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Abstract

The need for renewable energy has been growing in recent years for the reasons we all

know, wind power is no exception. Wind turbines are complex and expensive structures

and the need for maintenance exists. Conditioning Monitoring Systems that make use of

supervised machine learning techniques have been recently studied and the results are

quite promising. Though, such systems still require the physical presence of professionals

but with the advantage of gaining insight of the operating state of the machine in use, to

decide upon maintenance interventions beforehand. The wind turbine failure is not an

abrupt process but a gradual one.

The main goal of this dissertation is: to compare semi-supervised methods to at-

tack the problem of automatic recognition of anomalies in wind turbines; to develop an

approach combining the Mahalanobis Taguchi System (MTS) with two popular fuzzy

partitional clustering algorithms like the fuzzy c-means and archetypal analysis, for the

purpose of anomaly detection; and finally to develop an experimental protocol to com-

paratively study the two types of algorithms.

In this work, the algorithms Local Outlier Factor (LOF), Connectivity-based Outlier

Factor (COF), Cluster-based Local Outlier Factor (CBLOF), Histogram-based Outlier Score

(HBOS), k-nearest-neighbours (k-NN), Subspace Outlier Detection (SOD), Fuzzy c-means

(FCM), Archetypal Analysis (AA) and Local Minimum Spanning Tree (LoMST) were

explored.

The data used consisted of SCADA data sets regarding turbine sensorial data, 8 to-

tal, from a wind farm in the North of Portugal. Each data set comprises between 1070

and 1096 data cases and characterized by 5 features, for the years 2011, 2012 and 2013.

The analysis of the results using 7 different validity measures show that, the CBLOF al-

gorithm got the best results in the semi-supervised approach while LoMST won in the

unsupervised scenario. The extension of both FCM and AA got promissing results.

Keywords: outlier detection; wind turbine fault detection; semi-supervised methods;

fuzzy clustering; evaluation measures
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Resumo

A necessidade de produzir energia renovável tem vindo a crescer nos últimos anos pelas

razões que todos sabemos, a energia eólica não é excepção. As turbinas eólicas são es-

truturas complexas e caras e a necessidade de manutenção existe. Sistemas de Condição

Monitorizada utilizando técnicas de aprendizagem supervisionada têm vindo a ser estu-

dados recentemente e os resultados são bastante promissores. No entanto, estes sistemas

ainda exigem a presença física de profissionais, mas com a vantagem de obter informa-

ções sobre o estado operacional da máquina em uso, para decidir sobre intervenções de

manutenção antemão.

O principal objetivo desta dissertação é: comparar métodos semi-supervisionados

para atacar o problema de reconhecimento automático de anomalias em turbinas eólicas;

desenvolver um método que combina o Mahalanobis Taguchi System (MTS) com dois mé-

todos de agrupamento difuso bem conhecidos como fuzzy c-means e archetypal analysis,

no âmbito de deteção de anomalias; e finalmente desenvolver um protocolo experimental

onde é possível o estudo comparativo entre os dois diferentes tipos de algoritmos.

Neste trabalho, os algoritmos Local Outlier Factor (LOF), Connectivity-based Outlier

Factor (COF), Cluster-based Local Outlier Factor (CBLOF), Histogram-based Outlier Score

(HBOS), k-nearest-neighbours (k-NN), Subspace Outlier Detection (SOD), Fuzzy c-means

(FCM), Archetypal Analysis (AA) and Local Minimum Spanning Tree (LoMST) foram

explorados.

Os conjuntos de dados utilizados provêm do sistema SCADA, referentes a dados sen-

soriais de turbinas, 8 no total, com origem num parque eólico no Norte de Portugal. Cada

um está compreendendido entre 1070 e 1096 observações e caracterizados por 5 caracte-

rísticas, para os anos 2011, 2012 e 2013. A ánalise dos resultados através de 7 métricas de

validação diferentes mostraram que, o algoritmo CBLOF obteve os melhores resultados

na abordagem semi-supervisionada enquanto que o LoMST ganhou na abordagem não

supervisionada. A extensão do FCM e do AA originou resultados promissores.

Palavras-chave: deteção de outliers; deteção de falhas em turbinas eólicas; métodos semi-

supervisionados; agrupamento difuso; medidas de avaliação
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1
Introduction

1.1 Context and Motivation

Wind power technologies transform the kinetic energy of the wind into useful mechanical

power. Wind turbines are generally categorised by whether they are horizontal axis or

vertical axis, and whether they are located onshore or offshore. Power generation of wind

turbines is determined by the capacity (active power) of the turbine (in kW or MW), the

wind speed, the height of the turbine and the diameter of its rotors.

The first wind turbines typically had small capacities (10 kW to 30 kW) by today’s

standards but pioneered the development of the modern wind power industry that we see

today. The wind power industry has experienced an average growth rate of 27% per year

between 2000 and 2011, and wind power capacity has doubled on average every three

years. The total wind power capacity at the end of 2011 was 20% higher than at the end

of 2010 and reached 238 GW by the end of 2011 (Figure 1.1).

Figure 1.1: Global installed Wind Power capacity, 1996 to 2011.
Source: Global Wind Energy Council (GWEC) 2012, taken from1
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CHAPTER 1. INTRODUCTION

Maintenance costs are an important point to take into account in renewable energies in

general, and in wind electrical generation in particular (International Renewable Energy

Agency (IRENA)2, 2012). Current wind turbines are designed to work around 120 000

hours a year, over a 20-year lifetime. The capital costs of a wind power project can be

broken down into the following major categories although we are only interested in the

first one:

• The turbine cost: including blades, tower and transformer;

• Civil works: including construction costs for site preparation and the foundations

for the towers;

• Other capital costs: these can include the construction of buildings, control systems,

project consultancy costs, etc.

Such complex structures, like wind turbines, require good supervision and prevention

of faults methods must be enforced in the wind farms they are inserted. These faults that

occur are denoted as anomalies.

The Anomaly Detection (AD) field is important because anomalies in the data mean

significant, and often critical,information in a wide variety of application domains such

as, fraud detection for credit cards or insurances, intrusion detection for cyber-security,

and military surveillance for enemy activities.

In [30] we can find a simple and concise definition of what an outlier is. An out-

lier/anomaly is a data object that deviates significantly from the rest of the objects, as if it

was generated by a different mechanism. An outlier is not the same as noisy data. Noise

is considered a random error or variance when we are measuring some variable. Noise is

not desired in data analysis including outlier detection, therefore it should be removed

before this process.

Due to their nature, anomalies impose many challenges, with special attention to the

fourth one:

(i) The boundary between normal and anomalous behaviour is often not precise thus,

an anomalous point that lies close to the boundary might be considered normal,

and vice-versa;

(ii) In many domains normal behaviour might evolve in such a way that the notion of

normal behaviour might not be sufficiently representative in the future;

(iii) In different application domains the notion of anomaly is not the same, that way,

applying a technique developed in one domain to another is not straightforward;

1https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2012/
RE_Technologies_Cost_Analysis-WIND_POWER.pdf

2https://www.irena.org/aboutirena

2
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1.2. PROBLEM

(iv) Labeled data for training/validation of detection models is sometimes scarse and

that imposes a major issue;

(v) Many times the data contains noise which tends to be similar to the anomalies and

the difficulty to distinguish these two groups is greater.

These make the task of AD not an easy problem to solve, therefore, the best approach

is to use a specific detection model to tackle a specific formulation of the problem.

Labeling the data as accurate as possible is expensive since it is often done manually

by a human expert which requires substantial effort. Getting labels for anomalous be-

haviour is more difficult than getting labels for normal behaviour [16]. This is the major

reason for the widely adoption of semi-supervised and unsupervised techniques in AD.

Semi-supervised techniques only assume the training data to be labelled for the normal

behaviour and do not require labels for the anomalous case. Unsupervised techniques do

not require training data, hence no labelling needed at all and thus are the most widely

applicable.

1.2 Problem

Because of the harsh working environment and a complex structure, wind turbines are

prone to relatively high failure rates, leading to undesired Operation & Maintenance

(O&M) costs. One of the main tasks of the O&M process is to find out the possible causes

of a fault manifested by a specific alarm or a set of alarms that may stop the wind turbine

production.

When it comes to wind turbines there are two ways to detect faults: data not respect-

ing the correct behaviour of the turbine (anomalous values), or miss calibration of the

alarms that are part of the Condition Monitoring Systems (CMS) leading to data impos-

sible to analyze (missing values). Not dealing with these anomalies can lead to serious

problems in the turbines and hence tremendous financial costs.

In recent years machine learning (ML) techniques, like automatic input selection algo-

rithms, convolutional neural networks and support vector machines, have been gaining

popularity as a valid solution for solving the AD problem in the wind turbine context.

ML can be described using its formal definition:

A machine is said to learn from experience E with respect to some class of tasks T and

performance measure P if its performance at tasks in T, as measured by P, improves with

experience E [46].

In simpler terms, ML provides systems the ability to automatically learn and improve

from experience without being explicitly programmed. The basic process of ML is to give

training data to a learning algorithm. The learning algorithm then generates a new set of

rules, based on inferences from the data. This is, in essence, generating a new algorithm,

3



CHAPTER 1. INTRODUCTION

formally referred to as the ML model. Two types of ML models will be the main focus of

this work, semi-supervised and unsupervised. Unsupervised learning is essentially a syn-

onym for clustering where the learning process is unsupervised since the input examples

are not class labeled. Typically, clustering is used to discover classes within the data [30].

These techniques support the O&M process and hence reduce the downtime or detect

critical faults in earlier stages. Methodologies and tools that can support this type of

process can benefit wind farm owners not only to increase availability and production

but also to reduce costs [9].

1.3 Main Contributions

This dissertation presents some contributions such as:

(i) To compare semi-supervised methods for anomaly detection to attack the problem

of automatic recognition of anomalies on wind turbines;

(ii) To develop an approach combining the Mahalanobis Taguchi System (MTS) with

two popular fuzzy partitional clustering algorithms: the Fuzzy c-means (FCM) and

Archetypal Analysis (AA), for the purpose of anomaly detection;

(iii) To develop an experimental protocol to comparatively study the two types of al-

gorithms (i) and (ii) with data from a wind farm located in the North of Portugal,

comprising eight wind turbines, for the years of 2011-2013.

1.4 Organization

The remaining of the dissertation is organized as follows, Chapter 2 is dedicated to

present some brief theoretical details about the different components of a wind turbine.

It also dedicated a Section to introduce the Supervisory Control and Data Acquisition

(SCADA) system, a really important system used in many wind farms nowadays to mon-

itor and gather sensorial data from the turbines. Later in this Chapter, a survey is done

regarding AD in wind turbines.

In Chapter 3 theoretical details about the different types of anomalies is presented,

as well as the categorization of AD algorithms and their respective advantages and dis-

advantages. The rest of this Chapter is about introducing and describing the algorithms

studied in this dissertation, and also the novel approach.

Chapter 4 will focus on explaining the SCADA variables used for study, the ex-

ploratory data analysis performed, the preprocessing done, and finally the datasets used

in the experiments.
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Chapter 5 explains in a detailed manner the experimental protocol of this disserta-

tion. It is also explained the normalization process of the datasets, the type of working

conducted for the semi-supervised techniques and for the unsupervised techniques, and

the assessment measures used to evaluate the performance of the algorithms.

Finally, Chapter 6 presents the conclusions and some proposals of future work.
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2
Wind Turbine Anomaly Detection

In this Chapter a brief contextual background of some wind turbines components is

presented in Section 2.1. In Section 2.2 the SCADA system is introduced, an important

core of wind turbines related topics. And finally in Section 2.3, a survey is done on works

related to AD problems in wind turbines.

2.1 Wind Turbine Components

The principal components [8] of a wind turbine are: the rotor that includes the blades,

the hub and the main shaft, the gearbox, the generator and the nacelle that contains all

of these mechanical components. There is also the tower that holds and supports all the

components and gives access to the nacelle. Figure 2.1 illustrates all the components that

constitute a wind turbine.

Figure 2.1: Components of a wind turbine
Source: taken from1
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Rotor

The rotor transforms the wind energy in mechanical energy through the conversion of

the wind aerodynamic energy in rotation. As mentioned above the rotor consists of, the

blades responsible for harnessing the wind, the hub that supports the blades and the

main shaft that connects the blades to the gearbox low-speed shaft.

Blades

The blades and the hub (which together constitute the rotor) are mounted on the nacelle

through suitable bearings. The blades are the components that interact with the wind

and are designed with an airfoil to maximize aerodynamic efficiency. It is important to

design the side of the blade close to the center (hub), so there is good support and low air

resistance.

Hub

The wind turbine hub is the component that connects the blades and the main shaft. It

also includes the Pitch systems (pitch angle regulation systems). The hubs are usually

made of molten iron and are protected externally by an oval component named (Spinner).

Gearbox

The majority of the wind turbines have gearboxes with one or more stages between the

rotor, responsible for extracting kinetic energy of the wind and converting it in mechani-

cal rotation energy, and the generator that converts the mechanical energy into available

electrical energy. The gearbox main purpose is to increase the velocity of rotation received

from the rotor so it can adapt the energy generated by the generator to the frequency of

the power distribution grid. This component is a source of noise and vibration, and the

one which requires the most maintenance.

Brakes

Almost every wind turbine makes use of mechanical brakes assembled in the transmission

system, furthermore an aerodynamical brake. In many cases, mechanical brakes can stop

the rotor during unfavourable weather conditions or when there is the necessity of some

sort of maintenance intervention. Besides that, mechanical brakes can also be used to

ensure that the rotor is stopped when the turbine is not working. Mechanical brakes can

be located both next to the low-speed shaft or the high-speed shaft.

1https://www.energy.gov/eere/wind/inside-wind-turbine
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Generator

Asynchronous generator

An induction generator or asynchronous generator is a type of electric current generator

alternating current (AC) that uses the principles of induction motors to produce energy.

The asynchronous generators operate at higher rotor speeds than synchronous speed

generators. When a gust of wind hits a wind turbine equipped with an asynchronous

generator rotor under short circuit, since the speed of rotation is constant, there is a

sudden torque variation and the consequent rapid variation in output power.

Synchronous generator

In this type of generator, also called an alternator, the rotor consists of an electromagnet

direct current or permanent magnets. The frequency of the induced voltage in the stator

(and consequently the current generated) is directly proportional to the speed rotor rota-

tion. Increase of rotation speed accumulates kinetic energy in the rotor itself and allows

a constant power supply. On the other hand, when the wind decreases, the energy stored

in the rotor is released while the rotor itself is slowing down.

Transformer

The output of electrical energy from generators is usually done at low voltage and should

be transformed into medium voltage through a transformer, to reduce the transmission

losses when connecting to the distribution network. The transformer is installed in the

nacelle or at the base of the tower.

Regulation system of the nacelle (yaw)

The nacelle is built in such a way that it can rotate at the top of the tower through an

active yaw system. This consists of electric actuators and gears so that the rotor is always

aligned with the wind. Direction and velocity of the wind are continuously monitored by

the sensors connected to the nacelle. The rotor is generally positioned according to the

average wind direction, calculated over a 10-min period by the turbine control system.

