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The development of ecohydrological frameworks and theories under the ongoing global 

climate crisis depends on the development of new and advanced ecohydrological measurements. 

Currently, numerous of datasets have been collected at plot and ecosystem levels to understand 

the complex interactions of along the soil, plant, and atmosphere continuum. The development of 

new measurements costs considerable effort, time, and funding. Therefore, it is important to 

quantify if new measurements contain useful information for ecohydrological studies, and how the 

information encoded in the new measurements are transferred to understand and predict key 

environmental variables.  

In this dissertation, we show that predictions in vegetation dynamics can be improved by 

adding observations from advanced satellite and in situ sensor systems. First, we evaluated new 

satellite soil moisture and vegetation optical depth measurements by Soil Moisture Passive Active 

(SMAP). We find that there is more opportunity for SMAP soil moisture and vegetation 

observations to be useful in locations where the daily vegetation climatology cannot adequately 

reflect observed vegetation dynamics. We also find that the uncertainties SMAP dual channel 

algorithm (DCA) are largely contributed by uncertainty of the algorithm’s inputs (horizontal and 

vertical polarized brightness temperature), while the informational uncertainty of the SMAP DCA 

model itself is more related to the retrieval quality of soil moisture. The informational redundancy 

and synergy of the two brightness temperature measurements from SMAP are tightly related to the 

SMAP soil moisture retrieval quality. Finally, we apply a similar informational analysis to new 



 

 

isotopic measurements at the National Ecological Observation Network (NEON). We find that 

majority of the information from the isotope measurements collected by NEON is unique, which 

cannot be obtained by other meteorological variables. Carbon isotope (δ13C) provides more 

additional information about LH in arid locations, while the water isotope (δ2H) provides more 

additional information about LH at locations with higher aridity, lower mean annual temperature, 

and lower mean site elevation. These studies show that informational analysis is useful to evaluated 

how additional information is encoded in new ecohydrological measurements.  
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Chapter 1. General Introduction 

 

Ecohydrological studies have been providing guidance and methodological approaches 

direct revealing at the underlying mechanisms of the ecosystem’s function in response to climate, 

social, and water resources variations (Vose et al., 2011). Understanding  plant-water interactions 

are central of the ecohydrological investigations (Asbjornsen et al., 2011). The availability, 

quality, and spatial distribution of water resources such as soil moisture and precipitation affect 

the plant development and shape ecosystem structures (Pugnaire et al., 2019). Conversely, the 

variation in plant community composition with diversified plant traits influence the variations in 

water flux exchange (Fischer et al., 2019).  

The availability of long-term datasets from plot scale to landscape level under contrasting 

climate regimes are often pivotal in ecohydrological investigations to effectively address and 

understand the governing mechanisms in the soil-plant-water continuum (Vose et al., 2011). 

Traditional ecohydrological investigations heavily rely on using manually collected field samples 

of water and vegetation. For instance, the study of plant-water interactions in response to various 

of climatic conditions requires the vegetation canopy and water flux exchange information that 

can be represented leaf area index (LAI) (Kumar et al., 2019), which is often measured by direct 

destructive sampling that involves the in removal of several plants, the separation and 

measurement of the individual leaf areas (Fang et al., 2019). Ground measurement of 

evapotranspiration (ET) often rely on the installation lysimeters in the field plots (Gebler et al., 

2015), which requires significant amount of human, materials, and financial resources. These 

datasets and data collection methods are effective for the study of local ecohydrological process 

but cannot be used to address macroscale issues due to the spatial and temporal heterogeneity of 

soil properties, plant community compositions, and weather conditions at the ecosystem level 

(Wang & Dickinson, 2012). Scaling local scale datasets to study landscape scale problems, 

which remain one of the under addressed questions in ecohydrological investigations 

(Asbjornsen et al., 2011) requires new observations of these complex systems. 

Resolving large scale ecohydrology processes requires long-term and high frequency 

datasets that can adequately reflect the holistic dynamics of the ecosystem (Krause et al., 2015). 
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Recently, considerable efforts have been made to measure and estimate the key ecohydrological 

variables at ecosystem level. The long heritage of soil moisture observation from space has 

enabled researchers to resolve various of ecohydrological problems in the past (Mohanty et al., 

2017). The newly launched Soil Moisture Active Passive (SMAP) can provide soil moisture and 

vegetation observations with higher temporal and spatial resolution (Entekhabi et al., 2010a), 

which may hold useful information about ecosystem functions. However, little attention has been 

given to how much new information can the SMAP observations provided for the understanding 

of vegetation dynamics beyond what can be informed from other metalogical variables that are 

known to affect the vegetation. In addition, the soil moisture observations from have been 

validated against in situ soil moisture measurements at a few core and sparse validation sites 

(Chen et al., 2017; Colliander et al., 2017), yet little is known about why and how information 

transferred from the raw SMAP algorithm inputs to the end-user product. Knowing where and 

when does the SMAP algorithm tend to be more uncertain will provide insights to algorithm 

designers to refine the algorithms thereby better algorithm performance.  

Therefore, the chapter 2 of this dissertation we evaluated how much information SMAP soil 

moisture and vegetation observations can provide in the prediction of LAI at daily scales. Mutual 

information theory (Cover & Thomas, 2005) was used to broadly determine the additional 

information that captures both linear and non-linear information transferred from SMAP soil 

moisture and vegetation observations to the prediction of LAI. A multivariate non-linear 

empirical model was created to quantify the additional information of SMAP observations and 

the conditions under which SMAP observations are more informative.  

In chapter 3, we assessed how information flows through satellite algorithms from SMAP 

Dual Channel Algorithm (DCA) input data is translated to end user products. The informational 

random uncertainty and informational model uncertainty were quantified by leveraging the 

framework built by (Gong et al., 2013). The relationships between these informational 

uncertainties and the retrieval quality of the SMAP algorithm were analyzed. Finally, the 

multivariate information from SMAP brightness temperature observations (the main 

measurements from SMAP) to SMAP soil moisture retrieval were decomposition using partial 
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information decomposition. The relationships between these decomposed components were 

assessed against the SMAP soil moisture retrieval quality.  

Another important component in ecohydrological studies are the carbon and water fluxes. 

Carbon and water fluxes, which circulate between the terrestrial ecosystems and the atmosphere, 

are equally important to as they are jointly influence the earth’s surface hydrology, ecology, and 

climate (Gentine et al., 2019). The advent of the eddy covariance (EC) technique has been 

providing valuable water and carbon fluxes observations at the ecosystem level that have been 

leveraged to address a wide array of ecohydrological issues (Baldocchi, 2020; Yaseef et al., 

2009). The National Ecological Observatory Network (NEON), for the first time, provides a 

standardized measurements long record of the stable isotope ratios of water vapor and carbon 

dioxide measurements of the atmosphere that can be used to understand the ecosystem’s water 

and carbon cycles (Fiorella et al., 2021). Mounting and calibrating such isotope equipment on the 

EC towers requires considerable effort, yet little is known how much additional constraints on 

carbon and water fluxes these isotopes can provide beyond traditional meteorological 

observations (e.g., vapor pressure deficit, air temperature, net radiation, windspeed) that are less 

costly and easier to be obtained. Therefore, it is crucial to know if these measurements contain 

information about the water and carbon fluxes of the ecosystem. In fact, past literature has 

highlighted that stable isotope holds the potential to investigate carbon and water cycles at 

different locations (Bowen et al., 2019; Esposito et al., 2019; Li et al., 2019).  

Therefore, chapter 4 of this dissertation focused on answering three simple questions: (1) do 

isotope observations from NEON contain useful information about the bulk water and carbon 

fluxes across North America, (2) can any information provided about the bulk fluxes by isotope 

measurements be gleaned from other meteorological variables, and (3) where the does the 

isotope contain more information about these bulk fluxes. We approach the answers to these 

questions by leveraging information theory and multivariate mutual information decomposition 

technique.  

Finally, the general findings of this dissertation is summarized in chapter 5 of this 

dissertation. 
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2. 1 Abstract 

Vegetation phenology is a key ecosystem characteristic that is sensitive to environmental 

conditions. Here, we examined the utility of soil moisture (SM) and vegetation optical depth 

(VOD) observations from NASA’s L-band Soil Moisture Active Passive (SMAP) mission for the 

prediction of leaf area index (LAI), a common metric of canopy phenology. We leveraged 

mutual information theory to determine whether SM and VOD contain information about the 

temporal dynamics of LAI that is not contained in traditional LAI predictors (i.e., precipitation, 

temperature, and radiation) and known LAI climatology. We found that adding SMAP SM and 

VOD to multivariate non-linear empirical models to predict daily LAI anomalies improved 

model fit and reduced error by 5.2% compared with models including only traditional LAI 

predictors and LAI climatology (average R2 = 0.22 vs. 0.15 and unbiased root mean square error 

[ubRMSE] = 0.130 vs. 0.137 for cross-validated models with and without SM and VOD, 

respectively). SMAP SM and VOD made the more improvement in model fit in grasslands (R2 = 

0.24 vs. 0.16 and ubRMSE = 0.118 vs. 0.126 [5.7% reduction] for models with and without SM 

and VOD, respectively); model predictions were least improved in shrublands. Analysis of 

feature importance indicates that LAI climatology and temperature were overall the two most 

informative variables for LAI anomaly prediction. SM was more important in drier regions, 

whereas VOD was consistently the second least important factor. Variations in total LAI were 

mostly explained by local daily LAI climatology. On average, the R2s and ubRMSE of total LAI 

predictions by the traditional drivers and its climatology are 0.81 and 0.137, respectively. Adding 

SMAP SM and VOD to these existing predictors improved the R2s to 0.83 (0.02 improvement in 

R2s) and reduced the ubRMSE to 0.13 (5.2% reduction). Though these improvements were 

modest on average, in locations where LAI climatology is not reflective of LAI dynamics and 

anomalies are larger, we find SM and VOD to be considerably more useful for LAI prediction. 

Overall, we find that L-band SM and VOD observations can be useful for prediction of LAI, 

though the informational contribution varies with land cover and environmental conditions. 
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2.2 Introduction  

Vegetation phenology is the study of plant life cycles such as budburst, flowering and leaf 

senescence, and the impact of seasonal and inter-annual climate variability on the timing and 

magnitude of these events (Way & Montgomery, 2015). Recent climate warming has impacted 

vegetation phenology, which may consequently have profound implications for agriculture and 

forest productivity (Gornall et al., 2010). Accurately tracking land surface vegetation phenology 

is therefore critical to enhance our understanding of the water–food–energy nexus and carbon 

exchanges between terrestrial ecosystems and the atmosphere (Piao et al., 2006). Satellite 

derived vegetation indices are frequently used to track and map the spatial and temporal 

dynamics of vegetation phenology at large scales and can overcome the limitations of traditional 

phenology studies that heavily rely on in situ observations (Justice et al., 1985). Various 

vegetation indices have been applied to assess and track vegetation phenology. The Normalized 

Difference Vegetation Index (NDVI) is considered a proxy of plant phenology and was first 

applied to the study of the spring vegetation growing season in the 1970s (Piao et al., 2019). 

Since then, numerous phenology studies using NDVI have been conducted across different 

biomes and climate regimes. Shifts in the start of growing season were identified across the 

northern hemisphere using NDVI during the 1980s and 1990s (Liu et al., 2018). The Enhanced 

Vegetation Index (EVI) has been applied to map global vegetation phenology and investigate the 

peak growing season of dense evergreen forests (Gerard et al., 2020). Normalized Difference 

Water Index (NDWI) has the potential to determine the phenological dates over boreal regions 

(Delbart et al., 2005). Although various vegetation indices have been applied to track and map 

vegetation phenology, most of these vegetation indices represent vegetation “greenness,” which 

corresponds to how lush the vegetation is (Gao et al., 2020), and are not precise indicators of 

vegetation leaf area (Ju & Masek, 2016). In addition, the retrieval accuracy of satellite vegetation 

indices is often affected by satellite viewing geometry, atmospheric condition, and background 

soil properties (Xue & Su, 2017). 

One key aspect of vegetation phenology that is needed to be predicted for a number of 

environmental applications are the dynamics of leaf area index (LAI), a commonly used metric 
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characterizing the surface area available for photosynthesis in an ecosystem. LAI is the one-sided 

green leaf area per unit vegetated ground surface in a vegetation canopy and can better reflect 

plant growth and leaf density than do optical indices based on greenness (Chen et al., 2015). A 

large set of physically and empirically based algorithms coupled with remotely sensed datasets 

have been proposed to estimate LAI at large scales (Li et al., 2016; Martinez et al., 2010; Sun et 

al., 2017). Various of regression techniques such as simple linear regression, multivariate linear 

regression, and partial least squares regression have been used to empirically link LAI with 

vegetation indices by combing different spectral observations (Darvishzadeh et al., 2008; Xie et 

al., 2014). Machine learning algorithms and geostatistical prediction methods were attempted in 

previous studies to explore the non-linearity between LAI and a set of remotely sensed bio-

geophysical variables (Houborg & Boegh, 2008; Houborg & McCabe, 2018; Omer et al., 2016). 

Process-based model was also used to estimate LAI by optimizing the parameters that are related 

to LAI in a terrestrial ecosystem model (Qu & Zhuang, 2018). 

LAI has been shown to be related to plant water content, a canopy characteristic that can be 

inferred from vegetation optical depth (VOD) at different microwave frequencies (Wigneron et 

al., 2021). Soil Moisture and Ocean Salinity (SMOS) L-band VOD was found to be highly 

correlated with LAI, with correlation strength varying with landcover type (Grant et al., 2016). In 

particular, LAI was found to vary synchronously with VOD in boreal and temperate forests, 

while this relationship was found to be reversed for the tropical woodlands (Tian et al., 2018). A 

comparative study has also shown that SMOS L-band VOD contains information about LAI that 

varies for different crop zones in the USA (Lawrence et al., 2014). A conceptual framework 

showed that VOD sensitivity to leaf water potential and LAI varies with climate conditions 

(Momen et al., 2017). These studies suggest that VOD may provide additional information for 

LAI prediction, yet the accuracy of LAI predictions based on microwave observations is not 

known. 

Vegetation phenology and soil moisture (SM) are linked in the land surface system (Wang 

et al., 2019). Microwave remote sensing of SM has shown to be useful for characterizing 

vegetation soil water use behavior by inferring key plant functional parameters such as soil water 

potential (Bassiouni et al., 2020). A global study on vegetation dynamics has shown that the 
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synthesized microwave SM dataset can model and estimate vegetation phenology in drylands 

(Boke-Olén et al., 2018). In addition, microwave retrieved SM often requires the description of 

the overlaying canopy water status, which is related to the vegetation phenology (Tong et al., 

2020). These studies all suggest that satellite retrieved SM may possess useful information about 

plant development and vegetation phenology (i.e., LAI). 

Launched in 2015, NASA’s Soil Moisture Passive Active (SMAP) mission is the most 

recent space-borne SM dedicated satellite. SMAP uses L-band measurements to map surface/root 

zone SM and its freeze–thaw state (Entekhabi et al., 2010b). SMAP SM products have been 

extensively validated against in situ SM in a sequence of core and spare validation campaigns (S. 

K. Chan et al., 2016; Andreas Colliander et al., 2017). Results from these validations have shown 

that SMAP SM estimates meet the expected mission performance of 0.04 m3/m3 (unbiased root 

mean square error, ubRMSE) volumetric SM (Burgin et al., 2017; Colliander et al., 2017). 

Global scale inter-comparisons among SMAP and other satellite SM suggested that SMAP is 

more robust and exhibits smaller ubRMSE (Tian et al., 2016). 

The SMAP Level-2 dataset, provides SM and vegetation opacity data that can be converted 

to VOD by accounting for the satellite viewing angle, with different active, passive, and 

active/passive derived products at ascending (afternoon retrieval) and descending (morning 

retrieval) orbits. The SMAP SM product has been used to understand plant water uptake 

activities in response to soil water availability (Bassiouni et al., 2020; Feldman et al., 2018). 

However, limited research has focused on the application of SMAP Level-2 VOD product. This 

product measures how microwaves are attenuated through vegetation canopy, which is directly 

related to vegetation water content and above-ground canopy biomass (Tian et al., 2016). 

Furthermore, no effort has been made to quantify the added value of SM Wildfire Predictions AP 

Level-2 SM and VOD in the prediction of LAI. Given the known response of vegetation to SM 

status (Feldman et al., 2018), we hypothesize that combining SMAP observations with 

traditionally phonological drivers (temperature, precipitation, and radiation) will improve the 

predictions of LAI. 

The objective of this study is to evaluate how much information SMAP Level-2 SM and 

VOD products can provide in the prediction of LAI at daily scales. We leverage mutual 
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information theory to determine the additional information that SMAP Level-2 SM and VOD 

provided for LAI prediction. We then use a multivariate non-linear empirical model (random 

forest regression) to quantify the additional information from SMAP Level-2 SM and VOD. 

Finally, we assess the conditions under which SMAP SM and VOD provide more predictive 

information. 

2.3 Materials  

2.3.1 Study Sites  

This study was conducted at 500 sites that were initially selected at random from within the 

contiguous United States between 48.57°N and 28.33°N, and between −65.07°E and −124.16°E. 

