
Towards High Quality and Flexible Future Internet Architectures

Flexibele toekomstige internetarchitecturen van hoge kwaliteit

Sachin Sharma

Promotoren: prof. dr. ir. D. Colle, prof. dr. ir. M. Pickavet
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. D. De Zutter
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2015 - 2016

ISBN 978-90-8578-892-8
NUR 986, 988
Wettelijk depot: D/2016/10.500/24

Ghent University
Faculty of Engineering and Architecture
Department of Information Technology

Promotors: Prof. dr. ir. Didier Colle
Prof. dr. ir. Mario Pickavet

Jury Members: Prof. dr. ir. Luc Taerwe, Ghent University, Belgium (Chairman)
Prof. dr. ir. Didier Colle, Ghent University (Supervisor)
Prof. dr. ir. Mario Pickavet, Ghent University (Supervisor)
Prof. dr. ir. Balazs Sonkoly, Budapest University of Technology and Economics
Prof. dr. ir. Kris Steenhaut, Vrije Universiteit Brussel
Prof. dr. ir. Sofie Van Hoecke, Ghent University
Dr. Wouter Tavernier, Ghent University (Secretary)
Dr. Dimitri Staessens, Ghent University

Ghent University
Faculty of Engineering and Architecture

Department of Information technology
Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium

Tel.: +32-9-331.49.00
Fax.: +32-9-331.48.99

Dissertation to obtain the degree of
Doctor of Computer Science Engineering

Academic year 2015-2016

Acknowledgments

Finally, my journey to obtain a PhD is going to be over. Pursuing the PhD was
not an easy task for me, but it was full of tough challenges that I could not have
overcome alone. Fortunately, there were many people, who contributed to its
successful completion.

First of all, I am deeply grateful to my promoters, Prof. Didier Colle and Prof.
Mario Pickavet, for providing me an opportunity to carry out my PhD research at
Ghent University-iMinds. I submit my respectable thanks to them for believing
in my potential and performance. Without their excellent vision, direction, and
support, it would not have been possible for me to have a successful research
work. In particular, I am thankful for their constructive research ideas, feedback,
suggestions and modesty.

I express my gratitude to Prof. Piet Demeester and all the members of the
IBCN group for providing me the platform to successfully carry out my research
work. I would also like to thank the secretariat – Martine and Davinia – and
other staff members at IBCN who have made my stay comfortable in Ghent. All
these efforts have created an excellent stimulating international environment for
researchers like me in the IBCN group.

Prof. Luc Taerwe, Prof. Balazs Sonkoly, Prof. Kris Steenhaut, Prof. Sofie Van
Hoecke, Dr. Wouter Tavernier, and Dr. Dimitri Staessens, I thank you all for being
part of my jury and helping me to improve the quality of my PhD dissertation.
I also thank to Dr. Dimitri Staessens and Dr. Wouter Tavernier for guiding me
during my PhD.

I would also like to thank all the other co-authors of my articles – David,
Joao, Luis, Adam, Donal, Ricardo, Sahel, Nick, Charaka, Rob, Juhoon, Catalin,
Wolfgang, and Rebecca – whose critical discussions, comments, and support were
indeed very helpful. Thank you all for your valuable feedback and efforts.

I also take this opportunity to thank all the members of projects – SPARC,
OFELIA, CityFlow, UNIFY, and MECANO – in which I was actively involved
during my PhD. Thank you for providing me research directions during the
duration of projects.

I have aIso been surrounded by what I think to be the best colleagues one
can wish for in an office: Sahel, Thijs, Sofie, Sander, Steven, Thomas, Maarten,
Wouter, Dimitri, Abhishek, Ward, Marlies, Bram, Domonico, Rodrigo, Ludwig,

ii

Bart, Willem, Farhan, Krishnan, Selva, Arun, Wei, Jetmir, and Ratul. I thank you
all for your’s friendly behavior, lunch discussions, and motivations.

This acknowledgment is incomplete without mentioning all the friends that
I met during my stay in Ghent: Jignesh, Dinesh, Sarvagya, Vinod, Santosh,
Abhishek, Richa, Nithya, Krishnan, Sandeep, Yogesh, Orance, Karthik, Chetan,
Shailesh, Amit, Apoorv, Chanakya, and Rajesh. I want to say thanks to you all
for all the chit-chat, eating, and drinking parties. I actually know that this list is
incomplete, but you are in it and you know it.

A special thanks goes out to all my college/school friends especially: Manish,
Navdeep, Vipan, Chandan, Vijay, Sanjay, Yogesh, Sangita, Venkat, Damoder,
Sunit, Nikunj and many more.

Finally, I wish to thank my wonderful family – my parents (Shyam Lal and
Kesari Devi), my brother (Vinod), my sisters (Ranjana, Anju, Manju, and Attu),
my brother-in-laws (Kamal, Vidya Ratan, Sanjeev, Chanderhas), my sister-in-law
(Deepika), my grandmother (Judya), my wife (Chetna), and my son (Kalkin)
– for their immense love and support. I express my deepest appreciation and
special gratitude to my parents for their selfless support throughout my life. I
also thank my parents-in-law (Ramesh and Champa), my nephews and nieces -
Gudiya, Raghaw, Shuku, Nikhil, Arpit, Sambhivi, Subarh, Vedakshi, and my little
Tiya for their love. A special thanks goes to my wife Chetna and my son Kalkin
(born on 3rd August 2014 in Ghent, Belgium) for their patience, understanding,
and love, and giving me time to work for my PhD and write this book. I dedicate
this dissertation to my family.

Love you all!!

Germany, April 2016
Sachin Sharma

Table of Contents

Acknowledgments i

Samenvatting xxiii

Summary xxvii

1 Introduction 1
1.1 Background . 2

1.1.1 Layered model . 3
1.1.2 Network elements . 5
1.1.3 Addressing schemes . 7
1.1.4 Software switches/routers vs. hardware switches/routers . 8
1.1.5 Control plane and data Plane 9
1.1.6 Packet-flow (or simply flow) 11
1.1.7 Overview of the Internet Infrastructure 11

1.2 Problems of the Internet . 14
1.3 The road towards SDN (Software Defined Networking) 16

1.3.1 Early SDN initiatives . 16
1.3.2 Recent SDN initiatives 18

1.4 Software Defined Networking using OpenFlow 22
1.4.1 Network design for OpenFlow 22
1.4.2 Introduction to OpenFlow and its functionalities 23
1.4.3 Extensions in different OpenFlow versions 29
1.4.4 OpenFlow capable hardware switches 30
1.4.5 OpenFlow capable soft switches 31
1.4.6 OpenFlow controllers . 32

1.5 Research challenges and possible solutions 34
1.5.1 Fast failure recovery . 34
1.5.2 Verification of data plane functionality 36
1.5.3 Bootstrapping . 37
1.5.4 Quality of Service . 38
1.5.5 Loss-free packet switching 39

1.6 Research contributions . 41
1.7 Publications . 43

iv

1.7.1 Publications in international journals
(listed in the Science Citation Index) 44

1.7.2 Publications in international conferences
(listed in the Science Citation Index) 45

1.7.3 Publications in other international conferences 45
1.7.4 Publications in IETF Drafts 47
1.7.5 Other publications . 47
1.7.6 Publications in national conferences 47

References . 48

2 Fast failure recovery techniques 53
2.1 Introduction . 54
2.2 Network resiliency . 57

2.2.1 Resilience for an OpenFlow Network 58
2.3 Emulation environment . 60

2.3.1 Emulation testbed and topologies 61
2.3.2 Emulation methodology 62

2.4 Results . 65
2.4.1 Analytical model and its parameters 65
2.4.2 Emulation results . 67

2.5 Additional considerations . 72
2.5.1 Memory size requirement in protection 72
2.5.2 Reliability of the control plane 73

2.6 Related work . 74
2.7 Conclusions . 74
References . 75

3 Verification techniques 79
3.1 Introduction . 80
3.2 Errors in flow-matching functionality 83

3.2.1 Software or hardware bugs in flow matching 83
3.3 Verification mechanism . 85

3.3.1 Flow duplication step . 86
3.3.2 Test packet generation step 87
3.3.3 Matching error identification 88

3.3.3.1 Binary-search method 88
3.3.3.2 Packet-reception method 89

3.4 Out-of-band or in-band verification 90
3.4.1 OpenFlow session path selection in in-band networks . . . 92
3.4.2 VM placement . 93

3.5 Emulation . 94
3.5.1 Controller-induced verification experiment 95
3.5.2 VM-induced verification experiment 96
3.5.3 Validation on multiple topologies 97

3.6 Results . 98

v

3.6.1 Controller-induced verification experiment 98
3.6.2 VM-induced (in-band) verification experiment 100
3.6.3 Validation on multiple topologies 102

3.7 Conclusions . 102
References . 103

4 Non-production to production networks techniques 107
4.1 Introduction . 108
4.2 Functionalities for OpenFlow . 110

4.2.1 In-band control functionality 110
4.2.2 Queuing functionality 112
4.2.3 Failure recovery functionality 113

4.3 Practical challenges . 114
4.3.1 Evolution of OpenFlow specifications 114
4.3.2 Availability of required switch components 114
4.3.3 Availability of required controller components 116

4.4 Experimental studies . 117
4.4.1 In-band control experiments 118
4.4.2 With queuing and without queuing experiments 119
4.4.3 Failure recovery experiments 120

4.5 Conclusion and future work . 122
References . 123

5 Quality of Service techniques 127
5.1 Introduction . 128
5.2 QoS model for the Internet . 130

5.2.1 VPS engine overview . 130
5.2.2 Components of the proposed model 131
5.2.3 Operational model for the Internet 132

5.3 Reference scenarios for experimentation 134
5.4 Experimentation . 136

5.4.1 Software used for experimentation 136
5.4.2 Topology setup on the OFELIA testbed 136

5.4.2.1 Topology setup on the iMinds island 136
5.4.2.2 Topology setup in multiple islands 137

5.4.3 Scale of test platform 138
5.4.4 Implementation of test harness 138

5.5 Results . 139
5.5.1 Data traffic experiments 139
5.5.2 Control traffic experiments 140

5.5.2.1 Experiment on the iMinds testbed 141
5.5.2.2 Experiment on the Amazon cloud facility 142

5.5.3 Failure recovery experiments 143
5.5.4 Multiple island Experiment 144

5.6 Conclusions . 145

vi

References . 146

6 Loss-less packet-switching techniques 149
6.1 Introduction . 150
6.2 Packet-loss in packet-switched networks 151
6.3 Inter-Burst Segregation Protocol (IBSP) 152

6.3.1 Our approach . 153
6.3.2 Justification of using three buffers 155
6.3.3 Solutions to the issues of our approach 155
6.3.4 Delay and jitter using IBSP 157

6.4 Experimental study . 157
6.4.1 Simulations . 157
6.4.2 DPDK emulations . 158

6.5 Conclusions . 159
References . 160

7 Concluding remarks 161
7.1 Future directions - deploying SDN into operational networks . . . 163

7.1.1 Transition from legacy networks to SDN 163
7.1.2 Performance concerns 164
7.1.3 Support for Network Function Virtualization 166
7.1.4 Troubleshooting . 167
7.1.5 Security concerns . 168

References . 168

A Automatic Bootstrapping 171
A.1 Introduction . 172
A.2 Bootstrapping of OpenFlow networks 174

A.2.1 Overview of our bootstrapping approach 174
A.2.2 OpenFlow mechanisms and messages in bootstrapping . . 175
A.2.3 Detailed bootstrapping 176

A.2.3.1 Bootstrapping of the first switch 177
A.2.3.2 Bootstrapping of other switches 179

A.3 Emulation environment and results 182
A.4 Conclusions . 185
References . 186

B Automatic configurations of RouteFlow 187
B.1 Introduction . 188
B.2 Automatic configuration of RouteFlow 189
B.3 Results of automatic configuration experiments 190
B.4 Demonstration setup . 191
References . 191

vii

C Resilient Quality of Service 193
C.1 Introduction . 194
C.2 Resilient QoS framework for OpenFlow 194
C.3 Results and discussions . 195
C.4 Demonstration on portable testbed 197
References . 197

List of Figures

1.1 Layered models of the Internet 3
1.2 Longest Prefix Matching (LPM) example in TCAM 10
1.3 Basic router design . 10
1.4 High level overview of Internet infrastructure segments 12
1.5 Bandwidth evolution in access networks [source: IEEE spectrum] 12
1.6 The number of standards published per year by IETF 14
1.7 4D clean slate architecture . 19
1.8 Ethane proposal . 20
1.9 Design of today’s and future networks 22
1.10 OpenFlow overview [source: OpenFlow specification 1.1] 23
1.11 An example of a FlowTable . 24
1.12 Categories of OpenFlow messages 26
1.13 OpenFlow networks: In-band and Out-of-band 28
1.14 Functional block diagram of OpenFlow hardware switches 31
1.15 Basic controller architecture . 33
1.16 The commercial challenge of the growth of the Internet 39
1.17 Overview of work performed . 41

2.1 OpenFlow principle . 55
2.2 Restoration mechanism . 58
2.3 GroupTable concept and Protection Mechanism 59
2.4 Virtual wall testbed and BT topology 61
2.5 CT and RT topology . 61
2.6 Integration of BFD in OpenFlow 63
2.7 Control traffic intensity in restoration and protection 64
2.8 Analytical model for restoration 65
2.9 Flow lookup time and controller path calculation Time 66
2.10 Controller transmission capacity and flow entry addition time . . . 67
2.11 Traffic on the affected link . 68
2.12 Traffic on the recovered link . 68
2.13 Flow-Mod controller traffic in Restoration 69
2.14 Failure recovery time . 69
2.15 Link and node failure results . 71
2.16 Scalability experiment . 71

x

3.1 Example of a Flow Entry . 81
3.2 Hardware or software bugs in OpenFlow switches 84
3.3 Flow Entries before and after the flow duplication step 86
3.4 Packet-out message for the test packet generation step 87
3.5 Binary-search Method . 89
3.6 VM connections with switches 91
3.7 Pan European Topology . 94
3.8 Traffic on the controller link (controller verification experiment) . 95
3.9 Traffic Intensity (VM-induced verification experiment) 97
3.10 Verification time using the packet-reception and binary-search

method (controller out-of-band network scenario) 98
3.11 Upstream bandwidth usage (controller out-of-band scenario) . . . 99
3.12 Verification time when 5 Mb/s bandwidth available in each

controller link for verification . 100
3.13 Limited bandwidth scenario (VM in-band control scenario) 101
3.14 Verification time and switch centrality 102

4.1 OpenFlow networks . 109
4.2 Bootstrapping Time . 118
4.3 Impact of data traffic on control plane operations 119
4.4 Recovery time of control and data traffic 121

5.1 VPS engine overview . 131
5.2 CityFlow’s architecture and components 131
5.3 Conceptual operational model for the Internet 133
5.4 CityFlow reference city (Flowville, integrated model) 135
5.5 Flowville for CityFlow experimentation on the OFELIA testbed . 137
5.6 Data traffic experiments . 139
5.7 75000 Busy Hour Flow Invocations on the Virtual Path Slice

Engine . 141
5.8 Scaled experiment for high volume invocations on Amazon 142
5.9 Failure recovery experiment results 144
5.10 Multiple islands experiment on the OFELIA testbed 144
5.11 Response time . 145

6.1 Worst case network scenario of lossy packet-switched networks . 151
6.2 Filling and emptying buffers . 154
6.3 Buffers for implementing IBSP 155
6.4 Issues that may occur due to clock difference between different

nodes . 156
6.5 Topology of Network Ni in Fig. 6.1 158
6.6 Packet loss and jitter measurements 158
6.7 Emulation results using DPDK implementation of IBSP 159

A.1 In-band and out-of-band mode 173

xi

A.2 A topology to describe bootstrapping 176
A.3 Message exchange between a switch and the controller 177
A.4 Bootstrapping experiments on linear and ring topologies 183
A.5 Bootstrapping experiments on star topologies 184
A.6 Bootstrapping experiments on mesh topologies 184

B.1 RouteFlow Design . 188
B.2 Framework for automatic configuration of Routeflow 189
B.3 Configuration Time . 190