2.2 Supervisory Control and Data Acquisition System

Nowadays all wind farms use the SCADA system to monitor and record their wind tur-

bines behaviour in 10-min intervals [9]. The minimum data set typically includes 10

min-average values of wind speed, wind direction, active power, reactive power, ambient

temperature, pitch angle and rotational speed (rotor and/or generator)2. In modern wind

turbines, however, the SCADA data often comprises of hundreds of signals, including

2https://www.vgb.org/vgbmultimedia/383_Final+report-p-9786.pdf
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temperature values from a variety of measurement positions in the turbine, pressure data,

for example from the gearbox lubrication system, electrical quantities such as line cur-

rents and voltages or pitch-motor currents or tower vibration, amongst many others [29,

49, 57, 67]. Large-scale SCADA data sets often contain not only the 10-min or even 5-min

averaged values, but also minimum, maximum and standard deviation values for each

interval. Therefore, due to the large number of available variables and data, analyzing

them can be a high time-consuming task [42] and when just well-known related variables

are analyzed, hidden causes might not be found.

2.3 State of the art review

The authors in [43] made a thorough study of automatic input selection algorithms for

wind turbine failure prediction. In this work, an exhaustive search-based quasi-optimal

algorithm (QO), which has been used as a reference for the automatic algorithms, was

proposed. This allowed to consider the whole set of variables of the subsystem and au-

tomatically select the smallest subset of relevant variables, which in turn will simplify

the models and permit a graphical representation of their time evolution. The automatic

algorithms used were: Mutual Information Feature Selection (MIFS), Conditional Mutual

Information (CMI), Joint Mutual Information (JMI), Min-Redundancy Max-Relevance

(mRMR), Double Input Symmetrical Relevance (DISR), Conditional Mutual Info Maximi-

sation (CMIM) and Interaction Capping (ICAP). Using the Classification Rate (CR)3 and

F1-score (F1)4, the authors concluded that the QO algorithm was the one that led the

best CR and F1 for 6 features, while CMI automatic feature extraction algorithm lead to

similar CR and F1 for 3 or 4 features. The case study was conducted for the following

features: main bearing oil pressure, gearbox oil pressure, wind velocity, wind direction,

active power and the temperature of the main gearbox bearing.

The authors in [70] proposed a method based on ML to predict long cycle mainte-

nance time of wind turbines for efficient management in the power company. Long cycle

maintenance time prediction makes the power company operate wind turbines as cost-

effectively as possible to maximize the profit. To predict the long cycle maintenance time

precisely the proposed method consists of a hybrid network which combines a two-layer

convolutional neural network (CNN) and radial basis function support vector machines

(RBF-SVM). CNNs are quite good at learning invariant features, but not always optimal

for classification (most of the training data are in the middle layers). While RBF-SVM,

with a fixed kernel function, cannot learn complicated invariances but can produce good

decision surfaces when applied to well-behaved feature vectors. The Apriori algorithm [4]

and linear regression were employed as preprocessing methods for feature selection. The

authors concluded that the proposed method achieves better prediction results for the

3Calculated as the percentage of well-classified instances divided by the total number of instances
4Obtained as the harmonic mean of precision and recall
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long cycle maintenance time of the wind turbine compared to the traditional CNN. The

data understudy, collected by the SCADA system, corresponded to the following features:

wind velocity, the power output of the wind turbines, the oil temperature of the wind

turbine gearbox and the temperature of the high-speed bearing.

A two-stage methodology to predict failure within 1 to 2 months of occurrence was

conducted in [66]. The study consisted of first using clustering techniques to produce

subpopulation of data based on operating conditions. Secondly, classification is made on

individual clusters as healthy or unhealthy from vibration-based CMS by applying order

analysis5 techniques to extract features. Two models are presented in this paper, both of

which used classification algorithms to classify the bearing as healthy or unhealthy, with

the first acting as a baseline model to compare the second two-stage cluster-classification

model. The Fourier transform was adapted for a sliding time window, due to the genera-

tor shaft speed of the turbine can vary meaning that the signal is not stationary, by using

the short-time Fourier transform, where a spectrotemporal representation of the signal

is obtained. This is used for order analysis and allows the spectral values to be tracked

in time. The authors chose the k-Means algorithm for the first stage of the process, and

Decision Trees and support vector machines (SVM) with polynomial kernel for the second

stage. Cross-validation was used to determine the overall accuracy of the algorithm, while

the prediction process was evaluated by using a confusion matrix giving correct/incorrect

classification and the likelihood of false positives/negatives. The authors concluded that

the proposed model showed an overall high level of accuracy and that clustering is better

than bin classification of the vibration samples, but too many clusters make data too

sparse and accuracy falls.

In [21] the authors propose a method to detect anomalies in wind turbines, further-

more to find the sub-component responsible for such anomaly. This model is based on

Self-organizing map (SOM) that aims to adopt the normal behaviour of a wind turbine

by projecting high-dimensional SCADA data into a two-dimensional space. Afterwards,

the Euclidean distance based indicator for system-level anomalies is defined and a filter

is created to screen out suspicious data points based on quantile function. Parameter se-

lection is a very important process for modelling the normal behaviour of a wind turbine.

This process begins by using P-value6 analysis for general relationship test and is fol-

lowed by the Pearson correlation coefficient and Kernel canonical correlation coefficient

(KCCA). The modelling of the normal behaviour of the turbine is done by analyzing the

difference between the current status and normal behaviour, and it can be represented

using the Euclidean distance between new input data and Best Match Unit (BMU)7 in

5Order analysis is a resampling technique that can be effective when analysing nonstationary signals.
6Null Hypothesis refers to a general statement or default position that there is no relationship between

two measured phenomena. After using P-value to filter unrelated parameters, correlation coefficient analysis
is adopted for next step investigation.

7A BMU is a neuron whose weight vector has the smallest distance measure from the input data.
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a two-dimensional space. The quantile function mentioned before is used to define a

threshold to screen out the suspicious data. Whenever a data point falls outside this

threshold, there’s a high probability it is an anomaly. In order to go deeper and find the

root component responsible for the anomaly a contribution proportion (CP) is added. The

authors concluded that the proposed method is efficient at finding anomalies and the CP

index is effective for figuring out which sub-component is responsible for the anomaly.

The SCADA features used were: power output, wind’s direction, power factor, nacelle

temperature, outside temperature, reactive power and yaw.

The authors in [61] conducted quite an extensive review on ML models that have

been used for condition monitoring in wind turbines. Most of the models use SCADA or

simulated data, with almost two-thirds of methods using classification and the rest rely-

ing on regression. Neural networks (NN), SVM and Decision Trees are most commonly

used. Although the training time of NNs can be potentially long, when it comes to actual

classification or regression, the application of models is comparatively very fast. SVMs

can be slow and training on large data sets remains a challenge. The time complexity is

usually between O(m2n) and O(m3n), where m is the number of instances and n is the

number of features. Feature selection and extraction is a very important process before

building a ML model. Outlier identification, wrapper methods, embedded methods, filter

methods, statistics8, Hidden Markov were some of the methods covered by the authors.

For validation, mean absolute error (MAE) and mean absolute percentage error (MAPE)

were used and the authors concluded that deep NN are believed to achieve better perfor-

mance in terms of accuracy and the model chosen depends on the task. Frameworks such

as Hadoop Data File System (HDFS) are really good at handling and process huge data.

The SCADA features used were: wind velocity, power output, generator speed, generator

stator temperature.

In [71] a really specific problem in wind turbines is approached, blade icing detection.

Ice accumulated on a blade will typically cause degradation for a turbine aerodynamic

performance, and cause many other serious problems such as measurements errors. To

solve this problem the authors propose a WaveletAE, a wavelet enhanced autoencoder

model that contains a multilevel discrete wavelet decomposition (MDWD) model, a con-

volutional encoder, a multiple scale long short-term memory (LSTM) encoder-decoder,

and a convolutional decoder. The proposed method can be briefly described in the fol-

lowing way: The input multivariate signals are first decomposed to multilevel wavelet

detail coefficients. Then in each scale level, the original signals or wavelet detail coeffi-

cients go through a convolutional encoder and an LSTM encoder, the hidden states of the

LSTM encoder will be concatenated to create a global code. In the decoding phase, fully

connected layers will first map the global code to initial hidden states in each scale, then

8Mean, standard deviation, maximum, minimum, skewness, kurtosis, peak-to-peak, crest factor, wave
factor, impulse factor, margin factor, root mean square [38]
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an LSTM decoder and a convolutional decoder will reconstruct the original signals and

the wavelet detail coefficients. The variables studied were, the running time (hours) of

3 wind turbines, a binary indicating whether the blades are frozen or not, range labels

that indicate the segmentation is in an abnormal state. To validate the model the authors

adopted the accuracy, precision, recall and F1 as validation metrics and concluded that,

supervised AD may lead to biased results but the overall performance of WaveletAE has

been verified for both supervised and semi-supervised learning. Simulated deployment

case study with a shifting window demonstrates the robustness of the proposed method

for real-time implementations.
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3
Anomaly Detection

In this Chapter it is presented in Section 3.1 the different types of anomalies, two clas-

sification modes used to classify AD techniques are explored in Section 3.2 as well as

the advantages and disadvantages of the families of AD algorithms. In Sections 3.3 and

3.4 the semi-supervised and unsupervised algorithms explored and studied in this work

are described, and in the latter it is also described the novel approach. At the end of

this Section a review is done on AD works using clustering. Lastly in Section 3.5, are

presented well established indices to validate partitions generated by fuzzy clustering

approaches.

3.1 Types of Anomalies

The problem of AD has been the subject of many distinct works throughout the last

decades. It is usually described as the problem of finding patterns in data that deviate

from the expected behaviour. These non-conforming patterns are often called anomalies

and can be categorized into three major groups [16]:

Point Anomalies

If an individual observation can be considered anomalous regarding the rest of the data.

This is the simplest type of anomaly and the focus of the majority of research on AD. A

real life example is the case of a credit card fraud detection, where the transaction for

which the amount spent is very high compared to the normal range of expenses for a

person, will be considered a point anomaly.
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Contextual Anomalies

When a certain observation is anomalous in a specific context, where context is inter-

preted as the structure in the data set and needs to be specified as part of the problem

formulation. Points in the data are defined using two sets of attributes: (1) contextual

attributes that are used to determine the neighbourhood of the point; (2) behavioral

attributes that define the non-contextual characteristics of a point.

In a certain context a data instance might be a contextual anomaly, but an identical

data instance could be considered normal due to its behavioral attributes. Defining the

context of a point is not always straightforward.

Collective Anomalies

In this type of anomalies, individual data instances may not be anomalies even if they

belong to a collection of related observations that is considered anomalous as a whole. A

good real life example for these type of anomalies is the following: let’s considered the

electrocardiogram of a patient, and for a large amount of time it shows a breaking rhythm

of the patient’s heart. The low value by itself is not an anomaly, but the entire selected

region where that low value was detected denotes an anomaly.

3.2 Classification of Anomaly Detection Algorithms

3.2.1 Learning Mode vs Output

When it comes to classify AD algorithms according to the learning mode, there are three

ways in which they can operate [16]:

• Supervised: In this mode of operation, the AD models make use of the labels

available for training, using data sets with observations labelled as normal as well

as anomalous. These techniques usually build a predictive model for normal vs
anomaly classes, and any unseen data instance is compared against the model to

determine which class it belongs to;

• Semi-Supervised: In some cases, is only available the labelling for the normal class.

In this case, the typical approach is to train the model for the normal class and then

use the model to identify anomalies in the test data;

• Unsupervised: These are the techniques most widely applicable since they do not

require any training data. This only means that these techniques find anomalies

in an unsupervised way, and not because the points don’t have labels. Labels are

only used for assessment of the model performance. In this mode of operation, AD

techniques implicitly assume that anomalies are rare when compared to normal

instances and this is important otherwise, such techniques suffer from high False

Alarm Rate (FAR).
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AD techniques can report the anomalies in one of the following two ways [16]:

• Scores: Each observation in the data is assigned an anomaly score depending on

the degree of outlierness of that observation (if that observation is more or less

anomalous). Therefore, the output is a ranked list of anomalies and one may choose

to analyze the top N anomalies in that list;

• Labels: Here, each test instance is assigned a binary label usually 0 or "n" for the

normal class, and 1 or "o" for the anomalous class.

Table 3.1 aggregates the information about the classification of the studied techniques

in this dissertation, Local Outlier Factor (LOF), Connectivity-Based Outlier Factor (COF),

Cluster-Based Local Outlier Factor (CBLOF), Histogram-Based Outlier Detection (HBOS),

k-Nearest Neighbours (k-NN), Subspace Outlier Detection (SOD), Local Minimum Span-

ning Tree (LoMST), Fuzzy c-Means (FCM) and Archetypal Analysis (AA).

Algorithms Semi-Supervised Unsupervised Scores

LOF X X

COF X X

CBLOF X X

HBOS X X

K-NN X X

SOD X X

FCM X X

AA X X

LoMST X X

Table 3.1: Classification of the studied techniques according to their learning mode vs
output returned.

Classification based anomaly detection techniques operate, assuming that the dis-

tinction between normal and anomalous classes can be learnt in the given feature space

[16]. Such techniques can be grouped into two categories: multi-class and one-class AD

techniques.

In this dissertation, the semi-supervised techniques studied fall into the one-class

category. One-class techniques learn a discriminative boundary around the training data

points, hence any point in the test set that does not belong inside the learnt boundary is

considered an anomaly. Figure 3.1 illustrates this process.
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Figure 3.1: One-class Anomaly Detection
Source: taken from [16]

3.2.2 Advantages and Disadvantages

Nearest-neighbour-based techniques like k-NN, LOF and COF, present the following

advantages and disadvantages [16].

a) Advantages:

1) They are naturally unsupervised and do not make any assumptions about the

data, hence, they are purely data driven;

2) Semi-supervised techniques perform better than unsupervised ones regard-

ing missed anomalies, since it is not likely for an anomaly to form a close

neighbourhood in the training data;

3) Can be adapted easily to a different data type, only needing to define an ap-

propriate distance measure for the given data.

b) Disadvantages:

1) For unsupervised techniques, if the normal data observations do not have

enough close neighbours or if anomalies have close neighbours, many missed

anomalies occur;

2) For semi-supervised techniques, if the normal observations in test data do

not have enough similar normal observations in the training data, the False

Positive Rate (FPR) is high;

3) The computational complexity of the testing phase is a significant challenge;

4) The performance is tightly related to the distance measure, which can be chal-

lenging to define when the data is complex.
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The advantages and disadvantages of clustering-based techniques like CBLOF are the

following [16].

a) Advantages:

1) Can operate in unsupervised mode;

2) Can be adapted to different data types easily, by simply choosing an appropri-

ate clustering algorithm that can handle the particular data type;

3) Testing phase is fast since the number of cluster one must compare every ob-

servation’s belongingness is small.

b) Disadvantages:

1) Performance is closely related to the effectiveness of the clustering algorithm

in capturing the cluster structure of normal observations;

2) Many techniques are not optimized for AD;

3) The majority of clustering algorithms try to assign every instance to some

cluster. Techniques that operate with the assumption that anomalies do not

belong to any cluster, might considered anomalies as normal instances;

4) Several techniques are effective only when the anomalies do not for significant

clusters;

5) When clustering algorithms run in O(N2 · d), with N being the number of

instances and d the number of dimensions, clustering the data is often a bot-

tleneck.

Statistical techniques like HBOS present the following advantages and disadvantages

[16].

a) Advantages:

1) If the data distribution remains true, these techniques are a reasonable solution

for AD;

2) The anomaly score is associated with a confidence interval, which can help on

deciding with additional information about any test instance;

3) If the distribution is robust to anomalies in data, these techniques can operate

in unsupervised mode.

b) Disadvantages:

1) Rely on the assumption that the data is generated from a particular distribution

and sometimes this does not happen, specially for high dimensional data sets;
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2) They are not able to capture the interactions between different attributes. An

anomaly can have attribute values that are individually frequent, but their

combination is rare.

