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Abstract
Northern wetlands may be vulnerable to increased carbon losses from methane (CH4 ), a potent 
greenhouse gas, under current warming trends. However, the dynamic nature of open water 
inundation and wetting/drying pattems may constrain regional emissions, offsetting the potential 
magnitude of methane release. Here we conduct a satellite data driven model investigation of the 
combined effects of surface warming and moisture variability on high northern latitude (^45° N) 
wetland CH4  emissions, by considering (1) sub-grid scale changes in fractional water inundation 
(Fw) at 15 day, monthly and annual intervals using 25 km resolution satellite microwave retrievals, 
and (2) the impact of recent (2003-11) wetting/drying on northern CH 4  emissions. The model 
simulations indicate mean summer contributions of 53 Tg CH 4  yr“  ̂ from boreal-Arctic wetlands. 
Approximately 10% and 16% of the emissions originate from open water and landscapes with 
emergent vegetation, as determined from respective 15 day Fw means or maximums, and 
signihcant increases in regional CH 4  efflux were observed when incorporating satellite observed 
inundated land fractions into the model simulations at monthly or annual time scales. The satelhte 
Fw record reveals widespread wetting across the Arctic continuous permafrost zone, contrasting 
with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer 
warming increased wetland emissions by 0.56 Tg CH4  yr“  ̂ compared to the 2003-11 mean, but 
this was mainly offset by decreasing emissions (-0.38 Tg CH4 yr“ )̂ in sub-Arctic areas 
experiencing surface drying or coohng. These findings underscore the importance of monitoring 
changes in surface moisture and temperature when assessing the vulnerability of boreal-Arctic 
wetlands to enhanced greenhouse gas emissions under a shifting climate.
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1. Introduction

Wetlands and lakes cover approximately 2-8%  of the bor­
eal-Arctic region (Watts et al 2012), with large fluctuations 
in surface water extent resulting from seasonal melt cycles, 
summer precipitation and drought events (Schroeder 
et al 2010, Bartsch et al 2012, Helbig et al 2013). Wet 
surface conditions and characteristically colder temperatures 
greatly reduce the rate of organic carbon decomposition in 
northern wetland environments (Harden et al 2012, Elber- 
ling et al 2013). As a result, over 50% of the global soil 
organic carbon pool is stored in these regions (Turetsky 
et al 2007, Hugelius et al 2013). Landscapes with inundated 
or moist surfaces are particularly vulnerable to carbon loss 
as methane (CH4 ) (Turetsky et al 2008, Fisher et al 2011, 
Olefeldt et al 2013). Contemporary estimates of methane 
source contributions from northern wetlands range between 
12 and 157 Tg CH4 yr“  ̂ (Petrescu et al 2010, McGuire 
et al 2012, Meng et al 2012, Gao et al 2013), and may 
double over the next century if surface temperatures con­
tinue to rise (Koven et al 2011, Schneider von Deimling 
et al 2 0 1 2 ).

Various wetland maps have been used to dehne the 
extent of methane emitting area (Matthews and Fung 1987, 
Aselmann and Crutzen 1989, Reeburgh et al 1998, Lehner 
and Doll 2004, Schneider et al 2009, Glagolev et al 2011), 
but their static nature fails to capture dynamic spatiotemporal 
variations in surface wetness within boreal-Arctic environ­
ments. As a result, modeling studies are increasingly using 
satellite based inundation data to characterize the impact of 
changing surface water coverage on regional methane emis­
sions (Petrescu et al 2010, Riley et al 2011, Zhu et al 2011, 
Meng et al 2012, Bohn et al 2013, Wania et al 2013). These 
datasets include the GIEMS (Global Inundation Extent from 
Multi-Satellites) record (Prigent et al 2007, Papa et al 2010) 
that estimates monthly inundation within 0.25° resolution grid 
cells using microwave observations from the Special Sensor 
Microwave/Imager (SSM/1) and the ERS scatterometer. 
However, the GIEMS record only spans from 1993 to 2007 
and relies on visible (0.58-0.68 fim) and near-infrared 
(0.73-1.1 j«m) Advanced Very High Resolution Radiometer 
(AVHRR) data to account for vegetation canopy effects on 
microwave retrievals (Papa et al 2010). An alternative 
method, described by Schroeder et al (2010) and 
integrated into methane studies for western Siberia (Bohn 
et al 2013, Wania et al 2013), avoids the use of optical/ 
infrared sensor information by incorporating QuikSCAT 
scatterometer and 6.9 GHz passive microwave data from the 
Advanced Microwave Scanning Radiometer for EOS 
(AMSR-E) to determine 25 km grid fractional water coverage 
at 1 0  day intervals.