C.1 Emulated topology and portable Testbed 196

List of Tables

1.1 Comparison among classful IP addresses 7
1.2 Early SDN initiatives . 16
1.3 Recent SDN initiatives . 18
1.4 Overview of some important OpenFlow Messages 27
1.5 Different OpenFlow controllers 32

4.1 Features present in different implementations of OpenFlow 115
4.2 Emulated topologies . 117

5.1 Data traffic experiment results 140
5.2 VPS machine CPU usage and memory usage 145

List of Acronyms

A

ACK Acknowledgment

ADSL Asymmetric Digital Subscriber Line

ANTS Active Node Transfer System

ARP Address Resolution Protocol

ARPANET Advanced Research Projects Agency NETwork

ARPU Average Revenue Per User

AS Autonomous System

ASIC Application-Specific Integrated Circuits

ATM Asynchronous Transfer Mode

ATPG Automatic Test Packet Generation

B

BCAM Binary Content Addressable Memory

BE Best Effort

BFD Bidirectional Forwarding Detection

BGP Border Gateway Protocol

BRAS Broadband Remote Access Server

BSD Berkeley Software Distribution

BT Basic Reference Topology

xvi

C

CAM Content Addressable Memory

CDN Content Delivery Network

CIDR Classless Inter Domain Routing

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CT Core Topology

D

DARPA Defense Advanced Research Projects Agency

DCOM Distributed Component Object Model

DHCP Dynamic Host Configuration Protocol

DPDK Data Plane Development Kit

DSL Digital Subscriber Line

DSLAM Digital Subscriber Line Access Multiplexer

F

FIB Forwarding Information Base

FIBRE Future Internet testbeds/experimentation between Brazil and
Europe

ForCes Forwarding and Control Element Separation

FTTB Fiber To The Building

FTTH Fiber To The Home

G

GENI Global Environment for Network Innovations

xvii

GPL General Public License

H

HD High Definition

HP High Priority

HSA Header-Space analysis

HTTP Hypertext Transfer Protocol

I

I2RS Interface to the Routing System

IBSP Inter-Burst Segregation Protocol

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IP Internet Protocol

ISDN Integrated Services Digital Network

IS-IS Intermediate System to Intermediate System

L

LAN Local Area Network

LFB Logical Functional Blocks

LLDP Link Layer Discovery Protocol

LPM Longest Prefix Match

LOS Loss of Signal

LT Large Topology

LTE Long Term Evolution

xviii

M

MAC Media Access Control

MAN Metropolitan Area Network

MPLS Multiprotocol Label Switching

MTU Maximum Transmission Unit

N

NCP Network Control Points

NETCONF NETwork CONFiguration protocol

NFV Network Function Virtualization

NS Network Operating System

NSIS Next Steps in Signalling

NTP Network Time Protocol

O

OFELIA OpenFlow in Europe: Linking Infrastructure and Applications

OLT Optical Line Terminal

ONF Open Networking Foundation

ONOS Open Network Operating System

ONU Optical Network Unit

OSI Open Systems Interconnection

OSPF Open Shortest Path First

oTCL Object oriented extension of Tool Command Language

OTT Over-The-Top

OVS-DB Open vSwitch Database Management protocol

xix

P

PPP Point-to-Point Protocol

Q

QoS Quality of Service

R

RAM Random Access Memory

REST Representational State Transfer

RFC Request For Comments

RIB Routing Information Base

RPR Resilient Packet Ring

RT Ring Topology

S

SCTP Stream Control Transmission Protocol

SDN Software Defined Networking

SMTP Simple Mail Transfer Protocol

SLA Service Level Agreement

SPARC Split Architecture for Carrier-Grade Networks

SPC Store Program Control

SRAM Static Random Access Memory

STP Spanning Tree Protocol

xx

T

TCAM Ternary Content Addressable Memory

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TLS Transport Layer Security

TT Triangular Topology

U

UNIFY UNIFYing cloud and carrier Networks

UDP User Datagram Protocol

V

VDSL Very high bit rate Digital Subscriber Line

VLAN Virtual Local Area Network

VM Virtual Machine

VPS Virtual Path Slice

VS Vendor-Specific Extension

W

WAN Wide Area Network

Samenvatting
– Summary in Dutch –

Toestellen zoals routers en switches zijn doorheen de voorbije decennia een
steeds belangrijker rol gaan spelen in de ondersteuning van internet-gebaseerde
services. Deze netwerktoestellen bestaan uit twee soorten functionaliteit: data
plane-functionaliteit en control plane-functionaliteit. Het data plane stuurt het
verkeer door naar de bestemming, terwijl het control plane de noodzakelijke
taken uitvoert om het data plane te configureren. Momenteel ondersteunen
netwerktoestellen een significant aantal technieken om diensten aan te bieden over
het internet. Ondanks het indrukwekkende parcours dat deze technieken hebben
afgelegd, is er nood aan snellere innovatie om te kunnen voldoen aan de immer
stijgende noden van gebruikers en applicaties. Dit houdt in dat er sneller nieuwe
toepassingen moeten ontworpen kunnen worden, en dat flexibelere, complexere
toestellen beschikbaar worden.

De huidige netwerkinfrastructuur daartegenover is duur, complex, kan zich
moeilijk aanpassen an de wijzigende vereisten, en werkt een sterke afhankelijkheid
van de fabrikanten in de hand. Om het hoofd te bieden aan deze problemen,
worden Software geDefinieerd Netwerken (SDN) de afgelopen jaren naar voren
geschoven als oplossing. SDN biedt de mogelijkheid om een flexibel network
te ontwerpen, de bijhorende complexiteit te reduceren en beoogt eenvoudigere
netwerkinnovatie. SDN bereikt dit door een standaardprotocol te definiëren voor
de communicatie tussen het control en het data plane. Dit laat toe om het control
plane los te koppelen van de netwerktoestellen en ze uit te voeren op specifieke,
andere toestellen, die we controllers noemen. Op dit ogenblik is OpenFlow het
de-facto SDN protocol voor de communicatie tussen het control- en data plane
van netwerktoestellen.

In deze verhandeling onderzoeken we OpenFlow-netwerkarchitecturen en
hoe deze architecturen kunnen aangepast worden in functie van toekomstige
communicatiediensten. Het onderzoek richt zich op het aanbieden van
snelle herstelling van fouten, automatische verificatie en configuratie, hoge
servicekwaliteit en verliesvrije pakketbezorging.

Voor snelle herstelling van fouten focust deze thesis op het aanbieden van
ultrasnel foutherstel van diensten die worden aangeboden in OpenFlow netwerken.
Om dergelijk snel herstel te bereiken, moet een netwerk in staat zijn zich te
herstellen in 50 ms of minder. We implementeren hiervoor twee welbekende
hersteltechnieken: restoratie en protectie. In restoratie worden herstelpaden

xxiv SAMENVATTING

gezocht nadat er zich een fout voordoet, terwijl in het geval van protectie deze
herstelpaden gezocht worden voordat er een fout optreedt. Hierdoor kan bij
protectie het verkeer worden omgeleid langs een van deze paden, zodra er zich
een fout voordoet. Uit het onderzoek naar snel foutherstel blijkt dat door de
gecentraliseerde aard van OpenFlow het moeilijk is om met restoratie ultrasnel
herstel te bereiken in een netwerk met een hoog aantal flows. Aangezien restoratie
een significante tijdspanne nodig heeft om de herstelactiviteit te voltooien, kan
OpenFlow protectie implementeren om aan herstelvereisten te voldoen. Protectie,
waar herstelacties genomen worden door de OpenFlow toestellen zelf, kan
probleemloos in het kader van gecentraliseerde controle. Het onderzoek besluit
dat protectie de voorkeur krijgt om in SDN/OpenFlow een herstel van fouten in
minder dan 50 ms te bereiken, zelfs in grote netwerken met een hoog aantal flows.

Vervolgens focust ons onderzoek op de verificatie van de data plane
functionaliteit van OpenFlow netwerktoestellen, om fouten bij het vergelijken
van flows te vermijden. Er zijn twee oorzaken voor deze fouten in de data
plane functionaliteit: (1) bugs (in software of hardware) in de OpenFlow data
plane-implementatie en (2) fouten in de FlowTable configuraties. Het doel van
de verificatiemechanismen is om die pakketkarakteristieken te vinden die ofwel
foutief, ofwel niet kunnen doorgestuurd worden door het data plane. Zonder deze
verificatie kan het moeilijk zijn om de pakketten op te sporen die niet of foutief
kunnen afgeleverd worden door het toestel.

Automatische configuratie hebben we in twee aspecten onderzocht: (1)
automatische bootstrapping van OpenFlow netwerken en (2) automatische
configuratie van routingprotocollen in OpenFlow netwerken. Voor automatische
bootstrapping moeten OpenFlow toestellen automatisch een sessie opzetten met
een controller (zonder enige manuele configuratie). Zon bootstrappingtaak is
complex voor een netwerk (of zijn toestellen) waar control- en dataverkeer
verstuurd worden op hetzelfde kanaal (i.e., in-band netwerken). Hierdoor
moeten OpenFlow toestellen (zonder control plane functionaliteit) een pad (of
sessie) naar de controller zoeken en opzetten door gebruik te maken van
andere toestellen in een in-band netwerk. Om automatische bootstrapping uit
te voeren, introduceren en evalueren we een methode waarbij de controller
zijn eigen controlenetwerk vaststelt via de switches waarmee hij verbonden
is door het OpenFlow-protocol. Het onderzoek besluit dat deze methode het
bootstrappingproces in een minimale tijdspanne voltooit, waardoor de methode
geschikt is voor grootschalige netwerken. Voor het tweede aspect, de automatische
configuratie van routingprotocollen, stellen we een raamwerk voor dat een extra
controller vergt die de netwerkconfiguraties ontdekt (bv. de onderliggende
topologie). Na het ontvangen van deze configuraties, sturen de OpenFlow
toestellen automatisch de routing aan. Het raamwerk is geëvalueerd aan de hand
van complexe netwerkarchitecturen. Het besluit van deze evaluatie, in vergelijking
met manuele configuratie, is dat het voorgestelde automatische raamwerk de
configuratietijd van de routingprotocollen significant verkleint.

Met het oog op het verhogen van de kwaliteit van de aangeboden service
(QoS), stellen we voor om een dynamische voorrangsregel in OpenFlow netwerken

SUMMARY IN DUTCH xxv

te introduceren, om een hoge QoS te voorzien voor gebruikers met hoge
prioriteit. Om QoS te implementeren, introduceren we een raamwerk met een
dynamische voorrangsregel voor het internet. Het raamwerk laat toe een pad,
vrij van interferentie met ander verkeer, te creëren tussen twee eindpunten op
verschillende autonome toestellen voor een gegeven applicatieflow (bv. WebHD
Video Streaming of HD Video to Video). Het raamwerk is geëvalueerd in
verschillende referentienetwerkscenarios voor een stad met 1 miljoen inwoners,
waarbij xDSL (Digital Subscriber Line), LTE (Long-Term Evolution) en Fiber
networkingscenarios werden nagebootst. De evaluatie bevestigt dat het raamwerk
geschikt is voor het internet en dat het een hoge QoS voor verkeer van hoge
prioriteit voorziet.

Om pakketgeschakelde netwerken (inclusief OpenFlow netwerken) te
garanderen dat er geen pakketten zullen verloren gaan, stelt deze verhandeling
het Inter Burst Segregation Protocol (IBSP) voor. Het protocol is geëvalueerd
op netwerksimulatoren (NS-3) en door emulatie op een platform met hoge
performantie (d.w.z. data plane ontwikkelingskit). Uit de evaluaties kunnen we
besluiten dat zonder het gebruik van IBSP een pakketgeschakeld netwerk geen
behoud van pakketten kan garanderen, zelfs niet bij laag bandbreedtegebruik.
Bij gebruik van IBSP kan behoud van pakketten wel gegarandeerd worden, ook
in netwerken waarbij nagenoeg de volledige bandbreedte in het netwerk wordt
gebruikt.

Tot slot kunnen we in de context van SDN netwerkarchitecturen een aantal
richtingen voor toekomstig onderzoek verkennen. Deze toekomstige richtingen
zijn: (1) transitie van legacy netwerken naar SDN-netwerken, (2) performantie,
(3) probleemoplossen en (4) veiligheid.

Summary

In recent decades, network devices such as switches and routers have been
successfully developed and deployed to deliver a plethora of services over the
Internet. These network devices contain two elements: data plane and control
plane. The data plane forwards traffic towards its destination, while the control
plane performs the necessary tasks that allow the data plane to make forwarding
decisions. Currently, network devices support a significant number of technologies
to deliver services over the Internet. Despite the impressive track record of
these technologies, the need to accelerate innovations has been increasing to
meet growing demands of users and applications. The accelerated pace of
innovations means more features need to be implemented in short timeframes,
meaning more flexible (and thus complex) devices are needed. Currently, the
network infrastructure has become expensive, complex, prone to vendor-locking,
and inflexible to adapt to the needs of changing requirements. To overcome
these problems, Software Defined Networking (SDN) has been emerging in recent
years. In fact, SDN has a potential in designing a flexible network, fostering
innovations, and reducing complexity. SDN achieves these by defining a standard
protocol for communication between the control and data plane. Therefore, it
allows decoupling of the control plane from network devices and embedding it
into external devices called controllers.

Currently, OpenFlow is the de-facto SDN protocol for communication between
the control and data plane of network devices. In this dissertation, we investigate
OpenFlow network architectures, and perform research on how these architectures
can be adapted to be suited for future communication services. The research aims
at providing fast failure recovery, automatic verification, automatic configuration,
high quality-of-service, and loss-free packet-switching solutions to OpenFlow.

For fast failure recovery, this dissertation focuses on providing carrier-grade
quality to services provisioned in OpenFlow networks. For achieving carrier-grade
quality, a network should be able to recover from a failure within 50 ms. We
implement two well-known recovery techniques, restoration and protection, in
OpenFlow networks. In restoration, recovery paths are established after a failure
occurs and in protection, recovery paths are established before a failure occurs and
hence, when the failure is detected, traffic is redirected to the recovery path. The
research with fast-failure recovery techniques concludes that due to the centralized
nature of OpenFlow, it is difficult for restoration to achieve carrier-grade quality in
a network containing a large number of flows. As restoration may take significant
time to complete recovery activities, OpenFlow can implement protection to

xxviii SUMMARY

meet the carrier-grade recovery requirement. Protection, where recovery actions
are taken by OpenFlow devices themselves, does not suffer from limitations
of centralized control. The research concludes that protection is a way in
SDN/OpenFlow to achieve failure recovery within 50 ms, even in a large-scale
network serving many flows.

We considered node and link failures in the above fast failure recovery
study. However, failures can also be caused by other errors in the data plane
functionality (such as matching errors). Therefore, in the next study, we focus
on verification of the data plane functionality of OpenFlow network devices for
finding flow-matching errors. There can be two reasons for these errors in the
data plane functionality: (1) bugs (software or hardware) in OpenFlow data
plane implementation and (2) errors in FlowTable configurations. The objective
of verification is to find the packet-headers that cannot be forwarded or can be
forwarded incorrectly through the data plane. In the absence of this verification,
it may be difficult to find which packets cannot be delivered or can be delivered
incorrectly by a device.

In addition, we perform research on automatic configuration in
SDN/OpenFlow. Automatic configuration is researched for two aspects: (1)
automatic bootstrapping of OpenFlow networks and (2) automatic configuration
of routing protocols in OpenFlow networks. For the former aspect, OpenFlow
devices have to automatically establish OpenFlow sessions with the controller (in
the absence of any manual configurations). Such a bootstrapping task is complex
for a network (or its devices) where control and data traffic are transmitted on
the same channel (i.e., in-band networks). To perform automatic bootstrapping
in these networks, we propose and evaluate a method in which the controller
establishes its own control network through the switches that are connected to it
through the OpenFlow protocol. The research concludes that the proposed method
allows bootstrapping in a minimal time, making it suitable for a large-scale
network. For the latter aspect, i.e., automatic configuration of routing protocols,
we propose a framework which runs an additional module (i.e., a controller
application) to discover network configurations (e.g., underlying topology). After
receiving these configurations, the OpenFlow controller automatically configures
routing protocols. The framework is evaluated using complex network topologies.
The evaluation concludes that compared to manual configurations, the proposed
automatic configuration framework decreases the time to configure routing
protocols significantly. Furthermore, the proposed framework is used to configure
routing protocols in the quality of service (QoS) study (discussed in the next
paragraph).

