their correlated interactions. A 

product’s health over time is then represented by an MD time-series. To determine 

the health of any other test product, MDs for the test product are calculated after the 

performance parameters are standardized using the mean and standard deviation of 

the baseline data. The resulting MDs from the test product data are compared with a 

threshold MD of the healthy product to determine the test product’s health. A time 

series of MDs can be formed by associating time information with the data, which 
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enables visualization of the test product’s health progression over time.  

6.1.1 Bin-width Estimation Technique 

The distribution of data can be represented by parametric models or non-

parametric methods. Standard parametric models include normal, lognormal, 

exponential, and Weibull distribution models, which described by parameters such as 

the mean and standard deviation and are good for modal data. For multi-modal data, 

fitting a standard parametric function can result in errors, and fitting multiple 

parametric functions cannot provide a unique solution. Various non-parametric 

methods such as histograms, kernels, orthogonal series estimation, and the nearest 

neighbor method are therefore used to estimate the density function without assuming 

any parametric structure [39][113].  

In this chapter, a histogram approach is used to represent the frequency 

distribution in which the height of the bins represents the occurrences of the observed 

values. The choice of bin-width primarily controls the representation of the actual 

data. Smaller bin-widths may provide excessive information (under-smoothing), but 

larger bin-widths may provide too little information (over-smoothing of the true 

distribution). Once the bin width is calculated, the histogram is defined. Histograms 

are based on an equally spaced bin-width, hn
*, where n denotes the sample size. For 

the normal distribution, the approximate optimal bin-width is  

3/1* 49.3 −= snhn    (17) 

where s is sample standard deviation and n is the sample size.  

In cases where data do not follow Gaussian distribution and are multimodal in 

nature, a non-parametric density estimation technique can be used to determine the 



 

 103 
 

underlying distribution. Kernel density estimates are well-suited for these types of 

data. Commonly used kernel functions include uniform, Gaussian, triangle, 

Epanechnikov, and bi-weight. A kernel function is generally chosen based on the ease 

of computation. For example, the Gaussian kernel is used for its continuity and 

differentiability. The optimal bin width for the Gaussian kernel is obtained by 

5/1ˆ06.1 −= nshopt    (18) 

where ŝ is the estimate of standard deviation. The Gaussian kernel can be used for 

non-Gaussian data, since the kernel is used only as a local weighting function [39]. 

Kernel functions are also called window functions, and Equation (18) is used for 

optimal bin width estimation of a histogram. 

To construct a histogram, a sufficient amount of data is needed in a time 

window to avoid either under-smoothing or over-smoothing the distribution. A 

window size is chosen based on the sampling rate of observations, the sufficiency in 

representing the changes in a system, and the time allowed for detecting degradation. 

A very small window size is dominated by recent observations, while a large window 

size is dominated by aged observations.  

6.1.2 Health Degradation Detection Procedure 

A sequential flowchart of the degradation detection methodology is shown in 

Figure 37. The process involves the construction of a healthy baseline using a healthy 

product’s performance parameters (i.e., the data collected should represent the 

product’s performance under different environmental and operational conditions).  

The product’s performance parameter observations are transformed into a 

distance measure, the MD. The MD value is always positive and increases when a 
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product deviates from its normal healthy state. Thus, a smaller distance value 

indicates better health for a product. A time-series of MDs is obtained by associating 

time information with each distance calculation. MDs corresponding to all baseline 

data are estimated, which forms the Mahalanobis space. A baseline threshold that 

corresponds to the 95th percentile is determined from the healthy set of MDs to 

distinguish faulty or unhealthy products. The 95th percentile represents the confidence 

level in correctly classifying health. As found, the distribution of MD has a long right 

tail, and increasing percentiles may include extreme MD values that are due to some 

intermittent event or error in measurement. Before deciding the percentile to be used, 

one must examine data distribution.  

A time window is chosen and a set of MDs, which reflects a variety of 

observations in that time window, is used to construct an MD histogram using 

Equation (18). Data points in lower bins represent a healthy product, while data in 

higher bins represent a product’s deviation from a healthy state, i.e., a degraded state. 

The histogram approach reduces noise (introduced by measurement error and 

calculation round off) by grouping MDs that correspond to similar health states [113].  

The distribution of MDs can be represented by a histogram after estimating 

optimal bin width from the MD’s dispersion for a healthy product and the number of 

observations in a time window. The histogram bins will span from zero to the 

threshold MD value plus one extra bin. The extra bin is used to accommodate any 

MD value that is greater than the threshold MD value. The use of a threshold MD 

value takes care of extreme changes in the amplitude of MD time series signals due to 

intermittent events.  
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In the case of product degradation, performance parameters could either rise 

or fall relative to the values obtained for the parameters in the product’s normal (i.e., 

healthy) condition. In either case, the MD increases. As time progresses, the product 

degrade, the contributions from the lower bins decrease, and the contributions from 

the higher bins increase.  

Monitor performance parameters

Construct MD time series

Select a time window

Generate histogram using bins in a selected time window 

Calculate fractional contribution of bins in a time window

Shift observation window by an observation over time

Compute health indicator for each time window

Establish threshold health indicator

Construct MD baseline threshold

Monitor performance parameters

Construct MD time series

Select a time window

Generate histogram using bins in a selected time window 

Calculate fractional contribution of bins in a time window

Shift observation window by an observation over time

Compute health indicator for each time window

Establish threshold health indicator

Construct MD baseline threshold

 

Figure 37: Degradation methodology using non-parametric method 

The fractional contribution (FC), which is defined as the number of 

observations in a bin divided by the total number of observations, is then calculated 

for each bin. A moving time window approach, wherein a fixed time interval moves 

from left to right, is used to examine a product’s health progress with time, and the 
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fractional contribution of each bin is estimated as the time window moves forward 

[114]. Any change in the product’s health will be reflected in the change of each bin’s 

contribution in a successive time window. For each time window, a health indicator is 

estimated. A threshold health indicator corresponding to the 95th percentile is 

determined from the healthy set of health indicators to identify the degraded state of a 

product’s health.  

The health indicator is based on the weighted sum of each bin’s contribution, 

and a weight factor is assigned to each bin. Sequentially higher weight factors are 

assigned to bins that contain higher MD values compared to bins that contain lower 

MD values, where histogram bins are arranged in ascending order of bin range. The 

rationale behind using increasing weight factors lies in the fact that a higher MD 

indicates a deviation in a system’s performance that is larger than what was expected. 

Events that could occur momentarily are weighted higher, because such events 

represent more risk of a product’s failure and less response time. Assigning equal 

weight would dilute the impact of events that caused the higher MDs, and may cause 

them to go those events unnoticed. Assigning weight in reverse order would work as 

well, where decision-making criteria would be a health indicator value that is greater 

than the threshold value of the health indicator. Assigning weight in a random manner 

would also give a health indicator value, but it would not provide any logical insight 

into the system’s health or other events. In summary, assigning sequentially higher or 

lower weights to the bins on the right side enhances the ability to detect degradation. 

In this study, weights were assigned in increasing order.  

An overall health indicator at each instance of time is defined by the weighted 
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sum of the fractional contributions of each bin in a time window. The health indicator 

(Hk) at time k is estimated by 

∑
=

=
b

l
kllk fcxwH

1
)(  (19) 

where k represents time, l=1,…, b; b is the total number of bins; wl represents the 

weight assigned to a bin; and fckl is the fractional contribution of the lth bin at time k.  
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Figure 38: Shift in fractional contribution of each bin with time 

As an illustration, a histogram of simulated data is shown in Figure 38. At 

each time shift, a new histogram is generated. Figure 38 also shows a sequential 

change in a product’s health (37(a), 37(b), 37(c), and 37(d)) over time. As time 

progresses, the contributions from lower order bins reduces while the contributions 

from higher order bins increases. The fractional contribution trend of a bin can also 
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be utilized for a product’s health diagnosis, and the bin that has higher slopes can be 

used as a failure or degradation precursor. The contribution trends of bins 1 and 5 are 

shown in Figure 39. These trends can be used to establish a unique threshold (such as 

Thbin1 and Thbin5) for each bin’s contribution in order to track changes in a product’s 

particular health state for diagnostic purposes.  