A recent approach introduced by Jones et al (2010) uses 
AMSR-E 18.7 and 23.8 GHz, H- and V- polarized brightness 
temperatures to retrieve 25 km resolution daily fractional 
open water (Fw) inundation, and does not require ancillary 
information (e.g. AVHRR optical or QuikSCAT radar) to 
account for microwave scattering effects from intervening 
atmosphere and vegetation. The Jones et al (2010) AMSR-E 
Ew data have been used to evaluate recent seasonal and inter­
annual inundation variability across the northern high lati­
tudes and permafrost regions, with a demonstrated sensitivity 
to changes in the surface water balance, and a relatively low 
observation spatial uncertainty of approximately 4% 
(Watts et al 2012). The higher frequency 18.7 and 
23.8 GHz brightness temperatures used to derive the AMSR- 
E Ew retrievals also minimize signal sensitivity to underlying 
soil moisture conditions (Jones et al 2010, Watts et al 2012). 
Although satellite optical and radar remote sensing 
can characterize wetland and open water distributions at 
hner (:^150m resolution) scales (Bartsch et al 2012, 
Rover et al 2012, Bohn et al 2013, Muster et al 2013), 
this information is often constrained to localized 
analyses with minimal repeat observations and is not yet 
conducive for the pan-Arctic wide monitoring of surface 
inundation.

This study examines the potential implications of recent 
(2003-11) variability in surface wetness on methane efflux 
from northern high latitude (^45° N) wetlands, and the con­
trasting influence of regional changes in moisture and tem­
perature on summer (May through September) emission 
budgets using satellite remote sensing and reanalysis infor­
mation. We postulate that seasonal and inter-annual fluctua­
tions in surface inundation can greatly limit the magnitude of 
methane release from wetland environments, particularly if 
summer warming coincides with periods of drought. Con­
versely, northern wetlands may be more susceptible to 
methane emissions when the extent and duration of surface 
wetness is sustained or increasing. We conducted a series of 
carbon and climate sensitivity simulations using the Joint UK 
Land Environment Simulator (JULES) methane emissions 
model (Clark et al 2011, Bartsch et al 2012), with input Ew 
means and maximums at 15 day, monthly, and annual inter­
vals as derived from an AMSR-E global daily land parameter 
record (Jones et al 2010, Jones and Kimball 2011a). In this 
study, Ew is dehned as the proportional surface water cover 
within 25 km equal area AMSR-E grid cells (Watts 
et al 2 0 1 2 ), and includes inundated soils, open water (e.g. 
lake bodies) and landscapes with emergent vegetation. We 
then evaluated the impact of recent temperature variability 
and wetting/drying on methane emission budgets for the 
northern wetland regions.
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Figure 1. Locations of tower eddy covariance, flux chamber, lake 
and flask measurement sites used to verify methane emission 
simulations for the boreal-Arctic (>45° N) peatland (based on data 
provided by Gimnarsson and Lofroth 2009, Yn et al 2010, Franzen 
et al 2012) and RECCAP tundra domain.

2. Methods

2.1. Study region

The land area considered in this analysis was determined 
using boreal-Arctic peatland maps (i.e. Gunnarsson and 
Lofroth 2009, Yu et al 2010, Franzen et al 2012), and the 
Regional Carbon Cycle and Assessment Processes (REC­
CAP) tundra domain (McGuire et al 2012). To coincide with 
the spatial extent of AMSR-E Ew coverage, we removed grid 
cells having >50% permanent ice or open water cover using 
the UMD Moderate Resolution Imaging Spectroradiometer 
(MODIS) land cover product (described in Jones et al 2010), 
and applied a conservative 25 km coastline buffer to minimize 
Ew retrieval contamination by ocean water. The resulting 
study region spans approximately 1 .6 x l 0 ^km^ (hgure 1 ), 
and contains 70% of northern continuous and discontinuous 
permafrost affected landscapes (Brown et al 1998).

2.2. Model description and calibration

The JULES model approach (Clark et al 2011, Bartsch 
et al 2 0 1 2 ) accounts for the major factors (i.e. temperature, 
carbon substrate availability, landscape wetness) that control 
global methane emissions (Bloom et al 2010, Olefeldt 
et al 2013). Albeit relatively simple and lacking in detailed 
physical processes, this method is useful for pan-Arctic 
simulations because it avoids extensive parameterization 
requirements that can substantially increase estimate uncer­
tainty (Riley et al 2011). The model regulates methane 
emissions according to available carbon substrate (C, kg m“ )̂ 
and an efflux rate constant d“ )̂ that is modihed by a
temperature dependent Q iq factor (Gedney et al 2004, Clark 
et al 2011). The temperature effects on methane production 
are controlled using daily input Modem Era Retrospective- 
analysis for Research and Applications (MERRA) surface soil 
temperature (Ts, in kelvin) and a thermal reference state (To,