For the QoS study, we propose a framework to enable a dynamic right of
way in OpenFlow networks to provide high QoS for high priority users. The
proposed framework establishes high QoS in paths discovered by routing protocols
used in the Internet. The framework allows an interference-free path, from other
traffic, between any two endpoints, on multiple autonomous systems, for a given
application flow (e.g., WebHD Video Streaming or HD Video to Video). The
framework is evaluated in distinct reference network-scenarios for a city with a

SUMMARY xxix

population of 1 million inhabitants, emulating xDSL (Digital Subscriber Line),
LTE (Long-Term Evolution) and Fiber networking scenarios. The evaluations
confirm the suitability of the framework for the Internet, providing high quality
of service for high-priority traffic.

In addition to the above QoS study, this dissertation proposes a protocol, called
inter-burst segregation protocol (IBSP), which can guarantee zero packet-loss
in packet-switched networks (including OpenFlow networks). The protocol is
evaluated through simulations on a network simulator (i.e., NS-3) and through
emulations on a high-performance platform (i.e., data plane development kit). The
evaluations conclude that without using IBSP, a packet-switched network cannot
guarantee zero packet-loss, although the bandwidth usage in the network is low.
However, using IBSP, zero packet-loss can be guaranteed, even though nearly all
the bandwidth is consumed in the network.

We also contextualize our work according to the recent trends in future SDN
network architectures, enabling directions for future work. The future directions
are for: (1) transition of a legacy network to a SDN network, (2) performance
concerns, (3) troubleshooting concerns, and (4) security concerns.

1
Introduction

“The beginning is the most important part of the work.”

–Plato, The Republic

The Advanced Research Projects Agency NETwork (ARPANET) was the
first packet-switched network that became the basis of the Internet. When the
ARPANET first time went into operation in 1969, it was a network of just four
computers located at different sites. However, the size of the ARPANET grew and
it became a network of networks, the Internet. Today, the Internet comprises of
a huge interconnection of thousands of networks. Although the overall Internet
architecture is an unquestionable success, the underlying infrastructure has not
progressed very well in order to meet changing requirements of the increasing
number of users and applications. Currently, the Internet infrastructure has become
too expensive to build, too complex to manage, too prone to vendor-locking,
and too inflexible to adapt to the needs of changing requirements [1]. This is
because the current Internet infrastructure relies on devices which contain two
elements: control plane and data plane, and a propitiatory interface (i.e., closed
implementation) for communication between them. The control plane performs
the necessary tasks that allow the data plane to make forwarding decisions, while
the data plane forwards packets towards their destinations (using the forwarding
decisions made by the control plane).

The Internet (i.e., its networks) needs a solution that can be implemented
without changing its infrastructure too much and spending a lot of money, and
therefore, opens up new business opportunities. In recent years, Software Defined

2 CHAPTER 1

Networking (SDN) has been emerging to address above problems. The concept of
SDN is applicable to the networks that build up the Internet. In fact, SDN defines
a standard interface for communication between the control and data plane and
therefore, allows decoupling of the control plane from network devices.

SDN has gained significant interest from many research communities
and many of the research challenges behind it are or have been widely
investigated in several projects. Some of these projects are: GENI (Global
Environment for Network Innovations) [2], SPARC (SPlit ARchitecture for
Carrier-grade networks), OFELIA (OpenFlow in Europe: Linking Infrastructure
and Applications) [4], and UNIFY (UNIFYing cloud and carrier networks) [5].
Industrial players such as Deutsche Telekom, Google, Microsoft, Verizon, and
Yahoo! have shown substantial interest towards SDN and have formed ONF (Open
Networking Foundation) to promote and adopt SDN through standardization [6].
There are already several SDN based commercial solutions available in the market.
These are from NEC, HP, Brocade, Juniper, etc.

OpenFlow is currently the de-facto SDN standard protocol for communication
between the control and data plane of network devices. In this PhD research, we
investigate OpenFlow network architectures, and perform research on how these
architectures can be adapted to be suited for future communication services. The
research aims at providing fast failure recovery, high quality-of-service, automatic
configurations, troubleshooting, and loss-free packet-switching solutions to
OpenFlow. This chapter introduces the work performed for this dissertation.

Section 1.1 and Section 1.2 present a background to the Internet and its
problems. Section 1.3 provides SDN initiatives (i.e., road towards SDN). Section
1.4 introduces OpenFlow and its functionalities. Section 1.5 and Section 1.6
present research challenges and an overview of the work performed, respectively.
Finally, we list all the publications obtained during the PhD research (Section 1.7).

1.1 Background

In this section, we present a background to the concepts, which are important for
this dissertation. Currently, The layered model is first introduced and then different
types of network elements and addressing schemes are presented. As concepts of
software or hardware based switches/routers, control plane, data plane and flows
are important to understand the basics of SDN, these are explained subsequently
in this section. In addition, an overview of the current Internet infrastructure is
important to understand current Internet problems. Therefore, this is described in
further subsections.

INTRODUCTION 3

1.1.1 Layered model

The operation of a network, and thus, the communication between its nodes (or
devices), is often categorized in a layered model in which each layer uses the
services offered by the lower layer. There are two popular models for representing
the layered structure of the Internet: Open Systems Interconnection (OSI) [8] and
Transmission Control Protocol/Internet Protocol (TCP/IP) [9]. OSI is a theoretical
reference model for developing protocol standards in networking, while TCP/IP is
a model that is a result of research and development conducted on the ARPANET.

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Transport

Application

Network

Transport

Application

Host-to-Network

Application

Host-to-Network

OSI Model Hybrid Model TCP/IP Model

Figure 1.1: Layered models of the Internet (based on [9])

The TCP/IP model is not in conflict with the OSI model. Both models rely
on the layered structure (See Fig. 1.1). However, the layers of TCP/IP are not
in a one-to-one correspondence with the layers of OSI. The OSI model contains
seven layers: application, presentation, session, transport, network, data link, and
physical layer, while the TCP/IP model contains four layers: application, transport,
network, and host-to-network layer. In the TCP/IP model, the presentation and
session layers are not present. In fact, in the TCP/IP model, the application layer
(or partially the transport layer) is responsible for functions that are performed by
the presentation and session layers of the OSI model. In addition, the data link and
physical layers of the OSI model are integrated in one layer (host-to-network layer)
in the TCP/IP model. Fig. 1.1 also describes the hybrid model, which contains the
main layers of both the models. Following paragraphs describe the layers of the
hybrid model to present the OSI and TCP/IP model of the Internet:

1. The application layer allows users to run applications on network nodes.
The layer does not define an application itself, but it defines services
required to run the application. For example, application protocol HTTP
(Hyper Text Transfer Protocol) defines how a web browser can pull the
contents of a web page from a web server. The layer contains a variety

4 CHAPTER 1

of protocols (such as HTTP, SMTP, and FTP) that are commonly needed by
users and is responsible for exchanging information between applications,
running on different end nodes.

2. The transport layer accepts data from the application layer, breaks it into
small parts if needed, and provides communication between one application
to another. Such communication is often end-to-end. The two most well
known protocols for the transport layer are: Transmission Control Protocol
(TCP) and User Datagram Protocol (UDP). If the transport layer protocol
is TCP, the unit of data sent from the transport layer to the network layer is
called Segment. However, if the transport layer protocol is UDP, the unit of
data sent from the transport layer to the network layer is called datagram.
In fact, TCP provides a reliable, connection oriented, flow control, and
congestion control service, while UDP provides a connection-less service
(without guaranteed delivery, flow control or congestion control) to the
application layer. The meaning of terms such as connection-less, connection
oriented, congestion control, reliability, and flow control is given below:

Connection-less here means that data is sent from a source to a destination
without establishing a session in advance (i.e., no acknowledgment is sent
from the destination that it is ready and willing to accept data). In addition,
the source does not attempt to monitor whether data is delivered to the
destination. In contrast, connection oriented means that a connection
between a source and a destination is first established through a handshaking
process. Once the connection is established, the source sends data to the
destination. The destination acknowledges then the receipt of any data sent
by the source. If the acknowledgment of data is not received, the source
re-sends the unacknowledged data. The TCP connection is called a reliable
connection because it retransmits lost data and achieves guaranteed delivery.
Using flow control mechanisms, TCP controls the data rate of a fast sender
so that the receiver can handle all the incoming data. In addition, using
congestion control mechanisms, TCP avoids congestion in the network.

3. The network layer includes the Internet protocol (IP). It adds the IP header
to the segment/datagram received from the transport layer. The header
of IP includes the source and destination IP address. IP provides a best
effort service to deliver IP packets to their destination. It uses IP routing
protocols (such as OSPF) to find a (shortest) route to the destination (see
the next subsection). When sending an IP packet larger than the maximum
transmission unit (MTU) allowed by the transmission link, the IP fragments
the packet and sends each fragment separately to the data link layer. There
are currently two versions of IP: IPv4 and IPv6. IPv4 utilizes a 32-bit
address scheme, while IPv6 utilizes a 128 bit address scheme [9].

INTRODUCTION 5

4. The data link layer is responsible for encapsulation of higher layer
messages (i.e., IP packets) into frames that are sent through the physical
layer. A frame includes the data link layer header on the top of an IP
packet. The data link layer header includes the source and destination MAC
(media access control) addresses. It also provides error control. Examples
of data-link layer protocols are Ethernet IEEE 802.2 framing and Point to
Point Protocol (PPP) framing.

5. The physical layer transmits raw bits through a transmission medium.
Examples of the transmission mediums are: twisted pair cable, coaxial
cable, optical fiber, and wireless medium. Typically, following factors are
considered to choose a transmission medium: (1) transmission rate, (2)
cost, (3) ability for installation, (4) capability to cope with environment
conditions, and (5) distance.

We explained the hybrid model in the point of view of a source, i.e., the application
layer sends data towards the physical layer (the top layer to the bottom layer
direction). However, there are two additional cases: (1) the destination node
receives data and (2) an intermediate node receives data. In the former case, nodes
typically run all the layers and data is sent from the bottom layer to the top layer,
while in the latter case nodes do not generally run all the layers. Intermediate
nodes such as switches run the bottom two layers (the physical and data link layer),
while nodes such as routers run the lower three layers (the physical, data link, and
network layer). When data is received by an intermediate node, it is first sent from
the bottom layer (physical layer) to the top layer to decide an output port through
which data should be sent. Then, data is sent from the top layer to the bottom layer
(physical layer) to transmit it over a transmission link. To decide the output port,
nodes such as switches use MAC learning (discussed in the next subsection) and
nodes such as routers use IP routing protocols.

1.1.2 Network elements

The Internet, a network of networks, is composed of a variety of network elements
such as packet-switching devices (e.g., packet switches or routers) and circuit
switching devices (e.g., SONET/SDH based). In circuit-switching devices, the
forwarding decision takes place at the circuit level (i.e., based on the “position”
of arriving bits, where the “position” is defined by space, time and wavelength).
In contrast, in packet-switching devices, forwarding is performed on a per-packet
basis. In context of IP routing, the forwarding decision in packet-switching devices
is based on the IP destination address present in the IP packet header of the
received packet. In this subsection, we describe some of the packet-switching
devices, i.e., packet switches, routers, and middleboxes.

6 CHAPTER 1

A packet switch uses data link layer technologies for forwarding packets. For
example, an Ethernet switch uses Ethernet switching technologies for forwarding
packets. In fact, an Ethernet switch contains the MAC address table and performs
two operations: (1) MAC learning and (2) frame forwarding. MAC learning
is responsible for building the MAC address table, while frame forwarding is
responsible for sending out incoming frames to their destinations, based on the
information available in the MAC address table. When an Ethernet switch receives
a frame on a port, it performs MAC learning by searching the source MAC address
(present in the frame header) of the frame in the MAC address table. If this MAC
address is not present in the table, it creates a new entry in the table containing
the source MAC address and the incoming port. Otherwise, the entry containing
the source MAC address (in the table) is updated with the port information.
After performing MAC learning, the switch forwards frames by first searching
the destination MAC address of the frame in the table and then if the address is
present, the frame is sent through the port information present in the corresponding
entry in the table. However, if the address is not present (or it is a multicast or
broadcast address) in the table, the frame is flooded in the network. To prevent
loops, switches can run a spanning tree protocol (STP), which builds a spanning
tree for a network and disables the links that are not part of the spanning tree.

A router is a network layer device that is responsible for forwarding IP data
packets in a network. It runs routing protocols (such as Open Shortest Path First,
OSPF) to make decisions for forwarding packets. These routing protocols typically
send (or receive) link state information (messages) to (or from) neighboring routers
and construct a topology of the network (from received link state information). It
then adds path (shortest) information in the routing table to reach each destination.
The network layer uses this information to forward incoming packets. Quagga
[10] is an open software package based on the implementation of routers. It
supports main standard routing protocols such as OSPF and BGP (Border Gateway
Protocol), and can be installed in Unix-like platforms, particularly Linux, Solaris,
and FreeBSD.

Middleboxes are intermediate devices that perform functions other than the
standard functions of routers/switches (i.e., routing packets based on a path to
reach a destination). The examples of middleboxes are: firewalls, NAT (Network
Address Translation), load balancers, and web cache. Firewalls filter (i.e., accept
or reject) traffic based on a set of predefined security rules. NAT translates private
addresses (assigned in a local network) in packets into public addresses before
these are forwarded to another network in the Internet and vice versa. A load
balancer divides the load of a device into two or more devices and a web cache (or
HTTP cache) is a server for the temporary storage (caching) of web content, such
as HTML pages and images, to reduce bandwidth usage, server load etc.

INTRODUCTION 7

1.1.3 Addressing schemes

In the layered model (shown in Section 1.1.1), the data link, network, and transport
layers have their own addressing schemes. In this subsection, we describe these
addressing schemes.

In the context of Ethernet switching, the link layer defines 48-bit MAC
addresses for communication. In this case, the MAC addresses are specified by six
groups of two hexadecimal digits separated by colons (e.g., 01:12:13:aa:bb:cc).

Table 1.1: Comparison among classful IP addresses. Here, N/D means “not defined”.

class Bits to Network ID Host ID start address end address
start size (in bits) size (in bits)

A 0 7 24 0.0.0.0 127.255.255.255
B 10 14 16 128.0.0.0 191.255.255.255
C 110 21 8 192.0.0.0 223.255.255.255
D 1110 N/D N/D 224.0.0.0 239.255.255.255
E 1111 N/D N/D 240.0.0.0 255.255.255.255

For the network layer, IPv4 addressing schemes specify 32-bit addresses that
are represented by four numbers separated by a dot (e.g., 192.168.11.12) (here,
each number is 8 bit long). There are two schemes for IPv4 addressing: (1) classful
addressing and (2) classless addressing. In classful addressing, IP addresses are
divided into five classes: class A, class B, class C, class D, and class E. Class
A, B, and C are for unicast addresses, while class D and E are for multicast and
reserved addresses (mainly used for experimental and future use) respectively. The
representation of all classful addresses is given in Table 1.1. Table 1.1 shows that
class A, class B, class C, class D, and class E start with 0, 10, 110, 1110, and 1111
bits respectively. The network ID in Table 1.1 represents the network in which the
device belongs and the host ID represents the device itself. In addition, it depicts
the network size, the host size and the range of IP addresses in each class. The
problem with classful addressing is that the gaps between sizes of different classes
are enormous and therefore, a large number of IP addresses gets wasted [9]. For
example, if a network has slightly more number of hosts than a particular class,
it needs then either two networks of that class or the next class of a network. For
example, for a network that has 400 hosts, it needs either a single class B network
or two class C networks to assign each host an address. If a single class B network
is allocated, a large number of host addresses gets wasted (because the number of
hosts that can be specified in a class B network i.e., (216−2), is significanly larger
than the required host addresses, i.e., 400). However, if two class C networks are
allocated, the number of available class C networks will exhaust quickly (because
the number of networks that can be specified using class C addressing is only
221). Therefore, classful addressing is replaced by classless Inter-Domain Routing

8 CHAPTER 1

(CIDR) in 1993.
In CIDR notation, an IP address is represented as A.B.C.D /p, where ”/p” is

called the IP prefix or network prefix, and A, B, C, and D represent 8 bits of a 32
bit IPv4 address. The IP prefix determines the number of significant bits used to
identify a network. For example, 192.10.15.10 /24 means that the first 24 bits are
used to represent the network and the remaining 8 bits are used to identify hosts.
Using CIDR notation, any number of contiguous bits can be assigned to identify
networks. For example, if a network has 400 hosts. If CIDR is used, this network
can be assigned an IP address with a network prefix of 23 (i.e. /23). This means, 9
bits are available for hosts, resulting into 512 available host IP addresses (i.e., very
less wastage of IP addresses).