The SOD algorithm has the following advantages and disadvantages [39].

a) Advantages:

1) Really good at handling high dimensional data sets;

2) Strong at detecting local outliers.

b) Disadvantages:

1) Difficulty on how to find a good reference set;

2) Normalization of scores is oversimplistic.

The LoMST algorithm presents the following advantages [5].

a) Advantages:

1) Achieves the merit of subspace-based techniques without losing the benefits

of local neighbourhood methods;

2) Computationally efficient.

The advantages and disadvantages of FCM are the following[62].

a) Advantages:

1) Is unsupervised;

2) Converges.

b) Disadvantages:

1) Long computational time for really big data sets;

2) Sensitivity to the initial guess (speed of convergence, local minima);

3) Sensitivity to noise and one expects low (or even no) membership degree for

outliers (noisy points).
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3.3 Semi-supervised Anomaly Detection Algorithms

3.3.1 Local Outlier Factor

The LOF algorithm was the pioneer to not label an outlier as a binary property but to

quantify how outlying a point is. This outlying factor is local in the sense that only a

certain neighbourhood of each point is considered [14].

The LOF can be calculated in three steps:

1) First, the k-NN of each observation need to be found and in case of a tie of the kth

neighbour, more neighbours can be used;

2) With the k-NN computed, NMinP ts, the local density for an object, p, is estimated by

calculating the Local Reachability Density (LRD) in equation (3.1):

LRDMinP ts(p) = 1/


∑

o∈NMinP ts(p)
reach-distMinP ts(p,o)

|NMinP ts(p)|

 (3.1)

where |NMinP ts(p)| is the cardinality of p neighbourhood;

3) Finally, the LRD is compared against the LRDs of the point k neighbours, and LOF

is computed in equation (3.2):

LOFMinP ts(p) =

∑
o∈NMinP ts(p)

LRDMinP ts(o)
LRDMinP ts(p)

|NMinP ts(p)|
(3.2)

With reach-distMinP ts(p,o) denoted as the reachability distance of point p to o, LRD of

p is the inverse of the average reachability distance based on the MinPts(p). If there are

duplicates in terms of spatial coordinates, LRD can actually be ∞. The LOF of p is the

average of the ratio of the LRD of p and those of p nearest neighbours, and the degree to

which p is quantified as an outlier. The lower the LRD of p is and the higher the LRDs of

p nearest neighbours are, the higher will be the LOF value.

The LOF algorithm has a hyperparameter k, or MinPts as described by the authors, that

is directly related to the approach, global or local when considering the neighbourhood

of each point. A small value of k can better capture the complex structure of some real-

world data sets and detect local outliers but is more erroneous when having much noise

in the data. A large value of k takes a global view of the data set and because of that

can miss local outliers but is faster when compared to a local approach where smaller

neighbourhood regions are considered.

For objects inside a cluster, the LOF values of those objects are approximately 1, and

the LOF value depends on the input parameter MinPts. Because of this, the authors

propose to establish upper and lower bounds for MinPts, called MinPtsUB and MinPtsLB
respectively. For MinPtsLB the authors state that its value should be the minimum number
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of objects a cluster must have, to make other objects relative to that cluster, local outliers.

MinPtsUB should be the maximum cardinality of a cluster so that all objects in that cluster

can be local outliers.

In conclusion, if the density of a point is much smaller than the densities of its neigh-

bours, a LOF greater than 1, the point is isolated from dense areas, and considered an

outlier.

3.3.2 Connectivity-Based Outlier Factor

COF aims to differentiate "low density" from "isolativity" . While low density normally

refers to the fact that the number of objects in the "close" neighbourhood of an object is

(relatively) small, isolativity refers to the degree that an object is "connected" to other

objects. In the general case, a low-density outlier results from deviating from a high-

density pattern, and an isolated outlier results from deviating from a connected pattern

[63].

COF improves the effectiveness of an existing LOF scheme in such a way that compen-

sates the shortcoming of assuming that the data is distributed in a spherical way around

the instance, and estimates the local density of the neighbourhood using a shortest-path

approach, called the chaining distance. Mathematically, this chaining distance is the

minimum of the sum of all distances connecting all k neighbours and the instance.

The COF of an observation p with respect to its k-neighbourhood is defined in equation

(3.3):

COFk(p) =
|Nk(p)| · ac-distNk(p)(p)∑
o∈Nk(p)

ac-distNk(o)(o)
(3.3)

with ac-dist being the average chaining distance, COF can be described as the ratio of

the average chaining distance from p to Nk(p) and the average of the average chaining

distances from p k neighbours to their own k neighbours. This indicates how far a point

shifts from a pattern and where COF and LOF differ. With this notion of "shifting", it is

possible to conclude the following:

• Strongly shifted points have larger ac-dist than weakly shifted ones. In the general

case, the majority of the k neighbours of a strongly shifted point should have small

ac-dist. This leads to higher COF values for strongly shifted points;

• Weakly shifted points, have a k-neighbourhood with comparable ac-dist, leading

to smaller COF values for such weakly shifted points. These points are those that

belong to the patter itself, hence, their COF is close to 1.

Like LOF, objects inside a cluster have a COF value close to 1, and for the k-neighbourhood

of an object p, COFk(p) is greater or equal than 1
1+ε and lower or equal than 1 + ε, where

ε is a small value. The authors followed the same approach as [14] to establish the lower

and upper bounds for COF.
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COF has a time complexity similar to LOF, linear time for low-dimensional data sets

and quadratic for really high-dimensional data sets, and the same hyperparameter k.

3.3.3 Cluster-Based Local Outlier Factor

The CBLOF uses clustering to determine dense areas in the data and performs a density

estimation for each cluster afterwards [34]. In theory, every clustering algorithm can

be used to cluster the data in a first step, however k-Means is commonly used to take

advantage of the low computational complexity. After clustering, CBLOF uses a heuristic

to classify the resulting clusters into large and small clusters. Finally, an anomaly score is

computed by the distance of each instance to its cluster centre multiplied by the instances

belonging to its cluster.

The authors chose the Squeezer algorithm [33] as the clustering method background,

since it provides the following novel features:

• High quality clustering results and scalability;

• The ability to handle high dimensional datasets effectively;

• It does not require the number of desired clusters, k, as input parameter.

This algorithm has a linear time complexity of O(N) when compared to LOF and COF

which is quadratic, where N is the number of observations in the data set.

Finding the CBLOF for each record is the second part of the Find Cluster-Based Local

Outlier Factor (FindCBLOF) algorithm, and the first part is clustering the data. Find-

CBLOF has two major hyperparameters, α and β. If α is equal to 0.9 means that clusters

containing 90% of the data will be denominated large clusters, and if β is equal to 5

means that any large cluster is at least 5 times of the size of any small cluster.

Summarizing, if an observation t belongs to a small cluster, its CBLOF is determined

by the size of this cluster and the distance between the observation and its closest cluster.

If the observation lies in a large cluster, the CBLOF value will be determined by the size

of the cluster and the distance between the observation and the cluster it belongs to. The

distance between the record and the cluster, can be the similarity measure used in the

clustering algorithm. For simplicity, the CBLOF of a point t is calculated in equation

(3.4):

CBLOF(t) = |Ci | ·min(distance(t,Cj )) (3.4)

where Ci is a small cluster and Cj is a large cluster

CBLOF(t) = |Ci | · distance(t,Ci) (3.5)

where, in equation (3.5), Ci is a large cluster
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3.3.4 Histogram-Based Outlier Detection

The HBOS algorithm assumes independence of the features making it incredibly faster,

especially on large data sets, than multivariate approaches at the cost of less precision. It

is reliable at detecting global anomalies but poor at detecting local ones [27].

This algorithm can be summarized in the following way: for every single feature

(dimension), a univariate histogram is constructed first, where the height of every single

bin represents a density estimation. The histograms are then normalized such that the

maximum height is 1.0. This ensures an equal weight of each feature to the outlier score.

Finally, the HBOS of every instance p is calculated, as shown in equation (3.6), using the

corresponding height of the bins where the instance is located:

HBOS(p) =
d∑
i=0

log
(

1
histi(p)

)
(3.6)

The idea is very similar to the Naive Bayes algorithm, where all independent features

probabilities are multiplied, but instead of multiplication the authors applied the sum

of the logarithms. This makes HBOS a discrete Naive Bayes probability model, and the

reason for this change is to make HBOS less sensitive to errors due to floating point

precision in extremely unbalanced data causing very high scores.

The number of bins k, input parameter, needs to be set. An often-used rule of thumb

is setting k to the square root of the number of instances N.

Important notes when it comes to the creation of histograms. If features are categori-

cal, simple counting of each category is performed and the relative frequency (height of

the histogram) is computed. For numerical features there are two different approaches:

1) Static bin-width histograms. This is the standard technique where k is equal to the

width bins over the value range. The height of the bins is estimated through the

frequency of samples falling into each bin;

2) Dynamic bin-width histograms. In this technique, the values are sorted first and

a fixed amount of N
k successive values are grouped into a single bin. This gives

the same area (number of observations) for all bins and the width of the bins is

determined by the first and last value, hence, bins covering a larger interval of

values have less height (lower density).

The major reason for having these two approaches when creating histograms is due

to the fact of having very different distributions of the feature values in real-world data

sets. This happens in AD tasks where large gaps of value ranges exist, outliers being far

away from normal data, therefore, the dynamic width approach is recommended by the

authors.

When it comes to the complexity evaluation, HBOS is 7 times faster than nearest-

neighbour-based methods and 5 times faster than clustering-based ones. HBOS works in
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linear time O(n) in case of fixed bin-width mode, and O(n · log(n)) in dynamic bin-width

mode, with n being the number of points.

3.3.5 k-Nearest-Neighbours

The k-NN unsupervised anomaly detection algorithm was the first to bring the notion of

an outlier as based on the distance of a point from its kth nearest neighbour [53].

In k-NN the user no longer needs to specify the distance d to define the neighbourhood

of a point p as an input parameter. Only needs to specify the number of outliers n to

rank in the top n, and k-neighbourhood. The authors define an outlier the following way:

“Given a k and n, a point p is an outlier if no more than n-1 other points in the data set have a
higher value for Dk than p”, where Dk(p) is the distance of the kth nearest neighbour of p.

Each point it’s ranked based on its distance to its kth nearest neighbour and the top n
points in this ranking are declared as outliers. If we denote the distance to a point’s kth

neighbour as D then, points with larger values for D have more sparse neighbourhoods

and are thus typically stronger outliers than points belonging to dense clusters which will

tend to have lower values of D. k-NN is sensitive to its hyperparameter k that denotes the

number of neighbours one wants to consider, and this value should be chosen accordingly.

A partition-based algorithm component makes k-NN not computationally expensive.

Basically, the partition-based algorithm discards points with really small distances, that

cannot possibly make it to the top n outliers, from their kth nearest neighbours. By

partitioning the data set, it is possible to determine is a point p belongs to the top n
without actually computing the precise value of Dk(p).

The authors concluded that to ensure a good performance of the partition component

of k-NN is to choose the number of partitions in such a way the average of observations

per partition is small, but not too small compared to k.

3.3.6 Subspace Outlier Detection

The SOD aims to analyze for each point, how well it fits the subspace that is spanned

by a set of reference points [39]. This subspace hyperplane has a high variance of the

reference points when compared to the variance of the reference points in the perpendic-

ular subspace, which is low. The variance is simply the average squared distance of the

reference points to the mean value. For each feature with a low variance for its reference

points, the value of the corresponding subspace is 1 and for the remaining features is

0. A value near 0 indicates that the observation p fits very well to the hyperplane (not

an outlier), where a high value indicates that p is an outlier. The Euclidean distance is

used to naturally express the deviation of any observation to a subspace hyperplane, and

therefore the measure of outlierness of any observation p.

The final SOD value can be defined in equation (3.7):

SODR(p)(p) =
dist(o,H(R(p)))

|vR(p)|1
(3.7)
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where H(R(p)) is the hyperplane spanned by the reference set of p, R(p), and |vR(p)|1 is

the number of relevant dimensions.

The SOD algorithm relies on two input parameters. First, specifies the k number of

nearest neighbours that are considered to compute the shared nearest neighbour similar-

ity. Second, l specifies the size of the reference sets and this value should be smaller or

equal than k. There is also a third parameter α that sets a threshold to decide whether

an attribute is relevant or not. If the variance of the reference set along a certain feature

is smaller than α times of the expected variance, the feature is considered relevant. The

authors achieved consistently good results with α = 0.8. By specifying for each outlier the

features that are relevant for its outlierness, SOD has the property of being a quantitative

outlier model.

The SOD algorithm runs in O(d ·n2) when compared to most existing AD algorithms,

where d corresponds to the number of dimensions and n the number of observations.

The experiments conducted by the authors showed that SOD can find more interesting

and meaningful outliers in high dimensional data, and that SOD is strong at detecting

local outliers. The authors also noticed, even with a high number of dimensions and most

of them being irrelevant attributes, SOD retrieves really few false positives.

3.4 Unsupervised Anomaly Detection Algorithms

3.4.1 Clustering to Anomaly Detection: a review

In [30] a large variety of outlier detection methods are described in detail. Clustering-

based approaches assume that an outlier is an object that belongs to a small and remote

cluster, or does not belong to any cluster. This philosophy leads to three general ap-

proaches: (i) if the object does not belong to any cluster then it is identified as an outlier;

(ii) if there is a large distance between the object and the cluster to which it is closest, then

it is an outlier, and (iii) if the object is part of a small or sparse cluster then all objects in

that cluster are outliers.

The authors in [7] developed automated techniques for monitoring and recognizing

activities in video, and for detecting threatening behaviour in maritime data. The work

was focused on borderline/boundary cases of anomalous behaviour, which can be a chal-

lenging task due to the fact anomalies are rare to occur in the maritime domain. This

issue was addressed by generating synthetic anomalous instances using a parametric

statistical approach from real, non-anomalous data, which allowed to control the fre-

quency if abnormal behaviours present in the generated data. The authors considered

two types of algorithms, global1 and local2 ones. An Expectation–Maximization (EM)

version of k-Means clustering and the k-NN Localized p-value Estimator (KNN-LPE)

1Methods that consider the information contained in an entire data set to identify anomalies.
2Methods that operate only on the information in the neighbourhood of the query.
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for the global algorithms, and a variant of the LOF [14] and k-NN Normalized Average

Density (KNN-NAD) for the local ones. The k-Means [36] is a popular distance-based

clustering algorithm while KNN-LPE, LOF and KNN-NAD perform density-based AD.

EM k-Means works by assuming that normal data instances lie close to the closest clus-

ter centroid while anomalies are further away; normal data instances belong to large ad

dense clusters, while anomalies belong to small or sparse clusters. KNN-LPE uses the

entire training set to compute a score, which is an estimate of the probability that an

instance is anomalous; if this score is above a threshold the test instance is anomalous.

LOF Normalized (LOFN) like LOF is particularly suitable for outlier analysis in large

multi-dimensional data sets, but in this study, it normalizes the data to [0, 1]. Finally, the

KNN-NAD is a variant of LOFN with reduced run time; the score is computed the same

way, with the difference residing in not computing the local reachability distances but

the distance between a node and its kth nearest neighbour. The authors’ main goal was to

compare the performance of local and global AD algorithms on a ground-based maritime

AD task. The algorithms are supposed to differ only on borderline cases and not when

the anomaly cases are distinct from normal instances. To assess this performance the area

under the ROC curve was used. ROC curves are often used to compare the performance

of binary classifiers [13] and plot the True Positive Rate (TPR)3 against the FPR4. The

authors concluded that the KNN-LPE, a global density approach, has the lowest runtime

possible because it lends itself to catching of distance computations. KNN-LPE also has

the highest TPR and is best suited for real-time data acquisition.

