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ABSTRACT 
 
Jones, Lucas, A., Ph.D., December 2016    Systems Ecology 
 
Synthesis of Satellite Microwave Observations for Monitoring Global Land-Atmosphere 
CO2 Exchange  
 
Chairperson:  John S. Kimball 
 
The human economy currently receives a substantial discount on annual anthropogenic 
fossil fuel related carbon emissions due to the net uptake of atmospheric CO2 from global 
terrestrial plant photosynthesis.  Recently this land carbon sink has experienced increased 
seasonal and annual variance. Future changes are expected due to changing global 
climate and a variety of other factors.  Soil moisture is one climate indicator, with 
currently uncertain spatial and temporal variability, controlling both photosynthesis and 
ecosystem respiration, including autotrophic and heterotrophic processes, across much of 
the globe. Previous studies indicated that soil moisture variations are likely responsible 
for a portion of the land CO2 sink’s inter-annual variability.  Satellite microwave 
observations can provide near-daily global observations of ecologically relevant land 
parameters including soil moisture, temperature, flooded area, vegetation phenology and 
frozen soil conditions.  Recently launched satellite soil-moisture monitoring missions and 
historical microwave remote sensing observation records hold promise for improving our 
knowledge of recent global soil moisture variability and long-term dynamics.  However, 
new methods are required for synthesizing microwave observations into usable forms for 
ecological applications, and for determining accuracy and information content of these 
estimates relative to other sources of information to gain new knowledge of land CO2 
sink variability and drivers. 
 The research presented herein develops methods to estimate daily land parameters 
from satellite microwave observations, quantifies their uncertainty, and uses this 
information for improving estimates of land-atmosphere net CO2 exchange.  The first 
component of this work focuses on land parameter estimation from satellite microwave 
observations.  The second component focuses on merging microwave estimates of soil 
moisture with other observation- and model-based sources of soil moisture to create a 
continuous integrated dataset with enhanced accuracy over the individual inputs; this 
required technical development of a method to estimate autoregressive noise inherent in 
both remotely-sensed and modeled soil moisture estimates.  The merging method was 
evaluated relative to in situ soil moisture observations and used in a case study for 
improving estimates of ecosystem respiration relative to in situ observations of land-
atmosphere CO2 exchange from regional flux towers. Finally, a model for operationally 
monitoring land-atmosphere net ecosystem CO2 exchange (NEE) was deployed using 
satellite microwave observations from the NASA Soil Moisture Active-Passive (SMAP) 
mission.  Results were evaluated with concurrent flux tower in situ observations and 
other global independent indicators of land-atmosphere CO2 dynamics. The synthesis and 
inter-comparison of existing ecological datasets, aided by merging algorithms, represents 
a step forward in better understanding the interaction of terrestrial carbon and water 
cycles today and where this relationship will trend in the future.  
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CHAPTER 1: INTRODUCTION AND OVERVIEW 

 

 BACKGROUND 

 The human economy currently receives up to a 50 % discount on annual CO2 

contributions to the atmosphere from the burning of fossil fuels due the global ocean and 

the land sinks including net ecosystem uptake of atmospheric CO2 by terrestrial plants 

(Canadell 2007).  This is known, in part, because of precise atmospheric CO2 

measurements taken by continuous  flask sampling beginning at Mauna Loa in 1959 and 

expanding thereafter to other locations with relatively pristine air around the globe 

(Keeling 1998).  These measurements indicate not only an exponential upward trend in 

CO2, but also an evident seasonal cycle, the trough of which coincides with the northern 

hemisphere summer growing season (Betts 2016; Piao 2008).  The contribution of 

terrestrial ecosystems can be inferred by subtracting estimates of annual fossil fuel 

emissions and ocean uptake from the annual growth rate in atmospheric CO2 (Canadell 

2007).  Whereas the inter-annual growth rate of fossil fuel emissions and ocean uptake is 

relatively constant, the inter-annual growth rate of atmospheric CO2 varies by a factor of 

two, largely reflecting variability in land CO2 exchange (Denman 2007).  Several recent 

studies have indicated that semi-arid landscapes play an important role in this inter-

annual variability presumably driven by year-to-year differences in moisture availability 

(Cleverly 2016; Ahlstrom 2015; Poulter 2014; Zhao & Running 2010; Angert 2007). 

Biogeochemical ecosystem models are necessary tools for attributing, monitoring, 

and forecasting the global land CO2 sink.  Most such models use physiological principles 

and empirical relationships to transform input data, usually meteorological information 
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such as incoming photosynthetically active radiation and atmospheric temperature and 

humidity, into output fluxes of gross photosynthesis, ecosystem respiration, and their 

residual, net ecosystem CO2 exchange (Running & Waring 1998).  The primary source 

for such input data is global atmospheric weather models which are relatively coarse-

scale (0.5°) and primarily constrained only by atmospheric observations over oceans.  

Eddy covariance flux tower observations provide the primary means for evaluating and 

calibrating biogeochemical models, and are currently available for over 200 locations 

around the globe (Baldocchi 2001). Comparisons with global flux tower observations 

indicate that uncertainty in biogeochemical model inputs is responsible for up to 30 % of 

error in model gross primary productivity estimates (Heinsch 2006).     

New remote sensing platforms and observations and better exploitation of existing 

datasets offer unprecedented opportunity for improving biogeochemical models.  

Observations from the optical (visual) and near infrared (IR) portions of the 

electromagnetic spectrum have been widely used for biogeochemical modeling because 

they have moderate to high spatial resolution (≤ 1 km) and are sensitive to chlorophyll 

reflectance and land surface skin temperature.  However, satellite optical-IR observations 

are frequently obscured by clouds and impacted by aerosols such as smoke and haze, and 

low sun angles at high latitudes can lead to considerable uncertainties.  Furthermore, 

optical-IR observations are insensitive to surface moisture and humidity and cannot 

penetrate vegetation canopies.  Alternatively, remote sensing in the longer wavelength 

microwave (1-100 GHz) portion of the spectrum offers high sensitivity to soil, 

vegetation, and surface water with the ability to penetrate clouds and vegetation canopies 

at lower frequencies (< 36 GHz).  Beginning in 1979 with the launch of the Scanning 
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Multi-Channel Microwave Radiometer (SMMR), microwave satellite-based instruments 

have historically been designed for ocean and over-ocean atmospheric observations.  

However, much previous work has focused on using microwave observations for 

estimating surface soil moisture (Mladenova 2014; Jones 2009; Owe 2001; Njoku & Li 

1999; Jackson 1993) and more recently vegetation canopy biomass phenology (Jones 

2009; Njoku & Chan 2006; Meesters 2005; Owe 2001).  This has led to recent dedicated 

soil moisture missions using low frequency L-band (1.5 GHz) measurements with 

enhanced soil sensitivity, including the European Space Agency’s Soil Moisture and 

Ocean Salinity mission (SMOS; Kerr 2010) and NASA’s Soil Moisture Active Passive 

mission (SMAP; Entekhabi 2010). 

Fundamental tradeoffs exist between various remote-sensing and model datasets, 

including spatial and temporal resolutions, spectral sensitivity to various factors of 

interest, and model representation of processes.  Remote sensing observations contain 

gaps in regions not sampled, such as gaps between antennae acquisitions and where 

estimates of geophysical information (commonly termed “retrievals”) are not possible 

because of extraneous factors, such as atmosphere contamination from clouds, smoke 

affecting optical/IR observations and precipitation and snow cover affecting microwave 

observations.  Geophysical retrieval error fields vary in space and time depending on 

measurement sensitivity to factors of interest and are usually not precisely known.  

Similarly, models contain uncertainty which belies their smooth spatial and temporal 

estimates (Koster 2009).  Models require consistent spatial-temporal information as 

inputs.  The contrast between the remote sensing retrieval’s view of the world and the 

model’s view of the world causes errors which are auto-correlated in space and time.  
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This poses significant problems for standard statistical procedures, such as maximum 

likelihood and least squares regression, which typically require uncorrelated error fields 

(Dee 2005; Yilmaz & Crow 2014).  Most user applications additionally require a 

consistent view of the world with well-defined uncertainty range, rather than multiple, 

conflicting sources of information with subjective, imprecisely known uncertainty.  The 

science and art of combining model forecasts with noisy observations is known as data 

assimilation, commonly used to produce weather forecasts (Reichle 2008; Ghil 1991). 

The success of data assimilation hinges on knowledge of model and observation error 

characteristics and how well these match underlying assumptions of current data 

assimilation algorithms. 

Soil moisture poses significant challenges to data assimilation because of its auto-

correlated and unknown error structure, which arises partly from difficultly modeling soil 

moisture processes and previous lack of global soil moisture observations (Crow 2010).  

However, much recent progress has been made in soil moisture data assimilation, dataset 

merging, and error characterization (Reichle 2016; Liu 2012; Gruber 2016).   The 

European Space Agency has developed a Climate Change Indicator (CCI) dataset, 

unifying multiple remotely-sensed soil moisture datasets into a single estimate (Liu 

2012).  Development of the CCI required estimates of individual dataset uncertainty 

using a method known as triple collocation (TC) which computes relative error of each 

dataset based on the pairwise differences of three or more datasets (Scipal 2008; Pan 

2015).  Similarly, weather and climate forecasting centers including the European Center 

for Medium Range Weather Forecasting (ECMWF) and NASA’s Global Modeling and 

Data Assimilation Office (GMAO) have begun using satellite microwave data from 
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SMOS and SMAP sensors in operational data assimilation (de Rosnay 2013; Reichle 

2016).  However, all of these methods are sub-optimal because they lack precise 

knowledge of soil moisture uncertainty and require assumptions about error 

characteristics which are usually untenable. Nevertheless, these incremental advances in 

remote sensing and data assimilation offer unprecedented opportunity for refining our 

understanding of how soil moisture regulates the global terrestrial carbon cycle. 

 

 RESEARCH QUESTIONS AND OBJECTIVES  

This study considers the following science questions:  

(i) What ecologically relevant information might be extracted from satellite microwave 

observations? (ii)  How might multiple sources of information be objectively merged to 

provide a single spatially and temporally continuous optimal soil moisture dataset with 

quantifiable error characteristics?  (iii)  What is the incremental value of improved soil 

moisture observations for reducing and quantifying uncertainty in an ecosystem model of 

land-atmosphere CO2 exchange?  

 These questions pair with the following objectives: 

(i) Develop a global land parameter database using multi-frequency, dual-polarization 

satellite microwave imagery. (ii) Develop methods, ideally using mathematically optimal 

criteria, to merge multiple soil moisture datasets and quantify their uncertainty, 

considering missing values and appropriate error structure.  (iii) Use the merged datasets 

within an ecosystem process modeling framework to improve global land-atmosphere 

CO2 exchange state estimates. 
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The above objectives address the overarching goal: 

To provide the research and broader user community with operational and archival 

ecological datasets and tools with well characterized uncertainty for addressing 

environmental questions using satellite microwave remote sensing. 

 

 SUMMARY OVERVIEW 

The six chapters of this dissertation address the above objectives and are the 

subject of several symposia presentations, peer-reviewed papers, published digital 

datasets and reports, and a few as yet unfinished manuscripts.  Chapter 1 provides the 

overall context and primary objectives of the work that is subsequently addressed in 

Chapters 2 through 5, followed by overall summary, conclusions and recommendations 

for future study in Chapter 6.   

Chapter 1 introduces the broader context of this work and the problems this work 

seeks to address, then provides a summary overview of the dissertation.  The chapter 

begins by introducing background information, then hypotheses, objectives, and the 

overarching goal of the work.  The chapter then concludes by presenting a summary 

overview of the dissertation (i.e. the current section) which summarizes and outlines the 

accomplishments presented in each chapter. 

In Chapter 2, I present the development and validation of a land parameter 

database using satellite microwave observations from the Advanced Scanning Microwave 

Radiometer on the NASA Earth Observing System (AMSR-E).  This work is described in 

Jones (2009), Jones (2010a), Mladenova (2014), and an invited oral presentation (Jones 
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2013a). The work presented here focuses on surface air temperature minima and maxima, 

which are a fundamental driver of many ecosystem models.  The temperature retrievals 

are validated in relation to daily surface weather station observations and independent 

lower troposphere air temperature soundings from the AIRS instrument (Jones 2010a; 

Jones 2009).  Further validation and ecological applications of the database parameters 

have been conducted including soil moisture (Du 2016a; Yi 2011), fractional open 

surface water (Watts 2012; Du 2016b), vegetation canopy biomass phenology (Jones, M. 

O., 2014; Jones, M. O., 2012; Jones, M. O., 2011) and vegetation fire disturbance 

recovery (Jones, M. O., 2013).  The database is archived at the National Snow and Ice 

Data Center (NSIDC) and is one of the more popular datasets for this instrument 

according to NSIDC’s download records (Jones 2010b).  Further work, has extended the 

database for the AMSR2 instrument (Du 2014) and provided further algorithm 

improvements (Du 2015; Du 2016a; Du 2016b). 

In Chapter 3, I present the technical development and test via numerical 

simulations a statistical method for jointly merging and quantifying the uncertainty of 

multiple time-series datasets.  Although potentially applicable to a wide array of model 

and remotely-sensed datasets, this method was principally developed to address 

shortcomings in current CCI and Triple Collocation methods for soil moisture by 

specifically modeling the time-series temporally cross-correlated error structure.  This 

method is currently described in an unfinished manuscript (Jones, in prep.), but has 

received encouraging reviews from field experts in applied mathematics including John 

Bardsley (Dept. of Mathematics, University of Montana) and Wade T. Crow (US 
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Department of Agriculture, Agricultural Remote Sensing Laboratory, Beltsville, MD).  

Elements of this work were presented as part of an invited oral presentation (Jones 2015).   

In Chapter 4, I present a case study validation of the merging method using in situ 

soil moisture observations, application of merged soil moisture data for modeling 

ecosystem respiration, and evaluation of these results for the continental US.  I consider 

this work a “case study” because simplified versions of the merging method and carbon 

model are used, rather the full versions presented in Chapter 3 and Chapter 5, 

respectively.  This work was presented in symposia as a poster presentation (Jones et al. 

2011) and an invited oral presentation (Jones 2013b). 

In Chapter 5, I present the development, calibration, initialization, and early 

validation of the operational Soil Moisture Active Passive Mission (SMAP) Level 

Carbon (L4C) Product. The Terrestrial Carbon Flux (TCF) model underpinning the L4C 

operational product was originally developed to use AMSR-E derived soil moisture data 

as a primary input (Kimball 2009).  TCF is a satellite data driven carbon flux model that 

uses multi-sensor satellite observations, including photosynthetic vegetation cover and 

soil moisture, with other ancillary drivers to estimate NEE, component carbon fluxes for 

vegetation productivity and ecosystem respiration, surface soil organic carbon stocks and 

underlying environmental controls to these processes over all global vegetated land areas.  

I worked to extend the TCF model framework within the SMAP science software data 

system for global L4C operational production as part of an NTSG subcontract to the 

NASA GMAO in April 2013.  The L4C product is now produced by NASA as part of the 

SMAP operational land product stream which extends from March 2015 to present, and 

which followed a successful SMAP satellite launch on January 31st 2015.  
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Although a natural extension of my original dissertation proposal, the L4C project 

presented additional technical challenges and time constraints.  Rather than use the 

merging method presented in Chapters 3 and 4, L4C uses soil moisture and temperature 

derived by the SMAP Level 4 Soil Moisture (L4SM) Product using land model data 

assimilation to combine SMAP microwave observations with Goddard Space Flight 

Center’s Global Modelling and Data Assimilation Office’s (GSFC/GMAO) catchment 

soil moisture model.  The L4C model and product therefore benefits from SMAP L-band 

sensor enhanced soil moisture sensitivity, and continuous spatial and temporal coverage, 

and surface to root zone (1m depth) soil moisture predictions provided by the GMAO 

land model data assimilation framework. A manuscript describing this ongoing work was 

recently submitted (Jones, in review) and an oral presentation was recently given at an 

invited session at an international venue (Jones 2016).  

Chapter 6 summarizes the development and evaluates the findings of each chapter 

in relation to the initial objectives and hypotheses presented in Chapter 1.  This chapter 

includes discussion sections related to each objective and its associated key findings.  The 

chapter then concludes the work and outlines possibilities for future research.   
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CHAPTER 2: DEVELOPMENT OF A GLOBAL ECOLOGICAL LAND 
PARAMETER DATABASE USING SATELLITE OBSERVATIONS FROM THE 
ADVANCED SCANNING MICROWAVE RADIOMETER (AMSR-E)  

 

 INTRODUCTION  

Our ability to estimate regional impacts of near term (< 100 yrs.) climate change 

is limited by uncertainty in land-atmosphere feedbacks; including water, energy, and 

biophysical trace gas exchange (Denman 2007). Uncertainties in driving meteorological 

state variables which are not easily observable at regional scales hamper simulation of 

regional land-atmosphere interactions. Two such variables, daily minimum and 

maximum surface (≈ 2 m height) air temperature (Tmn and Tmx), integrate key information 

on the state of the land-atmosphere interface and drive fundamental hydrological and 

ecological processes. 

Tmn and Tmx are related to the partitioning of net incident solar radiation into 

sensible and latent heat, and turbulent energy exchange between the land surface and 

atmosphere. Surface air temperature diurnal variability (i.e., Tmx – Tmn) responds to 

incoming solar radiation (Bristow & Campbell 1984), surface soil moisture status 

(Renzullo 2008; Crow 2008) and atmospheric humidity (Kimball 1997).  Land cover, 

including the type, fractional coverage, and water content of vegetation mediates surface 

to air heat exchange (Nemani 1993; Pridhodko 1997). Tmn and Tmx, therefore, indicate 

land surface moisture status and energy flux. 

Uncertainties in driving meteorology, including air temperatures, can represent a 

significant amount of error in regional land surface simulations (Mu 2007, Heinsch 2006; 

Zhao 2006).  Temperature data for regional land surface modeling are currently available 
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from weather stations, model reanalysis, and satellite remote sensing such as thermal 

infrared land surface temperature (LST), atmospheric soundings, and satellite microwave 

radiometry (Holmes 2009). Weather stations are limited by measurement uncertainty and 

network coverage, leading to inconsistent sampling over much of the globe. Model 

reanalysis temperature products combine global atmospheric model simulations with 

various in situ and satellite observations, but are currently limited to relatively coarse (1°  

or greater) spatial resolutions globally, and may have significant biases where 

observations are sparse and surface processes are spatially heterogeneous (Zhao 2006; 

Zhang 2007). Satellite infrared (IR) soundings and LST measurements can provide 

accurate air profile, and land surface skin temperature information, which relate to air 

temperature, but are degraded by clouds, smoke, and other atmospheric aerosols. 

Microwave radiometry from polar-orbiting spacecraft provides opportunities for 

accurate global surface air temperature retrievals, including observations day or night 

under cloudy, non-precipitating conditions, with approximate three day or better temporal 

repeat. Passive microwave sensors respond to the physical temperature and emissivity of 

the atmosphere-land surface continuum. Methods for satellite microwave remote sensing 

of surface (Ts) or air temperature (Ta) over land are less mature in comparison to 

microwave sea surface temperature (SST) or optical-IR LST retrieval methods. Land 

surface radiometric properties are heterogeneous and difficult to model, whereas the 

radiometric footprint and spatial resolution are characteristically coarser and the 

emissivity more variable in the microwave spectral region than in the optical-IR region. 

Nevertheless, previous studies have shown strong correspondence between microwave 

brightness temperatures (Tb) and physical surface or air temperatures for specific regions 
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and land cover types (McFarland 1990; Pulliainen 1997; Fily 2003; Jones 2007; Gao 

2008). 

Spatial and temporal variability in surface emissivity and atmospheric conditions 

is problematic for temperature retrievals from satellite microwave remote sensing (Njoku 

1995; Jones 2007). Emissivity variations are caused by open water, wet soil, snow cover 

and other factors (McFarland 1990; Pulliainen 1997). Effects of variable open water 

fraction on surface temperature retrievals can be mitigated using horizontal and vertically 

polarized Tb (Fily 2003; Gao 2008), however, these methods are generally limited to 

heavily vegetated (e.g., forest) regions where the land fraction of the H polarized 

emissivity is relatively constant and insensitive to soil moisture or vegetation biomass 

dynamics (Jones 2007). Open water increases microwave sensitivity to atmospheric 

factors, a potential source of error when high frequency (≥ 18 GHz) observations are 

used. Areas with significant open water can be masked, but this causes significant 

information loss in irrigated, wetland, and coastal regions, although a relatively small 

area is affected on a global basis (Holmes 2009). 

I present a method to retrieve daily land parameters relevant to ecological 

applications from the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 

deployed on the Aqua satellite; the daily land parameter retrievals include Tmn and Tmx, 

vegetation optical depth, fractional water coverage, soil moisture, and total column 

atmospheric water vapor, and are derived using AMSR-E multi-frequency, horizontally 

and vertically polarized Tb observations. Our objectives are to 1) develop a robust 

algorithm for estimating land parameters, focusing on daily air temperatures under 

varying surface and atmospheric conditions, 2) assess the effects of variable land cover, 
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terrain and atmospheric conditions on temperature and land parameter accuracy, and 3) 

evaluate geographic patterns of temperatures and co-retrieved land surface and 

atmospheric conditions. Air temperatures and co-retrieved land parameters are estimated 

from AMSR-E by inversion of a simplified semi-physical Tb model while accounting for 

variable surface and atmospheric conditions. Uncertainty of satellite air temperature 

retrievals are documented relative to daily air temperature measurements from Northern 

Hemisphere World Meteorological Organization (WMO) surface weather stations and 

similar retrievals from the Atmospheric Infrared Sounder (AIRS) and Advanced 

Microwave Sounding Unit (AMSU) sensors on the EOS Aqua satellite.  Vegetation 

optical depth and soil moisture are evaluated by comparing to MODIS leaf area index 

(LAI), and in situ antecedent precipitation data from North American flux locations.  Soil 

moisture and fractional open water spatial patterns and temporal variability are evaluated 

for diverse global locations and compared with rain rate information from the Tropical 

Rainfall Monitoring Mission (TRMM).  

 

 METHODS 

2.2.1 AMSR-E and AIRS Satellite Data Processing 

The AMSR-E, AIRS, and AMSU instruments are deployed together on the NASA 

EOS Aqua satellite. Aqua is polar-orbiting with 1:30 A.M (descending pass)/P.M. 

(ascending pass) Coordinated Universal Time (UTC) equatorial crossings. AMSR-E 

measures vertically (V) and horizontally (H) polarized Tb at six frequencies (6.9, 10.7, 

18.7, 23.8, 36.5, 89.0 GHz), scanning conically in the forward direction at a constant 
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incidence angle of 55° from nadir (Kawanishi 2003). The native resolution of the sensor 

footprint varies with frequency and ranges from approximately 5 km (89 GHz) to 60 km 

(6.9 GHz) and 22 km for the 18.7 and 23.8-GHz channels. The Level 2A swath data 

product, in which all channels are spatially resampled to a common resolution (Ashcroft 

& Wentz 1999), was binned into a 25-km resolution polar Equal Area Scalable Earth 

(EASE) Grid (Armstrong & Brodzik 1995). The outer 10 footprints of each 243 footprint 

swath were dropped to reduce contamination by the sensor cold sky mirror partially 

blocking the low frequency (6.9 and 10.7 GHz) AMSR-E antenna beam (Wentz 2007), 

effectively narrowing the swath width by ≈ 140 km (8%). The resulting gridded Tb 

dataset is equivalent to that used as input to the NASA AMSR-E Level 3 Soil Moisture 

products (Njoku 2008). A 6.9- and 10.7-GHz radio frequency interference (RFI) mask 

was applied using the method of Njoku (2005) with the additional condition that Tbv  ∕ Tbh 

to eliminate regions with H-polarized radio frequency interference (RFI). Snow cover and 

precipitation events were masked using a scattering index threshold adopted from the 

Special Sensor Microwave Imager (SSM/I; Ferraro 1995). Grid cells with > 50 % open 

water and permanent ice were identified and excluded using the GLDAS (Global Land 

Data Assimilation System) land cover classification (Section 2.1.2). I limit the study 

period between May 30 and September 7, 2003 to further reduce possible snow cover 

effects. 

The AIRS and AMSU instruments are collocated with AMSR-E on the Aqua 

satellite and produce synergistic atmospheric temperature and humidity soundings. The 

AIRS IR sounder has 2,378 spectral channels ranging from 3.74 to 15.4 μm (Aumann 

2003). The AMSU microwave sounder consists of two units (A1 and A2) that measure 
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microwave radiance for 15 channels ranging from 31.4 to 183 GHz and five channels 

ranging from 9 to 23.8 GHz, respectively (Rosenkranz 2001). Each AIRS 15-km nadir 

resolution footprint is centered within each 40-km AMSU nadir resolution footprint. 

Spatial resolution increases toward each sensor’s swath edges as AIRS and AMSU scan 

across-track. The accuracy of the soundings is approximately ±1 K for clear sky 

conditions, decreasing to ±2 K for the lowest sounding level for up to 80% cloud cover 

based on comparisons with ECMWF forecast model simulations (Susskind 2006). The 

AIRS/AMSU sensors produce surface air and skin (LST) temperature retrievals in 

conjunction with soundings. Surface air temperature is estimated by linearly 

extrapolating the temperature of the lowest sounding level (0- to 1-km height or 880 mb) 

to the surface pressure level (Susskind 2006). I re-sampled high quality data (QC < 2) to 

0.25° (≈ 27 km) resolution grid from the AIRS/AMSU (henceforth referred collectively 

as AIRS) version 5 L2 swath product in geographic projection using inverse distance 

squared weighting and re-projected it to the 25-km polar EASE-grid. As a result of 

spatial re-sampling, gridded data from both AIRS and AMSR-E are spatially smoothed 

relative to the original swath data. 

2.2.2 Ancillary Land Cover Data 

Land cover classification and elevation data were obtained from GLDAS to aid in 

the interpretation of algorithm results (Rodell 2004). The GLDAS 0.25° grid product 

represents fractional and dominant coverage of 14 University of Maryland (UMD) land 

cover classes calculated from the 1 km resolution Moderate Resolution Imaging 

Spectroradiometer (MODIS) product (Justice 2002). Elevation data were provided by 

GLDAS with a 0.25 grid developed from the U.S. Geological Survey Global 20 Arc 
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Second Elevation Data (GTOPO30). I re-projected the GLDAS land cover datasets from 

0.25° resolution geographic projection to the AMSR-E polar EASE-grid projection. 

2.2.3 Weather Station Network and Validation 

Daily Tmn and Tmx were obtained from the National Climate Data Center (NCDC) 

Global Summary of the Day for approximately 5000 World Meteorological Organization 

(WMO) weather stations within the Northern Hemisphere domain. The dominant land 

cover class for each station location was determined from the MODIS land cover class of 

the overlying EASE grid cell (see Section 2.1.2). Station elevations in meters were 

provided by the WMO. Stations within areas defined as water or permanent ice were 

excluded. I also excluded stations with < 100 days of acceptable Tb data (Section 2.1.1), 

but avoided excluding stations with significant data rejection due to 6.9-GHz RFI, 

particularly over the continental USA, because the other channels are generally 

unaffected by RFI. The remaining stations (N = 543) were stratified by UMD land cover 

class into algorithm development (270 stations) and test (273 stations) groups for each of 

three latitudinal bands (Figure 2.1; Table 2.1): “Boreal” (≥ 55° N), “Temperate” (≥ 35° N 

to < 55° N), and “Tropical” (< 35° N). 

2.2.4 Temperature Algorithm Validation and Evaluation Methods 

I first conducted a correlation analysis between Tb values from individual AMSR-

E channels and daily air temperatures from weather stations to determine AMSR-E 

frequencies with the highest a priori correlations to Tmn and Tmx. Only polarized values 

for land (open water fraction < 0.05) were considered, as V polarization is less impacted 

by surface emissivity and atmospheric variations (Bassist 1998; Pulliainen 1997). 
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Simulations of Tb were conducted using the model described in Section 2.2.1 to help 

explain correlations. Model inputs were randomly generated and assigned a realistic 

correlation structure with surface temperature as follows: 1) soil moisture was assigned a 

χ2 type distribution because surface soil moisture is typically skewed toward high values; 

2) Ts was assigned a Gaussian distribution with a standard deviation of 4 K and a 

negative linear relation with soil moisture (R = -0.70); 3) Ta was generated from Ts with a 

positive linear relation (R = 0.9); 4) vertically integrated atmospheric water vapor was 

assigned a Clausius-Clapeyron (exponential) type empirical relation with Ts (R = 0.75) as 

in (Weng & Grody 1998) by assigning a 0.03 standard deviation Gaussian distribution to 

the exponential curve-shape parameter (b-parameter from (Weng & Grody 1998)) to 

emulate variations in relative humidity and atmospheric moisture profiles. The 

correlation analysis is intended to indicate Tb correlation with Ts in the absence of surface 

emissivity variations caused by open water. 

I then developed a Tmn and Tmx retrieval algorithm that accounts for open water 

fraction (fw, dim), vegetation transmissivity (tc, dim), and atmospheric water vapor (V, 

mm), which are defined further in Section 2.2.1. Retrieval accuracy was evaluated using 

WMO weather station air temperature observations, and agreement between AMSR-E 

and AIRS temperature retrievals was assessed using pixel-wise and regional summary 

statistics. I examined study period mean statistics of the AMSR-E Tmn and Tmx retrievals 

at each station to identify regional patterns in relation to latitude, land cover, and 

elevation gradients, and co-retrieved geophysical parameters. Parameter probability 

density distributions (PDFs) were used to assess physical consistency of the parameter 

retrievals over the entire time period and study domain. 
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I employed the following statistics to quantify AMSR-E temperature retrieval 

accuracy in relation to weather stations and AIRS temperature retrievals: the root mean 

square error (RMSE), especially sensitive to outliers and bias, was used as a conservative 

measure of retrieval uncertainty; the mean absolute error (MAE) was used as an 

alternative uncertainty measure that is less sensitive to outliers than the RMSE; the mean 

residual (MR) indicates retrieval bias and was calculated as the mean of Observed (WMO 

or AIRS) less Retrieved (AMSR-E) conditions; the unbiased RMSE (RMSU) is defined 

as 2 2RMSU RMSE MR= +  and used to assess the noise component of RMSE; the 

coefficient of determination (R2) was used as an indicator of correspondence between the 

temperature estimates; and the correlation coefficient (R) was used to assess the relative 

strength and sign (±) of correlations between temperature retrievals and ancillary factors. 

Statistical summaries were calculated for the regional domain by pooling data from all 

test stations to represent the uncertainty for any random observation within the study’s 

spatial and temporal domains. Cumulative site to site biases increase pooled uncertainty 

making it a particularly conservative measure. The RMSE, which measures both variance 

and bias, will have a χ2 type distribution (skewed toward larger values) and for such 

distributions the median is a more appropriate measure of central tendency than is the 

mean. Therefore, median summary statistics for sites within each group quantify 

uncertainty for a typical location within individual land cover classes and latitudinal 

bands.  

2.2.5 Vegetation Optical Depth and Soil Moisture Validation 

I assessed relative accuracy of the retrievals using in situ measurements and 

independent satellite observations of complementary variables.  I selected daily 
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meteorological information from a latitudinal transect of five eddy covariance flux tower 

sites within regionally dominant land cover types for 2003.  I calculated a simple 

antecedent moisture index from in situ daily precipitation measurements for comparison 

with the AMSR-E soil moisture retrievals, as soil moisture measurements are frequently 

unreliable and taken from depths that are too deep for accurate comparison with microwave 

remote sensing (Wagner 1999).  I then normalized the in situ moisture index and AMSR-

E derived soil moisture values to assess relative agreement of variability.   

I use 0.25° gridded satellite daily cumulative rainfall from Tropical Rainfall 

Monitoring Mission (TRMM) merged with Global Precipitation Index (GPI) calibrated 

monthly IR products to assess relative agreement between regional precipitation events and 

AMSR-E derived soil moisture patterns and temporal cycles of wetting and drying 

(Huffman 1997). I compared AMSR-E derived fw results with similar fw maps derived 

from Japanese Earth Resource Satellite (JERS-1) 100-m and Moderate Resolution Imaging 

Spectro-radiometer (MODIS) 1-km resolution land cover classifications.  The fw is 

calculated as the sub-grid scale fractional coverage of open water when the two land cover 

datasets are binned to the 25-km EASE grid.  Time-series were extracted from two sites 

located on the Yukon River to assess fw seasonality. 

 

 ALGORITHM FORMULATION 

2.3.1 Physical Considerations 

Objects emit microwave radiance proportionally to their physical temperature. 

Microwave radiance is expressed as brightness temperature (Tb in Kelvin), or the 
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equivalent physical temperature of a blackbody emitter. The proportionality constant, or 

emissivity (ε), relates an object’s ability to emit microwave radiation at frequency f and 

polarization p to that of a black body (ε = 1). Land surface emissivity varies with 

landscape dielectric properties such as open water bodies, soil moisture, and vegetation 

water content; and with scattering properties, such as orientation, geometry and size of 

individual scattering elements relative to the observing wavelength. Scattering elements 

can include water droplets, sand grains, snow grains, and plant leaves. I use subscripts os 

and c to denote soil surface and vegetation canopy layers, and w and l to denote water and 

land components of the surface, respectively. The subscript s (as in Ts) refers to the bulk 

emission of all collective surface components (os, c, w, and l), and subscript a (as in Ta) 

refers to the atmospheric component. Space borne sensors integrate radiance emitted by 

surface types within their antennae pattern, or field of view (FOV), weighted by each 

type’s fractional coverage, attenuated by and mixed with upward propagating and 

reflected emission of intervening vegetation canopy and atmospheric layers. 

An attenuating layer is characterized by its transmissivity.  The transmissivity (t) 

and its companion, optical depth (τ), are defined as,  

0
exp( ), ( )topz

t k z dzτ τ= − = ∫ , (2.1) 

where z (m) is the height above the surface to the top of the attenuating layer ( ztop ) and 

k(z) (m-1) is the extinction with height.  The optical depth of vegetation or atmospheric 

layers determines the degree to which Tb originates from the soil, vegetation or 

atmospheric conditions.  The atmospheric optical depth (τa(f) , subscript f denotes 
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frequency dependence) along the view path at the incidence angle (θ) is determined by 

oxygen concentration, water vapor, and cloud liquid water content of the lower 

troposphere (Wentz 1997), 

[ ]( ) sec( )a f o LA A Aυτ θ= + + . (2.2) 

Oxygen absorption (Ao(f)) is relatively constant because oxygen is well mixed throughout 

the global atmosphere.  Water vapor absorption (Aυ(f)) is minor at low frequencies (≤10 

GHz), and increases with frequency (f  > 10 GHz) with the exception of a weak rotational 

absorption line centered at 22.2 GHz.  Cloud liquid water extinction (AL(f)) increases 

strongly for higher frequencies ( ≥ 36 GHz).   

An approximate model describes effective Tb as a layer of semi-transparent 

atmosphere overlying the earth’s surface (Wentz 1997; Grody 1980), 

( , ) ( ) ( ) ( , ) ( , ) ( )[ (1 ) ]p f u f a f s p f s p f d fTb Tb t Tb Tbε= + +Ω − , (2.3) 

where εs(p,f) is the polarization and frequency dependent surface emissivity 

(dimensionless), and Ω depends on surface roughness, but is assumed to be unity for both 

specular and Lambertian terrestrial surfaces at the AMSR-E incidence angle and the 

frequencies considered here (Matzler 2005).  The upwelling surface brightness 

temperature Tbs(f,p) will be defined later. Tbu(f) and Tbd(f) are the respective upwelling and 

downwelling atmospheric brightness temperatures, and ta(f) is the atmospheric 

transmissivity. Atmospheric absorption and emission are dependent on the air 
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temperature, Ta , and primarily occur in the lower troposphere for window channels such 

as those on AMSR-E. In this case, Tbu(f) = Tbd(f) = (1-ta(f))Ta is a reasonable 

approximation (Weng and Grody 1998), although Tbu(f) is slightly cooler than Tbd(f) 

(Wentz 1997).   Low emissivity surfaces, such as open water, provide a dark background 

relative to the atmosphere, increasing the Tb sensitivity of to atmospheric absorption and 

emission in (2.3). 