In contrast to the IP layer, the transport layer uses 16 bit’s unique port numbers
to distinguish the segments and datagrams of separate applications.

1.1.4 Software switches/routers vs. hardware switches/routers

In this subsection, software and hardware based switches/routers are described.
Software based switches/routers mean that packet forwarding is performed in
software, while hardware based switches/routers mean that packet forwarding is
performed in hardware.

1. Software switches/routers

At the time when the ARPANET was used as an experimental network, most
routers/switches were general-purpose Unix computers, running software to
forward packets. A router/switch maintained a table (an efficient search
data structure) in software for finding a route to a destination. In case
of a router, the table is called routing table and in case of a switch, the
table is called MAC address table. These tables contain information about
the output interface where incoming packets (having a certain destination
address) should be forwarded. When a packet arrives at a router/switch (i.e.,
Unix computer), software inside the router/switch extracts the destination
address from the packet-header and looks up the address in the table. Based
on the output interface information in the table, packets are forwarded to the
destination.

2. Hardware switches/routers

In the late 1980s, the ARPANET had grown from being an experimental
network to a commercial network. At that time, new startups such as Cisco
Systems and Wellfleet Communications started building a special-purpose,
commercial version of routers/switches. The first major use of hardware
acceleration in these networks was via the use of ASICs (application-specific
integrated circuits) to perform high-speed hashing functions for table

INTRODUCTION 9

lookups. In the mid 1990s, advances in content addressable memory (CAM)
made it possible to perform very high speed lookups (almost equal to the line
rate speed). A CAM is a memory that performs the lookup task in a single
clock cycle using a comparison circuitry. Unlike standard memory (random
access memory) in which a memory address is used to return data stored at
that address, a CAM is designed such that data stored on the CAM can be
accessed by searching for the content itself and the memory retrieves one or
more TCAM entries from where the content can be accessed.

Currently, there are two types of content addressable memory (CAM):
binary (BCAM) and ternary (TCAM). BCAM supports storing of binary
bits (i.e., zero or one: 0,1), while TCAM supports storing of binary as well
as don’t care bits (0,1,X). BCAM is usually used to perform lookups in
switches, while TCAM is usually used to perform lookups in routers. There
are two major disadvantages of content addressable memory: high cost and
high power consumption.

In switches, the lookup task (i.e., searching a destination address in the
MAC address table) in hardware is somewhat a straightforward task, as
lookups have to be performed on an exact match. However, the lookup task
in routers (i.e., searching a destination IP address in the routing table) is
complicated because devices have to perform lookups on the closest match
on a network address, where the match may only be on the most significant
bits of a network address [9]. As it is possible that multiple entries of the
routing table can find a match for a destination address, the router has to
select one of the matched entries for forwarding a packet. If more bits
of the destination address are matched with an entry, the network address
becomes more specific. Therefore, an entry with a longest prefix match
(LPM) is selected for forwarding packets. LPM is the technique (leveraging
the CIDR) used in routers to reduce routing table sizes.

Fig. 1.2 depicts an example of longest prefix matching in TCAM. The
network address/prefix and the next hop information are present in TCAM.
Fig. 1.2 shows that a search for IP address 192.20.11.3 in TCAM gives
three matching results, i.e., (3),(6), and (9). Since the entries are sorted
by the prefix length, the priority encoder (see Fig. 1.2) gives the next
hop information of the lowest matching entry, i.e., (9), for longest prefix
matching.

1.1.5 Basic Router Design - control plane and data plane

The basic design of routers can be presented by two elements: control and data
plane (see Fig. 1.3). Fig. 1.3 also shows the interface between the control and data

10 CHAPTER 1

0.0.0.0/0

empty

192.20.2.24/16

134.16.11.11/16

empty

192.20.11.8/24

24.49.12.1/24

empty

192.20.11.3/32

128.34.12.56/32

(9)

1
9

2
.2

0
.1

1
.3

Priority

Encoder

Network/Prefix

171.3.2.22

172.3.2.22

173.3.2.22

174.3.2.22

175.3.2.22

176.3.2.22

178.3.2.22

Next Hop

1

2

3

4

5

6

7

8

9

10

Address

176.3.2.22

Figure 1.2: Longest Prefix Matching (LPM) example in TCAM (source [11])

plane. However, this interface between the control and data plane has always been
a proprietary and closed implementation.

OSPF

RIB (Routing Information Base)

BGP
Static

Routes

FIB (Forwarding Information Base)

DATA PLANE

CONTROL

PLANE

Incoming

packet
outgoing

packet

IS-IS

Figure 1.3: Basic router design

The control plane is the brain of routers. It consists of dynamic IP routing
protocols, such as OSPF (open shortest path First), BGP (border gateway
protocol), and IS-IS (intermediate System to intermediate System), and many other
protocols, such as IGMP (Internet group management protocol), ICMP (Internet
control message protocol), ARP (address resolution protocol)1, BFD (bidirectional
forwarding detection protocol) and so on. Fig. 1.3 shows that the control plane also
contains the routing information base (RIB).

The RIB is the routing table where all IP routing information is stored. When
a routing protocol learns a new route, it adds the route into the RIB. When a
destination becomes unreachable, the respective route is removed from the RIB.
In addition, a route can be added by an administrator (see static routes in Fig. 1.3).

1ARP is a layer 2 control plane protocol for switches

INTRODUCTION 11

As the control plane is run on a low-end CPU (central processing unit), processing
of packets is slower in the control plane than the data plane. Therefore, routes
from the RIB are inserted into the data plane (i.e., in the FIB) for fast forwarding
of packets. In addition, there can be multiple routes to the same destination in the
RIB. Among these multiple routes, a single best route is installed in the FIB from
the RIB. The FIB is a part of the data plane.

The data plane is responsible for packet buffering, packet scheduling, header
modification and forwarding. It typically consists of ports that are used for the
reception and transmission of packets, and the FIB. The FIB contains entries that
are installed from the RIB. It uses a high speed lookup memory (such as TCAM) to
store entries. The description of entries in a high speed memory (such as TCAM)
is given in the previous subsection.

1.1.6 Packet-flow (or simply flow)

A flow is a sequence of packets traveling from a source to a certain destination
(the destination can be a unicast, multicast, or broadcast destination) at a certain
point in time. A flow can be uniquely identified by parameters such as: (1) source
IP address, (2) destination IP address, (3) source port, (4) destination port, and (5)
layer 4 protocols (TCP/UDP). Any combinations of these parameters can form a
flow. For instance, when a web browser is opened and www.google.com is typed,
this creates a new flow with the following parameters: (1) transport protocol: 6
(i.e., TCP), (2) source port, e.g., 1234, (3) destination port, 80, (4) source IP, e.g.,
1.2.3.4, and (5) destination IP: the IP address of www.google.com. The concept
of a flow is important, since it may be that packets from one flow are needed to be
handled differently from others, by means of separate queues/actions. Therefore,
using flow parameters, packets of different flows can be distinguished to apply
different actions (such as traffic shaping).

1.1.7 Overview of the Internet Infrastructure

Networks can be classified according to their size, such as: (1) local area network
(LAN), (2) metropolitan area network (MAN), and (3) wide area network (WAN).
A LAN consists of a network that is restricted to a small area, typically a local
office, house, or building. A MAN is larger than a LAN and can cover an area
from several miles to tens of miles. A WAN occupies a very large area, such as
a state, an entire country or the whole world. A WAN can contain multiple small
networks such as LANs or MANs.

The Internet infrastructure can typically be divided into five network segments:
the home network, access network, (metro-) aggregation network, core (backbone)
network, and campus network (or data center) (see Fig. 1.4). A description of all
these segments is given below:

12 CHAPTER 1

Core

Network

Access

Network
Home/enterprise

network

Campus

networks

(or data centre)
OLT

DSLAM

Base

Station

BRAS

Aggregation

Network

Figure 1.4: High level overview of Internet infrastructure segments

1. Home Networks

A home network (a small company network) is a network that typically
consists of a few number of end-nodes (e.g., personal computers) which are
connected by a wired or wireless LAN. This normally spans a limited area
(such as the size of a home or a building). Home networks (or LAN) has
scaled up in speed from 10 Mb/s (in 1980s [12]) to 100 Gb/s (today) [13].
In future, the achieved speed is expected to be higher than today’s achieved
speed.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

1983 1991 1999 2007 2015 2023

In
te

rn
et

 C
o

n
n

ec
ti

v
it

y
 (

M
b

/s
)

Year

Nielsen's Law

Commercial available bandwidth in Europe

Narrowband

ISDN

ADSL

VDSL

FTTB

FTTH

Figure 1.5: Bandwidth evolution in access networks [source: IEEE spectrum]

2. Access networks

Access networks connect home and/or small business networks to the
Internet. It is typically built up as a tree structure, where redundancy is

INTRODUCTION 13

limited to the connections of business users (mostly in a ring structure), and
spans in a couple of kilometers. Typical data rates that can be currently
achieved in these networks range from 100 Mb/s to 1 Gb/s per end user.
Devices in these networks include: DSLAM (Digital Subscriber Line
Access Multiplexer) in case of DSL (digital subscriber line), OLT (optical
line terminal) in case of Fiber, and base stations in case of cellular mobile
connections. Fig. 1.5 shows the different technologies that are used in
access networks over several years in Europe to meet increasing bandwidth
demands of users. The technologies used are: ISDN (integrated services
digital network), ADSL (analog digital subscriber loop), VDSL (very high
bit rate DSL), FTTB (fiber to the building), and FTTH (fiber to the home).
Fig. 1.5 shows that the adoption of technologies matched with the Nielsen’s
law of bandwidth evolution [14].

3. Aggregation or metro networks

Aggregation networks interconnect access networks in a ring or slightly
meshed network topology of tens of network nodes. These networks
aggregate traffic (from several access networks) and feed it into the core
network. These networks typically span areas with the diameters of up to 50
km. Currently, the typical channel speed that is achieved in these networks
is 10 Gb/s.

4. Core or backbone networks

The core network connects aggregation networks to the core of the Internet
(i.e., it connects countries and continents over large distances). BRAS
(broadband remote access server) is typically used to connect aggregation
networks to the core network. The core network topology is strongly
meshed, and fastest technologies are used in this network to deliver data.
This is the part of the Internet where fiber-optic cables (high speed) were
used for the first time. Core networks have been changed dramatically in
recent decades. Today, high bandwidth capacity such as 100 Gb/s is reality
in these networks [15].

5. Campus networks

Campus networks are generally run by some universities or corporate-sized
companies (containing up to 1000 of nodes). Data centers can be considered
to belong to this segment [16]. These networks are normally connected to
the core (or to a metro network).

14 CHAPTER 1

1.2 Problems of the Internet
The Internet has been changing radically communications to the extent that it is
now our favorite medium of daily communication. A wide range of applications
for news, entertainment, business, commerce, and social networking has been
launched over the Internet. As the Internet is not able to efficiently support the
increasing demands (such as performance, reliability, and scalability) of these
applications, the Internet infrastructure has been upgraded constantly by enhancing
the software or hardware part of its network devices. Every time the Internet faces
a new challenge, new standards are proposed to overcome the challenge. The
number of standards published per year by IETF (The Internet Engineering Task
Force) is illustrated in Fig. 1.6.

0

50

100

150

200

250

300

350

400

450

500

1985 1990 1995 2000 2005 2010 2015

N
u

m
b

er
 o

f
R

F
C

s
P

u
b

li
sh

ed
 p

er
 y

ea
r

Year

Figure 1.6: The number of standards published per year by IETF

There are following problems that occur frequently on the Internet:

1. Inflexibility

Currently, it is not possible to quickly offer new services, which require
changes in available protocols of network devices. These services must wait
for vendors (and standards bodies such as IETF) to approve and incorporate
new solutions in operating networks. Currently, the standardization process
for a new solution (or protocol) is a long-lasting process. Even if operators
find promising solutions, they need to wait for years to implement them in
their networks. This might bury lots of interesting opportunities due to the
lack of support from vendors. In addition, there is long release cycles for
implementing a new solution in network devices, as the bug finding and
testing cycle should be extensive and regress to prevent a network from
failing. The result of long waiting time is that network operators have to

INTRODUCTION 15

deal years and years with old legacy equipment not yet capable of running
the latest protocols.

2. High complexity

Network operators deal with a variety of heterogeneous devices (e.g.,
routers, firewall, and switches), which have a progressively reduced life
cycle (due to fast hardware and software additions). A reduced lifetime
facilitates introduction of new protocols (to meet growing demands of users)
and also increases the complexity of the network infrastructure.

3. Manual configurations

Due to a reduced life time of network devices, network operators may
have to manually configure devices containing new or old protocols
many times. The problem is that manual configuration may result into
frequent misconfiguration, increasing the deployment time of new protocols
(functions) on the current Internet infrastructure.

4. High Cost

It is already stated that lots of standard protocols (see Fig. 1.6) are proposed
for the Internet to meet growing demands. Currently, all network devices
(proprietary devices) implement almost all the standard protocols in their
control plane. These protocols are implemented in a closed environment
in networking (i.e., each vendor implements, develops, and tests a large
amount of redundant code, which is is not available in an open software
environment). This clearly increases the costs to software development.

5. Vendor interoperability

Over the years standards have been developed for most relevant protocols
that are used by network devices. Vendors implement these standards
in a manner that allows heterogeneous devices from multiple vendors to
function with one another. However, in addition to the implementation of
these standards, vendors always add enhancements, which allow vendors to
outperform their competition. As many vendors add such enhancements,
the result is that each vendor device has difficulty to operate smoothly with
products from another vendor.

Software Defined Networking (SDN) has been emerged to address above
problems by making networks more programmable. One of the major drivers of
SDN is its simplification. It simplifies the network infrastructure by allowing it to
decouple the control plane (complex software) from network devices.

16 CHAPTER 1

1.3 The road towards SDN

SDN has been receiving a considerable amount of attention in recent years.
However, the idea of programmable networks is there from many years. We divide
the SDN work into two categories: (1) early SDN initiatives (i.e., from 1980s to
2000s), and (2) recent SDN initiatives (from 2000s to until now).

1.3.1 Early SDN initiatives

The most important early initiatives in the direction of SDN can be categorized
into three approaches: (1) Store Program Control (SPC) approach, (2) Active
Networking approach, and (3) OpenSig Approach. Table 1.2 gives an overview
of projects involved in these three approaches.

Table 1.2: Early SDN initiatives

Early SDN initiative Projects or Companies involved

1. SPC Approach AT&T Company
2. Active Networking ANTs [21], Smart Packets [22], Netscript [23],

Approach and Switchware [24]
3. OpenSig Approach Tempest (switchlets) [25], Xbind [26],

A short description of these early initiatives is given below:

1. SPC approach

The SPC approach [18] is the first approach to separate the control and data
plane. This was introduced by AT&T in 1980s to improve the management
and control of telephone networks. Prior to SPC, all telephonic calls were
managed and controlled through the circuit switches involved in a call.
However, due to a number of issues (such as limited processing power of
circuit switches, limited visibility of network resources, and limited amount
of programming that could be safely accomplished on these devices), SPC
was introduced. Using SPC, all the administrative functions of setting
up calls were offloaded to external entities called Network Control Points
(NCP). NCP became the basis on which many telephonic network features
(call centers, 800-numbers i.e., toll-free numbers, calling cards etc.), still in
use today, have been built [19].

2. Active Networking Approach

The Active Networking Approach (appeared in 1997) was mainly supported
by the Defense Advanced Research Projects Agency (DARPA). The idea
was to integrate programmability (i.e., the ability to access network devices)

INTRODUCTION 17

into Internet devices (such as routers/switches). The innovation here was
that packets were no longer treated as passive. Rather, they were treated
active in the sense that they carry programs for how to process data packets.
The goal was to allow applications to specify the desired requirements on a
per packet, per flow, or per application basis.