The authors in [59] bring up the problem of AD in high-dimensional datasets and pro-

pose a framework called Dimensionality Reduction Anomaly Meta-Algorithm (DRAMA)5

to solve it. Significantly increasing the number of features leads to the problem of the, so-

called, curse of dimensionality [3]: the performance of most machine learning algorithms

deteriorates as the dimensionality of the feature space increases dramatically. The key

reasons for the "curse" are that distance measures become less and less informative and

feature space volume grows exponentially in higher dimensions. The proposed method

can be described as follows: it performs dimensionality reduction (encoding) of data to

a lower-dimensional space, followed by clustering to find the main prototypes in the

data. After these steps, uplifting to the original space (decoding; optional) is performed

and finally distance measurements between the test data and the prototypes (the main

clustered components) to rank potential anomalies. An important note about DRAMA,

agglomerative clustering was used for prototype detection because the authors performed

experiments that showed it was superior to other methods like k-Means. The authors used

20 real-worlds datasets, only 20 due to computational resources, chosen at random from

3TPR = #anomalies correctly classified/Total number of anomalies
4FPR = #non-anomalies classified as anomalies/Total number of non-anomalies
5DRAMA is based on the popular scikit-learn [52] and TensorFlow [1] packages and comes with a Jupyter

notebook interface for ease of use.
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the Outlier Detection DataSets (ODSS)6 database and many different kinds of anomalies

were studied. DRAMA was compared against two popular general algorithms, LOF [14]

and Isolation Forest (iForest) [41], and the means and best performances for two relevant

metrics suited for AD, ROC AUC and Rank-Weighted Score (RWS) [55] were used. The

RWS rewards the algorithms whose anomaly scores correlate well with the true proba-

bility of being an anomaly. The authors concluded that the true potential of DRAMA

only shines in high-dimensional datasets (nf = 3000), where nf represent the number of

features, and that the proposed method beat LOF and iForest on every simulated data

challenge and on 17 out of 20 real-world challenges in terms of area under ROC curve. On

the very inhomogeneous and fairly low-dimensional real-world datasets tested, DRAMA

was highly competitive with LOF and iForest, showing that dimensionality reduction and

clustering is a valuable approach to AD.

In [64] the authors’ work consisted of a specific review on clustering techniques for

AD and used network attacks as the background problem. Clustering is a popular un-

supervised classification technique that separates the data space in regions based on

similarity/dissimilarity metric, where similar elements are placed in the same cluster

while dissimilar ones are placed in separate clusters. This method can find abnormal data

having standard, or targeted automatically from the data set, in which it is not known

what is normal, or what is abnormal. For this to work the unsupervised algorithm has

two rules for the dataset: one is that the record number of normal activities must be

bigger than the record number of intrusion events, the other is that there is an essential

difference between normal and abnormal records. The unsupervised algorithms covered

by the authors were, k-Means, FCM [12], Adaptive hierarchical based clustering [17],

k-Means+ID3 [26] and Coclustering [56]. With the authors’ work, the following can be

outlined: k-Means has higher performance compared to others algorithms, FCM is virtu-

ally identical to k-Means except for a vector that expresses the percentage of belonging of

a given point to each of the clusters. Therefore FCM is slower but shows better results for

elongated clusters. FCM approach has proven to be very effective for solving many cluster

analysis problems [32] and in practice converges quickly, usually in 30 iterations [31];

With filtering noise and updating profiles at any time, adaptive hierarchical clustering is

quite effective; The combined application of the two algorithms overcomes some limita-

tions of each algorithm when applied individually in k-Means+ID3; Finally, coclustering

is not stated with enough proof to be a reliable and robust algorithm for AD.

Defining a normal region is a challenging problem as the exact notion of an anomaly

is different for different application domains. In [44] the authors propose a method based

on k-Means clustering for an initial partition of the dataset into k closest clusters, followed

by C5.0 technique to built a Decision Tree for each closest cluster and the rules created

6http://odds.cs.stonybrook.edu/
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by each decision tree to detect anomalies in the dataset. The reason for choosing the

above algorithms was: k-Means has time complexity O(n ∗ k ∗m) where n is the number

of clusters, k is the number of patterns and m is the number of iterations. k-Means space

complexity is O(n+ k) and its scalability is order independent; The reason for choosing

C5.0 [51] is due to the fact it is more efficient and its Decision Tree is smaller in compar-

ison with C4.5 because unnecessary attributes are automatically removed by C5.0. The

proposed algorithm can be briefly described in the following way: (i) initially k-Means is

used for partitioning the dataset into k closest clusters using Euclidean distance [54] and

(ii) C5.0 technique is then applied to build a Decision Tree for each cluster and classify

each instance into normal or anomaly. Phases (i) and (ii) correspond to the selection

phase and classification phase respectively. In this work temperature related anomalies

were studied and the performance evaluation was done by splitting the data into 90%

for train and 10% for test, followed by an analysis of the confusion matrix regarding the

number of correct and incorrect classification. By doing this the authors concluded that

the proposed algorithm gives impressive classification accuracy showing no errors in the

training set but in the test set, 393 variables were correctly predicted and 19 incorrectly

predicted.

The authors in [6] present a study on detecting and preventing attacks against com-

puter networks. The systems used to protect against such attacks have a significant

limitation since the signature database should be updated frequently. Ant Clustering

Algorithm (ACA) is a popular unsupervised learning algorithm [65] that needs to be com-

plemented with other algorithms for the classification process. In this work, the authors

propose a hybrid method based on two phases: a training phase where ACA is used to de-

termine clusters; and a second phase where a fuzzy approach is going to detect anomalies

in new monitored data by combining two distance-based metrics. The reasons, confirmed

by the authors through research and run experiments, for choosing ACA and a fuzzy

approach to propose a novel hybrid Intrusion Detection System (IDS) scheme are related

to the fact that ACA provides a higher detection rate and fuzzy logic can reduce the

FAR7 with higher reliability. The high detection rate of ACA is achieved since it provides

minimum intra-cluster distance and maximum inter-cluster distance in order to present

the inherent structures and knowledge from data patterns, where intra-cluster distance

and inter-cluster distance mean better compactness and better separateness respectively.

Fuzzy can reduce the FAR because it helps construct more abstract and flexible patterns

for intrusion detection and thus greatly increases the robustness adaption ability of the

detection system. To evaluate the performance of the proposed model the authors used

the Detection Rate (DR)8, FAR and False Negative Rate (FNR)9 as performance metrics.

7Calculated by number of legitimate instances detected as attack instances divided by the total normal
(legitimate) instances included in the data test.

8The ratio of the number of correctly detected attacks to the total number of attacks.
9Represents the number of attacks that were unable to be detected by the proposed method.
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The goal of a IDS is always to provide high detection rates and low false alarm rates, such

as the hybrid-IDS scheme proposed by the authors. The authors’ conclusions were: ACA

is a proper algorithm for high density and high dimensional data; it is very effective to

detect both known and unknown attacks, however it still provides high FAR.

Sometimes some outliers are not detected by a single clustering-based outlier detec-

tion approach. To overcome this limitation, the authors in [37] propose a novel Coop-

erative Clustering Outlier Detection (CCOD) algorithm that involves multiple cluster-

ing techniques using the methodology of cooperation. The authors chose as their work

methodology, to compare and analyze their model against a popular clustering-based out-

lier detection technique called FindCBLOF. FindCBLOF [34] assumes that outliers form

very small-sized clusters, and the detection accuracy of FindCBLOF is mainly based on

the quality of the adopted clustering technique. The proposed model, unlike FindCBLOF,

provides efficient outlier detection and data clustering capabilities, and can be briefly

described as follows: a first phase that obtains the intersection between the generated

sub-clusters; the second phase represents each sub-cluster with a histogram representa-

tion of the pair-wise similarities between objects in the same sub-cluster; in the third

phase the identification of a possible set of outliers is done by assigning a cooperative out-

lier factor to each object in each sub-cluster; finally the fourth phase returns the overall

set of candidate outliers that affects the homogeneity of the merging process. The authors

also stated that it has been experimentally proven that better clustering solutions reveal

better detection of outliers using the notion of CBLOF. In the FindCBLOF algorithm, out-

liers are returned as objects with higher CBLOF values where the CBLOF is a measure of

both the size of the cluster the object belongs to and the distance between the object and

its closest cluster (if the object lies in a small cluster). The detection accuracy of outliers

was evaluated comparing the proposed method against the LOF [14] algorithm using the

TopRatio and LocalTopRatio metrics, that represent the number of detected outliers. The

Separation Index (SI)10 was used as the internal quality measure, which does not require

prior knowledge about the data. The smaller the SI, the more separate the clusters. With

these evaluation metrics, the authors concluded that the proposed method achieves better

detection of outliers in the data due to the fact cooperative clustering outperforms non-

cooperative; better results can be achieved in the clustering after removing the detected

outliers.

The research work of the authors in [40] is yet another AD in network traffic using a

IDS. For this purpose, FCM was used due to the fact soft clustering is more flexible than

hard clustering and is practical for outlier detection because of the natural treatment of

data. However, the authors propose a model that combines FCM clustering Gaussian

10The ratio of average within-cluster variance (cluster scatter) to the minimum pair-wise dissimilarity
(measured by the cosine correlation measure) between clusters.
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Mixture models (GMM) and feature transformation, with some modifications to the ob-

jective function and the distance function that reduce the computational complexity of

FCM while keeping clustering accurate. In many cases, the measured features are not

useful in producing a model, features may be irrelevant or redundant. Dimension re-

duction often leads to simpler models and fewer measured variables, with consequent

benefits when measurements are expensive and visualization is important. Nonnega-

tive Matrix Factorization (NMF) [68] and Principal Component Analysis (PCA) [2] are

widely used techniques for dimension reduction, more specifically feature transforma-

tion. The authors used profiles data [69] extracted from raw Netflow data and chose

27 features [50] using k-Means and Fuzzy GMM to classify the traffic flow. With this

research work the authors concluded: Fuzzy GMM is more robust than k-Means and for

AD, outliers are a small part of the data; PCA can extract more effective features than

NMF however, its computational overhead is higher than NMF which can be balanced by

the reduction of feature numbers; the experimental results also showed that the selection

of cluster number is crucial for classifying data and, re-running clustering techniques

plus cross-validation [58] can help significantly correctly classifying the data; finally us-

ing diverse clustering techniques and different cluster numbers, it is possible to perform

cross-validation and find more possible outliers.

3.4.2 A Fuzzy Clustering Approach to Anomaly Detection

3.4.2.1 Fuzzy c-Means

In many cases, real-world data sets show some sort of imprecision leading to a more diffi-

cult task when it comes to the assignment of structure to data. In such a case, assigning

an entity to a cluster becomes non-trivial due to the fact, clusters having no sharp bound-

aries. This is where the concept of membership in fuzzy sets offers special advantages

over crisp ones in a way that an entity is not only belonging or not belonging but has a

certain degree of belongingness to a given set.

The core and the origin of an infinite family of fuzzy c-means approaches was the FCM

[12]. FCM is considered a fuzzy analogue to c-means crisp clustering because it employs

the same definition of clusters, via prototypes. The main difference of FCM compared to

c-means relates to the fact that for FCM, the membership values, even though expressing

the similarity between observations and prototypes, are not involved in the reconstruction

of observations from the cluster prototypes.

The two main hyperparameters of FCM are, c that denotes the number of clusters

one wishes to partition the data, and m that express the degree of fuzziness of the cluster

partition. Parameter m must be chosen accordingly, values of m → ∞ lead to entirely

fuzzy partitions, and for m→ 1 FCM becomes a crisp algorithm originating more and

more crisp partitions [47]. In most applications of FCM, the parameter m is chosen in the

range [1.1, 5.0] [47], with m = 2 the most common value [10]. Another input parameter

exists, ε, that is responsible for controlling the duration of the iterative cycle as well as
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the quality of terminal estimates. This parameter should be between 0.0001 and 0.01

range of values [47].

The main goal of FCM is to find an optimal c-partition and respective prototypes by

minimizing the sum of squared errors, shown in equation (3.8), between observations

in the data and cluster prototypes, whose weights correspond of a membership value.

While prototypes are determined as weighted averages of the cluster points, membership

functions are determined based on a distance function, expressing the proximity of points

to the cluster centres. To evaluate a c-partition returned by FCM one needs to run FCM

for different values of c, c ≥ 2, and then for each c-partition can make use of validation

functions [11] to assess the quality of such partitions.

argmin
C

n∑
i=1

c∑
j=1

(µij )
m · ‖κi − vj‖2 (3.8)

where, C represents a list of c cluster centres, n is the number of data points, c repre-

sents the number of the cluster centre, µij represents the the membership of ith data to

jth cluster centre, m is the fuzziness index with m ε [1,∞[ and ‖κi −vj‖2 is the Euclidean11

distance between ith data and jth cluster centre.

3.4.2.2 FurthestSum-AA

The statistical technique AA aims to represent the data as a convex combination of pure

or extremal types called archetypes [19]. While archetypes might not represent real

points in the data, archetypoids are real observations. Archetypes are built as a convex

combination of the observations. Important to point out that archetypes are not outliers.

In [48] the FurthestSum-Archetypal Analysis (FS-AA) algorithm is briefly described

as an initialization strategy for AA, with the purpose of maximizing the speed of conver-

gence of the algorithm and decreasing the chance of generating non-significant solutions.

The idea behind the FS-AA algorithm is based on the FurthestFirst (FF) [35], a known

method for initializing k-Means. The FF method takes as input the number of seeds that

are supposed to be used and then: (i) it selects a random set of data point, the seeds; (ii)

it begins to select the remaining data points such that they maximize the distance from

already selected seeds. The points selected by FS-AA are guaranteed to belong to the

minimal convex set of the unselected data points.

The authors point out some limitations inherent to the AA clustering approach: (1)

the input number of clusters, as the number of archetypes increases the way in which

they reflect the shape of the data will change for every single one; (2) validation method,

the authors mention that none clustering validation index is adequate for validating the

partitions generated by AA.

11Euclidean distance is the shortest distance between two points in an N-dimensional space also known
as Euclidean space. It is used as a common metric to measure the similarity between two data points.
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The AA technique can be extended to functional data (FD), to make it possible to be

used in AD problems.

Functional Data Analysis (FDA) is a relatively new field that sees each curve as a

distinct observation in itself. The objectives of FDA are essentially the same as those of

any other branch of statistics.

A practical application of FDA is presented in [45], as a way to detect anomalous flows

in urban water networks. Hydraulic variables are recorded in real-time hence they are FD.

In this work the authors propose a FDA-based method for AD in the flows of urban water

networks, presenting 3 main novelties: (1) treating real-time primary hydraulic variables

as FD for the first time; (2) a FDA method to validate data and identify anomalies; (3)

a new procedure for functional outlier detection based on [23] and comparison of its

performance with other procedures. The data used consisted of 5-minute records of

water inflows from three municipal water utilities on the eastern coast of Spain.

With this work, the authors concluded that the proposed procedure provided consis-

tently very good results for all the types of outliers. Figures 3.2 and 3.3 aim to clarify the

procedure and also give a general idea of how AA (in this specific example Archetypoid

Analysis (ADA)) works. The x-axis represents the domain of the function, normalized,

used by the authors to generate the points used in this example.