Analogous to the atmospheric case, Tb emitted from a vegetated land surface 

(Tbl(p,f)) is described as a layer of semitransparent vegetation over smooth, bare soil with 

emissivity, εos(p,f), (Njoku 1999; Mo 1982), 

( , ) ( ) ( , ) ( , )[ (1 ) ]p f u a f s p f s p f dTb Tb t Tb Tbε= + + − , (2.4) 

where Tos  and Tc are the respective soil surface and canopy temperatures (K) and ω is the 

dimensionless forward single-scattering albedo of the vegetation canopy. The 

polarization independence of tc(f) and ω(f) is physically tractable for randomly oriented 

vegetation elements, a reasonable assumption for coarse-resolution satellite observations 

(Ulaby 1985; Wigneron 2006). Equation (2.4) does not account for multiple scattering 

within the vegetation canopy and therefore is considered valid only for lower frequencies 

(≤ 18 GHz; Njoku 2006; Matzler 2006).  The soil emissivity (εos(p,f)) is related to the 

dielectric properties of the soil and calculated for specular surfaces using the Fresnel 

equations (Ulaby 1989).  For low frequencies (≤ 18 GHz), soil dielectric properties vary 

strongly with water content and mineral type (Grody and Weng 2008).  Additionally, 

sand and snow can scatter microwaves with f ≥ 36 GHz particularly affected.  The 
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vegetation canopy optical depth (τc) is defined in terms of the equivalent vegetation water 

content (g, kg m-2; Njoku 2006) 

( ) ( ) ( ) sec( )c f f fg b hgτ α θ= = , (2.5) 

where α(f) (m2 kg-1) combines angular, and frequency dependent canopy loss (b(f); m2 kg-1) 

and roughness factors (h; dimensionless), allowing tc to account for both canopy 

extinction and surface roughness. Reported values for b(f) vary widely in the literature, 

but appear to follow a power law relationship by saturating at higher frequencies (Njoku 

2006).  

  Microwave radiation properties over land are much more heterogeneous than 

clear-sky atmosphere or open ocean conditions and the integrated Tb emitted from the 

terrestrial surface (Tbs(p,f)) often mixes open water and land 

( , ) ( , ) ( , )(1 )s p f w w p f w l p fTb f Tb f Tb= + − , (2.6) 

where Tbw(f,p) and Tbl(f,p) are respective Tb for water and land, and fw is the open water 

fractional coverage (dimensionless) within the FOV.  Even small areal coverage fw 

(>0.05) strongly impacts surface emissions due to the high dielectric constant of water.  

Terrestrial landscapes, particularly at high latitudes, contain numerous water bodies and 

inundated areas where fw seasonally varies.  

2.3.2 Correlation of Brightness Temperature to Station Air Temperature 

The most favorable AMSR-E frequencies for surface temperature retrieval 

commonly are those least sensitive to atmospheric and surface emissivity variations. The 
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AMSR-E ocean SST retrieval algorithms employ low frequencies (≤ 10.7 GHz) to 

minimize atmospheric effects. However, land emissivity varies more for these 

frequencies relative to higher frequencies, due to strong heterogeneity in land cover and 

soil moisture. Previous investigations have, therefore, used intermediate (i.e., 18–37 

GHz) frequencies, which balance sensitivity to atmosphere (higher frequencies) and 

surface (lower frequencies) emissivities (Weng & Grody 1998; Fily 2003; Holmes 2009). 

However, the results of our correlation analysis indicate that the 23.8-GHz atmospheric 

water vapor frequency is desirable for temperature retrieval.  

The Tb correlation to Tmn and Tmx generally increases at higher frequencies, with a 

global peak at 23.8 GHz (Figure 2.2). This pattern is due to greater sensitivity of lower 

frequencies to surface emissivity (decreased correlation) and the increased sensitivity of 

higher frequencies to atmospheric temperature (increased correlation). Model simulations 

confirm that the correlation between water vapor and surface air temperature through 

the Clausius-Clapeyron relation and reduced sensitivity of the 23.8-GHz frequency to 

surface emissivity induce strong temperature correspondence at 23.8 GHz. High 

correlation is desirable for air temperature retrieval, but I must also account for variable 

surface emissivity and atmospheric conditions to obtain an algorithm suitable for regional 

to global applications.  

2.3.3 Solution for Daily Surface Air Temperature, Fractional Surface Water, and Total 

Column Atmospheric Water Vapor 

Our approach employs Tb ratios from the 18.7 and 23.8 GHz channels to solve for 

microwave effective surface temperature (Ts). Ts reflects soil (< 1 cm), litter, vegetation, 
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and open water body temperatures, and does not exactly correspond to either screen 

height air temperatures, or optical-IR remote sensing derived LST where the effective 

emission layer is a very shallow skin (Hall 1992). Nonetheless, our correlation analysis 

indicates that microwave Ts is well correlated with Tmn and Tmx from weather stations. I, 

therefore, relate Ts empirically to Tmn and Tmx for respective morning (AM) and afternoon 

(PM) overpasses using a training subset of WMO weather station measurements. 

I account for atmospheric absorption caused by V and surface emissivity caused 

by fw and tc(f). The parameter represents the total vertical water vapor content of the 

atmosphere along the viewing path. The fw parameter represents the effective open water 

fraction of the sensor field-of-view (FOV), which can include, but is not limited to, 

coastal lagoons, inland water bodies, inundated wetlands, and saturated soils following 

irrigation or precipitation events. The tc(f) parameter represents the amount of vegetation 

canopy and litter layer attenuation of upwelling radiation from the underlying soil, and is 

closely related to total litter, vegetation foliar, and stem water content along the sensor 

view path. 

To facilitate analytical derivations, I simplify (2.2) and (2.4), expressing Tb as a 

linear function of ta(f) and tc(f) by ignoring the surface reflection terms.  The linear 

assumption is not as limiting as it may seem because surface reflection is low for high 

emissivity land surfaces and the antennae gain averages sub-grid scale emissions of 

heterogeneous scenes. The simplified linear model may, therefore, have less bias relative 

to effective pixel averaged quantities than a nonlinear model (Chang & Milan 1982; 

Rastetter 2002). The simplified linear emission models based on (2.3), (2.4), and (2.6) 

are,  
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( , ) ( ) ( , ) ( )[ (1 ) ], ,a
p f s a f p f a f

s

TTb T t t
T

ε δ δ= + − ≈  (2.7) 

( , ) ( , ) ( , )(1 )p f w w p f w l p ff fε ε ε= + − , (2.8) 

( , ) ( , ) (1 )(1 )l p f os p f c ct tε ε ω= + − − , (2.9) 

where εl(p,f), and εw(p,f) are the respective land and open water emissivities. Vegetation 

transmissivity (tc) is now assumed polarization independent and equivalent at 18.7- and 

23.8-GHz frequencies, although tc may be slightly lower at 23.8 GHz than 18.7 GHz. 

Open water emissivity (εw(p,f)), bare soil emissivity (εos(f,p)) and vegetation single-

scattering albedo (ω) are assigned as constant parameters (Table 2.2). The ratio of air to 

surface temperature (δ) allows for a gradient between Ts and Ta (Table 2.3).   I solve for 

Ts, rather than directly for Ta because the Ta retrieval is poorly conditioned when ta(f) is 

close to unity, which commonly occurs because water vapor only weakly absorbs the 

23.8 GHz frequency and is seasonally low (< 10 mm) over many mid- and high-latitude 

land areas.  I use an iterative approach to estimate fw, tc, and V using three 

temperature-insensitive Tb ratios, 

23 23 23 23 23

18 18 18 18 23

,v h a v h

v h a v h

Tb Tb tMAWVI
Tb Tb t

ε εβ β
ε ε

   − −
= = =   − −   

, (2.10) 
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23 18

18 18

,h h

h v

Tb TbFh P
Tb Tb

= = . (2.11) 

The subscripts 18, 23 and v, h denote respective frequencies and polarizations.  The 

MAWVI (Microwave Atmospheric Water Vapor Index) is relatively insensitive to the β 

term because the surface emissivity polarization differences are relatively small for the 

two closely spaced sensor frequencies (i.e. β is near unity).  The physical expression for 

MAWVI in (2.10) follows from (2.7). I use Fh in (2.11) rather the corresponding V-

polarization expression because the H-polarization is more responsive to vegetation 

canopy absorption. 

I determine V from the MAWVI using (2.2), (2.10), and (2.11), 

23 18 18 23log( )cos( ) ( )O O
MAWVIV a a a aυ υθ

β
 

= + − − 
 

. (2.12) 

The terms aO23, aO18, and aυ18, aυ23 are linear oxygen and water vapor absorption 

coefficients at nadir adapted from (Wentz 2002) by linearly approximating the AMSR-E 

ocean atmospheric model. I neglect cloud liquid water effects for the 18.7- and 

23.8-GHz channels.  

The fw and tc unknowns are determined by analytically inverting expressions Fh 

and P from (2.11) in terms of the emission model (2.7)-(2.9), 

( ) ( ) ( )
( ) ( )c

Ap Bf Cf Bp Af Cf Cp Bf Aft
Dp Af Bf Df Bp Ap
+ − + + −

=
− + −

, (2.13) 



 33 

[ ]
18 18 18

18 18 18 18 18

( )
( ) ( )

a lh lv

a wv lv lh wh

Bp t Pfw
t P

ε ε
ε ε ε ε
+ −

=
− + −

, (2.14) 

where, 

[ ]
18 18 18 18 18 23 23

18 23 18

18 23 18

18 18 18 23 23 18 18

( ), ,
(1 )(1 ), (1 ) (1 ) ,

(1 )(1 ), (1 )( ),
( 1 ) ( 1 ), ( 1 ) ( 1

a wv wh a wh a wh

a a a

a a a

a osh osv a osh a osh

Ap t P Af t Fh t
Bp t P Bf t Fh t
Cp t P Cf t t Fh
Dp t P Df t t Fh

ε ε ε ε
δ δ

ω ω
ε ω ε ω ε ω ε ω

= − = −
= − − = − − −
= − − = − −
= − + − − + = − + − − + )

 (2.15) 

The w and l subscripts denote water and land, respectively.  The system of three 

equations (2.12) - (2.14) is applied iteratively for sequential updating the three unknowns, 

fw, and tc, and V, until a solution is reached.  I find that five iterations stabilize the 

retrieved regional probability mass functions (PMF’s) without excessive computational 

burden.  The surface temperature is then calculated by inverting (2.7), the terms of which 

are now specified. 

The model reproduces the observed variation in the Fh, P, and MAWVI ratios for 

the domain and study period as shown by bivariate histograms overlain by model results 

(Figure 2.3).  The ratios form roughly triangular shaped regions for each V value, the 

vertices of which are (tc = undefined, fw = 1), (tc = 1, fw = 0), and (tc = 0, fw = 0).  Over 

forests, which fall near the origin in Figure 2.3a, the polarization difference is very small 

and the MAWVI index is poorly conditioned. Correct estimates of V over such surfaces 

are not crucial for determining Ts, but slight offsets from the origin (i.e., adding small 

constants (≈ 1-2 K) to the numerator and denominator in (2.10)) improve 

conditioning.AMSR-E descending (AM) and ascending (PM) Tb inputs provide the 

algorithm with two instantaneous Ts retrievals daily, which are then empirically related to 
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daily Tmn and Tmx. A linear regression correction was developed to transform AMSR-E 

overpass Ta to Ts using the AMSR-E retrieval as an explanatory variable (Table 2.3). An 

additional correction is applied to account for temperature differences between the local 

time of AMSR-E and AIRS overpass Ta retrievals and the timing of Tmn and Tmx. 

2.3.4 Solution for Vegetation Optical Depth and Soil Moisture 

I use AMSR-E 10.7 and 18.7 GHz H and V polarized Tb to estimate vegetation 

optical depth and soil moisture using a hybrid change-detection and radiative transfer 

approach.  Here I use the descending (AM) overpass Tb data, but the method is also 

applicable to ascending (PM) overpass Tb data.  The method could also be extended to 6.9 

GHz Tb for areas not subjected to RFI (Njoku 2005).  Tb data are gridded to the 25-km 

Equal Area Scalable Earth (EASE) Grid from the Level 2A data product using inverse 

distance squared weighting (Ashcroft & Wentz 1999).  Other inputs including Ts, fw, and V 

are obtained from the temperature algorithm previously described. Vegetation opacity is 

re-estimated for 18.7 GHz using the more detailed τ-ω equation which considered surface 

reflections and therefore 18.7 GHz τc from the previously described temperature algorithm 

is not used as an input. I then use input Ts and V to calculate the effective Tb emissivity of 

polarization p as, 

( )( )
( )

/ 1p s a
p

a

Tb T t V
e

t V
δ− −

= , (2.16) 

where the atmospheric transmissivity (ta) is a function of V and oxygen absorption (Eqn. 

(2.2)), and δ weights the integrated atmospheric and surface temperatures (Eqn. (2.7)). I 

apply these results to calculate a slope parameter (a), 
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  wat

wat

ev eva
eh eh
−

=
−

. (2.17) 

Open water emissivities (evwat, ehwat) are considered constant, although they are potentially 

increased by water waves, foam, and salinity.  The slope parameter, a, gives a quantity 

sensitive to vegetation and surface roughness, which is orthogonal to fw variability.  The 

slope and daily fw quantities are temporally smoothed using a moving window median time 

domain filter. Open water within the sensor footprint decreases the bulk pixel Tb sensitivity 

to soil moisture much more slowly than a proportional amount of vegetation optical depth 

(Figure 2.4). The effective optical depth of the land fraction (τc) is determined by inverting 

the τ-ω equation in terms of the slope (a), 

2 4log( ) log  
2c c

B B ACt
A

τ
 − − −

= =  
  

, (2.18) 

with, 

( )( )
( )( )

( )( )

1 * ,
* 1 * 1 ,

1 1 * .

s s

s s s s

wat wat

A rv a rh
B a eh ev a rh rv a
C a ev a eh

ω
ω

ω

= − −
= − + − − + −
= − − + −

 (2.19) 

The bare, dry soil emissivities (ehs, evs) and vegetation single scattering albedo (ω) 

determine potential maximum and minimum slopes, respectively, and rhs and rvs are found 

by Kirchhoff’s Law (i.e., r(v,h) = 1 – e(v,h)).  The 18.7 GHz channel derived τc is then 

proportionality adjusted to estimate τc for the 10.7 GHz channel (Njoku & Chan 2006).  

Alternatively, 10.7 GHz τc could be estimated directly using (2.18) without using 18.7 GHz 
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Tb; however, I find that this approach leads to unrealistically high soil moisture for high-

biomass vegetation conditions (i.e. high τc ). 

 Surface soil moisture (< 2 cm depth) is derived using the effective emissivity of the 

AMSR-E 10.7 GHz, H polarized Tb by inverting the τ-ω equation and a simple polynomial 

approximation of the Dobson dielectric model (Njoku 2003; Dobson 1985) and Fresnel 

equations (Ulaby 1986) for loam soils.  The variance in estimated soil reflectivity, and 

hence surface soil moisture, is inversely proportional to 1 – fw.  I therefore dampen the 

variability by the factor 1 – fw, which improves the dynamic range of estimates under 

marginal conditions.  A comprehensive summary of the optical depth and soil moisture 

algorithm and comparison with other available AMSR-E algorithms is given in Mladenova 

(2014). 

 

 RESULTS 

2.4.1 AMSR-E and AIRS Daily Temperatures Relative to Weather Station Observations 

The AMSR-E and AIRS derived temperatures have similar overall pooled 

accuracy relative to in situ daily air temperature measurements from WMO weather 

stations (Table 2.4). The overall uncertainty of AMSR-E temperature retrievals relative to 

all pooled WMO validation sites is 3.5 K (RMSE) for Tmn and Tmx. Corresponding 

uncertainties for the AIRS temperature retrievals are 3.4 and 3.8 K, respectively. Error 

between AMSR-E and AIRS daily air temperatures is lower than between either satellite 

based retrieval and WMO site measurements (RMSE = 2.7 K and 3.2 K, respectively). 

The MAE is much lower than the RMSE for each temperature comparison, indicating a 
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significant influence of site-to-site biases on the pooled RMSE, despite low overall bias 

(< 0.5 K). Typical accuracy for AMSR-E derived temperatures at individual WMO 

locations is higher than for the pooled hemispheric results (median RMSE of 2.9 K and 

RMSU of 2.3 K) with little difference between Tmn and Tmx.  Similarly, the AIRS results 

show a median RMSE of 3.0 and 3.4 K for Tmn and Tmx, respectively. Despite similar 

pooled and median overall accuracies, the AMSR-E derived temperatures show greater 

accuracy and higher correlation than the AIRS results for the majority of WMO stations 

(Figure 2.5). This occurs because the AMSR-E results are biased for a few specific 

locations, whereas AIRS is less biased but with generally lower correlation and, hence, 

less accuracy than AMSR-E for most stations. These differing error patterns lead to 

similar overall accuracy between the two sensors when the WMO stations are pooled. 

The AMSR-E and AIRS results show similar site-to-site bias and correlation with 

latitude, with the exception of the few locations where AMSR-E bias is larger. AMSR-E 

temperature accuracy is consistent across latitudes, whereas the AIRS accuracy decreases 

by up to 1 K for tropical (< 25° N) relative to temperate latitudes (25° N –50° N). The 

correlation of both AMSR-E and AIRS temperatures with WMO stations declines with 

latitude from R2 > 0.6 above 25° N to R2 < 0.3 below 25° N. 

The AMSR-E and AIRS temperature accuracy generally decreases over sparsely 

vegetated desert locations (Figure 2.6). This amounts to a respective Tmn and Tmx RMSE 

increase of 2 –3 K for AMSR-E. In contrast, the AIRS derived Tmx RMSE increases by 2 

K, while the Tmn RMSE shows a small 0.74 K decrease over desert locations. The reduced 

temperature accuracy corresponds with larger site-to-site biases over desert locations, 

although correlations at individual sites remain relatively high. AIRS generally 
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underestimates Tmx over barren and sparsely vegetated land (tc < 0.8), but overestimates 

over moderate vegetation (tc 0.8– 2.0) relative to in situ measurements. However, the sign 

and magnitude of AMSR-E temperature biases vary significantly among individual desert 

locations. Temperature accuracy, especially for AMSR-E, tended to decrease (increase) 

for land cover types with lower (higher) vegetation biomass and beyond these two 

distinctions accuracy varied little amongst specific cover types. The percentage of 

dominant land cover within the pixel weakly impacted accuracy for AIRS (R = 0.16; p < 

0.05), and was insignificant for AMSR-E. Other factors influencing satellite derived 

temperature accuracy relative to WMO stations include elevation, which produced 

respective RMSE increases in AMSR-E and AIRS temperatures of 0.7–0.8K and 0.35–

0.38K for every 1000 m increase in station elevation, and fw which induces a maximum 

cold bias of 2–3.5 K with 50% open water coverage for both AMSR-E and AIRS with 

slightly less (0.5 K) impact on Tmn than on Tmx. 

2.4.2 Regional Comparison of AMSR-E and AIRS 

The AMSR-E and AIRS temperature results show close agreement for non-desert 

temperate and boreal regions (Figure 2.6). Agreement is highest for Tmn (R2 > 0.8 and 

RMSE ≤ 2.0 K), and lower for Tmx (RMSE ≈ 2.0 – 2.5 K). Correlations between AMSR-

E and AIRS temperatures are generally ≥ 0.80 at higher latitudes, but decline 

substantially for subtropical and tropical latitudes, although RMSE differences remain in 

the 2.5–3.0 K range. Temperature biases for these lower latitude regions also remain 

relatively low (MR ≤ 1.5 K). 
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The AMSR-E and AIRS temperatures show reduced agreement in desert regions 

(RMSE = 4-6 K; Figure 2.6).  Large regions of low correspondence are evident in the 

Sahara, Arabian Peninsula, Iran, Gobi, and Central Asian regions and the Southwestern 

United States. Regions of low agreement are driven mainly by both temperature biases 

and reduced correlation. High spatial heterogeneity in temperature bias is particularly 

evident over the Arabian Peninsula and Northeastern Sahara, where bias can change sign 

and magnitude over short distances (50–100 km). Tmn and Tmx bias does not necessarily 

follow the same patterns in these regions, although coherent Tmn and Tmx biases occur in 

desert areas of central Asia. 

Hemispheric agreement between AMSR-E and AIRS daily air temperatures varies 

seasonally. The RMSE differences between AIRS and AMSR-E derived Tmn varies from 

a maximum of 2.9 K in early June to a low of 2.2 K in mid-July. Similarly, RMSE 

differences for Tmn vary from 3.3 K in June to 2.7 K in July. The seasonal RMSE pattern 

is evident in the bias, where AMSR-E overestimates Tmn and Tmx in June relative to AIRS 

by 0.6 K, although the bias diminishes by mid-July. 

2.4.3 AMSR-E Global Temperature Patterns 

Mean seasonal Tmn and Tmx patterns from AMSR-E generally follow expected 

geographic trends (Figure 2.7). The cold Tibetan plateau and adjacent warm temperatures 

of the Gobi desert are evident, as are similar topographically driven temperature gradients 

between adjacent low lying areas and prominent mountain ranges which include the 

Himalaya and Karakorum, Alps, Ethiopian Highlands (Northeast Africa), and central 

Rocky Mountain regions. Temperature contrasts between moderate coastal and more 
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extreme inland climates are also evident, including a temperature gradient between 

coastal and interior Mexico. The relatively hot Sahara desert contrasts with less extreme 

temperatures in the Sahel region. However, diurnal temperature ranges are very low (< 8 

K) for portions of the Sahara and Arabian Peninsula given expected large sensible heat 

fluxes of this region, and show a heterogeneous spatial pattern with Tmn > 300 K. 

The co-retrieved land surface parameters (fw, tc, and V) vary with global climate 

and land cover (Figure 2.7). Hemispheric fw follows an apparent power law distribution. 

Abundant open water bodies are detected in boreal and tundra regions, particularly north 

central Canada. The fw retrievals also show a substantial amount of open water in some 

arid regions of the northern Sahara and middle-East, particularly in the Tigris and 

Euphrates river valleys. This causes many desert locations to have much more fw 

coverage than expected. Large τc gradients between desert regions and temperate and 

tropical forests are evident. A more subtle increase in τc from boreal forest to arctic 

tundra marks the northern extent of tree line. Mountains, such as the Himalaya, generally 

have higher τc than surrounding areas, which is a feature particularly evident in the 

mountain ranges of the Sahara. Moist tropical regions including India, Indonesia and 

Southeast Asia show characteristically high V; relatively humid areas of the Southeast 

and Midwestern USA also show relatively high water vapor content. In contrast, colder, 

drier regions including the Tibetan plateau, central Asia, and the Arctic show relatively 

low water vapor contents. Regions where the AMSR-E V retrievals are considered 

unreliable due to a poorly conditioned MAWVI index were confined to boreal and 

equatorial forests with Tbv18 - Tbh18 ≤ 1 K. AMSR-E retrievals correspond with AIRS 

surface layer mixing ratio (g kg-1; R2 = 0.58; p < 0.01). The mode of retrieved 
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hemispheric diurnal V differences is 0.7 mm, although retrieved diurnal differences can 

range up to > 8 mm, mainly over the boreal forest.  

2.4.4 AMSR-E Vegetation Optical Depth and Soil Moisture Results 

The AMSR-E soil moisture retrievals respond rapidly to precipitation wetting and 

dry quickly (within 2-5 days) in the absence of additional rainfall (Figure 2.8).  AMSR-E 

soil moisture corresponds closely to the in situ precipitation index measurements when τc 

< 1.2.  Soil moisture accuracy is reduced for boreal forest and for the cropland location 

during peak LAI, as indicated by insignificant correlations.  However, the cropland site 

apparently responds to precipitation events prior to peak LAI.  Interestingly, the tundra 

location has a higher peak τc than either the boreal forest or the cropland, yet maintains 

more sensitivity to soil moisture; this may be the result of saturated, radiometrically 

absorptive organic matter underlying a highly porous organic surface layer characteristic 

of tundra. 

The AMSR-E τc seasonality agrees well with the timing of peak MODIS LAI at 

all locations (Figure 2.8).  The boreal forest τc also varies seasonally, which is likely due 

to deciduous vegetation in disturbed locations or within mixed evergreen and deciduous 

forest canopies. The cropland location is dominated by corn and soybeans, where τc peaks 

as crops mature in August.  The τc over desert grasslands shows two seasonal peaks 

corresponding to characteristic vegetation growth during monsoonal rainfall periods 

evident in the AMSR-E soil moisture time series. 

The AMSR-E derived daily soil moisture series is responsive to periodic wetting 

events during 2008 indicated by TRMM in diverse global regions, whereas AMSR-E 
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derived fw responds over adjacent floodplain areas (Figure 2.9).  Areas of high AMSR-E 

soil moisture closely correspond with areas of high TRMM rain rates for two successive 

storms in India on July 28 and August 1. The AMSR-E fw coverage is widespread across 

India, corresponding with extensive eastern and northern agricultural irrigation and 

wetland regions, but does not respond to the individual storms.  A major storm impacted 

southeastern Australia on February 20, and caused widespread AMSR-E soil moisture 

increase; however, AMSR-E indicates fw coverage only for lake and playa locations, which 

are known to respond rapidly to intense rainfall in this portion of Australia.  A major 

multiple-day storm impacted Argentina from August 3 to August 6.  AMSR-E soil moisture 

shows wetting associated with this storm along much of eastern Argentina, which dries 

from August 6 until past August 15.  AMSR-E indicates fw coverage increase associated 

with flooding in the Pantanal floodplain and surrounding wetlands associated with this 

storm and post-storm AMSR-E fw decreases with presumed receding flood waters in 

subsequent days. These results indicate that the AMSR-E soil moisture retrievals reflect a 

relatively shallow soil layer with characteristic rapid wetting and drying cycles in response 

to precipitation events.  These results indicate effective separation of the soil moisture and 

fw signals following rain events in diverse regions of the globe. The AMSR-E soil moisture 

maps appear free from water contamination along coastlines, rivers and other water bodies 

further indicating the fw estimate effectively mitigates soil moisture flooding-related bias. 

The AMSR-E derived daily fw variable was compared to independent static fw 

maps for Alaska (Figure 2.10).  Estimated spatial water coverage of the entire Alaska 

region is 4.8 %, 4.4 %, and 3.4 % for JERS-1, AMSR-E, and MODIS, respectively. The 

AMSR-E fw map is spatially smooth relative to the aggregated JERS-1 derived fw map 
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(Figure 2.10).  This is mainly an artifact of spatially aggregating the relatively fine scale 

JERS-1 land cover and the smoothing inherent in re-sampling of the egg-shaped AMSR-

E swath footprints to a 25-km earth grid.  However, the AMSR-E product retains sub-grid 

scale information on inundated wetlands and small lakes that is missing from the 1-km 

MODIS classification, as indicated by a larger regional fw value. These results show 

large differences in spatial and seasonal fw patterns across the region, including two 

locations within the Yukon River basin.  The Yukon Delta location is within a large 

wetland and is located further south and closer to the coast than Stevens Village, and 

therefore shows an earlier spring thaw, later fall freeze and larger fw area.  The steep rise 

and fall in the seasonal fw signal occurs as lake and river ice melts in the spring and 

freezes in fall; this pattern coincides with the annual cycle of inundation and drying of 

abundant seasonal wetlands, especially over the Yukon Delta region.   

 

 DISCUSSION 

2.5.1 Evaluation of Land Parameter Retrievals 

The results of this study indicate that AMSR-E derived air temperatures are 

accurate to within 1.0–3.5 K for most non-desert regions relative to WMO stations. For 

comparison, Jolly (2005) obtained an accuracy of  ≈ 2 K by spatially interpolating 

weather station data to 8-km resolution for the continental U.S. where the station network 

is relatively dense. Previous microwave investigations with SSM/I (Bassist 1998) have 

reported a standard fit error of 2.5 K relative to WMO stations; however, stations were 

carefully selected to minimize external factors (Bassist 1998), whereas I randomly 
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selected stations from the pool of available stations within each land cover class. 

Restricting the validation results to only locations with average τc > 1.2 and < 70 m 

difference between station and 25-km pixel average elevation (121 stations) results in 

median site accuracies (RMSE) of 2.5 K for Tmn and Tmx. These comparisons suggest that 

the algorithm presented in this study has potential application where station density is 

low and is at least as accurate as previous satellite microwave temperature retrieval 

algorithms (Fily 2003; Bassist 1998; Weng & Grody 1998). 

High correspondence between independent AMSR-E and AIRS temperature 

estimates for vegetated regions lend additional confidence to the accuracy of the two 

sensor products. However, spatial bias and accuracy degradation in sparsely-vegetated 

desert regions locations indicate that remotely sensed air temperature patterns should be 

taken with caution in these regions. The accuracy assessment includes error resulting 

from spatial mismatches and measurement error, as well as algorithm error. 

Higher AMSR-E retrieval accuracy relative to AIRS for the majority of WMO 

locations apparently results from increased sensitivity of AIRS to cloud cover, especially 

for lower latitudes (< 25° N). The decline in correlation between the two sensors and with 

WMO stations over tropical non-desert regions is partially attributable to a lack of daily 

and seasonal temperature variability in these locations, leading to a lower signal-to-noise 

ratio and is not necessarily the result of increased error variance. However, the AIRS 

retrievals had somewhat lower accuracy in these regions, whereas AMSR-E retrieval 

accuracy does not substantially decline for non-desert tropical regions. Additionally, 

seasonal patterns of temperature differences between AIRS and AMSR-E retrievals are 
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explained by broad-scale seasonal climatic patterns affecting AIRS temperature retrieval 

accuracy, including the seasonal onset of monsoon moisture and associated cloudiness. 

 Increased correlation results for AMSR-E relative to AIRS partially reflects fewer 

total observations due to a narrower swath width. The percentage of days with 

observations from both sensors declines with latitude from 100% near the poles to 45% at 

the equator as a result of Aqua’s polar orbit. AMSR-E has fewer observations than AIRS, 

69.3% and 69.4% versus 80.3% and 79.2%, respectively, for descending and ascending 

orbits. Fewer AMSR-E observations is foremost the result of narrower swath width than 

AIRS for low latitude locations (see Section 2.1.1) and to a lesser extent, snow cover at 

high latitudes. AMSR-E data loss from precipitation causes minor differences in 

observation counts relative to AIRS as AIRS data loss also occurs for such events. AIRS 

has greater ascending pass data loss in the Western Sahara, Arabian Peninsula, and Gobi 

deserts relative to AMSR-E. Accuracy differences between AMSR-E and AIRS are 

partially a result of algorithmic quality control and exclusion of unfavorable retrieval 

conditions. 

Generally, lower correspondence between AMSR-E and AIRS retrievals over 

many arid and desert regions, including northern Africa, central Asia, and the 

Southwestern United States, is attributed to limitations of the relatively simple AMSR-E 

algorithm to capture emissivity variations and to large vertical temperature gradients over 

sparsely vegetated desert landscapes. AMSR-E Tmn and Tmx biases of equivalent sign 

suggest incorrectly specified surface emissivity, whereas Tmn and Tmx biases of differing 

sign suggest a gradient between the effective microwave temperature and in situ air 

temperature. Areas of strong bias over the Arabian Peninsula and Northeastern Africa 
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coincide with limestone deposits (Grody & Weng 2008; Prigent 1999), which have a 

higher soil dielectric constant and lower surface emissivity than surrounding areas 

composed of more common silica sands. Additional dielectric effects from desert salt 

pans, scattering sands, fine scale surface roughness, and terrain variability are some of the 

many factors that contribute to complex desert surface emissivity variations (Prigent 

1999) and also likely impact the AMSU channels (Grody & Weng 2008). High 

broadband albedo quartz sand surfaces significantly reduce the difference between Tmn 

and Tmx relative to surrounding lower albedo features in the Sahara and Arabian 

Peninsula regions (Ogawa & Schmugge 2004). Highly variable near-surface temperature 

lapse rates in arid and mountainous regions cause differing biases between Tmn and Tmx 

for AIRS and AMSR-E temperature estimates in these regions (Gao 2008). The variable 

nature of AMSR-E site-to-site biases precludes simple global or regional empirical 

adjustments. Therefore, more accurate emission models which account for emissivity and 

temperature gradients common to deserts are required to improve results. 

Aside from desert regions, the relatively simple AMSR-E temperature algorithm 

captures surface emissivity and atmospheric water vapor variability over vegetated 

regions regardless of land cover type. The AMSR-E co-retrieved fw, tc, and V parameters 

generally follow expected regional patterns. Spurious patterns of excessive fw are present 

in some desert locations with limestone deposits because the model assumes a quartz 

mineral dielectric and the dielectric of limestone is higher than that of quartz. 

Alternatively, frequency dependent scattering from sand or rough surfaces can cause the 

Fh ratio to drop below unity, which produces negative fw estimates. Apparently, tc can 

account for some terrain roughness features in addition to variations in vegetation 
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biomass, but more study is required to determine precisely which features the simple 

parameterization does not adequately capture. The global mode of diurnal variability in V 

(0.7 mm) is within the reported range for the continental U.S. (0.5 – 1.0 mm; Dia 2002). 

Deviations from this range occur in densely forested boreal regions where the AMSR-E V 

retrieval is poorly conditioned. However, most continental land areas have H-polarization 

emissivity low enough to allow atmospheric water vapor retrieval over land from AMSR-

E. Future research will include further evaluation of AMSR-E co-retrievals including 

independent information sources from satellite optical-IR and radar remote sensing 

derived vegetation and open water products (e.g., Jones 2009), as well as integrated 

atmospheric water vapor information from AIRS, radiosondes, and GPS occultation. 

Spatial representation mismatches between in situ station measurements and the 

resolution of individual satellite sensors limit the ability to quantify uncertainty. It is also 

difficult to assess whether AIRS or AMSR-E retrievals are reliable where the station 

network is sparse, especially over desert, tropical forest and mountainous regions. The 

AMSR-E and AIRS temperature retrievals generally corresponded better with each other 

than with WMO station observations and frequently had similar biases, suggesting 

similar spatial representation. The satellite retrievals reflect effective temperatures 

horizontally and vertically weighted in spatial extent, which may differ significantly from 

sparse station 2-m height observations from sparse weather stations within a 25-km grid 

cell. Furthermore, the effective resolution of the gridded satellite data is somewhat larger 

than 25-km as a result of inherent spatial smoothing from the gridding procedure. Data 

assimilation-type approaches to validation will ultimately be required to overcome some 

of the limitations of spatial mismatches between satellite footprints and sparse station 
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networks, but traditional approaches to validation presented in this study are still required 

to exploit synergies between different sensor products (Renzullo 2008; Crow 2007; 

McCabe 2008). 

 

 CONCLUSION 

This study demonstrated that the AMSR-E 18.7 and 23.8 GHz and polarized 

brightness temperatures can be used to derive near surface daily air temperature minima 

and maxima over land with minimal ancillary data. The methods developed include co-

retrievals of potentially synergistic variables, including atmospheric water vapor, 

vegetation optical depth and fractional open water coverage. Regional accuracy and 

precision of AMSR-E daily surface air temperature information is well-quantified relative 

to surface weather station observations and satellite remote sensing products from AIRS. 

The scope of this investigation encompassed the Northern Hemisphere land area for a 

single snow-free season, but the methods are appropriate for global applications and 

extended periods because the key factors influencing retrieval accuracy and spatial 

variability are represented in the current study domain. The algorithms and results of this 

study are sufficiently accurate for regional analysis of air temperature patterns and 

environmental gradients, and are appropriate inputs for atmospheric and land surface 

models. 

Using AMSR-E surface temperature and fractional water coverage as input, 

vegetation optical depth and surface soil moisture were estimated using 10.7 GHz 

brightness temperatures from AMSR-E.  The results of this study indicate that the soil 
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retrievals are reasonably accurate under low optical depth conditions (τc < 1.2), as well as 

for high optical depth in tundra.  Soil moisture retrieval accuracy is reduced over high 

optical depth forest and cropland locations during peak biomass.  The AMSR-E optical 

depth retrievals show characteristic seasonality across a range of North American land 

cover types and agree well with alternative canopy cover estimates from MODIS LAI.  Soil 

moisture and water fraction show characteristic spatial patterns and temporal variability 

following precipitation events across diverse global regions as compared to TRMM 

satellite-based rain rate data. Dynamic open water fraction retrievals effectively mitigate 

potential soil moisture bias and provide an additional important hydrological parameter for 

global monitoring. Open water is a key component of continental seasonality, especially 

for boreal forest, tundra, wetland, riparian, irrigated agriculture, and many tropical 

ecosystems.  The results of this study indicate that algorithms for upcoming satellite 

microwave soil moisture missions, such as SMAP and SMOS, should consider dynamic 

corrections for open water.  
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TABLES 

 

Table 2.1: MODIS UMD global land cover classes. 
Number Abbrev. Name 

0 OW Open Water 
1 ENF Evergreen Needleleaf Forest 
2 EBF Evergreen Broadleaf Forest 
3 DNF Deciduous Needleleaf Forest 
4 DBF Deciduous Broadleaf Forest 
5 MXC Mixed Cover 
6 WOD Woodland 
7 WGR Wooded Grassland 
8 CSH Closed Shrubland 
9 OSH Open Shrubland 
10 GRS Grassland 
11 CRP Cropland 
12 BAR Barren 
13 URB Urban 

 
 

Table 2.2: Radiative transfer model parameters used to derive surface air temperature 
from AMSR-E 18.7 and 23.8 GHz Tb inputs. 