The selected sites were excluded if they were identified as water bodies or bare ground as 

indicated by a mean annual LAI of zero. The selected sites were further excluded if no data were 

available in their correspondent quality controlled SMAP datasets. Our final set was comprised 

of 216 study sites, including 120 grasslands (55% of the total sites), 47 croplands (22%), 22 

savannas (10%) and 27 shrublands (13%; Figure 2.1). Mean annual LAI and mean annual 

precipitation of these study sites range from 0.14 to 2.4, and from 133 mm to 1895 mm, 

respectively.  
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Figure 2.1 Spatial distribution of selected terrestrial study sites and their correspondent dominant 

landcovers (stared locations are representative sites of each landcover as shown in Figures 2. S1–

2. S4). 

2.3.2 LAI Datasets 

Satellite derived LAI was used as an estimate of the canopy leaf area status because of its 

temporal consistency and calibration to ground based datasets. A time series of MODIS LAI 

(MCD15A3H Version 6) from April 2004 to October 2019 was obtained for each site using 

MODIS Fixed Sites Subsetting and Visualization Tool (ORNL DAAC, 2018; Santhana Vannan 

et al., 2009), which produced a product with a 4-day temporal resolution and user-specified 

spatial extent. We specified an 8.5 km by 8.5 km MODIS LAI extent that was centered at each 

study site to match the spatial extent of SMAP Level−2 9 km product. The specified MODIS 

spatial extent contains 289 original 500-m by 500-m MODIS LAI pixels. The MODIS LAI 

dataset contains an intrinsic quality control metric characterizing if the estimated LAI meet the 

desired quality level. The obtained MODIS LAI was first filtered by the total number of pixels 

(≥232) that passed quality control to ensure the accuracy of the dataset. All quality-controlled 

MODIS LAI estimates within a SMAP pixel were then average to represent the phenology status 
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at each location. Previous studies have shown that MODIS LAI captures the seasonal dynamics 

of in situ LAI and performs better than other satellite derived LAI products (Fang et al., 2012; 

Yan et al., 2016). To minimize large LAI data gaps, we excluded sites where over 30% of the 

data during our study period April 2015 to October 2019 was missing. After this step, the 

average number of data points per site ranged from 292 to a maximum of 412 data points. 

As SMAP SM and VOD do not align with MODIS data in time, and because LAI 

observations can contain noise induced by environmental conditions such as clouds, a continuous 

and smoothed LAI time series was created. We first applied linear interpolation at each site to 

the quality-controlled LAI to generate continuous LAI at the daily scale. Next, the interpolated 

LAI was smoothed using Savitzky–Golay filter that consists of a local polynomial fitting with 

two parameters: order of the polynomial and temporal window. It has been previously suggested 

that a polynomial order of 2–4 and the window length of 72–112 days generally performs well 

(Kandasamy et al., 2013); these parameter bounds result in a total of 123 different possible 

combinations. At each site, we chose the parameter combination that minimized the squared 

differences between the smoothed LAI and interpolated LAI. We calculated the daily LAI 

anomaly and the daily mean LAI climatology (LAIC) (both terms as explicitly defined later in 

Section 2.4.2) based on the smoothed LAI. See Figures 2.S1–2.S4 for plotted time series of the 

smoothed LAI, LAI climatology, and LAI anomalies at a representative site for each landcover 

(the started locations in Figure 2.1). 

2.3.3 Landcover Information 

The yearly MODIS Landcover dataset (MCD12Q1) was obtained with the same user-

specified spatial extent as LAI (see Section 2.3.2). The original spatial resolution of MCD12Q1 

is 500 m and contains five types of landcover classification schemes (Sulla-Menashe et al., 2019). 

We used the landcover scheme classified by International Geosphere–Biosphere Programme 

(IGBP). The IGBP classifies the land surface into 17 categories: evergreen needleleaf/broadleaf 

forest, deciduous needleleaf/broadleaf forest, mixed forest, closed/open shrublands, woody 

savanna/savanna, grasslands, croplands, permanent wetlands, urban and build-up lands, 

croplands/natural vegetation mosaics, snow and ice, barren, and water bodies (Kwa, 2005). The 
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landcover of each study site was the mode of the landcovers in the user-specified extent (8.5 km 

by 8.5 km, 289 original 500 m by 500 m MODIS pixels). Study sites dominated by woody 

savanna were further classified as savanna; closed/open shrubland were classified as shrubland; 

and cropland/natural vegetation mosaic were classified as cropland. 

2.3.4 Grid-Scale Geophysical Data 

We used SMAP Level-4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil 

Moisture Geophysical Data, Version 4 (SMAP-L4) from April 2015 to October 2019 to 

incorporate meteorological variables (Reichle et al., 2018) that have been shown to be related 

plant phenology: temperature, radiation, and precipitation (Bradley et al., 2011; Scranton & 

Amarasekare, 2017). SMAP-L4 geophysical datasets were generated using an ensemble Kalman 

filter data assimilation system that assimilates SMAP L-band brightness temperature 

measurements into the Catchment Land Surface Model driven by Goddard Earth Observing 

System Model, Version 5 surface metrological forcing data with gauge-corrected precipitation 

(Reichle et al., 2018). The assimilation system interpolates and extrapolates model estimates and 

SMAP measurements in time and space producing geophysical variables at a 3-hourly temporal 

resolution on a 9 km modeling grid. We obtained a 3-hourly time series of total surface 

precipitation flux, surface temperature, and downward shortwave radiation from the SMAP-L4 

dataset at each study site. The downward shortwave radiation and surface temperature were 

averaged to obtain the daily downward shortwave radiation (R [W/m2]) and daily surface 

temperature (T [K]). The 3-hourly total surface precipitation flux was averaged and then 

converted to daily precipitation (P [mm/day]). The R, T, and P time series at a representative site 

for each landcover (marked as stars in Figure 2.1) are shown in Figures 2.S1–2.S4. 

2.3.5 L-Band Microwave Data 

 SMAP SM and VOD time series from April 2015 to October 2019 were acquired from 

SMAP Enhanced Level-2 Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture, Version 3 

(SMAP-L2) (O’Neill et al., 2019). SMAP-L2 was generated using SMAP Level-1B interpolated 

antenna temperatures as primary input and other datasets such as surface temperature, soil 
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texture as ancillary inputs. Three different retrieval algorithms were implemented in the SMAP-

L2 operational processing software that includes Single Channel Algorithm Horizontal and 

Vertical polarization (SCA-H and SCA-V) and Modified Dual Channel Algorithm (MDCA). 

SMAP retrieves SM based on the ‘tau-omega’ model, a well-known radiative transfer-based SM 

retrieval framework in the passive microwave SM community (Entekhabi et al., 2010b). SCAs 

requires the horizontally or vertically polarized brightness temperature as the main input and 

parameterized by overlaying vegetation and soil surface information. In general, the SCAs link 

one unknow (SM) with one equation. In contrast, MDCA feed the ‘tau-omega’ model with initial 

guesses of surface SM and vegetation optical depth (Chaubell et al., 2020). The guesses of SM 

and vegetation optical depth are adjusted iteratively until they minimize the squared distance 

difference between satellite observed brightness temperatures. The guesses of SM and VOD are 

adjusted iteratively until they minimize the squared distance difference between satellite 

observed brightness temperatures and the estimated brightness temperature. Detailed discussions 

of these algorithms have been previously published in (Wigneron et al., 2017) and (Chaubell et 

al., 2020). 

 We used the MDCA retrieved SM and VOD time series in this study. The SM and VOD 

datasets were filtered by the SM quality flag to minimize bias induced by poor data quality. 

SMAP retrieves SM and VOD in mornings and afternoons, so we averaged the quality-controlled 

morning and afternoon SM and VOD estimates to produce time series of mean daily SM and 

VOD. See Figures 2.S1–2.S4 for plotted time series of SM and VOD at a representative site for 

each landcover (the stared locations in Figure 2.1). 

2.4 Methodology 

2.4.1. Shannon’s Entropy and Mutual Information 

Shannon’s entropy represents the amount of information that is needed to fully describe a 

random variable (Kraskov et al., 2004). Shannon’s entropy of a single random variable is defined 

as: 
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H(X) = −∑ 𝑝(𝑥)𝑙𝑜𝑔2𝑝(𝑥)𝑥 , (1) 

where p(x) is the probability mass function associated with random variable X. We computed p(x) 

by discretizing X to a fixed number of equal bins. The bin number of X is determined by Scott’s 

rule, which bins the random variable X based on the number of data points and standard 

deviation of X (D. W. Scott, 2010). We then applied the Miller-Madow correction and a 

normalization method (Z. Zhang & Grabchak, 2013) to reduced error that may be induced by 

data length of X. The corrected and normalized entropy (𝐻̃, here after entropy) is expressed as: 

𝐻̃(X) = 
𝐻(𝑋) + 

𝐾−1

2𝑛

𝑙𝑜𝑔2𝑛
, (2) 

where H(X) is the Shannon’s entropy, n is the number of data points of X, K is the number of 

non-zero bins while estimating p(x). 

For multiple variables Xi or a set of random variables {X1, …, XN}, the joint entropy is 

H(X1, …, XN) = −∑ …𝑥1
∑ 𝑝(𝑥1, … , 𝑥𝑁)𝑥𝑁

𝑙𝑜𝑔2𝑝(𝑥1, … , 𝑥𝑁), (3) 

where p(x1,…, xN) is the joint probability mass function of a set of random variable {X1,…, XN} 

that is estimated using the Scott’s rule data binning method (Scott, 2010). We applied the same 

correction and normalization method as in Equation (2). The corrected and normalized joint 

entropy (𝐻̃, here after joint entropy) is 

𝐻̃(X1,…,XN) = 
𝐻(𝑋1,…,𝑋𝑁) + 

𝐾−1

2𝑛

𝑙𝑜𝑔2𝑛
, (2) 

where H(X1, …, XN) is the original joint entropy from Equation (3), n is the number of data 

points of {X1, …, XN}, K is the number of non-zero bins in estimating the joint probability mass 

function in Equation (3). 

Entropy and joint entropy are the basic building blocks of mutual Information (I). Mutual 

information represents the amount of information known about one or a set of random variables, 

given the knowledge of other random variables. Mathematically, mutual information can be 

written as 
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I(Y; X1, …, XN) = 𝐻̃(Y) + 𝐻̃(X1, …, XN) − 𝐻̃(X1, …, XN, Y), (3) 

where 𝐻̃(Y) is computed by Equation (2), 𝐻̃(X1, …, XN) and 𝐻̃(X1, …, XN, Y) can be calculated 

by Equation (4). 

Leverage Equations (1)–(5), we denoted the mutual information between LAI and {LAIC, P, 

T, R} as I(LAI; LAIC, P, T, R), {SM, LAIC, P, T, R} as I(LAI; SM, LAIC,P, T, R), {VOD, LAIC, 

P, T, R} as I(LAI; VOD, LAIC, P, T, R), {SM, VOD, LAIC, P, T, R} as I(LAI; SM, VOD, 

LAIC,P, T, R). Therefore, the information gap between I(LAI; SM, LAIC,P, T, R) and I(LAI; 

LAIC, P, T, R) represents the additional information of SM for LAI prediction. The information 

gap between I(LAI; VOD, LAIC, P, T, R) and I(LAI; LAIC, P, T, R) represents the additional 

information of VOD for LAI prediction. Finally, the additive information of SM and VOD can 

be express as the information gap between I(LAI; SM, VOD, LAIC, P, T, R) and I(LAI; LAIC, P, 

T, R). These informational gaps represent the upped bound of additive information that SM, 

VOD, and SM with VOD can provide to LAI prediction. In practice, we often quantify the 

additive information of SM and VOD in a modeling scheme, though this approach is model 

dependent and may not produce the same additive information as shown by mutual information 

approach outlined above. 

2.4.2 Random Forest Regression 

Vegetation passes through known cycles on a seasonal basis and a significant portion of the 

variance of LAI can be explained by its day of year climatology (LAIC). We define LAIC on a 

certain day as the average smoothed LAI on that day between 2004 to 2019. As the LAIC is static 

year-to-year, and therefore assumed known once it has been determined, new remote sensing 

observations are most useful if they aid in the prediction of deviations LAI from the known 

climatology. These deviations (hereafter termed LAI anomalies) may be caused, in-part, by 

unusual local environmental conditions such as droughts, cool snaps. We thus focus first on 

estimation of the LAI day-of-year anomaly. At each study site, we developed a “null” regression 

model that included P, T, R and LAIC (base predictors). A “full” model was then built that 
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included all base predictors as well as SM and VOD. The “null” and “full” models were 

established using the random forest (RF) regressor. 

Random Forests (RF) is a supervised learning algorithm that uses ensemble learning method 

for regression tasks using multiple decision trees and a bagging statistical technique based on 

discrete or continuous datasets (Breiman, 2001). RF builds multiple decision trees and merges 

the predictions from individual tree together result in more superior predictions compared with 

predictions solely rely on individual trees. Each individual tree learns from a random sample of 

training observations that are drawn with replacement. Despite higher variance in each individual 

tree on a particular set of training dataset, the idea of training each tree on different samples can 

lead to a lower variance and a lower bias for the entire forest (Houborg & McCabe, 2018). 

A RF model contains multiple hyperparameters, and its application often involves complex 

hyperparameter tuning. We randomly partitioned the datasets used in the “null” and “full” 

models into training and testing datasets of 80% and 20% at each study site, respectively. We 

used training datasets to tune the hyperparameters that were shown to significantly impact RF 

performance (Probst et al., 2019) including the number of trees in the forest(100, 250, 500, 750, 

1000), the number of features to consider when looking for the best split (“auto”, “sqrt”, “log2”), 

the minimum number of samples required to split an internal node (2, 30, 50), the minimum 

number of samples required to be at a leaf node (1, 10, 20, 30), and whether bootstrap samples 

are used when building trees (“True”, “False”), where values in parentheses denote 

hyperparameter values we evaluated. We tuned the “null” and “full” models by specifying a 

finite range of the selected parameters and explore the potential parameter combinations 

iteratively using a grid search with a 5-fold cross validation. 

The best “null” and “full” models were selected based on the model performance on the 

training dataset that was evaluated by coefficient of determination (R2). R2 and unbiased root 

mean square error (ubRMSE) were calculated from the testing dataset as 

R2 = 1 − 
∑ (𝑦𝑖 − 𝑦̂)2

𝑖 

∑ (𝑦̅− 𝑦𝑖)2
𝑖

, (6) 

and 
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ubRMSE = √𝐸[((𝑦̂ − 𝐸[𝑦̂]) − (𝑦𝑖 − 𝐸[𝑦̅]))2], (4) 

where yi is the daily LAI anomaly, 𝑦̂ is the estimated daily LAI anomaly by the RF models, E[𝑦̂] 

and E[𝑦̅] are the mean of model estimated LAI anomalies and daily LAI anomaly, respectively. 

Predicted LAI anomalies from the “full” and “null” models were added back to the LAI 

climatology to get the final respective total LAI predictions. We then computed R2 of the 

reconstructed LAI and the daily LAI using Equation (6) and replacing yi with LAI and 𝑦̂ with the 

respective “full” and “null” model reconstructed LAI. The ubRMSE of the reconstructed LAI 

and daily LAI were computed using Equation (7), replacing yi with LAI, 𝑦̂ and 𝐸[𝑦̂] with the 

“full” and “null” model reconstructed LAI and their expectations, and 𝐸[𝑦̅] with the mean of LAI. 

Note that the ubRMSE of the LAI anomaly prediction and LAI prediction are the same for both 

“full” and “null” models due to the ubRMSE formulation and the way we reconstruct total LAI 

as the sum of the climatology and the anomalies. 

Feature importance is a score of input features based on how useful they are at predicting a 

target variable (Breiman, 2001). Feature importance was extracted from the “full” RF models to 

evaluate which variables impacted the LAI anomaly prediction. Negative R2 values for “full” 

models indicate that the models are worse than simply using the mean value to predict LAI 

anomalies. Therefore, only study sites with worthwhile “full” model (R2 > 0) were retained for 

feature importance analysis (115 grasslands, 44 croplands, 22 Savannas, 26 shrublands). The 

feature scores were ranked from least important (smaller values) to most important (larger 

values). A moving average with a window of 32 sites (~15% of the sample sites) of each feature 

importance was calculated and evaluated as a function of mean site SM. 

2.5 Results 

2.5.1. Input Dataset Characteristics 

During the study period (April 2015 to October 2019), the mean site smoothed LAI in our 

study sites ranges from 0.17 to 2.42 and the standard deviation ranges from 0.02 to 1.46. The 

ranges of skewness and kurtosis are −1.66 to 1.82 and −1.63 to 3.74, respectively. The mean site 

precipitation and standard deviation ranges are 0.14-mm/day to 3.79 mm/day and 1.01 mm/day 
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to 21.95 mm/day, respectively. The precipitation skewness and kurtosis ranges are 2.99 to 25.45 

and 10.72 to 675.21, respectively. The temperature mean ranges from 285.77 K to 298.2 K and 

the standard deviation ranges from 5.82 K to 10.59 K. The temperature skewness and kurtosis 

ranges from −0.95 to 0.06 and from −1.16 to 0.55, respectively. The mean site radiation ranges 

from 187.9 W/m2 to 279.36 W/m2 with the standard deviation ranges from 68.5 W/m2 to 100.77 

W/m2. The radiation skewness and kurtosis ranges from −0.73 to 0.16 and from −1.23 to −0.14, 

respectively. Mean site SM during the study period ranges from 0.05 to 0.38 and the standard 

deviation ranges from 0.01 to 0.09. The SM skewness and kurtosis ranges are −0.38 to 2.41 and 

−1.13 to 8.38, respectively. The mean site VOD ranges from 0.05 to 0.51 and the standard 

deviation of VOD ranges from 0.03 to 0.11. The VOD skewness and kurtosis ranges are 0.06 to 

1.9 and −0.79 to 12.3, respectively. 

2.5.2. Mutual Information Analysis 

Figure 2.2 shows how much information the base predictors contain about LAI as plotted 

against the mutual information of the base predictors combined with SMAP SM, SMAP VOD, or 

SM and VOD jointly. It is observable that the base predictors with SM and VOD individually, or 

with SM and VOD jointly contains more information about LAI than just the base predictor 

themselves. The base predictors with VOD contain slightly more information about LAI than the 

base predictors with SM. The averaged mutual information between LAI and base predictors is 

0.24, while the mean mutual information between LAI and base predictors with SM is 0.29, and 

the mean mutual information between LAI and base predictors with VOD is 0.30 (Figure 2.2). 