Figure 3.2: Urban water flow data with outliers. Left-hand panel: functions are gener-
ated from the main model (gray) and the contamination model (black). Central panel:
archetypoids are represented with (red) solid, (green) dashed, and (blue) dotted lines,
respectively. Right-hand panel: the vertices of the triangle represent each archetypoid.

Source: Taken from [45]

Figure 3.3: Urban water flow data with no outliers. Left-hand panel: archetypoids are
represented with (red) solid, (green) dashed, and (blue) dotted lines, respectively. Right-
hand panel: the vertices of the triangle represent each archetypoid.

Source: Taken from [45]
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3.4.2.3 The Mahalanobis Taguchi System to Fuzzy Clustering

The work in this dissertation presents a novel approach for AD with FCM which is to use

ROC curve to find the optimum threshold for the Mahalanobis Taguchi System (MTS),

called Modified Mahalanobis Taguchi System (MMTS) [22]. This was also extended for

AA and the process is identical. At the time of this dissertation, and up to our knowledge,

this has never been done and can be described as follows:

1) Calculate the Mahalanobis Distance (MD)12 of every point to each cluster centre

returned by FCM;

2) Sort these distances in descending order;

3) Make use of the ROC curve to determine the threshold that best discriminates the

classes (normal and anomalous), rigorously and systematically.

If the MD of an observation is greater or equal than the optimum threshold, then the

observation is considered anomalous.

The ROC curve plots the FPR vs the TPR and these can be calculated as shown in

equations (3.9) and (3.10):

T P
(κ)
rate =

T P (κ)

Np
(3.9)

FP
(κ)
rate =

FP (κ)

Nn
(3.10)

where T P (κ) is the total number of observations classified as positive from the pool of

the positive observations (the positive observations whose MD ≥ κ), FP (κ) is the total

number of observations classified as positive from the pool of the negative observations

(the negative observations whose MD ≥ κ), Np is the total of positive observations and

Nn is the total of negative observations.

It is possible to see that point A (FPrate = 0, T Prate = 1) represents the optimum theo-

retical solution (best performance) for any classifier. The curve drawn in the Figure 3.4

represents the MTS classifier performance for different threshold values. Changing the

threshold will change the point location on the curve (points B, C, D, and E). Summariz-

ing, the goal is to find the closest point that lies on the curve to point A.

This method served as inspiration since the authors concluded that proved itself to

be a robust and rigorous process, to determine the threshold to discriminate between two

classes in imbalanced data problems [22].

12Mahalanobis distance is an effective multivariate distance metric that measures the distance between a
point and a distribution.
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Figure 3.4: Using the ROC curve to determine the optimum threshold.
Source: taken from [22]

3.4.3 Local Minimum Spanning Tree Algorithm

If one considers data instances as vertices and the Euclidean distance between any pairs of

data points as the edge weight, then a Minimum Spanning Tree (MST) can be constructed,

with no cycles and with the minimum possible total edge weight, to connect all the nodes.

Although the distance between a pair of immediately connected nodes is still Eu-

clidean, the distance between a general pair of nodes is not. The MST-based distance

is the geodesic13 distance between two data points which provides a better metric to

differentiate them.

The LoMST [5] proceeds as follow:

1) Identify if anomalous clusters exist. For that, a global MST is built using all the data

points and when this is done, a long edge is searched and treated as the connecting

edge between the anomalous clusters and the rest of the MST. After this edge is

removed two groups remain, the smaller is considered an anomalous cluster. The

authors establish a robust way to flag long edges in the following way: plot the

edge length distribution specific for each application and set the corresponding q
in, µ+ q · σ . The authors propose q = 3. This edge deletion procedure is iterated on

the larger group to discard any less discriminative anomalous cluster;

2) Determine if an observation is an anomaly. For that the k-neighbourhood of each

point is calculated, isolated and an MST is built in this neighbourhood. These MSTs

are local, LoMST, and their total edge length is the LoMST score for the observation

differentiating it as anomaly or normal. This score will be compared with the scores

of the observations neighbours and this can be done in two ways:

13Geodesic distance is the minimum possible distance between two points in a curved surface like the
surface of the earth.
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compare the observation score with the mean of the neighbours scores, or with the

mean-to-standard deviation ratio of the neighbours scores. The authors suggest the

former when there are many anomalies and the latter when anomalies are rare;

3) Finally, after the comparisons are done, the LoMST scores will be sorted in decreas-

ing order so the bigger scores imply a higher possibility of being an anomaly.

To choose the input parameter k, the authors propose to run k with a broad range

of values between 1 and 100, and select k where the average LoMST scores are stable.

The computational complexity of LoMST: (1) building the k-NN for each observation is,

O(pN logN )+O(kp logN ), where the first component represents the time to build the tree

structure and the second component represents the k-neighbourhood query time for a

single observation; (2) building the LoMST takes O(|V | log |E|), where |V | and |E| are the

number of vertices and edges respectively, and usually remain small.

As concluded by the authors, LoMST by using its distance metric to better detect local

pointwise anomalies, stands out as superior and registers the best performance when

compared with other anomaly detection algorithms such as LOF, SOD, COF, k-NN and

others.

3.5 Cluster validity

"How well does a given partition represent the inherit clustering structure in the data?".

This is the question many people try to answer in order to assess how accurately a set

of partitions reflect the inherit clustering structure that is embedded in the data. In

order for this problem to be adequately tackled there needs to be a measurement or set

of measurements that are generated in a systematic manner, in order to help us derive

the answer and by doing so removing from the answer any possible biases or inaccurate

interpretations. This is all addressed in [48].

These measurements are known as Clustering Validation Indices (CVI) which are

functions that given a partition a value, there are CVI with a wide variety of inputs. These

values are calculated in such a way that they are comparable between them, enabling the

comparison between partitions generated by different clustering algorithms and also by

partitions generated by the same algorithms with different parameterization.

There are two types of CVI:

• Internal Indices: this set of indices give a evaluation without using the labels of

the data. They use metrics that assess how compact are the clusters, the level of

separation of the clusters or how different are the clusters between each other, and

• External Indices: this set of indices uses the labels of the data in their rating process.

36



3.5. CLUSTER VALIDITY

In [48] the authors present 5 soft internal validity indices that have been extensively

explored [60] and have been established as adequate to validate partitions generated by

AA and Fuzzy Clustering via Proportional Membership (FCPM) algorithms [47]. These

indices were subject of analysis in this dissertation and their implementation is available

in a R language toolbox provided by [25]:

• Partition Entropy (PE): This index is a measurement of how much the clusters

are separated, it is achieved by analysing the membership values in terms of their

entropy, where the optimization criterion is minimization of PE;

• Partition Coefficient (PC): This index is a measurement of how much the clus-

ters "overlap" between each other. This is achieved by averaging the square of the

memberships, where the optimization criterion is maximization of PC;

• Modified Partition Coefficient (MPC): This is a normalization of the previously

described PC, where the optimization criterion is maximization of MPC;

• Xie-Beni (XB): This index calculates the ratio between the weighted by membership

sum of the squared within-cluster distances to the power m, and the minimum

squared distance between every single pair of prototypes, multiplied by the number

of points(N). The optimization criterion is minimization of XB;

• Fuzzy Silhouette Index (FSI): This index is the "fuzzyfication" of the Average Sil-

houette Width Criterion, or Crisp Silhouette (CS), developed for hard clustering

partitions. The "fuzzyfication" of FSI from CS is achieved through the use of the

weighted average instead of averaging its silhouette with the arithmetic mean. The

optimization criterion is maximization of FSI.

Summary

The approaches used to address the AD problem depend on the nature of the data that

is available for analysis. As an algorithmic framework for data analysis and interpre-

tation, clustering has been widely used in understanding data, revealing fundamental

phenomena, and visualizing major tendencies. Detecting anomalies through FDA is a

good choice when data is being gathered at fixed frequency intervals. This way data can

be expressed as a combination of basis functions and, FDA methods are computationally

less demanding than the AD methods discussed previously.
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4
Data description and preprocessing

In this Chapter all the preliminary work done is highlighted in the first four Sections,

in order to draw some initial possible conclusions. The first Section 4.1 refers to the

statistical analysis background, Section 4.2 is all about describing in a detailed manner

the SCADA system, Sections 4.3 and 4.4 explain the process behind the data analysis

exploration and the analysis of the results respectively. The last Section 4.5 describes the

preprocessing done, after the preliminary stage, and the datasets used.

4.1 Preliminary Data Analysis

Statistics presents a set of methods whose objective is to synthesize and represent un-

derstandably the information contained in the data. Statistical methods can help to

understand and describe a variable. It can be understood as a classification or a mea-

sure, an amount that changes in each case or study unit. Variability is often found when

dealing with engineering problems.

This analysis is meant to treat the raw data that is acquired by SCADA, as these

may have registration errors affecting later the results of the descriptive analysis. The

preliminary analysis can be carried out through graphics such as boxplots and histograms

or measurements. Boxplots are a standardized way of displaying the distribution of data

based on a five-number summary ("minimum", first quartile (Q1), median, third quartile

(Q3), and "maximum"):

• median (Q2/50th Percentile): the middle value of the dataset;

• first quartile (Q1/25th Percentile): the middle number between the smallest num-

ber (not the "minimum") and the median of the dataset;
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• third quartile (Q3/75th Percentile): the middle value between the median and the

highest value (not the "maximum") of the dataset;

• interquartile range (IQR): 25th to the 75th percentile;

• whiskers (shown in blue);

• outliers (shown as green circles);

• "maximum": Q3 + 1.5*IQR;

• "minimum": Q1 -1.5*IQR

The data was visualized using boxplots in two ways: original and normalized. Original

as the name implies suffered no modification and, normalized suffered a pretty common

transformation called standardization.

Standardization is often called Z-score normalization and aims to rescale the fea-

tures so that they have the properties of a standard normal distribution with, µ = 0 and

σ = 1, where µ is the mean (average) and σ is the standard deviation from the mean;

standard scores (also called z scores) of the samples are calculated as shown in equation

(4.1), where κ is the original data:

z =
κ −µ
σ

(4.1)

Standardizing the features is not only important if we are comparing measurements

that have different units, but it is also a general requirement for many machine learning

algorithms. Figure 4.1 helps to visualize boxplots used in normal distributions.

During this preliminary stage, and to ease the reader when looking at the tables in

Section 5.3, it was possible to see that turbines fall into three different categories according

to their percentage of outliers (low, medium and high).

• WT8, WT3, WT7 belong to the high outlier percentage group with 53.0%, 42.06%

and 38.05% respectively;

• WT5, WT6 belong to the medium outlier percentage group with 20.57% and 14.6%

respectively;

• WT2, WT1, WT4 belong to low outlier percentage group with 13.27%, 11.95% and

11.75% respectively

40



4.2. DESCRIPTION OF THE SCADA DATA

Figure 4.1: Comparison of a boxplot of a nearly normal distribution and a probability
density function for a normal distribution.

Source: Taken from1

4.2 Description of the SCADA data

The present study consists of the analysis of data registered with the SCADA system of a

wind farm2 for the years 2011, 2012 and 2013 with 52560 rows x 73 columns each, where

(9x8 turbines + 1 column for timestamp). Even though the three years are available for

this work, the exploratory analysis in Section 4.3 was conducted, at random choice, for

the year 2012. The data in question has an observation frequency of 10 minutes and these

refer to different variables:

• Active Power (kW);

• Wind speed (m/s);

• Wind direction (º degrees);

• Rotor speed (rpm);

• Outside temperature (Tout);

• Nacelle Temperature (Tnac);

• Main Bearing Temperature (TMB);

1https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
2https://www.iberwind.pt/pt/parques/freita-i/
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• Gearbox Main Bearing Temperature (TGB);

• Gearbox Oil Sump Temperature (TGO)

4.3 Exploratory Data Analysis Background

This section will explain with further detail the visualizations, mentioned in Section 4.1,

carried out to analyze the data and the tasks responsible for preprocessing the data.

The exploratory process began by creating a virtual Windows XP® environment with

Microsoft SQL Server® 2005 to access the .mdf database file containing the data, using

the VMware Workstation® software. This was necessary due to the extension of the file

containing the Nordex database being too old for modern Microsoft® SQL Server Manage-
ment 2017. After that, SQL scripts were written to extract only the desired features, and

.excel files were created so that data could be easily accessed. Having the .excel files with

the data ready to be analyzed, all later tasks were done in a Python® 3.7 environment.

The first column of the datasets that corresponds to the timestamps of each reading is

discarded. All the boxplots shown in this work were done using the Python® matplotlib3

package.

Figures 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10 show each SCADA feature measured

by the different turbines before data preprocessing (raw data).

Figure 4.2: Active Power in kW for each turbine.

3https://matplotlib.org/
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Figure 4.3: Rotor Speed in rpm for each turbine.

Figure 4.4: Gearbox Bearing Temperature in ºC for each turbine.
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Figure 4.5: Gearbox Oil Sump Temperature in ºC for each turbine.

Figure 4.6: Main Bearing Temperature in ºC for each turbine.

44
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Figure 4.7: Nacelle Temperature in ºC for each turbine.

Figure 4.8: Outside Temperature in ºC for each turbine.
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Figure 4.9: Wind Direction in º degrees for each turbine.

Figure 4.10: Wind Speed in m/s for each turbine.
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The author in [8] carried out an extensive analysis to define acceptable intervals for the

features and it can also be seen from the previous boxplots that some values do not make

sense, especially the boxplots concerning the temperatures. These values are justified by

the authors as measurement errors hence considered as outliers.

So in this work, outliers were removed according to the acceptable intervals, using

regex expressions and filters from the Python® pandas4 package. It is also important to

mention that data imputation5 was performed to handle the missing values present in

the data. The method chosen was the k-NN since it can be much more accurate than the

mean, median (depending on the data set), with the drawback of being computationally

expensive due to the fact it stores the whole training data set in memory. The new boxplots

can be seen in Figures 4.11, 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17.

Special acceptable intervals were defined for the RotorSpeed and WindSpeed SCADA

variables. The RotorSpeed values are established by the manufacturers of the turbines6

and the WindSpeed values are defined according Betz’s Law7.

4.4 Analysis of the Results

Now that the data is treated, its analysis can be done more accurately. This is shown in

greater detail in this Section.

Figure 4.11: Gearbox Bearing Temperature in ºC for each turbine.

4https://pandas.pydata.org/about/index.html
5https://towardsdatascience.com/6-different-ways-to-compensate-for-missing-values-

data-imputation-with-examples-6022d9ca0779
6https://www.iberwind.pt/pt/parques/freita-i/
7http://www.energiasrenovaveis.com/DetalheConceitos.asp?ID_conteudo=60&ID_area=

3&ID_sub_area=6
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As can be seen, there is a fluctuation of the Gearbox Bearing Temperature across all

turbines. The temperature tends to be between 53-65 ºC except for turbines 3, 6 and 7.

Despite this fluctuation, the median of the temperature is very similar for all turbines.

Figure 4.12: Gearbox Oil Sump Temperature in ºC for each turbine.

Turbine 5 stands out from the rest due to the fact its temperature is higher than the

majority of the turbines. The rest of the turbines represent slight fluctuations regarding

the temperature of the Gearbox Oil Sump, with turbines 4 and 6 having almost the same

temperature interval, 7 and 8 and 3 and 7 having similar upper and lower temperature

intervals respectively.

Figure 4.13: Main Bearing Temperature in ºC for each turbine.
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The temperature of the Main Bearing seems to be almost identical for all the turbines

with only minor fluctuations in the lower and upper intervals and the median. The

temperature tends to be between 25-32 ºC.

Figure 4.14: Nacelle Temperature in ºC for each turbine.