 

Physical Model Parameters  Symbol 
18.7 
GHz 

23.8 
GHz 

Veg./Roughness single scattering albedo ω 0.05 0.05 
Dry bare soil surface emissivity (V-pol.) εosv 0.994 0.975 
Dry bare soil surface emissivity (H-pol.) εosh 0.771 0.781 
Open water emissivity (V-pol.) εwv 0.630 0.685 
Open water emissivity (H-pol.) εwh 0.336 0.421 
Water Vapor mass absorption coefficient av 0.0034 0.0104 
Oxygen mass absorption coefficient ao 0.0103 0.0131 
Initial emissivity difference ratio multiplier β0 0.88 0.88 
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Table 2.3: Multiple regression model parameters used to correct for air temperature 
differences between satellite (AMSR-E and AIRS) local overpass time and timing of Tmn 
and Tmx.  See text Section 2.2.1 for parameter descriptions. 
 

    AMSR-E AIRS 
Empirical Parameters   Desc. Asc. Desc. Asc. 
1Parameter for surface to air 
temperature ratio δ 0.98 0.96 - - 
2Surface to air temperature correction c0 -0.8 2.0 - - 
2Surface to air temperature correction c1 12.0 -9.2 - - 
2Surface to air temperature correction c2 -19.0 0.0 - - 
3Overpass time regression coeff. 
(constant) m0 22.53 55.50 19.42 52.74 
3Overpass time regression coeff. 
(temperature) m1 0.93 0.83 0.92 0.83 
3Overpass time regression coeff. 
(latitude) m2 -0.07 -0.09 -0.02 -0.02 

1 Used in radiative transfer model eqn. (2.7);  2Tsa = Ts + c0 + c1(tc) + c2(tc
2);  

3Tmn,mx = m0 + m1(Tsa)+m2(Lat.).  
 

 
Table 2.4: Summary statistics of relative agreement between AMSR-E and AIRS derived 
Northern Hemisphere temperature results, and weather station daily air temperature 
measurements pooled for 273 WMO test sites. 

Tmn (K) 
  R2 RMSE MAE MR 

AMSR-E vs. WMO 0.79 3.5 2.7 0.12 
AIRS vs. WMO 0.83 3.4 2.5 0.14 

AMSR-E vs. AIRS 0.86 2.7 2.0 0.07 
     

Tmx (K) 
  R2 RMSE MAE MR 

AMSR-E vs. WMO 0.85 3.5 2.7 0.02 
AIRS vs. WMO 0.81 3.8 2.9 0.30 

AMSR-E vs. AIRS 0.85 3.2 2.4 -0.05 
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FIGURES 

 

Figure 2.1: Location of WMO stations used for algorithm development (N = 270) and 
testing (N = 273.  Regional land cover representation is a proportion (%) of total land 
area (or total stations) within each latitudinal band sorted in decreasing order. 
 

Figure 2.2: Expected (Model) and observed patterns of time-series linear cross 
correlations (R) between AMSR-E daily descending/ascending observed Tbv values and 
in situ Tmn /Tmx observations. 
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Figure 2.3: Bivariate histogram scatterplots of (a) numerator and denominator of the 
MAWVI ratio (10) and (b) Fh and P ratios in Eqn. (2.11). Darker (lighter) regions 
primarily represent land (water) areas.  Model results for two levels of atmospheric water 
vapor (V) and the entire range of tc and fw are shown for reference. 
 

Figure 2.4: Normalized H polarized Tb range from dry (0.05 vol.) to wet (0.50 vol.) soil 
with (a) changing optical depth (τc) and (b) open water fraction (fw). 
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Figure 2.5: Median summary statistics of unbiased RMSE (RMSU) and mean residual 
(MR) for AMSR-E and AIRS temperature retrievals relative to WMO station 
observations by elevation (200-m bins), latitude (2.5° bins),  fw (0.05 bins), and τc.  N 
represents the number of WMO test stations represented in each bin (equivalent for Tmn 
and Tmx). See Section 2.1.4 for statistical explanations. 
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Figure 2.6: Maps of Northern Hemisphere regional correspondence between AMSR-E 
and AIRS Tmn and Tmx retrievals. 
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Figure 2.7: Maps of mean summer AMSR-E retrieved parameters for the 2003 study 
period and PDFs of co-retrieved parameters from ascending and descending orbits. 
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Figure 2.8: Comparison of AMSR-E retrievals with antecedent precipitation (SMV), and 
comparison of AMSR-E τc seasonality with MODIS LAI for five study locations.  SMV 
is normalized to the unit interval to compare variability.  The vegetation plot y-axes are 
scaled to show variability. 
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Figure 2.9: Comparison of AMSR-E UMT soil moisture and fractional water (fw) after 
major 2008 precipitation events for India, Australia, and southern South America. 
Precipitation from the TRMM 3B42 satellite-based rain rates and represents prior 24-48 
hour sums of three-hourly data.  Fractional water change (Δfw) represents the difference 
between August 6 and August 3 (Δfw before) and August 15 and August 6 (Δfw after).  
AMSR-E missing values caused by gaps between swath acquisitions. 
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Figure 2.10: Comparison of gridded 25-km open water estimates for Alaska.  The 
resolutions listed below the instrument names indicate the product native resolution prior 
to gridding.  Open water seasonality retrieved by AMSR-E is shown for two locations for 
2003. 
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CHAPTER 3: JOINT MERGING AND UNCERTAINTY ESTIMATION OF 
MULTIPLE SOIL MOISTURE TIME-SERIES CONTAINING COLORED 
NOISE AND MISSING VALUES  

 

 INTRODUCTION 

Ecosystems react to daily weather variations including temperature, radiation, soil 

moisture, and humidity. Stomata close when atmospheric demand exceeds soil moisture 

supply, soil organic matter decomposes faster when soils are warm and moist, 

photosynthesis increases with increasing radiation, among other processes (Running 

1998; Chapin 2002). Global ecological modeling applications require spatially and 

temporally consistent driving meteorological information (Zhao 2006).  Satellite remote-

sensing observations provide more continuous spatial coverage than in situ observations 

and may provide better accuracy and more desirable spatial and temporal resolution than 

weather and climate models.  However, most observational datasets contain noise, bias, 

missing values, and may conflict with other observational datasets or physical 

expectations.  Meteorological observations must therefore be quality-controlled, bias-

corrected, smoothed, interpolated, and merged to become usable drivers for ecological 

models (Zhang 2007).  Well quantified accuracy is also essential for hypothesis-testing 

and decision-making with ecological models.  Data assimilation accomplishes all these 

tasks by merging observations with a dynamic model.  Although weather models are 

physical representations of weather dynamics, dynamic models used for data assimilation 

need not be physically-based, and can be, for example, spatio-temporal statistical models 

(Anderson & Moore 1980; Cressie & Wikle 2011).   
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Data assimilation can be accomplished using the Kalman Filter/Smoother 

algorithm (KF/S; Kalman 1960).  The KF/S optimally weights a model forecast with 

available observations according to their relative uncertainty whenever observations 

become available (Raupach 2005).  This merged value is then used to initialize the 

subsequent model forecast which proceeds until another observation becomes available at 

which point the process repeats. Using this scheme, the model interpolates and smooths 

the observations in space and time based on prior knowledge of physical (or empirical) 

relationships represented by the model propagation equations.  Success applying the 

KF/S for estimating hidden states from noisy observations hinges on how well the 

system’s parameters, particularly its error characteristics, describe reality.  Typically KF 

applications require observations with uncorrelated-in-time, i.e. “white”, Gaussian errors.  

This allows optimal projection from observations onto the hidden process, because the 

variability of the hidden process can be assumed orthogonal to the error variability 

(Anderson 1979; Kailath 2000).  Much previous research has focused on estimating KF/S 

system parameters including sub-space (SS; Ljung 1999; Katayama 2005) and maximum 

likelihood (ML; Gupta 1974; Shumway 1982) methods.  These methods seek to 

determine system parameters by whitening one-step-ahead prediction residuals, known as 

the innovations.  Whereas the KF remains generally robust to deviations in the Gaussian 

assumptions, non-white, i.e. “colored,” observation noise degrade optimality of SS or ML 

methods by eroding orthogonally with the hidden process and making white innovations 

impossible to obtain (Anderson 1979; Kailath 2000).  This situation can arise in applied 

science and engineering situations when, for example, multiple redundant series of noisy 
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data observe the dynamics of an underlying hidden process with inexactly-known linear 

dynamics producing slowly-varying bias in each observation series.  

 A motivating example comes from the task of merging redundant soil moisture 

time-series to obtain accurate, consistent daily, global soil moisture estimates and the 

related task of inter-calibrating and characterizing error amongst the series.  Soil moisture 

dynamics experience dampened response to rain, snowmelt, and evaporative impulses 

(Manabe 1990).  Such dynamics imply that impulse or response mismatches amongst 

datasets result in errors with dynamics concentrated at lower frequencies, i.e. “red,” or 

more broadly, Markov noise.  The combination of coarse-scale global datasets and lack 

of representative ground “truth” measurements leave much disagreement across different 

data records depicting the same variable (e.g. soil moisture), leading to severe, slowly-

varying bias among the different data records and uncertain global dynamics overall 

(Crow 2007; Koster 2009).  I desire a method of evaluating and synthesizing different 

data records, independent of ground data, to produce a “most likely” or “optimal” 

estimate of soil moisture state given a diverse set of available global time series soil 

moisture observations. time-series 

The time-domain KF/S with ML estimation appropriately fits our above-stated 

problem, but existing methods do not allow ML estimation under the specific case of AR 

observation errors.  The original method of dealing with KF/S state estimation under AR 

observation errors requires augmenting the state vector which can destabilize the filter 

(Kalman 1961).  However, Bryson (1967) discovered a more numerically stable KF/S 

formulation for dealing with AR observation error - using a back-shifted version of the 

observations - thereby avoiding augmentation of the error processes to the state vector.  
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Backshifted observations induce correlation amongst state and observation error 

innovations, requiring modification of the standard KF/S equations (Bryson 1967).  This 

method of applying the KF/S with backshifted observations, henceforth known as 

ColKF/S, allows estimation of the unknown state.  However, for optimal use of available 

observations for state estimation I must also find the ML estimate of the ColKF/S system 

parameters. 

The Expectation Maximization (EM) method (Dempster 1977) has advantages 

over other iterative ML methods, such as quasi-Newton, or non-iterative SS methods or 

SS.  EM does not require computation of KF/S partial derivative matrices, which are 

computationally expensive, and may become unstable in portions of parameter space.  

Therefore, EM deals more efficiently with large-dimensional problems and remains 

stable across parameter space.  EM convergence can be slow and require several 

iterations near the minimum, but for large-dimensional problems this seldom out-weights 

overall quasi-Newton computational demand (McLaughlin 1997).  Although 

computationally fast, SS methods compute only overall covariance and therefore cannot 

supply desired information on observation error (Anderson 1979; Kalaith 2000).  

Shumway and Stoffer (1982) applied the EM framework for estimating parameters of the 

standard KF/S with observations with white-noise errors and missing values.  Gibson 

(2005) extend Shumway’s (1982) EM method to the KF/S with correlated hidden process 

and observation errors, which accommodates ColKF/S backshifted structure but does not 

enforce it and does not consider missing values.  Backshift further complicates the 

handling of missing values in EM estimation, because each backshifted observation now 

potentially contains several missing time-steps.  Wu (1996) provide methods for 
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constraining EM matrix estimates, allowing enforcement of the specific structure of the 

Colored-Noise KF/S on EM-estimated system matrices.  I combine and extend this 

previous work to derive EM for ColKF/S, henceforth known as EM-KF/S, with missing 

observation values using a constrained EM estimator.    

I provide an overview of the ideas behind EM-KF/S, followed by detailed 

presentation of its components, and evaluate it with numerical simulations.  First, I 

describe the density and likelihood to be conditionally maximized.  Then, I present the 

underlying state-space observation model.  Next, I present the ColKF/S estimation of the 

unknown state.  This is followed by the application of EM to iteratively estimate 

ColKF/S system parameters, which requires applying constraints to the EM results at 

each iteration.  I then present a few modifications that can accommodate various 

observational error structures which arise with real soil moisture data.  I test the approach 

with Monte-Carlo simulations to evaluate numerical robustness for several configurations 

of observation noise and system parameters.  I expect the method will be capable of 

recovering the underlying system parameters and provide state estimates which are more 

accurate than or at least as accurate as any individual observation series or their simple 

sum, whichever is greater. 

 

 SYSTEM DEFINITION AND STATE ESTIMATION 

3.2.1 State Space System 

A state-space system relates noisy observations to the hidden processes to be 

estimated.  The m hidden processes, contained in the m × 1 state vector (xt), propagates 
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from time t − 1 to t, at which time it is observed by n noisy observations, contained in the 

n × 1 observation vector (yt): 

1 1 1t t t t− − −= +sx A x w  (3.1) 

.t t t t= +y C x η  (3.2) 

In the state equation (3.1), the m × m time model matrix 1t−
sA  describes the state’s 

dependence on the previous state (superscript s  denotes the “signal” process), and the 

white noise m × 1 vector 1 ~ ( , )t tN−w 0 Q .  Henceforth I adopt the “weak” definition of 

“white noise” as a time-uncorrelated series, which may be lag-zero cross-correlated with 

another white noise series (precluded in the “strong” definition).  In the observation 

equation (2.2), the n × m observation model matrix Ct relates the observations to the 

states corrupted by 1×n  white noise ~ ( , )t tNη 0 R .  The above system constitutes a state-

space form with time-uncorrelated observation error required for standard 

implementation of the KF/S. 

 Now, instead of the standard time-uncorrelated observation error (ηt) assumption, 

let us consider observation errors which follow a Markov or “Colored noise” process: 

1 1 1.t t t t− − −= +nη A η v  (3.3) 

In the error equation (3), the error time model matrix 1t−
nA , with superscript n denoting 

the “noise” process (as distinguished from the “signal” process), describes dependence of 
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the error state on the previous error state with white noise 1 ~ ( , )t tN−v 0 R .  The Markov 

observation error state space model is now represented by (3.1)-(3.3). 

3.2.2 Multi-lag Auto-Regressive Representation 

For many applications, the process of interest has correlation persisting to long 

time lags, as illustrated by the soil moisture series (trend and annual cycle removed) 

shown in Figure 2.1.  Here I want a single (m = 1) estimate of the “true” soil moisture 

series (xt) based on multiple (in this case n = 3) soil moisture observations (yt).  To model 

long-term dependence, I use a multi-lag linear Markov process which can be 

accommodated within the state-space framework.  The state equation (3.1) is now: 

1 1 1,t t t t− − −= +sx A x w  (3.4) 

Where tx  models a scalar process (m = 1) with lag order p.  I assume the linear Markov 

process is (weakly) stationary and invertible.  For a weakly stationary process, the mean 

value (μt) remains constant for all t and the covariance function defined as γ(s,t) = 

γ(s+h,t+h) depends on s and t only through their difference s t−  (Shumway 2006).  In 

KF/S applications this assumption may be relaxed if changes in μt and γ(s,t) are explicitly 

modeled.   To use (3.4) I also require the process to be invertible, which allows us to 

write (Shumway 2006): 

0
( )t t j t j

j
w z x xπ π

∞

−
=

= =∑  (3.5) 
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Where
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=
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The terms ϕ(z) and θ(z) are the autoregressive and moving average polynomials, 

respectively.  The process is invertible and can be written as (3.5) if the complex roots of  

θ(z) lie outside the unit circle (i.e. roots of θ(z) non-zero in (3.6)).  I also assume that the 

roots of ϕ(z) are inside the unit circle following the stationarity assumption.  Taken 

together these assumptions allow (3.4) to represent the general class of Autoregressive 

Moving Average (ARMA) processes.  To represent an ARMA process the terms of (3.4) 

expand to: 
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In (3.7), coefficients jπ s  apply to the jth lag, and the noise covariance becomes

1 1 1 1{ }t t t tE w w− − − −= =T T TQ D D DQ D , with { }E = • defined as the expected value operator.  

I note that (3.7) is known as “Controllable Canonical” form and that although there are 

other possible state-space representations for ARFIMA models (Kailath 2000; Shumway 

2006; Palma 2007), this form best suites our transformed observations (see Section 3.4).  

Several observations (n > 1) monitor the state process as follows: 
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,t t t t= +y C x η  (3.8) 

where I collect the observations j
ty  in a column vector 

1 1 1 2 2 2
1 {1} 1 {2} 1 { }[ ] ,n n n

t t t t k t t t k t t t k ny y y y y y y y y− − − − − −= Ty    

 
(3.9
) 

with 

1 k{1} {1} max(0, {1})

2 k{2} {2} max(0, {2})

k{n} { } max(0, { })

,

k p k

k p k
t

n k n p k n

c
c

c

× −

× −

× −

 
 
 =  
 
  

I 0
I 0

C

I 0
 

 (3.10) 

where I is an identity matrix, and 0 is a matrix of zeros (dimensions of I and 0 given in 

subscripts), and the lag order k{j} depends on the jth Markov error processes ( j
tη ); and 

the Markov errors are modeled as: 

1 1 1,t t t t− − −= +nη A η Lv  (3.11) 

Where j
tη  takes the same column vector form as (3.9).  Making the same assumptions of 

stationarity and invertibility as the signal model, the error model propagation matrix in 

(3.11) becomes: 
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Where j
iπ
n the AR coefficients for the ith are lag of the jth observation error process; and 

the white noise covariance becomes { }t t t tE= =T T TR Lv v L LR L with 
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I now replace (3.1)-(3.3) with the multi-lag state space model represented by (3.4), (3.8), 

and (3.11).  Here I focus only on temporal signal and error models, but our overall state-

space model structure could be readily extended to the spatial-temporal domain as in Xu 

(2007) and Katzfuss (2010). 

3.2.3 Backshifted Observer for Markov Errors 

Since the standard KF/S requires white observation errors, I must transform the 

observations to whiten their Markov errors using (3.4), (3.8), and (3.11).  Specifically, I 

backshift ty  to obtain the transformed observations (zt−1) as follows (Bryson 1967): 
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1 2
1 1 1 1 1 1[ ] ( ),n

t t t t t t tz z z− − − − − −= = −T T nz L y A y  (3.14) 

Where zt−1 contains only the leading (i.e.  t − 1) transformed observations.  Note that 

only the leading value will participate in each KF/S update.  Also note that zt−1 requires yt 

such that the KF/S update now lags the leading un-transformed observation by one time 

step. I substitute (3.4) and (3.11) into (3.8) to obtain the transformed observation 

equation: 

1 1 1 1,t t t t− − − −= +z H x u  (3.15) 

where,   

1 1 1 1( ),t t t t t t− − − −= = −T T s nH L H L C A A C  (3.16) 

1 1 1 1( ),t t t t t− − − −= = +T Tu L u L C w v  (3.17) 

with covariance matrices, 

1 1 1 1 1{ } ( )t t t t t t tE− − − − −= = +n T T TR u u L C Q C R L  (3.18) 

1 1 1 1{ } .t t t t tE− − − −= =n T TS w u L Q C L  (3.19) 

Note that I have made the simplifying (but unnecessary) assumption, { }t tE =Tw v 0 .  Thus 

I have now reduced the original state space model (3.4), (3.8), and (3.11) to the 

backshifted observations (3.4) and (3.15).   
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 Henceforth, to reduce notational clutter, I drop overbars by redefining the 

following quantities: t t≅x x , 1 1t t− −≅s sA A , and 1 1t t− −≅Q Q .  The transformed multi-lag 

state-space system is then summarized as follows: 

1 1 1,t t t t− − −= +sx A x w  (3.20) 

1 1 1 1,t t t t− − − −= +z H x u  (3.21) 

with covariance 1 1 1{ }t t tE− − −= TQ w w , 1 1 1{ }t t tE− − −=n TR u u , and 1 1 1{ }t t tE− − −=n TS w u , as 

previously shown.  I are now ready to apply the KF/S to (3.20) and (3.21) to estimate the 

unknown state (xt) from available observations (yt). 

3.2.4 Kalman Filter for Correlated Observation and State Noise 

I must choose a KF/S formulation which can accommodate correlated observation 

and state noise from the transformed observation (3.21).  I apply the filter formulation 

given in Bryson (1967), which along with the multi-lag representation (Section 3.2.2), the 

backshifted observations (Section 3.2.3), filter (Section 3.2.4), and smoother (Section 

3.2.5) collectively describes the “Colored-Noise” Kalman Filter/Smoother (ColKF/S).  

The ColKF/S consists of first a forward “filtering” sweep propagating observation 

information through time, and then a backward “smoothing” sweep propagating 

information back through time.  I denote the collection of states from time l up to and 

including h as : 1X { , , , , , }l h l l t h+= x x x x   and the entire collection of states across time 

as 1: 1 2X { , , , , , }N t N= x x x x  .  The collection of original and back-shifted observations 
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are denoted 1: 1 2Y { , , , , , }N t N= y y y y   and 1: 1 2Z { , , , , , }N t N= z z z z  , respectively.  

Sweeping forward through time, the ColKF estimates the “analysis,” 1 1 1: 1{ | Z }a
t t tE− − −=x x , 

and its error covariance 1 1 1 1: 1{ | Z }a
t t t tE− − − −= TP x x  , with error 1 1 1

a
t t t− − −= −x x x  (i.e. analysis 

minus truth) as well as 1 1 1:{ | Z }k
t t tE− −=x x , and its error covariance ( 1

k
t−P ).  Sweeping 

backward through time and using ColKF results, the ColKS then estimates 

1 1 1:{ | Z }s
t t NE− −=x x and 1 1 1 1:{ | Z }s

t t t NE− − −= TP x x  , exploiting all available observation 

information.  The filter is described below and the smoother in the following section 

(Section 3.2.5). 

Given the state space system (3.20) and (3.21), the ColKF recursions are 

initialized with 0
ax  and 0

aP , and then run recursively forward through time: 

1 1 1 1
a

t t t t− − − −= −ε z H x  (3.22) 

1 1 1 1 1
a

t t t t t− − − − −= +T nE H P H R  (3.23) 

1 1 1 1
a

t t t t
−

− − − −= T 1K P H E  (3.24) 

1 1 1 1
k a
t t t t− − − −= +x x K ε  (3.25) 

1 1 1 1 1
k a a
t t t t t− − − − −= −P P K H P  (3.26) 
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1 1 1t t t
−

− − −= 1G S E  (3.27) 

1 1 1 1
a k
t t t t t− − − −= +sx A x G ε  (3.28) 

1 1 1 1 1 1 1 1 1 1 1 1( ) ( ) .a k
t t t t t t t t t t t t t− − − − − − − − − − − −= + − − −s s T T s T T s TP A P A Q G S A K S S K A  (3.29) 

System matrices change with missing observations as described below in Section 3.2.6, 

and thus require time subscripts.  Other forms of the KF/S for correlated state and 

observation noise are available (Bryson 1967; Anderson 1979; Gibson 2005) and are 

analytically, but not necessarily numerically, equivalent.  In the case of time-uncorrelated 

observation noise, or equivalently, uncorrelated state and observation noise, ColKF/S 

reduces to the standard KF/S. 

From (3.22) and (3.23), I have the filter innovations (εt−1) and their covariance 

(Et−1) respectively from which I calculate the “innovations log-likelihood:” 

1 1 1 1
2 2

~ log .
N N

t t t t
t t

Lε
−

− − − −
= =

+∑ ∑ T 1E ε E ε  (3.30) 

I will use the filter innovations log-likelihood to track Expectation Maximization (EM) 

progress and convergence (Section 3.3.3). 

3.2.5 Kalman Smoother for Correlated Observation and State Noise 

Once the filter completes its forward sweep through the data series, the smoother 

then uses the filter results to produce state estimates conditioned on the entire observation 
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record (i.e. 1 1 1:{ | Z }s
t t NE− −=x x ; Bryson 1967).  The smoother is initialized as s k

N N=x x   

and s k
N N=P P , then runs recursively backward through time via: 

1( ) ( )a a
t t t t t t

−
+= −s T T 1J (P A K S ) P  (3.31) 

1 1
s k s a
t t t t t+ += + −x x J (x x )  (3.32) 

1 1 .s k s a
t t t t t t+ += + − TP P J (P P )J  (3.33) 

Note that k
tx , a

tx ,  k
tP , a

tP , and Kt are defined in the ColKF sweep (eqns. (3.22) -(3.29)),  

whereas t
sA  and St are available from the state space model (eqns. (3.20) -(3.21)).  The 

smoother infers the hidden state and its error covariance ( 1 1 1 1:{ | Z }s
t t t NE− − −= TP x x  ), which 

then provide a portion of the “missing data” required by EM.  EM additionally requires 

the “Lag-One Smoother Error Covariance,” , 1 1 1:{ | Z }s
t t t t NE− −= TP x x   (Shumway 2006) with

s
t t t= −x x x , which are convenient to calculate alongside the smoother (3.31) - (3.33), 

, 1 1 1, 1( ) ,s k s k
t t t t t t t t t t t t− − + −= + − −T s T T T TP P J J (P (P A K S ) )J  (3.34) 

which is initialized at t = N as 

, 1 1 1 1 1 1( ( )s k
N N N N N N N− − − − − −= − −s TP (I K H ) P A K S . (3.35) 
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Completion of the backward smoother sweep makes available the state estimates required 

for each EM iteration.  Before applying EM, I must also infer smoothed estimates of 

missing observations, if present, alongside the hidden state. 

3.2.6 Missing Observation Inference 

Missing observations must be appropriately omitted during filter updates before 

computing smoothed values and EM requires smoothed missing observation estimates, 

because these, along with the hidden state, comprise the “missing data” in EM’s 

“complete data” density (Section 3.3.1).  Smoothed missing observations and their error 

covariance are defined as 

(2) (2) , (2) (2) (2)
1: 1:ˆ ˆ{ | Y }, { ( ) | Y },s y s s s

t t N t t t NE E≅ ≅ Ty y P y y   (3.36) 

with (2) (2) (2)ˆs s s
t t t= −y y y .  Shumway (1982) provide an algorithm for inferring these 

quantities for the standard KF/S, but backshifted, multi-lag observations complicate 

matters. 

To illustrate, let us initially assume a single-lag system (p = 1 and { } 1k j j= ∀ ).  A 

missing observation is encountered at time t but not before then. I partition the 

observation vector as (1) (2)ˆ[ ]t t t= Ty y y , where (1)
ty  are the observed data and (2)ˆ ty are the 

missing data to be estimated (which implies , (2) 0y s
t >P and hence the hat notation). I then 

use (3.14) to rewrite (3.15) as 
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(1) (1) (1) (1) (1) (1)
1 1 1 1 1

(2) (2) (2) (2) (2) (2)1
1 1 1 1 1

,ˆ ˆ
t t t t t t

t
t t t t t t

− − − − −
−

− − − − −

           
= − = +           

                      

n

n

z y A 0 y H u
x

z y 0 A y H u  (3.37) 

with 

(1) (11) (12)
1 1 1

(2) (21) (22)
1 1 1

~ 0, .t t t

t t t

N− − −

− − −

    
            

n n

n n

u R R
u R R

 (3.38) 

where observation noise ut−1, lagged observations yt−1, and partitioned system matrices

1t−
nA , 1t−H , and Rn are assigned superscript (2) or (1) if they correspond to missing or non-

missing portions of yt, respectively.  Following Shumway (1982), the missing backshifted 

observation (2)
1ˆ t−z  in (3.37) would simply be omitted from the filter sweep and using (3.37) 

and (3.38) I could estimate (2)ˆ s
ty as follows: 

(2) (2) (2) (2) (12) (22) 1 (1) (1) (1) (1)
1 1 1 1 1 1 1 1 1 1ˆ ( ) ( ),s s s

t t t t t t t t t t t t
−

− − − − − − − − − −= + + − −n n n ny A y H x R R y A y H x  (3.39) 

where , (2) 0y s
t >P  since (2)ˆ ty  is estimated and , (2)

1 0y s
t− =P  because (2)

1t−y  is measured.  

 Alternatively, I could use (3.37) to augment the state vector with (2)ˆ ty and estimate 

its mean and error covariance during the usual ColKF/S sweeps.  This approach provides 

advantages over (3.39) for our multi-lag, backshifted system.  I rearrange (3.37) as 

(1) (1) (1) (1) (1) (1)
11 1 1 1 1

(2)(2) (2) (2) (2) (2)
11 1 1

,ˆ ˆ
tt t t t t t

tt t t t t

−− − − − −

−− − −

            
= − = +            

                       

n

n

xz y A 0 y H 0 u
yy y 0 0 0 H A u  (3.40) 

which I rewrite in state-space form, 
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1 11
(2) (2) (2)(2) (2)

1 11 1

,ˆ
t t tt

t
t t tt t

− −−+

− −− −

      
= = +      

       

s

n

x x wA 0
x y y uH A  (3.41) 

(1) (1) (1)
11 1 1

(2) (2)1
1 1

,tt t t
t

t t

−− − −+
−

− −

      
= = +      
           

xz H 0 u
z y0 0 0 u  (3.42) 

with covariance 

(2) (1) (11)
1 1 1 1

(2) (22) (21) (22)1 1 1
1 1 1 1

, , ,
( )

t t t t
t t t

t t t t

− − − −+ + +
− − −

− − − −

     
= = =     
          

n
n

T n n n

Q S S 0 R 0
Q S R

S R R 0 0 R  (3.43) 

where I denote the error covariance of t
+x as 1 1 1{ }t t tE+ + +

− − −= TP x x  .  If (2)
1t−y  also happens to be 

missing, then I replace it with (2)
1ˆ t−y  in (3.41) and (3.42).  Note that (3.42) reflects that our 

only knowledge of the missing observation (2)ˆ ty in the measurement model is 

encompassed by the variance of (2)
1t−u , which has the practical benefit of ensuring 1t

+
−

nR  is 

full rank in (3.43). 

Let us now consider the case where I observe (2)
ty  but (2)

1ˆ t−y  is missing.  I redefine 

the partition as (1) (2)
1 1 1ˆ[ ]t t t− − −= Ty y y  with superscript (2) or (1) corresponding to missing or 

non-missing portions of yt-1, respectively.  Using (3.40) with this re-partitioning, I write 

the observation model as (state model remains (3.41)): 
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(1) (1) (1) (1)
11 1 1 1

(2)(2) (2) (2) (2) (2)1
11 1 1 1

,ˆˆ
tt t t t

t
tt t t t t

−− − − −+
−

−− − − −

        
= = = +        
               

n

xz z H 0 u
z yz y H A u  (3.44) 

with covariance ( 1t
+
−Q same as (3.43)) 

(1) (2) (11) (12)
1 1 1 1

(21) (22) (21) (22)1 1
1 1 1 1

, ,t t t t
t t

t t t t

− − − −+ +
− −

− − − −

   
= =   
      

n n
n

n n n n

S S R R
S R

R R R R  (3.45) 

which corrects (2)
ty  using (2)

1ˆ t−y  estimates from the augmented state vector, allowing (2)
ty

to be included in the current ColKF update.  The system (3.41) and (3.44) also holds for 

multi-lag systems if (2)ˆ t h−y  is missing for any h ≥ 1 prior time-steps.  Note that in (3.44) the 

new measurement (2)
ty  allows 1t

+
−z  to participate in ColKF updates because it contains 

new information, whereas in (3.42) 1t
+
−z does not participate because (2)ˆ ty is missing so no 

new information is available. 

For a summary of missing value permutations using the above partitioned state 

space models see Table 3.1.  Now that I have provided system configurations for all 

possible missing value permutations, the ColKF/S proceeds with its usual forward and 

backward sweeps using the augmented system.  The advantages of this approach include: 

(i) the ability to do usual ColKF updates (without the additional eqn. (3.39)) when (2)ˆ t h−y  is 

missing provided (2)
ty is available which makes full use of available observations and (ii) 

the ability to naturally compute { }s s
t h t hE − −

Tx y  for h ≥ 0  with (2) (2)ˆs s s
t t t= −y y y  within the 

ColKF/S sweeps (as provided by s
t
+P ) without requiring the covariance counterpart of 
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(3.39) given in Shumway (1982).  Now the smoothed estimates of (2)ˆ s
ty  and their 

uncertainty , (2)y s
tP  are available for EM. 

 

 SYSTEM PARAMETER ESTIMATION 

3.3.1 Expectation Maximization 

I seek an estimate of the unknown state through time given a set of noisy 

observations and the state space model ((3.20) and (3.21)) containing a set of time-static 

parameters.  Inference on the unknown state can then be accomplished via the ColKF/S.  

I denote the state space parameters as 0 0Θ { , , , , , , }= s nA A C Q R μ Σ , with μ0 and Σ0 the 

initial mean and noise covariance of x0, respectively.  The time subscripts of Θ elements 

have now been suppressed to emphasize that parameter estimates will be static in time 

although their specific form varies with missing observations as seen in Section 3.2.6.  I 

use the “complete data” density to describe the joint density of the observations and the 

unknown state as if both were available (i.e. if the unknown state were known; Shumway 

2006; Cressie 2014): 

1: 1: 1: 1:

1: 1: 1 1: 1 1: 1
1 1

( , , ) ( , | ) ( )

( | , ) ( | , ) ( )

N N N N

N N

t t t t
t t

f X Z f X Z f

f X X f Z X f− − −
= =

Θ = Θ Θ =

 
Θ Θ Θ 

 
∏ ∏



 (3.46) 

where the backshifted state space model and ColKF/S recursions provide the mean and 

covariance of 1: 1:( , | )N Nf X Z Θ .  I infer Θ using EM by minimizing the likelihood of 

(3.46) alternating between “Expectation” and “Maximization” steps in a series of 
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iterations (Dempster 1977; Shumway 2006) using constraints to enforce ColKF/S 

structure on the solution (Wu 1996; McLaughlin 1997).   

Following Cressie (2014) and using our ColKF/S, I write the negative twice log-

likelihood (up to a constant) of (3.46): 

1: 1: 1: 1:
1

0 0 0 0 0 0
2

(Θ | , ) 2 ln (Θ | , )

ln ( ) ( ) ln ( ) ( )

z N N N N
N

Z Z Z Z
t

L X Z f X Z
−

− −

=

≡ − =

+ − − + + − −∑1 T 1 T
y x y xΣ x μ Σ x μ M z A z M z A z



 (3.47) 

where the third RHS term follows the form ( ) ~ (0, )Z ZN−y xz A z M :  

1

1

~ , .
( )

t tt

t tt

N+

+

         
 − =                        

T T s n

T T T n n T n

x wD x D A 0 Q S
0y uL y L H L A S R

 (3.48) 

Recall that = −s nH CA A C , =n TS QC  and = +n TR CQC R  whereas 1t+
TD x  and 1t+

TL y

denote leading values (i.e. xt  and 1 2[ ]n
t t ty y y T

 ) of the multi-lag vectors.  To arrive 

at (3.48), I augment the state vector with the entire observation vector as was done for 

missing values in (3.41).  This augmented system is then re-arranged to produce (3.48).  

I now take the expectation of (3.47) conditioned on an estimate of Θ at iteration j  

(i.e. Θ̂ j ): 

{ }
{ }

1: 1: 1:

1
0 0 0 0 0 0 0

1

ˆ ˆ(Θ | Θ ) { (Θ | , ) | ,Θ }

ln tr ( )( )

( 3) ln tr .

j j j
Z z N N N

s

Z Z Z Z Z Z

E L X Z Z

N

−

−

Λ ≡ =

 + + − − + 

 − + − − + 

T

-1 T T T
yy xy xy xx

Σ Σ P x μ x μ

M M Z Z A A Z A Z A



  (3.49) 
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where, 

1

1

.
s s
t t

t t

+

+

   
= =   
      

y x

x x
z z

y y  (3.50) 

and,  

( )
1

2

1 ,
3

N

tN

−

=

= +
− ∑ T z

yy y y yyZ z z P  (3.51) 

( )
1

2

1 ,
3

N

tN

−

=

= +
− ∑ T z

xy x y xyZ z z P  (3.52) 

( )
1

2

1 .
3

N

tN

−

=

= +
− ∑ T z

xx x x xxZ z z P  (3.53) 

If ty is missing, it is replaced by the corresponding ˆ s
ty  value obtained from the 

augmented smoother state, s
t
+x .  The z

yyP , z
xyP , and z

xxP  matrices are constructed from 

the appropriate elements of s
t
+P and , 1

s
t t
+
−P , of which those corresponding to ˆ s

ty will be 

non-zero.  Computation of (3.51)-(3.53) culminates the “Expectation” step. 

In the “Maximization” step, I seek to minimize j
ZΛ  with respect to Θ using the 

results of (3.51)-(3.53), which will provide an updated parameter estimate ( 1Θ̂ j+ ).  This is 

accomplished by taking the derivatives of (3.49) with respect to Θ, setting them equal to 

zero, and solving for Θ.  An efficient analytical solution is available if I solve for AZ and 
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MZ rather than directly solving for Θ.  Using Shuur complements of

( ) ~ (0, )Z ZN−y xz A z M , the minimizing solution is (Gibson 2005): 

1 ,j+ −= 1
Z xy xxA Z Z  (3.54) 

1 ,j+ −= − 1 T
Z yy xy xx xyM Z Z Z Z  (3.55) 

with 0 0= sμ x  and 1
0 2

1
3

N s
ttN

−

=
=

− ∑Σ P following Shumway (2006).  However, this 

solution is incomplete, because AZ and MZ depend on combinations of certain Θ 

elements I wish to estimate. 