Eor this analysis, we limit our investigation to non-frozen 
surface conditions dehned using daily satellite passive 
microwave sensor derived binary (0 or 1) freeze/thaw (FThw) 
constraints (Kim et al 2013). The resulting daily fluxes (Fcĥ  ̂
CH 4  m“^) were averaged over a 15 day time step and scaled to 
the 25 km grid cell domain (tonne CH 4  celL^) using Ew and 
volumetric soil moisture (6, m^/m^) information to regulate 
landscape methane emissions. Methane efflux from inundated 
portions of the grid-cell were assumed to be non-inhibited, 
whereas non-inundated cell fractions (1 — Fw) were weighted 
by 6 to account for reduced methane loss due to oxidation. In 
this study, the emissions weighting process was applied at a 
15 day time step to address potential delays in methanogen 
response following surface wetting or drying (Blodau and 
Moore 2003, Turetsky et al 2014).

The daily input and 6 (^^lOcm soil depth) records 
were obtained from the NASA GEOS-5 MERRA Land rea­
nalysis archive with native 0.5° x 0.6° resolution (Reichle 
et a l2 Q \\)  and posted to a 25 km resolution polar equal-area 
scalable earth grid consistent with the AMSR-E Ew data. The 
MERRA land parameters have been evaluated for high lati­
tude regions, with favorable correspondence in relation to 
independent satellite microwave and in situ observations (Yi 
et al 2011, Watts et al 2014). Soil metabolic carbon (Cmet) 
pools obtained from a Terrestrial Carbon Elux (TCE) model 
(Kimball et al 2009, Yi et al 2013) were used as the substrate 
for methanogenesis. The TCE carbon estimates reflect daily 
changes in labile plant residues and root exudates, and have 
been evaluated against existing soil organic carbon inventory 
records for the high latitude regions (described in Yi 
et al 2013). The Cmet inputs (kg C m“  ̂d“ )̂ were generated for 
the study region by a 1 0 0 0  yr spin-up of the model using a 
lO yr (2000-09) record of MODIS 1 km resolution Normal­
ized Difference Vegetation Index, MERRA daily surface 
meteorology and soil moisture inputs.

The JULES model k .̂^  ̂ and Q iq parameters were cali­
brated using mean monthly eddy covariance methane fluxes 
(mg CH4  m“  ̂d“ )̂ from five northern wetland tower sites 
(figure 1 ) that are described in the published literature (i.e. 
Rinne et al 2007, Sachs et al 2008, Wille et al 2008, Zona 
et al 2009, Long et al 2010, Parmentier et al 2011), in con­
junction with mean MERRA reanalysis Cmet and clima­
tology over the 2003-11 summer (May through September) 
period. A resulting Q iq value of 3.7 and a rate of 
3.7 X 10”  ̂d“  ̂ minimized the root mean square error (RMSE) 
differences between the model and flux tower observations at 
17.62 mg CH4 m“^d“\  A Q iq of 3.7 was also used by Clark 
et al (2 0 1 1 ) and is similar to those reported in other studies 
(Ringeval et al 2010, Waldrop et al 2010, Lupascu 
et al 2012). Eurther model verification was also obtained by 
evaluating summer flux chamber measurements (see supple­
mentary table S i) from tundra (n=15 site records), boreal 
wetland (n= 11) and lake (n= 17) locations.
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2.3. Regional simulations

Grid-scale (25 km) wetland methane emissions were 
obtained using dynamic 15 day, monthly and annual 
summer AMSR-E Fw means or maximums from 2003 to 
2011, to examine the potential im pact o f temporal Fw 
scaling on methane em ission estimates. M ethane sim ula­
tions were also examined using a static mean summer 
Fw map derived from the 2003-11 record. The regional 
simulations were evaluated against NOAA ESRF 
atmospheric methane flask measurements (Dlugokencky 
et al 2013) from Barrow, AK, Fac FaBiche, CN, and 
Pallas Sammaltunturi, FI, to assess the ability of the 
model to capture between-year changes in methane con­
centrations that may correspond with fluctuations in 
wetland methane emissions (Felieveld et al 1998). For 
Barrow and Sammaltunturi, the dry air mole fractions 
were available from 2003 through 2011; the Fac FaBiche 
data were available from 2008 onward. A Hybrid Single 
Particle Fagrangian Integrated Trajectory (HYSPFIT; 
Draxler and Rolph 2013, Rolph 2013) model, with a 
100 m receptor point altitude and input GDAS-1 m eteor­
ology (Rodell et al 2004), was used to obtain backward 
(30 day) atmospheric trajectories for each flask site, and 
showed the dom inant source contributions at Barrow to 
originate prim arily from northern Alaska, the Yukon 
River basin eastward to the Northwest Territories, and 
eastern Siberia. For the respective Fac FaBiche and 
Sammaltunturi locations, the m ajor source regions were 
from northern Canada, or extending from Scandinavia 
eastward into western Russia. To determine the relative 
correspondence between modeled annual methane em is­
sion contributions and observed mean summer dry air 
mole fractions, Pearson product-m om ent correlation 
coefhcients (r) were derived using spatial means from a 
3 x 3  grid cell window centered on each flask location. 
Regional point correlation maps (Ding and W ang 2005) 
were also obtained by evaluating r  (e,-, a^) for each grid 
cell within the methane source regions, where ej is the 
modeled mean summer emissions time series at a given 
cell location and aŷ  is the atmospheric m ethane con­
centration time series at a flask sampling site.