Two different programming models were proposed: (1) integrated
model (also called capsule model) and (2) discrete model (also called
programmable router/switch model). In the integrated model, programs
(containing specific instructions for how to process packets) are integrated
in data packets (in-band), and then executed at each router/switch along
the path. In the discrete model, programs are injected into routers/switches
separately from actual data packets (i.e., through out-of-band mechanisms).
In this model, users or network operators first inject programs into
routers/switches along the path, and when a data packet arrives, its header is
examined and an appropriate pre-injected program is loaded to process the
data packet. Projects such as ANTS (Active Network Transfer System) [21]
and smart packets [22] were based on the notion of the integrated model,
while projects such as Netscripts [23] and SwitchWare [24] were based on
the notion of the discrete model.

3. OpenSig Approach

The OpenSig approach (appeared in 1999) addresses network
programmability by providing a set of open interfaces and programming
environments (e.g., CORBA, DCOM, java) in network devices (such
as ATM switches, IP, MPLS routers). The original motivation behind
OpenSig was that complex control architectures of network devices could
be restructured according to a minimum set of layers where the services
available in each layer are accessible through open interfaces. The objective
was to give access to end-users or third party service providers to program
or customize network devices to obtain a required service. Projects such as
Tempest [25], Xbind [26] were based on the OpenSig Approach.

Xbind [26] develops a platform to create, deploy, and manage multimedia
services i.e., it develops mechanisms for network resource allocations,
multiple vendor switch control, and broadband signaling. On the other
hand, the tempest partitions ATM (Asynchronous Transfer Mode) switch’s
resources (such as certain range of ports, virtual path identifier range or
virtual circuit identifier) into switchlets [27], and then each switchlet is
controlled independently by different virtual network managers [25]. The
advantage of the tempest framework was the ability to execute diverse
control architectures (using virtual network managers) over the same
physical ATM network.

18 CHAPTER 1

The SPC approach was proposed for telephone networks, while the Active
Networking and OpenSig approaches were proposed for the Internet. In
comparison to the OpenSig approach, the active networking approach adds more
flexibility to service creation, but increases more complexity to programmable
networks. Both the approaches (active networking and OpenSig approaches)
neither gathered critical mass nor transferred to widespread use in the
Internet. Therefore, these approaches were not successful to make the Internet
programmable. There were three main reasons of this failure: (1) no standard
interface for communication between the control and data plane, (2) no attention
to practical issues like performance (such as overhead on the network), complexity,
scalability, and security, and (3) no real interest from service providers and
operators to use them on their infrastructures (may be due to the lack of an
immediate compelling problem) [28].

1.3.2 Recent SDN initiatives

It is already stated that there was not much interest from service providers and
operators for integration of OpenSig and Active Networking approaches over the
Internet. However, in the early 2000s, the Internet experienced major changes in
networking because new technologies (such as ADSL) emerged, providing high
speed Internet access to users. At that time it was easier than before for a user to
afford an Internet connection which could be used for all kinds of daily activities
such as e-mail, exchange of large files, and multimedia activities. This mass
adoption of the high-speed Internet resulted into launch of a significant number of
applications/services over the Internet. Service providers and network operators
then started showing lots of interests for network innovation, performance, quality
of service, and management functions (such as automatic configuration). This
shifted the attention of service providers, operators, and research communities
towards programmable networks once more. This was strengthened by the
improvement (i.e., performance wise) of servers which could now run control
plane software more efficiently [29].

Table 1.3: Recent SDN initiatives

SDN initiatives Projects or activities involved

1. IETF Initiatives ForCES [30], NETCONF [31], I2RS [32]
2. Clean Slate Initiatives 4D [34], ETHANE [35], SANE [36], and

OpenFlow [37]

The movement (i.e., from the early SDN to the current SDN) did not occur at
once, but it went through a series of intermediate steps. In this section, we discuss

INTRODUCTION 19

these intermediate steps. We divide the recent work into two initiatives: (1) IETF
initiatives and (2) Clean Slate Programs initiatives (Table 1.3).

1. IETF Initiatives

One of the limitations of early SDN initiatives was that there was no standard
interface between the control and data plane of network devices. The IETF
ForCES (Forwarding and Control Element Separation) [30] addresses this
limitation by clearly defining the interface. It defines a standard framework
and mechanism for the exchange of information between the control plane
functionality (called the Control Element) and implementation of the data
plane (called the Forwarding Element). It describes several basic building
blocks and their control and also allows easy extension. ForCES works on a
Master/Slave basis, where the forwarding element is a slave and the control
element is a master. ForCES has been undergoing standardization since
2003.

NETCONF (network configuration protocol) provides methods to install,
manipulate, and delete configurations of network devices. The functioning
of NETCONF is realized as remote procedure calls (RPC). It uses
XML-based methods for configuring a network. Additionally, the YANG
data modeling language [33] has been developed for specifying NETCONF
operations.

I2RS (interface to the routing system) provides a standard interface to
the routing system (or process) for real time or event driven interaction
(read/write access) through a collection of control or management interfaces.
One of the main goals of I2RS is to make the RIB of routers programmable.

2. Clean Slate Initiatives

The clean slate initiatives are: 4D [34], Ethane [35], SANE [36], and
OpenFlow [37]. A short description of each initiative is given below:

Data Plane

Discovery Plane

Dissemination Plane

Decision Plane

Direct

Control

Network

View

Decision Plane

Figure 1.7: 4D clean slate architecture [source: [34]]

20 CHAPTER 1

The 4D project envisioned the Internet architecture as four planes: (1)
decision plane, (2) dissemination plane, (3) discovery plane, and (4) data
plane (see Fig. 1.7). The decision plane is responsible for installing
network configurations; the dissemination plane is responsible for providing
information related to the view of the underlying network to the decision
plane; the discovery plane allows network devices to discover the underlying
topology; and the data plane is responsible for forwarding traffic.

Flow Entries

Controller

Secure

Channel

FlowTable

Ethane Switch

Network

Polices

Figure 1.8: Ethane proposal

The Ethane project [35] (and its predecessor, SANE [36]) pursued the main
ideas proposed in the 4D project for a centralized architecture and expanded
it to incorporate security. In particular, the Ethane project proposed an
architecture that contains two components: (1) An Ethane switch, which
contains the FlowTable and a secure channel (see Fig. 1.8) and (2) the
controller, which contains a set of policies to add in the Ethane switches
through the secure channel. When a packet arrives at an Ethane switch, its
packet-header is compared against the entries in the FlowTable. If a match is
found, the action of that entry is performed. If no match is found, the packet
is sent to the controller and the controller, thereafter, can add a new entry in
the switch to forward packets.

The interesting fact about the Ethane project was that its switches could
be deployed together with conventional Ethernet switches and without
any modification to end hosts, allowing the widespread adoption of its
architecture. The Ethane architecture was deployed at the campus of
Stanford University in a period of a few months [35]. The Ethane project
was very important, as the experiences gained by its design, implementation
and deployment laid the foundation for what had thereafter become SDN
(i.e., OpenFlow). In particular, Ethane is considered the immediate
predecessor of OpenFlow, since the simple Ethane switches later became the
basis of the OpenFlow concept. In fact, an OpenFlow switch is a generalized
form of an Ethane’s datapath switch. In addition, Ethane used a specific

INTRODUCTION 21

implementation of a controller (e.g., by routing flows securely). However,
OpenFlow presents a more general implementation of a controller, which
programs OpenFlow switches through the OpenFlow protocol.

OpenFlow was proposed because there was no practical way to experiment
with new protocols in sufficiently realistic settings (e.g., at scale carrying
real traffic) to gain the confidence needed for their widespread deployment.
One important requirement for testing new protocols in production networks
was a need for network programmability, which would simplify network
management and service deployment, and would allow experimental and
production networks to run simultaneously at the same infrastructure, each
using a different set of forwarding rules. In this context, the OpenFlow
protocol was proposed as a way for researchers to run experimental
protocols in the network infrastructure they use everyday. The protocol
provides mechanisms to program infrastructure devices using a set of
primitives.

Although ForCES and OpenFlow follow the same principle i.e., defines a
standard protocol for communication between the control and data plane), they
are conceptually different. Some of these differences are described below:

1. In ForCES, the data-path element is represented by a set of logical functional
blocks (LFB), each of which has a single specific function of processing
packets. LFBs include a classifier and scheduler. Multiple LFBs in the
data-path element are interconnected to form an LFB topology, which forms
conceptual paths taken by packet flows within the data-path element. In
contrast, the Openflow protocol does not expect any LFBs, but it expects the
data-path element to have several tables (FlowTables).

2. ForCES does not define a new generic data plane function. However,
OpenFlow defines a new generic data plane function by providing an
extensive Flow-Match Header part.

3. A single LFB entry in ForCES can have only one action [30]. In order
to perform multiple actions on packets, multiple LFBs are needed to be
connected. However, in OpenFlow version 1.0, a single Flow Entry of
the FlowTable can perform multiple actions on packets. From OpenFlow
version 1.1, multiple actions can be performed using multiple tables.

ForCES fails to attract commercial applications, e.g., no mainstream router
vendors have any motivation to adopt the concept. However, currently many
OpenFlow commercial solutions (such as from NEC, HP) are available in the
market. Due to strong support from industry, research, and academia, OpenFlow
has been able to gather a widespread adoption. It is currently believed that

22 CHAPTER 1

OpenFlow is the SDN de-facto standard [30]. Therefore, many researchers,
vendors, and operators have formed ONF (Open Networking Foundation) to
standardize the OpenFlow protocol.

1.4 Software Defined Networking using OpenFlow
OpenFlow is an SDN protocol that enables one or more entities (called controllers)
in a network to interact with the data plane of network devices and to make
adjustments, so that it can be adapted to meet the changing requirements.
OpenFlow has been released in the form of specifications. The first two versions
of the specifications (i.e., v1.0 and v1.1) were released by Stanford University in
2009 and 2011 respectively. However, since the third version (v1.2), ONF [6]
has been releasing the next versions of OpenFlow. The current major OpenFlow
version is 1.5. In this section, the Stanford and ONF design for OpenFlow are
first presented, followed by an introduction to OpenFlow and its functionalities.
We then provide a brief overview of extensions available in different OpenFlow
versions. Furthermore, a brief description about OpenFlow switches (hardware
and software) and controllers is presented.

1.4.1 Network design for OpenFlow

control

data

control

data

control

data

control

data

app app app

data data

business applications

SDN

control

software
network services

data data data

(A) Today’s Network Design (B) Stanford Network Design (C) ONF Network Design

OpenFlow OpenFlow

Application Layer

Northbound Interface

Figure 1.9: Design of today’s and future networks

Fig. 1.9A shows the design of the today’s network in which control and
data plane layers are integrated in each device. Fig. 1.9B depicts the design
proposed by Stanford University for future networks in which the control plane
layer is decoupled from the data plane layer. In this design, the control plane
layer is located in an external entity (the controller) and then the external

INTRODUCTION 23

entity communicates with the data plane layer through the OpenFlow protocol.
Applications (which may be network or service related) are the pieces of software
that are coupled in the controller. These applications can introduce new features
in networks such as security, quality of service, forwarding schemes, and
configurations.

Fig. 1.9C presents the design proposed by ONF. It extends the Stanford design
by placing applications in a separate entity (i.e., the application layer) and the
application layer then communicates with the controller through the northbound
interface (see Fig. 1.9C). The application layer can receive a global and an
abstracted view of the network from the controller and can use this information
to provide appropriate instructions to the control plane layer to perform specific
actions (such as security and quality-of-service) in the data plane layer.

1.4.2 Introduction to OpenFlow and its functionalities

OpenFlow networks consist of four components (Fig. 1.10): (1) data plane, (2)
secure channel, (3) OpenFlow protocol, and (4) control plane. A description of all
these components is given below:

Group Entry

Flow Entry

Flow Entry

Flow Entry

GroupTable

FlowTable 0 FlowTable n

2. Secure

Channel

Group Entry

Flow Entry

Flow Entry

Flow Entry

2. Secure

Channel

1. Data Plane

4. Control Plane (one or more Controllers)

3. OpenFlow

Protocol

Flow-Match

Header

Actions

Additional

Fields

Flow Entry

Group Entry

Group ID

Group Type

Action

Buckets

Figure 1.10: OpenFlow overview [source: OpenFlow specification 1.1]

1. Data Plane

The data plane consists of FlowTables and the GroupTable (see Fig.
1.10). In the first version of OpenFlow (v1.0), only a single FlowTable

24 CHAPTER 1

can be present in a switch/router. However, in later versions, multiple
FlowTables and a GroupTable can also be present in the switch/router.
Using the OpenFlow protocol, both FlowTables and the GroupTable can be
programmed via the controller.

The idea of the FlowTable is based on the fact that most modern
routers/switches (network devices) contain a proprietary FIB (Forwarding
Information Base) which is implemented in the forwarding hardware using
TCAMs (Ternary Content Addressable Memory). OpenFlow provides an
abstraction of the FIB by proposing FlowTables. A FlowTable is an extended
version of the router FIB, which introduces extensible flow matching (i.e.,
matching on MAC, IP, transport layer, and many other fields) and actions
for flows in networks.

Flow-Match Header part Actions Additional fields

Ingress

port

Dst

MAC

Src

MAC

Src

IP

Dst

IP

Src

port

Dst

port

Output

Port

Priority statistics

1 * * * 1.2.3.4 * * Port:2 100 325

1 * * * 1.2.3.* * * Port:3 101 123

*=wildcards

Figure 1.11: An example of a FlowTable

An entry in a FlowTable contains: (1) Flow-Match Header, which defines a
flow, (2) actions, which define how a matched packet should be forwarded
(i.e., forward to an output port or drop it) and (3) some additional fields such
as priority, and statistics (see Fig. 1.10 and Fig. 1.11). The entry can be an
exact match entry or a wildcarded entry. In the exact match entries, all the
matching fields are defined for a Flow Entry, and in the wildcarded entries,
some of fields can be wildcarded and therefore, these fields will not be
matched against the incoming packets. Fig. 1.11 illustrates two wildcarded
Flow Entries. In the first entry, the source MAC address, destination MAC
address, source IP address, and transport layer ports are wildcarded fields.
In the second entry, the last eight bits of the destination IP address are also
wildcarded. The actions as Port:2 and Port:3 in Fig. 1.11 mean that packets
matching the Flow-Match header will be forwarded through the output port
whose number is 2 and 3, respectively. The other fields, shown in the figure,
are priority and statistics.

When a packet arrives at an OpenFlow switch, it is matched against the
Flow-Match Header (wildcarded or exact match) of the entries in the
FlowTable. If a match is found, the statistics of that entry are updated and
the actions are performed. If two or more matches are found, the actions

INTRODUCTION 25

of the highest priority number entry are performed. If no match is found,
the packet (a part thereof) is forwarded to the controller. Thereafter, the
controller determines how the packet can be handled. It may return the
packet to the switch indicating the forwarding port, or it may add a Flow
Entry in the switch to forward the packet.

Starting from OpenFlow v1.1, switches can have multiple FlowTables (see
Fig. 1.10) in their data plane. The multiple FlowTables in a switch/router are
sequentially numbered, starting at 0 (see Fig. 1.10). When a packet arrives at
an OpenFlow switch, it is first matched with the first FlowTable (i.e., Table
0). If the action of the matched Flow Entry is Table i (i > 0), matching is
continued at Table i. Table i can then forward the matched packet to another
FlowTable. Note that the action can only be a FlowTable number which is
greater than its own FlowTable number.

In addition to the multiple tables, the GroupTable concept is proposed
in OpenFlow v1.1. A switch can have at most one GroupTable. The
GroupTable supports more complex forwarding actions such as multicast
routing, and fast-failover. In our research work, we used the fast-failover
forwarding actions to implement a fast failure recovery scheme in
OpenFlow. In fact, the GroupTable consists of Group Entries, which
contain: (1) a unique identifier (GroupID), (2) GroupType and (3) action
buckets (see Fig. 1.10). Typically, a Flow Entry redirects a packet to
the GroupTable. In this case, the action of the Flow Entry is GroupID.
The packet is then forwarded according to the respective Group Entry.
Depending on the GroupType in the Group Entry, complex actions specified
in the action buckets are performed.