The mean value of mutual information between LAI and base predictors with SM and VOD 

jointly is 0.32 (Figure 2.2), roughly a 33% increase in the information content. 
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Figure 2.2 Mutual information between LAI and LAI climatology (LAIC), precipitation (P), 

temperature (T) and radiation (R) (based predictors) against the mutual information between LAI 

and soil moisture (SM) and base predictors (red triangles), the mutual information between LAI 

and VOD and based predictors (blue triangles), and mutual information between LAI and base 

predictors and VOD and SM (black crosses). 

2.5.3 LAI Anomaly Estimations  

The performance of the random forest regressor on the prediction of LAI anomalies is 

shown in Figure 2.3. In general, the “full” models that were trained with the base predictors and 

SM and VOD jointly show a better prediction accuracy in higher R2s and lower ubRMSE than 

the “null” models. Most of the estimates fall above the one-to-one line, with more than 80% of 

the “full” model outperform the “null” model in terms of their R2s. The mean R2s and ubRMSE 

of the “null” models are 0.15 (Table 2.1) and 0.137 (Table 2.2), respectively. The “full” models 

perform better in predicting LAI anomalies in grasslands and croplands, while compared with the 

model performance in other landcovers. However, the “full” model in shrublands on average has 

smaller ubRMSE (0.053), which possibly due to smaller LAI anomaly magnitude. The mean 

“full” model R2s and ubRMSE in grasslands are 0.24 (Table 2.1) and 0.118 (Table 2.2), 

respectively. The “null” model results consistently slightly lower than the “full” model results 
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across all landcovers (Table 2.1 and Figure 2.3). Mean improvements across sites for all 

landcover anomaly predictions were found to be greater than zero using a 1-sided t-test at a 

significance level of 0.05. While these R2 values are not large, it is important to note that we are 

estimating anomalies, and much of the known deterministic behavior of these systems accounted 

for in the seasonal cycle. 

 

Figure 2.3 The R2s of “full” model predicted LAI anomalies against the R2s of the “null” model 

predicted LAI anomalies (a), and ubRMSE of “full” model predicted LAI anomalies against the 

of the “null” model predicted LAI anomalies (b). 

 

Table 2.1 Statistics of “null” model R2s and “full” model R2s for LAI anomaly predictions and 

the statistics of the difference in R2s between the “full” models and “null” models and for the 

LAI anomaly prediction. (Asterisks indicate the R2s of the models are significantly greater than 0 

with different significant levels * 0.05; ** 0.01). 

 
full Model 

R2s 

null Model 

R2s 

full Model R2s– 

null Model R2s 

Percentage 

Improvements 

Number of 

Sites 

 Mean Mean Mean (% of null) n 

Grasslands 0.24 ** 0.16 ** 0.08 ** 50% 120 

Shrublands 0.17 ** 0.14 ** 0.03 ** 19% 27 

Croplands 0.23 ** 0.15 ** 0.08 ** 56% 47 

Savannas 0.20 ** 0.12 ** 0.08 ** 57% 22 

All 0.22 ** 0.15 ** 0.07 ** 50% 216 
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Table 2.2 Statistics of “null” model ubRMSE and “full” model ubRMSE for LAI anomaly 

predictions and the statistics of the difference in ubRMSE between the “full” models and “null” 

models and for the LAI anomaly predictions or LAI predictions (Asterisks indicate the ubRMSE 

of the models are significantly greater than 0 with different significant levels * 0.05; ** 0.01. 

Note: This table is the same for LAI predictions due to how we reconstruct LAI using the “full” 

model and “null” model predicted LAI anomalies combined with static LAI climatology). 

 
full Model 

ubRMSE 

null Model 

ubRMSE 

null Model ubRMSE– 

full Model ubRMSE 

Percentage 

Improvements 

Number  

of Sites 

 Mean Mean Mean (% of null) n 

Grasslands 0.118 ** 0.126 ** 0.008 ** 5.7% 120 

Shrublands 0.053 ** 0.054 ** 0.001 * 1.7% 27 

Croplands 0.193 ** 0.203 ** 0.01 ** 5.1% 47 

Savannas 0.157 ** 0.165 ** 0.008 ** 4.4% 22 

All 0.130 ** 0.137 ** 0.007 ** 5.2% 216 

On average, the improvement of the “full” model over “null” model R2s and ubRMSE are 

0.07 (Table 2.1) and 0.007 (Table 2.2), respectively. These results show that SM and VOD are 

more informative in improving LAI anomaly prediction in grasslands, croplands, and savanna 

with the mean value of change of R2 from “null” models to “full” models being 0.08. SMAP SM 

and VOD provide the least amount of additional information in shrub-lands for LAI anomaly 

prediction (Table 2.1). In terms of ubRMSE, shrublands has the smallest reduction (0.001) in 

ubRMSE from the “null” models to the “full” model (Table 2.2), while the largest reduction in 

ubRMSE is found in croplands (0.01). Though the reductions in ubRMSE from “null” models to 

the “full” models are small, the percentage improvements are non-trivial as indicated by 

statistical significance levels below 0.05 for all landcover classes. The grasslands and croplands 

have 5.7% and 5.1% reduction in ubRMSE relative to the mean ubRMSE of the “null” models, 

respectively. 

2.5.4. LAI Estimations 

Total modeled LAI was reconstructed by adding the LAI climatology to the “null” and “full” 

LAI anomaly models. In Figure 2.4 a, b, the R2s and ubRMSE of LAI climatology themselves 

(when compared with the true LAI) are plotted against and R2s and ubRMSE of reconstructed 
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total LAI. It is shown that majority of R2s from reconstructed “full” model and “null” model LAI 

prediction outperform the prediction of LAI using only LAI climatology (Figures 2.4a and 2.5), 

while this pattern is reversed for ubRMSE (Figures 2.4b and 2.6). The reconstructed LAI by the 

“full” model often outperform the “null” reconstructed LAI in terms of both R2s and ubRMSE 

(Figure 2.4a−b). On average, the “full” model R2 and the “null” model R2 are 0.83 and 0.81, 

respectively. The “full” model ubRMSE and the “null” model ubRMSE are 0.13 and 0.137, 

respectively. The R2 and ubRMSE of LAI climatology are 0.75 and 0.15, respectively. As is 

summarized in Table 3, the mean R2 of the “full” model is higher in grasslands (0.82), croplands 

(0.92), and savannas (0.91), while the “full” models are less effective for predicting LAI in 

shrublands (0.64). Overall, we note that the R2 improvements (Table 2.3) are modest, but 

statically significant, after adding SM and VOD for the prediction of LAI. This is because the 

LAI climatology can explain a large amount of variance in LAI (Table 3). 

Table 2.3 Statistics of “null” model R2s, “full” model R2s, R2s of LAI climatology for LAI 

predictions and the statistics of the difference in R2s between the “full” model and “null” model 

LAI predictions. (Asterisks indicate the R2s of the models are significantly greater than 0 with 

different significant levels * 0.05; ** 0.01). 

 
full Model 

R2s 

null Model 

R2s 

Climatology 

R2s 

full Model R2s–

null Model R2s 

Percentage 

Improvements 

Number 

of Sites 

 Mean Mean Mean Mean (% of null) n 

Grasslands 0.82 ** 0.80 ** 0.73 ** 0.02 ** 2.7% 120 

Shrublands 0.64 ** 0.63 ** 0.50 ** 0.01 * 2.3% 27 

Croplands 0.92 ** 0.91 ** 0.89 ** 0.01 ** 1.1% 47 

Savannas 0.91 ** 0.90 ** 0.86 ** 0.01 ** 1.0% 22 

All 0.83 ** 0.81 ** 0.75 ** 0.02 ** 2.1% 216 
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Figure 2.4 The R2s of reconstructed LAI by adding “full” model predicted and “null” model 

predicted LAI anomalies to LAI climatology against the R2s of LAI climatology (a), and the 

ubRMSE of reconstructed LAI by adding “full” model predicted and “null” model predicted LAI 

anomalies to LAI climatology against the ubRMSE of LAI climatology (b). 

 

 

Figure 2.5 The spatial mapping of difference in R2s between the “full” models and “null” models 

for the LAI prediction. 
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Figure 2.6 The spatial mapping of difference in ubRMSE between the “null” models and “full” 

models for the LAI prediction. 

Overall, the improvements of the “full” model R2s over “null” model in R2 is 0.02 (Table 

2.3), which is about 2.1% relative to the “null” model R2s. In terms of percentage im-provident 

relative to the “null” model, SM and VOD are more informative in improving LAI estimations in 

grasslands with the mean value of change of R2 and ubRMSE being 5.7% and 2.7%, respectively. 

In croplands, shrublands and savannas, the SM and VOD provide less information for the LAI 

prediction with the mean value of change of R2 from “null” models to “full” models being 0.01 

(Table 2.3). In terms of ubRMSE, the SM and VOD pro-vide the least amount of additional 

information for LAI prediction with the mean reduction in ubRMSE from the “null” models to 

the “full “models being 0.001 (1.7% of “null” model ubRMSE). 

2.6 Discussion 

2.6.1 Theoretical Additive Information of L-Band VOD and SM 

The mutual information analysis in this study serves as the theoretical basis of exploring the 

potential usage of L-band SM and VOD to predict LAI given other base environmental variables. 
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We consistently showed that the information shared between the base predictor and LAI can be 

improve after adding either L-band SM or VOD individually into the system. Incorporating L-

band VOD, SM and base predictors in conjunction can provide more predictive skill. The 

improved skill indicates that microwave remotely sensed SM and VOD capture distinct 

phenological information that is not reflected in these base predictors. It is important to 

acknowledge that the mechanism of mutual in-formation is purely data driven and is based on 

the marginal or joint probabilistic relationships between variables in this mutual information 

function. Therefore, the mutual information between LAI and these predictors reflects the 

theorical “true” relationships. However, this “true” relationship may change given the 

interference of other predictors. 

It is important to note that any newly added predictors, such as SM or VOD, may be inter-

correlated with some of the selected base predictors evaluated here. In fact, numerous previous 

studies have highlighted the spatial and temporal patterns of SM depend on the variability of 

precipitation forming a positive or negative SM-precipitation feedbacks that varies across 

different soil conditions (Asharaf et al., 2012; Hohenegger et al., 2009; Hsu et al., 2017). 

Similarly, L-band VOD represents how microwave is attenuated through the canopy and has 

found to be tightly related to the vegetation canopy water storage (Vittucci et al., 2019). 

Vegetation canopy water storage is not only a function of vegetation traits such as leaf water 

potential but also a function of external driving force such as radiation (Liu et al., 2019). 

Therefore, radiation may contain information about VOD. Given that SM and VOD not only 

share information about LAI, but also contains information about other base predictors, the 

theoretical explanatory power after adding SM or VOD into the system may not be as strong as 

expected since part of variability in LAI may be redundantly explained by the base predictors 

and L-band SM and VOD. 

Overall, we found that the improvement in predictive skill after adding VOD and SM 

together shows a better performance than individually. This indicates that SM and VOD may 

share unique information with LAI and this uniquely shared information may reflect that the 

theoretical true vegetation phenology dynamics are driven by the mixture of the biotic (VOD) 

and abiotic (SM) factors. 
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2.6.2 Additive Information of L-band SM and VOD for LAI anomaly 

We observed that there exist theoretical additional explanatory power of VOD and SM for 

LAI prediction from the mutual information analysis. However, in practice, it is extremely hard 

to approach the theoretical bound due to the algorithm uncertainties. In this study, we first 

evaluated how much additional information can SM and VOD provide for the prediction of LAI 

anomalies. Our results demonstrated that SMAP L-band VOD and SM have more skill for the 

prediction of LAI anomalies in grasslands. The stronger predictive power of SM and VOD in 

grasslands relative to shrublands could be physio-logical or could be due to the measurement 

accuracy of SMAP SM and VOD products. Previous SMAP SM validation studies have 

demonstrated that the SMAP SM estimates in grassland are generally more accurate than other 

landcovers. The poor performance of SMAP SM in shrubland has also been confirmed in other 

SMAP validation studies where the correlation between SMAP SM is significantly lower than 

those of other landcovers (Liu et al., 2019; Zhang et al., 2019). In addition, the nominal sensing 

depth of L-band SM is 5 cm, whereas other studies have demonstrated that the penetration depth 

of L-band was found to be much shallower (~1 cm) and can be sensitive to surface 

meteorological conditions (El Hajj et al., 2018; Escorihuela et al., 2010). Therefore, L-band SM 

may capture more information about plant-available water in grasslands where rooting depths are 

shallower than shrublands on average (El Hajj et al., 2018). 

The SM and VOD sensed by SMAP is more representative of the average SM and VOD 

within a single pixel when landcover is homogeneous (as assumed with SMAP algorithms). 

However, the vegetation patterns in shrublands are tend to very patchy and in-homogeneous and 

shrubs contain more woody branches, which can cause the SMAP SM and VOD to be less 

representative, and hence may provide less predictive skill. From bio-physical perspective, 

shrublands are more resilient to soil variations and disturbance than grasslands and croplands 

(Stavi, 2019). Changes in SM or vegetation water status (as reflected by VOD) in shrublands 

may be less influential on LAI anomalies, which may partially ex-plain why SM and VOD 

produce possess less skill for the prediction of LAI anomalies. 
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The feature importance from “full” models was extracted and evaluated by their mean SM. 

As shown in Figure 2.7, it is not surprising that the LAI climatology is consistently the most 

important feature for the prediction of daily LAI anomalies. We also find vegetation tends to be 

sensitive to water availability in relatively dry SM conditions. Our study sites have relatively 

small LAI values and hence change in absolute LAI values may not synchronize with LAI 

climatology, which may cause a decrease in LAI climatology importance on LAI anomaly 

predictions in low SM regimes. Temperature was found to be the second most important factor 

for LAI anomaly prediction (Figure 2.7). High temperatures often lead to an increase of 

evapotranspiration therefore affect the leaf development. SM, the third highest rated factor, 

influences LAI anomalies via the amount of water that is available for plants. Previous study 

suggested that savannas and grasslands have the most resistant water uptake strategies because 

they are more effective at extracting water from the soils at drier soil conditions (Bassiouni et al., 

2020). Our study sites are mainly dominated by grasslands and therefore might be able to explain 

why SM is relatively important for LAI anomalies in drier soil conditions. 

 

Figure 2.7 The level of feature importance of LAI climatology (LAIC), soil moisture (SM), 

vegetation optical depth (VOD), precipitation (P), temperature (T) and radiation (R) from the 

“full” models against different soil moisture conditions. 
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In higher SM regimes, SM is no longer the key limiting factor since competition for water 

by vegetation is not as strong, this likely results a reduction in the importance of SM for driving 

LAI anomalies. Overall, VOD is found to be less important than the aforementioned factors 

(Figure 2.7). Information lost in the SMAP algorithms may contribute to this low performance 

(Li & Good, 2020), and much of the VOD information may be correlated with LAI climatology 

data. VOD is the representation of vegetation water status, and it is possible that there exist some 

lag relationships between LAI anomalies and VOD that this study did not consider. 

Precipitation was consistently found to be the least important factor that influences LAI 

anomaly predictions. Precipitation is an indirect water resource when compared with SM, which 

plants directly access. Under drier conditions, vegetation may be more sensitive to precipitation 

since the amount of moisture that can be provided by soil may not be sufficient for the plant to 

grow, while in wetter conditions plants mainly uptake the moisture from soil therefore mitigate 

the influence of precipitation on LAI anomalies. However, given the availability of both 

precipitation and SM, SM and VOD are much more relevant for LAI anomalies. 

2.6.3 Additive Information of SM and VOD for LAI 

Figure 8 shows the additive information of SM and VOD for the prediction of total LAI for 

different SM conditions. There is more opportunity for SMAP VOD and SM to be useful under 

intermediate (around ~0.16) SM regimes. Under drier SM conditions, plants often experience 

water stress, and therefore external water availability and internal water status, as indicated by 

SM and VOD, may be more relevant to plant water strategy. Hence, SM and VOD have more 

opportunity to capture unique information that is not expressed by traditional phenology 

predictors. A past study has found that VOD and water stress inferred from remotely sensed 

datasets is correlated with LAI. The correlation strength has shown to vary with different SM 

conditions and canopy characteristics (Momen et al., 2017). Under wetter conditions, water 

availability is no more the key limiting factor since the vegetation leaf development is a 

collective effect of energy, water, and nutrients (Cowling & Field, 2003). Therefore, the SM and 

VOD may provide less unique information for as vegetation is well-watered. 
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Figure 2.8 The difference in R2s between “full” model and “null” model reconstructed LAI 

predictions as a function of soil moisture (a), and the reduction in ubRMSE from the “null” 

model to “full” model as a function of soil moisture (b). The red lines in (a,b) are the moving 

average using a window length of 15% of the data. 

It is not surprising that LAI climatology explains most of the variability in LAI. In the 

locations where there are less inter-seasonal variabilities in vegetation dynamics/patterns such as 

shrublands, majority of the variation in LAI can be captured by its climatology. In these 

locations, there is less opportunity for SM and VOD to provided additional information. 

However, in locations where LAI climatology is not reflective of LAI dynamics, SM and VOD 

can be more informative, with the improvements up to 0.05 in R2s, on average (Figure 2.9a). 