Regional changes in surface water coverage, soil 
moisture and temperature were evaluated using a non- 
parametric M ann-Kendall trend analysis that accounts for 
serial correlation prior to determining trend signihcance 
(Yue et al 2002, Watts et al 2012). The Kendall rank 
correlations were applied to the mean summer AMSR-F 
Fw, and MERRA Ts and 6 records on a per-grid cell basis 
from 2003 to 2011. Trend signihcance was determined at a 
minimum 95% (p<0.05) probability level. The Kendall 
trend was also applied to the modeled cumulative annual 
methane emissions to identify regions that may be vul­
nerable to increasing anaerobic carbon losses. A linear 
regression analysis was then used to determine the rate of 
change in the annual emission estimates.

3. Results and discussion

3 .1. Model evaluation against in situ methane flux observations

The model simulations captured overall temporal variability 
(r^ = 0.65, p<0.05) observed in the monthly tower eddy 
covariance records, with a RMSE value of 
17.6 mg CH 4  m“  ̂d“  ̂ that is similar to other regional studies 
(Meng et al 2012, Zhu et al 2013). Signihcant differences 
(a  = 0.05; two-sample f-test with unequal variance) were not 
observed (hgure SI) between the model estimates and mean 
monthly tower eddy covariance (f=1.45, p  = 0.15), boreal 
chamber (f=0.05, p = 0.96), and northern lake (f = 0.79, 
p  = 0.45) huxes. However, the modeled huxes were sig- 
nihcantly smaller (t=3.67, p  < 0.01) than the tundra chamber 
observations and did not adequately capture larger 
(>140 mg CH4  m“  ̂d“ )̂ eddy covariance huxes from a peat­
land site in northern Sweden (Jackowicz-Korczyhski 
et al 2010). These discrepancies may rehect the presence of 
tall sedges (e.g. E. angustifolium), which can substantially 
increase emission rates through aerenchymateous tissue 
pathways (Joabsson et al 1999), or the limited representation 
of landscape scale emissions by chamber measurements given 
the potentially large contrasts in methane huxes from dry and 
wet vegetation communities (Parmentier et al 2011) and 
functional groups (Kao-Knifhn et al 2010). The modeled 
methane huxes were within the 5-140 mg CH4  m~^ d“  ̂ range 
observed in the lake measurements (Zimov et al 1997, 
Faurion et al 2010, Desyatkin et al 2009, Sabrekov 
et al 2 0 1 2 ), although these observations primarily rehect 
diffusive gas release and background bubbling instead of 
episodic ebullition events. As a result, the model simulations 
may underestimate ebullition release from open water bodies, 
particularly in carbon-rich thermokarst regions characterized 
by methane seeps (Walter et al 2006). However, the fraction 
of lake bodies exhibiting this seep behavior is not well 
quantihed, and a recent analysis of sub-Arctic lakes reported 
that summer ebullition events averaged only 
13 mg CH 4  m“  ̂d“\  with a low probability of bubble huxes 
exceeding 200 mg m“  ̂d“  ̂ (Wik et al 2013).

3.2. Regulatory effects of surface water and temperature on 
regionai methane emissions

3.2.1. Wetland inundation characteristics. Approximately 
5% (8.4x 10^km^±6% SB) of the boreal-Arctic domain 
was inundated with surface water during the non-frozen 
summer season, as indicated by the 2003-11 AMSR-E Fw 
retrieval means. Over 63% of the wetlands were located in 
North America, primarily within the Canadian Shield region, 
and the majority of inundation occurred above 59° N within 
major wetland complexes, including the Ob-Yenisei and 
Kolyma Fowlands in Siberia (hgure 2). A strong seasonal 
pattern in surface water was observed across the high 
latitudes, with an abrupt increase in May or early June 
following surface ice and snow melt, and the onset of spring 
precipitation (hgure 3). In Eurasia, peak inundation occurred 
in June, followed by a gradual decline with summer drought
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and increased evaporative demand (Rawlins et al 2009, 
Schroeder et al 2010, Bartsch et al 2012, Watts et al 2012). In 
North America, the seasonal expansion of surface water 
continued through July, before beginning to subside with the 
onset of surface freezing.