The threshold could be based on the 95th percentile of the bin contributions 

from the training data evaluation. The only limitation is that a particular bin may not 

come up during evaluation of the test system. Therefore, the first and last bins along 

with two or three in between should be considered when observing only bin trends. 

The health indicator estimated for the simulated data (Figure 38) varies from 

wl=1 (i.e., weight of bin 1) to wl=5 (i.e., weight of bin 5). For this data, a health 

indicator of 1 represents a healthy system and 5 represents a degraded system (i.e., 

the weight of the right-most bin if all data fell into this bin, fc=1). A basic rule is that 

the smaller the health indicator, the better the product’s health. In order to be 95% 

confident about a product’s health, a threshold value for a health indicator 

corresponding to the 95th percentile should be defined to detect degradation.  
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Figure 39: Trend of bin’s fractional contribution over time 
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Table 18: Health Indicators for System 

Bin   (l) weight (wl) % contribution by bins (fckl) 

  k = 1 k = 2 k = 3 k = 4 

1 1 0.6 0.4 0.1 0.02 

2 2 0.2 0.3 0.2 0.1 

3 3 0.1 0.2 0.5 0.4 

4 4 0.05 0.03 0.1 0.3 

5 5 0.05 0.07 0.1 0.18 

Health Indicator (Hk) 1.75 2.07 2.9 3.52 

Table 18 shows the health indicator calculation of the simulated data as time 

progresses and the fractional contribution of the bin changes. Degradation of a 

product’s health can be identified as the health indicator starts to increase from 1.75 

(closer to 1, healthy) to 3.52 (closer to 5, degraded).  

After establishing a threshold value for the health indicator from the healthy 

training product, information such as the correlation matrix, mean, standard deviation, 

time window, bin width, and bin weight used for the training data are used to evaluate 

test products. The health indicator of a test product is estimated in a way that is 

similar to how the health indicator was evaluated for a healthy product.  

6.2 Case Study 

A case study is presented to demonstrate the feasibility of the proposed non-

parametric degradation methodology. A set of healthy computers was used to 
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construct a healthy baseline and threshold for fault detection (i.e., threshold MD) and 

degradation identification (i.e., threshold health indicator). The degradation 

identification was verified for a computer where a fault was induced.  

For constructing a healthy baseline, a set of experiments was designed to 

replicate the real-time usage of computers. The computers were exposed to six 

environmental conditions. For each temperature-humidity combination, four usage 

conditions and three power supply conditions were considered. A set of user activities 

was defined to execute four different usage conditions on the computers. Details on 

the experimental setup and training data collection can be found in the authors’ 

previous publications [91]. In total, 72 experiments were conducted. The range of 

%CPU consumption is shown below over different environmental conditions (Figure 

40) and usage conditions (Figure 41). This baseline was used to differentiate 

unhealthy products from healthy ones.  

Twenty-five thousand observations were randomly chosen to represent the full 

spectrum of computer usage under different environmental conditions to construct the 

baseline. These data points were used to define the characteristic of each performance 

parameter. MD values corresponding to them were obtained using Equation (3) to 

create a baseline for the healthy computers. Variability in the MD values for the 

baseline is shown in Figure 42. This baseline was used to identify anomalies in the 

computers and detect their degradation. 
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Figure 40: %CPU usage in different environmental conditions 
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Figure 41: %CPU usage in different usage conditions 
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Figure 42: MD values for baseline 

Since MD cannot be negative, a one-sided limit was chosen for the threshold 

limit. The distribution of the baseline MDs was a highly skewed distribution. 

Therefore, the threshold MD value was estimated from the cumulative distribution of 

MD values. From the baseline MDs, a threshold MD value equal to 5.8 was defined, 

which corresponded to the 99th percentile of MDs (i.e., 99% of MDs fell below the 

threshold MD).  

A time window of 1 min was chosen to create a histogram and estimate the 

health indicator. The time window included ten instances of CPU performance 

measures, two instances of temperature measures, two instances of fan speed 

measures, and one instance of brightness and battery information. A change in 

temperature and fan speed was of importance because the fault was injected into the 

fan.  
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Figure 43: Health indicator for baseline 

The standard deviation of the baseline MDs was used to estimate optimal bin 

width of the histogram using Equation (6). By considering 16 observations per 

minute, the optimal bin width was estimated (= 0.50 MD). Based on the threshold 

MD value and the optimal bin width, twelve bins were created, which included a bin 

that corresponded to the threshold MD value and anything greater than that. In the 

time window, the contribution of each bin was calculated and the health indicator was 

estimated. The health indicator plot for the baseline is shown in Figure 43. A 

threshold health indicator equal to 7.05 was defined for degradation identification, 

which corresponded to the 99th percentile of the health indicator. 

6.3 Fault and Degradation Detection  

The methodology was verified with a test computer. The test computer model 

was the same model as the computers used for baseline construction. The test 

computer was powered by an AC adapter and subjected to the U1 condition in a room 

environment (approximately 25°C/55% RH) for observation of its healthy state. MD 
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values corresponding to the healthy condition of the test computer are shown in 

Figure 44.  
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Figure 44: Sample MD values for test system (healthy) 

The health indicator for the healthy test computer was calculated for each time 

window using the number of bins and bin weight determined for the baseline. The 

health indicator plot of the healthy test computer is shown in Figure 45.  
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Figure 45: Sample health indicator for healthy test computer 

The presence of a few jumps in the MD values in the MD plots (Figure 42 and 

Figure 44) indicated that the test computer had some variability, but this did not 

necessarily indicate faults in the test computer. These jumps were due to the fact that 
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MD is sensitive to changes in correlation of performance parameters, and not all 

parameters were refreshed at the same time. As a result, the measurement of a few 

parameters was carried over to the next sweep of observation, and the sudden change 

in a particular parameter resulted in jumps in MD. With background knowledge of the 

data collection technique, a few jumps in MD value are not of concern, but a change 

in the trend of MD values is.  

After turning on the test computer in the same experimental condition, a fault 

in the fan was induced after a short time period (242nd observation). The MD values 

of the test computer after fault injection are shown in Figure 46. The health indicator 

for each time window was calculated by constructing histograms from the MD values 

of the unhealthy test computer, where the number of bins and the bins’ weights that 

were used were determined earlier. The health indicator plot is shown in Figure 47, 

and the difference in MD and the health indicator could be observed beyond the 321st 

observation.  
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Figure 46: Sample MD value for test system (unhealthy) 
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Figure 47: Health indicator for unhealthy test computer 

6.4 Results and Discussion 

The statistics of MDs for the baseline, the test computer in a healthy state, and 

the test computer in a degraded state are given in Figure 48. Outliers in Figure 48 are 

represented by “*”. The minimum and mean of MD changed by an equal amount 

(~0.2), and a similar inter-quartile range suggested that the test computer and the 

computers used for the baseline were similar but had some inherent differences either 

due to manufacturing or to the components used. After injecting a fault, the MD mean 

increased by 50%, and the inter-quartile range also increased by 100% in comparison 

to the healthy state of the test computer. 
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Figure 48: Statistical representation using box plot of MDs 

As the test computer was turned on, various temperature parameters started to 

increase and MD values increased simultaneously (Figure 44) and so the health 

indicator (Figure 45). A fault was injected at the 242nd observation after a few 

instances of the fan starting and stopping, which computer’s BIOS regulates. The fan 

start and stop events resulted in the fall and rise of the MD values and the health 

indicator, but they fell below the threshold limit and had a data plot similar to what 

was observed for the baseline data.  