Using the OpenFlow version earlier than 1.4, only packet-switching devices
(i.e., where matching takes place on the packet-header) can be controlled by
the OpenFlow protocol. However, since version 1.4, the OpenFlow protocol
can also control the optical switches in which matching can take place on
signal attributes such as channel spacing, frequency etc.

2. Secure Channel

The secure channel of an OpenFlow switch (See Fig. 1.10) connects the
switch with the controller. It is responsible for establishing and terminating
an OpenFlow session with the controller. Generally, it is secured by
TLS (Transport Layer Security) based encryption, although an unencrypted
transport layer connection is also allowed. If the transport layer connection
is used for communication, OpenFlow messages are encapsulated on top
of the transport layer header. The transport layer protocol for establishing
an OpenFlow session can be: TCP, SCTP (Stream Control Transmission
Protocol), or UDP. As switches and the controller need a reliable connection

26 CHAPTER 1

between each other, TCP or SCTP is preferred over UDP. In addition, as not
all the platforms support SCTP, TCP is mostly used for establishing sessions
over the channel.

3. OpenFlow Protocol

We present the OpenFlow protocol by describing the message exchange
between an OpenFlow switch and the controller. Each OpenFlow message
starts with an OpenFlow header which contains the OpenFlow version
number, type, and the length of the message.

OpenFlow Switch Controller

Symmetric

Asynchronous

Controller-Switch

Figure 1.12: Categories of OpenFlow messages

OpenFlow specifications divide messages into three categories: (1)
Symmetric, (2) Asynchronous, and (3) Controller-Switch (Fig. 1.12).
Symmetric means that the message can be sent in both directions (i.e.,
the “controller to switch” and the “switch to controller” direction),
Asynchronous means that the message can be sent only in the “switch to
controller” direction. Controller-switch means that the message can be
sent only in the “controller to switch” direction. An overview of some of
important OpenFlow messages which fall into these three categories is given
in Table 1.4.

The HELLO messages are exchanged after the secure channel (e.g., TCP
channel) is established between the controller and the switch. These are
exchanged to determine the version of OpenFlow supported by both sides.
The ECHO messages are transmitted by either side to find that an OpenFlow
session is still alive or not. The VENDOR messages are available for
notifying vendor-specific extensions to the peer.

The FEATURE REQUEST message is sent by the controller to know the
features (such as the number of tables and buffers) supported by the switch.
In response to the FEATURE REQUEST message, the switch transmits
the FEATURE REPLY message to the controller. Similarly, the controller

INTRODUCTION 27

Table 1.4: Overview of some important OpenFlow Messages

Message Types Category Description

HELLO Symmetric To setup an OpenFlow session
ECHO REQUEST Symmetric To check aliveness of the session

ECHO REPLY Symmetric To reply ECHO REQUEST
VENDOR Symmetric To notify vendor extensions

FEATURE REQUEST Controller-switch To request features of switches
FEATURE REPLY Asynchronous To reply features of switches

CONFIG REQUEST Controller-switch To get configuration of a switch
CONFIG REPLY Asynchronous To reply a CONFIG REQUEST

PACKET IN Asynchronous To send a packet to the controller
FLOW REMOVED Asynchronous To notify flow removal

PORT STATUS Asynchronous To notify the port status
ERROR Asynchronous To notify an error

PACKET OUT Controller-switch To send a packet from a switch
FLOW MOD Controller-switch To add a Flow Entry in a switch
PORT MOD Controller-switch To modify a port

STATS REQUEST Controller-switch To request statistics
STATS REPLY Controller-switch To reply a STATS REQUEST

BARRIER REQUEST Controller-switch To send a barrier request
BARRIER REPLY Controller-switch To reply a BARRIER REQUEST

sends the CONFIG REQEST message to the switch to know configuration
parameters (such as the datapath id and the port numbers) and the switch
replies then with the CONFIG REPLY message.

Using a PACKET IN message, the switch sends a data packet to the
controller, when it does not have a matched Flow Entry for the packet.
Control traffic is also sent to the controller via this message. With the
FLOW REMOVED message, the switch informs the controller that a Flow
Entry is removed from the FlowTable, while using the PORT STATUS
message, the switch notifies the changes in the port status. Finally, the
switch uses ERROR messages to notify the controller about errors occurred
in processing OpenFlow messages.

The controller uses PACKET OUT messages to send packets (data or
control packets) to the switch for forwarding out through the data plane.
Using the FLOW MOD message, the controller adds/modifies/deletes Flow
Entries in the switch. The PORT MOD message is used to modify the status
of an OpenFlow port.

With the STATS message pair, the controller obtains statistics (counters)

28 CHAPTER 1

from the switch while the BARRIER messages ensure that the particular
OpenFlow commands from the controller have finished executing on the
switch. When the switch receives the BARRIER REQUEST message,
it first completes execution of all the commands received prior to the
BARRIER REQUEST before executing any commands received after it.
The switch then notifies the controller via the BARRIER REPLY message.

4. Control Plane

In an OpenFlow network, the controller (or a cluster of redundant
controllers) implements the control-plane i.e, discovering a network
topology and external end hosts (or adjacent network devices), computing
forwarding entries, and installing them into network devices using the
OpenFlow protocol.

D

A

C

B

S

OpenFlow Protocol

Controller

A, B, C ,D

are OpenFlow

switches

D

A

C

B

S

OpenFlow Protocol

Controller

A, B, C ,D

are OpenFlow

switches

Control

traffic path

Data traffic

path
(A) In-band Network (B) Out-of-Band Network

Figure 1.13: OpenFlow networks: In-band and Out-of-band. In in-band networks,
switches use the same network for transmitting data traffic and control traffic. In

out-of-band networks, switches use a separate network for transmitting control traffic

The controller connection with the switches can be out-of-band or in-band
(See Fig. 1.13). In the case of an in-band connection, control messages are
sent on the same channel used for transporting data traffic, whereas in the
case of an out-of-band connection, control messages are sent on a different
channel. As shown in Fig. 1.13, in the in-band connection, switches B,
C and D share the same channel for transporting both control and data
traffic, and in the out-of-band connection, switches use a different channel
(a separate network) for transporting control and data traffic. Implementing
an out-of-band connection is simple because the controller has a separate

INTRODUCTION 29

network to communicate with each switch in a data network. However,
implementing an in-band control connection is complex, since switches have
to search and establish a path to the controller (bootstrapping) through other
switches in the data network. In our research, we propose a bootstrapping
algorithm with which switches in an in-band network establish an OpenFlow
session with the controller without having any manual configurations.

1.4.3 Extensions in different OpenFlow versions

For enabling widespread deployment in production and carrier environments, new
OpenFlow versions provide additional functionalities (compared to described in
the previous subsections). In this section, we describe some of these functionalities
(such as queuing support, OpenFlow meters support, multiple controller support,
and auxiliary connections support), which are used in (or related to) this PhD
research.

From version 1.0, OpenFlow switches have the queuing support. OpenFlow
v1.0 and v1.1 support queues with guaranteed minimum rates, while OpenFlow
v1.2 and higher versions support both minimum and maximum rates for a given
queue. However, creation of queues is out-of-scope for the OpenFlow protocol.
With the OpenFlow protocol, a packet can be redirected through an already created
queue. Although the OpenFlow protocol does not support creating or modifying
queues, an OpenFlow capable switch can be queried to report queues attached
to a specific port, and to report the guaranteed rate. In fact, separate protocols
such as the OpenFlow management and configuration protocol (OF-CONFIG) [38]
and the Open vSwitch Database Management Protocol (OVS-DB) [39] have been
proposed to create queues in OpenFlow switches. In this PhD research work,
for the quality-of-service work, we used the OVS-DB protocol to create queues
in OpenFlow switches. Additionally, we proposed vendor-specific extensions to
create queues through the OpenFlow protocol.

From version 1.3, OpenFlow supports additional mechanisms (i.e., using
meters) to implement quality of service techniques. Unlike queues which cannot
be created by the OpenFlow protocol, meters can be added in switches (in a
Flow Entry) through the OpenFlow protocol. To add meters, an OpenFlow switch
maintains the meter table. The meter table contains meter entries and each entry
contains: (1) meter identifier, which is a 32 bit unique number to identify a meter,
(2) meter band, which specifies the rate of band and the way in which incoming
packets should be processed, and (3) counters, which are incremented when a
packet is processed by the meter. Meters can be attached directly to a Flow Entry.
An action of a Flow Entry can a meter identifier and thereby, it enables the Flow
Entry to send a matched packet to the meter table. As an entry can contain multiple
actions, the meter action is applied first, i.e., before any other actions [40].

30 CHAPTER 1

From version 1.2, OpenFlow has multiple controllers support. Using this
support, an OpenFlow switch can establish sessions with multiple controllers at
a time. Currently, three roles are specified for controllers: (1) Equal, (2) Master,
and (3) Slave. The default role of a controller is Equal. In this role, a controller has
full access to OpenFlow switches, i.e., it can receive all the switch asynchronous
messages, send controller-to-switch commands, and also send/receive symmetric
messages. A controller can request its role to be changed to Slave. In this role,
the controller has read-only access to switches. The default for this role is not to
receive asynchronous messages, apart from port status messages. In addition, in
this role, the controller is not permitted to execute controller-to-switch commands.
Furthermore, a controller can request its role to be changed to Master. This role
is similar to Equal and therefore, in this role, the controller has full access to
OpenFlow switches. The difference between the Master and Equal role is that
there can have multiple controllers with the Equal role, but there can be only one
master controller in a network. In addition, only the Master controller can allow
an Equal role controller to be changed to the Slave role or vice versa.

Traditionally, an OpenFlow channel between a switch and a controller consists
of a single connection. However, from OpenFlow v1.3, to boost the performance
of the OpenFlow channel, additional auxiliary connections between the controller
and the switch can be established. Each auxiliary connection must use the
same controller IP address as the main connection. However, transport protocols
other than the main connection can be used for an auxiliary connection. Prior
to establishing any auxiliary connections, the switch must first establish its
main connection. If the main connection fails, all of the auxiliary connections,
which have been established for the main connection, need to be taken down
immediately.

1.4.4 OpenFlow capable hardware switches

Hardware implementations of OpenFlow devices hold the promise of operating the
devices much faster than their software counterparts (soft devices). To understand
how OpenFlow data plane components such as FlowTables and Flow Entries can
be implemented into hardware switches, we briefly discuss the functional block
diagram of some of today’s hardware OpenFlow devices.

Fig. 1.14 depicts the functional block diagram. It shows matching in both
software and hardware. In fact, many switches such as HP and NEC switches
contain FlowTables in software as well as in hardware. Usually, the software table
contains the full set of Flow Entries, while the hardware table contains a subset of
the Flow Entries. When a packet arrives at a switch (Input Arbiter in Fig. 1.14),
the packet is stored in the input queue and the packet-header is first extracted by
the header extractor and then the packet header is matched against all the entries

INTRODUCTION 31

Hardware Part

Software Part

Input

Arbiter

Header

Extractor

Match

Lookup

Match

Found

Packet

Editor

Output

Queues

Header

translation

Match

(Linear or

Hash Table)

Lookup

Match

Found

Install a Flow

Entry and forward

the packet

Send the packet

to the controller

No

Yes

Yes

No

Packets

Input Queue

Figure 1.14: Functional block diagram of OpenFlow hardware switches

(TCAM or SRAM) present in hardware. If a match is found, the Packet-Editor
forwards the packet to the output port/queue from the input queue. If no match
is found, the packet is forwarded to software which translates again the packet
into headers. If a matching entry is found in software, the entry is installed in the
hardware FlowTable and the packet is forwarded through the Packet-Editor (Fig.
1.14). Otherwise, it is forwarded to the controller to define its action.

1.4.5 OpenFlow capable soft switches

Soft switches are software packages that can emulate a switch on a PC. The
following soft switches are capable of emulating OpenFlow:

1. Stanford reference implementation

The reference implementation is the first software release of an Openflow
switch. This was implemented by Stanford University. The first version of
the implementation could be run in kernel-space as well as in user-space.
However, later versions can only be run in user-space.

2. Open vSwitch

Open vSwitch is a production quality implementation of an SDN switch.
It is designed to enable massive network emulation, while still supporting
standard management interfaces and protocols (such as OpenFlow and
Open vSwitch Database management protocol). Open vSwitch is targeted
at multiple server virtualization deployments. Open vSwitch can be
run in kernel mode as well as in user-space mode. The kernel space

32 CHAPTER 1

implementation contains FlowTables in both user-space and kernel space.
The user-space table contains a full set of Flow Entries, while the
kernel-space table contains a subset of the Flow Entries. When a packet
arrives in the switch, it is first matched against all the entries present in
the kernel. If no match is found, the packet is forwarded to user-space.
If a matching entry is found in user-space, the matched entry is installed
in kernel-space and the packet is forwarded. Otherwise, it is forwarded
to the controller to define its action. The kernel space implementation of
Open vSwitch emulates the implementation of many OpenFlow hardware
switches such as NEC and HP switches. Currently, Open vSwitch supports
many OpenFlow versions: v1.0, v1.1, v1.2, v1.3, and v1.4.

3. Ericsson and CPqD OpenFlow switch

These switches contain different versions of OpenFlow, v1.1, v1.2, v1.3, and
v1.4. The version 1.1 was implemented by Ericsson, while later versions
were implemented by CPqD. These are user-space switch implementations
of OpenFlow switches. The code is based on the original Stanford reference
switch with the forwarding functionality being completely rewritten to
support different OpenFlow versions.

1.4.6 OpenFlow controllers

Over the years, many controllers were released for OpenFlow. Table 1.5 shows
the NOX/POX, Beacon, Maestro, Trema, Ryu, Floodlight, OpenDayLight, and
ONOS controllers. Among all the mentioned controllers, NOX and POX were
the first controllers that contained the OpenFlow support. The latest controllers
are OpenDayLight and ONOS, which have the capability to support carrier-grade
services in OpenFlow.

Table 1.5: Different OpenFlow controllers. OFv is the version of OpenFlow supported

Controller Language OFv Platform

NOX/POX [41] Python/c++ 1.0/1.3 Linux
Beacon [42] Java 1.3 Window/Linux/Mac
Maestro [43] Java 1.0 Window/Linux/Mac
Trema [44] Ruby,c 1.0 Linux
Ryu [45] Python 1.0 - 1.4 Linux

Floodlight [46] Java 1.0/1.3 Linux
OpenDayLight [47] Java 1.0/1.3 Linux

ONOS [48] Java 1.0/1.3 Linux

INTRODUCTION 33

TCP Stack

OpenFlow

connection

OpenFlow

connection

OpenFlow Stack

Event Handler

Switch-Join

Event

Switch-Leave

Event

Packet-In

Event

Port-Status

Event

Library

Routing module

Discovery module

Switch module

TCP

connection
TCP

connection

Authenticator module

Port-Config

Event

REST Interface

Figure 1.15: Basic controller architecture

The basic architecture of the controllers is given in Fig. 1.15. Fig. 1.15
illustrates that the controller may contain many different modules, such as
authentication, discovery, routing, and switch modules. Using the authentication
module, end hosts can be authenticated. Using the discovery module, the
underlying topology of OpenFlow switches can be discovered. For discovering
a topology, the controller sends LLDP (Link Layer Discovery Protocol) packets
to be transmitted from an OpenFlow switch to its neighboring switches. When
a neighboring switch receives an LLDP packet, it sends the packet back to the
controller. From the received LLDP messages, the controller detects a link
between switches and hence, detects a topology. Using the routing module, routing
paths (shortest) can be calculated for a certain source and destination pair. This
module uses the topology gathered using the discovery module to calculate a path
between a source and destination.

Using the switch module, MAC learning can be performed to forward traffic.
MAC learning operates by maintaining a mapping between the MAC (Media
Access Control) addresses and the physical ports of OpenFlow switches by which
the destinations can be reached. These mappings are learned by monitoring the
source addresses of incoming packets. When a packet is received, the module
updates or adds the source MAC address and incoming port in its MAC table.
Besides this, it matches the destination address of packet with the addresses
available in the MAC table. If the address matches, it adds a Flow Entry in
a FlowTable of the corresponding OpenFlow switch so that the packet can be
forwarded via the port, defined in the mapping of the MAC table. Otherwise, if the

34 CHAPTER 1

destination is a broadcast, multi-cast, or unknown uni-cast, the controller sends an
OpenFlow packet to the OpenFlow switch to flood the corresponding data packet
out of all ports. All these different modules are listed in [41]. Some controllers also
contain a REST interface to communicate with an external application. Currently,
controllers such as Floodlight, Ryu, OpenDayLight, and ONOS implement the
REST interface.