The influence of wet/dry cycles on surface water extent 
was evident throughout the boreal-Arctic region. The summer 
of 2004 was the driest observed over the AMSR-E Fw record, 
with a 6 % decrease in inundation from the long-term mean

that coincided with drought conditions across the Arctic Basin 
and Alaska (Rinsland et al 2007, Zhang et al 2008, Jones 
et al 2013). Summer 2008 was the wettest in North America, 
with a 3% increase in Fw coverage that was also reflected in 
positive drainage anomalies observed in the Mackenzie River 
basin (Watts et al 2012). The wettest summer in Eurasia 
occurred in 2007, particularly within the Ob, Lena and 
Kolyma drainage basins, with a 7% increase in surface water 
that coincided with regionally high summer temperatures 
(Dlugokencky et al 2009), snow melt and summer precipita­
tion, and record river discharge (Rawlins et al 2009, Zhang 
et al 2013).

3.2.2. Regional summer methane simulations. Summer 
methane emissions estimated for non-inundated land 
fractions averaged 47.8 ± 1.8 Tg CH4 yr“  ̂ over the northern 
wetlands. This increased to 53.2 ± 1.9 Tg CITtyr”  ̂ when also 
considering contributions from inundated landscapes based 
on the 15 day AMSR-E Ew means. These results are within 
the range of emissions (39 to 89 Tg CH4  yr“ )̂ reported from 
previous modeling studies using other satellite-based Ew 
retrievals (table 1; Petrescu et al 2010, Ringeval et al 2010, 
Riley et al 2011, Spahni et al 2011, Wania et al 2013), but are 
higher than those from atmospheric inversion analyses of 
northern peatlands (approximately 16-30 Tg CH4 yr“ ;̂ 
Spahni et al 2011, Bruhwiler et al 2014). The coarse 
resolution (0.5° x 0.6°) reanalysis meteorology used in the 
model simulations do not well represent sub-grid variability 
in soil wetness and temperature controls (von Fischer 
et al 2010, Sachs et al 2010, Sturtevant and Oechel 2013), 
which may lead to systematic biases when evaluating 
methane emissions at larger scales (Bohn and 
Lettenmaier 2010). However, we recognize that top-down



Table 1. Wetland methane (CH4 ) emissions and associated surface inundation extent determined by regional modeling studies using satellite microwave based surface water (Fw) retrievals to 
define the spatial extent of methane producing area. The Fw inputs include those scaled using 15 day, monthly and annual Fw means and maximums, or a static multi-summer Fw mean 
climatology. The methane emissions determined in this study are reported for inundated and combined inundated/non-inundated wetland landscape fractions.

Study Model Domain Ew source Ew period Ew scaling Ew area (km^)
Simulation per­
iod (CH4 )

Emissions 
(Tg CH,yr-‘) 
±Std. Dev.

Petrescu et al (2010) PEATLAND-VU 55°-70° N Prigent et al (2007) 1993-2000 Monthly d im . (avg.) 1 .6 x 1 0 ® 2001-2006
Adjusted area 4.4x10® 89

Ringeval et al (2010) ORCHIDEE >50° N Prigent et al (2007) 1993-2000 Month avg. — 1993-2000 41
Riley et al (2011) CLM4Me 45°-70° N Prigent et al (2007) 1993-2000 Month avg. 2 to 3 X 10® 1995-1999 70
Spahni et al (2011) LPJ-WHyMe 45°-90° N Prigent et al (2007) 1993-2000 Month avg. 2 .1 x 1 0 ® 2004 38.5-51.1
Wania et al (2013) LPJ-WHyMe >45° N Prigent et al (2007), 1993-2004 Annual dim. (avg.) — 1993-2004 40

Papa et al (2010)
Wania et al (2013), LPJ-Bem 35°-90° N Prigent et al (2007), 1993-2004 Monthly dim. (avg.) — 2004 81

Melton et al (2013) Papa et al (2010)

This study JULES-TCF 45°-80° N Jones et al (2010), 2003-2011 15 day avg. 8.4x10® 2003-2011 53.2±1.9
(all areas) Watts et al (2012)

15 day avg. -- 5.4 ±0.3
15 day max. 1 .1 x 1 0 ® 7.5 ±0.3
Month avg. 8.9x10® 5.5 ±0.3

This study JULES-TCF 45°-80° N Jones et al (2010), 2003-2011 Month max. 1.3x10® 2003-2011 8.4 ±0.3
(inundated only) Watts et al (2012)

Annual avg. 9.7x10® 5.8 ±0.2
Annual max. 1 .6 x 1 0 ® 10.8 ±0.4
Annual dim. (avg.) 1.5x10® 5.9 ±0.3
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Barrow, AK 
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Figure 4. Regional Pearson correlation (r) between mean summer (May through September) dry air mole fractions (nmol CH4  mol” ) from 
NOAA ESRL flask sites in Alaska, Canada, and Finland, and modeled methane emissions (tonne CH4  cell” )̂ for sub-grid inundated (Fw) and 
non-inundated surface moisture (0) conditions. Methane emissions from inundated surfaces reflect model simulations using dynamic 15 day 
Fw inputs, or static Fw climatology for the 2003-11 summer period. The correlation significance is determined at a minimum 95% 
probability level.

inversion analyses are also prone to uncertainties from 
atmospheric transport conditions and the limited number of 
observation sites within high latitude regions (Berchet 
et al 2013, Nisbet et al 2014).

