222 research outputs found

    Measurement Based Reconfigurations in Optical Ring Metro Networks

    Get PDF
    Single-hop wavelength division multiplexing (WDM) optical ring networks operating in packet mode are one of themost promising architectures for the design of innovative metropolitan network (metro) architectures. They permit a cost-effective design, with a good combination of optical and electronic technologies, while supporting features like restoration and reconfiguration that are essential in any metro scenario. In this article, we address the tunability requirements that lead to an effective resource usage and permit reconfiguration in optical WDM metros.We introduce reconfiguration algorithms that, on the basis of traffic measurements, adapt the network configuration to traffic demands to optimize performance. Using a specific network architecture as a reference case, the paper aims at the broader goal of showing which are the advantages fostered by innovative network designs exploiting the features of optical technologies

    Quality aspects of Internet telephony

    Get PDF
    Internet telephony has had a tremendous impact on how people communicate. Many now maintain contact using some form of Internet telephony. Therefore the motivation for this work has been to address the quality aspects of real-world Internet telephony for both fixed and wireless telecommunication. The focus has been on the quality aspects of voice communication, since poor quality leads often to user dissatisfaction. The scope of the work has been broad in order to address the main factors within IP-based voice communication. The first four chapters of this dissertation constitute the background material. The first chapter outlines where Internet telephony is deployed today. It also motivates the topics and techniques used in this research. The second chapter provides the background on Internet telephony including signalling, speech coding and voice Internetworking. The third chapter focuses solely on quality measures for packetised voice systems and finally the fourth chapter is devoted to the history of voice research. The appendix of this dissertation constitutes the research contributions. It includes an examination of the access network, focusing on how calls are multiplexed in wired and wireless systems. Subsequently in the wireless case, we consider how to handover calls from 802.11 networks to the cellular infrastructure. We then consider the Internet backbone where most of our work is devoted to measurements specifically for Internet telephony. The applications of these measurements have been estimating telephony arrival processes, measuring call quality, and quantifying the trend in Internet telephony quality over several years. We also consider the end systems, since they are responsible for reconstructing a voice stream given loss and delay constraints. Finally we estimate voice quality using the ITU proposal PESQ and the packet loss process. The main contribution of this work is a systematic examination of Internet telephony. We describe several methods to enable adaptable solutions for maintaining consistent voice quality. We have also found that relatively small technical changes can lead to substantial user quality improvements. A second contribution of this work is a suite of software tools designed to ascertain voice quality in IP networks. Some of these tools are in use within commercial systems today

    Modelling and Analysis of Smart Grids for Critical Data Communication

    Get PDF
    Practical models for the subnetworks of smart grid are presented and analyzed. Critical packet-delay bounds for these subnetworks are determined, with the overall objective of identifying parameters that would help in the design of smart grid with least end-to-end delay. A single-server non-preemptive queueing model with prioritized critical packets is presented for Home Area Network (HAN). Closed-form expressions for critical packet delay are derived and illustrated as a function of: i) critical packet arrival rate, ii) service rate, iii) utilization factor, and iv) rate of arrival of non-critical packets. Next, wireless HANs using FDMA and TDMA are presented. Upper and lower bounds on critical packet delay are derived in closed-form as functions of: i) average of signal-to interference-plus-noise ratio, ii) random channel scale, iii) transmitted power strength, iv) received power strength, v) number of EDs, vi) critical packet size, vii) number of channels, viii) path loss component, ix) distances between electrical devices and mesh client, x) channel interference range, xi) channel capacity, xii) bandwidth of the channel, and xiii) number of time/frequency slots. Analytical and simulation results show that critical packet delay is smaller for TDMA compared to FDMA. Lastly, an Intelligent Distributed Channel-Aware Medium Access Control (IDCA-MAC) protocol for wireless HAN using Distributed Coordination Function (DCF) is presented. The protocol eliminates collision and employs Multiple Input Multiple Output (MIMO) system to enhance system performance. Simulation results show that critical packet delay can be reduced by nearly 20% using MA-Aware protocol compared to IDCA-MAC protocol. However, the latter is superior in terms throughput. A wireless mesh backbone network model for Neighbourhood Area Network (NAN) is presented for forwarding critical packets received from HAN to an identified gateway. The routing suggested is based on selected shortest path using Voronoi tessellation. CSMA/CA and CDMA protocols are considered and closed{form upper and lower bounds on critical packet delay are derived and examined as functions of i) signal-to-noise ratio, ii) signal interference, iii) critical packet size, iv) number of channels, v) channel interference range, vi) path loss components, vii) channel bandwidth, and viii) distance between MRs. The results show that critical packet delay to gateway using CDMA is lower compared to CSMA/CA protocol. A fiber optic Wide Area Network (WAN) is presented for transporting critical packets received from NAN to a control station. A Dynamic Fastest Routing Strategy (DFRS) algorithm is used for routing critical packets to control station. Closed-form expression for mean critical packet delay is derived and is examined as a function of: i) traffic intensity, ii) capacity of fiber links, iii) number of links, iv) variance of inter-arrival time, v) variance of service time, and vi) the latency of links. It is shown that delay of critical packets to control station meets acceptable standards set for smart grid