As can be seen, the temperature in the nacelle is also stable amongst the turbines

fluctuating for the same measures as in Figure 4.13. The temperature in the nacelle tends

to be between 17-27 ºC.

Figure 4.15: Outside Temperature in ºC for each turbine.

The temperature outside is the most stable of the temperatures showing almost the

same lower and upper intervals and median for all the turbines. This is to be expected
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since the temperature outside has nothing to do with the turbines and they are all on the

same farm. The temperature outside is between 6-15 ºC.

Figure 4.16: Rotor Speed in rpm for each turbine.

The turbines work on an average of 12 rpm and the rotor speed values tend to be

between 11-14 rpm. There is only a little fluctuation in the median for turbines 2, 6 and

7. Overall the rotor speed is similar amongst all turbines.

Figure 4.17: Wind Speed in m/s for each turbine.
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Wind speed is very similar for all turbines which is natural since the turbines are all

in the same wind farm. The median is practically the same and the wind speed tends to

be between 7,5-9,6 m/s.

Summary

By doing this preliminary exploratory analysis it was possible to conclude: the turbines

tend to follow the same behaviour regarding the temperature of the main bearing, nacelle

and outside. The only concerning temperatures are the gearbox bearing and gearbox

oil sump, especially in turbines 3, 6 and 7 for the first temperature and turbines 1 and

5 for the second one. These might indicate a slightly malfunctioning of these turbines.

It is also important to mention that data referring to anomalous behaviour might not

allow to observe its impact in the different variables mentioned above, given its relative

dimension.

4.5 Preprocessing

The datasets used in the experimental study, after the refinement done in the preliminary

stage were of two different types: (1) a dataset regarding the data of each turbine; (2) a

dataset containing the data of all turbines.

Table 4.1 describes the datasets used in the unsupervised experiments. The datasets

are sorted according the different groups mentioned in 4.1 because it would be interesting

to see if the algorithms get affected by the amount of outliers present in the data. The

datasets used for the semi-supervised algorithms will be described in Section 5.2.

The preprocessing performed to the data consisted in two tasks: (1) choosing the most

relevant features of the turbines; (2) reduce/eliminate noisy data.

The path chosen to select the most relevant features was to calculate the Pearson

correlation coefficient of the Active Power attribute against all others. Pearson correlation

can be interpreted in the following manner: it is a coefficient with a range of values

between -1 and 1, and a correlation value of 0.7 between two variables would indicate

that a significant and positive relationship exists between the two. This means if a feature

value goes up the other feature value will also go up and vice-versa for the negative case.

After this process the most relevant features used in the experiments were: Active Power

(kW), Wind speed (m/s), Rotor speed (rpm), Gearbox Main Bearing Temperature (TGB)

and Gearbox Oil Sump Temperature (TGO).

To reduce noisy data, the median of the observations corresponding to a day of a

turbine functioning time was calculated. This led to a drastic decrease in the number of

observations in the data sets.
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DataSet N d φ(%)

WT8 1096 5 53.38

WT3 1096 5 42.06

WT7 1096 5 38.05

WT5 1089 5 20.57

WT6 1096 5 14.6

WT2 1070 5 13.27

WT1 1096 5 11.95

WT4 1081 5 11.75

DataSet N d φ(%)

All 8720 5 26.0

Table 4.1: Description of the datasets used for the unsupervised algorithms. N is the
number of instances, d is the number of attributes and φ is the contamination (percentage
of anomalies).
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5
Experimental Study

In this Chapter, the entire experimental protocol is explained and the novel approach

presented.

Section 5.2 describes the preprocessing done to the datasets used in the experiments,

and previous works are used to serve as theoretical background to help the reader under-

stand how AD algorithms performances and results are evaluated. Popular methods for

evaluating classifier performance like, Precision, Recall, Accuracy, AUC and F-measure, are

carefully explained in Section 5.2.2.

The last two Sections, 5.2.3 and 5.3, concern the methodologies adopted for the exper-

iments of this dissertation, and the comparison and analysis of the different approaches

results, respectively.

5.1 Main Goals of the Study

The main objective of this dissertation is to explore and adapt the application of un-

supervised approaches, such as fuzzy clustering and archetypal analysis, as well as

semi-supervised approaches on the automatic detection of wind turbine faults. Since

archetypes are extremal points in the data, it was interesting to study how these kind

of algorithms adapt to AD problems. At the end we intend to see what approaches are

better at detecting anomalies, unsupervised or semi-supervised ones.
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5.2 Setting of Experiments

The experiments conducted in this dissertation used as its backbone the algorithms stud-

ied and described in Sections 3.3 and 3.4. The algorithms are available in a public tool-

box1 called PyOD. PyOD [72] is a comprehensive and scalable Python® toolbox for AD

with more than 30 detection algorithms and it is also well acknowledged by the machine

learning community.

As mentioned in Section 4.5 two other groups of datasets were used in the semi-

supervised experiments, one dataset per turbine and one dataset containing the data of

all turbines, both split in train-test. The technique used to split the datasets into train-

test sets was a stratified k-fold cross-validation technique, due to the fact the data being

imbalanced. With this technique, it is possible to guarantee balanced proportions for the

training and testing sets. For the unsupervised algorithms, no split technique was used.

Five folds were used in the splitting technique, hence the instances and outlier per-

centage values in the Table 5.1, are averages of the folds.

Data Set N d φ(%)

WT8 876 5 50.0

WT3 876 5 42.01

WT7 876 5 38.01

WT5 871 5 20.55

WT6 876 5 14.61

WT2 855 5 13.22

WT1 876 5 11.87

WT4 864 5 11.69

Data Set N d φ(%)

All 6970 5 25.25

Table 5.1: Description of the datasets after train-test split used for the semi-supervised
algorithms. N is the number of instances, d is the number of attributes and φ is the
contamination (percentage of anomalies).

When conducting experiments with semi-supervised algorithms, the classifier is trained

only with normal data and the model is tested against normal and anomalous data. The

number of instances present in the Table 5.1 above concern the training data.

The experiments were all executed in a machine with a Intel® CoreTM i7-9700K CPU

(8 cores) @ 3.60GHz-4.90GHz processor and 16GB of RAM. The entire code of this

dissertation is written in Python® version 3.7 with the exception of the LoMST that is

implemented in R® version 3.6.3.

1https://github.com/yzhao062/pyod
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5.2.1 Data Normalization

The datasets suffered the same normalization process prior the execution of every algo-

rithm. For every observation κi of the original dataset with d features, d = 1,2, . . . , k, the

mean of each feature is subtracted to κi , and divided by the difference of that feature

maximum and minimum values. The final normalization process can be formalized as

show in equation (5.1):

κ
′

i =
κi −µ(dk)

max(dk)−min(dk)
(5.1)

This was the same normalization chosen as in [48].

5.2.2 Evaluation Measures

This Section presents some popular measures for assessing how “accurate” a classifier is

at predicting the class label of observations [30]. Table 5.2 groups the majority of the

evaluation measures, except AUC, and their respective formulas all together to serve as a

consultation for the reader.

Measure Formula

Precision T P
T P+FP

Recall T P
P

Accuracy T P+TN
P+N

F-measure 2·precision·recall
precision+recall

Table 5.2: Evaluation measures, where TP, TN, FP, FN, P, N correspond to the number of
true positive, true negative, false positive, false negative, number of positive observations
and number of negative observations respectively.

To make it easier to grasp the meaning of the evaluation measures, some nomenclature

must be presented first:

• True Positive (TP): The number of positive observations that were correctly labelled

as positive;

• True Negative (TN): The number of negative observations that were correctly la-

belled as negative;

• False Positive (FP): The number of negative observations incorrectly labelled as

positive;

• False Negative (FN): The number of positive observations incorrectly labelled as

negative.
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An useful tool for analyzing when the classifier is labelling the observations correctly

and labelling the observations incorrectly, is a confusion matrix presented in the Table 5.3

bellow. Ideally, one wants the classifier to have most of the entries in the left diagonal and

the rest of the entries zero or close to zero, to have a good accuracy. Despite the confusion

matrix shown represents a binary classification problem, it can be easily adapted for

multiple classes.

Predicted class

Positive Negative Total

Actual class
Positive T P FN P

Negative FP TN N

Total P ′ N ′ P +N

Table 5.3: Generic confusion matrix.

The accuracy can be described as the percentage of correctly classified observations.

By looking at a confusion matrix it is easy to see if a certain classifier is mislabelling

between two classes. Accuracy is better when applied to balanced data. Analogously, one

can think of the error rate of a given classifier as 1-accuracy, and can be calculated in

equation (5.2):

error rate =
FP +FN
P +N

(5.2)

When a certain problem presents imbalanced data, that is, the positive class repre-

sents the majority of observations while the negative class the minority, the classifier can

correctly be labelling only the observations belonging to the negative class, and misla-

belling all observations belonging to the positive class. In such problems makes sense

to talk about two particular methods, sensitivity and specificity, shown in equations (5.3)

and (5.4) respectively:

sensitivity =
T P
P

(5.3)

specif icity =
TN
N

(5.4)

where P and N are the total number of positive and negative observations respectively.

The sensitivity, also known as recall, corresponds to the proportion of positive obser-

vations that are correctly classified, whereas specificity corresponds to the proportion of

negative observations that are correctly classified. Accuracy can also be seen as a function

of both sensitivity and specificity, expressed in equation (5.5):

accuracy = sensitivity · P
P +N

+ specif icity · N
P +N

(5.5)

The precision and recall measures are also widely used to evaluate a classifier. Precision
is the percentage of positive observations labelled as such, and recall is the percentage of

actual positive observations labelled as such.

56



5.2. SETTING OF EXPERIMENTS

A perfect precision score of 1.0 for a certain class means that every observation labelled

as belonging to that class, is correct. However, it is not possible to infer how many the

remainder observations were mislabelled as belonging to that class. Usually, there is an

inverse relationship between precision and recall, where it is possible the increase the

value of one while the value of the other decreases. For this reason, precision values are

often compared for a fixed value of recall, and vice-versa.

An alternative way to use precision and recall together is to combine both into a single

measure called F-measure, also called F1-score. The F-measure can be interpreted as the

harmonic mean of precision and recall. There’s a variant called the Fβ measure defined in

equation (5.6):

Fβ =
(1 + β2) · precision · recall
β2 · precision+ recall

(5.6)

where, β is a non-negative real number. While F-measure assigns equal weight to

precision and recall, the Fβ assigns β times as much weight to recall as to precision. F2

means that recall is weighted twice as much as precision, and F0.5 means that precision is

weighted twice as much as recall.

For binary classification problems, a ROC cures helps to analyze the trade-off, of a

certain classifier, between the rate of correctly classified positive observations vs the rate

of negative observations being wrongly classified as positives for different portions of the

data. The area under the ROC curve, AUC, is a measure of the accuracy of a classifier. To

better understand the AUC measure, first, the ROC curve must be briefly explained.

The classification returned by the model comprises a list of labels, and that list is

sorted in a such a way that an observation most likely to belong to the positive class

appears at the top of the list, and an observation least likely to belong to the positive class

will be at the bottom at the list.

The vertical axis of a ROC curve represents the TPR and the horizontal axis the FPR.

Starting from the bottom left corner, where both TPR and FPR are equal to 0, the observa-

tion actual class label is checked at the top of the previous list. If it is a TP, TPR increases

and this corresponds to move up and plot a point on the graph. If instead the observation

is wrongly classified as positive, leading to an increase of both FP and FPR, in this case

moving right and plot a point (Figure 5.1). This is an iterative process for the entire list.

In summary, the accuracy measure works best when the data classes are balanced,

while sensitivity (or recall), specificity, precision, F, and Fβ , are better suited to the class

imbalance problem, where the main class of interest (positive) is rare. To assess the

accuracy of a classifier, one can use the AUC measure. The closer the ROC curve is to the

diagonal, AUC equal to 0.5, the less accurate the classifier is and the closer it is to top

left corner, TPR equal to 1, the more accurate the classifier is. A classifier with perfect

accuracy has an AUC of 1.0.
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Figure 5.1: The ROC curves for two classifiers, C1 and C2, where the diagonal line repre-
sents the equal probability of a classifier to label an observation as positive or negative.

5.2.3 Experimental Protocol

Comparing the ROC and Precision-Recall (PR) curves are robust ways to evaluate the

performance of AD algorithms [15, 20, 28].

When it comes to fine-tuning the algorithms, the authors in [20, 28] calculated the

mean and standard deviation of both metrics, AUC and APR, of each algorithm for each

data set and decided that the best hyperparameters were the ones which increased the

Mean Average Precision (MAP). Since real-world data sets when it comes to AD are heav-

ily imbalanced and the positive class (anomalies) are more interesting than the negative

class, the fine-tuning was performed based on maximizing the APR of each algorithm for

each data set.

Besides using the two well known state of the art AUC and APR, the authors in

[15] also used an interesting evaluation metric called precision at n (denominated P@n),

defined as the proportion of correct results in the top n ranks [18]. This top n ranks is

retrieved from the full ranking of objects returned by each method, scoring every object

based on its outlierness. P@n can be formalized in equation (5.7), where O is the ground

truth of outliers in the data set with N instances:

P@n =
|{o ∈O | rank(o) ≤ n}|

n
(5.7)

When using P@n it is uncertain how to fairly choose the parameter n. The most

common case is to set n equal to the number of outliers in the ground truth, n = |O|.
The authors stated that the values for P@n tend to be considerably lower for data sets

with smaller proportions of outliers, and vice-versa. The P@n measure can be helpful in

discriminating between methods that perform more or less equally well in terms of AUC

and APR.
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The work conducted in this dissertation followed the approaches briefly mentioned

above since they seem adequate and fit our problem well.

5.2.3.1 Semi-supervised Techniques

Each semi-supervised algorithm was fine-tuned for its major hyperparameter using a

GridSearch2 approach. This approach is really expensive in terms of computation power

and time, but it is the most efficient, since each combination of hyperparameter value is

tried. The objective was to find the value for the hyperparameters that maximized the

APR of each algorithm for each dataset (turbine).

The algorithms LOF, COF, k-NN and SOD got their major hyperparameter “n_neighbours”
(k) varied between 10 and 50, while CBLOF got its hyperparameter “n_clusters” (c) varied

between 10 and 30 and HBOS got its hyperparameter “n_bins” (b) varied between 20 and

40. These values highly depend on the data so they must be tested empirically to gain

sensitivity. Figures 5.2, 5.3 and 5.4, 5.5 show the average of 10 runs for the values of AUC

and APR for the dataset with the lowest and highest percentage of outliers respectively.

Figure 5.2: Average of AUC (left) and APR (right) values for turbine 4 in the training set.

Figure 5.3: Average of AUC (left) and APR (right) values for turbine 4 in the test set.

2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Figure 5.4: Average of AUC (left) and APR (right) values for turbine 8 in the training set.

Figure 5.5: Average of AUC (left) and APR (right) values for turbine 8 in the test set.

5.2.3.2 Unsupervised Techniques

The FCM and AA algorithms were fine-tuned for their major hyperparameter, c and arch
that denote the number of clusters and archetypes respectively. Finally, LoMST was

fine-tuned for its major hyperparameter k that represents the neighbourhood to consider.

The hyperparameter tuning for FCM, AA and LoMST was different due to the fact these

algorithms were not included in the toolbox mentioned previously, therefore GridSearch
was not possible. For FCM the fine-tuning consisted in varying the number of clusters

c between 2 and 50, for AA arch was varied between 2 and 5, and for LoMST a range

between 1 and 100 was used for parameter k as recommended and done by the authors

[5]. These number of archetypes are highly dependent of the data so they must be tested

empirically to gain sensitivity. Figures 5.6 and 5.7 show the average of 10 runs for the

values of AUC and APR for the dataset with the lowest and highest percentage of outliers

respectively.
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Figure 5.6: Average of AUC (left) and APR (right) values for turbine 4.