The dependence problem can be overcome using a Generalized EM (McLaughlin 

1997) with constraints whereby a solution is found for a partition of S ZΘ {Θ ,Θ }= , where

Θ { , , }S =
nA C R , and then ΘS is held constant to obtain Θ { , }Z =

sA Q .  Generalized EM 

allows each EM iteration to be broken into sub-steps provided each sub-step 

incrementally increases the likelihood (McLaughlin 1997). To obtain ΘS I re-arrange 

(3.14) to isolate the leading observations ( 1t+
TL y ) and use the results to rewrite (3.48) in 

the form ( ) ~ (0, )S SN−y xs A s M : 

[ ] ( )1 1 ,
t

t t t

t

N+ +

 
 

   − − =    
 
 

T n n T

y
L y A C A C D x v ~ 0,R

x
 (3.56) 

where,  
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1 1 ,
t

s
t t

s
t

+ +

 
 

 = =   
 
 

T T
y x

y
s L y s D x

x
 (3.57) 

which replaces (3.50).  I re-formulate the likelihood in (3.47) using (3.56) to obtain LS 

and apply the corresponding Expectation ((3.49) and (3.51)-(3.53)) and Maximization 

((3.54) and (3.55)) steps to obtain 1j
S
+A  and 1j

S
+M .  To yield 1Θ̂ j

S
+ , constraints are applied 

to 1j
S
+A enforcing the structure given in (3.56).  Then to get 1Θ̂ j

Z
+ , I apply constraints to fix 

the elements of 1j
Z
+A  associated with ΘS.  I now collectively have an estimate for 

1 1 1ˆ ˆ ˆΘ {Θ ,Θ }j j j
S Z

+ + +=  consistent with the ColKF/S state space structure.  EM iterations 

begin with a set of starting values ( 0Θ̂ ) and proceed until the likelihood (LZ) decreases 

less than a specified tolerance in subsequent iterations.  

In addition to the above required constraints, I allow several optional constraints 

to further condition the solution for 1Θ̂ j+ .  I constrain An to be block diagonal, such that 

the Markov error model for each observation series does not interact with the other series, 

although I allow for off diagonal elements of the R matrix.  All covariance matrices by 

definition must be symmetric and positive-definite which is ensured after every iteration 

by computing the Cholesky decomposition and reforming the matrix.  Although rarely 

occurring in our experience, EM iterations are immediately terminated if the symmetric 

positive-definite constraint is violated; however, this possibility could be addressed in the 

future using a square-root filter as in Gibson (2005).  It may also be desirable in some 

situations to hold C constant.  I may additionally wish to enforce a specific structure, 
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such as ARMA or ARFIMA (see Section 3.4.1), on the π elements of An and As (see 

Section 3.2.3). 

3.3.2 Matrix Constraints 

Constraints on the EM solution are required to enforce the ColKF/S structure on and 

condition the Θ estimates.  Wu (1996) provide formula for constraining of the AZ and AS 

matrices (henceforth denoted A{Z,S}) in (3.48) and (3.56). Linear constraints are defined 

as: 

{ , }( ) ,Z Svec =F A Ψ  (3.58) 

where Ψ is a 1×c vector of constraint constants, F is a lc×  selection matrix of ones and 

zeros, and the )(•vec  operator stacks the columns of A{Z,S} on top of one another to make a 

long vector of length 1×l .  This form can handle additive and equality constraints, but I 

also require non-linear constraints to implement EM for the Colored Noise KF/S. 

I generalize Wu’s (1996) results to non-linear constraints defined as: 

{ , }( ) ( )Z Svec =F θ A Ψ  (3.59) 

where ∈θ Θ  and  F(θ) is a non-linear function.  Adopting results from Rodgers (2000), I 

apply Gauss-Newton for the problem of finding function zeros.  I define Fi as a lc×

matrix of derivatives with thg row corresponding to the thg  constraint: 
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See Appendix B for derivation and example.  Constraints can then be iteratively applied 

using: 

( )1 1
{ , },( 1) { , },( )( ) ( ) ,j j

Z S i Z S i i i i ivec vec
−+ +

+ = +Ω Ω ∆
1T TA A F F F  (3.61) 

1
{ , },( )( ),j

i i Z S ivec +∆ = −Ψ F A  (3.62) 

1
{ , } ,j

Z S
+ −Ω = ⊗ 1

xxM Z  (3.63) 

where i  represents the constraint iteration, j is the EM iteration,⊗ is the Kronecker 

Delta, and subscript S interchanges with Z based on whether AS from (3.56) or AZ from 

(3.48) is constrained.  If constraining AZ from (3.48), iterations begin with AZ and ZXX 

then proceed until the largest deviation of 1
,( 1)max ( )j

i Z ivec +
+ −F A Ψ  is within a specific 

small tolerance.  Convergence is rapid since the method is quasi-Newton.  In the case of 

linear constraints, (3.60) reduces to a selection matrix as in (3.58) and the method 

converges after a single iteration. 

3.3.3 Discussion on Numerics and Model Selection 

Application of constraints is discretionary with several possible options and 

configurations.  The user must specify process and error structure and how many p and 

k lags to include in the system.  If more lags are specified than effectively exist, the EM 
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solution may be degraded by overfitting, especially if observation series are relatively 

short and/or contain outliers.  Although optimality is difficult to achieve with real data, a 

well-specified system will ensure robust and near-optimal estimates.  Poor EM solutions 

indicate either poorly specified system, too few observations, or a combination of both.  

Additionally some parameters are non-identifiable or poorly conditioned in certain 

portions of parameter space.  For example, one can readily see from (3.15) that C is 

unidentifiable if As and An share identical AR poles (see Section 3.2.2).  In this case EM 

still gives a sensible solution, but C estimates will plateau once As and An poles converge 

and generally will not reach their true values.  I will revisit some of these issues with 

numerical simulations (See Section 3.5).   While a detailed treatment of model selection 

is outside the scope of this letter, users should remain attentive to the possibility of an 

overfit or a mis-specified system or error models when designing the system 

configuration.      

 

 EXTENDED MODELS 

3.4.1 Long Memory Processes 

Hydrologic time-series have been forefront in the study of long-memory and 

therefore soil moisture time-series likely contain long-memory dynamics.  In a classic 

study, Hurst (1951) originally discovered long-memory persistence for reservoir level 

time-series data.  Later, Hosking (1984) introduced the concept of fractional differencing 

to model Nile river flow datasets.  Like reservoir and river level datasets, soil moisture 

may contain long-memory dynamics, perhaps relating to a multi-season or multi-year 
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response to long-term dry or wet periods.  Such patterns might therefore be a useful 

indicator of drought persistence. 

In fractional differencing, time-persistence depends on a differencing parameter (

d , where 0.5d <  for stationary process).   This process can be approximated by an 

AR(∞) model truncated after L lags with coefficients (πl; Palma 2007; Palma & Chan 

1997): 

min( , ) min( , )

1 1
0,1, ,

p k q l

j j k j k j l j l
k l

j Lπ φ ϕ φ θ θ π− −
= =

= + + − =∑ ∑   (3.64) 

( ) 0,1, ,
( 1) ( )j

j d j
j d

φ Γ −
= = ∞
Γ + Γ −

  (3.65) 

where ( 1) ( )x x xΓ + = Γ  is the gamma function (Shumway 2006).  The coefficients in 

(3.64) define an all-pole (AR(L)) approximation for an AR Fractionally Integrated 

Moving Average (ARFIMA(p, d, q)) model with fractional difference, AR(p), and MA(q) 

coefficients d, ϕk, and θl, respectively.  Although the AR(L) coefficients can be estimated 

with EM, d would generally require a quasi-Newton step, because the AR(L) coefficients 

are a non-linear function of d (McLaughlin 1997).  However, quasi-Newton becomes 

computationally demanding because L should be large (say 30-100 lags) for a good 

approximation, increasing the state dimension (Palma 2007; Grassi 2014).  Since d 

imposes a non-linear constraint on EM’s AR(L) solution, as an alternative I can estimate 

d  efficiently using the constrained EM without computing filter partial derivatives. 
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 To implement constrained EM for an ARFIMA model I must write AR(L) 

coefficients as in (3.64) and take the gradient of  π  with respect to the ARFIMA model 

parameters: 

1 2 ( , , )( , , ) ( , , ), , ,
( , , ) ( , , ) ( , , )

j k lk l k l
i

k l k l k l

dd d
d d d

π ϕ θπ ϕ θ π ϕ θ
ϕ θ ϕ θ ϕ θ

∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

π 

 (3.66) 

where i represents the constraint iteration.  I then augment AZ, MZ, and ZXX from (3.61)-

(3.63) as follows: 
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Where ˆ iπ  is the portion of AZ containing the AR(L) coefficients (see Appendix A). 

Constraint iterations then proceed to update #
ZA  as before, while #

xxZ is now also updated 

for each iteration.  If ARFIMA observation errors are desired, then Z replaced by S in 

(3.67).  This method amounts to fitting the ARFIMA model to the AR(L) coefficients 

from the EM solution using a quasi-maximum-likelihood approach (Beran 1995).  For 

our purposes, constraining AR(L) with the ARFIMA model desirably dampens random 

variations at long lags typically occurring in noisy observations.  These variations 

decrease the likelihood, but do not necessarily result in more accurate state estimates – an 

indication of over-fitting guarded against by applying the ARFIMA constraints. 
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3.4.2 Observations with Mixed Markov and Time-Uncorrelated Noise 

Soil moisture data series potentially contain additional time-uncorrelated noise, 

which is added to, but not integrated through the Markov noise process described by 

(3.3).  For remotely-sensed soil moisture this originates from sensor noise among other 

physical factors and may be amplified or attenuated by the numerical retrieval algorithm 

required to convert electromagnetic quantities to soil moisture.  To accommodate such a 

situation, I provide an alternative observation model: 

t t t t t= + +y C x η q  (3.69) 

Where qt is additional white noise, which is not integrated with ηt at each time-step and 

applied to individual observation series.  The white noise source in (3.69) contaminates a 

back-shifted observation with a non-white, moving average term, 1t t t−− nq A q .  Rather 

than use the contaminated back-shifted observation, I must now augment the state vector 

and associated system matrices with the observation’s AR error (ηt): 

(12)
1* * * *

(3) (3) (3)(3) (3)1

00 0
, , , 0 { }0 1

t
t

t t tE
−

−

      
= = = =      
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T T

A v v q v
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Where superscripts (3) and (12) indicates the augmented and non-augmented portions of 

the observation vector.  Missing value estimation then proceeds as usual by substituting  
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*
1t−x  for xt−1 in (3.41) and making the corresponding substitutions in (3.43).  The EM 

“Constrain” step then requires minor modifications to enforce the structure of (3.70) and 

(3.71).  

3.4.3 Least-Squares Method for Estimating System Parameters When the State is 

Available 

To evaluate the EM method in practical applications, I need an independent 

means of estimating system parameters when benchmark data of the hidden process are 

available.  Such a method could also have value for exploratory data analysis to better 

understand observation error structure for more effectively implementing EM.  Although 

these estimates could technically be accomplished with EM, they would suffer from the 

same numerical and implementation biases.  Instead I rely on a sub-space system 

identification method called “Balanced Stochastic” (StochBal for short, Katayama 2007).  

The StochBal method decomposes a collection of time-series into their innovations by 

means of orthogonal states, the number of which ranges from one to n depending on how 

many observations contain red-noise error (or equivalently, how many underlying non-

white states are observed).  For the observation series (y), these innovations will be 

asymptotically equivalent to the ColKF/S innovations given in (3.22) because KF 

systems have many equivalent forms (Anderson 1979).  I likewise generate the 

benchmark data innovations (ut) and from these compute C and R: 

1, {[ ][ ] }t t t tE−= = − −T TC ε u R ε Cu ε Cu  (3.72) 
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Where u and ε contain the entire collection of innovations through time and have 

respective dimensions N × m and N × n (denoted by lack of subscripts).  Missing values 

are omitted from the rows of y.  Details of StochBal and associated MATLAB code can 

be found in Katayama (2005).   To estimate AR coefficients ( π̂ ) for As and An I form 

the Hankel matrix, { }1: 2: 1 :, , ,N L N L L N− − −=X x x x and { }E= T
xZ XX , computing the 

expectation using only non-missing pairs.  This matrix can be partitioned and used to take 

the conditional expectation for π̂  as follows: 

1,1: 2: 1, 2: 1ˆ N L N L N L
−

− − − − −= 1π Z Z  (3.73) 

Where subscript 1: N L− collects all matrix elements corresponding to times ranging 

from t = 1 to t = N − L.  I will test the control methods using simulation in Section 3.5; 

however, to allow more space for the EM simulation results (the primary focus of this 

letter) I show only a subset of the results concerning this method. This estimation method 

is applied to real soil moisture data in Chapter 4.   

 

 SIMULATION STUDY 

3.5.1 Simulation Objectives 

Several factors can affect performance of the derived methods in operational 

situations with real datasets.  First, some parameters may not be identifiable in certain 

regions of parameter space.  Second, EM convergence may be slow or converge to a local 

minimum when given certain starting values.  Third, real data may have noise or process 
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structure which violate underlying assumptions, including non-random missing data gaps 

or non-Gaussian noise.  Fourth, the overall structure may be correct but the model is 

over-fit (for example: considering too many lags, etc.).  Fifth, the observation sampling 

or information content may be insufficient (e.g. time series too short, too noisy, or too 

many missing values) to give stable estimates of the underlying system.  In operational 

cases, these five factors interact to degrade the optimality of EM parameter and ColKF/S 

state estimates.  Simulation experiments with known, “True” generating processes and 

parameters help to verify expected algorithm behavior and inform real data application.  I 

perform numerical simulations to (i) ensure the method gives reasonable results for basic 

scenarios when all assumptions are met, (ii) investigate how method responds when 

parameters are not identifiable and, (iii) test method for scenarios where assumptions 

violated to a degree likely encountered with real data. 

3.5.2 Simulation Experimental Methods 

I run several (i.e. 14) simulation experiments to test the EM method under various 

system configuration cases (Table 3.3).  Simulation cases are assigned a code based on 

their configuration.  Codes indicate whether a simulation assumes AR, AR plus white 

noise, or ARFIMA (fractionally-differenced) process and/or errors (‘R’, ‘W’, or ‘F’, 

respectively), and whether a simulation contains missing values and/or non-Gaussian 

innovations (‘M’ or ‘G’, respectively).  The basic AR process and AR noise (‘RR’) 

configurations also have a number code (‘1’ to ‘4’) specifying that the base configuration 

was applied to simulated data to test robustness against mis-specified assumptions or 

differing system parameter values.   RR1 is the basic RR configuration with p = 1 and   

k1,2,3 = 1 for both true and estimation systems.  For RR2, the true parameters 1,2,3
1
nφ  are all 
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assigned a value of 0.9 (equal to 1
dφ ) to test how C parameters respond when process and 

noise share poles.  For RR3, the RR configuration with k3 = 10 uses the true system from 

the RW case, to test how robust the basic configuration is to additional white noise, 

which includes a moving average component requiring additional AR k lags to 

approximate.  Note that for RR3, r33 actually represents 3 2
33 ( )n

wr σ+ , with 

3 2 (3) (3)( ) { }n
w t tEσ = Tv v  because RR does not separate AR and white noise components.  For 

RR4, the true system generated from FF and estimation system assigned p = 30 and  k1,2,3 

= 30 to test potential over-fitting in the presence of long-memory process and noise. 

For each case, I randomly generate 30 realizations of the hidden process and 

observation series with specified (“true”) system parameters each with 1460 time-steps 

representing four years of daily soil moisture estimates.  All simulations were conducted 

using MATLAB ® R2011b on a Linux compute server with 16 Intel® Xenon Sandy 

Bridge cores with 64 GB total memory.  The EM method was allowed to iterate until the 

likelihood decreased by < 0.01 in subsequent iterations or reached a maximum number of 

100 iterations (which never occurred here).  For ‘M’ cases, I generate missing value gap 

lengths with a Poisson distribution (mean parameter, λ = 1) and assigned these gaps to y3 

time indices with uniform probability, resulting in 30-35 % missing values in the record.  

This simulates typical remote-sensing soil moisture observation gaps.  Deterministic gaps 

were also applied to all observations y1,2,3 for specified intervals.  This simulates the 

effect of missing winter-time soil moisture time-series when soils are frozen (and 

therefore not measurable).  For ‘G’ cases, non-Gaussian noise was generated using an 

exponential distribution (mean parameter, 0.1) to mimic a specified number of rain-
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wetting events (292 or 20 % of time record), this noise was multiplied by 40 and added to 

the Gaussian noise with variance 0.5.  Similarly generated non-Gaussian noise was also 

assigned to 30 % of the observation series innovations with uniform probability to 

simulate observation errors. All innovations and/or noise were given pre-specified 

covariance using their covariance Cholesky decomposition (Shumway 2006).  These 

missing value and non-Gaussian generation methods provide time series which 

qualitatively match soil moisture observation characteristics (See Section 3.5.2).  

For each realization, I apply the EM and SS control methods to estimate the 

system parameters and compare these with the true values.  I compare EM-ColKF/S state 

estimates to the true hidden state and two alternative estimates of the hidden state, which 

include ColKF/S run with the true parameter values (as an upper performance bound) and 

a simple average of all the observations for each time (as a lower performance bound).  In 

terms of correlation with the true hidden state, the EM and ColKF/S performance should 

always match or beat the most skilled observation or the simple average of all 

observations, whichever is greater. 

3.5.3 Colored Noise Filter/Smoother Performance 

 I find favorable EM-calibrated ColKF/S performance for all 14 site test cases 

(Figure 3.2).  Median correlations across realizations consistently meet performance 

criteria by matching or beating the most skilled observation or the simple average of all 

observations, whichever is greater, within median confidence bounds.  Non-Gaussian 

cases have no perceptible impact on smoother skill for either RR{M,G} or FF{M,G} 

cases. Missing values degrade smoother skill somewhat (0.94 to 0.93) for RRM, but have 
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less impact in FFM cases.  EM-ColKF/S correlations remain within 0.1 of the ColKF/S 

with perfect parameters in all cases but RRM and RR2 (Figure 3.2).  The RR2 case 

represents the least-favorable performance, with correlation falling to 0.76 (vs. 0.8 for 

perfect ColKF/S) – nevertheless, the value remains on par with the simple average (0.77) 

and within median 95% confidence bounds (± 0.02).  These results indicate that the EM-

ColKF/S method remains robust to missing values and non-Gaussian innovations, but 

encounters difficulty when noise and processes share poles (as for RR2). 

    Characteristics of the simulated datasets, particularly the RRG, RW, and FFM 

series, resemble real soil moisture data from a Lethbridge, Alberta, Canada pasture site 

(Figure 3.3).  The Lethbridge data were de-trended and cyclic components were removed 

from each observation.  The benchmark “true” process for this dataset is from Time 

Domain Reflectometry (TDR) probe in situ measurements and “observations” are from 

the Modern Era Retrospective Reanalysis (MERRA; model reanalysis), Advanced 

Scanning Microwave Radiometer (AMSR-E; satellite), and another model driven with 

satellite-based precipitation and evapotranspiration estimates (See Chapter 4).  An 

associated example time-series of EM-ColKF/S state error covariance (from the RM 

case) shows response to missing observations (Figure 3.3 and Figure 3.4, respectively).  

For longer gaps, error covariances plateau to a steady value at a rate dependent on the 

overall system time-response, determined by hidden and error process AR memory 

length.  Smoother error covariances are symmetric across each gap because the smoother 

draw upon both upstream and downstream information for estimates along the gap’s 

edges.  
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3.5.4 Expectation Maximization Performance for AR Process 

EM recovers system scaling (C) and covariance (Q and R, including off-diagonal 

elements) parameters for AR error test cases (Table 3.4).  Realization mean C estimates 

are typically within ± 0.1 ranging up to ± 0.3 of the true values.  Realization mean 

covariances typically fall within 0.3 of the true values for the RR, RRM, and RRG cases 

(excluding RR2), but range up to ± 1.6 for many other cases (Figure 3.5).  Missing values 

increase parameter variability by a factor of ≈ 2 (Figure 3.6), whereas non-Gaussian 

innovations have little impact on parameter variability (Table 3.4).  RR2 overestimates c2 

by 0.28±0.02, while under-estimating r22 by -1.58 ± 0.07, with similar bias for the 

associated off-diagonal elements (Table 3.7).  FFM and FF2 are also notable exceptions, 

with all elements of C overestimated by 0.13-0.18 (± 0.17) for FFM and c2 overestimated 

by 0.28±0.02.  For FFM, the diagonal elements of R are also underestimated by ≈-1.0 and 

Q is under-estimated by -0.8 (Table 3.4).  Taken together these results indicate (i) non-

Gaussian innovations have little impact on C, Q, and R, (ii) missing values increase 

estimate variability, which is likely related to the decreased sample size, and (iii) biases 

occur for long-memory systems with missing-values (FFM) and when errors share poles 

with the hidden process (RR2).  

EM generally recovers underlying hidden process and error AR (ϕ) and fractional-

differencing (d) coefficients (Table 3.5 and Figure 5.5-Figure 5.7).  The ϕ coefficients are 

accurately recovered (within ± 0.01-0.02) for most cases, including the RR2 case which 

had biased C, Q, and R estimates. Biases increased somewhat for FFM (up to ±0.06).  

Missing values and non-Gaussian innovations have a similar impact on ϕ and d 

variability as for C, Q, and R estimates.  Although mean values for the d parameter fall 
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relatively close to the true values (except for FFM), the variability of the dn estimates 

across realizations is quite high (>0.1) when ARFIMA errors are present (FF, FFM, and 

FFG), whereas dd variability remains smaller.  These results are comparable to other 

state-space-based ARFIMA fitting methods tested in Grassi (2014).   For FFM, the dn 

estimates are indistinguishable amongst the three observations, indicating they are not 

well identified.  Taken together these results suggest (i) ϕ and d can be accurately 

identified even when scaling and covariance parameters are biased and (ii) that ϕ and 

especially d lose accuracy when ARFIMA errors and missing values are present, 

suggesting that increased sampling is needed to obtain accurate parameter estimates. 

3.5.5 Expectation Maximization Performance for AR+W Process 

 The AR+W error cases give similar performance to the AR cases discussed in 

Section 3.5.4; however, I find that the AR+W configuration results in substantially less 

accurate estimates of r33 relative to the AR-only cases (Table 3.6).  This discrepancy 

relates to the high noise level assigned to white noise variance ( 3 2( )n
wσ ) and associated 

loss of predictive power for estimating embedded AR error process in white noise.  I also 

find that dd is substantially underestimated when missing values and non-Gaussian 

innovations are present (Table 3.7).  In preliminary investigations, I found the AR+W 

configuration requires more careful initial value selection relative to AR-only cases.  If 

the q, 3
1
nφ , and r33 initial parameters are set substantially below their true values 

(compare initial values for Table 3.4 and Table 3.5 with Table 3.6 and Table 3.7), 

convergence proceeds very slowly.  Therefore, initial values should be selected well 

above anticipated values at convergence. 
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3.5.6 Comparison of AR+W and ARFIMA Cases with AR-only Configuration 

 Since the ARFIMA (i.e. FF cases) and AR+W (i.e. RW) modifications increase 

algorithm complexity, and results indicate associated reduced robustness, I wondered 

how well the basic AR-only configurations (i.e. RR cases) would perform when mis-

applied to such situations.  To investigate I ran the RR3 and RR4 configurations on 

realizations generated for respective FF and RW cases.  In the RR3 case, estimated π have 

higher variability at long lags relative to the FF solution (Figure 3.8).  In Figure 3.8a, I 

see that solving for π at all lags (as in RR3) can lead to apparent model over-fitting where 

noise disproportionately affects individual π coefficients at longer lags.  However, Figure 

3.8b shows that application of ARFIMA constraints (as in Eqn. (3.64)) effectively 

dampens the variability at longer lags leading to a more stable solution.   Though the 

ColKF/S state skill improvement observed here were insignificant, Pearson correlation of 

0.974 ± 0.0027 for FF vs. 0.973 ± 0.0028 for RR3, the difference could become more 

crucial with more-biased and noisier real datasets. 

 In the RR4 case, estimated π have lower values, but persist to longer lag relative 

to the RW solution (Figure 3.9) and RR4 substantially overestimates 3 2
33 ( )n

wr σ+   (Table 

3.6).  Using (3.3), (3.14), and (3.69), I see that application of the RR4 configuration to 

AR+W noise gives additional moving average noise of the form 1t t t−− nq A q , requiring 

additional π  lags to approximate. Though the ColKF/S state skill improvement is also 

insignificant, Pearson correlation of 0.924 ± 0.0079 for RW vs. 0.921 ± 0.0082 for RR4, 

the improvement may be greater for noisier real datasets.  The two situations presented 



 104 

here (i.e. RR4 vs. RW and RR3 vs. FF) underscore the importance of model selection in 

effective application of the EM-ColKF/S with real datasets. 

 

 CONCLUSION 

I have presented an EM method to calibrate a ColKF/S, motivated by the 

application of jointly merging and characterizing error of multiple global soil moisture 

datasets.  In addition to the basic ColKF/S with AR process and errors, I also address the 

possibility of long-memory and additional white noise error terms.  Our methods build 

upon previous work developing the ColKF/S (Bryson 1967) and EM methods for KF/S 

maximum likelihood estimation (Shumway 1982; Wu 1996; Gibson 2005).  I test the 

EM-ColKF/S with a set of test case simulations, designed to mimic specific 

characteristics of soil moisture time-series.   

I find the method capable of recovering system parameters in nearly all cases and 

in particular it remains robust for non-Gaussian innovations.  However, estimates 

underperform when process and noise share poles, when long-memory processes have 

missing values, and when white noise and AR bias are jointly present.  Nevertheless, I 

show that the long-memory and AR plus white noise modifications add additional value 

over the basic AR configuration.  These results underscore the importance of model 

selection when applying the EM-ColKF/S methods.  In all test cases, the EM-ColKF/S 

state estimates meet or exceed the skill of the most skilled observation or the observation 

average series, whichever is greater – and therefore meet our fundamental performance 

criteria.  I direct interested readers to Jones (2015) where I apply the EM-ColKF/S 
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method to real soil moisture observation datasets.  Aside from soil moisture, the AR 

methods presented here apply to a wide range of structure time-series models and I 

suspect the EM-ColKF/S may be useful for a wide variety of other fields with redundant, 

observations prone to bias, noise, and missing data.   
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APPENDIX 

Appendix A.  Multi-lag Vector AR State Space Representation 

From Section 3.2.3 the multi-lag structure for backshifted observations (Section 3.2.2) 

requires the following { }n

j
k j n×∑  leading-observation selection matrix, L: 
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The multi-lag observation model is as follows: 
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Appendix B. Nonlinear Constraint Example  

Consider a non-linear constraint arising from (3.48):  

( ) ( ) ( )S S S− − =n nA A A C A A C 0 , (B3.1) 

where ( )S •A  is the partition of AS in terms of a specified parameter.  The Taylor 

expansion of (B3.1), using the chain rule is: 
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( ) ( ) ( ) .S S
S S S

∂ ∂
+ − − =

∂ ∂
n n

n

A AA C A A A A C 0
A C

 (B3.2) 

Which can be written as, 

( )i Svec =F A 0 , (B3.3) 

where Fi is a matrix of partial derivatives as given in (3.60). 
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TABLES 

Table 3.1: State space model partitions for all possible missing value cases. 
 

Case Missing yt? Missing yt−1 ? State Space Eqns. 
1 NO NO (3.20) & (3.21)  
2 YES NO (3.41) & (3.42)  
3 YES YES (3.41) & (3.42)  
4 NO X (3.41) & (3.44)  

 

Table 3.2: System matrix modifications for missing values.  If one or more observations 
are missing, the augmented state will have three partitions: the hidden process, the non-
missing observations (denoted with subscript “(1)”), and the missing observations 
(denoted with subscript “(2)”) following Shumway (2006).  For yt, only the leading 
observations must be missing, but if any lags of 1t−y are missing the entire vector is 

considered missing (Note: t t= Ty L y ). 
 

Missing  
Lag  Augmented System Matrix Format 
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Table 3.3: Test cases for simulations and estimates.  Case code characters describe 
simulation and estimate model structure for each experiment.  Signal models for hidden 
processes denoted ‘R’ for AR or ‘F’ for ARFIMA.  Noise models for observation noise 
can additionally include ‘W’ for AR plus white noise.  Cases with missing values denoted 
by ‘M’ and cases with non-Gaussian innovations with ‘G’.  Appended numbers indicate 
use of a ‘RR’ configuration for estimation of simulated data from another case (RR3 and 
RR4) or for differing parameter set (RR2). 
 

Case Code Signal Noise Missing Non-Gaussian 
RR{1,2,3,4} AR AR - - 
RRM AR AR X - 
RRG AR AR - X 
FR ARFIMA AR - - 
FRMG ARFIMA AR X X 
FF ARFIMA ARFIMA - - 
FFM ARFIMA ARFIMA X - 
FFG ARFIMA ARFIMA - X 
RW AR AR+W - - 
FW ARFIMA AR+W - - 
FWMG ARFIMA AR+W X X 
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Table 3.4: EM estimation results for scaling and covariance parameters.  Shown are 
mean (standard deviations) for 30 realizations of each test case (RR4, RW, FW, and 
FWMG shown in Table 3.6).  See Table 3.2 for test case summaries.  Control results 
from Figure 3.5-Figure 3.7 omitted for brevity. 
 

Parameter c1 c2 c3 q r11 r22 r33 r12 r13 r23 
True 
Values 1 0.7 1.5 3 4 6 9 2 -1 0 

Initial 
Values 1 1 1 2  5 5 5 0 0 0 

RR1 0.98 0.70 1.45 3.11 3.96 5.90 9.21 1.93 -0.94 -0.03 
(0.04) (0.04) (0.04) (0.13) (0.25) (0.20) (0.45) (0.17) (0.20) (0.29) 

RR2 0.97 0.98 1.40 3.15 4.00 4.42 9.54 1.09 -0.80 -1.18 
(0.01) (0.02) (0.03) (0.06) (0.07) (0.07) (0.22) (0.06) (0.05) (0.05) 

RRM 0.98 0.72 1.46 3.06 3.97 5.83 9.26 1.92 -1.02 -0.27 
(0.07) (0.07) (0.09) (0.23) (0.44) (0.46) (1.14) (0.40) (0.40) (0.52) 

RRG 0.98 0.69 1.47 3.14 3.95 5.91 9.02 1.94 -1.04 -0.07 
(0.04) (0.05) (0.04) (0.20) (0.23) (0.25) (0.67) (0.22) (0.23) (0.28) 

FR 0.98 0.68 1.46 3.36 3.68 5.79 8.79 1.80 -1.23 -0.12 
(0.02) (0.01) (0.02) (0.13) (0.15) (0.15) (0.28) (0.09) (0.10) (0.17) 

FRMG 0.97 0.69 1.42 3.22 3.75 5.26 8.30 1.69 -1.00 -0.39 
(0.04) (0.03) (0.05) (0.54) (1.16) (1.56) (2.68) (0.66) (0.75) (0.44) 

FF 1.10 0.78 1.61 2.73 3.33 5.35 8.14 1.54 -1.35 -0.35 
(0.04) (0.04) (0.07) (0.15) (0.17) (0.20) (0.46) (0.16) (0.09) (0.21) 

RR3 1.00 0.75 1.48 2.99 3.46 5.23 7.96 1.53 -1.22 -0.45 
(0.03) (0.04) (0.06) (0.11) (0.15) (0.23) (0.39) (0.17) (0.15) (0.26) 

FFM 1.18 0.83 1.65 2.20 2.94 4.72 7.65 1.34 -1.04 -0.19 
(0.14) (0.11) (0.17) (0.41) (0.40) (0.36) (0.83) (0.34) (0.33) (0.49) 

FFG 1.09 0.77 1.60 2.74 3.42 5.38 8.07 1.60 -1.33 -0.33 
(0.05) (0.04) (0.08) (0.19) (0.32) (0.37) (0.59) (0.19) (0.15) (0.20) 
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Table 3.5: EM estimation results for autoregressive and long-memory parameters.  
Shown are mean (standard deviations) for 30 realizations of each test case (RR4, RW, 
FW, and FWMG shown in Table 3.7).  True values for RR2 test case shown in brackets.  
RR3 omitted because ϕ1 ≠ π1 and a not estimated.  See Table 3.2 for test case summaries. 
 
Parameter 1

dφ  1
1
nφ  2

1
nφ  3

1
nφ  dd dn1  dn2  dn3 

True Values 0.9 0.8 [0.9] 0.6 [0.9] 0.4 [0.9] 0.3 0.1 0.2 0.3 

Initial Values 0.8 0  0  0  0.05 0.01 0.01 0.01 

RR1 0.90 0.80 0.60 0.41 - - - - 
(0.01) (0.02) (0.02) (0.04) - - - - 

RR2 0.90 0.89 0.90 0.89 - - - - 
(0.02) (0.01) (0.01) (0.02) - - - - 

RRM 0.90 0.79 0.58 0.40 - - - - 
(0.02) (0.03) (0.04) (0.09) - - - - 

RRG 0.90 0.80 0.60 0.42 - - - - 
(0.02) (0.02) (0.02) (0.05) - - - - 

FR 0.91 0.79 0.60 0.42 0.26 - - - 
(0.03) (0.02) (0.02) (0.04) (0.06) - - - 

FRMG 0.88 0.80 0.59 0.43 0.30 - - - 
(0.08) (0.03) (0.04) (0.12) (0.13) - - - 

FF 0.90 0.77 0.61 0.46 0.28 0.12 0.17 0.26 
(0.03) (0.10) (0.09) (0.15) (0.05) (0.10) (0.10) (0.13) 

FFM 0.89 0.64 0.56 0.44 0.32 0.25 0.21 0.26 
(0.05) (0.24) (0.13) (0.22) (0.09) (0.21) (0.12) (0.20) 

FFG 0.88 0.77 0.62 0.40 0.30 0.12 0.17 0.30 
(0.06) (0.10) (0.09) (0.13) (0.10) (0.10) (0.10) (0.12) 

 

Table 3.6: Same as Table 3.4, except shows cases with AR + W error for 3
ty .  Note that  

r33 for RR4 should be compared to 3 2
33 ( ) 9 70 79n

wr σ+ = + =  rather than 33 9r = . 
 
Parameter c1 c2 c3 q r11 r22 r33 r12 r13 r23 
True 
Values 1 0.7 1.5 3 4 6 9 2 -1 0 

Initial 
Values 1 1 1 5 5 5 15 0 0 0 

RW 0.93 0.68 1.33 3.67 3.77 5.73 12.94 1.75 -0.79 -0.23 
(0.03) (0.04) (0.11) (0.27) (0.32) (0.30) (1.22) (0.26) (0.75) (0.63) 

RR4 0.97 0.72 1.41 4.21 3.11 5.24 86.49 1.20 -1.95 -1.05 
(0.03) (0.05) (0.14) (0.27) (0.34) (0.36) (3.75) (0.28) (0.86) (0.79) 

FW 0.99 0.69 1.47 3.18 4.11 5.94 11.79 2.04 -0.50 -0.26 
(0.04) (0.03) (0.06) (0.31) (0.29) (0.17) (1.10) (0.19) (0.56) (0.59) 

FWMG 1.07 0.75 1.58 3.66 2.92 5.29 11.64 1.21 -1.38 -0.93 
(0.03) (0.02) (0.07) (0.35) (0.44) (1.04) (1.36) (0.27) (1.18) (1.13) 
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Table 3.7: Same as Table 3.5, except shows cases with AR + W error for 3
ty , with 

3 2 (3) (3)( ) { }n
w t tEσ = Tv v .  Initial values for RR4 given in Table 3.5.  RR4 does not estimate 

the 3 2( )n
wσ  parameter. 

 
Case 1

dφ  1
1
nφ  2

1
nφ  3

1
nφ  ds 3 2( )n

wσ  

True Values 0.9 0.4  0.6  0.8  0.3 70 

Initial Values 0.8 0.7  0.7  0.7  0.05 100 

RW 0.89 0.38 0.60 0.76 - 66.87 
(0.02) (0.06) (0.02) (0.04) - (2.95) 

RR4 0.81 0.39 0.60 0.17 - - 
(0.05) (0.07) (0.02) (0.02) - - 

FW 0.91 0.42 0.60 0.76 0.26 66.85 
(0.04) (0.06) (0.02) (0.03) (0.10) (3.62) 

FWMG 0.94 0.40 0.60 0.75 0.12 64.77 
(0.03) (0.09) (0.03) (0.06) (0.07) (5.76) 
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FIGURES 

Figure 3.1: Soil moisture anomaly datasets (i.e. with trend and annual cycle removed), 
(a) and (b), and relative observation anomaly errors, (c) and (d), from a pasture in 
Lethbridge, Alberta. Colored (blue, dark green, and red) lines represent a set of three 
model and remotely-sensed observations and heavy black line indicates in situ soil 
moisture (5 cm depth) from soil probes (here considered a benchmark for the ‘hidden 
process’).  Left panels, (a) and (c), show full-length time-series (four years, 2003-2006), 
whereas right panels, (b) and (d), show associated zoomed detail with extent indicated by 
left panel inset boxes. 
 