This is more than double the average value reported in Table 3. We found a strong correlation 

between the LAI variance that is not explained by the climatology and the improvement of the 

“full” model over the “null” model (Pearson correlation of 0.40, Figure 9a; Pearson correlation 

of 0.37, Figure 2.9b). This demonstrated that SM and VOD can be considered as much more 

useful potential predictors in locations that often experience inter-seasonal vegetation variability 

that cannot be fully represented by its daily LAI climatology. The additive information of 

SMAP-L2 SM and VOD exhibit a large variance (Figure 2.9a, b), which might be an indication 

of complexity of ecosystems. 
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Figure 2.9 The difference in R2s between “full” model and “null” model reconstructed LAI 

predictions as a function unexplained variance by LAI climatology (1-R2 between LAI and its 

climatology) (a), and the reduction in ubRMSE from the “null” model to “full” model as a 

function of unexplained variance by LAI climatology (ubRMSE of LAI climatology). The red 

lines in (a,b) are the moving average using a window length of 15% of the data. 

It is worth noting that there are numerous of studies that have focused on improving LAI 

prediction with various methods and data involved. Previous studies have shown that LAI can be 

better predicted with the help of additional remotely sensed datasets (improvements of ~0.05 in 

RMSE) (Korhonen et al., 2017; Roosjen et al., 2018). LAI predictive accuracy can be improved 

with the combination of color and textures indices from unmanned aerial vehicle-based remote 

sensing using a random forest modeling approach (best R2 values of 0.84 reported) (Li et al., 

2019). Moreover, LAI estimations can be improved by leveraging a data assimilation technique 

in conjunction with terrestrial ecosystem models fed by satellite observations (R2 value of 0.83) 

(Li et al., 2011). A study focusing on estimating LAI using Landsat datasets over tropical 

savanna and rangelands demonstrated that LAI can generally be estimated with R2 values 

ranging 0.62–0.72 and 0.62–0.63 for from dry and wet seasons, respectively (Dube et al., 2019). 

It was shown that LAI estimation accuracy can be improved by incorporating background, 

topography, and foliage clumping information (R2 values of 0.42 & 0.69 when compared with in 

situ TRAC + LAI 2000 and TRAC measurements, respectively) (Gonsamo & Chen, 2014). 

While direct comparison is challenging due to differences in scale, extent, and other factors, the 
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modest yet significant improvements from SMAP VOD and SM (Table 2.3) reported in this 

study are of similar magnitude as other studies, particularly in locations where interannual 

variability is large. In the end, a combination of many approaches is likely the optimum, how-

ever the global extent, increasing availability of microwave data, and results of this study suggest 

VOD and SM data should be considered moving forward. 

2.6.4 Uncertainties, Limitations and Potential Applications 

Our study demonstrated that the L-band SM and VOD can potentially provide additional 

information for improving the LAI predictions, but it is necessary to acknowledge that 

uncertainties and limitations still exist in this analysis. Firstly, the data uncertainty from SMAP 

SM and VOD can never be neglected. Although we filtered the SM and VOD using the intrinsic 

quality flags, there are still chances where these measurements can be noisy. We interpolated 4-

day LAI to daily scale LAI. It is possible that the interpolated and smoothed LAI may not be 

reflective to the actual vegetation dynamics, which can cause the SM and VOD being less 

informative to predict LAI. There are many ways of interpolating and smoothing LAI that can 

lead to distinct LAI time series that may influence the results here. 

The spatial scale of this analysis is relatively coarse (9 km by 9 km). Therefore, the results 

from this study may not be applicable to smaller scale studies or point scale studies. Our study 

sites mainly focused on low density landcovers since most of the heavily vegetated locations 

such as evergreen forests were excluded from this analysis due to the poor data quality from 

SMAP. We evaluated the additive information of SM and VOD with the interference of base 

predictors. It is important to note that LAI can be controlled by different environmental factors 

such as light, water, nutrients, temperature, and ambient carbon concentration collectively. 

Therefore, the additive information for SM and VOD may be less than what has shown in this 

study if more predictors are considered in the system. 

This study can provide guidance for improving vegetation phenology predictions in 

locations where the vegetation phenology cannot be accurately captured by the daily climatology. 

In addition, the results can used as a reference for large scale LAI predictions and estimations. 
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Other LAI prediction studies may consider coupling or fusing L-band SM and VOD in their 

modelling framework to get better accuracy of LAI predictions. 

2.7 Conclusions 

This study evaluated and quantified how informative L-band VOD and SM products are for 

the prediction of LAI using a machine learning approach. We first predicted the LAI daily 

anomaly by the random forest models. We showed that adding SMAP SM and VOD product can 

improve 0.07 in R2s and reduce 0.007 (5.2% reduction of the model without SM and VOD) in 

ubRMSE for the LAI anomaly predictions. SMAP SM and VOD contain additive information 

that results in more skillful LAI anomaly predictions in grasslands relative to shrublands. LAI 

climatology and temperature were overall the two most important variables for LAI anomalies 

prediction. SM is more important under drier conditions than wetter conditions. VOD is 

consistently the second least important factor. On average, R2 of LAI prediction can be improved 

by 0.02 (2.1% improvement of the model without SM and VOD) after incorporating SMAP SM 

and VOD product the prediction of LAI can be improved to additional variance beyond what can 

be explained by the traditional drivers and LAI climatology. 

Based on the results of our study, SM and VOD tend to be more useful for LAI prediction 

when LAI cannot be predicted well by its daily climatology. These locations, where inter-annual 

variability is high, are challenging to predict with the traditional drivers explored here. These 

large deviations from climatological expectations are also likely to be some of the most 

important periods to be predicted, as they are expected to correspond to unusual conditions with 

high societal relevance (e.g., droughts). Overall, the results of this study provide additional 

information for LAI prediction using L-band microwave derived SM and VOD products. It also 

provides insights about the relative importance of environ-mental drivers of daily LAI anomalies 

under different surface soil conditions. 
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2.9 Supplementary Materials 

 

 

Figure 2.S1 Daily smoothed LAI and LAI climatology (a), daily LAI anomalies (b), soil 

moisture (c), vegetation optical depth (VOD) (d), precipitation (e), temperature (f), and radiation 

(g) time series at the representative grassland site (green star in figure 2.1). 
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Figure 2.S2 Daily smoothed LAI and LAI climatology (a), daily LAI anomalies (b), soil 

moisture (c), vegetation optical depth (VOD) (d), precipitation (e), temperature (f), and radiation 

(g) time series at the representative savanna site (red start in figure 2.1). 
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Figure 2.S3 Daily smoothed LAI and LAI climatology (a), daily LAI anomalies (b), soil 

moisture (c), vegetation optical depth (VOD) (d), precipitation (e), temperature (f), and radiation 

(g) time series at the representative cropland site (yellow star in figure 2.1). 
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Figure 2.S4 Daily smoothed LAI and LAI climatology (a), daily LAI anomalies (b), soil 

moisture (c), vegetation optical depth (VOD) (d), precipitation (e), temperature (f), and radiation 

(g) time series at the representative shrubland site (blue star in figure 2.1). 
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3.1 Abstract  

NASA’s Soil Moisture Active-Passive (SMAP) mission characterizes global spatiotemporal 

patterns in surface soil moisture using dual L-band microwave retrievals of horizontal (TBh) and 

vertical (TBv) polarized microwave brightness temperatures through a modeled mechanistic 

relationship between vegetation opacity, surface scattering albedo, and soil effective temperature 

(Teff). Although this model has been validated against in situ soil moisture, there is a lack of 

systematic characterization of where and why SMAP estimates deviate from the in situ 

observations. Here, we assess how the information content of in situ soil moisture observations 

from the US Climate Reference Network contrasts with (1) the information contained within raw 

SMAP observations (i.e., ‘informational random uncertainty’) derived from TBh, TBv and Teff 

themselves, and (2) with the information contained in SMAP’s Dual Channel Algorithm (DCA) 

soil moisture estimates (i.e., ‘informational model uncertainty’) derived from the model’s 

inherent structure and parameterizations. The results show that, on average, 80% of the 

information in the in situ soil moisture is unexplained by SMAP DCA soil moisture estimates. 35% 

of the unexplained information is caused by the loss of information in the DCA modeling 

process while the remainder is induced by a lack of additional explanatory power within TBh, TBv 

and Teff. Overall, retrieval quality of SMAP DCA soil moisture, denoted as the Pearson 

correlation coefficient between SMAP DCA soil moisture and in situ soil moisture, is negatively 

correlated with the informational uncertainties, with slight differences across different 

landcovers. The informational model uncertainty (Pearson correlation of -0.59) was found to be 

more influential than the informational random uncertainty (Pearson correlation of -0.34), 

suggesting that the poor performance of SMAP DCA at some locations is driven by model 

parameterization and/or structure and not underlying satellite measurements of TBh and TBv. A 

decomposition of mutual information between TBh, TBv and DCA soil moisture shows that on 

average 58% of information provided by TBh and TBv to DCA estimates is redundancy. The 

amount of information redundantly and synergistically provided by TBh and TBv was found to be 

tightly related (Pearson correlation of 0.79 and -0.82, respectively) to the retrieval quality of 

SMAP DCA. TBh and TBv tend to contribute large redundant information to DCA estimates under 
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surfaces or conditions where DCA makes better retrievals. This suggests that the informational 

redundancy and synergy between these remotely sensed observations can be indicative about soil 

moisture retrieval quality. This study provides a baseline approach that can also be applied to 

evaluate other remote sensing models and understand informational loss as satellite retrievals are 

translated to end user products. 
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3.2 Introduction  

Accurate information on soil moisture is of great importance for understanding various 

biophysical processes in hydrology, agronomy, and ecosystem sciences (Bassiouni et al., 2020; 

Uber et al., 2018). The poor spatial representativeness of in-situ soil moisture sensors, combined 

with their labor-intensive installation and maintenance, impedes the application these sensors to 

understand large scale ecosystem phenomena (Babaeian et al., 2019; Petropoulos et al., 2015). 

Spaceborne passive microwave remote sensing has been developed as a reliable method to 

estimate surface soil moisture at large scales (Wigneron et al., 2017). It leverages the large 

discrepancies in dielectric properties between liquid water and dry soil that result in a high 

dependency of soil dielectric constants on soil moisture (Njoku & Entekhabi, 1996). Various 

microwave frequencies have been available to date, amongst which the L-band microwave 

frequencies were found to be desirable for soil moisture estimations because they can sense soil 

moisture at a relatively deeper layer (~5cm) and can provide greater vegetation penetration 

power (Mohanty et al., 2017). Though microwave remote sensing has been investigated for 

decades, significant uncertainties still exist in both microwave radiometry and in the algorithms 

used to translate microwave observations to soil moisture estimates (Gruber et al., 2020). 

Passive L-band remote sensing soil moisture estimation uses a radiometer to measure 

surface emission intensity, which is proportional to the brightness temperature (Wang & Qu, 

2009). The brightness temperature is linked with soil moisture and vegetation opacity through 

the ‘tau-omega’ emission model and parameterized by soil and vegetation functions (Jackson et 

al., 1982; Mo et al., 1982). The ‘tau-omega’ model rationale has been adopted by NASA’s Soil 

Moisture Active-Passive (SMAP) mission, which is one of the earth observation missions 

dedicated to estimate soil moisture at L-band microwave frequency (Entekhabi et al., 2010a). 

SMAP implemented two primary algorithms: (1) the single channel algorithm (SCA) that uses 

one polarized brightness temperature as primary input to retrieve soil moisture and (2) the dual 

channel algorithm (DCA) that retrieves soil moisture and vegetation opacity simultaneously by 

taking the polarized brightness temperature information in both horizontal and vertical directions 

(O’Neill et al., 2020a) . There is strong interest in the DCA approach because of its independent 
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estimation of vegetation opacity in lieu of the specified vegetation climatology employed by the 

SCA (O’Neill et al., 2020a). Other L-band focused satellite mission such as Soil Moisture and 

Ocean Salinity (SMOS) retrieves both soil moisture and vegetation optical depth by using 

numerous brightness measurements for different incidence angles (Kerr et al., 2012). 

Additionally, it has been suggested that using a time-integrated vegetation opacity, as is 

employed in the multi-temporal dual channel algorithm (MT-DCA) for instance (Konings et al., 

2016), improves the estimates of soil and vegetation state. These contrasting approaches, as well 

as other studies on SMAP’s temporal polarized ratio algorithm (TPRA) (Gao et al., 2020) and 

regularized dual channel algorithm (RDCA) (Chaubell et al., 2020), suggested there is still 

uncertainty about how SMAP observations of horizontal and vertical brightness temperature can 

be best translated into estimates of surface properties. Although SMAP can provide spatially 

explicit soil moisture estimates that have been shown to be useful to understand a set of 

ecohydrological problems (Dadap et al., 2019; Feldman et al., 2018), the soil moisture retrievals 

are still subject to significant amount of uncertainty due to the imperfection of the model and the 

forcing datasets. It is also important to consider the how the amount of duplicate information 

carried within a set of observations limits the number of independent parameters to be inferred 

(Konings et al., 2015). Therefore, it is critical to diagnosis and quantify the causality of the 

uncertainty caused by the SMAP algorithm to improve the soil moisture and vegetation opacity 

retrieval quality. 

SMAP soil moisture products have been extensively validated against well-calibrated in situ 

soil moisture using unbiased root mean square error (ubRMSE), bias, RMSE Pearson correlation 

coefficients and triple collocation method at ‘core’ and ‘sparse’ validation sites (Chan et al., 

2016; Chen et al., 2017; Colliander et al., 2017; Zhang et al., 2019). These validation 

investigations found that SMAP met the required accuracy target (ubRMSE, 0.04 m3/m3) on 

average, while there exist some locations where the performance of SMAP did not meet the 

expected performance. All these validation studies were focused on finding the general 

uncertainty of SMAP (which is the deviation of SMAP soil moisture from the in situ or reference 

soil moisture) and cannot diagnose and differentiate where the uncertainty arises. Indeed, the 

causality of uncertainty of SMAP soil moisture may arise from two aspects: (1) the uncertainty 
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due to the inaccuracies from forcing the datasets and (2) the uncertainty due to poor model 

structure and parameterizations. In addition, the assessment metrics used in these evaluation 

studies are either heavily dependent on in situ soil moisture or additional reference datasets, 

which does not allow for SMAP to be validated in some remote and inaccessible areas. 

The challenges faced by previous SMAP evaluation investigations can be resolved by 

leveraging two information quantities (Shannon, 1948): (1) Shannon’s entropy, which is the 

amount of information required to fully describe a random variable and (2) mutual information 

(Cover & Thomas, 2005), which represents the amount information of knowing one variable 

given the knowledge of another or a set of random variables. (Gong et al., 2013) first leveraged 

these information quantities to partition overall uncertainty in the hydrological modeling process 

into two categories: (1) random uncertainty that arises by incompleteness of exploratory variable 

and/or inherent stochasticity of forcing datasets, and (2) model uncertainty that is contributed by 

poor model parameterization or formulation. The random uncertainty is not resolvable for the 

given system as it is only related to the probability distributions of the forcing data itself, while 

the model uncertainty is reduceable by a better model parameterization.  

Given that both horizontal and vertical polarized brightness temperatures are measured by 

SMAP, it is unclear how each polarization contributes information to the overall performance of 

the DCA. Recent research on partial information decomposition has provided tremendous 

opportunities for understanding the nuanced interactions among different variables and model 

structure. Initially proposed by (Williams & Beer, 2010) and further advanced by (Goodwell & 

Kumar, 2017), this approach has been used to understand environmental processes that link two 

source variables with a target variable by partitioning multivariate mutual information into 

unique, redundant and synergistic components. The unique information represents the amount of 

information shared with the target variable from each individual source variable separately (Finn 

& Lizier, 2018). Synergistic information is the information provided to the target while both 

source variables act jointly (Kunert-Graf et al., 2020). Redundant information is the overlapping 

information that both source variables redundantly provide to a target (Wibral et al., 2017). 

Information partitioning brings new insight by unambiguously characterizing the 
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interdependencies between source variables and a target variable without any underlying 

assumption (Goodwell et al., 2018).  

The overall objective of this study is to demonstrate that by assessing how information 

flows through satellite algorithms from raw retrievals to end user products, we can illuminate 

areas where improvements can be made and diagnose instances where algorithm estimates are 

expected to be uncertain. In this study, we focus on (1) quantifying the random uncertainty and 

model uncertainty in SMAP’s Dual Channel Algorithm (DCA) and understand how these 

uncertainties are related to DCA retrieval quality; (2) exploring how the partial information 

components between SMAP DCA soil moisture and horizontally polarized and vertically 

polarized brightness temperature can be used to indicate overall DCA soil moisture retrieval 

performance. 

3.3 Material and methods 

3.3.1 In situ Soil Moisture 

The US Climate Reference Network (USCRN) is a systematic and sustained network that is 

operated and maintained by National Oceanic and Atmospheric Administration (NOAA) to 

support climate-impact research with continuous high-quality field observed soil moisture, soil 

temperature and windspeed at different temporal scales (Diamond et al., 2013). The USCRN 

provides soil moisture observations at five different standard depth (5 cm, 10 cm 20 cm, 50 cm, 

and 100 cm) in 114 locations of Contiguous U.S. (CONUS) (Bell et al., 2013). These in situ 

datasets have been used for a wide variety of research such as drought evaluation and satellite 

soil moisture validation (Bell et al., 2015; Leeper et al., 2017). The hourly soil moisture (beta 

version product) datasets at the depth of 5 cm were collected from 58 (15 croplands, 32 

grasslands, 5 shrublands, 2 savannas, 4 mixed) selected USCRN stations (Fig. 3.1 and Table 3.S1) 

based on the availability of in situ soil moisture dataset and the data quality of SMAP pixels in 

the study period of March 31, 2015 to December 10, 2020.  
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Figure 3.1 Spatial distribution of selected USCRN stations classified by landcovers.  