In northern wetlands, 80-98% of annual methane 
emissions occur during the summer (Aim et al 1999, 
Jackowicz-Korczyhski et al 2010, Song et al 2012) due to 
strong thermal controls on methane production, carbon 
substrate and water availability (Strom et al 2003, Christensen 
et al 2003, Wagner et al 2009). The influence of summer 
warming on regional methane emissions was apparent in the 
model simulations, with peak efflux occurring in June and 
July (hgure S2). This seasonal pattern has been observed in 
atmospheric methane mixing ratios across the Arctic (Aalto 
et al 2007, Fisher et al 2011, Pickett-Heaps et al 2011). Also 
evident was the impact of wet/dry cycles on regional methane 
contributions, with annual summer emission budgets huctu- 
ating by ±4%, relative to the 2003-11 mean. The modeled 
emissions were lowest in 2004 despite anomalously high 
temperatures throughout the boreal-Arctic region (Chapin 
et al 2005), due to drought conditions in Alaska and northern

Canada. In contrast, higher emissions in 2005 resulted from 
warm and wet weather in North America.

Surface moisture variability also inhuenced the corre­
spondence between modeled emissions and summer atmo­
sphere methane concentrations from the regional flask 
measurements. Regions showing a positive correspondence 
between modeled methane emissions and atmosphere con­
centrations largely reflected transport trajectories indicated in 
the HYSPLIT simulations (hgure S3), with stronger agree­
ment (r>0 .7 , p ^O .0 5 )  occurring in areas characterized as 
open water or prone to periodic inundation (hgure 4). 
Immediate to the hask sites, mean summer inundation varied 
from 2 to 10%, with moist soil fractions accounting for >85% 
of simulated emissions. At Lac LaBiche, annual emissions 
variability corresponding to wet soil fractions agreed well 
(r = 0.96, p = 0.02) with the hask observations. In contrast, 
relatively poor agreement was observed at Barrow and 
Sammaltunturi where emission patterns for inundated por­
tions of the landscape corresponded more closely with 
atmospheric methane concentrations (table 2). At Barrow, 
the correspondence was similar (r > 0.43, p  ^  0.12) for model
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simulations using dynamic 15 day or annual Fw inputs, 
reflecting methane source contributions from thermokarst 
lakes and inundated tundra in the surrounding landscape 
(Dlugokencky et al 1995). In contrast, the modeled emissions 
at Sammaltunturi corresponded closely (r = 0.86, p< 0 .01) 
with flask observations when accounting for 15 day 
variability in Fw extent, but showed minimal agreement 
when using annual Fw inputs. This discrepancy may be 
attributed to less open water cover in the surrounding region 
and a tendency for summer precipitation events to produce 
intermittent flooding due to shallow soil layers and limited 
drainage (Aalto et al 2007). These results differ from the Lac 
LaBiche site, where nearby peatlands are characterized by 
deeper layers of surface litter and moss (Dlugokencky 
et al 2011) that can substantially reduce surface water 
coverage.

3.3. Fw temporal scaling effects on summer methane budgets

Wetland studies have increasingly used satellite microwave 
remote sensing to quantify the extent of methane emitting 
area, given the strong microwave sensitivity to surface 
moisture and relative insensitivity to solar illumination con­
straints and atmospheric signal attenuation. Regional inun­
dation information has been incorporated into model 
simulations using monthly, annual, or static multi-year Fw 
means (Ringeval et al 2010, Petrescu et al 2010, Hodson 
et al 2011, Riley et al 2011, Spahni et al 2011, Meng 
et al 2012, Wania et al 2013). However, our simulation 
results show that temporal Fw scaling can lead to substantial 
differences in methane emission estimates (table 1).