 

Figure 3.2: Comparison of Pearson correlation between simulated “hidden” process vs. 
smoother estimates with EM parameters ( ), smoother with perfect parameters ( ), 
observations ( ), and mean of observations ( ) for selected test cases.  Symbols and 
error bars (where visible) respectively represent median correlation and confidence 
intervals for 30 realizations. 
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Figure 3.3: Time-series of “hidden” process (heavy black line), smoother estimates 
(heavy light green line), and observations (thin blue, dark green, and red lines) for 
selected site test cases.  Left panels show full-length time-series, whereas right panels 
show associated expanded detail with extent indicated by left panel inset boxes (as in 
Figure 3.1). 
 

Figure 3.4: “Hidden” state (heavy black line) and missing 3
ty state (grey line) smoother 

error covariance time-series for RRM test case.  These time-series correspond with the 
RRM state shown in the uppermost panels of Figure 3.3. Panels and inset box as in 
Figure 3.3.   
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Figure 3.5: Parameter estimates for 30 realizations of RR.  Estimates are for: (a) 
observation calibration coefficients (C); (b) signal AR(1), ϕd, and observation noise 
AR(1), ϕn, coefficients; (c) signal innovation variance, Q, and observation noise 
innovation covariance (R).  True values shown with bold +, and dashed line denotes a 1:1 
relation.  Signal-related parameters shown with ( ), whereas observation-related 
parameters shown with  , , and   , for  y1, y2, and y3 , respectively, and × for all off-
diagonal elements of  R.  Mean values and standard deviations for EM given in Table 
3.4. 
 
 

Figure 3.6: Same as Figure 3.5, except observations contain missing values (i.e. test case 
RRM).   
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Figure 3.7: Same as Figure 3.5, except signal and observation noise AR processes share 
poles (i.e. test case RR2) and therefore symbols for ϕd cover those for ϕn in (b). 
 
 
 

Figure 3.8: AR coefficients (π) for approximation of ARFIMA(0.9, 0.3, 0) “hidden” 
process (xt) with ARFIMA observation noise using the (a) RR3 (AR with 30 lags) 
configuration and (b) FF (truncated ARFIMA with 30 lags) configuration.  Control 
realizations in (a) are the same as in (b), but not visible because they are effectively 
covered by EM realizations. 
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Figure 3.9: AR coefficients (π) for approximation of 3

ty single lag AR+W noise (RW) 
with 10-lag AR-only noise (RR4).  Error-bars show the range (max - min) of RW 
realizations. 
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CHAPTER 4: EVALUATING MERGED SOIL MOISTURE FOR IMPROVING 
ESTIMATES OF ECOSYSTEM RESPIRATION  

 

 INTRODUCTION 

I live in a data-rich era.  The environmental research community is currently 

awash in potentially relevant global observational or model-derived datasets, while new 

datasets of the same or similar parameters are often announced proclaiming improved or 

accuracy.  However, most user applications require a single, consistent view of the world 

with a well-defined uncertainty range, while reality more often involves multiple, often 

conflicting and disparate sources of noisy information with subjective and imprecisely 

known uncertainty.  Most users may also want to know when a new dataset is really 

better for a certain application than what was previously available – in other words, the 

value of its marginal information.  Ensemble estimates, taking the equally-weighted mean 

of several similar component datasets, usually outperforms an individual dataset on 

average over a large number of cases, because each individual dataset, however poor its 

accuracy relative to the other data, brings some useful independent information (Bohn 

2010).  However, a more optimal strategy would be to compute a weighted average of 

each dataset based on their individual trustworthiness, or more precisely their error 

covariance (Crow 2016; Kalman 1961; Kailath 2000).  Data assimilation seeks to provide 

such an estimate, but obviously the outcome depends on how well the weights are 

specified.  Standard maximum-likelihood methods (Crow 2008; Gupta 1974; Dempster 

1977), and other closely-related methods such as triple collocation (TC; Gruber 2016a; 

Scipal 2008), are available to compute the error covariance but come with limiting 

assumptions that the errors are time-uncorrelated (i.e. white noise) with zero error cross-
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correlation (i.e. diagonal error covariance matrix).  Extensions to TC have been recently 

proposed to account for these factors, but these methods still suffer from the inability to 

deal quantitatively with error cross-correlation (Pan 2015; Gruber 2016b). 

Soil moisture datasets contain auto-correlated and unknown, possibly cross-

correlated error structure, which arise partly from difficultly modeling soil moisture 

processes and mismatch between model and remote-sensing spatial support, both of 

which have been exacerbated by previous lack of satellite derived global soil moisture 

observations to constrain soil moisture models (Qiu 2014; Crow 2012).  The methods 

developed in Chapter 3 were shown to account for these error characteristics in idealized 

datasets, but questions remain about how well the method performs for real soil moisture 

datasets both in terms of error covariance estimation and merged state accuracy.   

In the case of soil moisture as a key input for ecological process modeling, the 

ultimate test of the value of a soil moisture dataset hinges on its marginal value for 

improving the ecological model application relative to other available sources of soil 

moisture information.  This incremental increase in value depends on the accuracy of the 

soil moisture dataset, its relevant independence from other competing information 

sources, and crucially, how sensitive the ecological application is to the soil moisture 

input within its typical range of variability (Entekhabi 2010).  One application of specific 

interest is modeling how ecosystem respiration CO2 release, an important component of 

the global terrestrial carbon cycle, responds to soil moisture variability.  The sensitivity 

of ecosystem respiration to soil moisture is defined as the mathematical derivative of the 

model’s effective soil moisture response function; therefore, determining this response 
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function is a critical step in evaluating the impact of soil moisture information on the 

model. 

In this chapter, I examine a case study whereby soil moisture datasets from 

different sources were merged to improve application as input into an ecosystem CO2 

respiration model.  I employed a simplified version of the joint merging and uncertainty 

estimation method described in Chapter 3 to merge three different soil moisture datasets, 

including a global atmospheric weather model driven soil moisture process model; a 

remotely-sensed rainfall-, snow-, and evapotranspiration-driven simple soil moisture 

model; and a satellite remote sensing derived soil moisture dataset.  I evaluated the 

merged soil moisture data and compared estimated uncertainties relative to in situ soil 

moisture observations from eddy covariance flux tower locations.  I then used the merged 

soil moisture dataset along with the eddy covariance CO2 flux tower observations to 

determine an empirical ecosystem respiration soil moisture response curve.  The 

incremental improvement in ecosystem respiration model fit relative to the flux tower 

observations was evaluated for various alternative soil moisture datasets representing 

incrementally increasing accuracy and information content. 

 

 METHODS 

4.2.1 Global Soil Moisture Datasets 

This study uses soil moisture data from global Modern Era Retrospective 

Reanalysis (MERRA; Rienecker 2011); two satellite microwave remote sensing based 

soil moisture datasets from the Advanced Microwave Scanning Radiometer for the Earth 
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Observing System (AMSR-E) Vrjie Amsterdam (VU) dataset (Owe 2001), and the 

University of Montana (UMT) AMSR-E land parameter dataset (Jones 2010, described in 

Chapter 2); and an observed precipitation, evapotranspiration (ET), and snowmelt model 

(PETS).  The MERRA surface soil moisture (0-5 cm depth) dataset was averaged from 3-

hourly to daily time step and resampled from 1/2° × 2/3° geographic grid to a global 25-

km Equal Area Scalable Earth Grid version 1 format (EGv1; Armstrong & Brodzik) 

using nearest-neighbor resampling to match the baseline format of the AMSR-E datasets 

(Jones 2010).  Further information on MERRA is provided in Chapter 5.  The two 

AMSR-E datasets represent daily soil moisture data obtained from satellite descending 

orbital overpass brightness temperature retrievals, while further information on the 

AMSR-E soil moisture datasets is given in in Chapter 2. 

The PETS model was developed to incorporate satellite-based precipitation and 

evapotranspiration (ET) information for estimating soil moisture.  The model uses input 

precipitation from the NOAA Center for Climate Prediction Morphing Technique 

(CMORPH; Joyce 2004), an observation-based ET dataset developed at the University of 

Montana (Zhang 2010), and daily snow depth analysis from the Canadian Meteorological 

Center (CMC; Brown & Brasnett 2010).  The CMORPH dataset merges microwave and 

infrared (IR) satellite rain rate estimates. It is important to note that these data represent 

rain rate, not rain accumulation, because such satellite observations only provide a 

“snapshot” in time.  Also, the physics of satellite microwave rain rate estimation is 

different from satellite microwave soil moisture observations; the mathematics of 

merging rain rate estimates is different from merging soil moisture observations because 

rain rates are non-Gaussian, positively-constrained, and contain much less temporal auto-
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correlation than soil moisture time series.  The CMORPH dataset was aggregated from 3-

hourly rainfall rates (mm hr-1) to daily rates from 1/4° × 1/4° geographic grid to EGv1 

using nearest neighbor resampling.  The ET dataset uses MODIS and NCEP reanalysis 

meteorological fields to estimate global ET for the period 2002-2008 and was available in 

daily 25-km EGv1 format (Zhang 2010).  The CMC snow reanalysis provides daily snow 

depth and monthly snow water equivalent information.  The PETS model separately 

integrates daily and monthly differences in water balance estimates (precipitation + 

snowmelt – ET) as input to a simple finite-impulse response (FIR; closely related to AR 

models) model.  The PETS model FIR parameters were fitted using in situ soil moisture 

measurements and the PETS water deficit data was rescaled to match the variability of 

MERRA soil moisture for every global grid cell to ensure realistic soil moisture ranges.  

Details of the PETS model logic are given in Appendix A. 

4.2.2 Flux tower Data 

 The flux tower soil moisture and ecosystem respiration (RECO) data were 

obtained from a subset of the FLUXNET La Thuile synthesis dataset (Baldocchi 2008).  

The requirement that the flux tower site data have both surface layer soil moisture and 

RECO measurements restricted suitable flux towers to 39 locations for the soil moisture 

analysis (Continental U.S., Europe, and China) and 28 locations for the RECO analysis 

(Contintental U.S. only).  I further required that flux towers have at least two years of 

available observations and restricted the RECO spatial domain to continental North 

America from 30° N - 50° N latitude (Continental US, extreme southern Canada, and 

northern Mexico). Soil moisture values reported as volumetric percent were converted to 

percent saturation by dividing by the soil porosity (assumed 50 % unless otherwise 
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noted).  Here, RECO is defined as the daily sum of autotrophic and heterotrophic 

respiration within a tower footprint (≈1-km2). It should be emphasized that flux tower 

RECO is an estimate partitioned from tower eddy covariance based net ecosystem CO2 

exchange observations and are therefore not a direct observation.  Nevertheless, these 

partitioned RECO estimates offer the best available benchmark in the absence of more 

direct observations.  Further information on the La Thuile flux tower network and flux 

partitioning is given in Chapter 5. 

4.2.3 Merging and Error Estimation Methods 

The merging and error estimation methods employed in this chapter include the 

Expectation Maximization (EM) Colored Noise Kalman Filter/Smoother (ColKF), 

Neutral Regression, and Triple Collocation (TC).  A simplified version of EM ColKF 

was used for this chapter - details of the full EM ColKF method are given in Chapter 3. 

Here the EM ColKF considers only AR(1) signal and noise processes rather than the 

generalized multi-lag system shown in Chapter 3.  Also, the EM ColKF omits missing 

values in the AMSR-E time-series by eliminating MERRA and PETS data from any lags 

from which AMSR-E data is missing, whereas missing values are properly handled using 

conditional estimation in Chapter 3.  This procedure distorts the effective auto-correlation 

parameters of the time-series by shortening time-step positions following missing time-

steps.   These simplifications were necessary because the analysis presented here was 

conducted prior to the full derivation considering multiple lags and missing values shown 

in Chapter 3.            
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The Neutral Regression method was used for evaluating spatial patterns of 

merging weights.  The Neutral Regression method is based on Mardsen (1999) and 

described in further detail in Appendix B.  The method uses a truncated singular value 

decomposition to determine the merging weights for each dataset and requires that each 

dataset is initially rescaled to match the mean and variance of a reference dataset, chosen 

to be MERRA in this case.  The method relies on a common assertion that the noise 

process of the datasets are confined to smaller eigenvalues, therefore the eigenvectors 

associated with the two smallest eigenvalues were omitted and the merging weights are 

taken as the square of the largest eigenvector.  The method is ad hoc and sub-optimal 

because it does not directly decompose the individual datasets into error, scaling, and 

signal components based on tractable statistical principles for the merging problem (i.e. 

requires a priori rescaling and error process assumed independent and identically 

distributed – a typical assumption for the singular value decomposition used in principle 

components analysis (Golub & Van Loan 1980)), and also squaring the largest 

eigenvector is not rigorously mathematically justified.  The Neutral Regression method 

was initially considered prior to development of the EM ColKF method and presented 

here for regional results because the EM ColKF has not yet been developed for large-

scale deployment, which requires further refinement and testing.  

 Triple Collocation (TC) is a method for estimating the root mean square error 

(RMSE) of individual datasets given a triplet of three datasets (Scipal 2008).  TC 

employs pairwise differences to cancel the underlying signal leaving only the relative 

error processes, the variance of which is then computed as the RMSE estimate (Appendix 

C).  Scaling factors can also be computed using an iterative procedure (Scipal 2008).  The 



 128 

central premise of TC is that the errors of each dataset are independent of the errors of the 

other datasets, and independent of the underlying signal.  These independence 

assumptions imply that the errors are white noise processes although the errors may be 

pre-whitened using recent modifications of the TC method (Zwiebeck 2012).  

4.2.4 Control Benchmark Merging Methods 

 Two control merging methods were considered to test the merging methods 

previously described.  In the first control method, the equally-weighted average of the 

three observation datasets was taken after rescaling to MERRA mean and variance (this 

was termed the “pre-filtered average,” because it was computed without further filtering 

of the data).  An optimal method should be capable of always improving upon, or at least 

matching, the pre-filtered average, or the best of the individual component datasets, 

whichever is more skillful.  The larger of these two quantities then represents the lower 

bound for an optimally-performing EM ColKF.   For the second control method, the 

ColKF parameters were calibrated using in situ soil moisture data records.  This method 

represents ColKF with “perfect” knowledge of merging parameters, which represents the 

upper bound of possible EM performance because it is achievable only if EM accurately 

determines the underlying system parameters.    

4.2.5 Ecosystem Respiration Model 

 This chapter uses a simplified ecosystem respiration model based on the model 

presented in Chapter 5.  Ecosystem respiration is computed as: 
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autf ( ) ( )EC ECRECO GPP f TSOIL f SMSF C= + , (4.1) 

where GPP represents ecosystem gross primary production derived from partitioned 

tower eddy covariance measurement based net ecosystem exchange observations; TSOIL 

is from flux tower surface soil temperature (5 cm depth); SMSF is surface soil moisture 

(5 cm depth) from either the flux tower, merged soil moisture, or MERRA.  The use of 

tower-partitioned GPP is an attempt to isolate the effective impact of soil moisture on 

heterotrophic respiration which is expected to differ from the effective impact of soil 

moisture on GPP.  The C  term is a normalizing factor which accounts for effective soil 

organic carbon storage across flux tower sites (as detailed in Eqn. (5.11)).  The 

fEC(TSOIL) term is an Arrhenius exponential function of TSOIL from Lloyd & Taylor 

(1994) and fEC(SMSF) is to be determined by inverting (4.1) with respect to flux tower 

RECO. The faut term determines partitioning of GPP into autotrophic respiration and was 

fitted, along with C , such that inverted fEC(SMSF) 95th percentiles were bounded on the 

unit interval.   

 

 RESULTS 

4.3.1 Soil Moisture RMSE Estimates Relative to In Situ Observations 

The EM method significantly outperforms TC for estimating the MERRA and 

PETS model soil moisture errors (R2 = 0.91 and R2 = 0.95 for EM vs. R2 = 0.38 and R2 = 

0.35 for TC, respectively), whereas EM performs somewhat less well than TC for 

estimating AMSR-E VU soil moisture errors (R2 = 0.90 vs. R2 = 0.96; Table 4.1; Figure 
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4.1a,b).  The EM RMSE estimates for MERRA and PETS had little bias, whereas TC 

tended to underestimate soil moisture RMSE. In contrast, for AMSR-E EM tends to 

underestimate soil moisture RMSE at the highest end of the range, whereas TC had slight 

overall underestimation across AMSR-E’s RMSE range. The EM method accurately 

estimated ϕ1 coefficients for PETS, and estimates ϕ1 for MERRA were also skillful, 

although with some outlier sites (Figure 4.1c).  In contrast, the EM method consistently 

under-estimated the ϕ1 coefficients for AMSR-E and the precision of these estimates was 

considerably worse than estimates for PETS and MERRA.  Notably, some ϕ1 EM 

estimates were confined to zero, whereas the benchmark indicated non-zero ϕ1.  This 

occurred in locations with high vegetation biomass (usually deciduous broadleaf and 

evergreen needleleaf forest sites) where AMSR-E observations have high RMSE and 

little sensitivity to soil moisture.     

4.3.2 Merged Soil Moisture Estimates Relative to In Situ 

An example soil moisture anomaly time-series for the Lethbridge, Alberta, 

Canada (CA-Lth) site shows EM merged state results alongside the MERRA, PETS, and 

AMSR-E VU estimates (Figure 4.2) and corresponds with example time-series shown in 

Figure 3.1b.  In this example, the merged estimate (xs) shows substantial correlation 

improvement relative to in situ soil moisture observations (x) when compared with the 

three original time-series (MERRA, PETS, and AMSR-E VU).  While all of the soil 

moisture datasets show dry-down rate bias relative to the in situ observations, the AMSR-

E results also show additional high-frequency variability.  The merged soil moisture 

estimate effectively smooths the high frequency variability while accounting for bias of 

the various datasets.  Notably, the in situ soil moisture data-series are not contained 
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within the 2-standard deviation merged prediction interval as consistently as might be 

expected.  This discrepancy is possibly related to the soil moisture point-to-pixel or 

possibly vertical depth spatial support mismatch, or could possibly result from other 

processes not fully represented by the fitted system. 

The soil moisture merging method shows an overall average, although non-

significant (P>0.05) improvement across sites relative to MERRA (Table 4.2).  The 

improvement is approximately equal for the VU and UMT AMSR-E datasets, but only 

showing about half of the significant improvement (p<0.05) of the results derived using 

“perfect” (i.e. fitted to in situ) merging parameters.  The overall average improvement 

was degraded for the highest-biomass sites (as indicated by VOD bin average of 0.92; 

Figure 4.3a).  In these locations, the merging method performed significantly worse than 

the simple (pre-filtered) average, which impacted the overall average improvements.  The 

merging method matched both the site-fit ColKF and the pre-filtered average for all but 

the highest vegetation optical depth (VOD) bin. Somewhat surprisingly, the pre-filtered 

average performed better than VOD for the highest VOD bin, despite the much lower 

skill of the VU and UMT results. The merging method performed significantly (p<0.05) 

better than MERRA for VOD < 0.72 and on-par with MERRA for areas with VOD levels 

between 0.72 and 0.81. 

As expected, both the VU and UMT datasets showed substantial decrease in 

correlation with increasing VOD; however, the VU dataset has consistently higher 

correlation than the UMT results across the entire VOD range. Additionally, the UMT 

dataset appears to have a much weaker seasonal cycle than VU as evidenced by lower 

correlations for the full (non-anomaly) data series (Figure 4.3b).  Despite lower 
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correlations, the merged VU and merged UMT soil moisture data series do not 

significantly differ, indicating that the VU and UMT datasets supply roughly the same 

amount of independent information to the merged soil moisture data series. The MERRA 

and PETS derived soil moisture anomalies show somewhat higher correlations for the 

two lowest VOD bins, and somewhat higher full dataset correlations for the three largest 

VOD bins.  This pattern is likely the result of differing soil moisture variances depending 

on climate regime.  Lower VOD locations tend to be arid, precipitation-driven regimes 

with little soil moisture seasonal cycle (and hence higher anomaly variance) whereas 

higher VOD locations tend to have a more pronounced soil moisture seasonal cycle that 

is less impacted by individual precipitation events (and hence have higher seasonal 

variance).         

4.3.3 Regional RMSE and Merging Weight Maps 

The regional soil moisture results show differing RMSE spatial patterns and 

weight tradeoffs between the MERRA, PETS, and AMSR-E VU datasets (Figure 4.4).  

All three soil moisture datasets have higher errors in mountainous regions, although the 

PETS dataset receives most of the weight over mountain areas, which likely results from 

its observation-based snowfall information provided by CMC (Figure 4.4f).  The AMSR-

E VU dataset has the lowest error and carries the highest weight for the desert, grassland 

and cropland portions of the western and mid-western states, whereas it carries the lowest 

weight for forested regions in eastern, southern, upper mid-western and northwestern 

forests. The MERRA and PETS datasets share approximately equal weights in these 

forested regions, compensating for the down-weighting of the AMSR-E VU dataset.  The 
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PETS dataset has somewhat larger error and lower weight in the southwest relative to the 

MERRA and AMSR-E soil moisture datasets.     

4.3.4 Ecosystem Respiration Soil Moisture Response Function 

The tower carbon flux observations indicate a clear soil moisture constraint on 

RECO for drier soil moisture conditions (i.e. < 50 % of saturation; Figure 4.5).  No 

evidence was found for decreased RECO at higher soil moisture values as might be 

associated with anaerobic conditions. Therefore a sigmoidal RECO soil moisture 

response curve fits the data much better than does the parabolic curve originally 

hypothesized. A sigmoidal curve fits the data regardless of whether in situ soil moisture 

measurements or MERRA soil moisture is used; however, a stronger constraint would 

improve the MERRA soil moisture fit under moderately dry (15-40 % saturation) 

conditions.  This differing fit for MERRA indicates that the MERRA reanalysis contains 

overall dry bias in this soil moisture range relative to the in situ soil moisture 

observations. 

4.3.5 Impact of Soil Moisture on Ecosystem Respiration Estimates 

Inclusion of soil moisture substantially improves the model RECO estimates as 

shown for the US-ARc (Oklahoma) grassland site (Figure 4.7).  Summer soil moisture 

dynamics in this location are non-seasonal, mainly driven by periodic intense 

precipitation from thunderstorms, followed by rapid dry-down periods.  The model soil 

moisture constraint substantially improves RECO estimates during the dry-down periods 

between thunderstorms. Averages across sites show the overall impact of soil moisture on 

the model RECO estimates, which show consistently improved correlation against in situ 
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tower RECO observations when more skillful soil moisture datasets are used (Figure 

4.7a).  The use of in situ soil moisture observations gives the most skillful model RECO 

results, followed by the use of merged soil moisture estimates, which improves upon 

model RECO estimates derived using MERRA soil moisture, and provides substantially 

better results than using no soil moisture in the RECO model.  Likewise, estimated 

RECO vs. in situ RECO RMSEs follow a corresponding gradient of lower RMSE as the 

quality of soil moisture input improves (Figure 4.7b). 

 The RECO correlation improvement with the inclusion of soil moisture as a 

model input corresponds with the US east-west aridity gradient (Figure 4.8).  Inclusion of 

soil moisture and merged soil moisture show the largest RECO correlation improvement 

for southwestern, midwestern, and western locations relative to model estimates derived 

with no soil moisture and MERRA soil moisture, respectively.  Correlation decreases 

were observed for five locations with inclusion of site soil moisture and five locations 

with inclusion of merged soil moisture (Figure 4.8b).  Correlation decreased for both site 

and merged soil moisture for an evergreen needleleaf forested site in New Hampshire and 

a broadleaf cropland site in Nebraska.  Correlation also decreased for site soil moisture 

for sites in Missouri (deciduous broadleaf forest), Oregon (evergreen needleleaf forest) 

and Texas (grassland), whereas correlation decreased for merged soil moisture for sites in 

Wisconsin (deciduous broadleaf forest), Indiana (broadleaf cropland), and a relatively 

arid site in Arizona (shrubland).  The RECO model sensitivity analysis indicates that the 

largest improvement from using soil moisture as a model constraint should occur for drier 

southwestern locations as was observed (Figure 4.9b).  By contrast, comparing the 

merging analysis standard deviation to MERRA estimated RMSE indicates that the 
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largest improvement in MERRA soil moisture anomalies occurs over the central US 

(Figure 4.9a).  This pattern was largely the result of higher soil moisture anomaly 

variance relative to seasonal variance in the central US as previously discussed.  

 

 DISCUSSION 

4.4.1 Soil Moisture Error and State Estimation Performance 

The model results indicate that EM capably accounts for AR errors characteristic 

of modeled soil moisture time series and this translates to improved RMSE performance 

relative to TC (Table 4.1; Figure 4.1).  TC is well known to give model RMSE results 

that are much lower relative to remotely-sensed datasets (Scipal 2008).  TC is typically 

conducted using two remotely-sensed datasets and one model (Gruber 2016; Scipal 

2008), rather than two models and one remotely-sensed dataset as presented here.  This 

two model configuration likely resulted in somewhat degraded TC results than reported 

in the literature (Miralles 2010) because, as I have shown, models generally do not 

conform to the independence assumptions underpinning the TC approach. The less-

accurate EM estimates for AMSR-E RMSE relative to TC were unexpected, but 

correspond with low-biased ϕ1 estimates.  Evidently, EM has some difficulty for forested 

sites where AMSR-E contains little soil moisture information and is dominated by noise; 

however, the ϕ1 low-bias was not confined to this situation.  This observation suggests 

that the AR(1) error model might not be appropriate for AMSR-E, which inspired the 

investigations of the alternative multi-lag and AR plus white noise (AR+W) model 

presented in Chapter 3 (See Figure 3.9).  Additionally AMSR-E contains missing values, 
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a feature not shared by MERRA and PETS, which likely impacted these results and was 

also inspiration for the detailed handling of missing values in Chapter 3. 

 The EM ColKF merged soil moisture estimate substantially improves upon 

MERRA relative to the in situ soil moisture observations (Table 4.2).  The level of 

merged soil moisture skill improvement depends on the level of vegetation biomass as 

indicated by the VOD biomass proxy.  This is expected because AMSR-E derived soil 

moisture information content decreases with increasing VOD (Figure 4.3). Interestingly, 

the merged soil moisture performance was indistinguishable regardless of whether the 

VU AMSR-E or UMT AMSR-E dataset was used.  This is an important result because it 

indicates that the information contents of the two datasets are similar, despite consistently 

lower skill of the UMT product when considered separately.   

Surprisingly, the EM ColKF merged dataset was not substantially more skillful 

than the simple pre-filtered average of the three datasets (Figure 4.3).  This was despite 

evident skill in estimating RMSE of the individual datasets, which should translate into 

merging weights which should be more optimal than the equal weighting used in a simple 

average.  I expected that the pre-filtered average would be substantially worse for the 

highest VOD bin, due to expected degradation of the AMSR-E soil moisture datasets.  

This unexpected result was likely caused by rescaling of the mean and variance of PETS 

and AMSR-E data to match MERRA prior to averaging (Section 4.2.4), which had the 

unintended effect of dampening the AMSR-E error variance, which is proportional to the 

overall AMSR-E soil moisture variance (Draper 2013).  The EM should be able to 

account for variance changes due to error vs. signal by adjusting the scaling parameter 

(C; See Chapter 3); however, the results indicated that the EM has difficulty correctly 
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estimating RMSE for the highest VOD bin and therefore also has difficulty correctly 

estimating C because the two parameters have compensating errors.  Nevertheless, the 

EM ColKF has several features lacking from simple averages, including its ability to 

consider temporal adjacency correlations, enforcing smoothness on the solution and 

detailed estimation of individual dataset error processes.   

The soil moisture neutral regression merging errors and weights show expected 

patterns (Figure 4.4), which lend some confidence to the idea of determining merging 

weights. Other studies have found that satellite-based precipitation and soil moisture 

observations provide similar amounts of complementary information in a model data 

assimilation system (Qing 2011). Despite reasonable results, the neutral regression 

approach is an ad hoc method with no guarantee of mathematical optimality.  I expect 

that the EM-determined ColKF weights will resemble Figure 4.4, when computed for 

similar regions; however, because the EM can estimate off-diagonal error covariance 

elements there is no guarantee that the weights will be positive, potentially complicating 

interpretation (See Chapter 3).  

4.4.2 Improving Ecosystem Respiration Estimates with Soil Moisture Information 

Soil moisture had a positive overall impact on the model RECO estimates, with 

increasing accuracy obtained using more skillful soil moisture datasets as model inputs 

(Figure 4.7).  This impact was closely related to wet and dry events indicated from 

individual flux tower time series (Figure 4.6). The impact was not positive for all 

locations (Figure 4.8), but such variability is expected with pixel-to-point comparisons 

using noisy soil moisture and tower flux observations.  Locations with high positive 
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impact on model RECO accuracy were explained by the model sensitivity analysis 

(Figure 4.9b), lending confidence to the ability of the model to explain spatial patterns of 

expected model RECO improvement from using soil moisture information.  Predicted 

model RECO sensitivity patterns are dependent on the fitted empirical soil moisture 

response curve (Figure 4.5) and dependent on how well the tower locations sample the 

underlying spatial process of RECO soil moisture constraints and biases between the 

different MERRA, merged, and in situ soil moisture datasets used as model inputs.  In 

practical application such as the TCF model (Chapter 5), the response function should be 

fitted to the particular model input soil moisture dataset to provide best possible carbon 

flux estimates, but here I fit the response using in situ soil moisture observations to more 

clearly differentiate the impact of soil moisture skill on improving model results. This 

expectation relies on the assumption that the in situ observations are the most accurate 

and representative available soil moisture metric, which may not be true in all cases, 

especially considering large characteristic soil moisture spatial heterogeneity and 

potential mismatches between in situ soil moisture measurement probes (point 

measurement) and the typical eddy covariance flux footprint (≈ 1-km2).  Violations of 

this assumption, and the fitting of only one response function for all locations may 

account for RECO degradation at the subset of locations seen in Figure 4.8.        

Differing patterns for soil moisture merging improvement versus RECO 

improvement when employing merged soil moisture as input rather than MERRA (Figure 

4.9a,b) underscores the importance of multiple factors in determining the incremental 

value of soil moisture for improving an application.  These results, taken together, 

indicate that the incremental value of a soil moisture dataset depends on the independent 
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information in the dataset relative to other competing datasets (Figure 4.4), the 

independent dataset’s signal-to-noise ratio, the merged dataset error-variance reduction 

(shown in Figure 4.9a), and the sensitivity of the model to the soil moisture input (as 

shown in Figure 4.9b).  

 

 CONCLUSION AND SIGNIFICANCE 

This exploratory case study demonstrates the incremental value of improved soil 

moisture information for improving model RECO estimates relative to a regional network 

of tower eddy covariance CO2 flux observations.  First, the ColKF merging methodology 

was evaluated using in situ soil moisture datasets and I found that ColKF merging 

improves soil moisture skill.  Spatial patterns of estimated errors and associated merging 

weights showed an expected AMSR-E derived increasing soil moisture error gradient 

with increasing vegetation biomass.  The fitted model RECO soil moisture response 

function indicated that drier soil conditions constrain RECO, but no evidence was found 

for an anaerobic constraint for wet or saturated soil conditions.  The fitted soil moisture 

response function was used to evaluate the relative improvement in model RECO 

estimates and I found that the model improvement followed the range of soil moisture 

information quality.  The RECO model sensitivity analysis indicated that patterns of flux 

improvement across sites were predictable based on an analysis of model dynamics. 

These results underscore the ability of improving soil moisture information to produce 

incremental improvement in model CO2 flux estimates. 
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The case study presented here was important for tying together and directing more 

detailed work in Chapters 3 and 5, which was conducted after the work presented here.  

The EM ColKF merging methodology presented in this Chapter does not account for 

missing values and only considers single lag AR(1) signal and noise models.  These 

features were addressed in Chapter 3.  Additionally, the EM ColKF method is 

computationally intensive, representing large-scale software implementation challenges, 

which is why the alternative and less complex neutral regression methodology was used 

for the regional application presented here.  I opted to postpone large-scale 

implementation of the EM ColKF methodology pending further refinement and 

evaluation.  The RECO results presented here represent a much simplified respiration 

model relative to the terrestrial carbon flux (TCF) model presented in Chapter 5.  In 

contrast, the TCF model considers all components of the net ecosystem CO2 flux, 

including vegetation gross primary productivity, soil organic carbon dynamics and 

underlying environmental controls.  Furthermore, the operational nature of the work in 

Chapter 5 precludes some of the work presented here, adding additional complexity with 

regards to required use of the L4SM soil moisture dataset and pre-launch and post-launch 

availability of SMAP remotely-sensed information.   The work presented here shows the 

impact of AMSR-E soil moisture information.  The lower-frequency (1.41 GHz) SMAP 

instrument is expected to show improved soil moisture sensitivity relative to AMSR-E 

(6.9 GHz) and this implies that SMAP should provide improved TCF results. However, 

the additional complexities of the TCF model and L4C product have thus far precluded a 

clear improvement using SMAP observations (Chapter 5).   
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APPENDIX 

Appendix A. The Precipitation, Evapotranspiration, and Snowmelt (PETS) Model 

Surface soil moisture is modeled using a pseudo-diffusivity model for water flux between 

a surface layer (Ws) and a deeper soil reservoir (Wd):   

( )s d
WL D W W
t

∆
= −

∆
, (A4.1) 

where Δt is a discrete time-step (1 day or 1 month) and T = L ∕ D is the characteristic 

timescale parameter.  The discrete-time numerical integration of (A4.1) for soil moisture 

θ gives the following propagation equation (Wagner 1999): 

( ) ( 1) st t Wθ αθ γ= − + ,      1
1 T t

α =
+ ∆

,      
1

T t
T t

γ ∆
=

+ ∆
,        (A4.2) 

with,  

sW P S ET= + − ,     (A4.3) 

where P is precipitation, S is snowmelt and ET is evapotranspiration, all in units mm per 

Δt.  The Antecedent Precipitation Index (API) is a special case where Ws is precipitation, 

α = 1, and γ = 1.  Snowmelt is computed from CMC by computing daily backward 

differences in snow-water equivalent and zeroing negative differences. 

The model (A4.2-A4.3) is run using daily inputs, and this result is subtracted from its 30-

day moving average to produce a daily anomaly series. The model is then run using 

monthly values, the result is interpolated using cubic splines, and then added to the daily 



 142 

anomaly series to give an estimate of surface soil moisture deficit, which is then rescaled 

to the mean and variance of MERRA to produce soil moisture in percent saturation units. 

Appendix B. Neutral Regression 

Neutral regression uses the following data model where each kth zero-mean observation 

time vector, yk, is related to unknown time vector, x, with error process, εk, and scaling 

parameter βk: 

k k kβ= +y x ε . (B4.1) 

The observations, errors, and scaling parameters are collected into column matrices as 

Y={y1,y2,y3}, E={ε1, ε2, ε3}, and β ={ β1, β 2, β 3}, respectively.  The least squares fit is 

then minimized with respect β subject to the constraint βTβ, 

( 1)L λ= − −T TΕ Ε β β , (B4.2) 

where λ is a Lagrange multiplier (Marsden 1999). The solution to B2 is the characteristic 

equation, 

λ=TY Yβ β , (B4.3) 

where β is identified as an eigenvector associated with each eigenvalue λ.  The 

minimizing solution is the eigenvector corresponding to the smallest eigenvalue, readily 

obtained from a Singular Value Decomposition. An estimate of the unknown signal is 

given by, 
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 ˆ = Tx KY , (B4.4) 

with weights collected in the row vector K={ 2
1β , 2

2β , 2
3β }.  

Appendix C. Triple Collocation 

Triple Collocation uses the same underlying data equation (B4.1) as Neutral Regression.  

However, the error variance estimates rkk are computed from the following pairwise 

expectations: 

( ) ( )

( ) ( )

( ) ( )

11 1 2 1 2

22 2 1 2 3

33 3 1 3 2

ˆ ,

ˆ ,

ˆ ,

r

r

r

= − −

= − −

= − −

T

T

T

y y y y

y y y y

y y y y

 (B4.5) 

where •  is the expected value operator and the root mean square estimate (RMSE) is 

k̂kr .  The yk can be normalized for βk  ≠ 1 using an iterative approach outlined in Scipal 

(2008). 
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TABLES 
 

Table 4.1 : Skill metrics for RMSE estimates from TC and EM methods relative to 
RMSE computed in relation to in situ soil moisture observations for the MERRA, PETS, 
and AMSR-E VU soil moisture datasets.  These results correspond to scatter plots in 
Figure 4.1a,b. 
 