3.3.2 SMAP Level-2 Datasets  

In this study, we acquired the water body corrected horizontally polarized brightness 

temperature (TBh), vertically polarized brightness temperature (TBv), soil effective temperature 

(Teff), DCA soil moisture and the fraction of landcover at each selected USCRN station from 

SMAP Level-2 Radiometer Half-Orbit 36 km EASE-Grid Soil moisture, Version 7 data product 

(O’Neill et al., 2020b) in the same period as the USCRN soil moisture at every station. The 

extracted data series were filtered by the internal quality flags of TBh (“tb_qual_flag_h”), TBv 

(“tb_qual_flag_v”) and DCA (“retrieval_qual_flag_option3”) as provided in SMAP data files. 

We retain data points at a particular SMAP observation time when they all simultaneous pass 

quality control and fall within their correspondent valid ranges (e.g., 0 ~ 330K for TBh and TBv, 

253.15K ~ 313.15K for Teff, > 0.02m3/m3 for DCA soil moisture) as specified in the SMAP 

documentation (Chan, 2020). On average, the number of datapoints across all the sites is 1090 

with a minimum of 225 and a maximum of 1651. DCA retrieves soil moisture based on the ‘tau-

omega’ model (Jackson et al., 1982; Mo et al., 1982), which is a well-known radiative transfer 

based soil moisture retrieval algorithm in the passive microwave soil moisture community. It 
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requires the brightness temperatures as the main inputs, soil effective temperature as an ancillary 

input, and is parameterized based on overlaying vegetation and soil surface information (Njoku 

& Entekhabi, 1996). The DCA iteratively feeds the ‘tau-omega’ model with initial guesses of 

soil moisture and vegetation optical depth. The retrieved soil moisture is assumed to be close to 

the real value when the estimated brightness temperatures are similar to the satellite observed 

brightness temperature (Konings et al., 2017; O’Neill et al., 2020a). Compared to the SCAs, the 

DCA uses a different polarization mixing factor function and different values of vegetation 

single scattering albedo (O’Neill et al., 2020a).  

The SMAP fraction of landcover data field provides the fraction of top three dominate 

landcovers that were classified by International Geosphere – Biosphere Programme (IGBP) 

ecosystem surface classification scheme at each pixel (Chan, 2020). The IGBP classified land 

surface into water, evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf 

forest, deciduous broadleaf forest, mixed forest, closed shrublands, open shrublands, woody 

savannas, savannas, grasslands, permanent wetlands, croplands, urban and built-up, 

croplands/natural vegetation mosaics, snow and ice, barren (Seitzinger et al., 2015). In this study, 

the landcover of the study site was classified as the most dominate landcover if the fraction of 

the most dominate landcover was greater than 50%. Otherwise, the landcover of the study site is 

classified as the “mixed” landcover. Furthermore, the study sites that are dominated by woody 

savanna were classified as savannas, by closed/open shrublands were classified as shrublands, by 

cropland/natural vegetation mosaics were classified as croplands. Sites meeting specified data 

requirements and their associated landcover classification are shown in Figure 2.1. Additionally, 

the 500m leaf area index (LAI) of each site was obtained from NASAs Moderate Resolution 

(Myneni et al., 2015; ORNL DAAC, 2018) Imaging Spectrometer (MODIS) mission  and 

averaged in time. Within each site the mean and standard deviation of LAI of all pixels within 

each SMAP pixel was calculated as a measure of vegetation biomass and variability. 

3.3.3 Information – Based Uncertainty Partitioning  

The fundamental quantity of information theory is Shannon’s entropy (Shannon, 1948), 

which represents the amount of information required to fully describe a random variable (Cover 
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& Thomas, 2005). Shannon’s entropy is the basic building block of computing mutual 

information and the informational uncertainties. The entropy of a single random variable is 

defined as 

H(X) = − ∑ 𝑝(𝑥)𝑙𝑜𝑔2𝑥 ∈𝑋 𝑝(𝑥), (1) 

where p(x) is the probability mass function of random variable X. The estimation of p(x) often 

involves discretizing the values of X into a set of bins and then the p(x) of a specific bin is 

computed by dividing the total number of datapoints within a specific bin by the total of number 

of data points of X. The number of bins in this study is estimated by Freedman-Diaconis binning 

method (Freedman & Diaconis, 1981). The entropy calculated by eq. (1) is in unit of bits.  

Previous study has indicated that this method (eq. (1)) may underestimate the true entropy 

(Paninski, 2003). Therefore, we leveraged the simple Miller-Madow corrected entropy estimator  

(Zhang & Grabchak, 2013) and we also normalization the entropy to remove the bias that may 

cause by the heterogeneity in length of available datasets across all stations. We acknowledge 

that there exist several entropies estimation methods. However, we select the Miller-Madow 

correction based on its simplicity and effectiveness. The corrected and normalized entropy is 

then expressed as 

HCN (X) =  
𝐻(X) +  

𝐾− 1

2𝑛

𝑙𝑜𝑔2 𝑛
, (2) 

where HCN(X) is the Miller-Madow corrected and normalized entropy of random variable X 

(hereafter entropy), H(X) is the uncorrected entropy from eq. (1), n is the number of data points 

of X , K is the number of non-zero probabilities (bins contains more than one data point) based 

on the fixed binned method (Freedman & Diaconis, 1981). In this study, all entropies of single 

random variables in the later equations (i.e., HCN(TBh), HCN(TBv), HCN(in situ) etc.) are computed 

using the combination of eq. (1) and eq. (2) with the replacement of p(•) by their individual 

probability mass functions. 
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The joint entropy (Cover & Thomas, 2005) is a critical intermediate information quantity to 

calculate these informational uncertainties. It represents the amount of information required to 

describe a set of random variables. The joint entropy for two random variables is defined as 

H(X, Y) = − ∑ ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔2𝑦𝜖𝑌 𝑝(𝑥, 𝑦)𝑥∈𝑋 , (3) 

where p(x, y) is the joint probability mass function associated with X and Y that is estimated by 

the same method mentioned above. The same normalization and correction method of eq. (2) is 

applied to joint entropy of eq. (3). The entropy after the correction and normalization is 

formulated as 

HCN (X, Y) =  
𝐻(X,Y) +  

𝐾− 1

2𝑛

𝑙𝑜𝑔2 𝑛
, (4) 

where HCN(X, Y) is the corrected and normalized joint entropy of random variable associated 

with {X, Y}, H(X, Y) is the uncorrected and unnormalized entropy from eq. (3), n is the number 

of data points that were used to calculate the normalized joint entropy (hereafter joint entropy), K 

is the number of non-zero joint probabilities based on the Freeman and Diaconis method 

(Freedman & Diaconis, 1981). All the joint entropies that are associated with two or more 

random variables in the later equations (i.e., HCN(in situ, DCA), HCN(TBh, TBv, DCA), HCN(TBh, 

TBv, Teff, in situ) etc.) are computed using the combination of eq. (3) and eq. (4) with the 

replacement of p(•) by their joint probability mass functions, respectively.  

Generally, modeling efforts are focused on capturing the information of a random variable 

of interest via other explanatory variables through some physically- or empirically- based models. 

However, most of models being constructed of natural processes are not perfect, and the model 

outputs are often not capable of capturing the exact relationship between the available input 

variables and the variable of interest (Gong et al., 2013). There exists a maximum achievable 

performance of a model that describes the variable of interest the best for a particular system 

given the available datasets (Gong et al., 2013); yet the detailed structure of this model is often 

unknown. Mutual information (Cover & Thomas, 2005), for instance I(A; B), is a measure of the 

amount information due to the knowledge of knowing either random variable A or B in the 
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function I(•;•). Mutual information between model inputs and in situ observations of model 

output (hereafter in situ observations) can be used as a useful and effective measure of best 

achievable performance model because it links the model inputs and in situ observations only 

through the joint and marginal probability mass functions that do not involve any priori model 

assumptions (Gong et al., 2013). 

The mutual information can be defined based on entropy and joint entropy (Cover & 

Thomas, 2005). The mutual information between TBh and DCA, and the mutual information 

between TBv and DCA, are computed as  

and 

The mutual information between in situ and DCA soil moisture is computed as 

The mutual information between DCA and in situ soil moisture is calculated as 

I(TBh, TBv; DCA) = HCN(TBh, TBv) + HCN(DCA) - HCN(TBh, TBv, DCA), (8) 

The mutual information between TBh, TBv, Teff and in situ soil moisture is computed as 

I(TBh, TBv, Teff; in situ) = HCN(TBh, TBv, Teff) + HCN(in situ) - HCN(TBh, TBv, Teff, in situ), (9) 

We adopted the information uncertainty analysis by (Gong et al., 2013) and applied it to 

SMAP DCA. For a given system in which the inputs and output are linked via mathematical 

I(TBh; DCA) = HCN(TBh) + HCN(DCA) - HCN(TBh, DCA), (5) 

I(TBv; DCA) = HCN(TBv) + HCN(DCA) - HCN(TBv, DCA), (6) 

I(DCA; in situ) = HCN(DCA) + HCN( in situ ) - HCN(DCA, in situ ), (7) 
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functions, the mutual information between model output and in situ observation can never 

exceed the entropy of the in situ observations. Conceptually, the entropies of model output and in 

situ observations can be considered as two circles (of equal or unequal sizes) and the mutual 

information between model output and in situ observation can be viewed as the overlapping area 

of these two circles (Uda, 2020). Therefore, the maximum mutual information shared between 

model output and in situ is the minimum of the entropy of model output and in situ observations, 

i.e: I(DCA, in situ) ≤ min[HCN(DCA), HCN(in situ)]. Intuitively, the overlapping area of two 

circles cannot be larger that of the smaller circle. Because we are focused on representing the 

observed soil condition, the information gap between in situ observations, HCN(in situ), and the 

mutual information shared between in situ observations and model output, I(DCA, in situ), is 

defined as informational total uncertainty (ITot). This quantity describes how much of the 

information within in situ observations, as measured by HCN(in situ), is not captured by the 

estimator, as measured by I(DCA, in situ). The mutual information between the in situ 

observations and the available explanatory variables is also always smaller than the entropy of in 

situ observations. This information gap, defined as informational random uncertainty (IRnd), is 

caused by the existence of inherent data uncertainty of the explanatory variables and a lack of 

complete explanatory variables to fully capture the information in the in situ observations (Gong 

et al., 2013). Furthermore, the mutual information between model inputs and in situ observations 

should equal to the mutual information between in situ observations and model output if the 

model hypothesis completely captures the true relationship between model inputs and in situ 

observations. However, it’s commonly stated that “All models are wrong” and model 

assumptions typically cannot fully express the true relationship between the explanatory (Box, 

1976) variables and in situ observations. Hence, the mutual information between model output 

and in situ observation is expected to be smaller than the mutual information between model 

inputs and in situ observations (Gong et al., 2013). This information gap, defined as 

informational model uncertainty (IMod) is induced by poor model assumption, formulations, 

and/or inappropriate model parameterizations. Therefore, the informational total uncertainty (ITot) 

is the sum of the informational random uncertainty and informational model uncertainty come 

naturally given the explicitly definition of these informational uncertainties.  
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In this study, the explanatory variables of DCA are TBh, TBv and the Teff. The in situ 

observation and model output are in situ USCRN soil moisture and DCA soil moisture, 

respectively. Leveraging eq. (7) and eq. (9), the DCA informational random uncertainty (IRnd), 

DCA informational model uncertainty (IMod), and DCA total informational uncertainty (ITot) 

calculated are calculated as 

IRnd = HCN(in situ) – I(TBh, TBv, Teff; in situ), (10) 

IMod = I(TBh, TBv, Teff; in situ) – I(DCA; in situ), (11) 

and 

ITot = HCN(in situ) – I(DCA; in situ) = IRnd + IMod, (12) 

3.3.4 Partial Information Decomposition  

The distinct informational contributions of TBh and TBv to the DCA soil moisture are 

assessed through a decomposition of the mutual information. This method partitions multivariate 

mutual information to unique, redundant and synergistic components (P. L. Williams & Beer, 

2010). The decomposed information components on the DCA model inputs and outputs are 

expected to indicative of informational flow as model inputs are translated to end user products, 

and these components may have potential for evaluating model performance. The partial 

information decomposition of I(TBh, TBv; DCA) can be expressed as 

I(TBh, TBv; DCA) = Uh(TBh; DCA) + Uv(TBv; DCA) + 

                                        R(TBh, TBv; DCA) + S(TBh, TBv; DCA), 
(13) 

where Uh and Uv are unique information of TBh and TBv shared with DCA, respectively. S and R 

are the synergistic information and redundant information that TBh and TBv shared with DCA 

estimates, respectively. All the decomposed components are non-negative real values (P. L. 

Williams & Beer, 2010). 
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The mutual information between TBh and DCA and mutual information between TBv and 

DCA are formulated as  

I(TBh; DCA) = Uh(TBh;DCA) + R(TBh,TBv; DCA), (14) 

and 

I(TBv; DCA) = Uv(TBv; DCA) + R(TBh,TBv; DCA), (15) 

In this approach, Uh, Uv, S and R are unknowns in the systems of equations (13) - (15). 

(Goodwell & Kumar, 2017) showed that the R can be formulated as 

R = Rmin + Is*(RMMI - Rmin), (16) 

where 

Is = 
𝐼(TBh;TBv)

min {𝐻𝐶𝑁(TBh); 𝐻𝐶𝑁(TBv)}
, (17) 

RMMI = min[I(TBh; DCA), I(TBv; DCA)], (18) 

and 

Rmin = max(0, -II), (19) 

The II is the interaction information of TBh, TBv, DCA and can be computed as:  

II = I(TBh; DCA| TBv ) - I(TBh; DCA) =  

HCN(TBh, DCA) + HCN(TBv, DCA) +HCN(TBh, TBv) – HCN(TBh) - HCN(TBv) - HCN(DCA) 

– HCN(TBh, TBv, DCA), 

(20) 



59 
 

 

It is important to note that we used the point based in situ soil moisture as the ground truth 

in this analysis. Due to coarse spatial resolution of SMAP products, we acknowledge that in situ 

soil moisture may not be able to represent the spatial averaged soil moisture well. Although the 

nominal sensing depth of L-band SMAP soil moisture is 5 cm, the penetration depth was found 

to be even shallower in wetter regions (Shellito et al., 2016). In fact, the L-band sensing depth 

was found to as little as ~1cm (Jackson et al., 2012) and was found to vary with surface soil 

moisture conditions (Escorihuela et al., 2010; Raju et al., 1995). The heterogeneity in each pixel 

relative to the in situ observations together with the sensing depth disparity may influence the 

results of this study and can bias the estimation of informational uncertainties. We also 

acknowledge the existence of upscaling methods for matching the in situ soil moisture to satellite 

footprint (Crow et al., 2012). However, most of upscaling methods are achieved under the 

assistance of additional reference soil moisture datasets. This process introduces additional 

pieces of information in the DCA system making the separation of the uncertainty induced by the 

upscaling algorithm or additional dataset from other informational uncertainties much harder. 

Additionally, we used the hourly in situ data to best match the SMAP DCA soil moisture 

retrievals in time (within an hour). Based on current technologies, it is difficult to find a 

reference dataset with high frequency in time domain and good spatial coverage. Here we 

consider the informational uncertainty caused by the spatial mismatch and sensing depth 

mismatch between in situ and DCA soil moisture as part of the informational random uncertainty 

(IRnd) because the DCA is essentially a mathematical function and does not inherently require the 

inputs to be at a specific resolution. The spatial resolution is often the inherent attribute of the 

data. The reader should also keep these in mind while interpreting and adopting the results in this 

study. 

3.4 Results  

3.4.1 Information Quantities and System Informational Uncertainties 

The estimated entropies across all the study sites are shown in figure 3.2 while the mutual 

information quantities are shown in figure 3.3. The brightness temperature entropies, HCN(TBh) 
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and HCN(TBv), generally follow the same pattern across sites with both having an average value 

of 0.37. Although the patterns of HCN(TBh) and HCN(TBv) are similar, the HCN(TBh) is slightly 

more variable than HCN(TBv) with the coefficients of variation (CV) being 0.053 and 0.046, 

respectively. HCN(Teff) shares the same average with HCN(TBh) and HCN(TBv), whereas the pattern 

of HCN(Teff) is quite different (Figure 3.2). On average, the HCN(in situ) is 0.35, while HCN(DCA) 

is 0.38. In general, HCN(DCA) follows the pattern of HCN(in situ) with the CV of HCN(DCA) 

(0.064) being smaller than the CV of HCN(in situ) (0.081).  

 

Figure 3.2 Entropies of horizontally polarized brightness temperature (TBh), vertically polarized 

brightness temperature (TBv), in situ soil moisture, DCA soil moisture, and soil effective 

temperature (Teff) across the study sites. The sites are ordered by longitude (West to East).   
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Figure 3.3 Mutual information between horizontally polarized brightness temperature (TBh), 

vertically polarized brightness temperature (TBv), soil effective temperature (Teff) and in situ soil 

moisture; mutual information between horizontally polarized brightness temperature (TBh), 

vertically polarized brightness temperature (TBv) and DCA soil moisture; mutual information 

between DCA soil moisture and in situ soil moisture. See figure 3.2 caption for site ordering.   

As shown in figure 3.4a, the entropies of the retrieved brightness temperatures and DCA 

model output, HCN(TBh), HCN(TBv) and HCN(DCA), are significantly correlated with the entropy 

of in situ observations, HCN(in situ), while no significant correlation is found between HCN(in situ) 

and HCN(Teff). The HCN(DCA) has the strongest correlation strength with HCN(in situ) compared 

with other entropy quantities (Figure 3.4a). As expected, the mutual information quantities 

(Figure 3.3) are shown to be generally smaller than the entropy quantities (Figure 3.2). On 

average, I(TBh,TBv; DCA) is 0.14, while the I(DCA; in situ) and I(TBh,TBv, Teff; in situ) are 0.07 

and 0.17 (Figure 3.3), respectively. I(TBh,TBv, Teff; in situ) and I(TBh,TBv; DCA) are significantly 

correlated (0.58 and -0.30) with HCN(in situ), while no significant correlation is found for I(DCA; 

in situ) and HCN(in situ) (Figure 3.4b).  
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Figure 3.4 Entropy of in situ soil moisture against the entropies of DCA soil moisture, 

horizontally polarized brightness temperature (TBh), vertically polarized brightness temperature 

(TBv) and soil effective temperature (Teff) (a) and mutual information quantities (b).  