The MD value went above the threshold MD value at the 249th observation, 

indicated by “a” (Figure 46), which was the 7th observation after fault injection. A 

change in computer performance was noticed within a time window (14 observations 

~ 1 min). The successive MD values were higher in comparison to the healthy test 

computer but fell below the threshold MD value. This can be attributed to the MD 

estimation procedure that estimates an MD value for each observation and does not 

include the immediate history of system performance. Failure to include immediate 

history of system performance can be viewed as positive attribute of MD estimation 
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approach if one is concerned with fault detection only, and is not concerned about 

degradation.  

For detecting degradation, inclusion of the immediate history would add 

value, and the health indictor estimation makes use of that by considering the 

historical information. In our case study, the health indicator started to increase with 

the fault injection and continued to increase with successive observations. As the 

temperature parameters raised, so did the health indicator, and at the 272nd 

observation, “b”, (2 min after fault injection) the health indicator exceeded its 

threshold limit. During this period, an increasing trend in MD values with a small 

slope and few spikes was observed (Figure 46). These spikes were accounted for in 

the cumulative sum of weighted bins for health indicator estimation.  

The effectiveness of the health indicator was more evident after the 330th 

observation, “c”, when MD values were well below the threshold MD and the health 

indicator was hovering near the threshold health indicator. Even small changes in MD 

values over time resulted in a higher health indicator. The larger MDs fell into higher 

bins that had higher weights assigned to them. Observations from a case study 

suggest that the MD values provide an indication of a sudden change, while the health 

indicator identifies the aftereffect of fault injection. 

Analysis of the fractional contribution of bins from the healthy test computer 

showed that higher order bins were not present up to the 242nd observation. As a 

fault was injected at the 242nd observation, the higher bins (bin # 7 and up) started to 

show up in a fractional contribution plot, while bins 1 to 6 started to fade out. Shifts 

in the bins’ appearances were due to changes in the computer’s health. A trend in the 
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contribution of each bin can be monitored as a precursor of degradation, and ten 

consecutive higher MD values (i.e., more than 50% contribution coming from bins 7 

and above) could also be used as criteria for decision making on degradation.  

6.5 Summary and Conclusions 

A new degradation detection methodology is presented for products for which 

multiple parameters indicative of performance and operation were monitored in time-

series. Mahalanobis distances (MD) are utilized to transform the multi-dimensional 

problem into a univariate problem. A time window is selected for assessment, and a 

histogram of MD values is calculated for each time window by binning MD values in 

bins of optimal bin-widths. A new metric, a health indicator, was defined as the 

weighted sum of the histogram bins. Based on healthy training data for the product a 

threshold value for the health indicator was established. This value was compared to 

the health indicator values during operation in order to detect degradation. 

Variation in MD values is expected due to the sensitivity of MD to the 

variability in individual parameters. A few incidences of MD being greater than a 

threshold MD value do not always mean that a product is unhealthy or degraded. The 

variability in the MD values was neutralized by grouping them into a histogram. The 

health indicator utilizes immediate history to account for recent changes in a system’s 

performance. Over time, combining information on recent history into a health 

indicator reduces the number of false alarms, especially when performance 

parameters do not exhibit trends.  

The case study on computers demonstrated the usefulness of the degradation 

detection methodology in detecting anomalies and degradation. In this study a 
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specific health indicator was created using a histogram created from MDs and the 

weight assigned to each histogram bin. The MDs were estimated from observations 

collected in a time window and the size of the time window was decided based upon 

the data collection frequency and the diagnostic requirements. Weights were assigned 

to each histogram bin in an increasing order. The MD indicated a change in the 

computer’s performance at the 249th observation. Within 2 minutes, at the 272nd 

observation, the health indicator crossed the threshold value, thus indicating 

degradation. The health indicator kept on indicating degradation even though MD 

values fell below the threshold value after the 330th observation. The case study 

demonstrates the robust nature of the health indicator metric for indicating 

degradation and the advantages of using this metric over using MD values directly. 

The threshold value for the health indicators of a product is determined from 

the product’s healthy baseline data. This value is dependent on the product 

specifications (components, ratings, duty cycle, etc.) and the known or expected use 

conditions of the product. This often limits the applicability of one set of threshold 

value across different products or product families. For example, computer products 

made for the gaming market would have different threshold values compared to 

computers for regular office use. Manufacturers can develop procedures to 

characterize product threshold values during the product development cycle. These 

values can then be updated with incremental changes in product design and features.   

The present approach extends the applicability of Mahalanobis distance for 

degradation identification. The method can be extended to any system whose 

performance can be monitored under various life cycle conditions. The user’s risk 
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acceptance criteria would define the time window size and the assignment of weights 

to different bins. In the decision making process, assignment of a higher weight to 

larger MD values reduces the smoothing nature of the weighted sum and provides 

intuitive meaning to numbers. The use of health indicators would reduce false 

negative and false positive types of errors in comparison to the use of MDs. 

Sensitivity analysis of health indicators will be presented in further publications.  
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Chapter 7: Prognostic Measures using Symbolic Time Series 

Analysis 

 

The real-time health assessment of electronics has great importance due to its 

wide range of possible applications, ranging from a battery’s safety circuit to system-

of-systems readiness. A system-of-systems is a complex structure composed of a 

large number of subsystems. A subsystem is made up of several components. All of 

these components of the overall system have complex interactions with each other, 

with feed-forward and feedback loops of instructions. Many practical systems are 

nonlinear and exhibit periodic, quasi-periodic, or chaotic behavior during a system’s 

healthy operation. An incipient fault may cause changes in system behavior and 

translate into changes in a system’s performance parameters. These changes define a 

system’s different health conditions, providing a means to detect anomalies and 

estimate probable future health conditions.  

Quantification of degradation and fault progression in an electronic system is 

difficult since not all faults necessarily lead to system failure or functionality loss 

[1][2]. Anomalies in a system can evolve over time or arise due to a manufacturing 

defect. Identification of these anomalies and their progressive trends can provide: 1) 

advance warning or precursors of failures; 2) condition-based maintenance instead of 

scheduled maintenance; 3) reduction in the life-cycle cost of equipment by decreasing 

inspection costs, downtime, and inventory; and 4) optimization of design and 

qualification cycles of new systems as well as logistical support of fielded and future 
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systems. Techniques for diagnostics and prognostics in electronic systems include the 

use of statistical models [24], physics-of-failure-based life-consumption models 

[115], system models [116], and data-driven models [112].  

In general, a product’s health can be assessed by observing multiple 

performance parameters of the product. Data sets of very high dimensions present an 

analytical challenge since all non-trivial data mining and indexing algorithms degrade 

exponentially with dimensionality [8]. While a high-dimensional data set contains a 

lot of valuable information, a lower dimensional measure is easier to comprehend and 

can be computed in quick succession. Considering the correlations among 

performance parameters is advantageous because an electronic product experiences 

diverse environmental and use conditions. For example, the capacitance and 

insulation resistance of a capacitor vary with changes in ambient temperature. The 

effectiveness of a diagnostic procedure increases by incorporating a change in 

relationship among performance parameters, because each performance parameter 

changes at a different rate due to changes in ambient conditions.  