Dataset TC RMSE R2 EM RMSE R2 
MERRA 0.38 0.91 
PETS 0.35 0.95 
AMSR-E VU  0.96 0.90 

 
 

Table 4.2: Change in ColKF merged soil moisture correlation relative to MERRA  
correlation computed versus in situ soil moisture (ΔR) for three merging filter 
configurations.  Positive ΔR indicates correlation improvement. The Site Fit 
configuration uses a ColKF calibrated using assumed “perfect” parameters fit to in situ 
data to merge the MERRA, PETS and AMSR-E VU soil moisture datasets. The EM 
ColKF VU uses EM to determine system parameters and ColKF to merge MERRA, 
PETS and AMSR-E VU datasets.  The EM ColKF UMT uses EM to determine system 
parameters and ColKF to merge MERRA, PETS and AMSR-E UMT datasets.  These 
results correspond to overall average of data shown in Figure 4.1a. 
 

Filter Run ΔR ColKF - MERRA 
Site Fit ColKF VU  0.141 

EM ColKF VU  0.073 
EM ColKF UMT  0.072 
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FIGURES 

 

Figure 4.1: Soil moisture RMSE estimated by (a) Triple Collocation (TC) and (b) 
Expectation Maximization (EM) relative to RMSE computed using in situ soil moisture 
observations for MERRA, PETS, and AMSR-E VU soil moisture time-series. (c) Lag-1 
AR parameters (ϕ1) estimated using EM relative to ϕ1 estimated using in situ soil 
moisture. 
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Figure 4.2: Soil moisture anomaly (i.e. with mean seasonal cycle removed; in % 
saturation units) time-series for a grassland site near Lethbridge, Alberta, Canada (CA-
Lth).  Time-series inlcude in situ soil moisture (x), EM ColKF smoother merged estimate 

(xs) ± smoother prediction error standard deviations ( sP ), MERRA, PETS, and AMSR-
E VU soil moisture datasets.  Time-series Pearson correlations are given in parentheses 
for each dataset relative to the in situ observations.  Plot corresponds with Figure 3.1. 
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Figure 4.3: Bin averaged (± 95 % confidence interval) correlation for soil moisture time-
series estimates relative to in situ soil moisture observations for tower flux sites binned 
by vegetation optical depth. Results are shown for (a) soil moisture anomalies (with 
seasonal cycle removed) and (b) full soil moisture time-series (sum of anomaly and mean 
seasonal cycle).  Control benchmark merging estimates shown in black and white 
squares, merged estimates in colored squares, and original model and remotely-sensed 
time-series estimates in colored circles. 
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Figure 4.4: Individual soil moisture time-series RMSE patterns and corresponding 
merging weights estimated using Neutral Regression over the continental US domain.  
Estimated RMSEs are shown for (a) MERRA, (c) AMSR-E VU, and (e) PETS.  
Estimated cooresponding merging weights are shown for (b) MERRA, (d) AMSR-E VU, 
and (f) PETS.  Individual merging weights sum to unity for each grid cell. 
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Figure 4.5:  Effective RECO model soil moisture response multiplier (fEC(SMSF)) 
computed by inverting (4.1) using flux tower RECO observations, TSOIL, and C .   
Symbols represent 90th percentile of effective multiplier for bins of 1 % soil moisture 
saturation using in situ (black squares) and MERRA (green circles) soil moisture.  Grey 
field and error bars represent the range 81rst-99th percentile for in situ and MERRA soil 
moisture, respectively.  Blue line represents sigmoidal curve fitted result using in situ soil 
moisture and red line represents the originally hypothesized parabolic curve. 
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Figure 4.6: RECO time-series at a selected Oklahoma grassland flux tower site (US-
ARc), including in situ tower RECO observations (black line), model (eqn. (4.1)) 
predictions derived with no input soil moisture (red line), and model (eqn. (4.1))  results 
derived using in situ soil moisture inputs.  
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Figure 4.7:  Overall average RECO model (a) Pearson correlation and (b) RMSE relative 
to in situ flux tower RECO observations for 28 tower sites in the continental US domain.  
Shown are results for model using site soil moisture as input (Site SM), Expectation 
Maximization (EM) merged soil moisture as input (Merged SM), MERRA soil moisture 
as input (MERRA) and no input soil moisture (No SM). Error bars represent ± one 
standard deviation across sites.  Black squares are correlations for RECO estimates and 
white squares are correlations for merged and MERRA soil moistures relative to in situ 
soil moisture to show relative skill differences between the two datasets. 
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Figure 4.8: RECO model Pearson correlation improvement (ΔR) relative to in situ tower 
RECO observations for (a) RECO model using input in situ soil moisture minus RECO 
model without soil moisture input and (b) for RECO model using merged soil moisture 
minus RECO model without soil moisture input. Results shown here correspond to North 
American flux tower subset of overall results given in Figure 4.7. 
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Figure 4.9:  Estimated percent improvement for soil moisture and RECO estimates.  (a) 
Estimated soil moisture RMSE percent improvement [%] between the merged and 
MERRA soil moisture, computed using merging method RMSE estimates. (b)  Percent 
[%] improvement in RECO model by using merged SM inputs relative to standard 
MERRA SM inputs computed using error propagation. 
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CHAPTER 5: OPERATIONAL MONITORING OF LAND-ATMOSPHERE CO2 
EXCHANGE USING SATELLITE SOIL MOISTURE: THE SOIL MOISTURE 
ACTIVE PASSIVE (SMAP) MISSION LEVEL 4 CARBON (L4C) PRODUCT  

 

 INTRODUCTION 

Soil moisture is a fundamental requirement of life on land.  Plants and micro-

organisms alike require moisture for growth and turgor; accordingly, soil moisture 

availability plays a major role in explaining the spatial and temporal variability of the 

global land CO2 sink.  The land and ocean CO2 sinks provide a roughly 50 % offset of 

anthropogenic atmospheric emissions, with seasonal and interannual variability mainly 

driven by the land sink. Attributing land sink variability to its controlling factors is 

therefore key to understanding year-to-year changes in the atmospheric CO2 growth rate 

(Canadell 2007).  Several previous studies have indicated the dominant role played by 

water-limited ecosystems in determining global land sink inter-annual variability 

(Ahlstrom 2015;Cleverly 2016; Poulter 2014; Zhao & Running 2010).  However, the 

influence of soil moisture on the global carbon cycle has been obscured by a lack of 

continuous, high-quality soil moisture observations with global coverage at appropriate 

spatial and temporal resolution.   

Understanding linkages between the global water and carbon cycles is a major 

objective of the NASA Soil Moisture Active Passive (SMAP) mission (Entekhabi 2010). 

Using soil moisture observations to improve global estimates of land CO2 flux and 

evapotranspiration are a major means to this end.  Beginning March 31, 2015, the SMAP 

satellite began providing L-band microwave brightness temperature (1.41 GHz) 

observations with global land surface coverage every three days. SMAP brightness 
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temperature (TB) observations, which typically represent conditions in the top 5 cm of 

the soil, are assimilated into the NASA Goddard Earth Observing System, Version 5 

(GEOS-5) Catchment land surface model to produce daily surface and root zone soil 

moisture and temperature estimates as part of the SMAP Level 4 Soil Moisture (L4SM) 

data product (Reichle 2016a; Reichle 2016b).  Using L4SM and other input data from 

MODIS and GEOS-5, the SMAP Level 4 Carbon (L4C) data product provides daily 

global estimates of terrestrial carbon (CO2) fluxes and underlying environmental controls 

(Kimball 2016a; Kimball 2016b; Glassy 2016).   

Soil moisture availability controls key biological processes including plant 

photosynthetic activity, soil litter decomposition and heterotrophic respiration. 

Photosynthesis and gross primary production (GPP) are the primary pathways of 

ecosystem CO2 uptake, whereas ecosystem respiration (RE), the sum of plant autotrophic 

and soil heterotrophic respiration (RA and RH, respectively), releases CO2.  

Photosynthesis supplies the raw carbohydrate building blocks for biomass production, 

which eventually falls as litter and is converted into soil organic carbon (SOC). Litter is 

metabolized by soil microorganisms at a rate roughly inversely proportional to the litter 

carbon to nitrogen (C:N) ratio, or more directly the ratio of lignin to nitrogen (lignin:N),  

and modulated by soil moisture and temperature conditions as primary environmental 

control factors (Chapin 2002; Potter 1993; Parton 1987).  Whereas GPP is sensitive to 

plant-available soil moisture within the rooting depth profile, soil litter decomposition 

and RH are primarily influenced by soil moisture and temperature within the surface (0-5 

cm) soil layer where labile litter substrate (low C:N) and abundant oxygen are available 

(Davidson 2006; Chapin 2002).  The physiological details of these processes are closely 
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tied to the dominant vegetation land cover or plant functional type (PFT). 

Previous satellite data driven ecosystem modeling approaches have relied on 

various proxies to represent moisture constraints to ecosystem productivity and 

respiration, including vapor pressure deficit (VPD) to represent atmospheric moisture 

stress or precipitation driven bucket models to represent plant-available soil moisture.  

The MODIS MOD17 operational GPP product uses VPD as the sole moisture constraint 

to vegetation productivity without accounting for its interaction with root zone soil 

moisture (Running 2004).  The NASA CASA (Carnegie Ames Stanford Approach) 

model estimates NEE and SOC dynamics at a monthly time step and relatively coarse 

(0.5°) spatial resolution using a precipitation driven bucket model to define soil moisture 

dynamics and environmental controls (Potter 1993).  The L4C product extends these 

previous satellite-based ecosystem models by incorporating SMAP L4SM surface and 

root zone soil moisture and soil temperature information as primary environmental 

controls for estimating daily carbon fluxes and SOC dynamics. L4C model processing is 

conducted globally at 1-km resolution consistent with MODIS land cover and vegetation 

inputs (Kimball 2014); model outputs are posted to a coarser 9-km global grid, while 

preserving sub-grid (1-km resolution) PFT heterogeneity within each grid cell. 

Although soil moisture retrievals from microwave remote sensing have been 

available for more than a decade, relatively coarse resolution (≥25 km), intermittent data 

coverage, large uncertainty and variable data quality generally precluded their use within 

ecosystem models.  Additionally microwave measurements reflect conditions in only the 

top 5 cm of the soil. The L4SM product addresses these problems by providing timely 

(latency < 3 days), global and temporally continuous estimates of surface to root zone 
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soil moisture and temperature over a 9-km resolution grid, propagating surface soil 

information from SMAP over the entire soil profile (0-100cm depth) using the GEOS-5 

catchment model (Reichle 2016a; Reichle 2016b). The L4C product integrates L4SM 

information within a calibrated, data-driven Terrestrial Carbon Flux (TCF) model using 

GEOS-5 daily surface meteorology, MODIS (Moderate Resolution Imaging 

Spectroradiometer) land cover and 8-day FPAR (canopy intercepted fraction of 

photosynthetically active radiation) observations as primary inputs. Resulting L4C 

product variables include NEE, GPP, RH and surface SOC content. Additional L4C 

diagnostic variables include primary environmental control factors underpinning the daily 

carbon flux estimates and detailed quality assurance metrics describing estimated model 

NEE performance for every grid cell – with random error quantified as unbiased root 

mean square error (ubRMSE). Thus the L4C product provides a new tool linking 

ecosystem-atmosphere CO2 exchange to underlying vegetation, soil moisture and climate 

variability.      

The objectives of this work are: i) to link SMAP informed soil moisture 

observations to ecosystem CO2 exchange and underlying environmental controls on 

vegetation growth, soil litter decomposition and respiration processes; ii) to determine 

NEE and component carbon flux sensitivity to soil moisture variability; and iii) to 

determine whether SMAP observations provide added value over other sources of 

information for estimating NEE and component carbon fluxes, including GPP and RH.  

These objectives are addressed by investigating output from the L4C model after 

calibration to historic (pre-launch) tower flux measurements, by performing model 

sensitivity analyses, and by evaluating the accuracy of the operational L4C data product 
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against contemporaneous tower carbon flux measurements and other independent, global 

observational benchmarks. 

 

 METHODS 

5.2.1 The L4C Data Product 

The L4C product fields are summarized in Table 5.1.  Each daily L4C 

hierarchical data format version-5 (HDF5) daily granule contains estimates of global 

land-atmosphere CO2 flux (g C m-2 d-1), including NEE, GPP, and RH. Other L4C 

product fields include SOC, diagnostic environmental constraint multipliers (EC), quality 

control flags (QC), and NEE ubRMSE estimates for quality assessment (QA ubRMSE; 

Kimball 2016a; Glassy 2016).  The TCF model and associated L4C product uses a 1-km 

resolution EASE Grid v2 (EGv2) projection format as its native computational resolution 

and L4C results are posted to a coarser 9-km grid while preserving sub-grid variability 

from major PFT categories within each grid cell determined from the nested 1-km 

processing (Brodzik 2012). The L4C processing runs operationally within the SMAP 

Level 4 Science Data System of the NASA Global Modeling and Assimilation Office 

(GMAO).  The L4C system provides consistent global daily outputs with an 8-10 day 

latency suitable for global monitoring and associated applications. For this study, I use 

data from the Version 2.0, “Validated Release” L4C data product (Science Version ID 

Vv2040; Kimball 2016b; “mdl” http://dx.doi.org/10.5067/UBKO5ZUI7I5V). Three L4C 

data sets were used in this study – one operational data set (publically available as cited 

above) and two scientific datasets (available upon request) – including: 1) post-launch 
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operations (L4C Ops) spanning March 31, 2015 to present (Kimball 2016a); 2) pre-

launch calibration, initialization and climatological reference simulations (L4C Calib) 

representing the period from Jan. 1, 2001 to Dec. 31, 2012; and 3) an “open-loop” 

simulation (L4C Open Loop) used to evaluate the impact of SMAP observations on post-

launch operations spanning March 31, 2015 to present (Kimball 2016b). 

5.2.2 L4C Input Datasets 

L4C inputs required for model processing are summarized in Table 5.2.  The L4C 

TCF model requires 1-km EGv2 static PFT and 8-day canopy absorbed fraction of 

photosynthetically active radiation (FPAR) maps.  The L4C TCF model also requires 

daily 9-km EGv2 inputs include surface soil moisture (SMSF; 0-5 cm depth), root zone 

soil moisture (SMRZ; 0-100 cm depth), soil temperature (TSOIL; 0-5 cm depth), mean 

daily incoming photosynthetically active radiation (PAR), minimum daily air temperature 

(TMIN, 2 m height), and mean daily VPD.  The L4C Ops, L4C Calib, and L4C Open 

Loop datasets derive their 9-km inputs from several native sources, including: L4SM; an 

L4SM-emulation dataset termed Nature Run version 4 (NRv4) that is not informed by 

SMAP observations (Reichle 2016b); the Goddard Earth Observing System, Version 5 

forward processing system (GEOS-5 FP); and the Modern Era Retrospective Reanalysis 

(MERRA), which uses the same GEOS-5 land model (Rienecker 2011). 

The native source formats of the L4C inputs are given in Table 5.3.  The L4C Ops 

simulations uses soil temperature and soil moisture (surface and root zone) inputs from 

L4SM, and PAR, TMIN, and VPD from the GEOS-5 FP.  The L4C Calib simulations use 

soil temperature and soil moisture (surface and root zone) inputs from NRv4, and PAR, 

TMIN, and VPD from MERRA because L4SM and GEOS-5 FP data were not available 
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for the SMAP pre-launch period.  The L4C Open Loop simulations use soil temperature 

and soil moisture (surface and root zone) inputs from NRv4, and PAR, TMIN, and VPD 

from GEOS-5 FP to isolate the impact of SMAP observations on L4C Ops.  MODIS 

provides static PFT and 8-day FPAR inputs for each L4C simulation.   

The L4SM data assimilation system provides 3-hourly soil temperature and soil 

moisture (surface and root zone) in EGv2 9-km format (Reichle 2016b). The 3-hourly 

L4SM data are aggregated to daily averages as an L4C preprocessing step. Root zone soil 

moisture (SMRZ) in percent saturation units is rescaled to SMRZrsc using the following 

normalized log-transform, 

ln *100 1
100

max wp
norm

wp

SMRZ SMRZ
SMRZ

SMRZ
 −

= +  − 
, (5.1) 

( )ln 101)*95 5rsc normSMRZ SMRZ= − + , (5.2) 

where SMRZmax and SMRZwp are the grid cell record soil moisture levels for respective 

maximum soil moisture and plant wilting point conditions. The above rescaling increases 

the SMRZ dynamic range across time and space, especially in arid regions where sparse 

rainfall may not fully saturate soil, but soil water is still accessible to arid-adapted plants.  

The rescaling adjustment represents a compromise between using soil water matric 

potential and using soil moisture with linear GPP response (Figure 5.1). 

 The SMAP L4 processing system uses an Ensemble Kalman Filter (EnKF) 

assimilation to combine SMAP Level 1C orbital swath TB retrievals (~36 km resolution) 

with the Catchment Model simulations coupled with an L-band emission model and 

GEOS-5 FP meteorological forcing fields (Reichle 2014).  The L4SM algorithm rescales 
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SMAP TB observations into the L-band emission model climatology to minimize bias in 

the assimilation system (Reichle 2004).  The L-band emission model and rescaling 

parameters were calibrated prior to the SMAP launch using similar satellite L-band TB 

observations from the ESA Soil Moisture Ocean Salinity (SMOS) mission (De Lannoy 

2013).  Because SMAP and SMOS TB observations are not cross-calibrated, some minor 

bias is unavoidable in the current L4SM version (Reichle 2016c).  Eventually this bias is 

expected to further decrease as more SMAP data becomes available for model re-

calibration.  In this study I used input data from the Version 2 “Validated Release” L4SM 

data product (Science Version Vv2030; “gph” 

http://dx.doi.org/10.5067/YK70EPDHNF0L; “aup” 

http://dx.doi.org/10.5067/JJY2V0GJNFRZ, and “lmc” 

http://dx.doi.org/10.5067/VBRUC1AFRQ22 series). 

The NRv4 dataset was created to support scientific development and evaluation of 

SMAP Level 4 products (Reichle 2016b).  The NRv4 record is derived using an identical 

land model to L4SM (i.e. Catchment Model), but is not informed by SMAP TB 

observations, including data assimilation adjustments to model soil moisture and 

temperature fields - hence the “Open Loop” designation. The NRv4 record is available 

from 2000-present to support SMAP science team investigations. The SMAP Level 4 soil 

moisture and carbon models require pre-launch calibration and initialization, and post-

launch evaluation.  Specifically, the L4C system required pre-launch calibration of model 

parameters, initialization of soil carbon pools, and a baseline for evaluating post-launch 

L4C results which are potentially impacted by changes in SMAP instrument calibration, 

changes in the L4SM data assimilation system in addition to natural soil moisture and 
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temperature anomalies.  The NRv4 record provides a temporally consistent dataset 

meeting L4 requirements for pre-launch model calibration and initialization, and post-

launch evaluations of SMAP observation impacts. 

The GEOS-5 FP (Luchessi 2013; https://gmao.gsfc.nasa.gov/GMAO_products) 

provides 3-hourly surface meteorological fields in 1/4° × 3/8° geographic grid format, 

including net incoming short wave radiation (SWGDN), air temperature (2 meter height; 

T2M), surface skin temperature (TSURF), surface air pressure (PS), and water vapor 

mixing ratio (2 meter height; QV2M).  The L4C preprocessor aggregates the GEOS-5 FP 

meteorology to a daily time step consistent with model processing. Daily 

photosynthetically active radiation (PAR) was estimated as a proportion (45%) of 

SWRAD and used with MODIS 8-day FPAR inputs to estimate canopy-absorbed PAR 

(APAR) on a daily basis.  Minimum daily air temperature (TMIN) was computed as the 

minimum 1-hourly temperature.  Daily landscape freeze-thaw (FT) status was computed 

from TSURF using a simple pure water freezing-point threshold (273.15 K).  The 

original plan to use SMAP radar based FT observations was abandoned due to the radar 

sensor failure on July 7, 2015.  However, alternative FT observations derived from the 

SMAP TB observations will be used in future L4C versions.  Daily average vapor 

pressure deficit (VPD) was computed using the remaining GEOS-5 FP fields.  Similar to 

GEOS-5 FP, MERRA input fields are available in a coarser (1/2° × 2/3°) geographic grid 

for the 1980-2015 record (Rienecker 2011).  All MERRA and GEOS-5 FP fields are 

converted to the same 9-km EGv2 projection prior to L4C processing using nearest-

neighbor re-sampling. 

MODIS provides the fine-resolution (1-km) data used within L4C, including 
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global land cover (MOD12Q1) and 8-day FPAR (MOD15A2) information on 500-m and 

1-km sinusoidal grids, respectively.  The MOD12Q1 Plant Functional Type (PFT; Type 

5) classification (Friedl 2010) is resampled to 1-km EGv2 format and used in L4C model 

processing; the temporally static MOD12Q1 land cover classification currently used for 

L4C operational processing distinguishes up to eight different global PFT classes.  The 

PFT classes were used to stratify L4C model parameters and environmental response 

characteristics for different biomes.  The L4C simulation was also summarized by the 1-

km PFT classifications, allowing differential environmental responses within each 9-km 

grid cell posting. The MOD15A2 (Collection 5) product (Knyazikhin 1999) is resampled 

to 1-km EGv2 and used to define dynamic (8-day) canopy FPAR variability for L4C 

processing.  Missing or low quality (QC) FPAR data for a given 1-km pixel were filled 

prior to L4C processing using an ancillary average 8-day best QC climatology established 

from the MODIS historical (2001-2012) record.  L4C simulations were performed only 

for vegetated pixels (PFT classes 1-8) having an available FPAR climatology.  If MODIS 

1-km FPAR observations were not available for a given 8-day period, then the ancillary 

1-km FPAR climatology was substituted.  Climatological FPAR substitution rates are 

flagged within the QA bit fields of each L4C granule if substitution rates exceed >50% 

for a given 9-km grid cell. 

5.2.3 L4C Model Logic 

NEE is defined as total ecosystem respiration (RE; autotrophic (RA) plus 

heterotrophic respiration (RH)) less GPP, i.e. NEE = RE – GPP, where a negative sign 

convention denotes net ecosystem uptake of atmospheric CO2. The L4C product uses a 

light-use-efficiency (LUE) model within a Jarvis-Stewart constraint framework for 
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estimating GPP (Whitley 2009; Monteith 1977; Prince & Goward 1995; Kimball 2009), 

max* *GPP APAR Emultε= , (5.3) 

( ) ( ) ( ) ( )EC EC EC ECEmult f VPD f TMIN f SMRZ f FT= , (5.4) 

where canopy-absorbed PAR (APAR) is defined as the product of PAR and FPAR; εmax 

is a maximum light use efficiency parameter defined for individual PFT classes under 

optimal (non-limiting) environmental conditions; and Emult is the relative reduction in 

estimated photosynthetic light use efficiency from potential (εmax) due to sub-optimal 

environmental conditions.  Such conditions include excessive VPD, cold TMIN or frozen 

(FT) conditions, and dry SMRZ.  Emult is defined as the product of equally weighted 

dimensionless (0-1) scalar multipliers representing PFT-specific responses to each 

environmental variable. The fEC(x) terms in (4) are described using linear ramp functions 

ranging from optimal (1) to fully constrained (0) conditions (Running 2004) for each 

environmental variable: 

min max min( ) ( ) ( )ECf x x x x x= − − , (5.5) 

where xmin and xmax are model parameters specified for each PFT class (Kimball 2014).  

An exception to (5) is fEC(FT), which is flagged as zero if frozen and unity under non-

frozen conditions. RA is then computed as the PFT prescribed fraction (faut) of estimated 

GPP (i.e. RA = fautGPP; Waring 1998).  Many previous LUE formulations are available 

as reviewed in Xiao (2014); however, the L4C model combines LUE and soil 

decomposition models to determine a more comprehensive daily carbon budget, using 
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daily SMRZ inputs as an additional moisture constraint to GPP and RH, and employs 

model calibration using historical daily CO2 flux observations from the global tower 

(FLUXNET) observation network. 

 A three pool soil decomposition model with cascading SOC quality and 

associated decomposition rates is used to estimate RH. Carbon fixed by GPP enters the 

SOC pools as litterfall (Lfall) specified as a constant daily fraction of estimated mean 

annual net primary productivity (NPP = GPP − RA).  Daily SOC change for each of the 

three SOC pools is specified as (Kimball 2009; Kimball 2014; Ise & Moorcroft 2006), 

( )
f ( )fast

fall fast fast

dC t
L RH t

dt
= − , (5.6) 

( ) (1 f ) ( )med
fall fast med

dC t L RH t
dt

= − − , (5.7) 

( ) f ( ) ( )slow
med med slow

dC t RH t RH t
dt

= − , (5.8) 

where subscripts denote typical SOC decay rates relating to labile leaves and fine roots 

(low C:N), structural coarse woody roots (moderate C:N, high lignin content), and 

recalcitrant SOC (high C:N, tannins, phenols, SOC bound in clay and permafrost), 

respectively. RH is computed for the i-th SOC pool in (5.6)-(5.8) using surface soil 

moisture and soil temperature as primary controls on SOC decomposition (Kimball 

2009), 
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( ) ( ) ( ) ( )i EC EC i iRH t f TSOIL f SMSF k C t= , (5.9) 

where fEC(TSOIL) is an Arrhenius exponential function of TSOIL (Lloyd & Taylor 1994); 

fEC(SMSF) is a ramp function of surface (0-5 cm) soil moisture (SMSF) and ki is the 

optimal decay rate for the i-th SOC pool.  Total RH is derived as the sum of RHi, 

including the adjustment RH2 = (1-fmed)RHmed to account for material transferred into the 

slow pool during humification (Potter 1993).   

 Random error uncertainty estimates for NEE, as indicated by the ubRMSE metric, 

are produced using analytical error propagation. I define the ubRMSE of two random 

variables as the variance of the residuals of their least-squares regression.  I then compute 

the Jacobian (J) by taking derivatives of NEE of the above model with respect to each 

input dataset. I then assign a diagonal input error covariance matrix (Einput) as part of the 

L4C calibration process (Section 5.2.4). The estimated NEE error is computed as: 

( ) ( ) ( )NEE inputE t t t= TJ E J , (5.10) 

for each 1-km pixel and daily time step. The now scalar quantity ENEE term is spatially 

averaged using the sum of squares within each 9-km grid cell and the NEE ubRMSE QA 

metric is computed as the square-root of this average. 

5.2.4 Model Calibration and Initialization 

The L4C model was calibrated during the mission pre-launch phase using a global 

network of in situ tower eddy covariance CO2 flux measurement records (2001-2008) 

from the FLUXNET La Thuile Collection (Baldocchi 2001).  This dataset consists of 238 
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flux tower locations representing the major global biomes and PFT classes, although 

spatial coverage heavily favors temperate forest and cropland ecosystems in the United 

States and Europe (Baldocchi 2008).  I use only tower sites having at least two years of 

observations, leaving 228 remaining sites (Figure 5.2). I used daily NEE, GPP, and RE 

computed from half-hourly NEE as reported by the La Thuile site investigators. Daily 

GPP and RE estimates were partitioned from half-hourly NEE measurements based on 

the short-term temperature response of respiration to night-time NEE (Reichstein 2005; 

Desai 2008). Since gap-filling of flux data requires pre-assigned meteorological 

responses, I use only daily data values reported as non-gap-filled. Tower flux data from 

multiple locations were pooled according to the dominant (highest coverage) PFT of the 

9-km model grid cell overlying each tower location and model parameters were 

calibrated separately for each PFT class. The towers used for model calibration were also 

screened to ensure consistency between the dominant PFT represented within the tower 

footprint and the overlying 9-km model grid cell.     

Model calibration proceeded in three steps using daily eddy covariance CO2 flux 

observations from the 228 tower calibration sites: 1) the L4C GPP model outputs were 

fitted to the tower GPP observations; 2) the RE model outputs were then fitted to the 

tower RE observations using the new estimates from the calibrated GPP model; 3) the 

NEE ubRMSE estimates were then fitted to NEE RMSE computed using the newly 

calibrated model NEE vs the tower NEE observations.  Calibrated parameter values are 

given in Table 5.4. The L4C model fitted parameters for GPP included εmax, VPDmin, 

VPDmax, TMINmin, TMINmax, SMRZmin, and FTmult; the model RE fitted parameters 

included Faut, and SMSFmin (Table 5.5).  The model parameters were confined to pre-
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defined realistic bounds, and were fixed at default values if constraints were not well 

represented by the tower calibration sites (e.g. VPD for tropical EBF rarely exceeds 3 

kPa).  All optimizations were fitted using least-squares non-linear regression.  

After fitting the L4C TCF model, I performed a GPP model input sensitivity 

analysis to determine the relative explanatory value of each input variable relative to 

tower GPP.  The model was run for six different combinations of input variables 

including: full model with all inputs, without FT, without TMIN, without SMRZ, without 

VPD, and finally without EMULT (i.e., with APAR only).  Model skill was evaluated 

using Pearson correlation relative to tower GPP for sites dominated by each plant 

functional type.  Correlations were computed using data pooled from across each site, 

indicating across-site explanatory skill, and were computed as averages across sites, 

indicating within-site explanatory skill.   

Soil moisture and temperature inputs to the L4C TCF model for the calibration 

period (2001-2012) were provided by the SMAP L4_SM NRv4 dataset.  Remaining daily 

surface meteorological inputs were provided by the MERRA reanalysis, which uses the 

same GEOS-5 land model as the NRv4 dataset (Section 5.2.2).  MODIS land cover and 

8-day FPAR inputs to the L4C TCF model were available for the calibration period.  A 

mean daily climatology of all model inputs was derived from the longer (2001-2012) data 

records and used for L4C TCF model calibration and initialization.   

The L4C TCF model SOC values were initialized to steady-state conditions 

during the SMAP pre-launch phase using the daily input climatology.  The resulting L4C 

NEE source/sink strength thus depends on the effective differences of current conditions 

versus those from the recent (2001-2012) period used to define the SOC pool available 
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for decomposition and RH.  Because most ecosystems are not in steady-state (Baldocchi 

2008; Carvalhais 2010), the L4C model tends to underestimate the effective carbon sink 

strength indicated from tower observations.  This results in L4C RE and NEE as high-

biased and low-biased, respectively, relative to most tower observations in undisturbed 

ecosystems (Carvalhais 2010).  To mitigate these site-to-site biases when calibrating RE 

against tower data, I determine the 95th percentile of RE from each tower site and 

substitute this quantity as a constant effective SOC factor ( C ) during L4C model 

calibration: 

i iC k C≅∑ , (5.11) 

This procedure is imperfect because Cfast is seasonally dynamic (i.e. has sub-annual 

turnover time), but for practical purposes it reduces the effective model bias during 

calibration.  

 After calibration, L4C SOC levels were initialized to steady-state conditions using 

two steps.  In the first step, I analytically solved Eqns. 6-8 using the L4C Calib inputs. 

This solution provided steady-state annual mean SOC values.  In the second step, these 

values were used to initialize a numerical solution (i.e. “spin-up”), which cycles the input 

MERRA, NRv4, and FPAR climatologies until the annual NEE is within ±1 g C m-2 y-1.  

Since the analytical values were quite close to the numerical steady state (e.g. closer for 

Cslow than Cfast, because Cfast has a larger seasonal cycle), this procedure usually required 

only a few (≤10) annual cycles. This resulted in a global 1-km SOC map for each day of 

a climatological year, which was then used to initialize L4C Ops for the March 31, 2015 

beginning of the SMAP operational record. 
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5.2.5 Multi-tier Validation Strategy 

The targeted performance metric for the L4C product is to estimate NEE at the 

level of uncertainty commensurate with in situ tower measurement based observations 

(ubRMSE ≤ 1.6 g C m-2 d-1 or 30 g C m-2 y-1). The L4C product accuracy was primarily 

assessed against independent CO2 flux measurement based observations from a global 

network of 26 tower core validation sites (CVS) having concurrent overlapping 

observations with the L4C operational record for the March 31, 2015 to Dec. 31, 2015 

period (Table 5.6; Figure 5.2).   

The L4C operational product was also verified against other similar global 

observational benchmarks, including MOD17 GPP (Running 2004), Max Plank Institute 

Model Tree Ensemble (MPI-MTE) ecosystem fluxes (Jung 2010), NOAA CarbonTracker 

biological flux (Peters 2007), and Solar Induced canopy Fluorescence (SIF) from the 

ESA GOME-2 sensor on the MetOp-A satellite, which was used as a proxy for global 

GPP (Guanter 2013).  GOME-2 provides Level 3 global monthly 734 nm – 758 nm 

(Channel 4) SIF retrievals on a 0.5° × 0.5° grid extending from 2007-present (Joiner 

2013). The GOME-2 record was selected for this study over other SIF observations, 

including the NASA Orbiting Carbon Observatory (OCO2; Frankenberg 2014), because 

of the longer record and consistent global gridding available from GOME-2.  

I compared L4C effective NEE source/sink patterns against alternative NEE 

estimates derived from NOAA CarbonTracker atmospheric transport model inversions of 

global CO2 flask measurements (Peters 2007).  CarbonTracker adjusts continental-scale 

land and ocean carbon flux magnitudes using EnKF data assimilation combining TM-5 

wind transport simulations with atmospheric CO2 flask measurements, and adjusted using 
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estimated CO2 contributions from anthropogenic and fire emissions. CarbonTracker’s 

sub-continental spatial biospheric flux patterns are based on the GFED-CASA land 

model, which provides both NEE prior conditions and estimated fire CO2 emissions, 

whereas the ecoregion-scale flux magnitudes are adjusted using CarbonTracker’s the CT 

atmospheric inversion (van der Werf 2006).  Comparing L4C NEE with the 

CarbonTracker biospheric flux provides an atmospheric perspective and a means for 

evaluating L4C potential to inform future inversion studies. 

I compared the alternative MOD17 GPP dataset and the Max Plank Institute 

Model Tree Ensemble (MPI-MTE) GPP, RECO, and NEE datasets for comparison with 

L4C.  MOD17 uses a LUE model similar to L4C but lacking a soil moisture constraint 

and, unlike L4C, was not calibrated using daily tower flux data (Running 2004).  By 

contrast, MPI-MTE relies on a machine learning approach rather than a LUE model and 

was calibrated using the same La Thuile flux tower dataset as L4C (Jung 2010).  MPI-

MTE provides two estimates of GPP, one derived using RECO estimates based on night-

time fluxes from Reichstein (2005; abbreviated MR), and the other based on the relation 

between GPP and incoming radiation from the method of Lasslop (2010; abbreviated 

GL).  The MOD17, MPI-MTE, and L4C grids were resampled to monthly 0.5° × 0.5° and 

1° × 1° grids to compare with the SIF and CarbonTracker grids, respectively. 

The L4C SOC outputs were compared with independent SOC estimates derived 

from global and regional soil inventory records, including IGBP-DIS global and NCSCD 

northern polar SOC maps (Global Soil Data Task Group 2000; Hugelius 2014).  Within 

the soil column, the largest SOC levels are generally found within surface soil layers, 

declining exponentially with depth (Jobbagy & Jackson 2000). The IGBP-DIS and 
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NCSCD SOC values represent the top 1 m soil layer and were systematically decreased 

by a factor of 1/3 to approximate surface (< 10 cm) soil conditions represented by the 

L4C SOC outputs.     

5.2.6 Model Sensitivity Analyses 

I performed two types of model sensitivity analyses to quantify the impact of soil 

moisture on L4C derived carbon fluxes.  First, I ran L4C Calib using the daily 

climatology inputs and incrementally removed the model soil moisture constraints to 

investigate their individual impact on the L4C estimated annual GPP and RH fluxes.  

Since RE is impacted by both GPP and RH, I focused on GPP and RH separately (rather 

than RE) to decouple their differential responses to soil moisture.  Next, to assess the 

impact of SMAP observations on the carbon model calculations, I compared the L4C Ops 

record against L4C Open Loop simulations derived using NRv4 inputs without the 

influence of SMAP. The L4C Ops, L4C Open Loop, and L4C Calib results were then 

evaluated against the CVS tower daily carbon flux observations.  A guiding hypothesis 

for the model sensitivity analysis was that the SMAP informed L4C Ops simulations 

should show similar or better accuracy than the L4C Open Loop simulations derived 

without the benefit of SMAP observations and also should outperform the L4C Calib 

climatological predictions.  A similar approach was employed by the L4SM team to 

evaluate impacts of the L4SM data assimilation using a different set of soil moisture 

validation sites (Reichle 2016c). 
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 RESULTS 

5.3.1 L4C Calibration 

The L4C TCF model optimization tends to fit the constraint function along the 

outer edge of the relationship between each input field (VPD, SMRZ, and TMIN) and 

effective EMULT computed by inverting (5.3) using tower GPP (Figure 5.3).  The 

constraining edge is clearly defined for VPD (Figure 5.3a) for the shrubland PFT class.  

However, the constraint function for TMIN has fitted TMINmin much lower than the 

freezing point (273 K) as expected based on Figure 5.3b (Table 5.4).  Unscaled SMRZ 

displays no distinct constraint and carries no weight in the optimization (i.e. SMRZmax 

fitted below the lower range of SMRZ). Rescaled SMRZ shows a much more distinct 

constraining boundary and more realistic value for SMRZmax (Figure 5.3; Table 5.4).  

