37 research outputs found

    POTENTIAL CONTRASTS IN CO2 AND CH4 FLUX RESPONSE UNDER CHANGING CLIMATE CONDITIONS: A SATELLITE REMOTE SENSING DRIVEN ANALYSIS OF THE NET ECOSYSTEM CARBON BUDGET FOR ARCTIC AND BOREAL REGIONS

    Get PDF
    The impact of warming on the net ecosystem carbon budget (NECB) in Arctic-boreal regions remains highly uncertain. Heightened CH4 emissions from Arctic-boreal ecosystems could shift the northern NECB from an annual carbon sink further towards net carbon source. Northern wetland CH4 fluxes may be particularly sensitive to climate warming, increased soil temperatures and duration of the soil non-frozen period. Changes in northern high latitude surface hydrology will also impact the NECB, with surface and soil wetting resulting from thawing permafrost landscapes and shifts in precipitation patterns; summer drought conditions can potentially reduce vegetation productivity and land sink of atmospheric CO2 but also moderate the magnitude of CH4 increase. The first component of this work develops methods to assess seasonal variability and longer term trends in Arctic-boreal surface water inundation from satellite microwave observations, and quantifies estimate uncertainty. The second component of this work uses this information to improve understanding of impacts associated with changing environmental conditions on high latitude wetland CH4 emissions. The third component focuses on the development of a satellite remote sensing data informed Terrestrial Carbon Flux (TCF) model for northern wetland regions to quantify daily CH4 emissions and the NECB, in addition to vegetation productivity and landscape CO2 respiration loss. Finally, the fourth component of this work features further enhancement of the TCF model by improving representation of diverse tundra and boreal wetland ecosystem land cover types. A comprehensive database for tower eddy covariance CO2 and CH4 flux observations for the Arctic-boreal region was developed to support these efforts, providing an assessment of the TCF model ability to accurately quantify contemporary changes in regional terrestrial carbon sink/source strength

    Surface water inundation in the boreal- Arctic: potential impacts on regional methane emissions

    Get PDF
    Northern wetlands may be vulnerable to increased carbon losses from methane (CH4), a potent greenhouse gas, under current warming trends. However, the dynamic nature of open water inundation and wetting/drying patterns may constrain regional emissions, offsetting the potential magnitude of methane release. Here we conduct a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (≥45° N) wetland CH4 emissions, by considering (1) sub-grid scale changes in fractional water inundation (Fw) at 15 day, monthly and annual intervals using 25 km resolution satellite microwave retrievals, and (2) the impact of recent (2003–11) wetting/drying on northern CH4 emissions. The model simulations indicate mean summer contributions of 53 Tg CH4 yr−1 from boreal-Arctic wetlands. Approximately 10% and 16% of the emissions originate from open water and landscapes with emergent vegetation, as determined from respective 15 day Fw means or maximums, and significant increases in regional CH4 efflux were observed when incorporating satellite observed inundated land fractions into the model simulations at monthly or annual time scales. The satellite Fw record reveals widespread wetting across the Arctic continuous permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer warming increased wetland emissions by 0.56 Tg CH4 yr−1 compared to the 2003–11 mean, but this was mainly offset by decreasing emissions (−0.38 Tg CH4 yr−1) in sub-Arctic areas experiencing surface drying or cooling. These findings underscore the importance of monitoring changes in surface moisture and temperature when assessing the vulnerability of boreal-Arctic wetlands to enhanced greenhouse gas emissions under a shifting climate

    Surface water inundation in the boreal-Artic: potential impacts on regional methane emissions

    Get PDF
    Northern wetlands may be vulnerable to increased carbon losses from methane (CH4), a potent greenhouse gas, under current warming trends. However, the dynamic nature of open water inundation and wetting/drying patterns may constrain regional emissions, offsetting the potential magnitude of methane release. Here we conduct a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (45° N) wetland CH4 emissions, by considering (1) sub-grid scale changes in fractional water inundation (Fw) at 15 day, monthly and annual intervals using 25 km resolution satellite microwave retrievals, and (2) the impact of recent (2003-11) wetting/drying on northern CH4 emissions. The model simulations indicate mean summer contributions of 53 Tg CH4 yr-1 from boreal-Arctic wetlands. Approximately 10% and 16% of the emissions originate from open water and landscapes with emergent vegetation, as determined from respective 15 day Fw means or maximums, and significant increases in regional CH4 efflux were observed when incorporating satellite observed inundated land fractions into the model simulations at monthly or annual time scales. The satellite Fw record reveals widespread wetting across the Arctic continuous permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer warming increased wetland emissions by 0.56 Tg CH4 yr-1 compared to the 2003-1 mean, but this was mainly offset by decreasing emissions (-0.38 Tg CH4 yr-1) in sub-Arctic areas experiencing surface drying or cooling. These findings underscore the importance of monitoring changes in surface moisture and temperature when assessing the vulnerability of boreal-Arctic wetlands to enhanced greenhouse gas emissions under a shifting climate