    Architectures and dynamic bandwidth allocation algorithms for next generation optical access networks

    Get PDF

    Towards high quality and flexible future internet architectures

    Get PDF

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Automation, Protection and Control of Substation Based on IEC 61850

    Get PDF
    Reliability of power system protection system has been a key issue in the substation operation due to the use of multi-vendor equipment of proprietary features, environmental issues, and complex fault diagnosis. Failure to address these issues could have a significant effect on the performance of the entire electricity grid. With the introduction of IEC 61850 standard, substation automation system (SAS) has significantly altered the scenario in utilities and industries as indicated in this thesis

    On the Merits of Deploying TDM-based Next-Generation PON Solutions in the Access Arena As Multiservice, All Packet-Based 4G Mobile Backhaul RAN Architecture

    Full text link
    The phenomenal growth of mobile backhaul capacity required to support the emerging fourth-generation (4G) traffic including mobile WiMAX, cellular Long-Term Evolution (LTE), and LTE-Advanced (LTE-A) requires rapid migration from today\u27s legacy circuit switched T1/E1 wireline and microwave backhaul technologies to a new fiber-supported, all-packet-based mobile backhaul infrastructure. Clearly, a cost effective fiber supported all-packet-based mobile backhaul radio access network (RAN) architecture that is compatible with these inherently distributed 4G RAN architectures is needed to efficiently scale current mobile backhaul networks. However, deploying a green fiber-based mobile backhaul infrastructure is a costly proposition mainly due to the significant cost associated with digging the trenches in which the fiber is to be laid. These, along with the inevitable trend towards all-IP/Ethernet transport protocols and packet switched networks, have prompted many carriers around the world to consider the potential of utilizing the existing fiber-based Passive Optical Network (PON) access infrastructure as an all-packet-based converged fixed-mobile optical access networking transport architecture to backhaul both mobile and typical wireline traffic. Passive Optical Network (PON)-based fiber-to-the-curb/home (FTTC/FTTH) access networks are being deployed around the globe based on two Time-Division Multiplexed (TDM) standards: ITU G.984 Gigabit PON (GPON) and IEEE 802.ah Ethernet PON (EPON). A PON connects a group of Optical Network Units (ONUs) located at the subscriber premises to an Optical Line Terminal (OLT) located at the service provider\u27s facility. It is the purpose of this thesis to examine the technological requirements and assess the performance analysis and feasibility for deploying TDM-based next-generation (NG) PON solutions in the access arena as multiservice, all packet-based 4G mobile backhaul RAN and/or converged fixed-mobile optical networking architecture. Specifically, this work proposes and devises a simple and cost-effective 10G-EPON-based 4G mobile backhaul RAN architecture that efficiently transports and supports a wide range of existing and emerging fixed-mobile advanced multimedia applications and services along with the diverse quality of service (QoS), rate, and reliability requirements set by these services. The techno-economics merits of utilizing PON-based 4G RAN architecture versus that of traditional 4G (mobile WiMAX and LTE) RAN will be thoroughly examine and quantified. To achieve our objective, we utilize the existing fiber-based PON access infrastructure with novel ring-based distribution access network and wireless-enabled OLT and ONUs as the multiservice packet-based 4G mobile backhaul RAN infrastructure. Specifically, to simplify the implementation of such a complex undertaking, this work is divided into two sequential phases. In the first phase, we examine and quantify the overall performance of the standalone ring-based 10G-EPON architecture (just the wireline part without overlaying/incorporating the wireless part (4G RAN)) via modeling and simulations. We then assemble the basic building blocks, components, and sub-systems required to build up a proof-of-concept prototype testbed for the standalone ring-based EPON architecture. The testbed will be used to verify and demonstrate the performance of the standalone architecture, specifically, in terms of power budget, scalability, and reach. In the second phase, we develop an integrated