Fitted parameter values for the full L4C model and all PFT classes are given in Table 5.4 

alongside a model parameter glossary (Table 5.5). 

Comparing L4C GPP performance amongst model runs with alternative input 

fields indicates the relative explanatory skill of each input field across plant functional 

type (Figure 5.4).  TMIN is a relatively important predictor for all plant functional types, 

showing a consistent correlation drop when excluded.  TMIN was a notable predictor of 

across-site GPP variability for productive PFTs including cereal and broadleaf crops, 

deciduous broadleaf forest, and especially for evergreen broadleaf forests.  VPD was a 

stronger predictor for evergreen needleleaf, evergreen broadleaf, and shrublands; a 

somewhat weak predictor for deciduous broadleaf forests and grasslands; and was not a 

significant predictor for deciduous needleleaf forest and croplands.   SMRZ had a 
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significant impact on grasslands and shrublands, but little impact on other PFTs.  FT 

showed little significant impact for any PFT.     

5.3.2 Comparison with Core Flux Sites 

The L4C Ops overall mean NEE RMSE was 1.04 g C m-2 d-1 and NEE ubRMSE 

was 0.79 g C m-2 d-1 relative to the CVS tower carbon flux benchmark measurements 

(Table 5.7). The SMAP L4C targeted accuracy threshold for NEE is ubRMSE ≤ 1.6 g C 

m-2 d-1 mean across all sites, so the overall site mean NEE ubRMSE is well within this 

threshold.  The L4C GPP results showed the highest correlation with the tower 

observations, followed by RE, while NEE showed the lowest correlations relative to the 

tower observations. The RMSE differences were generally proportional to the size of the 

carbon flux, with GPP and NEE having the highest and lowest RMSE levels, 

respectively.  In contrast, NEE shows a somewhat larger though non-significant  (p > 

0.05) correlation increase than GPP when the L4C Ops and L4C Calib climatology 

results are compared, whereas RE is generally consistent between the L4C Ops and L4C 

Calib results.  Likewise, no significant correlation skill differences were observed 

between L4C Ops and L4C Open Loop.  Example L4C Ops time series for two tower 

locations with widely different climate and moisture conditions (US-Ivo and US-SRM) 

indicate that L4C Ops reproduces both the seasonal cycle and shorter-term variability of 

the tower carbon flux observations (Figure 5.5).   

Two sites (CA-Oas and US-PFa) exceed the targeted (1.6 g C m-2 d-1) ubRMSE 

performance threshold for L4C Ops NEE, with respective ubRMSE differences of 2.06 

and 2.13 g C m-2 d-1. Two other sites (AU-ASM and AU-Stp) show negative correlations 

between L4C and tower observations for GPP and NEE, respectively (R = -0.23 and -
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0.19; Figure 5.6).  Both CA-Oas and US-PFa towers are located in productive deciduous 

broadleaf forests.  CA-Oas is located within an aspen grove surrounded by spruce forest, 

so the L4C model classifies the overlying 9-km tower grid cell as ENF dominant based 

on the MODIS land cover inputs.  The US-PFa site is surrounded by wetlands which are 

not identified in the MODIS PFT classification, although the L4C model classifies the 9-

km tower grid cell as DBF dominant.  The small negative correlations for the AU-ASM 

and AU-Stp sites occur because the primary growing season at these arid sites is between 

January and March, which falls outside of the April-December study period such that the 

GPP and NEE observations are near zero with little variability. 

The L4C results had higher monthly correlations with tower site GPP and SIF 

than MOD17, and the correlation of SIF with tower site GPP was substantially lower (R 

= 0.85 vs. R = 0.63 and R = 0.81, respectively; Table 5.8).  L4C maintained a relatively 

high correlation with SIF and MOD17 (R = 0.73 and R = 0.85, respectively).  Example 

time-series of L4C, SIF, and MOD17 are shown for the Tonzi Ranch California oak 

savannah (US-Ton; Figure 5.7).  The three time-series generally follow the seasonal cycle 

of tower GPP, although SIF shows substantial variability about the seasonal cycle.  The 

three time-series also show a negative anomaly relative to the interannual mean seasonal 

cycle in agreement with anomalously low tower GPP responding to severe drought 

conditions during the spring and summer of 2015 (Figure 5.7b). 

5.3.3 L4C Uncertainty Metric Assessment  

Comparison of the NEE ubRMSE QA metric against observed model and tower 

ubRMSE differences for the tower calibration sites show favorable correspondence for 

ubRMSE ≤ 2 g C m-2 d-1 (Figure 5.8a).  However, the estimated ubRMSE QA metric 
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shows apparent saturation and degraded performance at higher error levels (above ≈2 g C 

m-2 d-1), especially for relatively productive ENF, DBF, CCR and BCR cover types.  

Nevertheless, a similar comparison against the independent CVS observations shows 

favorable model correlation (R2 = 0.71; p<0.01), indicating that the NEE ubRMSE QA 

metric provides a reasonable indicator of the site-to-site variability in L4C TCF model 

accuracy (Figure 5.8b). 

The global L4C NEE QA pattern indicates that model ubRMSE accuracy tends to 

scale proportionally with overall ecosystem productivity (Figure 5.9).  The estimated 

ubRMSE results indicate that the targeted 1.6 g C m-2 d-1 accuracy threshold for NEE is 

met for 66 % of the global domain and 83 % of the northern domain (≥45 °N). The 

highest estimated error occurs in relatively productive croplands, temperate deciduous 

forests, and tropical evergreen broadleaf forests, where the NEE ubRMSE typically 

exceeds 1.6 g C m-2 d-1.  However, redefining estimated model uncertainty as a 

proportion of the estimated total carbon flux indicates that a 30 % relative error (i.e. NEE 

ubRMSE over the sum of GPP and RE) threshold is met for 82 % of the global model 

domain; these results indicate that the L4C product provides meaningful accuracy in 

many productive areas even though the estimated ubRMSE levels may exceed the 1.6 g C 

m-2 d-1 threshold.   

5.3.4 Comparison with GOME-2 SIF 

The L4C Calib GPP and GOME-2 SIF derived seasonal climatology results show 

generally consistent global patterns (R = 0.83; Table 5.9), although L4C results indicate a 

somewhat longer growing season in some regions (Figure 5.10).  Poleward of 35°N, SIF 

and GPP show close agreement in apparent growing season onset, peak and duration.  
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From 20°N - 35°N, the L4C results indicate a longer and more persistent growing season 

than SIF, with increasing difference toward the tropical southern portion of this region.  

From 5°S - 15°N, the L4C results indicate peak growing season productivity during 

August and September, while the GOME-2 SIF results indicate a seasonal productivity 

minimum during this period.  In contrast, poleward of 5°S, the L4C GPP and GOME-2 

SIF results show similar peak timing and seasonality, although the L4C results show a 

somewhat longer growing season in the 35°S - 45°N region.  

MPI-MTE and MOD17 GPP seasonal climatologies had somewhat higher and 

lower respective correlations with SIF (R = 0.85 and R = 0.79, respectively; Table 5.9) 

relative to L4C Calib.  MPI-MTE matches SIF seasonal patterns more closely than L4C 

in the 20°N - 35°N latitude zone, whereas L4C matches SIF more closely in the 35°N - 

45°N zone. Tropical (5°S - 15°N) seasonal patterns are more similar amongst the GPP 

datasets than any individual dataset relative to SIF, with L4C Calib showing intermediate 

GPP between MOD17 and MPI-MTE.   

The L4C Calib results show larger seasonal GPP amplitude and annual mean than 

MOD17 and MPI-MTE across much of the globe (Figure 5.11).  Relative to MOD17, 

L4C shows larger seasonal amplitude in the central US croplands, arid Asian mid-

latitudes, India, Australia, and savannah portions of tropical and sub-tropical South 

America and Africa. Relative to MPI-MTE, L4C also shows larger amplitude in central 

US croplands, Asian mid-latitudes and Australia, but results are more mixed for South 

America and Africa.  The L4C results generally had a somewhat smaller seasonal cycle 

across the Eurasian boreal latitudes relative to MOD17 and MPI-MTE, but has a larger 

seasonal cycle than MPI-MTE and a smaller cycle than MOD17 over the North American 



 181 

boreal latitudes.  L4C also had a somewhat smaller seasonal cycle over central Africa 

relative to MOD17 and MPI-MTE. 

The L4C results show the largest interannual monthly variance about the mean 

seasonal cycle in global arid regions, central US, and portions of the tropics (Figure 

5.12a).  MPI-MTE shows similar patterns of variability, but with little year-to-year 

variability in the tropics (Figure 5.12c). In contrast, MOD17 shows its highest variance in 

the tropics and also shows higher variability in northern high-latitudes than L4C (Figure 

5.12b).  SIF shows its highest variance in South America, the west coast of Africa, and 

Southeast Asia, with relatively low and uniform variance throughout the rest of the globe.  

As such, overall SIF global patterns substantially disagree with the three GPP datasets, 

although SIF corroborates high MOD17 variance in South America (Figure 5.12d). 

5.3.5 Comparison with CarbonTracker Bioflux 

The L4C Calib NEE and CarbonTracker biological flux results show coherent 

mean seasonal cycles (i.e. climatologies) for all latitudes, and similar latitudinal gradients 

(R = 0.60; Table 5.10). However, the timing, length, and depth of the estimated CO2 

uptake periods are most consistent poleward of 30°S with notable L4C and 

CarbonTracker differences elsewhere (Figure 5.13).  Poleward of 30°N, the 

CarbonTracker results indicate earlier CO2 uptake onset, earlier peak uptake, and larger 

fall CO2 release relative to L4C NEE.  Between 0°-30°N, CarbonTracker shows greater 

CO2 release prior to CO2 uptake onset.  Between 0°-30°S, the L4C Calib NEE results 

show a longer and deeper CO2 uptake period directly followed by peak CO2 release from 

August to September, whereas CarbonTracker indicates a relatively short and shallow 

uptake period followed by peak CO2 release from October to November.  



 182 

 The L4C Calib NEE seasonal cycle matches CarbonTracker biological flux much 

more closely than MPI-MTE NEE and NEE computed using MOD17 with MPI-MTE 

RECO (R = 0.53 and R = 0.36, respectively; Table 5.10).  In contrast, the MPI-MTE 

NEE seasonal cycle closely resembles the MPI-MTE GPP seasonal cycle, indicating only 

limited area of seasonal CO2 release relative to CarbonTracker, and an especially strong 

CO2 sink in the tropics.  Although MOD17 (with MPI-MTE RECO) shows a somewhat 

weaker global sink than MPI-MTE NEE, the pattern shows little global resemblance to 

either CarbonTracker or MPI-MTE NEE.  Notably, despite high GPP agreement (R = 

0.99; Table 5.9), the MPI-MTE GL method indicates somewhat different effective global 

RECO patterns than MPI-MTE MR GPP method, which correlate better with 

CarbonTracker (R = 0.53 vs. R = 0.49, respectively; Table 5.10). 

 The L4C, MOD17, and MPI-MTE derived, NEE interannual monthly variance 

about the seasonal cycle resemble the corresponding patterns shown by their respective 

GPP datasets (Figure 5.14a-c).  In contrast, CarbonTracker indicates the largest-year-to-

year differences in the central portion of North America and somewhat lower variance 

across mid-latitude Eurasia.  Notably CarbonTracker shows little variance in Australia 

and India, in relative disagreement with the other three datasets.  CarbonTracker shows 

moderate variability in southern Africa and South America indicating some agreement 

with the other three datasets in these regions.  In absolute terms, the CarbonTracker 

seasonal cycle and interannual variance are substantially larger than L4C NEE, MPI-

MTE NEE, and MOD17 NEE, implying a larger and more variable land CO2 sink. 
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5.3.6 Comparison with Soil Organic Carbon Maps 

The L4C Calib results generally reproduce the global SOC patterns indicated 

from the soil inventory records, including relatively higher SOC stocks in the high 

northern latitudes relative to the mid-latitudes. However, several discrepancies were 

observed (Figure 5.15a).  In tropical and arctic regions the L4C derived SOC stocks are 

somewhat less than the IGBP and NCSCD inventory records indicate (Figure 5.15b).  In 

the circumpolar boreal latitudes (50°-60°N), the L4C results show contrasting regions of 

high- and low-bias but similar overall zonal average SOC stocks relative to the IGBP 

record. The L4C SOC distribution peaks in the boreal forest zone (50°-60°N), whereas 

the SOC distributions from IGBP and NCSCD peak near 65°-70°N. Notably L4C SOC 

low-bias relative to IGBP in boreal and artic regions (50°-70°N) is associated with the 

prevalent spatial distribution of extensive wetlands characterized by thick organic 

sediments (Hugelius 2014).  Although the inventory records show similar mean SOC 

polar latitudinal gradients, considerable differences in SOC spatial patterns also occur 

between the IGBP and NCSCD records.  The NCSCD record may be more accurate since 

it contains additional ground samples, and estimation focused on high-latitude conditions 

particularly including wetland soil types (Hugelius 2014); however, a recent comparison 

with a radar-based estimate has shown considerable over-estimation in many areas 

(Bartsch 2016).   

5.3.7 Soil Moisture Sensitivity Analysis 

The L4C Calib climatological model sensitivity analysis indicates that root zone 

soil moisture (SMRZ) has substantial impact on annual GPP (≥30 % annual difference) 

over approximately 12 % of the global model domain and some impact (≥5 % annual 



 184 

difference) over 38 % of the global domain focused on drier climate areas (Figure 5.16a).  

The GPP results reflect the direct impact of soil moisture on estimated productivity in 

addition to other direct and indirect moisture constraints contributed from the model 

FPAR and VPD inputs.  Atmospheric VPD has relatively more widespread impact on 

estimated GPP than SMRZ, with notable importance for tropical “dry” (seasonal) forests 

including Africa, and also for boreal forests, particularly in North America (Figure 

5.16b). Moisture constraints from SMRZ and VPD show little impact on GPP for 

broadleaf crops, deciduous needeleaf forests, and tropical forests (with the exception of 

central Africa), although the L4C flux tower calibration dataset lacked DNF tower site 

representation.  

The impact of surface soil moisture (SMSF) on RH is much more widespread 

than the root zone soil moisture impact on GPP (Figure 5.16a, Figure 5.16c). These 

results are consistent with the larger number of environmental controls influencing the 

L4C GPP (and RA) calculations, whereas only SMSF and soil temperature are used as 

the primary environmental controls on model estimated SOC decomposition and RH.  

Surface soil moisture has little impact on RH in equatorial tropical forests which lack a 

pronounced wet season.  

The L4SM soil moisture analysis increment indicates that SMAP observations 

most impact L4SM in arid and semi-arid regions, which generally align with higher L4C 

soil moisture sensitivity (Figure 5.16d).  However, L4SM SMSF analysis increment 

variability (i.e. data assimilated SMSF vs. forecast SMSF) is relatively small compared to 

overall soil moisture variance because the L4SM data assimilation affects only TB 

anomalies and therefore mostly affects sub-seasonal soil moisture variations.  Likewise, 
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the largest L4C Ops and L4C Open Loop differences occur in arid regions (Figure 5.17).  

GPP shows relatively larger soil moisture sensitivity than NEE because the GPP and RH 

responses partially offset each other in the residual NEE term (Figure 5.17a).  The L4C 

NEE response patterns were generally similar to GPP, but with notable exceptions, 

including Southern Africa, the northern Sahel and circumpolar boreal forest where the 

RH response dominates the NEE pattern (i.e., showing positive anomalies in GPP and 

NEE; Figure 5.17b).    

 

 DISCUSSION 

5.4.1 L4C GPP Calibration and Input Data Evaluation  

 Root zone soil moisture had a substantial impact on L4C TCF model skill for 

grassland and shrubland PFT, but only if rescaling is applied (Figure 5.3 and Figure 5.4).  

These soil moisture patterns and the relatively larger impact of VPD for forested PFT 

relative to grassland and shrubland are consistent with another recent study examining the 

drought sensitivity of half-hourly flux data to VPD and soil moisture at Ameriflux sites 

(Novick 2016).  The lack of discernable FT impact might be a result of the step-function 

assumed for the FT constraint.  This constraint is likely too severe and immediate, 

because plant phenological release from freezing conditions and response to frozen tissue 

damage may not immediately impact GPP.  

 TMIN has substantial explanatory skill for GPP amongst-site variability, 

especially for evergreen broadleaf forests (Figure 5.4).  TMIN skill is generally largest 

for the most productive PFT types (including evergreen broadleaf forest, deciduous 
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broadleaf forest, cereal crops, and broadleaf crops) and accompanied by a tendency for 

the model to fit rather shallow-sloped TMIN constraints with TMINmin parameter much 

less than the freezing point (273 K) and εmax higher than might be expected for each PFT 

as reported in the literature.  This shallow slope puts a larger-than-expected penalty on 

high GPP points when TMIN is above the freezing point (usually >280 K).  Much larger 

pooled-site correlations relative to site-average correlations, indicate that evergreen 

broadleaf forests have much larger across-site GPP variability than among-site 

variability.  Also, the large impact of TMIN indicates that TMIN is a strong predictor of 

across-site GPP variability for these forests.  Evergreen needleleaf forests have higher 

site-average correlations relative to pooled-site correlations because the seasonal variance 

of each site is larger than the across-site spatial variance.  Taken together, these 

observations suggest that predictability of across-site variance is an important 

consideration for fitting the light use efficiency model, and that TMIN generally has more 

power to explain across-site variability in effective maximum light use efficiency, rather 

than accounting for seasonal cold conditions within each site as generally expected.  

5.4.2 L4C Uncertainty Evaluation 

The CVS flux tower comparisons indicate that L4C Ops captures daily-to-

seasonal variations and regional patterns in tower observed terrestrial carbon fluxes 

spanning a broad range of global climate and vegetation conditions (Figure 5.5; Figure 

5.6).  The L4C Ops derived GPP seasonality was generally proportional to RE, resulting 

in relatively lower NEE seasonality (Figure 5.13).  The NEE results showed generally 

lower RMSE than GPP or RE relative to the tower observations because of smaller 

characteristic magnitude of the residual NEE flux (Table 5.7).  Likewise, higher 
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correlations between the tower observations and L4C results for GPP and RE relative to 

NEE were largely due to the smaller seasonal cycle of NEE rather than actual model skill 

differences (Figure 5.13).  However, somewhat lower correlations between measured and 

modelled RE and NEE relative to GPP were partially impacted by model SOC 

mismatches relative to local site conditions which affect both L4C derived carbon fluxes 

and estimated error (ubRMSE) variance.  Larger-than-expected model carbon flux 

ubRMSE and negative correlations with tower observations for some CVS locations were 

attributed to land cover (PFT) differences between the local tower footprint and MODIS 

1-km land cover map used to define PFT heterogeneity in the L4C model, or to a limited 

(Apr-Dec, 2015) study period that missed the primary growing season for some sites 

(AU-ASM and AU-Stp). More productive tower sites (CA-Oas and US-PFa) also had 

relatively larger carbon fluxes and associated ubRMSE levels, although relative model 

error, expressed as a proportion of the total estimated carbon flux magnitude, indicated 

meaningful model accuracy across a broad range of global vegetation, productivity and 

climate conditions (Figure 5.8).   

The NEE ubRMSE QA results for L4C Ops and L4C Calib indicate a general 

increase of model error with estimated carbon flux magnitude over the global domain 

(Figure 5.9).  However, the model calibration results indicate that the explanatory power 

of the NEE QA metric saturates for higher ubRMSE levels beyond ≈2 g C m-2 d-1, which 

is generally characteristic of productive croplands and forests (Figure 5.8a).  Croplands 

often contain diverse crop types, riparian areas and fallow fields, whereas forestland is 

often interspersed with cropland and pasture, and might be composed of different age 

classes and recovery stages from prior land use change, burning or harvesting. The 
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resulting sub-grid spatial heterogeneity in vegetation and soil conditions will tend to 

increase both random and bias errors in estimated carbon fluxes, leading to degraded 

ubRMSE accuracy. Other factors such as sub-grid PFT spatial heterogeneity and 

disturbance history likely dominated overall model uncertainty for such locations.  

Despite these limitations, the CVS results indicate that the L4C Ops ubRMSE QA metric 

provides a relatively robust measure of model NEE uncertainty (Figure 5.8b).  Prior 

studies using similar satellite data driven LUE models (Heinsch, et al., 2006) indicate that 

model input uncertainty is a major source of model error (up to 30%), whereas the L4C 

QA metric provides a daily estimate of the aggregate effects of model inputs and 

assumptions on product accuracy.   

5.4.3 L4C Evaluation Relative to SIF, CarbonTracker, and SOC Inventory Global 

Datasets 

The L4C Calib and CarbonTracker derived NEE climatologies were generally 

consistent over the global domain (Figure 5.13). However, some regions showed different 

NEE spatial and temporal patterns, which may reflect model differences in seasonal 

litterfall regimes. Model differences in underlying climatic drivers and control factors 

affecting GPP and RE also impact these patterns but likely to a lesser extent.  The CASA 

land model has a prescribed litterfall phenology (Randerson 1996) and provides the 

estimated monthly NEE priors used in the CarbonTracker inversion; CASA model NEE 

priors are responsible for most of the CarbonTracker sub-continental spatial variability.  

Unlike CASA, the L4C model has a daily time step and evenly distributes litterfall 

throughout the year (i.e. Lfall) in (5.6) and (5.7) constant for all t. Since NEE peak uptake 

is mainly driven by GPP, the relatively early CarbonTracker uptake onset and seasonal 
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peak in northern (>40°N) regions are at odds with both GOME-2 SIF and L4C Calib GPP 

climatologies which suggest that the ecosystem carbon uptake onset and peak should 

occur later (Figure 5.13). Nevertheless, L4C Calib carbon flux patterns generally align 

with typical GPP and NEE seasonal trends indicated from the GOME-2 SIF and 

CarbonTracker NEE benchmark datasets.  

Changes in NEE trends over the long-term (several years) will result in changes to 

SOC stocks. Although comparisons of dynamic models, such as L4C, with inventory-

based SOC maps are problematic, understanding their differences potentially gives 

insight regarding model and sampling uncertainty, and driving processes. The relative 

L4C under-estimation of SOC in the high latitudes is attributable to a lack of detailed 

information on wetlands (Figure 5.15).  The L4C Calib results show peak SOC 

accumulation in the boreal latitudes because of the combination of moderate litterfall and 

cold conditions favoring SOC accumulation.  Matching the larger SOC levels indicated 

from the soil inventory data would therefore require lengthening of L4C effective SOC 

turnover times for boreal and arctic latitudes.  The apparent difference in L4C derived vs. 

effective turnover times may reflect the prevalence of boreal and tundra wetlands and 

peatlands, and associated anaerobic soil conditions, or differences in SOC quality (Ise & 

Moorcroft 2006) that may not be effectively represented by the model inputs and 

assumptions.   

Although SOC may provide some insight for improving L4C RH estimates, the 

potential for improvement is ultimately limited by several factors. SOC development 

generally occurs over long periods (i.e. thousands of years or more) subject to changing 

climate and ecological conditions, so L4C model based SOC estimates derived from 
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recent satellite and meteorological records are expected to diverge from soil inventory 

records.  Wetlands and peatlands accumulate large SOC stocks, and are common in 

boreal, arctic, and equatorial (tropical) biomes where relatively large model and 

inventory discrepancies were found.  These areas are not well-represented by the global 

flux tower network, and there is little available flux information for robust L4C 

calibration of global wetland dynamics.  Furthermore, SOC characteristically shows large 

spatial heterogeneity in wetland regions influenced by surface and sub-surface soil 

moisture dynamics that exist beneath the resolution of coarser scale SMAP observations 

and model derived products (L4C and L4SM). New fine-scale radar-based remote-

sensing approaches for estimating soil carbon indicate approximately 25 % lower SOC in 

some arctic areas than indicated from NSCDC inventory records (Bartsch 2016).  

Considering such mismatches, inventory based SOC assessments may benefit from the 

comparison of climate-induced dynamics and spatial covariance metrics provided by the 

L4C product and other remote-sensing datasets.  

5.4.4 L4C Evaluation Relative to MOD17 and MPI-MTE Global Datasets 

 The L4C GPP and NEE perform reasonably well relative to MOD17, MPI-MTE, 

CarbonTracker and SIF independent benchmarks, and when each is compared to  flux 

tower observations.  With the exception of global SIF where the correlation of MPI-MTE 

was somewhat higher (Table 5.9), L4C generally had higher correlation than MOD17 and 

MPI-MTE relative to the benchmarks (Table 5.8, Table 5.9, and Table 5.10).  L4C also 

showed reasonable seasonal variability relative to MOD17, MPI-MTE, and the SIF and 

CarbonTracker global benchmarks.   The L4C results indicated larger seasonal range than 

MOD17 and MPI-MTE in the seasonally moisture-constrained regions and major 
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cropland regions (Figure 5.11).  This result is consistent with improved use of soil 

moisture information and flux tower calibration in L4C, because underestimated seasonal 

amplitude can be a symptom of relatively poorer model fit; however, although an 

indicator, this observation is not by itself sufficiently conclusive of an improved model.  

L4C also had substantially better agreement with CarbonTracker seasonality than MPI-

MTE NEE.  This result could be because L4C model logic is related to the underlying 

CASA model used as a prior in CarbonTracker.  Alternatively, a dynamic model such as 

L4C may inherently have more skill for estimating RECO and NEE relative to 

regression-type approaches, such as MPI-MTE which do not model SOC dynamics and 

therefore cannot account for seasonal limitation of substrate limitation for soil 

heterotrophic organisms.  

 L4C shows highest interannal GPP and NEE variability in arid regions (Figure 

5.12; Figure 5.14).  L4C innterannual variability was spatially similar to MPI-MTE, but 

generally larger than MPI-MTE variability, which indicates potential improvement in 

explanatory skill.  The L4C, MPI-MTE, and MOD17 NEE interannual variability spatial 

patterns tended to resemble their respective GPP spatial patterns.  However, the spatial 

interannual variability spatial patterns of SIF and CarbonTracker were largely 

inconsistent with one another and did not generally match the L4C, MPI-MTE, and 

MOD17 spatial patterns over the globe.  Additionally, MOD17 GPP and SIF indicate that 

ecosystem productivity interannual variability is highest in the tropics, whereas L4C, 

MPI-MTE and CarbonTracker indicate that interannual variability is largest in arid 

regions, savannahs, and central US croplands. These mismatches in spatial patterns of 

productivity interannual variability cast some doubt that these datasets show coherent 
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global sensitivities to recent interannual climate variations.  Nevertheless, MOD17, SIF, 

and L4C showed a coherent productivity response to the 2015 California drought, 

although the SIF monthly variability was quite noisy (Figure 5.7).  This indicates that 

despite mismatches in global interannual variability, the datasets do agree on anomalous 

conditions in certain regions.  More research will be required to understand the 

mismatches in global productivity interannual anomalies from these datasets and gain 

more confidence in estimated patterns of interannual variability in land-atmosphere CO2 

source-sink activity. 

5.4.5 Value of Soil Moisture and SMAP Observations 

The L4C Calib model sensitivity analysis indicates a widespread impact of soil 

moisture on terrestrial carbon fluxes (Figure 5.16).  Root zone soil moisture (SMRZ) 

primarily impacts GPP in arid regions, whereas surface soil moisture (SMSF) has a more 

widespread impact on RH.  SMRZ is used with VPD inputs to represent both soil water 

supply and atmospheric moisture demand controls on GPP.  SMRZ provides an 

additional impact on GPP extending beyond VPD controls over drier climates of the 

global domain, where the SMAP observations have generally greater impact on the 

GEOS-5 land model assimilation used to derive the L4SM soil moisture and temperature 

inputs. The impact of surface soil moisture (SMSF) on RH was more widespread than for 

GPP because SMSF provides the sole moisture constraint to the model RH calculations. 

RH also has an exponential dependence on temperature in the L4C model so that dry 

conditions have relatively greater impact on respiration when co-occurring with high 

temperatures. SMSF has generally larger dynamic variability than SMRZ so that RH 

shows larger daily variability in response to rapid wetting/drying of the surface soil layer.  
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Other recent studies have highlighted the importance of arid regions for 

controlling inter-annual variability of the global land carbon flux (Cleverly 2016; Zhao & 

Running 2010; Poulter 2014; Ahlstrom 2015). This global variability is strongly 

influenced by periodic wet and dry (drought) cycles, and concomitant effects on 

vegetation growth and NEE in dryland ecosystems, including grasslands, shrublands, and 

savannahs (Poulter 2014). In arid and seasonally-arid regions, RECO rapidly responds to 

rainfall (i.e. the so-called “Birch effect” (Unger 2010)) and in both arid and non-arid 

ecosystems, root exudates from trees and shrubs can provide “priming” effects increasing 

RE after soil wetting (Xu 2004).  Both effects underscore the importance of daily soil 

moisture for modeling RE and NEE fluxes.  In contrast, carbon flux spatio-temporal 

variability in humid biomes, especially forests, may be relatively more impacted by the 

interaction of drought with disturbance (fire, harvesting, etc.) and recovery processes, 

which are not explicitly modeled in the current L4C Ops product.  Saturated soils can 

inhibit RH by decreasing oxygen availability and causing anaerobic conditions (Ohta 

2014); however, inclusion of an inverse-parabolic RH response curve degraded the PFT-

specific L4C calibration fit in relation to the global tower calibration sites used in this 

study (e.g.Figure 4.5).  The lack of an apparent anaerobic response may be due one or 

more factors including a general lack of wetland representation and flooding in the 

FLUXNET tower site record used for model calibration; the relatively coarse (9km) 

resolution L4SM information used to define model soil moisture conditions may not 

effectively capture saturated or ephemerally flooded conditions, while plant root-

mediated oxygen transport may partially offset anaerobic conditions (Reddy & DeLaune 

2008).   
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The full global range of vegetation and climate conditions, including climate 

extremes, disturbance, and recovery, are generally under-sampled by the available flux 

tower network.  Since tower data were used to acquire process understanding through 

model calibration, the above global soil moisture sensitivity analysis is biased to the 

existing tower network (Schimel 2015; Beer 2010).  The relatively short time period used 

in this study restricts a more comprehensive soil moisture sensitivity assessment because 

many locations (e.g. tropical evergreen broadleaf forests) may only respond to extreme 

events that that occur infrequently and may not be represented in the relatively recent 

(2001-2012) MODIS and NRv4 records used to derive the L4C simulations.  These types 

of sampling biases affect all L4C results in this study, have been noted by other global 

studies and are largely unavoidable (Beer 2010; Jung 2010).  Additionally, methods used 

to partition GPP and RE components of NEE from tower eddy covariance CO2 flux 

measurements are modelled following various assumptions and therefore do not truly 

represent “observations” (Desai 2008). Each tower’s effective spatial footprint changes 

with wind direction and may be inconsistent with the associated 1-km L4C modeling 

pixel. Effective SOC storage mismatches between the L4C model steady-state 

initialization cause further uncertainty.  The use of model cross-comparisons and 

rescaling with alternative observation benchmarks such as GOME-2 SIF and 

CarbonTracker provide for additional model validation, these somewhat indirect 

comparisons can also be difficult to interpret. 

The accuracy and performance of L4C Ops was on par with the L4C Open Loop 

and only marginally better than the L4C Calib climatology at the core validation sites 

(Table 5.7).  These results indicate only a relatively small benefit of the SMAP 
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observations on the L4C calculations based on the limited data record examined in this 

study.  The results are also impacted by the inclusion of CVS locations where low soil 

moisture is not generally limiting to ecosystem carbon fluxes.  The relatively early 

mission phase currently limits capabilities for a more robust assessment of the impact of 

SMAP observations on the L4C model skill.  These limitations include a relatively short 

SMAP operational record, which represented less than an annual cycle at the time of this 

study. The microwave emission model used for assimilating SMAP observations and 

L4SM production was necessarily calibrated using SMOS data during the SMAP mission 

prelaunch phase, and recent comparisons show significant global biases between SMOS 

and SMAP which inevitably lead to inefficiencies in the data assimilation system. 

Similarly, the L4C model was necessarily calibrated using NRv4 inputs (L4C Calib), 

which may dampen or bias results when confronted with SMAP informed L4SM soil 

moisture and temperature inputs used in the L4C Ops product.  Biases are particularly 

common for soil moisture datasets from both model and remote-sensing sources (Reichle 

2004), and perhaps more pervasive than for other meteorological fields such as air 

temperature and humidity (Yi 2011).  This is partly because global soil moisture fields 

have been historically poorly observed, and because soil moisture has generally large 

characteristic heterogeneity.  Such biases are problematic for L4C, especially if the 

magnitude of soil moisture bias exceeds its temporal variability, because these biases can 

lead to model calibration errors affecting the PFT-specific soil moisture constraint curves.  

Despite these limitations, the results from this study show clear and unique value of 

global soil moisture information to estimate terrestrial CO2 fluxes, with larger impacts in 

drier climates and areas with less vegetation cover where SMAP observations are 
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expected to have greater soil moisture sensitivity, and assimilation impact on land model 

based soil moisture estimates. Planned model calibration refinements and a continuing 

SMAP operational record are expected to lead to further improvements in L4C global 

accuracy and performance.  

 

 CONCLUSION  

The SMAP L4C product provides consistent, operational global daily estimates of 

ecosystem-atmosphere (CO2) fluxes, surface soil organic carbon stocks and their 

underlying environmental controls. Our initial global assessment using several 

independent observation benchmarks indicates that the L4C accuracy and performance is 

consistent with product design specifications and target accuracy requirements, and that 

the L4C product is suitable for a range of science investigations, including drought-

related impacts on vegetation growth and the terrestrial carbon cycle. The L4C product 

provides a new tool for monitoring global land carbon dynamics informed by model data 

assimilation of SMAP satellite observations with enhanced L-band microwave sensitivity 

to soil moisture and thermal conditions.  

The L4C product suite includes internally consistent estimates of NEE, 

component carbon fluxes (GPP and RH) and surface SOC stocks. Additional product 

variables include underlying environmental control factors influencing GPP and RH, and 

NEE ubRMSE QA metrics that provide enhanced diagnostic capabilities for analysis and 

attribution of estimated carbon fluxes and driving processes. The L4C model outputs are 

derived at a daily time step and 1-km resolution, capturing weather related daily 

variability at the level of a tower carbon flux measurement footprint.   
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The results of this study document the L4C accuracy relative to independent 

tower carbon flux observations.  The L4C results were also verified against other 

available carbon observation benchmarks including satellite based SIF from GOME-2, 

used as a surrogate for GPP; atmosphere transport model inversion constrained NEE 

estimates from CarbonTracker; other global GPP products from MOD17 and MPI-MTE; 

and global soil carbon inventory records. These results indicate that L4C performance is 

within the targeted accuracy threshold for NEE (ubRMSE ≤ 1.6 g C m-2 d-1 or 30 g C m-2 

y-1) over approximately 66 % of the global domain, and with larger absolute error but still 

meaningful accuracy (relative error ≤ 30 %) over 82 % of the global domain. The L4C 

product performance for estimated carbon fluxes is generally commensurate with the 

level of uncertainty associated with in situ tower carbon flux observations. Model 

comparisons with CarbonTracker indicate that the L4C results contain potentially new 

information for informing global carbon flux inversions, including linking NEE 

variability and underlying soil moisture and thermal constraints to ecosystem 

productivity, respiration and terrestrial carbon storage processes.  Model sensitivity 

analyses indicated that soil moisture adds significant new information for improving the 

estimation of terrestrial carbon fluxes and underlying environmental controls, especially 

in drier climate regions where SMAP observations are most informative for the L4SM 

data assimilation and where the land carbon flux shows large year-to-year variability.  

The L4C record will continue to benefit from continuing SMAP operations and ongoing 

sensor and model calibration refinements. The L4C product provides the means for 

addressing mission carbon cycle science objectives to improve understanding of the 

purported missing carbon sink on land, and link terrestrial water and carbon cycles. 
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TABLES 

Table 5.1: L4C standard output datasets available in L4C daily HDF5 granules (Kimball 
2016a; Glassy 2016).  Group and Dataset names correspond to HDF5 dataset paths (See 
Glassy (2016) for details).  Brackets indicate up to eight individual datasets (e.g. {1..8}) 
representing each of eight global MODIS PFT classes. Spatial format for all datasets is 9-
km EGv2 (1624 × 3856 grid cells; Brodzik (2012) and temporal sampling is daily unless 
otherwise specified in footnotes. Counts are temporally static as derived by ancillary 
MODIS (MOD12Q1) PFT inputs (See Table 5.4). Bit flag contains several fields, some 
which provide static information, and others provide daily information (See Glassy 
(2016) or HDF5 granule metadata Kimball (2016) for details). 
 