To implement a module, the controllers have a library and event handler. With
the library, modules can create and send OpenFlow messages to switches. With
the event handler, different modules (see Fig. 1.15) receive events generated by
the OpenFlow stack. The events, which are mostly used by modules, are: (1)
Switch-join, which is generated when a switch establishes an OpenFlow session
with the controller, (2) Switch-leave, which is generated when a switch disconnects
from the controller, (3) Port-config, which is generated when the controller
receives all port information, (4) Packet-in, which is generated when a packet is
received to decide its forwarding action, (5) Port-status, which is generated when
an LOS is detected or repaired in one of the ports in a switch.

1.5 Research challenges and possible solutions

In this section, we discuss the research challenges that are considered in this PhD
research.

1.5.1 Fast failure recovery

When a failure occurs, network devices need to re-route traffic from an affected
path to an alternative path. The problem with OpenFlow is that network devices
depend on the centralized controller to establish a path. Hence, until the controller
identifies a failed link (or node) and updates forwarding entries (Flow Entries) in
all the relevant switches, packets traveling on the affected path will be dropped.
Moreover, if the controller itself fails, it cannot establish routes (flows) in the
network. Hence, one of the challenges of OpenFlow is to provide fast failure
recovery in its networks.

Carrier-grade networks have a strict requirement that the network should
recover from a failure within 50 ms. In fact, there is a service level agreement
between the business customer and a service provider to deliver a reliable service.
If requirements are not met, these are compensated for the loss of service.
Therefore, carrier-grade networks typically implement two well-known fast failure
recovery mechanisms – restoration and protection – in their networks. In the
case of restoration, recovery paths can be either pre-planned or dynamically
allocated, but the resources required by the recovery paths are not allocated until
a failure occurs. Hence, when the failure occurs, additional signaling is needed

INTRODUCTION 35

to establish the restoration path. In the case of protection, recovery paths are
always pre-planned and reserved before the failure occurs. Hence, when the
failure occurs, no additional signaling is needed to establish the protection path and
affected traffic can be immediately redirected. Protection is therefore a proactive
mechanism and restoration is a reactive mechanism. There are different protection
mechanisms applied in carrier grade networks. These are: 1 + 1, 1 : 1, 1 : N

(N > 1) and M : N [51].
In 1+1 protection, one protection path is established exactly for protecting one

working path, and traffic is permanently duplicated at the ingress node on both the
paths. In 1 : 1 protection, like 1+1 protection, one protection path is established
for one working path, however, traffic is transmitted over only one path (working
or protection) at a time. This leaves the opportunity to transport extra traffic along
the protection path in failure-free conditions. In 1 : N protection, one protection
path is dedicated for protecting N working paths. However, M : N protection is
the extension to 1 : N protection, where a set of M recovery paths protects a set
of up to N working paths.

In fact, there can be three different domains in OpenFlow in which failures can
happen:

1. Data plane domain, where a network device or a link between network
devices fails.

2. Control-plane domain, where a connection between a network device and
the controller fails.

3. Controller domain, where the controller itself fails.

Failure recovery is important in all the domains because a failure can cause a
disruption of a service or prevent new service establishment in the network. For
the data and control plane domain, OpenFlow may rely on the restoration and
protection mechanisms (discussed above) to recover from the failure. However, for
the controller domain, OpenFlow may rely on other mechanisms such as backup
controller’s mechanisms [52]. Hence, when a connection between one controller
and a network device is lost, the network device may rely on the backup controller
to take actions.

The problem with restoration in OpenFlow is that it puts a considerable load
on the controller momentarily after the failure. This is because the controller has
to reconfigure all affected flows in the network and therefore, has to send lots of
messages to network devices to update Forwarding Entries. As restoration may
take significant time to complete recovery activities, OpenFlow can implement
protection to meet the carrier-grade requirement. Protection removes the need of
network devices to contact the controller for reconfiguring affected flows. This
is accomplished by pre-establishing the protection paths. The challenge here is

36 CHAPTER 1

that protection needs a method to redirect traffic to an alternative path without
contacting the controller, when the failure occurs. In addition, OpenFlow may
need to run additional protocols (such as Bi-directional Forwarding Detection) in
network devices to detect failures.

1.5.2 Verification of data plane functionality

Although OpenFlow decouples the control plane functionality from the data plane
functionality of network devices, verification of the data plane functionality for
errors (such as configuration errors, software or hardware bugs) is one of the time
consuming and challenging tasks in OpenFlow. This is because the data plane
functionality contains two complex parts: (1) Flow-Match Header part and (2)
action part. The Flow-Match header part can match different packet-headers, while
the action part can implement very complex forwarding actions such as multipath
routing, fast-failover, and flooding.

An action fault occurs when packets matching a Flow-Match header are
processed incorrectly via the action part of the Flow Entries. Action faults can
be due to software or hardware failures, congestion, mis-wiring, etc. Currently,
automatic test packet generation (ATPG) mechanism [53] is proposed to verify a
Flow Entry for action faults.

A Flow-Match Header fault occurs when matching of a packet with the
Flow-Match Header gives an incorrect result (i.e., a packet gets matched with the
Flow-Match Header which it should not, or a packet does not get a match although
a matching Flow-Entry is present in the FlowTable). The problem with the
verification of the Flow-Match Header is that the header space of the Flow-Match
header is very large. As the header-space is increasing in each new OpenFlow
version, probability of having matching errors is also increasing. In OpenFlow
v1.0, flow matching can take place on the ingress port, Ethernet, IPv4, and
transport layer headers. However, in the later versions, matching can take place on
many additional fields (such as MPLS headers and IPv6 headers). For verification,
we may need to verify matching of all these fields with different packet-headers.
Additionally, if a Flow Entry contains wildcards in any of the matching-header
fields, all the flows, which can match with the wildcarded Flow-Match Header,
are required to be verified for flow-matching issues. Moreover, in OpenFlow v1.0
there is just one FlowTable, and from version 1.1, there can be a maximum of 255
FlowTables in a switch. Therefore, verification of the Flow-Match Header faults
may require the verification of flow matching in each of these tables.

According to ONF, currently there are OpenFlow switches available from 26
different companies, and the switches from different companies differ substantially
in both the data plane and the controller-switch interactions [49] [50]. The
switches such as Quanta, HP, NEC, Ocedo, and Pica8 Pronto switches contain

INTRODUCTION 37

FlowTables in hardware as well as in software. The Quanta switch [49] uses the
FlowTable of software for packet forwarding only when the FlowTable of hardware
is full. However, HP, NEC, and Ocedo switches use both software and hardware
FlowTables for packet forwarding. The software table contains a full set of Flow
Entries, and the hardware table contains a subset of the Flow Entries. When a
packet arrives at a switch, it is first matched against all the entries present in
hardware. If no match is found, the packet is forwarded for matching in software.
Therefore, we may need to verify matching of packets in software as well as in
hardware.

Currently, many tools are already proposed to verify OpenFlow switches.
Some of these tools are FLOVER [54], FlowChecker [55], HSA (Header-Space
analysis) [56], VeriFlow [57] and Anteater [58]. The challenge with all these tools
is that these find errors by just analyzing the configuration of networks. However,
finding all software or hardware errors is difficult without sending a packet in the
network. Therefore, network operators have to debug manually by sending test
packets (e.g., using ping) in the network. Manual debugging takes significant time
in finding issues.

It is already stated that ATPG is proposed to find action faults. This tool
automatically transmits test packets in the network to find errors. However, the
problem is that ATPG is not able to find all the errors that can be present in the
large header space of the Flow-Match Header. Therefore, in this dissertation, we
propose a method which can verify the Flow-Match header of the Flow-Entries for
flow-matching issues (see the next section).

1.5.3 Bootstrapping

Bootstrapping involves the mechanisms that bring a system from an initial state
to an operational state. In this phase, a network device behaves like an end-host
rather than as a forwarding device, i.e., the device cannot forward any packets
yet. The challenge is that OpenFlow specifications do not yet describe that
how OpenFlow devices can be automatically bootstrapped. Without performing
these tasks automatically, an operator (or an engineer) may face a lot of manual
configurations such as going to the field to perform initial configuration tasks (i.e.,
configuration of the network device’s IP address and the controller IP address).

Bootstrapping by manual configurations is a time consuming task. In addition,
manual configurations can result into bugs. Therefore, in traditional networks,
operators typically use automatic ways to configure their devices. One of the most
commonly used automatic configuration protocols in these networks is DHCP
(Dynamic Host Configuration Protocol) [59]). For running the DHCP, the DHCP
server is placed at a location (e.g., at a central location), which is accessible from
network devices. Network devices then run DHCP clients and exchange messages

38 CHAPTER 1

with the DHCP server. The DHCP server then configures bootstrapping parameters
(such as IP address) in devices.

Automatic configuration protocols (such as DHCP), which are used in
traditional networks, can also be used in OpenFlow networks to configure
bootstrapping parameters. For an out-of-band network, using the DHCP can be
similar to a traditional network, as the DHCP server can be located at the controller
(central location) and each OpenFlow device can run the DHCP client. As a
separate network is present in the out-of-band network for the communication
between OpenFlow devices and the controller, the DHCP server is able to
exchange messages with all devices, and therefore, able to configure bootstrapping
parameters.

The challenge is that the automatic configuration protocols, which are used in
traditional networks, cannot be applied straightforward in an in-band OpenFlow
network, since network devices cannot directly communicate with the controller.
They need to search and establish a path to the controller (or the DHCP server)
through the other switches in the network (See Fig. 1.13). Therefore, in this
dissertation, we proposed a method with which the controller establishes its own
control network to communicate with network devices (see the next section).

1.5.4 Quality of Service

The commercial challenge of the growth of the Internet is represented in Fig.
1.16. Web companies (webcos) such as Skype, Google, Netflix, Akamai, and
Facebook use the internet infrastructure to transmit traffic to users, although there
are limits to service level commitments they receive. The telecommunication
(telco) companies, who invest massively in the infrastructure, continue to see a
decline in the average revenue per user (ARPU) as ever decreasing revenue goes
to the telco from users and the webcos/CDNs (content delivery network). Yet
revenue and margins increase for the webcos. Currently, traffic from webcos is
expected to keep increasing, as webcos launch more and more applications which
are sent over-the-top (OTT) of telco networks. The problem here is that telcos
are not currently interested in investing on additional infrastructure capacity to
provide the required bandwidth for these applications without an adequate return
on network capital employed.

Currently, the Internet works on a best effort basis (i.e., all bits on the
Internet are treated equally today). The lack of differentiation on the Internet has
caused significant business challenges for telcos. As differentiation is against net
neutrality, it is difficult to introduce differentiation over the Internet. Net neutrality
means that no bit of information should be prioritized over another on the Internet.
This is a complicated regulatory issue, and a full discussion is out of scope of this
research work. In [60], reasonable network management practices following net

INTRODUCTION 39

Telco

Users Webco

CDN

Telcos getting squeezed

ARPU Continues to

decline

Increasing

Experience

Performance

Issues/Latency

Limits

Service level

commitments

Over the Top Content

1

Figure 1.16: The commercial challenge of the growth of the Internet

neutrality have been introduced (or extended) for the Internet. These reasonable
network management practices include:

1. Transparency: Broadband providers must disclose the network management
practices, performance characteristics, and terms and conditions of their
broadband services.

2. No blocking: Broadband providers are not allowed to block lawful content
and applications that compete with their voice or video telephony services.

3. No unreasonable discrimination: Broadband providers must not
unreasonably discriminate in transmitting lawful network traffic.

Currently, many quality of service (QOS) mechanisms, such as Diffserv
(Differentiated Services) and IntServ (Integrated Services), are available for the
Internet. IntServ has a scalability problem, as it is based on individual flows and
DiffServ alleviates this problem by providing QoS based on aggregated flows.
Currently, these mechanisms need a model which is based on the requirements
of the reasonable network management practices.

As SDN/OpenFlow is considered to be one of the Future Internet Technologies,
it would be beneficial to propose such a QoS model for the Internet that supports
SDN/OpenFlow in its networks.

1.5.5 Loss-free packet switching

For decades network engineers have been trained to think in terms of macroscopic
bandwidth, when scaling their networks. Macroscopic here means that the
bandwidth is provisioned by simply adding a capacity that is equal to the average of

40 CHAPTER 1

the incoming rate of different data transfers. However, traffic such as media traffic
is bursty in nature. When such a type of traffic is sent over a network, packets are
sent in micro-bursts at the maximum speed, which may lead to congestion, as many
bursts may be transmitted at the same time. Hence, provisioning of bandwidth by
averaging the incoming rate of different data transfers is no longer valid or even
meaningful for a network that is loaded with bursty traffic.

Over-provisioning is not a solution for this problem. This leads to continuously
increasing investment costs in the network, and to even more inefficient usage of
resources. Over-provisioning only helps to reduce or even mask a part of the risk
and it does not guarantee zero packet-loss in the network. Currently, large-size
buffers are also provided in devices of the network to decrease the packet-loss. The
problem is that this can cause unnecessary delay and may give poor performance
(buffer-bloat problem [61]).

To increase the reliability of data transport, many protocols are used in
packet switched networks. One of such protocols is TCP. TCP provides reliable
data transfer by having the destination, sending back acknowledgments to the
source to signal proper in-order delivery of data packets. The transport of these
acknowledgments back to the source takes a certain amount of time caused by
the latency of the physical transport in networks. This latency is a consequence
of the limitations in the transport speed, (mostly) related/limited to the speed of
light. If the source has to wait for these acknowledgments to send the next data
packets of media flows, links will be idle for a part of the time. Several mechanisms
have also been developed to overcome these situations, such as increasing the TCP
window-sizing. However, stretching these parameters to compensate fully for the
long length of a link could compromise the reliability of the mechanism or create
additional overhead in resending large portions of data in case of data loss.

Other protocols or standards to decrease the packet-loss are: (1) IEEE 802.17
(Resilient Packet Ring), and (2) IEEE 802.1Qbb (Priority-based Flow Control). In
these standards a control packet (feedback packets in IEEE 802.17 and PAUSE
frames in IEEE 802.1Qbb) is sent back to the sender to notify about congestion.
The issue here is that if there is a large distance between the sender and
congested node, the latter may suffer buffer overflow and packet-loss can happen.
Currently, QoS mechanisms such as DiffServ is also proposed to deliver quality
of service to high priority traffic. The problem is that DiffServ can only work for
(small) fractions of high priority traffic. Additionally, it does not guarantee zero
packet-loss in the network.

Currently, no solution is available, which can guarantee zero packet-loss in
packet-switched networks in all network scenarios. In this thesis, we propose a
method which can guarantee zero packet loss, although nearly all the bandwidth is
consumed in a network (see the next section).

INTRODUCTION 41

1.6 Research contributions
In this dissertation, we focus on fast failure recovery, verification,
bootstrapping, quality-of-service, and loss-free packet-switching mechanisms
for SDN/OpenFlow (see Fig. 1.17). All the mechanisms except the loss-free
packet-switching mechanism are tested using SDN/OpenFlow. The loss-free
packet-switching mechanism is tested using traditional network technologies.
However, it is equally applicable to SDN/OpenFlow network architectures. In this
dissertation, each of the following chapters corresponds to a journal article (as-is)
which is already in a published or submitted state.

Research

Contribution

Failure

Recovery
Verification

Automatic

Bootstrapping
QoS

Loss-free

packet-switching

Chapter 2 Chapter 3 Chapter 6

SDN/OpenFlow

Tested in

OpenFlow

Tested without

OpenFlow

Chapter 4 Chapter 5

Figure 1.17: Overview of work performed

In Chapter 2, fast-failure recovery mechanisms, restoration and 1:1 path
protection, are studied for an out-of-band OpenFlow network to recover from data
plane failures. Data plane failures considered are: link and node failures. In the
out-of-band network, a failure in the data plane does not affect the communication
between network devices and the controller. Therefore, the controller is used to
restore data traffic in restoration. In the case of 1:1 path protection, the controller
proactively establishes two disjoint paths - working and protection - for data
traffic and when the ingress switch detects the failure, it redirects traffic to the
protection path without contacting the controller. A wide range of experiments are
performed to verify the suitability of these mechanisms in carrier-grade networks.
The experiments are performed by using topologies which differ with the number
of network devices and the degree of meshedness. Additionally, a scalability
experiment is performed to measure the recovery time with an increase in the

42 CHAPTER 1

number of data flows in a network. With the restoration experiments, it has
been concluded that Openflow can restore traffic, but its dependency on the
centralized controller means that it will be hard to achieve 50 ms restoration in
a large-scale network serving many flows. With the protection experiments, it
has been concluded that protection is a way in OpenFlow to achieve carrier-grade
recovery requirements, even in a large-scale network serving many flows.