In this analysis, inundation extent within the boreal- 
Arctic wetlands increased by 6-15% and 13-31% when using 
respective mean monthly or annual AMSR-E Fw inputs 
instead of hner (15 day) temporal intervals. The coarser Fw 
temporal inputs resulted in respective increases in estimated 
methane emission budgets by 6% (f=3.5, p< 0 .01 ) and 17% 
(f = 8.7, p  < 0.01) in Eurasia, relative to simulations using hner 
15 day Ew temporal inputs. The impacts of Ew temporal 
scaling in North America were not signihcant (t^O .7, 
p> 0.5), with corresponding increases of 0.7% (Ew monthly) 
and 2% (Ew annual) in estimated annual methane emissions. 
The observed emissions sensitivity to Ew scaling in Eurasia 
primarily results from precipitation and hooding events in 
early summer, followed by mid-summer drying (Serreze and 
Etringer 2003). As a result, Ew means considered over longer 
time intervals in these regions may be biased towards spring 
inundation conditions, and may not rehect regional decreases 
in surface wetness occurring during the warmer mid-summer 
months. Directly incorporating Ew maximums, sometimes 
used to quantify multi-year surface hydrology trends (Bartsch 
et al 2012, Watts et al 2012), also led to substantial increases 
(f >9.66, p  < 0.01) in estimated methane emissions by 23-38% 
in North America and 21-54% in Eurasia for 15 day to annual 
time intervals relative to simulations using static Ew means.

70° 50° 10” - 10 °

A Fw

170’ -170° -130° - 110°

(+)

□ > 0 - 0 . 2

□ 0,2 - 0.4
■ 0.4 - 0.6

■ 0.6 - 0.8

■ 0.8 - 1

□ < 0 - 0 . 2

□ 0.2 - 0.4
■ 0.4 - 0.6
■ 0.6 - 0.8
■ 0.8 - 1

Figure 5. Recent summer AMSR-E Fw wetting and drying trends in 
the northern (>45° N) wetland regions, indicated by Mann-Kendall 
tau rank coefhcients. Positive (negative) tau represents an increase 
(decrease) in surface water cover. Black polylines denote areas 
having signihcant (p<0.05, ltaul>0.6) change in surface water 
extent over the 2003-11 satellite observation record.

3.4. Potential impact of regionai wetting and drying trends on 
methane emission budgets

Signihcant (p<0.05) increases in surface inundation were 
observed over 4% (7.1 x 10^ km^) of the high latitude wet­
lands domain from 2003 to 2011, with substantial Ew wetting 
occurring within northern tundra and permafrost affected 
landscapes (hgure 5). The extent of wetting increased to 6% 
(9.7 X 10^ km^) when including regions with slightly weaker 
trends (p<0.1). While the regional wetting pattems may 
correspond with shifts in northward atmospheric moisture 
transport (Rawlins et al 2009, Skihc et al 2009, Dorigo 
et al 2012, Screen 2013), trends within the Arctic Rim may be 
more closely inhuenced by thermokarst expansion, reductions 
in seasonal ice cover (Smith et al 2005, Rowland et al 2010, 
Watts et al 2012), and summer warming (hgure 6(a)). In 
portions of westem Siberia, localized cooling and residual 
winter snow melt (Cohen et al 2012) may also contribute to 
surface wetting. Regional drying was also observed across 
3% (5 .3 x l0 ^ k m ^ p < 0 .0 5 )  and 5% (7 .6x lO^km^ p < 0 .1 ) 
of the northem wetland domain, particularly in northern 
boreal Alaska, eastem Canada and Siberia (hgure 5). These 
declines in surface water extent may result from an increase in 
summer evaporative demand (Arp et al 2011) and the ter- 
restrialization of open water environments following lake 
drainage (Payette et al 2004, Jones et al 2011b, Roach 
e ta l  2011, Helbig et al 2013).

The combined inhuence of warming and wetting in the 
AMSR-E Ew and reanalysis surface meteorology records 
contributed to an increase in methane emissions across 6% 
(p<0.05, hgure 6(b)) to 21% (p<0.1) of the boreal-Arctic 
domain. This hnding is similar to a projected 15% increase in 
methane emitting area with continued climate change in the 
northern wetland regions (Gao et al 2013). The corresponding 
mean rates of methane increase from 2003 to 2011 were 0.07
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Table 2. Mean summer fractional water (Fw) inundation and Pearson correspondence {r, with associated significance) between flask station 
dry air mole fractions (nmol CH4  mol“ )̂ and cumulative methane emission estimates (tonne CH4  grid cell” )̂ within a 3 x 3 window centered 
at Barrow (BRW), Lac LaBiche (LLB) and Pallas Sammaltunturi (PAL). The model simulations incorporate dynamic 15 day or mean annual 
Fw; non-inundated grid cell fractions are regulated by surface soil moisture content (0).