Group Dataset Units 
NEE nee_{mean, stdev} g C m-2 d-1 
NEE nee_pft{1..8}_mean g C m-2 d-1 
GPP gpp_{mean, stdev} g C m-2 d-1 
GPP gpp_pft{1..8}_mean g C m-2 d-1 
RH rh_{mean, stdev} g C m-2 d-1 
RH rh_pft{1..8}_mean g C m-2 d-1 

SOC soc_{mean, stdev} g C m-2  
SOC soc_pft{1..8}_mean g C m-2  
EC emult_mean % 
EC tmult_mean % 
EC wmult_mean % 
EC frozen_area % 
QA nee_rmse_mean g C m-2 d-1 
QA nee_rmse_pft{1..8}_mean g C m-2 d-1 
QA qa_count count 
QA qa_count_pft{1..8} count 
QA carbon_model_bitflag bit fields 
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Table 5.2: L4C input datasets used for the three L4C model runs (L4C Ops, L4C Calib, 
and L4C Open Loop).  Dataset names and units are described in L4C product 
documentation (Glassy (2016); See text for abbreviations). Derived inputs computed 
from native sources (listed in Table II) as follows:  SMSF and SMRZ in % Sat. units 
derived by dividing by ancillary porosity data provided by L4SM or NRv4; TMIN 
derived from daily minimum of 1-hourly T2M; FT for L4C Ops was computed using 
daily mean of 1-hourly TSURF for this study; VPD derived as the daily mean from 1-
hourly PS, QV2M, and T2M; PAR is derived from SWGDN assuming conversion factor 
of 0.45. 
 

Dataset Name Units Spatial 
Res. L4C Ops L4C Calib L4C Open 

Loop 
Plant functional Type 

(PFT) Class 1-km MOD12Q1 MOD12Q1 MOD12Q1 

Fraction of absorbed 
PAR (FPAR)  Dim. 1-km MOD15A2 MOD15A2 MOD15A2 

Surface soil moisture 
(SMSF)  % Sat. 9-km L4SM NRv4 NRv4 

Root zone soil 
moisture  
(SMRZ) 

% Sat. 9-km L4SM NRv4 NRv4 

Soil temperature 
(TSOIL) K 9-km L4SM NRv4 NRv4 

Minimum air 
temperature 

(TMIN)  
K 9-km GEOS-5 

FP MERRA  GEOS-5 FP  

Freeze-thaw state  
(FT) logical 9-km GEOS-5 

FP MERRA  GEOS-5 FP  

Vapor pressure deficit 
(VPD)  Pa 9-km GEOS-5 

FP MERRA  GEOS-5 FP  

Photo-synthetically 
active radiation  

(PAR) 
W m-2 d-1 9-km GEOS-5 

FP MERRA  GEOS-5 FP  
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Table 5.3: L4C input source data native formats used in L4C Ops, L4C Calib, and L4C 
Open Loop. Dataset names are specified from original data sources (See text for 
abbreviations): MOD12Q1 and MOD15A2 are available in sinusoidal projection tiles; 
NRv4 uses EGv2; MERRA and GEOS-5 FP use the geographic projection. 
 

Source Variables Spatial 
Resolution 

Temporal  
Resolution 

MOD12Q1 PFT 500-m Static 

MOD15A2  FPAR 1-km 8-day 
NRv4 SMSF, SMRZ, TSOIL 9-km 3-hourly 

MERRA SWGDN, QV2M, PS, T2M, 
TSURF  1/2° ×2/3° 1-hourly  

GEOS-5 FP SWGDN, QV2M, PS, T2M, 
TSURF  1/4° ×3/8° 1-hourly  
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Table 5.4: L4C parameter biome property lookup table fitted using La Thuile flux tower 
network (228 sites).  Glossary of parameter names and definitions given in Table 5.5. 
Plant Functional Type abbreviations: ENF = Evergreen Needle-leaf Forest; EBF = 
Evergreen Broad-leaf Forest; DNF = Deciduous Needle-leaf Forest; DBF = Deciduous 
Broad-leaf Forest; SHR = Shrubland; GRS = Grassland; CCR = Cereal Crops; BCR = 
Broad-leaf Crops. 
 

Parameter Units ENF EBF DNF DBF GRS SRB CCR BCR 
εmax [g C MJ-1] 1.64 1.96 1.20 1.54 1.51 2.03 2.55 2.50 

TMINmin [K] 240 251 245 249 254 240 250 271 

TMINmax [K] 311 320 314 302 294 319 319 301 

VPDmin [Pa] 1 13 1500 2 0 3 1 1500 

VPDmax [Pa] 3132 6421 7000 4389 4369 7000 6940 7000 

SMRZmin [% Sat.] 0 0 0 0 0 0 0 0 

SMRZmax [% Sat.] 27 7 6 5 90 88 68 22 

SMSFmin [% Sat.] -23 -50 0 -54 -47 -3 -29 -100 

SMSFmax [% Sat.] 129 5 63 137 99 66 123 96 

FTfrozen [dim.] 0.85 1 0.75 0.95 1 0.95 0.95 0.85 

FTthawed [dim.] 1 1 1 1 1 1 1 1 

TSOILβ0 [K] 308.56 308.56 308.56 308.56 308.56 308.56 308.56 308.56 

TSOILβ1 [K] 66.02 66.02 66.02 66.02 66.02 66.02 66.02 66.02 

TSOILβ2 [K] 227.13 227.13 227.13 227.13 227.13 227.13 227.13 227.13 

faut [dim.] 0.15 0.3 0.12 0.1 0.26 0.26 0.21 0.3 
ffast [dim.] 0.49 0.71 0.67 0.67 0.62 0.76 0.78 0.78 

fmed [dim.] 0.3 0.3 0.7 0.3 0.35 0.55 0.5 0.8 

kfast [d-1] 0.0303 0.0301 0.0331 0.0342 0.0222 0.0298 0.0286 0.032 

kmed [dim.] 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

Kslow [dim.] 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 0.0093 
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Table 5.5: L4C biome property lookup table parameter glossary with units and parameter 
descriptions.  Parameter values given in Table 5.1.  
 

 
 
 
 
 
 
 
 

Parameter Units Description 

εmax [g C MJ-1] Maximum optimal light use efficiency for Gross Primary Productivity 
(GPP) 

TMINmin [K] Air temperature (daily minimum 2 m level) where Gross Primary 
Productivity (GPP) fully constrained. 

TMINmax [K] Air temperature (daily minimum 2 m level) where Gross Primary 
Productivity (GPP) unconstrained. 

VPDmin [Pa] Vapor Pressure Deficit (daily average 2 m level) where Gross Primary 
Productivity (GPP) unconstrained. 

VPDmax [Pa] Vapor Pressure Deficit (daily average 2 m level) where Gross Primary 
Productivity (GPP) fully constrained. 

SMRZmin [% Sat.] Soil Moisture (daily average root zone) where Gross Primary Productivity 
(GPP) fully constrained. 

SMRZmax [% Sat.] Soil Moisture (daily average root zone) where Gross Primary Productivity 
(GPP) unconstrained. 

SMSFmin [% Sat.] Soil Moisture (daily average surface zone) where Heterotrophic 
Respiration (Rh) fully constrained. 

SMSFmax [% Sat.] Soil Moisture (daily average surface zone) where Heterotrophic 
Respiration (Rh) unconstrained. 

FTfrozen [dim.] Frozen soil constraint on Gross Primary Productivity (GPP). 
FTthawed [dim.] Non-Frozen soil constraint on Gross Primary Productivity (GPP). 

TSOILβ0 [K] Soil Temperature Arrhenius response curve parameter for Heterotrophic 
Respiration (Rh). 

TSOILβ1 [K] Soil Temperature Arrhenius response curve parameter for Heterotrophic 
Respiration (Rh). 

TSOILβ2 [K] Soil Temperature Arrhenius response curve parameter for Heterotrophic 
Respiration (Rh). 

faut [dim.] Fraction of Gross Primary Productivity (GPP) remaining after autotrophic 
respiration (i.e. NPP/GPP ratio). 

ffast [dim.] Fraction of daily litterfall entering metabolic Soil Organic Carbon (SOC) 
pool. 

fmed [dim.] Structural Soil Organic Carbon (SOC) pool carbon entering recalcitrant 
SOC pool as a fraction of structural pool Rh.  

kfast [d-1] Metabolic Soil Organic Carbon (SOC) optimal rate for Heterotrophic 
Respiration (Rh). 

kmed [dim.] Structural Soil Organic Carbon (SOC) rate for Heterotrophic Respiration 
(Rh) as a fraction of metabolic SOC rate. 

Kslow [dim.] Recalcitrant Soil Organic Carbon (SOC) rate for Heterotrophic 
Respiration (Rh) as a fraction of metabolic SOC rate. 
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Table 5.6: Eddy covariance flux tower core validation site and principle investigator (PI) 
list.  Investigators from these 26 sites made data available which met requirements for 
temporal overlap with the SMAP L4C data record from March 31, 2015 to December 31, 
2016.  Site names and abbreviations as provided by FLUXNET.  PFT for each tower 
location was determined by the overlying MOD12Q1 1-km pixel.  Shading indicates 
adjacent tower site records which share the same L4C 9-km grid cell.  RE flux estimates 
not available for FI-Sod and AU-GWW sites. 
 

Site Name PFT Location Lat. Lon. PI Affiliation 

FI-Sod Sodankyla ENF Finland 67.36 °N 26.64 °E M. Aurela Finnish Meteorol. 
Institute 

CA-Oas SK-Old Aspen DNF SK, Canada 53.63 °N 106.20 °W H. Wheater U. Saskatchewan 

US-ICt Imnavait Creek 
Tussock SHR AK, USA 68.61 °N 149.30 °W E.  Euskirchen U. Alaska, Fairbanks 

US-ICh Imnavait Creek 
Heath SHR AK, USA 68.61 °N 149.30 °W E.  Euskirchen U. Alaska, Fairbanks 

US-ICs Imnavait Creek 
Sedge SHR AK, USA 68.61 °N 149.31 °W E.  Euskirchen U. Alaska, Fairbanks 

US-PFa 
Park Falls 

WLEF Tall 
Tower 

DBF WI, USA 45.95 °N 90.27 °W A. Desai U. Wisconsin 

US-BZs Bonanza Creek 
Spruce ENF AK, USA 64.70 °N 148.32 °W E.  Euskirchen U. Alaska, Fairbanks 

US-BZb Bonanza Creek 
Bog ENF AK, USA 64.70 °N 148.32 °W E.  Euskirchen U. Alaska, Fairbanks 

US-BZf Bonanza Creek 
Fen ENF AK, USA 64.70 °N 148.31 °W E.  Euskirchen U. Alaska, Fairbanks 

US-Atq Atqasuk GRS AK, USA 70.47 °N 157.40 °W W. Oechel San Diego State U. 
US-Ivo Ivotuk SHR AK, USA 68.47 °N 155.73 °W W. Oechel San Diego State U. 

US-SRM Santa Rita 
Mesquite SHR AZ, USA 31.82 °N 110.87 °W R. Scott USDA Agric. Research 

Service 

US-Wkg 
Walnut Gulch 

Kendall 
Grassland 

GRS AZ, USA 31.74 °N 109.94 °W R. Scott USDA Agric. Research 
Service 

US-Whs Walnut Gulch 
Lucky Hills SHR AZ, USA 31.74 °N 110.05 °W R. Scott USDA Agric. Research 

Service 
US-Ton Tonzi Ranch SHR CA, USA 38.43 °N 120.97 °W D. Baldocchi U. California, Berkeley 
US-Var Vaira Ranch SHR CA, USA 38.41 °N 120.95 °W D. Baldocchi U. California, Berkeley 
AU-Whr Whroo SHR Australia 36.67 °S 145.03 °E J. Beringer U. Western Australia, 
AU-Rig Riggs Creek CCR Australia 36.65 °S 145.58 °E J. Beringer U. Western Australia, 
AU-Ync Yanco CCR Australia 34.99 °S 146.29 °E J. Beringer U. Western Australia, 

AU-Stp Sturt Plains GRS Australia 17.15 °S 133.35 °E J. Beringer 
L. Hutley 

U. Western Australia, 
Charles Darwin U. 

AU-Dry Dry River GRS Australia 15.26 °S 132.37 °E J. Beringer 
L. Hutley 

U. Western Australia, 
Charles Darwin U. 

AU-DaS 
Daly River 
Uncleared 
Savannah 

GRS Australia 14.16 °S 131.39 °E J. Beringer 
L. Hutley 

U. Western Australia, 
Charles Darwin U. 

AU-How Howard 
Springs GRS Australia 12.50 °S 131.15 °E J. Beringer 

L. Hutley 
U. Western Australia, 
Charles Darwin U. 

AU-
GWW 

Great Western 
Woodlands SHR Australia 30.19 °S 120.65 °E C. Macfarlane CSIRO 

AU-ASM Alice Springs SHR Australia 22.28 °S 133.25 °E J. Cleverly, 
D. Eamus U. Technology, Sydney 

AU-TTE Ti Tree East SHR Australia 22.29 °S 133.64 °E J. Cleverly, 
D. Eamus U. Technology, Sydney 
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Table 5.7:  L4C validation summary statistics from CVS comparisons.  Each statistic 
represents means taken across 26 tower sites for locations shown in Table 5.6 and 
corresponding to individual site statistics given in Figure 5.6.  RE unavailable for sites 
FI-Sod and AU-GWW, therefore RE mean statistics taken across 24 tower sites.  L4C 
model runs abbreviated as follows:  Ops indicates L4C with L4SM inputs (L4C Ops); OL 
indicates L4C with NRv4 inputs (L4C Open Loop); and Calib indicates L4C with NRv4 
(L4C Calib) climatology inputs.  R = Pearson correlation, RMSE = root mean square 
error, ubRMSE = un-biased RMSE, N = number of tower sites. 
 

Flux R RMSE ubRMSE 
L4C Run Ops OL Calib Ops OL Calib Ops OL Calib 

NEE 0.52 0.52 0.48 1.04 1.05 1.01 0.79 0.79 0.80 
GPP 0.72 0.72 0.71 1.27 1.31 1.21 0.85 0.85 0.83 
RE 0.65 0.65 0.66 1.16 1.20 1.10 0.62 0.62 0.62 

 
 
Table 5.8: Pearson correlation of monthly GPP time-series pooled across flux tower CVS 
locations.  
 

 Site SIF L4C 
SIF 0.63   
L4C 0.85 0.73  

MOD17 0.81 0.63 0.85 
 
 
Table 5.9: Pearson correlation of monthly GPP global (0.5° × 0.5° grid) mean seasonal 
cycle (climatology), representing all grid cells pooled for the globe and twelve-month 
climatology. All 95% confidence intervals < 0.005. 
 

 SIF L4C MOD17 MPI MR 
L4C 0.83    

MOD17 0.79 0.94   
MPI MR 0.85 0.93 0.93  
MPI GL 0.85 0.93 0.92 0.99 

 
 
Table 5.10: Pearson correlation of monthly NEE global (1° × 1° grid) mean seasonal 
cycle (climatology), representing all grid cells pooled for the globe and twelve-month 
climatology. All 95% confidence intervals < 0.05. 
 

 CT L4C MOD17 MPI MR 
L4C 0.60    

MOD17 0.36 0.33   
MPI MR 0.49 0.48 0.47  
MPI GL 0.53 0.47 0.38 0.85 
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FIGURES 

 

 
Figure 5.1: Effective GPP soil moisture constraint as given by the log-transform 
rescaling (Eqns. (5.1) and (5.2)) compared to the originally assumed unscaled linear 
constraint, and rescaling based on soil matric potential for soil with loam texture.    
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Figure 5.2: Core validation (CVS) and calibration tower sites used for evaluating 
operational L4C results and for pre-launch L4C model calibration, respectively.  Base-
map shows global plant functional types from the MODIS Collection 5 global land cover 
classification (MOD12Q1 Type 5).  Abbreviations: WAT = Water; ENF = Evergreen 
Needle-leaf Forest; EBF = Evergreen Broad-leaf Forest; DNF = Deciduous Needle-leaf 
Forest; DBF = Deciduous Broad-leaf Forest; SHR = Shrubland; GRS = Grassland; CCR 
= Cereal Crops; BCR = Broad-leaf Crops; URB = Urban; ICE = Permanent Snow/Ice; 
BAR = Barren. 
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Figure 5.3: Effective bulk GPP environmental constraint (Emult) computed by inverting 
(5.3) using flux tower GPP, L4C input APAR, and fitted εmax to indicate the impact of 
individual response functions for (a) vapor pressure deficit (VPD), (b) minimum daily air 
temperature (TMIN), (c) unscaled root zone soil moisture (SMRZ), and (d) rescaled 
SMRZ.  Solid red lines indicate calibrated response functions (Eqn. (5.5)). Dashed red 
lines indicate maximum Emult = 1, but L4C calibration allows loose fit of εmax to largest 
tower GPP values allowing effective Emult > 1. Low APAR (APAR < 0.1) was omitted 
to avoid large effective Emult.  
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Figure 5.4: Correlation of fitted L4C Calib GPP relative to La Thuile flux tower GPP for 
alternative L4C configurations grouped by plant functional type.  Correlations given for 
all sites pooled within each plant functional type (solid symbols) to indicate among-site 
fit and averaged across sites within each plant function type (open symbols) to indicate 
within-site fit.  Error bars represent 95 % confidence intervals, which are much smaller 
for pooled data because of larger sample size.  Alternative L4C configurations include the 
standard L4C GPP model with all constraints (Full; Eqn. (5.3)), without freeze-thaw 
constraint (No FT), without minimum daily air temperature constraint (No TMIN), 
without root zone soil moisture constraint (No SM), without vapor pressure deficit 
constraint (No VPD), and without any constraints (No Emult; i.e. APAR only). 
 



 215 

 

Figure 5.5: Time-series of L4C Ops fields and tower observations (if available) for 
selected tower locations: US-Ivo (Alaska arctic tundra) and US-SRM (Arizona desert 
shrubland).  Fields include (a-b) NEE, (c-d) GPP, and (e-f) L4C environmental 
constraints (EC), including GPP light-use-efficiency constraint from Eqn. (1), Emult.  RE 
soil temperature and moisture constraints from Eqn. (6), Tmult and Wmult respectively.  
Shaded bars represent L4C frozen soil classification. 
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Figure 5.6: Core validation site (CVS) statistical summaries of tower observation 
agreement for the daily L4C Ops record including (a) Pearson correlation (R), (b) root 
mean square error (RMSE), and (c) unbiased-root mean square error (ubRMSE).  
Negative correlations (not shown) include AU-ASM (NEE) and AU-Stp (GPP).  Sites 
AU-GWW and FI-Sod did not report RE observations. Sites sorted from left to right in 
order of increasing annual carbon flux magnitude from the L4C NRv4 climatology.  
Shaded bars indicate spatially adjacent tower sites within the same L4C 9-km grid-cell.  
Dashed line indicates L4C NEE ubRMSE target accuracy (1.6 g C m-2 d-1). 
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Figure 5.7: Effect of California drought on (a) GPP and (b) GPP anomaly (i.e. mean 
seasonal cycle removed) time-series at the Tonzi Ranch flux tower site (US-Ton) during 
2015.    
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Figure 5.8: L4C QA ubRMSE error estimates vs. ubRMSE calculated using L4C NEE 
and tower site observed NEE.  (a) Fitted L4C Calib average daily NEE ubRMSE (g C m-
2 d-1) QA metric relative to ubRMSE calculated using calibration site tower NEE. (b) 
L4C Ops average daily NEE ubRMSE (g C m-2 d-1) QA metric relative to ubRMSE 
calculated using independent CVS tower NEE observations.  Symbols denote dominant 
PFT classification of each tower location. 

 

Figure 5.9: Mean daily L4C Calib NEE QA ubRMSE (g C m-2 y-1) computed as the 
annual mean sum-of-squares of the daily QA ubRMSE estimates. Areas outside of the 
L4C model domain in are denoted in white. 
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Figure 5.10:  Monthly mean seasonal cycle averaged across latitude for (a) SIF, (b) L4C 
GPP, (c) MOD17 GPP, and (d) MPI-MTE GPP.  Averages represent period 2001-2012 
for all datasets, except SIF which was averaged from 2007-2014.  
 

Figure 5.11:  Mean annual daily GPP for (a) L4C minus MOD17 and (b) L4C minus 
MPI-MTE, and mean monthly GPP seasonal range (averaged across years, expressed as 
average daily rate (g C m-2 d-1)) for (c) L4C minus MOD17 and (d) L4C minus MPI-
MTE. 
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Figure 5.12: Standard deviation of interannual GPP monthly anomalies (expressed as 
mean daily rate, (g C m-2 d-1)) for (a) L4C, (b) MOD17, (c) MPI-MTE, and (d) SIF.  
GPP anomalies computed by subtracting the mean monthly average daily GPP across 
years from the monthly average daily GPP for a given year.  Dataset periods of record 
same as in Figure 5.10. 
 

Figure 5.13: Monthly mean seasonal cycle averaged across latitude for (a) 
CarbonTracker NEE, (b) L4C NEE, (c) MOD17 NEE (i.e. MPI-MTE RECO minus 
MOD17 GPP), and (d) MPI-MTE NEE.  Averages represent period 2001-2012 for all 
datasets.  Individual color-bar limits adjusted to show characteristic variability range for 
each dataset.  
 



 221 

Figure 5.14: Standard deviation of interannual NEE monthly anomalies (expressed as 
mean daily rate, (g C m-2 d-1)) for (a) L4C, (b) MOD17, (c) MPI-MTE, and (d) 
CarbonTracker.  NEE anomalies computed by subtracting the mean monthly average 
daily NEE across years from the monthly average daily NEE for a given year.  Dataset 
periods of record same as given in Figure 5.13. 
 

Figure 5.15: Comparison of L4C Calib initialized SOC (representing <10 cm depth) to 
global and high-latitude inventory-based SOC (depth adjusted to <10cm depth) datasets 
including (a) differences between L4C initialized steady-state SOC and FAO-IGBP (i.e. 
L4C−IGBP) and  (b) zonal mean SOC for L4C, NCSCD (>50 N only), and FAO-IGBP. 
Non-vegetated areas outside of the L4C model domain in (a) are denoted in white. 
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Figure 5.16: Global metrics indicating impact of soil moisture sensitivity analysis and 
operational SMAP observations on L4C Calib flux climatology fields.  Percentage 
decrease in annual (a) GPP computed using SMRZ vs. without SMRZ, (b) GPP 
computed using VPD vs. without VPD, and (c) RH computed using SMSF vs. without 
SMSF. (d) L4SM SMSF analysis increment (data assimilation update minus model 
forecast) standard deviation in percent saturation units. Non-vegetated areas outside of 
the L4C model domain in (a)-(c) are denoted in white. 
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Figure 5.17: Root mean square differences (RMSD) between L4C Ops and L4C Open 
Loop simulations of average daily carbon fluxes (g C m-2 d-1) from March 31, 2015 to 
December 31, 2015 for (a) GPP and (b) NEE. 
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CHAPTER 6: CONCLUSIONS AND LOOKING FORWARD 

 

 OBJECTIVES AND FINDINGS SUMMARY 

6.1.1  Estimates of Ecologically Relevant Information from Satellite Microwave 

Observations  

A global land parameter database was developed to support ecosystem studies 

using AMSR-E satellite passive microwave remote sensing brightness temperature 

observations (Chapter 2).  The land parameter retrieval algorithm consists of two 

components. The first component uses the 18.7 and 23.3 GHz brightness temperature 

observations to solve for daily surface air temperature minima and maxima, total column 

atmospheric water vapor, and surface fractional open water cover estimates.  The second 

component uses 18.7 GHz and10.7 GHz brightness temperature observations to solve for 

soil moisture and vegetation optical depth.   

Primary validation focused on daily air temperature minima and maxima using in 

situ weather station observations (Jones 2010a).  The AMSR-E derived air temperature 

estimates were found to be generally accurate to within 1-3 K relative to surface weather 

station observations and other satellite based temperature estimates from AIRS.  The 

highest AMSR-E temperature retrieval accuracies (0.5-2.5 K) occurred over forested 

regions, particularly boreal forests, whereas desert regions had biases ranging up to 4-6 

K.  The AMSR-E air temperature estimates represented a slight improvement over AIRS 

for cloudy regions, suggesting that microwave observations provided some advantage 

over AIRS cloud-screening methodologies.    
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Secondary land parameter validation activities focused on evaluating patterns of 

fractional open water, soil moisture, total column atmospheric water vapor, and 

vegetation optical depth retrievals (Jones 2009).  Fractional open water and soil moisture 

showed expected responses relative to major precipitation events with flooded area 

differing in spatial extent and dry-down timing, and corresponding with known flood 

zones.  Unexpected widespread fractional water cover was indicated for some desert 

regions, suggesting incorrect emissivity parameter specification (Jones 2010b).  The 

AMSR-E vegetation optical depth retrievals showed close correspondence with satellite 

optical-IR remote sensing derived leaf area index and other vegetation indices (NDVI and 

EVI), although timing of the VOD canopy phenological peak tends to lag optical-IR 

index peaks for higher biomass locations (Jones, M. O., 2012).  Further validation has 

shown close correspondence of vegetation optical depth with grassland and shrubland 

phenology indicated from GPS reflectivity (Jones, M. O., 2014) and also boreal forest 

disturbance recovery (Jones, M. O., 2013).  Watts (2012) evaluated the AMSR-E 

fractional open water estimates over the circumpolar arctic and found increasing and 

decreasing fractional open water trends corresponding with continuous and discontinuous 

permafrost zones, respectively. The AMSR-E derived atmosphere total column water 

vapor retrievals show expected spatial and seasonal patterns corresponding well with 

independent measurements; however, diurnal differences were somewhat larger than 

expected.   Further work by Du (2015), Du (2016a), and Du (2016b) has substantially 

improved the AMSR-E water vapor, vegetation optical depth, and fractional open water 

retrieval accuracy. 
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6.1.2 Demonstration of Merging Concept and Impact for Improving Soil Moisture 

Estimates 

    A joint merging and error estimation algorithm was developed for multiple 

time series data with a focus on soil moisture characteristics, including slowly varying 

error components (i.e. “colored noise”) and long-term temporal dependence (Chapter 3; 

Jones, in prep.).  The merging method developed in this study uses the expectation 

maximization algorithm for estimating time series parameters including time series error 

structure and the colored noise Kalman filter and smoother to provide merged soil 

moisture optimal estimates from multiple soil moisture data sources.   

A simulation study was conducted to test the merging algorithm accuracy and 

robustness to missing soil moisture values and violation of assumptions.  Simulations of 

soil-moisture-like time series - including non-Gaussian innovations and random and 

deterministic missing data gaps- indicate that the method skillfully reproduces the 

underlying state and accurately recovers system parameters, including uncertainty 

covariances.  The basic methodology remains relatively robust for long-memory and bias 

plus white noise errors, although the appropriate modifications may be crucial for noisier 

real-world applications.  Regression scaling coefficients were not identifiable if the 

underlying process and time series observations shared AR poles.  In all considered 

simulated cases, the method out-performed or matched performance of the simple 

average of the time series, indicating improvement over relatively simple approaches to 

combining data.  Correct selection of AR model order remains important because results 

substantially improve when the number of parameters correctly reflects the structure of 

the underlying system. Incorrect model specification can substantially decrease 
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robustness of the merging method to violations of underlying assumptions. Therefore, 

improving model identification and robustness should be a major focus of future work. 

6.1.3 The Value of Soil Moisture to Improve an Ecosystem Respiration Model 

   Merged soil moisture state and uncertainty information were evaluated relative 

to in situ observations, and the impact of this soil moisture information for improving 

model ecosystem respiration fluxes was evaluated relative to in situ eddy covariance flux 

tower observations (Chapter 4).  Effective merging parameters and soil moisture dataset 

information content spatial patterns were evaluated over a continental US domain.  This 

evaluation also involved determining and fitting an effective ecosystem respiration soil 

moisture constraint curve.  The fitted response curve was then used with a model error 

propagation approach to predict where better soil moisture information could most 

improve model ecosystem respiration estimation accuracy and RMSE performance. 

The merged soil moisture results show significant correlation improvement 

relative to the individual component soil moisture time series for lower vegetation 

biomass (VOD) areas.  This improvement is nearly as large as that with control methods 

assuming perfect knowledge of system uncertainty and scaling parameters; the 

improvement also meets or exceeds the performance of the simple equally-weighted time 

series mean and the most skillful time series, thus meeting prior criteria for practical 

optimality.  However, the merging method performance degrades with increasing VOD 

and for the highest VOD areas, primarily forest sites, the merging method fails to match 

the skill of the equally-weighted time series mean and the most skillful time series, 

indicating sub-optimal performance and contrary to prior expectations.  In high VOD 

locations the satellite microwave remote-sensing based soil moisture retrievals are 
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dominated by error and contain little or no information on actual soil moisture conditions. 

Methods for screening such sites from the analysis would likely improve overall results.  

It is also important to note that these results apply only to a simplified version of the 

merging method described in Chapter 3 and therefore do not fully account for missing 

values and multiple lags.  Despite degraded performance for VOD areas, the merging 

parameters show expected spatial patterns, indicating reduced remote-sensing accuracy 

for high-biomass vegetation and reduced model accuracy for complex terrain; the 

algorithm also properly identifies merging weights based on these factors.  

The ecosystem respiration estimates were most improved for low-biomass water-

limited locations when using merged soil moisture relative to standard model-derived soil 

moisture inputs.  This improvement results from increased model sensitivity to soil 

moisture variability in arid locations, which are generally located in sparse vegetation 

areas where satellite microwave soil moisture retrievals contribute the most benefit to the 

merged soil moisture estimates.  Using in situ soil moisture and tower RECO 

observations, no support was found for an original hypothesis that saturated soils limit 

ecosystem respiration due to anaerobic conditions, leading to a parabolic constraint 

curve.  Anaerobic conditions are likely localized and sub-grid saturated conditions may 

be difficult to detect within relatively coarse tower eddy covariance (1-km footprint) and 

soil moisture (9-km footprint) effective spatial sampling footprints.  Saturated soils and 

localized flooding are likely a considerable source of error in current remote-sensing and 

model soil moisture products.  Further research should investigate the potential of 

fractional water estimates to inform the ecosystem respiration model by indicating 

anaerobic conditions resulting from flooding, irrigation, and wetlands.  
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6.1.4 Implementation of Satellite based Soil Moisture Observations for Operational 

Monitoring of Land-Atmosphere CO2 Exchange 

The Soil Moisture Active Passive Mission Level 4 Carbon (SMAP L4C) product 

was developed to exploit SMAP remotely-sensed soil moisture information (Jones, in 

review; Jones 2016).  Rather than use SMAP soil moisture estimates, which contain 

missing values and measurement noise, the L4C product uses the SMAP Level 4 Soil 

Moisture (L4SM) product which merges SMAP observations with a data assimilation 

constrained land surface model forecast.  The L4C product was evaluated using 

concurrent tower eddy covariance CO2 flux observations as primary validation and 

comparisons with other global-scale terrestrial carbon observation benchmarks as 

secondary validation.  Various metrics including model sensitivity analysis, data 

assimilation diagnostics, and model runs using alternative soil moisture inputs, were used 

to quantify and evaluate the impact of SMAP observations on L4C product accuracy and 

performance. 

Primary and secondary validation comparisons indicate that the SMAP L4C 

product has skill for estimating Net Ecosystem CO2 exchange (NEE) and its Gross 

Primary Productivity (GPP) and Ecosystem Respiration (RECO) components.  Primary 

validation metrics indicate that L4C is within expected NEE average error tolerance (1.6 

g C m-2 d-1) relative to tower eddy covariance observations and that the L4C results 

capture seasonal and daily ecosystem CO2 flux variability across a global range of 

locations as indicated by the global flux tower network. L4C uncertainty was found to 

vary proportionally with overall annual CO2 flux magnitude. 

 Secondary validation indicates that L4C GPP results show global and seasonal 

productivity patterns consistent with satellite Solar Induced Fluorescence (SIF) 
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observations used as a proxy for GPP. The L4C results also produced similar global and 

seasonal patterns in relation to atmospheric transport model inversion based estimates of 

net biological CO2 fluxes from NOAA CarbonTracker.  Coherent spatial patterns of L4C 

GPP seasonal variability were observed with SIF, MOD17, and MPI-MTE, but with 

notable differences for the tropics in seasonal phase (relative to SIF and MOD17) and 

amplitude (relative to SIF, MOD17, and MPI-MTE).  The L4C results generally 

exceeded MOD17 correlation skill and matched or exceeded MPI-MTE skill relative to 

SIF, CarbonTracker, and tower GPP and NEE benchmarks.  Patterns of L4C interannual 

variability show that seasonally arid and cropland regions contribute to interannual 

variability in global GPP and NEE. This pattern was broadly corroborated by MPI-MTE, 

MOD17, and CarbonTracker.  Also L4C also shows some sensitivity to interannual 

variability in the tropics and southern portions of the boreal forests, which was broadly 

corroborated by MOD17, and CarbonTracker.  Aside from these general patterns, a large 

degree of inconsistency exists between SIF, CarbonTracker, MOD17, MPI-MTE, and 

L4C in representing global patterns of interannual variability in CO2 source-sink activity.  

Nevertheless, the results of this comparison generally aligns with the expectation that 

seasonally arid and cropland regions contribute to global interannual NEE variability.     

Although the model sensitivity analyses indicate widespread impact and 

significant relevance of soil moisture information for L4C, the impact of SMAP 

observations has not as-yet resulted in detectable L4C improvement over the use of 

alternative soil moisture inputs derived without the benefit of SMAP observations.  The 

L4C sensitivity analysis concurs with conclusions of Chapter 4 that the primary impact of 

soil moisture on the ecosystem model derived carbon fluxes occurs in arid regions. 
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Likewise, the L4SM assimilation diagnostics and the RMS differences between “open-

loop” and operational L4C model runs (i.e. with and without SMAP information, 

respectively) indicate the largest impact of SMAP observations for arid regions.  

However, these impacts do not as yet amount to discernable L4C improvement.  This 

result is perhaps unsurprising given the relatively short SMAP record available at the 

time of this study (< 1 full seasonal cycle) and that the initial L4C and L4SM products 

necessarily required pre-launch calibration not informed by SMAP observations.  

Complexities of L4SM data assimilation also limit current impact because SMAP data 

must be carefully screened and bias-corrected to improve model agreement prior to 

assimilation.  Nevertheless, detectable benefits of SMAP observations for improving L4C 

CO2 estimates are expected as more SMAP data become available.  Improvements in soil 

moisture merging methods described in Chapters 3 and 4 could benefit L4SM data 

assimilation leading to detectable impact on land-atmosphere CO2 exchange estimates 

and uncertainty information as seen for ecosystem respiration in Chapter 4. 

  

 CONCLUSION AND FUTURE RESEARCH 

 In this work, satellite passive microwave remote sensing measurements were 

synthesized to provide ecologically relevant information, specifically soil moisture, with 

the goal of improving estimates of land-atmosphere net ecosystem CO2 exchange.  

Primary validation was conducted against best-available in situ observational benchmarks 

and compared with both state and uncertainty estimates. Secondary validation consisted 

of multiple independent global datasets wherever possible. Sensitivity analyses, 

simulation experiments, and model control runs were used to understand algorithm 
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behavior under idealized circumstances. Using these tools, the value of satellite 

microwave observations for improving soil moisture estimates was demonstrated, the 

importance of soil moisture for modeling land-atmosphere CO2 flux was determined, an 

operational framework for using soil moisture to estimate land-atmosphere CO2 flux 

operationally was established, and early operational results were evaluated.  This work 

resulted in two publically-available datasets including the AMSR-E land parameter 

database and the SMAP Level 4 Carbon product (Jones 2010b; Kimball 2016). 

 Opportunities remain to further develop many facets of this research.  More 

research is needed to determine the spatial and temporal variability of effective soil 

moisture and CO2 exchange response curves, and underlying processes including how 

these curves relate to stomatal conductance, nutrient limitation, anaerobic conditions, and 

the differential response of photosynthesis versus respiration to soil water limitation.   

Irrigation, temporary flooding, and plant-accessible ground water are additional sources 

of uncertainty which could be better addressed by remote-sensing and land-surface 

models.  Further work on merging methods can provide insight on these aspects because 

diverse remote-sensing instruments can provide proxies for many of these biologically-

relevant components of the water cycle at multiple spatial and temporal scales.  This 

study took a rather limited view of the terrestrial biosphere carbon budget by considering 

only the immediate impacts of soil moisture on photosynthesis and respiration, and soil 

carbon storage without explicitly addressing nutrient limitations.  A more complete view 

should include above- and below- ground living biomass, nutrient cycling, and consider 

how drought-induced damage or mortality and related disturbance, especially fire, impact 

land-atmosphere CO2 exchange.  Many facets of the terrestrial carbon cycle are not well 
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constrained by available observations and knowledge as represented by models, and yet 

much information contained in the recent deluge of available observational data remains 

under-utilized.  Synthesis and inter-comparison of existing datasets, aided by merging 

algorithms, represent a step forward in better understanding the terrestrial carbon cycle 

today and where it is headed in the future.    
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