It is noticeable that there exists a large information gap between HCN(in situ) in figure 3.2 

and I(TBh,TBv, Teff; in situ) and I(TBh,TBv, Teff; in situ) and I(DCA; in situ) in figure 3.3. These 

information gaps confirm the existence of informational random uncertainty (IRnd) and 

informational model uncertainty (IMod) in the SMAP DCA system. When calculating 

informational quantities on a site-by-site basis and then averaging, the SMAP DCA explains 20% 

of the HCN(in situ) leaving 80% of the HCN(in situ) that is unexplained (Table 1) as informational 

total uncertainty (ITot). 35% of the ITot is caused by IMod, while the rest is induced by IRnd. The 

information uncertainties vary slightly across different landcovers. On average across sites, the 

SMAP DCA system is capable of capturing more information of HCN(in situ) at croplands and 

savannas (Table 3.1). Shrublands have largest absolute IRnd (0.21) than other landcovers, while 

savannas have the largest proportion of IRnd to ITot (Table 1). IMod in absolute value is greater in 

shrublands, grasslands, and croplands with grasslands have the largest proportion of IMod to ITot 

(Table 3.1). When lumping all the datasets together and recalculating informational quantities, 

we observe that SMAP DCA captures 10% of the information in the in situ soil moisture and the 

proportion of IMod to ITot is larger.  
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Table 3.1 The amount of informational uncertainties in percentage. The values in the table are 

the average of each landcover. The values in “Overall” are the average of all the sites. The 

“Lumped” field is computed using all available dataset.  

Landcover 

Informational random 

uncertainty, IRnd 

(and its % of ITot) 

Informational model 

uncertainty, IMod 

(and its % of ITot) 

Informational total 

uncertainty, ITot 

(and its % of HCN(in situ)) 

Number 

of  

Sites 

 

Shrublands 0.21 (68%) 0.10 (32%) 0.31 (87%) 5 

Grasslands 0.18 (63%) 0.11 (37%) 0.28 (81%) 32 

Croplands 0.18 (66%) 0.10 (34%) 0.28 (78%) 15 

Savannas 0.16 (73%) 0.06 (27%) 0.22 (64%) 2 

Mixed 0.19 (68%) 0.09 (32%) 0.28 (79%) 4 

Lumped 0.14 (46%) 0.17 (54%) 0.32 (90%) 58 

Overall 0.18 (65%) 0.10 (35%) 0.28 (80%) 58 

The relationship between different informational uncertainties and the Pearson correlation 

coefficients between in situ soil moisture and SMAP DCA soil moisture, a commonly adopted 

relative model evaluation metric in SMAP studies (Chan et al., 2016; Colliander et al., 2017), 

was evaluated. The ITot, IMod and IRnd are shown to be related how well the SMAP DCA soil 

moisture is correlated with in situ soil moisture (Figure 3.5). ITot is found to be negatively 

correlated (r = -0.69, Figure 3.5a) with the Pearson correlation between in situ soil moisture and 

SMAP DCA soil moisture. Similarly, IMod and IRnd are also shown to be negatively (-0.59 and -

0.34 respectively) related to the Pearson correlation between in situ soil moisture and SMAP 

DCA soil moisture with IMod being more influential than IRnd (Figure 3.5b and 3.5c). These 

negative relationships are consistent with general expectations since SMAP tends to capture 

more information about the in situ soil moisture (i.e. lower ITot, IMod and IRnd) when it retrieves 

high quality datasets (higher correlation between in situ soil moisture and SMAP DCA soil 

moisture).  



64 
 

 

 

Figure 3.5 SMAP informational total uncertainty (a), SMAP informational model uncertainty (b) 

and SMAP informational random uncertainty (c) against Pearson correlation between in situ soil 

moisture and DCA soil moisture 
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3.4.2 Partial Information Decomposition of DCA  

The partial information decompositions were assessed on a site basis and are shown in 

figure 3.6. The fractional contribution of each component to that site’s mutual information 

between brightness temperatures and DCA estimates, I(TBh,TBv; DCA), was also calculated and 

are given in Table 3.2. Generally, the majority of I(TBh,TBv; DCA) is redundantly (R) shared by 

TBh and TBv, which is about 0.08 (58% of I(TBh,TBv; DCA)) on average (Table 3.2). The mean 

values of unique information of TBh (Uh) and synergistic information (S) of TBh and TBv are 0.024 

(18% of I(TBh,TBv; DCA)) and 0.018 (14% of I(TBh,TBv; DCA)), respectively (Table 3.2). 

Compared to other decomposed information components, Uv is the smallest with its mean being 

0.013 (10% of I(TBh,TBv; DCA)). Savannas have the highest absolute and fraction of R (0.101 ,78% 

of I(TBh,TBv; DCA)) (Table 3.2). In general, the DCA system is mainly dominated by R as 

indicated by both site wise decomposition and when lumping all datasets together (45% of 

I(TBh,TBv; DCA)) and S is consistently the lowest (Table 3.2).  

 

Figure 3.6 Partial information decomposition components between horizontally (TBh) and 

vertically (TBv) polarized brightness temperature and DCA soil moisture. See figure 3.2 caption 

for site ordering.  
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Table 3.2 The partial information decomposition components. The values in the table are the 

average of each landcover. The values in “Overall” are the average of all the sites. The “Lumped” 

field is computed using all available dataset. 

Landcover 

Unique 

information 

of TBh (Uh) (and 

its % I(TBh, 

TBv; DCA)) 

Unique 

information of 

TBv (Uv) (and 

its % I(TBh, 

TBv; DCA)) 

Synergistic 

information 

of TBh and TBv (S) 

(and its % I(TBh, 

TBv; DCA)) 

Redundant 

information of 

TBh and TBv (R) 

(and its % I(TBh, 

TBv; DCA)) 

Mutual 

information 

(I(TBh, TBv; 

DCA)) 

Number 

of sites 

Shrublands 0.034 (28%) 0.019(16%) 0.029 (25%) 0.037 (31%) 0.120 5 

Grasslands 0.028 (20%) 0.013 (10%) 0.019 (14%) 0.079 (56%) 0.140 32 

Croplands 0.018 (13%) 0.013 (10%) 0.014 (11%) 0.089 (65%) 0.134 15 

Savannas 0.008 (7%) 0.006 (5%) 0.012 (10%) 0.101 (78%) 0.128 2 

Mixed 0.013(11%) 0.007 (6%) 0.011 (9%) 0.092 (74%) 0.123 4 

Lumped 0.014 (19%) 0.019 (25%) 0.008 (11%) 0.034 (45%) 0.076 58 

Overall 0.024 (18%) 0.013 (10%) 0.018 (14%) 0.080 (58%) 0.135 58 

Through this analysis, it is shown (Figure 3.7) that there are strong relationships between 

SMAP DCA retrieval quality and decomposed information components. In general, the 

correlation strength between DCA and in situ soil moisture is higher when Uh, Uv and S are low 

and R is high. This is demonstrated by a significant correlation of these components with the 

Pearson correlation between in situ and DCA soil moisture. The negative relationship between 

increasing S and decreasing DCA quantity is strongest of the decomposed components, though 

the positive relationship between increasing R and decreasing DCA is of similar correlation 

strength. This indicates that R or S contains useful information about DCA soil moisture quality.  
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Figure 3.7 Partial information decomposition components between horizontally (TBh) and 

vertically (TBv) polarized brightness temperature against Pearson correlation coefficient between 

in situ and DCA soil moisture. 

3.5 Discussion 

3.5.1 DCA Informational Uncertainties 

The first objective of this study is to leverage information theory to quantitatively 

decompose the informational total uncertainty into informational random uncertainty and 

informational model uncertainty in the DCA as an approach to understand where retrieval 

uncertainties arise. This information theory approach can provide new insight to SMAP 

modeling diagnosis. It offers an opportunity of partitioning the total informational uncertainty in 

the DCA into the uncertainty due to the input datasets and the uncertainty due to model structure 
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and model parameterizations. This partition process cannot be achieved by leveraging the 

common DCA assessment metrics (Chan et al., 2016) (e.g., Pearson correlation, ubRMSE) that 

only involve the DCA soil moisture and in situ soil moisture.  

The DCA model structure is inherently a hypothesis that relates the input datasets to soil 

moisture based on prior physical knowledge. The DCA is thus a procedure of processing the 

input dataset into estimates soil moisture. Thus, models, even those that perform the best, can 

only reduce the available information in its inputs and are not capable of adding new information 

about the “true” soil moisture. Hence, there is no possibility of building a model that is better 

than the one with the best achievable performance of the input data themselves (yet even 

achieving this theoretically limit is nearly impossible) (Gong et al., 2013). If, however, more 

freedom on available datasets to incorporate is given, it is possible to build models that 

outperform the best achievable model performance by adding new explanatory variables which 

may lead to a family of models that have completely different model structure. Based on Table 

3.1, we find that the DCA has more informational uncertainty in shrublands than grasslands and 

croplands. This might be due to stronger variability in vegetation in for shrublands while 

grasslands and croplands tend to be more uniform and homogeneous. It is worth noting that these 

finding are based on averaging our studied sites within different landcover categories, and results 

may be different while comparing two specific sites from different landcovers. In addition, we 

find the proportion of informational uncertainty increases as the data is lumped together relative 

to averaging these statics calculated on a site-by-site basis (Table 3.1). Treating all the surfaces 

together as a whole does not reduce the informational total uncertainty because the lumping 

process contains both “high quality” and “low quality” (as assessed by the Pearson correlation 

between in situ and DCA soil moisture) datasets. The uncertainties in these datasets may 

accumulate while lumping them together and result in an increase in total informational 

uncertainty.  

The fraction that informational random uncertainty contributes to the informational total 

uncertainty is quite significant (65% on average) in this study. The informational random 

uncertainty in the system may arises from the inherent error due to calibration of TBh and TBv 

(Al-Yaari et al., 2017), the mismatch in the scale of observations, and the presence water bodies 
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(Ye et al., 2015). If poorly calibrated, the soil moisture estimations can be exacerbated due to the 

error propagation that hinders the correct information being expressed. Furthermore, SMAP 

attempts to Teff to capture both soil and canopy temperature because the differences between 

canopy and soil temperature are minimized in the morning and afternoon orbits. The Teff is 

computed based on a model that uses the information from average soil temperature of first layer 

and second layer and interpolated in time in order to match SMAP observations (O’Neill et al., 

2020a). These interpolation and modeling processes may produce erroneous Teff dataset and 

hence contribute the informational random uncertainty of DCA. Therefore, a better and robust 

calibration strategy of TBh and TBv to the presence of water bodies and a comprehensive 

assessment of Teff may be needed to reduce some of the information random uncertainty.  

Informational model uncertainty contributes an unneglectable portion to the informational 

total uncertainty (35% on average). This model uncertainty may arise from poor model 

parameterizations, which may vary with site soil moisture dynamics (HCN(in situ)). As shown in 

figure 3.4b, the I(TBh,TBv, Teff; in situ) increases as the in situ soil moisture is more dynamic as 

reflected by high values of HCN(TBh) and HCN(TBv). The raw observations (TBv, TBh, and Teff) 

provide more available information to the system, whereas such information is not properly 

captured by the algorithm as reflected by low correlation strength between HCN(in situ) and 

I(DCA; in situ). Therefore, it is more likely to observe large information model uncertainty 

where the soil moisture is more dynamic, which may cause a low efficiency of DCA to correctly 

transmit the available information. It is known that DCA is parameterized with a set of surface 

and vegetation parameters such as vegetation single scattering albedo (ω), surface height 

standard deviation (s), etc. These parameter values are landcover dependent and are derived from 

past studies as well as prior experience and some information discussions with experts, all of 

which could be biased and inaccurate (O’Neill et al., 2020a). These parameter values also are not 

differentiated by landcover microwave polarization directions and were assumed to be constant 

in time. It is possible that these parameters (such as ω) vary in time (Konings et al., 2017) and 

shift during senescence or harvesting seasons. It is observed that the proportion of the 

informational model uncertainty is slightly smaller in shrublands (Table 3.1) (here we do not 

include savannas in the discussion since this landcover only have 2 sites), while these 
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proportions are larger in croplands and grasslands (Table 3.1). This might because the model 

parameterizations are more reasonable in shrublands than other landcovers. In addition, 

croplands and grasslands may have seasonal harvesting and therefore may more subject to 

changes in these values, while shrublands may not. Additionally, when averaging informational 

values site-by-site, the informational random uncertainty is a larger fraction of the total 

uncertainty, whereas when all data are lumped together, the informational model uncertainty is a 

larger fraction (Table 3.1). DCA parameters are different with respect to each landcover, and the 

biases induced by these parameters at each site may accumulate through the system resulting a 

dominance in informational model uncertainty over informational random uncertainty when all 

sites are lumped together. 

To summarize, this is the first attempt of leveraging mutual information approach to analyze 

the uncertainty components in microwave remote sensing models. The results of this study can 

be further used as guidance in assessing of SMAP algorithm and can quantitively identify where 

information lost in the process of SMAP soil moisture modeling. More broadly, this study, 

though focused on SMAP, can be transferred and extended to analyze other remote sensing 

algorithms. Over many decades, a lot of effort, resources, and time have been devoted to the 

launch numerous of satellite missions to retrieve the key environmental variables such as 

evapotranspiration and vegetation biomass (Dubayah et al., 2020; Hulley et al., 2017). 

Performing such analysis on these retrieval algorithms is expected to be beneficial to 

understanding the informational flow in these algorithms and may provide insights to further 

improve the data retrieval accuracy as well as making maximum use of data collected at greater 

expense. 

3.5.2 Model Evaluation from Another Perspective  

The second objective of this study was to demonstrate that the partitioned information 

components contain useful information about DCA model performance that does not depend on 

in situ soil moisture and other ancillary datasets. We find a strong linear relationship between 

redundant (R) and synergistic (S) information of the polarized brightness temperatures and 

Pearson correlation between DCA and in situ soil moisture. In general, it is more likely to 
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observe higher R and lower S (and Uh and Uv) in the less woody landcovers such as croplands 

and grasslands, where the range of brightness temperature may possibly be greater. These 

information components were found to be marginally correlated with factors such as vegetation 

density (the Pearson correlation of average LAI with R, S, Uh, Uv are 0.23, -0.38, -0.54, and -0.19 

respectively) and vegetation heterogeneity (the Pearson correlation of LAI standard deviation 

with R, S, Uh, Uv are 0.22, -0.39, -0.53, and -0.22 respectively). Additionally, these informational 

components were also found to be correlated with the mutual information shared between 

brightness temperatures and DCA estimates (the Pearson correlation of I(TBh,TBv; DCA) with R, 

S, Uh, Uv are 0.6, -0.27, 0.22, and -0.16 respectively), the informational total uncertainty (the 

Pearson correlation of ITot with R, S, Uh, Uv are -0.75, 0.62, 0.55, and 0.68 respectively), 

informational random uncertainty (the Pearson correlation of IRnd with R, S, Uh, Uv are -0.41, 0.30, 

0.05, and 0.15 respectively), and informational model uncertainty (the Pearson correlation of IMod 

with R, S, Uh, Uv are -0.62, 0.56, 0.66, and 0.74 respectively). This indicates that these 

informational components in the DCA system are not only physically driven by both vegetation 

density and heterogeneity but also other factors such as how algorithm processes the information 

from TBh and TBv to produce the DCA outputs. It is more likely to observe higher R and lower S 

in locations where vegetation is denser and more heterogeneous, yet the correlation of these 

variables with model quality (0.47 for mean LAI and 0.42 for the standard deviation of LAI) are 

weaker than the correlations found between R and S and model quality shown in Figure 7. The R 

and S metric in this study can thus not only integrate information about how the surface 

vegetation density and heterogeneity influence the algorithm performance but provided insight 

into how effectively DCA algorithm uses the information from TBh and TBv. 

Compared with other ancillary and in situ independent metrics such as correlation strength 

between Pearson correlation of TBh with TBv and the Pearson correlation between in situ and 

DCA soil moisture (0.67), the correlation strength of S and R with Pearson correlation of in situ 

and DCA soil moisture are tighter (0.79 and -0.82 for R and S). This suggests the complex non-

linear relationship between of TBh, TBv with DCA soil moisture is better captured by R and S as 

compared to the direct correlation between the two brightness temperatures themselves. Given 

the strength of this relationship, the R and S holds the potential to be used as a DCA evaluation 
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metric that does not depend on in situ measurement and ancillary dataset. It is also useful for 

SMAP DCA soil moisture users to have a rough estimation of how high the quality (as 

characterized as the correlation strength between DCA and in situ) of the obtained DCA soil 

moisture without actually knowing the in situ soil moisture. However, this depends on specific 

user requirements for data quality. In general, the DCA soil moisture tends to be in high end in 

term retrieval quality (~ 0.75 in Pearson correlation) when the R is greater 0.1 or S is smaller 

than 0.015. It is important to note that the decomposed information components are dependent on 

the DCA parameterizations (e.g., ω, h. etc.) that may influence how the TBh and TBv are 

probabilistically linked with the DCA and hence may alter the partitioned information 

components.  