A multivariate Mahalanobis distance (MD) measure [9], a unified parameter 

representative of system health, is used to capture the non-linear dynamics of an 

electronics system. The use of the MD approach reduces the analytical burden 

because information on all the performance parameters is combined into a number 

(i.e., MD), which is utilized for the system’s health assessment. MD does not suffer 

from the scaling effect because it uses normalized data. The scaling effect describes a 

situation where the variability of one parameter masks the variability of another 

parameter, and it happens when the measurement ranges or scales of two parameters 
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are different [10]. The use of correlation among parameters for MD calculation also 

makes it sensitive to small changes in performance parameters. This sensitivity is 

desired for a system whose operational domain is small (i.e., normal variation in 

performance parameters is small). For a system whose operational domain is large, 

MD’s sensitivity results in noise for a time series analysis and needs to be reduced in 

order to make better decisions. The interaction of the dynamical system with its 

environment is another source of small variation in the parameters. In any automatic 

fault detection system, these types of extrinsic effects can be easily confused with the 

true intrinsic changes. To deal with this noisy domain data, an approach that can 

reduce sensitivity to small variations should be used. 

Noisy information can hide the true nature of measured data and lead to the 

inaccurate classification of a system’s health and health progression [117]. 

Symbolization of measurements minimizes the effects of noise and measurement 

error so that accurate quantification of system health becomes possible [118]. 

Symbolic representations of real-value measurement enable the use of algorithms and 

data structure from text processing and bioinformatics [119]. Symbolization of real-

value measurement is achieved by representing each discrete range of measurements 

by a symbol. Representation of time series greatly affects the ease and efficiency of 

data analysis. A number of time-series’ symbolic representation approaches have 

been introduced in the literature. The Discrete Fourier Transform (DFT) was the first 

approach used to reduce the dimensionality of time series [120]. The Fourier 

coefficients resulting from DFT do not guarantee optimal reduction. The Discrete 

Wavelet Transform (DWT) is used for time series sequences whose lengths are an 



 

 125 
 

integral power of two [121]. However, the wavelet coefficients obtained from DWT 

are not generally optimal. Singular Value Decomposition (SVD) is also used for data 

reduction [122]. However, it is not adaptive to local variations in data.  

Piecewise Aggregate Approximation (PAA) reduces time series data by 

dividing them into equal-sized “frames” and recording the mean value of the data 

points that fall within each frame [122]. Typically, the times and locations at which a 

parameter shows the greatest uncertainty are of most interest and are generally the 

most likely to yield the greatest information about system dynamics and health. The 

averaging of data in a frame results in the loss of sensitivity to variance. Adaptive 

Piecewise Constant Approximation (APCA) represents an improvement over PAA on 

the issue of the over-smoothing of time series data as it places a single frame in an 

area of low activity and many frames in areas of high activity [123]. Symbolic 

Aggregate Approximation (SAX) is an extension of the PAA approach [119]. A 

symbol is assigned to each frame of PAA where a frame for a real-time series is 

obtained by dividing the normalized time series in to equal-sized areas. The 

Continuous Wavelet Transform (CWT) provides a time-frequency representation of 

the time series signal and uses the multi-resolution technique by which different 

frequencies are analyzed with different resolutions [124]. The CWT and the Shannon 

entropy concept are used to reduce the dimensionality of time series.  

Shannon entropy is essentially a compact metric of uncertainty, and high 

uncertainty is taken to indicate high information content [124]. Shannon entropy 

offers at least two important advantages. First, it is a formal measure of information 

content, based on mathematical communications theory. Second, it is a relatively 
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comprehensive and robust estimator of uncertainty. The variance, for instance, works 

best for data that has Gaussian distribution. Both the variance and rank-based 

equivalents, such as the inter-quartile range, are poorly suited to data that has bimodal 

or multimodal distribution. The range has no such restrictions, but it generates 

absolutely no knowledge about the relative likelihood of different values lying 

between the minimum and maximum. Shannon entropy is free of such burdens, as it 

succinctly captures the informational implications of the observed frequency 

distribution while making no assumptions about the overall shape of that distribution.  

The objective of this chapter is to develop an approach for analyzing a 

multivariate system and defining prognostic measures to be used for detecting 

anomalies and estimating probability that a system will be in a bad condition. The 

MD efficiently summarizes multivariate data into univariate data. Associating 

observation time information with MD values forms an MD time series, which can be 

used for system diagnostics and prognostics. To reduce noise and characterize self-

similar behavior over a wide range of time scales in the MD time series, continuous 

wavelet transform is used [126]. The wavelet transforms represent functions that have 

discontinuities and sharp peaks and provide a wavelet coefficient as result of the 

transformation. The wavelet coefficient plot is partitioned and a symbol is assigned to 

each partition. The symbolic time series is generated from the MD time series and a 

sequence of symbols is used to define system states such that maximum information 

on system behavior can be revealed. A non-linear dynamic Markov model is then 

developed from the symbolic representation of system dynamics to differentiate the 

states of the system [111][126]. Symbol sequence statistics are used as the model 
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strategy, and the Markov state model is used to represent system dynamics 

constructed for system diagnostics and prognostics.  

In the following section, details on the Mahalanobis distance method are 

presented regarding the transformation of multivariate data into univariate data. 

Following that, symbolic time series, the Markov model, and health monitoring 

concepts are discussed. A case study on a notebook computer is presented to 

demonstrate the capability of the proposed methodology in “real time” product 

monitoring.  

Training and Test Data’s Mahalanobis Distance Calculation  

The Mahalanobis distance methodology distinguishes multivariable data 

groups by a univariate distance measure that is calculated from the measurements of 

multiple parameters. The MD value is calculated using the normalized value of 

performance parameters, and their correlation coefficients, which is the reason for 

MD’s sensitivity [9][127].  

The MD calculation process for training and test data is shown in Figure 49. 

The mean and standard deviation of each parameter are calculated from the training 

data and are used for normalizing each observation of the training and test data sets. 

Likewise, the correlation coefficient matrix obtained from the training data is used to 

calculate the MD values for both the training and test data sets.  
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Figure 49: Mahalanobis distance calculation for training and test data 

At each time step, an MD value is calculated for an observation, thus forming 

a time series of MD values. This time series constructs a domain that represents a 

healthy system and represents variation in a system’s health over time. This domain 

can be used to identify changes in system health, and the domain can be updated as 

well with new system information. This time series is used to extract system features 

and patterns for diagnostics and prognostics. Since the MD value calculation is based 

on correlation coefficients among parameters, a high amount of variation arises with 

small changes in parameters. The small variation in parameters generates noise in the 

MD time series, which means it needs to be filtered. The following section discusses 

filtering and the conversion of this time series into a symbolic time series, which is 

used to develop the Markov state of the system. 

7.1 Symbolization of Time Series 

It is generally not possible to repeat observations under the same conditions in 

a multivariate complex system, which has multiple components that interact with 

each other together with feed-forward and feedback information loops. Sometimes 

noisy data is observed because the measurements are irregularly sampled or exhibit 

non-stationary behavior. In order to study a complex system’s dynamic behavior, 
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capturing statistical regularities in a group of patterns, for which models are inferred 

from samples of the observation, is preferred over using a physics-based model, 

which may account for only averaged behavior of the physical process [128]. The use 

of statistical inferences makes time-series data generated from sensors more valuable. 

Several approaches to the transformation of real-value time series data into symbolic 

series are available [111].  

The symbolic time series is generated from discretization of a real valued 

time-series measurement into a finite set of values [118][119][122]. The first step in 

this process is to define symbolic regions by introducing partitions in the real value 

data space, such that a specific symbol is assigned to a range of real values. This 

partitioning reduces the signal’s variability in a region by representing it through a 

single symbol, which is also known as the coarsening of information. This process 

also improves the signal-to-noise ratio. The partitions are defined such that the 

occurrence of each symbol representative of a partition has the same probability.  