    Global Soil Moisture Estimation from L-Band Satellite Data: The Impact of Radiative Transfer Modeling in Assimilation and Retrieval Systems

    Get PDF
    The SMOS and SMAP missions have collected a wealth of global L-band Brightness temperature (Tb) observations. The retrieval of surface Soil moisture estimates, and the estimation of other geophysical Variables, such as root-zone soil moisture and temperature, via data Assimilation into land surface models largely depends on accurate Radiative transfer modeling (RTM). This presentation will focus on various configuration aspects of the RTM (i) for the inversion of SMOS Tb to surface soil moisture, and (ii) for the forward modeling as part of a SMOS Tb data assimilation System to estimate a consistent set of geophysical land surface Variables, using the GEOS-5 Catchment Land Surface Model

    Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions

    Get PDF
    Northern wetlands may be vulnerable to increased carbon losses from methane (CH4), a potent greenhouse gas, under current warming trends. However, the dynamic nature of open water inundation and wetting/drying patterns may constrain regional emissions, offsetting the potential magnitude of methane release. Here we conduct a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (>= 45 degrees N) wetland CH4 emissions, by considering (1) sub-grid scale changes in fractional water inundation (Fw) at 15 day, monthly and annual intervals using 25 km resolution satellite microwave retrievals, and (2) the impact of recent (2003-11) wetting/drying on northern CH4 emissions. The model simulations indicate mean summer contributions of 53 Tg CH4 yr(-1) from boreal-Arctic wetlands. Approximately 10% and 16% of the emissions originate from open water and landscapes with emergent vegetation, as determined from respective 15 day Fw means or maximums, and significant increases in regional CH4 efflux were observed when incorporating satellite observed inundated land fractions into the model simulations at monthly or annual time scales. The satellite Fw record reveals widespread wetting across the Arctic continuous permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer warming increased wetland emissions by 0.56 Tg CH4 yr(-1) compared to the 2003-11 mean, but this was mainly offset by decreasing emissions (-0.38 Tg CH4 yr(-1)) in sub-Arctic areas experiencing surface drying or cooling. These findings underscore the importance of monitoring changes in surface moisture and temperature when assessing the vulnerability of boreal-Arctic wetlands to enhanced greenhouse gas emissions under a shifting climate

    Surface water inundation in the boreal-Arctic: potential impacts on regional methane emissions

    Get PDF
    Northern wetlands may be vulnerable to increased carbon losses from methane (CH4), a potent greenhouse gas, under current warming trends. However, the dynamic nature of open water inundation and wetting/drying patterns may constrain regional emissions, offsetting the potential magnitude of methane release. Here we conduct a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (>= 45 degrees N) wetland CH4 emissions, by considering (1) sub-grid scale changes in fractional water inundation (Fw) at 15 day, monthly and annual intervals using 25 km resolution satellite microwave retrievals, and (2) the impact of recent (2003-11) wetting/drying on northern CH4 emissions. The model simulations indicate mean summer contributions of 53 Tg CH4 yr(-1) from boreal-Arctic wetlands. Approximately 10% and 16% of the emissions originate from open water and landscapes with emergent vegetation, as determined from respective 15 day Fw means or maximums, and significant increases in regional CH4 efflux were observed when incorporating satellite observed inundated land fractions into the model simulations at monthly or annual time scales. The satellite Fw record reveals widespread wetting across the Arctic continuous permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer warming increased wetland emissions by 0.56 Tg CH4 yr(-1) compared to the 2003-11 mean, but this was mainly offset by decreasing emissions (-0.38 Tg CH4 yr(-1)) in sub-Arctic areas experiencing surface drying or cooling. These findings underscore the importance of monitoring changes in surface moisture and temperature when assessing the vulnerability of boreal-Arctic wetlands to enhanced greenhouse gas emissions under a shifting climate