3.5.3 Approach Limitations 

While we expect that this approach can be generalized to analyze other remote sensing 

models, it may be difficult to compute the joint probability density functions for models with 

high-dimensional inputs. Difficulty in determining the joint probability density functions hinders 

the estimation of high dimensional joint entropy and mutual information components, and these 

are still open questions in the field of information theory. Although there exist serval data 

dimension reduction techniques, these dimension reduction techniques are mostly based some 

assumptions (Xu et al., 2019). In practice, most of the systems with high dimension inputs tend 

to be complex. Therefore, there is a strong risk of introducing additional uncertainty if one 

chooses an inappropriate technique.  

It is important to understand that SMAP DCA system retrieves soil moisture with the help 

of vegetation water content climatology derived from the MODIS NDVI data stream. This is 

specified as a set value for each location and day of year combination and is used to estimate the 

initial guess for the unknown vegetation optical depth (O’Neill et. al., 2020a). The reader should 

keep in mind that this study considers such data as a dynamic time-varying parameter and it is 

not treated as a data input in this study. Adding NDVI as a data input would result in I(TBh, TBv, 

Teff, NDVI; in situ) being larger than or equal to I(TBh, TBv, Teff; in situ) in the calculation of IRnd, 

and therefore IRnd would decrease. Since, ITot only considers DCA output and in situ data it is not 
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altered by adding dynamic parameters and IMod would therefore increase. Thus, consideration of 

additional dynamic parameters in this informational assessment would serve to shift uncertainties 

from those attributed to the input data themselves to uncertainties attributed to the model 

structure and parameterizations. 

This study was conducted only at locations where in situ soil moisture is readily available. It 

could be an interesting topic to explore if, and how, information-based uncertainty analysis can 

be applied in the locations without in situ soil moisture measurements. We would expect the 

informational uncertainty analysis to provide the estimates of random and model uncertainties. 

The best performance we can expect from this current uncertainty analysis is to use all the 

available datasets we have; yet we believe that uncertainty estimations of this approach should be 

stabilized given adequate representative locations and data records.  

3. 6 Conclusions  

This study differentiates and quantifies the uncertainty sources in the SMAP DCA using 

information theory. We found that on average DCA soil moisture explains 20% of the 

information in the in situ soil moisture leaving 80% unexplained. Among the unexplained 

information, 65% is informational random uncertainty that is caused by the inherent stochasticity 

of the explanatory variables of SMAP DCA and a lack of additional explanatory variables in the 

system, while the rest of the informational uncertainty is caused by inappropriateness of the 

assumption of DCA model structure and parameterizations. We show that informational random 

uncertainty contributes a larger proportion of the informational total uncertainty across different 

landcovers. However, the informational model uncertainty contributes more to total uncertainty 

when lumping all the datasets together. The performance of SMAP DCA is negatively correlated 

to all the information uncertainties, with the informational model uncertainty being more 

reflective of overall SMAP DCA retrieval quality than the informational random uncertainty.  

The decomposition of the mutual information has shown that all decomposed components 

are significantly related to the Pearson correlation between in situ and DCA soil moisture, with 

the redundant and synergistic information being the strongest. Good DCA model performance 

(as measured by Pearson correlation between in situ and DCA soil moisture) is more likely to be 
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found in locations where the redundant information of brightness temperatures shared with DCA 

soil moisture is high and is more dominant relative to other components. The informational 

uncertainty decomposition analysis opens a new window for SMAP algorithm uncertainty 

diagnosis. SMAP DCA users may examine to the R and S components to have an approximate 

estimation of the soil moisture data quality obtained when no in situ soil moisture is readily 

available.  
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3.8 Supplementary Materials  

Table 3.S1 The USCRN study site information  

USCRN sites Lat. Lon. USCRN sites Lat. Lon. 

AL_Gadsden_19_N 34.29 -85.96 CO_Montrose_11_ENE 38.54 -107.69 

GA_Newton_11_SW 31.19 -84.45 CO_Nunn_7_NNE 40.81 -104.76 

GA_Newton_8_W 31.31 -84.47 KS_Oakley_19_SSW 38.87 -100.96 

IA_Des_Moines_17_E 41.56 -93.29 MT_Wolf_Point_29_ENE 48.31 -105.1 

IL_Shabbona_5_NNE 41.84 -88.85 MT_Wolf_Point_34_NE 48.49 -105.21 

IN_Bedford_5_WNW 38.89 -86.57 NE_Harrison_20_SSE 42.42 -103.74 

MN_Goodridge_12_NNW 48.31 -95.87 NE_Whitman_5_ENE 42.07 -101.44 

MO_Chillicothe_22_ENE 39.87 -93.15 NM_Las_Cruces_20_N 32.61 -106.74 

MO_Joplin_24_N 37.43 -94.58 NM_Socorro_20_N 34.36 -106.89 

MS_Holly_Springs_4_N 34.82 -89.43 OK_Goodwell_2_E 36.6 -101.59 

ND_Northgate_5_ESE 48.97 -102.17 OK_Goodwell_2_SE 36.57 -101.61 

SD_Aberdeen_35_WNW 45.71 -99.13 OK_Stillwater_2_W 36.12 -97.09 

SD_Sioux_Falls_14_NNE 43.73 -96.62 OK_Stillwater_5_WNW 36.13 -97.11 

AZ_Williams_35_NNW 35.76 -112.34 SD_Buffalo_13_ESE 45.52 -103.3 

AZ_Yuma_27_ENE 32.84 -114.19 SD_Pierre_24_S 44.02 -100.35 

CA_Merced_23_WSW 37.24 -120.88 TX_Bronte_11_NNE 32.04 -100.25 

ID_Arco_17_SW 43.46 -113.56 TX_Monahans_6_ENE 31.62 -102.81 

ID_Murphy_10_W 43.2 -116.75 TX_Muleshoe_19_S 33.96 -102.77 

NV_Baker_5_W 39.01 -114.21 TX_Panther_Junction_2_N 29.35 -103.21 

NV_Denio_52_WSW 41.85 -119.64 WY_Sundance_8_NNW 44.52 -104.44 

NV_Mercury_3_SSW 36.62 -116.02 TX_Austin_33_NW 30.62 -98.08 

OR_John_Day_35_WNW 44.56 -119.65 TX_Edinburg_17_NNE 26.53 -98.06 

OR_Riley_10_WSW 43.47 -119.69 TX_Palestine_6_WNW 31.78 -95.72 

UT_Brigham_City_28_WNW 41.62 -112.54 CO_Cortez_8_SE 37.26 -108.5 

WA_Spokane_17_SSW 47.42 -117.53 CO_Dinosaur_2_E 40.24 -108.97 

OH_Coshocton_8_NNE 40.37 -81.78 WY_Lander_11_SSE 42.68 -108.67 

OH_Wooster_3_SSE 40.76 -81.91 ND_Medora_7_E 46.89 -103.38 

SC_Blackville_3_W 33.36 -81.33 MT_Dillon_18_WSW 45.16 -113.01 

CO_La_Junta_17_WSW 37.86 -103.82 MT_St._Mary_1_SSW 48.74 -113.43 
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4.1 Abstract  

Water and carbon exchanges between the land and atmosphere reflect key ecosystem 

processes, from global climate change to local biogeochemistry. Environmental stable isotope 

ratios of H2O and CO2 fluxes have been used to study these processes, yet measurement 

constraints have limited macroscale surface-atmosphere isotope flux evaluations. Across North 

American biomes within the US National Ecological Observation Network, we assessed how 

much information stable isotope measurements (δ13C, δ2H, and deuterium excess [d-ex]) contain 

about latent heat (LH) and net ecosystem exchange (NEE) fluxes. Overall, δ13C, δ2H, and d-ex 

contain non-trivial information about the LH and NEE fluxes, with isotope measurements 

carrying about the same amount of information as can be obtained by wind speed measurements, 

but less than carried by vapor pressure deficit, air temperature, and net radiation measurements. 

The decomposition of multivariate mutual information about bulk fluxes from the isotopes and 

the individual meteorological variables suggested that δ13C, δ2H, and d-ex contain significant 

unique information about the carbon and water surface-atmosphere exchange. The sum of the 

unique and synergistic information, which represents the total additional information from 

isotopes, was shown to be significantly driven by site-specific factors for LH, but not NEE. 

Generally, δ13C provides more additional information about LH in arid locations, while the δ2H 

provides more additional information about LH at locations with higher aridity, lower mean 

annual temperature, and lower mean site elevation. This study demonstrates that stable isotope 

measurements, particularly in arid environments, can provide new information to help 

understand carbon and water cycles. 

4.2 Significance statement 

Under global climate change, it is crucial to know how water and carbon are exchanged 

between the terrestrial and atmospheric environments. Stable isotopes are useful as they can be 

adopted as tracers to understand water and carbon flues. Here, we show that isotopes contain 

useful information about these fluxers, roughly as much as wind speed. We show that this 

information is largely new information that cannot be provided by other variables. It is more 
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likely for δ2H to provide additional information under drier conditions. Integrate isotope datasets 

into ecohydrological models may help to improve the model performance. Researchers should 

expect a better improvement in model performance under drier conditions. 

4.3 Introduction  

The terrestrial carbon and water cycles are strongly coupled and are jointly the most 

important components to support life on earth (Gentine et al., 2019). The partitioning of water 

and carbon fluxes into their respective constituents enhance our ability to understand, model and 

differentiate abiotic and biotic ecosystem processes that are driven by distinct environmental 

forcings (Scanlon et al., 2019; Scott & Biederman, 2017). Understanding the interaction and 

feedbacks of exchanging carbon and water between the terrestrial ecosystems and the 

atmosphere is crucial to understand earth’s paleoclimate and forecast the future climate change 

(Ferguson & Veizer, 2007; Keenan & Williams, 2018). Accordingly, over the past decades, 

significant efforts have been made to measure and monitor carbon and water fluxes and the eddy 

covariance (EC) technique has become the most widely adopted approach in the earth science 

community to measure water and carbon fluxes at ecosystem levels (Baldocchi, 2014; Foken et 

al., 2012). EC flux towers can provide continuous net ecosystem exchange (NEE) of CO2 

between land surface and the atmosphere at various frequency domains as an indicator of 

terrestrial carbon balance. Besides NEE, latent heat flux (LH), representing evaporation and 

transpiration from soils, water bodies, and plant canopies, is also measured by EC flux towers 

and is of great value for understanding of regional and global water budgets as well as 

agricultural applications (Trenberth et al., 2007; Zhou et al., 2018). These EC flux measurements 

have been used for a variety of environmental applications such as calibrating and validating of 

remotely sensed flux estimations (Jia et al., 2012), parameterizing land surface models (Williams 

et al., 2009), modeling seasonal crop coefficients (Li et al., 2008), and investigating post-fire 

carbon balance (Lupascu et al., 2020).While measurements of LH and NEE can quantify flux 

amounts, better knowledge of the processes that drive carbon and water cycles themselves is 

needed to improve models and overall understanding of the earth’s ecosystem as a whole.  
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The naturally occurring water and carbon isotopes are powerful tools for understanding a 

wide array of ecohydrological and biophysical problems. Regional weather characteristics can be 

gleaned from the water isotopes in precipitation (Scholl & Murphy, 2014). Past climate patterns 

can be reconstructed based on the relationship between stable isotopes in precipitation and 

temperature (ROZANSKI et al., 1997). Stable isotope signatures of groundwater are mixtures of 

different water sources, and these sources can be disentangled based on isotope composition 

(Kuang et al., 2019). More importantly, water isotopes (δ2H, δ18O) of LH are widely used 

approaches to partition ET to evaporation and transpiration because heavier isotope are more 

enriched in evaporated water vapor due to the significant fractionations of soil water in contrast 

to the isotope composition of transpiration which remains similar to plant water (Xiao et al., 

2018). Carbon isotope CO2 (δ13C) is useful to infer the mechanism of changes in atmosphere 

CO2 during the last deglaciation (Bauska et al., 2016). It has also been applied to separate NEE 

into its constituent fluxes, as photosynthesis creates a unique pathway to preferentially fix CO2 

as plant biomass and alters the isotope composition of atmosphere CO2 (Lee et al., 2020; 

ZHANG et al., 2006). Because of measurement difficulties and costs, previous studies of δ2H, 

δ18O and δ13C examined patterns across ecosystems using cryogenic baths and flask samples. 

However, these methods constrain in their ability to understand ecosystem scale processes that 

generally require finer temporal and spatial sampling coverage (Gemery et al., 1996; Orlowski et 

al., 2018).  

The development of automated laser spectroscopy systems mounted on the EC towers 

provided new opportunities of obtaining higher spatially and temporally resolved atmosphere 

profiles of these isotopes (Fiorella et al., 2021). The National Ecological Observatory Network 

(NEON), for the first time, provides standardized measurements of the stable isotope ratios of 

water vapor and carbon dioxide that can be converted to δ2H, δ18O of LH and δ13C of NEE. 

These measurements were made at considerable cost and effort, yet it is not known how much 

additional constraints on carbon and water fluxes these isotopes are able to provide beyond 

traditional meteorological observations (e.g., vapor pressure deficit [VPD], air temperature [T], 

net radiation [Rn], windspeed [u]) (Wong, 2016). Recent advances in information theory allow 

for quantification of linear and nonlinear interactions between variables (termed mutual 
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information) (Cover & Thomas, 2005) as well as approaches to diagnose how unique the 

information provided by new data sources is relative to others (Goodwell & Kumar, 2017).  

Given that stable isotopes have been used to investigate carbon and water cycles at numerous 

sites (Brady et al., 2019; Vargas et al., 2017; Wang et al., 2019), this study addresses three 

simple questions: (1) do δ2H, δ18O of LH and δ13C contain useful information about the bulk CO2 

and H2O fluxes across North America, (2) can any information provided about the bulk fluxes by 

isotope measurements be obtained from other meteorological variables, and (3) under what 

circumstances do the isotopes provide more additional information?  

4.4 Results  

4.4.1 Individual Mutual Information  

Across the NEON sites of North America, we evaluated the mutual information that 

different individual meteorological variables and isotopes share with NEE and LH (Figure 4.1A). 

Consistently, Rn and T are found to contain the most information about the NEE across all 

isotope datasets, with Rn being the most informative single variable of the NEE. VPD and u also 

provides information about LH but less than the information that can be gleaned from Rn and T. 

Broadly, the isotopes provided at least the same amount of information as u to NEE, with δ13C 

generally containing more information about NEE than the other two isotopes. Overall, there is 

more inter-site variability in mutual information for VPD, T and Rn than the isotopes and u. 

While the information provided by Rn is almost an order of magnitude larger than the 

information from u and isotopes, u is a well-established driver of surface-atmosphere water and 

carbon exchange and a driver to turbulence in the planetary boundary layer (Yusup & Liu, 2020). 

The amount of information that can be inferred from isotopes (and other variables) about NEE 

are significantly highly unlikely to be obtained by random process (p < 0.01). 

The mutual information between each individual variable and isotopes with LH 

demonstrates similar patterns to those of NEE, though overall, both meteorological variables and 

isotope values consistently share more information with LH than NEE. Rn contains the most 

information about LH, then T and VPD, and finally with isotopes and u. Again, the information 
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of isotopes shared with LH is at least as much as that can be obtained by u. Measurements of δ2H 

and δ13C generally contain more information about the LH than NEE with δ13C being the most 

informative isotope to LH and NEE, respectively. In addition, there is more inter-site variability 

in terms of mutual information between each isotope and LH than the mutual information 

between each isotope and NEE. 

 

Figure 4.1 Mutual information that meteorological variables (vapor pressure deficit [VPD], air 

temperature [T], net radiation [Rn], windspeed [u]) and stable isotopes (δ2H, δ13C, d-ex) contain 

about net ecosystem exchange (NEE) (A) and latent heat fluxes (LH) (B). Note: ** indicates a 

significant p-value (<0.01) of the paired t-test between the observed mutual information and the 

mutual information from 50 shuffle iterations. 

4.4.2 Decomposition of Multivariate Mutual Information  

We decomposed the multivariate mutual information between NEE/LH, isotopes and other 

variables and evaluated them in figure 4.2. We find that most of the information provided by 

isotopes to NEE is unique (Figure 4.S1). All the unique information provided isotopes are non-

trivial and highly unlikely to be obtained by random (p < 0.01). The synergistic information of 

NEE is similar across all isotope datasets with the synergistic information from δ13C being 
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slightly higher (Figure 4.S2). The redundant information provided by these isotopes are small 

compared to the unique and synergistic information (Figure 4.S3). The unique information 

provided by δ13C to NEE has larger inter-site variability than the unique information of δ2H and 

d-ex provided to NEE. All the partial information components of the isotopes about NEE are 

significant and non-trivial (p < 0.01). 

Like the information components of NEE, the unique information and synergistic 

information of these isotopes to LH is higher compared to redundant information. The synergistic 

information provided by the isotopes to LH are similar with only synergistic information of δ13C 

being non-trivial (p < 0.01). The δ13C tends to provide more unique information to LH than the 

rest of isotope datasets. The unique information provided by δ13C to LH is slightly higher 

compared to δ2H and d-ex. The unique information provided by δ13C and δ2H to LH are higher 

than the unique information provided by δ13C and δ2H to NEE. The synergistic components of 

these isotopes about LH are quite similar to that found for NEE but are more variable. The 

redundant components of isotopes about the LH are the consistently smallest informational 

component when compared to the unique and synergistic information of δ13C and δ2H about LH 

and are larger than the redundant information of δ13C and δ2H about NEE. 
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Figure 4.2 The averaged unique information (U), synergistic information (S) and redundant 

information (R) of the stable isotopes provided to NEE (A) and LH (B). Note: the ** indicates a 

significant p-value (<0.01) of the paired t-test between the observed decomposed components 

and decomposed components from 50 shuffle iterations. 