It is observed that a small change in a system’s performance parameters 

results in different MD values. It is assumed that a small range of MD values 

represents similar conditions in a system. The variability within that range is 

considered noise. In this chapter, an MD time series is converted into a symbolic time 

series. This conversion process captures large-scale features and reduces noise. A 

representative partitioning of a system’s measured features, a real value time series, 

and a set of symbols used for its symbolizing (i.e., conversion of continuous 

measurement into symbols) is shown in Figure 1. Details on the feature-space 

partitioning are presented in a later section. 
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Figure 50: Data series conversion into a symbol series 

A system’s behavior (or states) can be represented by a number of symbol 

sequences (i.e., combination of symbols such as “abc”, “acb”). A sequence is referred 

to as a word. The relative frequencies of words are used to construct a symbol 

sequence histogram (SSH). The SSH represents the overall dynamics embedded in a 

given time series and can be used to compare data sets or system behavior. SSH also 

provides information regarding “forbidden symbol sequences,” i.e., symbol sequences 

with zero or a significantly low probability of occurrence. With good partition, this 

symbolic sequence retains essentially all of the information contained in the original 

time series, and once coded, the dynamics of a system are indistinguishable from 

other information sets. This optimal symbol sequence length is achieved by 

maximizing normalized Shannon entropy. Shannon Entropy, H, is calculated using 

Equation (20 

∑−=
i

ii pp
N

H )(log
log

1
2

2
      (20) 

with 0.log2(0) = 0 and where N is the total number of observed symbol sequences 

with length l (i.e., the number of sequences of length l with non-zero probability); i is 
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an index for the sequences of length l; and pi is the probability of the ith symbol 

sequence. The choice of log = log2 reflects the fact that the information is measured in 

bits. 

The symbol sequence is used to represent any possible variation over time, 

depending on the number of symbols used and the sequence lengths. This approach 

does not make any assumption about the nature of the patterns, and it works equally 

well for linear and nonlinear phenomena. The symbolic sequence identifies features 

that do not emerge in the analysis of the original time series. For example, such 

features can be periodic repetitions of a symbol (interpreted as repeating episodes of 

structural change) or some kind of stationary behavior. Once the symbol sequence is 

generated, the symbol sequence statistics, reflecting the probability of occurrence of 

different symbol sequences are calculated. The symbol sequences’ transition 

probabilities are computed from the sequences’ traversal over time though the 

symbolic series. This information is sufficient to create a Markov state model that can 

effectively express system behavior. Details on the Markov model are presented in 

the following section.  

7.2 System Modeling 

Hidden Markov models (HMMs) are used to analyze both the time dependent 

evolution of a system and the steady state of a system [129]. HMMs have been widely 

applied to speech recognition [130], character recognition [131], texture analysis 

[132], and so on. In HMMs, typically the current state depends on the immediately 

preceding state but is not influenced by the immediately preceding observation. In our 
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approach, the current state depends on both the immediately preceding state and the 

immediately preceding observation because system states are defined by symbol 

sequences that share few symbols. 

The HMM for a system is defined by various system states representative of a 

system’s behavior (or health), state probability, and transition probability (probability 

of a system transitioning from one state to another) [129]. In the context of Markov 

models the matrix of transition probabilities (or transition matrix), E(t1, t2)=[eij(t1, t2)], 

is the core of any HMM. Each entry in a transition matrix shows the probability that 

the system, being in a state “i” at time t1, will be in the state “j” at time t2. A Markov 

model is represented as the four tuple <s, S, W, E>, where s is the start state, S is the 

set of states, W is the set of state probabilities, and E is the set of transitions.  

At regularly spaced discrete times, the system undergoes a change of state and 

possibly back to the same state according to a set of probabilities associated with the 

state. The time instances are associated with state changes as t = 1, 2, … , n, and 

denote the actual state at time t as qt . A full probabilistic description of the system 

state requires specification of the current state (at time t), and all of its predecessor 

states. For the special case of a discrete first order Markov chain, the probabilistic 

description includes the current and predecessor state, i.e.  

]|[...],|[ 121 ititktitit sqsqPsqsqsqP ====== −−−  (21) 

Furthermore, consider processes in which the right-hand side of the above 

mentioned equation is independent of time, thereby leading to the set of state 

transition probabilities ‘e’, of the form 
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NjisqsqPe itjtij ≤≤=== − ,1,]|[ 1    (22) 

with the state transition coefficients having the properties eij ≥ 0 and ∑eij=1 since they 

obey standard stochastic constraints.  

In this chapter, the Markov state model is used to determine 1) the probable 

system states, 2) the initial state probability, 3) the state transition probabilities, 4) 

average time of stay in a particular state, 5) the probability of reaching a state given 

its present state information, and 6) reduction in time to reach an undesired state. The 

following section discusses diagnostic and prognostic methodology using 

Mahalanobis Distance, the symbolic time series, and the Markov state model. 

7.3 Health Monitoring Methodology 

A system’s health monitoring process includes the study of its functional 

considerations; operational and performance parameter monitoring; data feature 

extraction; representation of system dynamics; and identification of diagnostic and 

prognostic measures. These measures can be used for fault diagnosis and prognosis. It 

is assumed that a system under consideration has been studied for its functionality, 

and parameters that represent its operational environment and performance have been 

identified for monitoring. This chapter uses Mahalanobis distance as a data feature 

that is transformed into symbolic form in order to reduce noise and create Markov 

model for representing system dynamics and defines few measures for diagnostics 

and prognostics.   

A sequential flow chart of the proposed health monitoring methodology is 

shown in Figure 51. The process starts with monitoring system parameters. The range 
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of values and the behavioral pattern of each parameter under different environmental 

and operational conditions are obtained. Correlation and interdependency between 

these parameters, also known as correlation coefficients, are calculated. These 

correlation coefficients and normalized parameters are used to calculate MD value for 

each observation, as discussed in earlier section. The MD is calculated from 

monitored parameters to reduce multivariate data into univariate form and by 

including time information with MD values. A MD time series is created. The 

collection of MD values for a healthy product/system is used to determine a threshold 

MD value, which can be used to detect any anomalies that arise over time. This 

provides a preliminary measure that detects sudden changes in MD values due to 

extreme changes in system health.  The MD time series that fall within the threshold 

are used for further analysis. Due to inherent product variability and measurement 

noise, these MD values sometimes vary a lot and may provide wrong impression 

about product health. 

Parameter monitoring

Mahalanobis distance

Symbolic time series

Markov state model

Prognostic measures

Parameter monitoring

Mahalanobis distance

Symbolic time series

Markov state model

Prognostic measures
 

Figure 51: Schematic of diagnostic and prognostic approaches 
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The next step involves creation of a symbolic time series (shown in Figure 52) 

from the MD time series such that noise can be reduced in the MD time series. The 

wavelet transform, which provides a precise and unifying framework for the analysis 

and characterization of a signal at different scales, is used [133]. Temporal analysis is 

often performed with a contracted, high-frequency version of the prototype wavelet, 

while frequency analysis is performed with a dilated, low-frequency version of the 

prototype wavelet Since the original signal or function can be represented in terms of 

wavelet expansion (using coefficients in a linear combination of the wavelet 

functions), data operations can be performed using just the corresponding wavelet 

coefficients. The wavelet coefficient is the measure of the similarity of the original 

signal to the prototype function, called an “analyzing wavelet” or “mother wavelet”  

MD time 
series

Continuous wavelet 
transformation

Equi-probable partitioned 
wavelet coefficients plot

Symbolic time 
series

MD time 
series

Continuous wavelet 
transformation

Equi-probable partitioned 
wavelet coefficients plot

Symbolic time 
series

 

Figure 52: Symbolic time series generation 

The wavelet transformation uses a family of wavelet functions (i.e., mother 

wavelet) and its associated scaling functions to decompose an original signal. In this 

chapter, a continuous wavelet transform is applied to MD time series to get wavelet 

coefficients at different scales and time shifts. The high scales correspond to a non-

detailed global view (of the signal), and low scales correspond to a detailed view. 