    Synthesis of Satellite Microwave Observations for Monitoring Global Land-Atmosphere CO2 Exchange

    Get PDF
    This dissertation describes the estimation, error quantification, and incorporation of land surface information from microwave satellite remote sensing for modeling global ecosystem land-atmosphere net CO2 exchange. Retrieval algorithms were developed for estimating soil moisture, surface water, surface temperature, and vegetation phenology from microwave imagery timeseries. Soil moisture retrievals were merged with model-based soil moisture estimates and incorporated into a light-use efficiency model for vegetation productivity coupled to a soil decomposition model. Results, including state and uncertainty estimates, were evaluated with a global eddy covariance flux tower network and other independent global model- and remote-sensing based products

    Soil freezing in northern aapa mires:freeze/thaw -detection using portable L-band radiometer

    Get PDF
    Abstract. Seasonal soil freezing is one of the most significant sources of uncertainty in methane emissions from high latitude wetlands. Although soil freezing can be remotely sensed with current satellite-based instruments, the resolution is not high enough to detect small-scale variations within individual mires. In this study, a lightweight radiometer mounted on an unmanned aerial vehicle (UAV) was tested for detecting the freeze/thaw (F/T) state of the soil in aapa mires in Finnish Lapland. The three main research questions were the suitability of the radiometer for high resolution F/T detection, the existence of possible spatial patterns in the timing of soil freezing, and the effects of environmental factors on these spatial patterns. As this was the first study to use a UAV-mounted radiometer for F/T detection, there was no established method for retrieving the F/T state of the soil from the measured brightness temperature values. In previous studies using satellite-based instruments, the F/T state of the soil is determined by a threshold method where the measured values are scaled pixel-wise between known reference values of thawed and frozen soils and classified based on a fixed threshold. This method was modified for use with UAV measurements. The performance of the radiometer was evaluated by comparing the measurement results with tower-based radiometer and in-situ measurements in the study area. Spatial patterns in the timing of soil freezing were investigated using analysis of variance and measures of spatial autocorrelation. The effects of environmental factors were investigated using generalized linear models (GLM), generalized additive models (GAM), and hierarchical partitioning with environmental variables derived from readily available remote sensing materials. The F/T state of the soil was successfully determined from the UAV measurements, and the results were comparable to those of other measurements in the study area. Variation in the spatial distribution of the timing of soil freezing was detected at the local scale. The soil appeared to freeze as a result of two separate major freezing events and was therefore modeled as a binary response variable. Both GLM and GAM showed that the most significant factors contributing to the spatial patterns were the Enhanced Vegetation Index (EVI), the flark area and the standard deviation of the Topographic Wetness Index (TWI). Hierarchical partitioning highlighted the individual effects of EVI. All detected relationships were strongly correlated with the microtopographic structure of the mire, suggesting that seasonal freezing progresses differently on different surface types

    The International Soil Moisture Network:Serving Earth system science for over a decade

    Get PDF
    In 2009, the International Soil Moisture Network (ISMN) was initiated as a community effort, funded by the European Space Agency, to serve as a centralised data hosting facility for globally available in situ soil moisture measurements (Dorigo et al., 2011b, a). The ISMN brings together in situ soil moisture measurements collected and freely shared by a multitude of organisations, harmonises them in terms of units and sampling rates, applies advanced quality control, and stores them in a database. Users can freely retrieve the data from this database through an online web portal (https://ismn.earth/en/, last access: 28 October 2021). Meanwhile, the ISMN has evolved into the primary in situ soil moisture reference database worldwide, as evidenced by more than 3000 active users and over 1000 scientific publications referencing the data sets provided by the network. As of July 2021, the ISMN now contains the data of 71 networks and 2842 stations located all over the globe, with a time period spanning from 1952 to the present. The number of networks and stations covered by the ISMN is still growing, and approximately 70 % of the data sets contained in the database continue to be updated on a regular or irregular basis. The main scope of this paper is to inform readers about the evolution of the ISMN over the past decade, including a description of network and data set updates and quality control procedures. A comprehensive review of the existing literature making use of ISMN data is also provided in order to identify current limitations in functionality and data usage and to shape priorities for the next decade of operations of this unique community-based data repository
    corecore