Location Fw inundation (%)

Dynamic Fw Annual Fw 0 Fw-i-0

r

BRW 5-15% 0.46 (p = 0.11) 0.43 (p = 0.12) -0.14 (p = 0.36) 0.05 (p = 0.45)
LLB 3 ^ % 0.65 (p = 0.24) 0.74 (p = 0.18) 0.94 (p = 0.03) 0.96 ip = 0.02)
PAL 1-3% 0 . 8 6  (p<O.Ol) 0.02 (p = 0.48) 0.10 (p = 0.4) 0.13 (p = 0.37)

(a) 70" 50“ 10" - 10"

170° -170" -130°

(b) 70° 50° 10" - 10 °

(+)

I  I  > 0 - 0 . 2

I  I  0 . 2  - 0.4
I  I  0.4 - 0 . 6

■  0 . 6  - 0 . 8

8

0
.2
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.6
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Figure 6. Regional (a) Pearson correlations (r) between summer MERRA reanalysis surface soil temperature (Tg) and AMSR-E Fw 
inundation extent from 2003 to 2011, and (b) trends (Mann-Kendall tau) in wetland methane (CFl4 ) emissions for inundated and wet soil 
landscapes. Areas of signihcant (p<0.05) correlation or trend are indicated by the black polylines.

and 0.11 ± 0.02 Tg CH 4 yr“\  respectfully, and occurred pri­
marily in Canada and eastern Siberia where summer warming 
has been observed in both in situ measurements and reana­
lysis records (hgure S4, Screen, Simmonds (2010), Smith 
et al 2010, Walsh et al 2011). A decrease in modeled methane 
emissions, associated with surface drying and cooling pat­
tems, was also observed across 7% (p<0.05; -0 .1 2 ± 0 .0 3 T g  
CH 4 yr“ )̂ and 15% (p< 0.l; -0 .1 5 ± T g  CH 4 yr“ )̂ of the 
study area, and offset regional gains in the methane emis­
sions. When including all regions showing signihcant change 
(ltl>3.6; p<0.05), as indicated by the linear regression ana­
lysis (without grid cell screening using the more conservative 
Mann-Kendall tau), the respective rates of increase and 
decrease in boreal-Arctic wetland emissions were 
0.56 ± 0.16 Tg CH4 yr“  ̂ and -0.38 ± 0.07 Tg CH4 y r \

4. Conclusions

Northern boreal-Arctic ecosystems may be especially vul­
nerable to methane emissions given climate warming, abun­
dant soil carbon stocks, and a predominately wet landscape 
(Isaksen et al 2011, van Huissteden et al 2011, Olefeldt

et al 2013). We found that 5% of northem wetlands were 
characterized by open water or emergent vegetation, with the 
majority of inundation occurring in the Canadian Shield 
lowlands and Ob-Yenisei drainage basins. Areas of sig­
nihcant (p < 0.05) increase in surface water extent were more 
prevalent within the Arctic Rim and may coincide with 
heightened summer precipitation (Landerer et al 2010, 
Screen 2013) or high latitude permafrost thaw (Rowland 
et al 2010, Watts et al 2012). The combined effect of surface 
wetting and warming contributed to regional increases of 
0.56 Tg CH4  yr“ in estimated methane emissions, relative to 
the 2003-11 mean. Our analysis also revealed surface drying 
throughout the boreal zones of southem Sweden, westem 
Russia and eastem Canada, as has been anticipated with 
increasing summer temperatures and drought conditions in 
the sub-Arctic (Frolking et al 2006, Tarnocai 2006). This 
landscape drying contributed to a 0.38 Tg CH4  yr“  ̂ decrease 
in summer emissions, and largely offset any increases in 
region-wide methane release.

Regional modeling studies should consider the potential 
impacts of Fw scaling when prescribing the extent of methane 
emitting area in northern wetland regions, given the dynamic 
nature of surface water in northern landscapes (Schroeder
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et al 2010, Bartsch et al 2012, Watts et al 2012). Our model 
sensitivity analysis shows signihcant differences in estimated 
annual emissions determined from coarse monthly or annual 
Fw relative to hner scale (15 day) inundation inputs. 
Although the estimated emissions rate of 53 Tg CH4  yr“  ̂ is 
similar to the results from previous studies, it may over­
estimate the magnitude of methane release from pan-boreal 
and Arctic wetland regions, given difhculties accounting for 
hner scale soil temperature and moisture heterogeneity (Sachs 
et al 2008, Parmentier et al 2011, Muster et al 2013) using 
coarse ^0.5° reanalysis information. The NASA Soil Moist­
ure Active Passive (SMAP) mission (Entekhabi et al 2010) is 
scheduled to launch in late-2014 and will provide new global 
satellite L-band active and passive microwave observations of 
the land surface, with regular monitoring of northem soil 
thermal and moisture dynamics at 1 - 2  day intervals and 
moderate (3-9 km) spatial scales. These new observations 
may provide for the improved quantihcation of regional 
pattems and temporal dynamics in surface environmental 
conditions, which is needed to reduce uncertainty in regional 
and global methane emissions.
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