Similarly, in terms of frequency, low frequencies (high scales) correspond to global 

information of a signal (that usually spans the entire signal), whereas high frequencies 

(low scales) correspond to detailed information of a hidden pattern in the signal (that 

usually lasts a relatively short time). The scale and coefficient at each time shift 
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represents product health. The higher coefficient means better similarity between the 

mother wavelet and the original signal. The stacked plot of a maximum coefficient, at 

each time, over different scales is generated. The stacked plot is partitioned such that 

each partition (i.e., symbol) is equi-probable (i.e., each partition has same number of 

coefficients). This results in segments with more information having a finer partition 

while segments with coarser information would have a wider partition [134]. The 

partitioning process is iterative, and the optimal number of partitions is influenced by 

the number of symbols to be used for representing a state.   

To create a Markov state model we need information on the Markov states 

and the transition matrix. The steps involved in determining Markov states from the 

symbolic sequence are shown in Figure 53. A symbol sequence of length “l” forms a 

state of the system. The number of states in a Markov model is decided by the 

number of symbols used for a state, their possible combinations, and the total number 

of symbols used in partitioning. A histogram from the probability of different states is 

built, where the probability of each state is calculated from the symbolic time series. 

This state probability is used to calculate the Shannon entropy. This process is 

iterated to determine optimal sequence length, which is used to define Markov states. 

Relative improvement in the Shannon entropy over different sequence lengths is used 

to determine the number of symbol sequences to be used for representing a state. The 

number of segments on a coefficient plot is an iterative process, and the optimal 

number of segments is the amount that provides the minimum relative improvement 

in the Shannon entropy over other partitions. Minimum relative improvement ensures 

the minimum influence of noise on the symbolizing process. A symbol (numeric or 
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alphabetic) is assigned to each partitioned segment. The symbol sequence is 

generated using the original MD time series and a partitioned plot. 

Symbolic time 
series

Initial number of symbols 
to define  a state Set of states Create states 

histogram

Calculate 
Shannon entropy

Probability of states 
and their transitions

Optimal 
number of 
symbols

no

yes

New number of symbols 
to define  a state

Optimal set of 
Markov states

Markov state model

Symbolic time 
series

Initial number of symbols 
to define  a state Set of states Create states 

histogram

Calculate 
Shannon entropy

Probability of states 
and their transitions

Optimal 
number of 
symbols

no

yes

New number of symbols 
to define  a state

Optimal set of 
Markov states

Markov state model

 

Figure 53: Markov state determination 

The Markov state model is defined by the initial probability of each state and 

their transition probabilities. Initial state probability is the relative frequency of a state 

(i.e., symbol sequence) in a symbolic time series. Transition probability is the 

probability of reaching one state from another state when traversing through a 

symbolic time series. In addition, the distribution of times spent in a particular state is 

derived. A representative Markov state model is shown in Figure 54. Based on system 

information and data analysis, Markov states can be classified as normal, degraded, 

and bad. At any given instance, a system can be present in any one of the Markov 

states.  
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Figure 54: A representative Markov state model 

The time to reach an end state, given that a system is in a particular (initial) 

state, can be estimated by analyzing the chain of states sequence that a system follows 

from the initial state to an end state [135]. A backward iterative equation 23, 24, and 

25 to compute remaining time is as follows where starting state is i and some end 

state is j. 

11,11,11 **)1( −−−−−− −+−−= jjjjjjj dofpercentilethkadofpercentilethkaTT (23) 

22,211,22 **)1( −−−−−−− −+−= jjjjjjj dofpercentilethkaTTaTT              (24) 

iii TTdofpercentilethkTR +−=                 (25)  

where TRi is the remaining time a system has at the ith state to reach a system state j; 

TTi is the time to travel from the ith state of a system; aii is the self state probability; 

ai,i+1 is state transition probability from ith to (i+1)th state of a system; and di is the 

distribution of the stay duration in state i. In case of a single training dataset, a 

system’s expected stay in any state could be based on the percentile value (i.e., kth 

percentile of di) estimated from the distribution of the system’s stay in that state. The 
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equations use probabilistic time to stay in a particular state, where the distribution of 

a state’s stay duration (di) and the state’s transition probability (ai.) are defined from 

the healthy training data. One can estimate remaining useful life (i.e., time to reach 

the end state from any state) if time-to-failure data is used to create a Markov model. 

The measures that can be used for system prognosis include identification of 

new non-zero states, changes in state probabilities, changes in the amount of time a 

system stays in a state, changes in the time to reach a particular state, changes in the 

probability of reaching a particular state, and time to reach a particular state. These 

probabilistic measures are calculated from the Markov state model and the system’s 

present state information. Knowledge of the probability density function of stay 

duration in any state and knowledge of the time to transition from one state to another 

makes it possible to estimate the amount of time a system takes to reach a particular 

state from its current state. This information provides lead-time information about the 

system that is equivalent to remaining useful life. The methodology discussed is 

explained using the following case study. 

7.4 Case Study 

Experiments were performed on ten identical notebook computers that were 

manufactured by the same company. As part of the test plan, it was necessary to 

assess the performance of the products under different environmental and usage 

conditions. Since not all conditions could be tested, certain extreme and nominal 

conditions were included. The software usage conditions—a set of computer users’ 

activities representative of typical computer uses—was defined [72]. These usage 

conditions were executed through a script file, where all user activities were encoded.  
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To study the variability in performance parameters, experiments on ten 

computers were conducted under six different environmental conditions, as shown in 

Table 2, and measurements were made in-situ. The test temperature range was from 

5°C to 50°C, which was wider than the specified operating and storage temperature 

range of the computer in order to include variation in operating conditions beyond the 

manufacturer-specified range. In each environmental (temperature-humidity 

combination) condition, four usage conditions and three power supply conditions 

were considered [91]. The test duration depended upon the way the computer was 

powered. When the computer was powered by an AC adapter and the battery was 

fully charged (relative state of charge (RSOC) = 100%), the test ran for 3.5 hrs. When 

the computer was powered by an AC adapter when the battery was fully discharged 

(i.e., RSOC < 4%), the test duration was determined by the time the battery took to 

fully charge (RSOC = 100%). When the computer was powered by its battery only, 

the test duration was determined by the discharge (RSOC < 4%) time. The tests were 

conducted in a temperature-humidity chamber and in a room-ambient environment. 

Table 3 shows all 72 experiments. Each computer was turned on for 30 minutes 

before the experiment was started. The computers were kept at room temperature 

between each test for 30 minutes. 

The training data was formed by eight correlated performance parameters. 

The parameters measured were fan speed (speed of a cooling fan in rpm), CPU 

temperature (measured on the CPU die), motherboard temperature (measured on the 

top surface of the printed circuit board near the CPU), videocard temperature 

(measured on the graphics processor unit), %CPU usage (measure of how much time 
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the processor spends on a user’s applications and high-level Windows functions), and 

%CPU throttle (measure of the maximum CPU percentage to be used by any process 

or service, thereby ensuring that no process consumes all of the CPU’s resources at 

the expense of other users or processes). The parameters C2 and C3 are power saving 

states of the CPU in which the processor consumes less power and dissipates less heat 

than in the active state. C2 and C3 represent the percentage time a processor spends in 

the low-power idle state and are a subset of the processor’s total idle time. In the C2 

power state, the processor is able to maintain the context of the computer’s caches. 