Figure 5.7: Average of AUC (left) and APR (right) values for turbine 8.

5.3 Results and Discussion

Now that the entire experimental work has been thoroughly described, in this Section the

results of the experiments are presented and further analysed. The results comprise the

values for the following evaluation measures: execution time (to measure the efficiency),

ROC AUC, P@n, Precision, Recall, Accuracy and F-measure (to measure the effectiveness).
For the sake of table representation, Fuzzy c-Means Modified Mahalanobis Taguchi Sys-

tem (FCM-MMTS) will simply be denoted as FCM, and Archetypal Analysis Modified

Mahalanobis Taguchi System (AA-MMTS) as AA.

When running the experiments, it was possible to conclude that the algorithms didn’t

benefit, in the majority, from the datasets being all gathered as one. For this reason, the

results correspond to the experiments when running with datasets regarding each turbine
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separately. It is also presented in Table 5.4, the best parameters of each algorithm for

each turbine, as a reference for future works.

Data LOF COF KNN AvgKNN MedKNN CBLOF HBOS SOD AA FCM LoMST

WT8 k=50 k=50 k=50 k=50 k=50 c=10 b=22 k=16 a=5 c=40 k=1

WT3 k=50 k=50 k=49 k=50 k=47 c=19 b=20 k=38 a=5 c=38 k=1

WT7 k=18 k=48 k=36 k=50 k=50 c=24 b=35 k=11 a=2 c=50 k=2

WT5 k=10 k=10 k=10 k=12 k=13 c=22 b=22 k=13 a=5 c=50 k=12

WT6 k=50 k=50 k=25 k=41 k=44 c=23 b=21 k=33 a=4 c=50 k=27

WT2 k=29 k=10 k=23 k=23 k=13 c=18 b=23 k=47 a=4 c=50 k=19

WT1 k=50 k=16 k=32 k=50 k=49 c=19 b=31 k=14 a=2 c=7 k=64

WT4 k=15 k=23 k=41 k=50 k=39 c=12 b=20 k=30 a=5 c=50 k=9

Table 5.4: Best parameterization, where k is the number of neighbours, c the number of
clusters, b the number of bins and a the number of archetypes.

5.3.1 Semi-supervised

Results for the semi-supervised experiments are presented in Tables 5.5, 5.6, 5.7, 5.8, 5.9,

5.10, 5.11 and 5.12. For these experiments each metric was calculated for both the train

and test sets, and the values presented are the average of the 5 folds.

The cells with "*" represent the best value of that metric in the train set for that

turbine, and the cells with "**" represent the best value of that metric in the test set for

that turbine. For these experiments all the algorithms got really low values, and most of

the time 0, for the standard deviation hence, it is not presented to not make the tables too

dense and difficult to read.

Execution Time

Data N φ LOF COF KNN AvgKNN MedKNN CBLOF HBOS SOD Best(↓)

WT8 876 53 0.02 6.62 0.11 0.14 0.23 0.04 0.01* 1.17 0.01

WT3 876 42.01 0.02 6.85 0.12 0.14 0.23 0.07 0.01* 1.09 0.01

WT7 876 38.01 0.01* 6.76 0.11 0.14 0.23 0.08 0.01* 0.93 0.01

WT5 871 20.55 0.01* 3.04 0.1 0.13 0.21 0.07 0.01* 0.99 0.01

WT6 876 14.61 0.02 7.6 0.11 0.14 0.23 0.08 0.01* 1.23 0.01

WT2 855 13.22 0.02 3.07 0.11 0.13 0.21 0.07 0.01* 1.18 0.01

WT1 876 11.87 0.02* 3.9 0.11 0.14 0.23 0.1 0.02* 1.12 0.02

WT4 864 11.69 0.01* 4.48 0.11 0.14 0.22 0.06 0.01* 1.2 0.01

Table 5.5: Average execution times (seconds) for 10 runs.
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When it comes to assess the efficiency we can clearly see that LOF and HBOS are the

most efficient with the lowest times of execution. The COF algorithm is the least efficient,

presenting the highest values of execution, and is the only algorithm that seems to benefit

from datasets with low percentage of outliers.

Area Under Curve

Data N φ LOF COF KNN AvgKNN MedKNN CBLOF HBOS SOD Best(↑)

WT8 876 53 0.46/0.48** 0.42/0.43 0.44/0.44 0.43/0.43 0.43/0.43 0.47*/0.45 0.45/0.43 0.45/0.44 0.47/0.48

WT3 876 42.01 0.51/0.51** 0.47/0.51** 0.52/0.51** 0.52/0.5 0.51/0.49 0.53*/0.49 0.52/0.51** 0.5/0.49 0.53/0.51

WT7 876 38.01 0.53/0.55** 0.49/0.54 0.52/0.54 0.53/0.55** 0.53/0.55** 0.54*/0.54 0.54*/0.55** 0.51/0.54 0.54/0.55

WT5 871 20.55 0.56*/0.53** 0.52/0.5 0.47/0.49 0.5/0.5 0.49/0.5 0.5/0.49 0.46/0.5 0.5/0.46 0.56/0.53

WT6 876 14.61 0.52*/0.57** 0.5/0.48 0.48/0.55 0.49/0.55 0.48/0.55 0.51/0.56 0.47/0.54 0.49/0.53 0.52/0.57

WT2 855 13.22 0.58/0.56 0.55/0.57** 0.57/0.54 0.59*/0.55 0.59*/0.55 0.58/0.56 0.53/0.54 0.55/0.53 0.59/0.57

WT1 876 11.87 0.61*/0.63 0.49/0.68** 0.56/0.58 0.57/0.58 0.57/0.58 0.58/0.6 0.46/0.5 0.53/0.63 061/0.68

WT4 864 11.69 0.62*/0.51 0.54/0.6** 0.54/0.54 0.56/0.54 0.55/0.54 0.55/0.52 0.54/0.53 0.53/0.49 0.62/0.6

Table 5.6: Average of AUC values for 10 runs.

The AUC can be interpreted in the AD domain as the probability of an AD algorithm to

assign a random normal observation a lower score than a random anomalous observation.

We can see that the nearest-based algorithms show better results for AUC when they

“become” more local (small values of k) with LOF achieving the best results. In a general

way, the values seem better for datasets with low percentage of outliers.

Average Precision

Data N φ LOF COF KNN AvgKNN MedKNN CBLOF HBOS SOD Best(↑)

WT8 876 53 0.49/0.53** 0.47/0.5 0.52*/0.51 0.5/0.5 0.49/0.5 0.5/0.51 0.49/0.5 0.5/0.5 0.52/0.53

WT3 876 42.01 0.44/0.45 0.4/0.45 0.44/0.45 0.44/0.44 0.43/0.44 0.45*/0.45 0.45*/0.46** 0.42/0.43 0.45/0.46

WT7 876 38.01 0.41/0.44 0.38/0.45** 0.4/0.42 0.41/0.42 0.4/0.42 0.42*/0.42 0.42*/0.43 0.4/0.43 0.42/0.45

WT5 871 20.55 0.23*/0.26** 0.22/0.22 0.2/0.23 0.21/0.22 0.21/0.22 0.21/0.23 0.21/0.23 0.21/0.21 0.23/0.26

WT6 876 14.61 0.18*/0.28** 0.16/0.17 0.15/0.2 0.16/0.2 0.15/0.21 0.16/0.21 0.14/0.17 0.14/0.17 0.18/0.28

WT2 855 13.22 0.21/0.24 0.18/0.24 0.21/0.24 0.22/0.24 0.23*/0.25** 0.22/0.25** 0.2/0.2 0.17/0.19 0.23/0.25

WT1 876 11.87 0.17/0.2 0.12/0.29** 0.17/0.2 0.18*/0.2 0.18*/0.21 0.18*/0.21 0.11/0.16 0.14/0.25 0.18/0.29

WT4 864 11.69 0.16*/0.12 0.13/0.19** 0.15/0.17 0.15/0.17 0.15/0.17 0.15/0.16 0.14/0.16 0.13/0.17 0.16/0.19

Table 5.7: Average of APR values for 10 runs.

One of the drawbacks of AUC might be that it is not the best for imbalanced datasets,

and APR can possibly better emphasize small detection performance changes. With APR

being the area under the PR curve, it shows how precision and recall trade against one

another. In an ideal world one would want the AD algorithms to identify all and only
anomalies. It is clear that the best values of APR are in the datasets with more percentage

of outliers and where the nearest-based algorithms are more global. All algorithms got

their best value for this metric in the top most outliers datasets.
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Precision at N

Data N φ LOF COF KNN AvgKNN MedKNN CBLOF HBOS SOD Best(↑)

WT8 876 53 0.51*/0.52** 0.49/0.47 0.48/0.48 0.47/0.48 0.48/0.47 0.51*/0.49 0.5/0.48 0.5/0.49 0.51/0.52

WT3 876 42.01 0.42/0.43** 0.39/0.42 0.45*/0.42 0.44/0.41 0.43/0.4 0.45*/0.41 0.43/0.43** 0.44/0.41 0.45/0.43

WT7 876 38.01 0.41/0.45** 0.36/0.41 0.41/0.41 0.42*/0.41 0.41/0.41 0.42*/0.4 0.41/0.4 0.39/0.42 0.42/0.45

WT5 871 20.55 0.24*/0.25** 0.24*/0.24 0.19/0.2 0.22/0.21 0.2/0.21 0.19/0.2 0.19/0.18 0.21/0.18 0.24/0.25

WT6 876 14.61 0.17*/0.2** 0.14/0.14 0.15/0.18 0.16/0.17 0.15/0.18 0.16/0.2** 0.15/0.16 0.12/0.13 0.17/0.2

WT2 855 13.22 0.2/0.19 0.19/0.19 0.19/0.2 0.22*/0.19 0.22*/0.2 0.22*/0.21** 0.2/0.18 0.17/0.16 0.22/0.21

WT1 876 11.87 0.15/0.15 0.1/0.29** 0.23*/0.18 0.22/0.18 0.23*/0.19 0.2/0.19 0.07/0.16 0.13/0.27 0.23/0.29

WT4 864 11.69 0.16*/0.09 0.12/0.19** 0.14/0.17 0.16*/0.16 0.14/0.16 0.16*/0.14 0.15/0.12 0.15/0.17 0.16/0.19

Table 5.8: Average of P@n values for 10 runs.

Since the top n rank is equal to the set of all anomalies, P@n behaves in a similar way

to recall. The values of this metric are really low for the datasets with few outliers and

high for the datasets with high number of outliers as expected. The LOF is the winner for

this metric but CBLOF has similar results.

Precision

Data N φ LOF COF KNN AvgKNN MedKNN CBLOF HBOS SOD Best(↑)

WT8 876 53 0.51/0.53** 0.49/0.49 0.48/0.49 0.47/0.49 0.48/0.48 0.51/0.51 0.52*/0.5 0.48/0.5 0.52/0.53

WT3 876 42.01 0.42/0.42 0.39/0.42 0.44*/0.43** 0.44*/0.4 0.43/0.4 0.44*/0.41 0.43/0.4 0.44*/0.42 0.44/0.43

WT7 876 38.01 0.41/0.39 0.37/0.41 0.41/0.4 0.42*/0.4 0.41/0.41 0.42*/0.39 0.41/0.4 0.4/0.42** 0.42/0.42

WT5 871 20.55 0.25*/0.21 0.24/0.2 0.19/0.22** 0.21/0.22** 0.2/0.21 0.19/0.21 0.19/0.22** 0.2/0.19 0.25/0.22

WT6 876 14.61 0.17*/0.17** 0.15/0.14 0.15/0.16 0.16/0.16 0.15/0.17** 0.16/0.16 0.15/0.17** 0.12/0.15 0.17/0.17

WT2 855 13.22 0.2/0.16 0.19/0.17** 0.19/0.17** 0.22/0.14 0.23*/0.13 0.21/0.14 0.2/0.15 0.17/0.16 0.23/0.17

WT1 876 11.87 0.15/0.16 0.1/0.26** 0.23*/0.19 0.22/0.18 0.23*/0.18 0.19/0.18 0.07/0.12 0.13/0.22 0.23/0.26

WT4 864 11.69 0.15/0.12 0.11/0.17** 0.14/0.12 0.16*/0.11 0.15/0.11 0.16*/0.12 0.15/0.12 0.14/0.13 0.16/0.17

Table 5.9: Average of precision values for 10 runs.

Precision is the percentage of correctly identified anomalies that are actually anomalies.

We want AD algorithms with good values of precision because this means our models will

have a low FAR. For this metric the best values go to LOF, CBLOF and HBOS. For the top

most outliers datasets the values of precision are better.
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Recall

Data N φ LOF COF KNN AvgKNN MedKNN CBLOF HBOS SOD Best(↑)

WT8 876 53 0.48/0.61 0.5/0.54 0.44/0.53 0.45/0.6 0.45/0.59 0.55/0.7 0.64*/0.73** 0.31/0.56 0.64/0.73

WT3 876 42.01 0.41/0.58 0.39/0.42 0.45/0.58 0.44/0.62 0.42/0.63 0.5*/0.73** 0.46/0.67 0.33/0.57 0.5/0.73

WT7 876 38.01 0.4/0.69 0.37/0.49 0.4/0.57 0.4/0.6 0.39/0.6 0.46*/0.74** 0.44/0.61 0.32/0.58 0.46/0.74

WT5 871 20.55 0.23*/0.75** 0.23*/0.19 0.17/0.48 0.18/0.56 0.18/0.54 0.2/0.53 0.18/0.45 0.18/0.34 0.23/0.75

WT6 876 14.61 0.15/0.39 0.14/0.21 0.14/0.39 0.15/0.42 0.14/0.41 0.16*/0.48** 0.14/0.45 0.1/0.31 0.16/0.48

WT2 855 13.22 0.19/0.47 0.2/0.24 0.18/0.39 0.2/0.46 0.21/0.48 0.22*/0.47 0.2/0.54** 0.18/0.37 0.22/0.54

WT1 876 11.87 0.16/0.45 0.1/0.37 0.25*/0.36 0.23/0.39 0.24/0.35 0.21/0.46** 0.08/0.48 0.12/0.44 0.25/0.46

WT4 864 11.69 0.14/0.52** 0.11/0.21 0.14/0.26 0.15/0.33 0.13/0.32 0.16*/0.27 0.15/0.42 0.14/0.32 0.16/0.52

Table 5.10: Average of recall values for 10 runs.

Recall is the percentage from the full set of anomalies. In the AD domain one could

argue that we want our algorithms to detect anomalies when they occur. An AD algorithm

that has a high number of TN can lead to severe problems in a long-term basis. The

CBLOF got consistently good results, > 0.7, for the datasets with more outliers, and and

LOF and CBLOF also achieved some interesting results. In a general way, all algorithms

got better results for the test sets.