4.4.3 The Additive Information of Isotopes  

The additional information, represented by the sum of the synergistic information and the 

unique information, provided by the isotopes to LH/NEE are evaluated across NEON sites of 

North America (Figure 4.3). This additional information is the information provided by the 

isotopes beyond what can be obtained by other variables. In general, δ13C tend to provide more 

additional information to NEE, while the d-ex provides the least amount of additive information 

to NEE. The fraction of additive information of isotopes about NEE to the sum of unique 

information, synergistic information, and redundant information are 0.97 for δ13C, 0.96 for δ2H, 

and 0.99 for d-ex, respectively. δ13C also provide more additive information about LH, then δ2H 

and d-ex (Figure 4.3A). The fraction of information provided by the isotopes that is (i.e. (U 

+S)/(U+S+R)) 0.94 for δ13C, 0.92 for δ2H, and 0.98 for d-ex, respectively. The additive 

information of δ13C and δ2H about LH have larger variability than these isotopes carry for NEE 
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(Figure 4.3A-4.3B and Figure 4.3D-4.3E), while there is less variability in the additive 

information of d-ex about LH (Figure 4.3C and Figure 4.3F) than NEE. Overall, the majority of 

the additive information of these isotopes about NEE and LH are non-trivial (p < 0.01) except the 

additive information of d-ex about NEE. 

 

Figure 4.3 The spatial distribution of added information, calculated as the sum of unique 

information (U) and synergistic information (S), of different stable isotopes about NEE (A-C) 

and LH (D-F). 

4.5 Discussion  

This is the first evaluation of the capacity of isotopes to provide useful information about 

the bulk carbon and water fluxes across continental scale gradients. One of key motivations for  

measuring stable isotopes of water and carbon is that they provide a unique way of partitioning 

the bulk fluxes into their respective constituents (Conrad et al., 2012; Good et al., 2014; Wang et 

al., 2010) that represents distinct biophysical processes, and it is possible that when used to study 

these flux sub-components the isotopes will be even more informative (Wong, 2016). We 

showed that the information individually provided by these isotopes is not as much as VPD, T, 

and Rn but similar to u. These meteorological variables are traditionally known to be related to 

bulk fluxes and are standard measurements at weather stations. In addition, some of the 

meteorological variables evaluated here are known to be inter-related to some extent. For 

instance, the VPD is strongly dependent on T due to the Classuis-Claperyon relationship, and T is 
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tightly related to the amount of Rn. Therefore, it is expected that these variables contain more 

information about NEE and LH. Many studies have highlighted how NEE and LH respond to 

changes in VPD, T and Rn across various scales, seasons, and ecosystems (Chen et al., 2020; Gu 

et al., 2006; Niu et al., 2012). VPD was found to have a direct effect on surface energy 

partitioning as high VPD represents high atmosphere demand and hence high LH (Gu et al., 

2006). Yet, high VPD reduces the stomata conductance and thereby negatively affects LH 

(Grossiord et al., 2020). The u also influences the LH non-linearly by the atmospheric 

conductivity (Davarzani et al., 2014). The divergent effect of VPD on LH may be 

underrepresented by other metrics but can be captured if evaluated using information theory-

based metrics explored here.  

Although individual isotopes are not as informative as other variables, the information 

carried by these isotopes was found to be unique and cannot be obtained from the other variables 

alone. It is crucial to know how different variables interactively provide information to a target 

of interest. Knowing the interactive dependencies between the inputs and outputs of a studied 

system is critical for model development and model simplification because it is more desired that 

most of the inputs of the model provide unique or synergistic piece of information rather than the 

redundant information (Wibral et al., 2017). The decomposition of the multivariate mutual 

information between isotopes, other meteorological variables, and the bulk fluxes offers an 

opportunity to elucidate in what form the information from isotopes is transferred to these bulk 

fluxes. We showed that isotopes carry unique signals about the bulk fluxes that cannot be 

implied by other variables. The portion of unique information from isotopes measurements is 

these isotopes is non-trivial and larger than the redundant information. Larger unique 

information often indicates less inter-dependency of the isotopes on other meteorological 

variables, suggesting that the isotopes of the fluxes may be collectively interacting with these 

meteorological variables by different pathways. However, we observed that there are inter-sites 

variations in the unique information provided by the isotopes, indicating that the unique 

information from these isotopes may be site condition dependent. Similarly, isotopes can provide 

synergistic information about the bulk fluxes suggesting that the patterns of bulk fluxes might be 

better characterized with the isotopes included as an additional constraint.  
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The additional information provided by isotopes to these bulk fluxes are described by the 

sum of unique information and synergistic information. The sum of these two components, on 

average, represents how remaining uncertainty can be reduced with isotopes observations given 

other meteorological variables in the systems. In other words, how much information is 

transferred from isotopes to the bulk fluxes. On average, the uncertainty of the fluxes can be 

reduced given the isotope information. Numerous approaches have been developed to estimate 

and forecast NEE and LH using empirically or physically based models (Fisher et al., 2008; Su, 

2002; Veroustraete et al., 1996; Wood, 2021). However, most of these methods are not perfect 

and often either must make some assumptions or simplifications and can be subject to significant 

amounts of uncertainty (Papale et al., 2006; Zhao et al., 2020).  

Results here demonstrate that fusing isotope data products can be useful to better monitor 

and predictions of NEE and LH, as these isotope datasets provide additional information beyond 

what can be obtained in traditional meteorological variables. But it is not necessary to conclude 

that the isotopes datasets are informative under all circumstances. We evaluated the additive 

information of isotopes based on NEON site conditions via a multivariate linear regression 

(Table 4.S1). We show that the additive information of δ13C provided to LH is significantly 

influenced by how arid the site is as indicated by a significant positive coefficient of the linear 

regression with the R2 value of 0.41. This suggests that δ13C likely provides more useful 

information about LH in locations with higher atmospheric evaporative demand relative to 

supplied precipitation. The additive information of δ2H about LH is shown to be driven by 

multiple factors which can reliably (R2 of 0.55) use predict when these observations provide 

additional constraints. Based on our analysis, δ2H likely provides more provide additional 

information about LH at lower altitude or in cooler places. However, δ2H tends to provide more 

information or at drier locations (Figure 4.4). The water isotopes are generally used to partition 

evapotranspiration to evaporation and transpiration. However, the results were found to be 

different across various ecosystems with different accuracy (Lu et al., 2017; Lixin Wang et al., 

2014; Wen et al., 2016). Given our analysis, researchers should expect to see those approaches 

that involve δ2H show better results in arid locations than in humid locations for the estimation 

or partition of evapotranspiration. 
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Figure 4.4 The mean annual aridity against mean annual temperature colored by the added 

information (U + S) of δ2H about LH. The multivariate linear regression modeled added 

information of δ2H against observed added information (inset).  

4.6 Material and Methods 

4.6.1 NEON Sites 

This study was conducted at terrestrial sites part of the National Ecological Observatory 

Network (NEON), which is a continental scale research platform for understanding the 

fundamental principles that govern ecological responses to climate change, land use change and 

species invasion. NEON statistically divided US territory into 20 ecoclimatic domains across 

different biomes and landforms to effectively capture key biological aspects of US ecology 

(Elmendorf et al., 2016). NEON collects and delivers coordinated and standardized data about 

plants, animals, soil, nutrients, freshwater and the atmosphere alongside field measurements and 

airborne remote sensing that can provide the capacity to forecast future states of ecological 

systems and enable the scientific community to effectively address critical ecological issues 

(Barnett et al., 2019). 
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4.6.2 Data Preparation  

The NEON’s eddy covariance bundled product provides data about eddy covariance storage 

exchange fluxes, basic meteorological data and isotopes ratio product of water vapor and carbon 

isotope of atmospheric CO2. These data were collected at multiple measurement heights along 

the tower profile and were then bounded in NEON data product DP4.00200.001 (NEON, 2021a). 

In this study, we extracted the 30 min aggregated NEE, LH, total net radiation (Rn), tower top air 

temperature (T), and the two-dimensional wind speed (u) dataset. The vapor pressure deficit data 

were computed from the relative humidity product DP1.00098.001 (NEON, 2021b)and air 

temperature. There exist some unusual spikes and data gaps in the NEE and LH datasets due 

instrumentation failure and calibration issues. We filtered the NEE by friction velocity and gap 

filled the NEE and LH using “ReddyProc” R package (Wutzler et al., 2018). We then filtered 

NEE, LH, and other meteorological datasets by an interquartile filter that only keeps the data 

points within 1.5 interquartile range (IQR) below the 25th percentile (p25) and 1.5*IQR above 

the 75th (p75). 

4.6.3 Stable Isotope Data 

The isotope ratios from the eddy covariance bundle represent the isotope composition of the 

gases at the specific measurement layer and hence cannot fully reflect the isotope composition of 

NEE and LH at ecosystem scale. In addition, the isotope datasets offered by NEON are 

frequently experiencing instrumental drift which will deviate from the Vienna Standard Mean 

Ocean Water scale (VSMOW) scale. Efforts have been made to calibrate the carbon isotope ratio 

of the atmosphere CO2 in the “NEONiso” R package (Fiorella et al., 2021). This package has 

been extended to calibrate the water vapor isotopes. Therefore, the estimation of the isotope 

composition of fluxes in this study requires two procedures: calibrating the NEON’s isotope 

dataset to VPDB scale and estimating the daily isotope composition of the fluxes using the 

calibrated isotope products at ecosystem scale. The most adopted way of estimating the isotope 

composition is using the Keeling plots, with the basic principle of the Keeling plot method is the 

conservation of mass that estimates the isotope ratio of LH and NEE at ecosystem scale by 
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leveraging the isotope composition and their mole fractions (Pataki et al., 2003). A common 

variant of Keeling plot is Miller-Tans mixing model that estimates the isotope ratio of ecosystem 

scale fluxes by fitting a simple linear regression line between the product of isotopes of the 

measurements at all measurement heights and their mole fraction and the mole fraction (Miller & 

Tans, 2003). The slopes of such regression lines are estimates of the isotope composition of the 

NEE and LH at ecosystem level. We filtered the isotope ratio data that is generated by fitting less 

than 5 data points into the linear regression and only keep the slopes that have R2 greater 0.9. 

Finally, we keep the isotope data points within p25 – 3*IQR and p75 + 3*IQR. The deuterium 

excess (d-ex) is computed using the daily δ2H and δ18O of LH. 

4.6.4 Mutual Information Measures 

Mutual information is a measure of how two random variables are probabilistically 

dependent on each other (Cover & Thomas, 2005). It quantifies how much uncertainty of one 

random variable can be reduced given the knowledge of another random 

variable.  Probabilistically, the mutual information can be expressed as 

I(X;Y) = ∑ 𝑝(𝑥, 𝑦)log2(
𝑝(𝑥,𝑦)

𝑝(𝑥)p(𝑦)
) (1) 

where p(x), p(y), and p(x,y) are probability density functions of random variables X, Y, and {X,Y} 

respectively.  

The multivariate mutual information of a single random variable (Z) and a set of random 

variables {X, Y} characterize the uncertainty of Z can be reduced by the knowledge of {X, Y} 

and can be expressed as 

I(X,Y;Z) = ∑ 𝑝(𝑥, 𝑦, 𝑧)log2(
p(𝑥,𝑦,𝑧)

p(𝑥,𝑦)p(𝑧)
) (2) 

where p(z), p(x,y), and p(x,y,z) are the probability density functions of variable Z, {X,Y}, and 

{X,Y,Z}, respectively. All the probability density functions were estimated using kernel density 

estimation (KDE) method with a gaussian kernel. We normalized the data point to the common 
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range of [0, 1] before using KDE. We then evaluate the probability density functions from 0, 1 

with a step size of 0.05.  

We computed the mutual information shared from VPD, T, Rn, u, δ13C, δ2H, and d-ex about 

NEE and LH iteratively. Due to the limitation of isotope datasets, we computed the mutual 

information of each variable with the NEE and LH by subsample 40 data points without 

replacement 500 times. The average of the mutual information from the resampling datasets are 

as the mutual information between the variable of interest and the flux.  

4.6.5 Partial Information Decomposition  

It was shown that the multivariate mutual information can be decomposed into different 

informational components via a partial information decomposition framework (PID) (Goodwell 

& Kumar, 2017). The PID can decompose I(X,Y;Z) into (1) unique information (U) that is only 

provided by X or Y solely to the Z, respectively; (2) synergistic information (S) that is the 

information provide to the Z when X and Y act jointly; (3) redundant information (R) that is the 

overlapping information provided both by X and Y to the Z. The PID framework can be 

formulated as  

I(X,Y; Z) = UX+ UY+ R + S (3) 

I(X; Z) =  UX + R (4) 

I(Y; Z) =  UY + R (5) 

Where UX and UY are the unique information of X and Y to the Z, respectively. R and S are the 

redundant and synergistic information of X and Y to the Z, respectively. All PID components are 

non-negative real numbers.   

In this study, we quantified the between the fluxes and isotopes by leveraging the PID 

framework. We first compute the unique information of the isotope that contributes to the bulk 

fluxes. The unique information can only be solved when other variables (besides the bulk flux 

and isotope) are available in the PID system. Therefore, we define the decomposed information 
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components of isotope fluxes provided to the bulk fluxes as the averaged unique information 

across all other meteorological variables (VPD, T, Rn, u). Like the computation of the individual 

mutual information, we also subsample 40 data points from each dataset without replacement 

500 times. The partial information components of the isotopes are then computed as the averaged 

information components from 500 iterations.  
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4.8 Supplementary Materials  

 

Figure 4.S1 The spatial distribution of unique information (U) of different isotopes about NEE 

(A-C) and LH (D-F). 

 

 

 

 

 

 

 

 

 

Figure 4.S2 The spatial distribution of synergistic information (S) of different isotopes (δ2H, δ13C, 

d-ex) NEE (A-C) and LH (D-F). 
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Figure 4.S3 The spatial distribution of redundant information (R) of different isotopes (δ2H, δ13C, 

d-ex) about NEE (A-C) and LH (D-F). 

 

 

 

Table 4.S1 The coefficients and p-values of the multivariate linear regression of the additive 

information (U + S) of isotopes and different site condition variables. Note: the asterisk indicates 

a p-value is significant at the level of 0.05. 

 Aridity 

index 

Mean 

annual 

temperature 

Mean 

annual 

precipitation 

Elevation R2 

U + S(NEE;δ13C) -1.0e-4 1.0e-4 -6.4e-6 -4.1e-6 0.02 

U + S(LH;δ13C) 0.015* 3.6e-5 6.8e-6 -6.0e-6 0.41 

U + S(NEE;δ2H) -1.0e-3 -6.0e-4 -4.9e-6 -8.0e-6 0.23 

U + S(LH;δ2H) 0.012* -2.9e-3* 1.3e-5 -2.0e-5* 0.55 

U + S(NEE;d-ex) 2.0e-4 -2e-4 -4.3e-6 -2.6e-8 0.06 

U + S(LH;d-ex) 4.0e-3 -7.0e-4 1.6e-5 -4.9e-6 0.19 
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Chapter 5. General Conclusions 

 

The challenges of understanding the interactions between land surface and atmosphere 

require advances in the environment sensing, and data analysis. Such challenge has been 

gradually resolved by launching new ecohydrological measurements in space and field. These 

new measurements in environmental sensing and data may possess the potential of improving 

understanding by further disentangling the complex nature of the Earth’s ecosystems. This 

dissertation used cutting-edge methods including machine learning and information theory to the 

quantify how much additional information from SMAP and NEON’s new measurements can be 

transferred to understand vegetation dynamics, carbon, and water cycles.  

In chapter 2, I found that new soil moisture and vegetation optical depth observations from 

NASA SMAP is useful for the prediction of how vegetation leaf changes. The prediction power 

of these SMAP observations varies across different landcovers. The variations in vegetation leaf 

dynamics can be mostly explained by their daily climatology. In general, adding SMAP soil 

moisture and VOD observations can improve the predictive power of vegetation dynamics 

models and these observations added more predictive power in locations where the vegetation 

dynamics cannot be captured by their daily vegetation climatology.  

In chapter 3, I found that majority of the uncertainty from SMAP DCA algorithm comes 

from informational random uncertainty induced by a lack of explanatory power of DCA model 

inputs. The informational model uncertainties are tightly related to the DCA soil moisture 

retrieval quality. The decomposition of multivariate mutual information between DCA soil 

moisture and DCA’s major model inputs shown that the synergistic information and redundant 

information provided by the major inputs are strongly correlated to DCA soil moisture retrieval 

quality. SMAP DCA users may examine to the redundant or synergistic components to have an 

approximate estimation of the soil moisture data quality obtained when no in situ soil moisture is 

readily available.  

In chapter 4, I found that the NEON’s isotope observations contain non-trivial information 

about the bulk water and carbon fluxes. The individual information provided by the isotope 
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dataset to the bulk fluxes are not as much as the information provided by air temperature, net 

radiation and VPD, but they contain as least as much as the information provided by windspeed. 

The multivariate decomposition of mutual information between bulk fluxes, isotopes and other 

meteorological variables shown that isotopes contain unique information that cannot be simple 

obtained by other more common meteorological variables alone. They also provided synergistic 

information along with other meteorological observations and most of synergistic information is 

non-trivial. The sum of unique information and synergistic information, characterize the additive 

information of these isotopes, was found to be non-trivial. Therefore, synthesizing the isotope 

datasets a long with other environmental datasets may enhance the understanding of 

environmental fluxes. The multivariate linear regression analysis shown that there is more 

opportunity for δ2H to be useful under arid conditions. Therefore, researchers may expect to see 

betters results in locations with high atmospheric demand.  

Overall, the methods/frameworks used in this dissertation can be further applied to evaluate 

the added values of other new ecohydrological datasets as new sensors and observations are 

available in the future. 
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