The C3 power state offers improved power savings and higher exit latency over the 

C2 state. In a C3 power state, the processor is unable to maintain the coherency of its 

caches. All the parameters were sampled at different rates: CPU operation every 5 

seconds, and temperatures and fan speed every 30 seconds.  
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Figure 55: MD values of healthy system 
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Figure 56: Histogram of MD values for healthy population 

The training data was composed of approximately 24,012 observations. The 

correlation coefficients among performance parameters were calculated. The 

Mahalanobis distance for each observation of the training dataset was calculated 

using Equation (3). As discussed earlier, a small change in performance parameters 

results in a bigger change in MD value. For illustration purposes, the variability in 

training data MD values is shown in Figure 55, and MDs distribution (i.e., histogram) 

is shown in Figure 56. Right-skewed distribution suggests that a large amount of 

information on system dynamics can be grouped. However, small variations in values 

may contain noise that need to be filtered for better representation of system 

dynamics and health assessment.  

The Daubechies wavelet transform was applied to the MD time series data to 

remove noise and extract features from the data, such as trends, discontinuities, and 

self-similarities. Wavelet coefficients were obtained as output of wavelet transforms 
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at different scales and time shifts. An average of the largest coefficients over the 

scales at different time shifts was calculated. A wavelet transform, db4, which had the 

largest change in average coefficient (Table 19), was selected for transforming the 

MD time series. 

Table 19: Changes in Average Coefficient 

db2 db3 db4 db5 db6 db7 

0.029 0.077 0.099 0.095 0.084 0.066 

A stacked plot of the largest coefficients over different scales at different time 

shifts was generated. The number of equi-probable partitions of coefficient plots was 

such that the dense region had more partitions than the sparse region. A symbol was 

assigned to each partition, such as 1, 2, 3, 4, 5, 6, 7, and 8, were assigned from the 

lowest partition to the highest partition in ascending order on the coefficient axis of 

the stacked plot. Table 20 presents the relative improvement in Shannon entropy 

corresponding to different partitions (i.e., 5, 6, 7, and 8) and word length (i.e., 2, 3, 4 

and 5). Based on the minimum relative change in Shannon entropy and word length, a 

number of partitions were selected for the stacked coefficient plot. The relative 

change in Shannon entropy is defined as change in entropy divided by old entropy 

(i.e., ΔE/E1, where ΔE = E1 - E2). 
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Table 20: Relative Change in Shannon Entropy for Different Partitions 

Word length 2 3 4 5 

8 0.159 0.223 0.202 0.170 

7 0.155 0.237 0.260 0.242 

6 0.177 0.206 0.274 0.271 

N
um

be
r o

f d
iv

is
io

n 

5 0.200 0.342 0.361 0.366 

To create a hidden Markov model different states are defined by symbol 

sequences, known as a word. The optimal word length is determined by the Shannon 

entropy maximization. Table 21 presents the relative improvement in Shannon 

entropy for different word lengths. A word length of two symbols, which shows the 

largest improvement in the Shannon entropy for all partitions, was selected to define 

different Markov states. The Markov states were represented by all symbol sequences 

formed from the two-symbols sequence. After determining the optimal word length, 

the optimal number of partitions, which was seven, was identified from Table 20. The 

coefficient plot was segmented into seven partitions. 

Table 21: Relative Changes in Shannon Entropy for Different Word (Symbol 

Sequence) Length 

Partitions used 8 7 6 5 

2 0.75 0.73 0.70 0.68 

3 0.63 0.64 0.63 0.60 

W
or

d 
le

ng
th

 

4 0.48 0.50 0.51 0.51 
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The number of Markov states increases significantly as the symbol sequence 

length increases and the number of symbols used in the problem increases. An 

increase in the number of possible states reduces the initial probability of each state 

significantly and does not improve the results. Therefore, the window size should be 

such that the number of Markov states remains manageable. In this study, the total 

number of symbols used was 7, a window size of 2 was chosen, and this resulted in 

49 Markov states. The number of non-zero states was 39, and 10 states had never 

been visited. The initial state probability and transition probability estimates were 

calculated from the symbolic time series. Each state’s initial probability, time spent in 

a state, and transition time from one state to another state were calculated. This 

information formed the baseline for comparing system health over time.  

For validation purposes, data from a field-returned notebook computer, which 

had an issue with its fan and would stop functioning after a while, was used. The 

temperature of the computer’s components increased as the fan speed dropped. The 

amount of data (i.e., 24012) used from field-returned computer was equal to the 

training data. The prognostic measures mentioned earlier were calculated. Deviations 

(Table 22) from the baseline information were indicative of changes in the 

computer’s performance and health. The first prognostics measure to indicate a 

behavior change in the system was observed as a reduction in the number of non-

zeros states (i.e., system visits new states); the second measure was a change in state 

probability; the third measure was a change in the time for which a system stays in a 

particular state (i.e., t-t0); the fourth measure was the change in the travel time from 

one state to another (i.e., ∆Ta→b); the fifth measure was a change in the probability of 
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reaching from one state to the another (i.e., ∆Pa→b); and the sixth measure was the 

relative time reduction in  reaching one state from another (∆t/t).  

Table 22: Prognostics Measures Computed for Field-Returned Computer 

Reduction in number of non-zero states in test  system 3 

Change in state probability (state :77) p-p0 = 0.202 

Change in  time a system stays in a state (state :77) t-t0 = 4460 unit 

Difference in time unit taken to reach state 77 from 11 ∆T77→11 = 73 

Difference in probability of reaching a particular state 77 from 11 ∆P77→11 =0.475 

Time to reach a particular state 77 from 11 178 

 

For prognosis, the objective was to find the probability of a product reaching a 

bad state and the time it takes to reach that state. The Markov states are defined by 

symbols, which are represent partitions of a wavelet coefficient plot. A wavelet 

coefficient plot is formed by plotting wavelet coefficient over different wavelet scale. 

A wavelet coefficient expresses the closeness of the wavelet function to the data 

array. Since the wavelet functions are compact, the wavelet coefficients only measure 

the variations of a small region around the data array. The “localized” nature of the 

wavelet transform allows identification of spikes in data. The localization also implies 

that a wavelet coefficient at one location is not affected by the coefficients at another 

location in the data. This makes it possible to remove “noise” from a signal simply by 

discarding the lowest wavelet coefficients. Selection of the largest coefficient at each 

observation reduces the possibility of noise in the transformed data. Out of the 

coefficient population, larger coefficients in comparison to smaller coefficients 
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represent spikes in the original data.  The state defined by 11corresponds to the 

smaller coefficients of the population; and 77 corresponds to the larger coefficients of 

the population, because the coefficient plot is partitioned from 1 to 7 in the ascending 

order of coefficients. For this reason, state ‘11’ was assumed good and ‘77’ as bad in 

this case study.  

Next, the time that the system would take to reach the faulty state from a good 

state and the probability of reaching a faulty state was calculated. In this study, for the 

field-returned computer the time to reach a faulty state from a good state was 73 time 

units earlier than the time to reach state 77 from 11in the system’s healthy condition. 