framework for the efficient interworking between the two wireline PON and 4G mobile access technologies, particularly, in terms of unified network control and management (NCM) operations. Specifically, we address the key technical challenges associated with tailoring a typically centralized PON-based access architecture to interwork with and support a distributed 4G RAN architecture and associated radio NCM operations. This is achieved via introducing and developing several salient-networking innovations that collectively enable the standalone EPON architecture to support a fully distributed 4G mobile backhaul RAN and/or a truly unified NG-PON-4G access networking architecture. These include a fully distributed control plane that enables intercommunication among the access nodes (ONUs/BSs) as well as signaling, scheduling algorithms, and handoff procedures that operate in a distributed manner. Overall, the proposed NG-PON architecture constitutes a complete networking paradigm shift from the typically centralized PON\u27s architecture and OLT-based NCM operations to a new disruptive fully distributed PON\u27s architecture and NCM operations in which all the typically centralized OLT-based PON\u27s NCM operations are migrated to and independently implemented by the access nodes (ONUs) in a distributed manner. This requires migrating most of the typically centralized wireline and radio control and user-plane functionalities such as dynamic bandwidth allocation (DBA), queue management and packet scheduling, handover control, radio resource management, admission control, etc., typically implemented in today\u27s OLT/RNC, to the access nodes (ONUs/4G BSs). It is shown that the overall performance of the proposed EPON-based 4G backhaul including both the RAN and Mobile Packet Core (MPC) {Evolved Packet Core (EPC) per 3GPP LTE\u27s standard} is significantly augmented compared to that of the typical 4G RAN, specifically, in terms of handoff capability, signaling overhead, overall network throughput and latency, and QoS support. Furthermore, the proposed architecture enables redistributing some of the intelligence and NCM operations currently centralized in the MPC platform out into the access nodes of the mobile RAN. Specifically, as this work will show, it enables offloading sizable fraction of the mobile signaling as well as actual local upstream traffic transport and processing (LTE bearers switch/set-up, retain, and tear-down and associated signaling commands from the BSs to the EPC and vice-versa) from the EPC to the access nodes (ONUs/BSs). This has a significant impact on the performance of the EPC. First, it frees up a sizable fraction of the badly needed network resources as well as processing on the overloaded centralized serving nodes (AGW) in the MPC. Second, it frees up capacity and sessions on the typically congested mobile backhaul from the BSs to the EPC and vice-versa

    Dynamic bandwidth allocation algorithms for differentiated services enabled Ethernet Passive Optical Networks with centralized admission control

    Get PDF
    Fiber based access networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that has emerged in recent years is Ethernet Passive Optical Networks. The key features of this approach are the simplicity of the architecture and compatibility with existing Ethernet based local area networks. To make Ethernet Passive Optical Networks (EPONs) a fully functional part of the telecommunication system, support for classes of traffic with different Quality of Service (QoS) requirements is mandatory. Much research has been done on the optimal bandwidth allocation algorithms that would have the capability of supporting Differentiated Services (DiffServ) in EPONs. This thesis proposes that the access control mechanism should be centralized and performed by the Optical Line Terminal (OLT). It is shown that this approach can give greater flexibility to adjust to changing traffic conditions, can simplify the structure of the Optical Network Units, and can allow the easy adoption of Service Level Agreements. This thesis introduces a novel EPON simulator that allows testing of various types of bandwidth allocation algorithms. It is possible to evaluate the allocation mechanism under different traffic conditions and with network configurations that closely resemble real systems. New algorithms are presented based on a paradigm of centralized access control. Simulation results showed that they offer good performance and support for the DiffServ architecture
    corecore