Accuracy

Data N φ LOF COF KNN AvgKNN MedKNN CBLOF HBOS SOD Best(↑)

WT8 876 53 0.48*/0.5** 0.45/0.45 0.45/0.45 0.44/0.45 0.44/0.44 0.48*/0.49 0.49/0.47 0.46/0.46 0.48/0.5

WT3 876 42.01 0.51/0.5 0.49/0.51** 0.53/0.51** 0.53/0.46 0.52/0.46 0.52/0.45 0.51/0.45 0.54*/0.48 0.54/0.51

WT7 876 38.01 0.55/0.47 0.51/0.55** 0.55/0.52 0.56*/0.51 0.55/0.51 0.55/0.46 0.55/0.5 0.56*/0.54 0.56/0.55

WT5 871 20.55 0.7*/0.36 0.69/0.69** 0.68/0.5 0.69/0.46 0.68/0.47 0.66/0.48 0.67/0.53 0.68/0.56 0.7/0.69

WT6 876 14.61 0.77*/0.68** 0.75/0.68** 0.76/0.63 0.76/0.6 0.76/0.62 0.75/0.57 0.76/0.6 0.76/0.64 0.77/0.78

WT2 855 13.22 0.79/0.62 0.78/0.78** 0.79/0.66 0.8/0.57 0.8*/0.55 0.79/0.59 0.78/0.52 0.78/0.65 0.8/0.78

WT1 876 11.87 0.8/0.66 0.79/0.81** 0.81/0.71 0.81/0.66 0.82*/0.69 0.8/0.63 0.77/0.52 0.8/0.74 0.82/0.81

WT4 864 11.69 0.81*/0.53 0.79/0.78** 0.8/0.7 0.81*/0.66 0.81*/0.66 0.8/0.69 0.8/0.58 0.8/0.67 0.81/0.78

Table 5.11: Average of accuracy values for 10 runs.

It is advisable to use precision and recall too and not accuracy alone, because sometimes

the accuracy can be very high but the precision or recall are low. In AD and our problem in

particular, where turbines with undetected faults can lead to substantial losses, we want

our models to avoid the situation of a turbine having an anomaly but not being classified

as one. All algorithms got really high values of accuracy, around 0.8, for the datasets

with few outliers where for these same datasets the algorithms got really low values of

precision and recall. Accuracy alone is not the solution.
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F-measure

Data N φ LOF COF KNN AvgKNN MedKNN CBLOF HBOS SOD Best(↑)

WT8 876 53 0.49/0.57 0.49/0.5 0.46/0.51 0.46/0.54 0.47/0.53 0.53/0.59** 0.57*/0.59** 0.38/0.52 0.57/0.59

WT3 876 42.01 0.41/0.48 0.39/0.42 0.45/0.49 0.44/0.49 0.42/0.48 0.47*/0.52** 0.44/0.5 0.38/0.48 0.47/0.52

WT7 876 38.01 0.41/0.49 0.37/0.44 0.4/0.47 0.41/0.48 0.4/0.48 0.44*/0.51** 0.43/0.48 0.36/0.49 0.44/0.51

WT5 871 20.55 0.24*/0.32** 0.24*/0.19 0.18/0.28 0.19/0.3 0.19/0.3 0.2/0.29 0.19/0.27 0.19/0.24 0.24/0.32

WT6 876 14.61 0.16*/0.23** 0.15/0.16 0.15/0.21 0.15/0.22 0.15/0.22 0.16*/0.23** 0.15/0.24 0.11/0.21 0.16/0.23

WT2 855 13.22 0.2/0.24** 0.19/0.2 0.19/0.23 0.21/0.2 0.22*/0.2 0.22/0.21 0.2/0.23 0.18/0.21 0.22/0.24

WT1 876 11.87 0.16/0.23 0.1/0.3** 0.24*/0.24 0.23/0.23 0.24*/0.23 0.2/0.24 0.07/0.19 0.12/0.29 0.24/0.3

WT4 864 11.69 0.14/0.19** 0.11/0.19** 0.14/0.15 0.15*/0.16 0.13/0.16 0.15*/0.16 0.15*/0.18 0.14/0.19** 0.15/0.19

Table 5.12: Average of F1 values for 10 runs.

This metric is really important in our problem and for AD in general for two reasons:

(1) is good for imbalanced data; (2) is the trade-off between precision and recall, two

metrics we want our models to have. Instead of balancing precision and recall, we can

aim for a good F1 score which indicates a good precision and recall. The algorithms that

achieved the best F1 values are again the LOF, CBLOF and HBOS with values close to 0.6

for the dataset with more outliers.

5.3.2 Unsupervised

Results for the unsupervised experiments are presented in Tables 5.13, 5.14, 5.15, 5.16,

5.17, 5.18, 5.19 and 5.20. When running unsupervised techniques there is no split of

the data into train/test sets therefore, the values with "*" simply represent the best value

of that metric for that turbine. It is also shown the value of the standard deviation in

parentheses, "()".

Execution Time

Data N φ AA FCM LoMST Best(↓)

WT8 1096 53.38 5.13 0.37* 8.81 0.37

WT3 1096 42.06 3.71 0.35* 9.16 0.35

WT7 1096 38.05 2.97 0.48* 9.79 0.48

WT5 1089 20.57 7.89 0.45* 12.35 0.45

WT6 1096 14.6 4.12 0.45* 21.36 0.45

WT2 1070 13.27 6.43 0.44* 13.76 0.44

WT1 1096 11.95 3.42 0.08* 1.2 0.08

WT4 1081 11.75 3.55 0.44* 11.16 0.44

Table 5.13: Average execution times (seconds) for 10 runs.
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When running the experiments with the dataset of the total wind farm, it heavily

affected the efficiency of the algorithms. It doesn’t seem to be a direct correlation between

the amount of outliers present and execution time. The most interesting turbine is turbine

1 where all algorithms showed their best efficiency. When compared with the AA-MMTS

and LoMST, FCM-MMTS is the clear winner, achieving really low execution times in all

turbines.

Area Under Curve

Data N φ AA FCM LoMST Best(↑)

WT8 1096 53.38 0.46 (0) 0.45 (0.01) 0.52* (0) 0.52

WT3 1096 42.06 0.57* (0) 0.52 (0) 0.53 (0) 0.57

WT7 1096 38.05 0.48 (0) 0.5 (0.01) 0.52* (0) 0.52

WT5 1089 20.57 0.56* (0) 0.51 (0.04) 0.54 (0) 0.56

WT6 1096 14.6 0.51 (0) 0.45 (0) 0.52* (0) 0.52

WT2 1070 13.27 0.57 (0) 0.47 (0) 0.58* (0) 0.58

WT1 1096 11.95 0.54* (0) 0.51 (0.02) 0.53 (0) 0.54

WT4 1081 11.75 0.49 (0) 0.5 (0.01) 0.56* (0) 0.56

Table 5.14: Average of AUC values for 10 runs.

By looking at the table we can conclude that LoMST wins at the probability game of

assigning a random normal observation a lower score than a random anomalous observa-

tion. The LoMST achieves better results when the neighbourhood becomes more global

(higher values for k). The AA-MMTS got interesting results when generating partitions

with the highest number of archetypes, 5, and for the turbines with top most outliers.

Average Precision

Data N φ AA FCM LoMST Best(↑)

WT8 1096 53.38 0.5 0.49 0.53* 0.53

WT3 1096 42.06 0.47* 0.45 0.45 0.47

WT7 1096 38.05 0.37 0.39 0.4* 0.4

WT5 1089 20.57 0.23* 0.21 0.22 0.23

WT6 1096 14.6 0.16* 0.14 0.16* 0.16

WT2 1070 13.27 0.19 0.15 0.2* 0.2

WT1 1096 11.95 0.14* 0.13 0.14* 0.14

WT4 1081 11.75 0.12 0.12 0.14* 0.14

Table 5.15: Average of APR values for 10 runs.
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Like in the semi-supervised scenario, APR seems to benefit from datasets with high

percentage of outliers. The three algorithms got similar results and LoMST is the winner

and benefits from a really local neighbourhood, k set to 1.

Precision at N

Data N φ AA FCM LoMST Best(↑)

WT8 1096 53.38 0.51 0.5 0.54* 0.54

WT3 1096 42.06 0.47* 0.43 0.45 0.47

WT7 1096 38.05 0.38 0.39* 0.39* 0.39

WT5 1089 20.57 0.22 0.2 0.23* 0.23

WT6 1096 14.6 0.16* 0.11 0.15 0.16

WT2 1070 13.27 0.19 0.16 0.21* 0.21

WT1 1096 11.95 0.16* 0.14 0.15 0.16

WT4 1081 11.75 0.12 0.1 0.15* 0.15

Table 5.16: Average of P@n values for 10 runs.

The tendency seems to follow, P@n got low values for datasets with few outliers. There

isn’t a clear winner since the three algorithms got similar values.

Precision

Data N φ AA FCM LoMST Best(↑)

WT8 1096 53.38 0.52* (0) 0.5 (0.01) 0.49 (0) 0.52

WT3 1096 42.06 0.47 (0) 0.43 (0) 0.6* (0) 0.6

WT7 1096 38.05 0.37 (0) 0.38 (0) 0.63* (0) 0.63

WT5 1089 20.57 0.26 (0) 0.22 (0.03) 0.82* (0) 0.82

WT6 1096 14.6 0.17 (0) 0.13 (0) 0.86* (0) 0.86

WT2 1070 13.27 0.17 (0) 0.12 (0) 0.89* (0) 0.89

WT1 1096 11.95 0.12 (0) 0.12 (0.01) 0.89* (0) 0.89

WT4 1081 11.75 0.11 (0) 0.12 (0) 0.91* (0) 0.91

Table 5.17: Average of precision values for 10 runs.

Algorithms in the AD domain with good values for precision are desired. For this

metric there is no doubt that LoMST is the clear winner achieving really high values, 0.9,

for datasets with few outliers present in the data.
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Recall

Data N φ AA FCM LoMST Best(↑)

WT8 1096 53.38 0.54 (0) 0.49 (0.04) 0.55* (0) 0.55

WT3 1096 42.06 0.58* (0.04) 0.44 (0.02) 0.55 (0) 0.58

WT7 1096 38.05 0.44 (0) 0.48 (0.05) 0.51* (0) 0.51

WT5 1089 20.57 0.54* (0) 0.51 (0.04) 0.52 (0) 0.54

WT6 1096 14.6 0.46 (0) 0.49 (0.05) 0.5* (0) 0.5

WT2 1070 13.27 0.59* (0.01) 0.44 (0.03) 0.52 (0) 0.59

WT1 1096 11.95 0.57* (0) 0.47 (0.01) 0.51 (0) 0.57

WT4 1081 11.75 0.42 (0) 0.47 (0.05) 0.51* (0) 0.51

Table 5.18: Average of recall values for 10 runs.

Recall is the other metric we try to balance together with precision for AD algorithms.

In the semi-supervised scenario recall got small values for datasets with few outliers and

higher values for the top most outliers datasets, but this doesn’t happen here. The AA

achieved the best results for turbines 3 and 2 while LoMST was more consistent achieving

somewhat the same results for all turbines.

Accuracy

Data N φ AA FCM LoMST Best(↑)

WT8 1096 53.38 0.48 (0) 0.47 (0.01) 0.52* (0) 0.52

WT3 1096 42.06 0.54* (0) 0.52 (0.01) 0.53 (0) 0.54

WT7 1096 38.05 0.5 (0) 0.51* (0.02) 0.51* (0) 0.51

WT5 1089 20.57 0.58* (0) 0.52 (0.05) 0.52 (0) 0.58

WT6 1096 14.6 0.59* (0) 0.45 (0.03) 0.51 (0) 0.59

WT2 1070 13.27 0.56* (0.01) 0.5 (0.03) 0.53 (0) 0.56

WT1 1096 11.95 0.46 (0) 0.53* (0.02) 0.51 (0) 0.53

WT4 1081 11.75 0.55* (0) 0.54 (0.02) 0.52 (0) 0.55

Table 5.19: Average of accuracy values for 10 runs.

In the unsupervised scenario accuracy has a similar behaviour to recall. In the turbines

where recall is higher, accuracy is also higher. For unsupervised AD algorithms one can

draw interesting conclusions, dependent on the data, but never forgetting that accuracy
is not recommended to be used alone. For this metric, AA-MMTS is the winner when

running with 4 and 5 archetypes.
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F-measure

Data N φ AA FCM LoMST Best(↑)

WT8 1096 53.38 0.53* (0.01) 0.49 (0.03) 0.52 (0) 0.53

WT3 1096 42.06 0.52 (0.02) 0.44 (0.01) 0.58* (0) 0.58

WT7 1096 38.05 0.4(0) 0.42 (0.02) 0.56* (0) 0.56

WT5 1089 20.57 0.35 (0) 0.3 (0.03) 0.63* (0) 0.63

WT6 1096 14.6 0.24 (0) 0.2 (0.01) 0.63* (0) 0.63

WT2 1070 13.27 0.26 (0) 0.19 (0) 0.65* (0) 0.65

WT1 1096 11.95 0.2 (0) 0.19 (0.01) 0.65* (0) 0.65

WT4 1081 11.75 0.18 (0) 0.19 (0.01) 0.66* (0) 0.66

Table 5.20: Average of F1 values for 10 runs.

One of the most important performance assessment metric for AD. It is easy to see

here that LoMST wins in practically almost every turbine, achieving the best results for

the top lowest outliers datasets.

5.3.3 Unsupervised: on Bootstrap Sampling

The bootstrap sampling technique, also called bootstrapping, is a statistical technique

used when data is scarse. It differs on k-fold cross-validation in the sense it samples with

replacement from the initial sample, hence the generated samples will have the same

size of the original population. Some data points may be duplicated, and others data

points from the initial sample may be omitted in a bootstrap sample. In its early days

this technique was considered really heavy in terms of computation, but as computing

power has increased and becomes less expensive, bootstrap techniques have become more

widespread.

Since this technique was used in [24] to minimize the cluster instability and then

select the number of clusters for k-Means, we thought it would be interesting to run the

unsupervised experiments with bootstrapping to see if it improves some of the most

relevant metrics. The initial plan was to run for the semi-supervised algorithms as well,

but due to lack of time it was not possible.

The turbines selected for these new experiments were the turbines 1 and 4 since they

presented not-so-great values for the precision, recall and f1 metrics. It was possible to

see that AA-MMTS had a nice improvement from 0.42 to 0.56 for recall and, a slight

improvement from 0.11 to 0.12 and from 0.18 to 0.2 for precision and f1 respectively, for

turbine 4. Turbine 1 showed no improvement for these metrics. The FCM got worse

results for these metrics on both turbines, and LoMST simply didn’t benefit.
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6
Conclusion and Future Work

In this work, fuzzy clustering approaches and semi-supervised techniques were explored

in time series data sets to find anomalies in wind turbines. In such tasks, evaluation

measures must be established, and in this work the ROC AUC, the APR, P@n and the

remainder mentioned in Section 5.3 were used.

With this work we aim to answer the following questions:

• Does the “one class” methods produce acceptable results?: The nearest-based

algorithms are sensitive to the hyperparameter k and tend to favor datasets with

few outlier for the majority of the metrics. The results in general are not that great

with the exception of accuracy;

• What is the performance of Archetypal Analysis with the Modified Mahalanobis

Taguchi System extension when compared with FCM-MMTS?: In terms of effi-
ciency FCM-MMTS is optimal and doesn’t seem to be afflicted by the amount of

outliers in the data. It is really hard to choose a winner but given into account the

trade-off between recall/F-measure and time, AA-MMTS is preferable;

• What is best semi-supervised and unsupervised approach?: For the semi-supervised

scenario we point out the CBLOF as the winner since in terms of efficiency is really

similar to LOF and HBOS, which got the lowest execution times, and when it comes

to most important metrics in AD, CBLOF has the best values. For the unsupervised

scenario, LoMST is the clear winner and the preferred choice if time is not an issue.

As future work we propose:

a) Accurate labelling of the anomalies

b) To explore more advanced ML techniques for re-sampling imbalanced data
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