For a healthy system the probability of these two states together P(11∩77) was 0.0168 

where the initial probability of state 77was 0.14. For an unhealthy system, P11 was 

0.033, and the probability of P77 was 0.51, assuming that all other states probabilities 

had not changed (i.e., the probability of reaching a bad state increased by 0.37). When 

changes in all of the states’ probabilities were considered, the probability to reach a 

faulty state from a good state increased by 0.47. This result demonstrates that the 

probability estimate of going into a bad state based on any state without considering 

other transition states gives a conservative estimate. From this one can make a 

conservative probabilistic estimate of a system to reach a particular state based on the 

system’s originating state, transition probability matrix, and initial state probability 

information. This probabilistic estimate can be used as a prognostic measure for a 

system. The remaining time to failure was not been computed in this study as time to 

failure data was not collected. Nevertheless, from training data the time to reach a 

state 77 from another state 11 has been computed: 178 time units. The time to reach 
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state 77 from 11 was computed using Equations 23, 24, and 25. The 99th percentile 

value from the duration distribution (di), which was defined for the system’s stay in a 

state, was used, and for state 11 the 99th percentile of the stay duration was 91 time 

units. Whereas, from the training data set actual time the system took to reach state 77 

from state 11 were 185 time units. The computed time to reach a particular state was 

less than the actual time, which indicates a conservative estimate of the time to reach 

a particular state. This demonstrates that the presented approach can be used for 

prognostics purposes, and a remaining time estimate can be made provided that the 

distribution of the system’s stay duration at different Markov states is available. 

7.5 Summary and Conclusions 

This chapter presents a unique approach to perform prognosis of multivariate 

systems using Mahalanobis distance (MD). The approach extends the utility of MD 

from outlier classification and fault detection to prognostics. This work applies 

symbolic time series analysis to assess a multivariate system’s health advancement 

over the previous work that uses symbolic time series to analyze univariate system.  

First, the MD reduces a multivariate system to a univariate system by taking 

into account the correlation among multiple variables. Due to the sensitivity of MD to 

variation in performance parameters, a pattern or trend could not be observed in the 

MD series. The absence of trends and the presence of noise in MD is also due to the 

wide healthy range of the performance parameters. In the absence of a clear trend or 

pattern in the MD time series, a wavelet transform is applied to extract signal features 

without losing time information. The wavelet transformation has not been used before 

on MD because MD has not previously been treated as a time series.   
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A symbolic time series is created from the MD signal using the optimal 

number of symbols. The optimal number of symbols is determined by partitioning the 

coefficient plot. MD time series is converted into a symbolic time series to reduce 

noise in the MD series. Finally, the optimal number of states representing system 

behavior is determined. The dynamic nature of the system is modeled through a 

Markov state model, which can be used to compute measures for anomaly detection 

and prognostics. The Markov model makes it possible to perform prognostic 

measurements, such as identification of new non-zero states, changes in state 

probabilities, changes in the time a system spends in a state, changes in the time to 

reach a particular state, changes in the probability of reaching a particular state, and 

relative changes in probable time to reach a state. The Markov model allows the 

system to go back to their previous states, and therefore consideration of 

unidirectional system progress is not necessary. The Markov model represents system 

behavior better than any regression fit that defines system health. Anomaly 

measurements provide a tool for system diagnostics. Time to reach a particular state 

provides prognostic measure.  

A case study was performed on notebook computers. The computers were 

subjected to different usage and environmental conditions, such that the healthy 

behavior of the computer was observed and data was collected and used as a training 

set. The computer’s performance parameter variability and interdependency were 

examined as well. The MD time series were obtained from these data points and were 

represented in symbolic form. A Markov model was constructed from these symbolic 

representations of the training data, and baseline measures were computed. A field-
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returned computer data was evaluated, and various prognostic measures were 

computed. The results presented in the paper indicate that these measures are good 

measures for anomaly detection and for estimating the probability of a system’s 

reaching a bad state. An approach to estimating on time to reach a particular state 

based on the distribution of a system’s stay duration at different Markov states is 

presented. Time to reach a particular state can also be used as a prognostic measure, 

and this measure can be used as an input in the logistic scheduling process.  

This method is unique in the sense that it combines several measurements into a 

distance measure. The consideration of correlation coefficients between performance 

parameters enables this approach to be used to detect uncorrelated changes in 

parameters. The approach can be extended to any system, and it is especially valuable 

when the physics of failure for a system is unknown. The use of symbolic transform 

reduces the noise, which means data from lower resolution sensors can also be used 

because of the partitioning made in the coefficient plot. The Markov state model and 

time distribution of system’s stay in a particular state allows estimation of the time to 

reach a particular state provided the system’s current sate information. This capability 

allows one to compute remaining useful life using a Markov model. .  
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Chapter 8: Contributions and Future Work  

 

The thesis presents a probabilistic approach to establish threshold 

Mahalanobis distance (MD) instead of using expert opinion–based threshold MD 

value to classify a product as being healthy or unhealthy. An error function is defined 

and minimized such that a reference MD value can be determined, which is used to 

identify the presence of a specific fault in a product. An approach to construct an MD 

control chart is presented. The MD control chart enables identification of trends and 

biases in a system’s performance during continuous health monitoring. The ability to 

identify trends and biasness in the data will enable the devising of new tests to 

identify flawed systems and processes. The MD control chart concept can also be 

used by the manufacturing industry for continuous process monitoring instead of 

following the control charts of several performance parameters.  

The thesis presents a new approach for isolating parameters that indicate 

system faults. The approach expands the applicability of Mahalanobis distance from 

fault detection to fault isolation. The main advantage of the approach over other 

approaches is that it does not require data from unhealthy systems and does not need 

to create an MD scale for fault isolation. Rather, a threshold bound for each parameter 

is based on healthy training data. Identification of parameters will assist in root cause 

analysis of the anomalies. Identification of parameters associated with a fault will 

help in identifying failure modes, failure sites, and the critical failure mechanisms 

acting within the product. These parameters can be used for damage estimation 
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through physics-of-failure models, quantification of the product’s performance shift, 

and establishment of trends in the performance shift. The results obtained from the 

two methods can be fused to estimate accurate remaining useful life with less 

uncertainty. 

This thesis presents a health degradation detection methodology for a system 

that has multiple performance parameters. A new metric, a health indicator, was 

defined as the weighted sum of the histogram’s bars (or bins) created from MD 

values. A time window is selected for assessment, and a histogram of MD values is 

calculated for each time window by binning MD values in bins of optimal bin-widths. 

The health indicator utilizes the immediate history of the product to account for 

recent changes in a system’s performance. A few incidences of MD being greater 

than a threshold MD value do not always mean that a product is unhealthy or 

degraded. The variability in the MD values is neutralized by grouping them into a 

histogram. Over time, combining information from recent history into a health 

indicator reduces the number of false alarms, especially when performance 

parameters do not exhibit trends. The present approach extends the applicability of 

Mahalanobis distance for degradation identification. The method can be extended to 

any system whose performance can be monitored under various life cycle conditions. 

The user’s risk acceptance criteria would define the time window size and the 

assignment of weights to different bins. In the decision making process, assignment 

of a higher weight to larger MD values reduces the smoothing nature of the weighted 

sum and provides intuitive meaning to numbers. 
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This thesis presents an approach for using symbolic time series for analyzing a 

multivariate system’s health and also defines several prognostic measures. The 

dynamic nature of the system is modeled through a Markov state model, which 

enables computation of prognostic measurements, such as identification of new non-

zero states, changes in state probabilities, changes in the time a system spends in a 

state, changes in the time to reach a particular state, changes in the probability of 

reaching a particular state, and relative changes in probable time to reach a faulty 

state. The state model developed considers that systems can go back to their previous 

states after maintenance or changes in usage conditions, and so there is no need to 

consider unidirectional system progress. The state model represents system behavior 

better than any regression fit that defines system health, especially for electronic 

products that experience failure not due to wear-out mechanisms. 

Future work that can be performed includes: (1) sensitivity analysis of MD 

with respect to performance parameters, (2) sensitivity analysis of residual MD values 

in the fault isolation approach, (3) health indicator trending such that health 

degradation can be modeled in order to estimate time before system failure, and (4) 

characterization of system states in terms of system health. 
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