In Chapter 3, verification mechanisms are proposed to find failures in the
matching of incoming packets with the Flow-Entries in FlowTables. These failures
can occur due to configuration issues and software or hardware failures in network
devices. The objective of verification is to find the packet-headers which cannot
be matched or can be matched incorrectly with the Flow-Match header of a Flow
Entry. To verify matching, the mechanism transmits test packets in the network
and therefore, it requires additional resources - (1) computational resources of
the controller (to generate and transmit test packets) and (2) bandwidth resources
between the controller and network devices (to transmit/receive test packets) -
to be reserved in the network. To decrease these requirements, we consider a
network in which servers (custom machines) can be attached to a network device
to transmit or receive test packets. The experiments are performed with a wide
range topologies and networks (such as in-band and out-of-band networks). With
the experiments, it has been concluded that the verification time depends on the
bandwidth available in the network for verification. If bandwidth is unlimited,
verification can be achieved in a very short time interval. However, if bandwidth
limitations exist, the verification time might increase significantly.

In Chapter 4, bootstrapping, queuing, and fast failure recovery mechanisms are
proposed for in-band OpenFlow networks. With the bootstrapping mechanisms,
an OpenFlow device can be bootstrapped automatically without having any
manual configurations. This chapter gives a brief overview of the bootstrapping
mechanism, while Appendix A gives a detail description. With the queuing
mechanisms, the queuing support of OpenFlow is extended to include priority
numbers in queues. Using these queues, different traffic (control and data traffic)
can be served with different priorities on the same channel of an in-band network.
For fast-failure recovery, restoration and protection techniques are proposed for
control traffic, while utilizing the previously proposed restoration and protection
mechanisms of the out-of-band network for data traffic (see Chapter 2 discussion).
In addition, practical challenges of implementing these mechanisms in existing
open-source OpenFlow packages are discussed in this chapter. Furthermore,
we implement these mechanisms in one of the OpenFlow software packages
and perform extensive experiments. The experiments with the bootstrapping
mechanism conclude that the proposed mechanism allows bootstrapping in a
minimal time, which makes it suitable even for a large network. The experiments
with the queuing mechanism conclude that data traffic does not affect the

INTRODUCTION 43

communication between the controller and switches, although data traffic and
control traffic are sent on the same channel. The experiments with failure recovery
mechanism conclude that carrier-grade quality can be achieved in OpenFlow.

In Chapter 5, we provide a proposal for the introduction of a dynamic
OpenFlow capability in the Internet by looking at the commercial challenge
to the growth of the internet (see the previous section) and describing a new
operational model for the internet to address this challenge. The proposed
model is evaluated using multi-autonomous system experiments in distinct
reference network-scenarios for a city with a population of 1 million inhabitants,
emulating xDSL (Digital Subscriber Line), LTE (Long-Term Evolution) and Fiber
networking scenarios. Quality of service is established in this model by inserting
QoS queues in paths discovered by routing protocols. For running routing
protocols in OpenFlow, we also propose an automatic configuration framework.
This framework is explained in detail in Appendix B. The proposed operational
model running QoS mechanisms is tested in extensive emulation environments.
The obtained results considering both control and data traffic scalability confirm
the suitability of the proposed model for multiple autonomous systems scenarios of
the Internet. In one of the experiments, failure recovery is also considered for QoS
flows in the network. Regarding failure recovery, we did not focus on fast-failure
recovery (Chapter 2 and Chapter 4) but instead, we focus on scenarios in which
high-priority traffic should always get a higher precedence over best-effort traffic,
even after a failure. Appendix C provides a detailed description of our proposed
QoS framework for failure recovery.

In Chapter 6, we propose a protocol, called inter-burst segregation protocol
(IBSP), which can guarantee zero packet-loss in packet-switched networks. IBSP
guarantees zero packet-loss by controlling burstiness in each node of a network.
For controlling burstiness, IBSP enforces separation between different bursts of
sources at each node. We perform simulations to verify the proof-of-concept of
IBSP and perform the emulations on a high performance platform (i.e., DPDK) to
check the suitability of the protocol in a real environment. The experimental results
confirm that IBSP guarantees zero packet-loss, although nearly all the bandwidth
is consumed in the network. In addition, the jitter using IBSP is low.

Chapter 7 presents the main conclusions of this dissertation. It summarizes
important messages and presents the future research directions.

1.7 Publications

The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. The
following list provides an overview of the publications during my PhD research.

44 CHAPTER 1

1.7.1 Publications in international journals
(listed in the Science Citation Index 2)

1. Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, Piet
Demeester, OpenFlow: Meeting Carrier-Grade Recovery Requirements,
Computer Communications, Vol. 36(6), March 2013, pp. 656-665.

2. Marc Sune, Leonardo Bergesio, Hagen Woesner, Tom Rothe, Andreas
Kopsel, Didier Colle, Bart Puype, Dimitra Simeonidou, Reza Nejabati,
Mayur Channegowda, Mario Kind, Thomas Dietz, Achim Autenrieth,
Vasileios Kotronis, Elio Salvadori, Stefano Salsano, Marc Korner, Sachin
Sharma, Design and Implementation of the OFELIA FP7 Facility,
Computer Networks, Vol. 61, March 2013, pp. 132-150.

3. Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, Piet
Demeester, Automatic configuration of routing control platforms in Open-
Flow networks, ACM SIGCOMM Computer Communication Review, Vol.
43(6), October 2013, pp. 491-492.

4. Mark Berman, Piet Demeester, Jae Woo Lee, Kiran Nagaraja, Michael Zink,
Didier Colle, Dilip Kumar Krishnappa, Dipankar Raychaudhuri, Henning
Schulzrinne, Ivan Seskar, Sachin Sharma, Future Internets Escape the Sim-
ulator, ACM CACM Magazine, Vol. 58(6), June 2015, pp. 78-89.

5. Sachin Sharma, Wouter Tavernier, Sahel Sahhaf, Didier Colle, Mario
Pickavet, Piet Demeester, Verification of Flow Matching Functionality in
the Forwarding Plane of OpenFlow Networks, IEICE Transactions on
Communications, Vol. E98B (11), November 2015, pp. 2190-2201.

6. Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, Piet
Demeester, In-band control, queuing, and failure recovery functionalities
for OpenFlow, IEEE Network, Vol. 30(1), January 2016, pp. 106-112.

7. Sachin Sharma, David Palma, Joao Goncalves, Dimitri Staessens, Nick
Johnson, Charaka Palansuriya, Ricardo Figueiredo, Luis Cordeiro, Donal
Morris, Adam Carter, Rob Baxter, Didier Colle, CityFlow, Enabling Quality
of Service in the Internet: Opportunities, Challenges, and Experimentation,
Computer Networks, November 2015 (under revision).

8. Sachin Sharma, Didier Colle, Wouter Tavernier, Mario Pickavet, Piet
Demeester, Inter-burst Segregation Protocol guaranteeing loss-free packet

2The publications listed are recognized as ‘A1 publications’, according to the following definition
used by Ghent University: A1 publications are articles listed in the Science Citation Index Expanded,
the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of Science,
restricted to contributions listed as article, review, letter, note or proceedings paper.

INTRODUCTION 45

switched networks, IEEE Communications Letter, February 2016 (under
revision).

1.7.2 Publications in international conferences
(listed in the Science Citation Index 3)

9. Dimitri Staessens, Sachin Sharma, Didier Colle, Mario Pickavet, Piet
Demeester, Software Defined Networking: Meeting Carrier Grade Re-
quirements, 18th IEEE International Workshop on Local and Metropolitan
networks (IEEE LANMAN), October 2011, pp. 1-6, North Carolina, USA.

10. Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, Piet
Demeester, Fast failure recovery for in-band OpenFlow networks, 9th
International Conference on Design of Reliable Communication Networks
(DRCN), March 2013, pp. 44-51, Budapest, Hungry.

11. Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, Piet
Demeester, Automatic bootstrapping of OpenFlow networks, 19th IEEE
International Workshop on Local and Metropolitan networks (IEEE
LANMAN), April 2013, pp. 1-6, Brussels, Belgium.

12. Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, Piet
Demeester, A demonstration of automatic bootstrapping of resilient Open-
Flow networks, IFIP/IEEE International Symposium on Integrated Network
Management (IM), May 2013, pp. 1066-1067, Ghent, Belgium.

13. Sachin Sharma, Dimitri Staessens, Didier Colle, David Palma, Joao
Goncalves, Mario Pickavet, Luis Cordeiro, Piet Demeester, Demonstrat-
ing Resilient Quality of Service in Software Defined Networking, IEEE
Conference on Computer Communications Workshops (IEEE INFOCOM),
April 2014, pp. 133-134, Toronto, Canada.

1.7.3 Publications in other international conferences

14. Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, Piet
Demeester, Enabling Fast Failure Recovery in OpenFlow Networks,
8th International Workshop on the Design of Reliable Communication
Networks (DRCN), October 2011, pp. 164-171, Krakow, Poland.

3The publications listed are recognized as ‘P1 publications’, according to the following definition
used by Ghent University: P1 publications are proceedings listed in the Conference Proceedings Ci-
tation Index - Science or Conference Proceedings Citation Index - Social Science and Humanities of
the ISI Web of Science, restricted to contributions listed as article, review, letter, note or proceedings
paper, except for publications that are classified as A1.

46 CHAPTER 1

15. Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet, Piet
Demeester, A Demonstration of Fast Failure Recovery in Software Defined
Networking, 8th International ICST Conference on Testbeds and Research
Infrastructures for the Development of Networks and Communities
(TridentCom), June 2012, pp. 411-414, Thessaloniki, Greece.

16. Sander Vrijders, Dimitri Staessens, Sachin Sharma, Pieter Simoens, Didier
Colle and Mario Pickavet, Optimization of data deployment in data centers
using BitTorrent and OpenFlow, Fire Engineering conference, November
2012, Ghent, Belgium.

17. Sachin Sharma, Dimitri Staessens, Didier Colle, David Palma, Joao
Goncalves, Riccardo Figueiredo, Donal Morris, Mario Pickavet, and Piet
Demeester, Implementing quality of service for the software defined net-
working enabled future internet, The European Workshop on Software
Defined Networking (EWSDN), September 2014, pp. 49-54, Budapest,
Hungry.

18. David Palma, Joao Goncalves, Bruno Sousa, Luis Cordeiro, Paulo Simoes,
Sachin Sharma, and Dimitri Staessens, The QueuePusher: enabling queue
management in OpenFlow, The European Workshop on Software Defined
Networking (EWSDN), September 2014, pp. 125-126, Budapest, Hungry.

19. Adam Carter, Donal Morris, Sachin Sharma, Luis Cordeiro, Riccardo
Figueiredo, Joao Gonalves, David Palma, Nick Johnson and Dimitri
Staessens, Cityflow: openflow city experiment Linking infrastructure and
applications, The European Workshop on Software Defined Networking
(EWSDN), September 2014, pp. 129-130, Budapest, Hungry.

20. Joao Gonalves, David Palma, Luis Cordeiro, Sachin Sharma, Didier Colle,
Adam Carter, Paulo Simoes, Software-defined networking: guidelines for
experimentation and validation in large-scale real world scenarios, The
conference on Artificial Intelligence Applications and Innovations (AIAI),
September 2014, pp. 38-47, Rhodes, Greece.

21. Juhoon Kim, Catalin Meirosu, Ioanna Papafili, Rebecca Steinert, Sachin
Sharma, Fritz-Joachim Westphal, Mario Kind, Apoorv Shukla, Felician
Nemeth, Antonio Manzalini, Service Provider DevOps for Large Scale
Modern Network Services, BDIM conference collocated with IM,
pp.1391-1397, April 2015, Ottawa, Canada.

22. Sachin Sharma, Wouter Tavernier, Didier Colle, Mario Pickavet, Piet
Demeester, Verification of aggregated flows in OpenFlow networks, IEEE
Conference on Computer Communications Workshops (IEEE INFOCOM),
April 2015, pp. 7-8, Hong Kong, China.

INTRODUCTION 47

1.7.4 Publications in IETF Drafts

23. Catalin Meirosu, Antonio Manzalini, Juhoon Kim, Rebecca Steinert, Sachin
Sharma, Guido Marchetto, Ioanna Papafili,, K. Pentikousis, S. Wright, Ser-
vice Provider DevOps for Software-Defined Telecom Infrastructures, Work
in Progress, IETF draft, 2015.

1.7.5 Other publications

24. Wolfgang John, Alisa Devlic, Zhemin Ding, David Jocha, Andras Kern,
Mario Kind, Andreas Kpsel, Viktor Nordell, Sachin Sharma, Pontus
Skldstrm, Dimitri Staessens, Attila Takacs, Steffen Topp, F. Westphal,
Hagen Woesner, Andreas Gladisch, Split Architecture for Large Scale Wide
Area Networks, arXiv preprint arXiv:1402.2228, February 2014.

25. Rebecca Steinert, Wolfgang John, Pontus Skldstrm, Bertrand Pechenot,
Andrs Gulys, Istvn Pelle, Tams Lvai, Felicin Nmeth, Juhoon Kim, Catalin
Meirosu, Xuejun Cai, Chunyan Fu, Kostas Pentikousis, Sachin Sharma,
Ioanna Papafili, G. Marchetto, R. Sisto, F. Risso, P. Kreuger, J. Ekman, S.
Liu, A. Manzalini, A. Shukla, S. Schmid, Service Provider DevOps network
capabilities and tools, arXiv preprint arXiv: 1510.02818, October 2015.

26. Wolfgang John, Catalin Meirosu, Pontus Skldstrm, Felician Nemeth, Andras
Gulyas, Mario Kind, Sachin Sharma, Ioanna Papafili, G. Agapiou, G.
Marchetto, R. Sisto, R. Steinert, P. Kreuger, H. Abrahamsson, A. Manzalini,
N. Sarrar, Initial Service Provider DevOps concept, capabilities and pro-
posed tools, arXiv preprint arXiv:1510.02 220, October 2015.

1.7.6 Publications in national conferences

27. Sachin Sharma, Didier Colle, Mario Pickavet, Failure recovery for Open-
Flow networks, 12th FEA PhD Symposium, December 2011, Ghent
Belgium.

28. Sachin Sharma, Didier Colle, Mario Pickavet, Enabling prioritization over
the Internet, 15th FEA PhD Symposium, December 2014, Ghent Belgium.

48 CHAPTER 1

References

[1] Martn Casado, Teemu Koponen, Scott Shenker, Amin Tootoonchian, Fab-
ric: A Retrospective on Evolving SDN, The first workshop on Hot Topics in
Software Defined Networks (HotSDN), pp. 85-90, 2012.

[2] GENI Project [Online]. Available: https://www.geni.net/.

[3] SPARC Project [Online]. Available: http://www.fp7-sparc.eu/.

[4] OFELIA Project [Online]. Available: http://www.fp7-ofelia.eu/.

[5] UNIFY Project [Online]. Available: http://www.fp7-unify.eu/.

[6] ONF [Online]. Available: https://www.opennetworking.org/, 2012.

[7] Jennifer Rexford, Future Internet Architecture: Clean-Slate Versus
Evolutionary Research, Communications of the ACM, Vol. 53(9), pp. 36-40,
2010.

[8] ITU-T Recommendation X.200: Data Networks and Open Systems Communi-
cations: Open Systems Interconnection-model and notation, 1994.

[9] Kurose, J. F. and Ross, K. W., Computer Networking: A top-down approach
featuring the Internet, Reading: Addison-Wesley, 2001.

[10] Quagga [Online]. Available: http://www.nongnu.org/quagga/.

[11] D. Shah, P. Gupta, Fast Updating Algorithms for TCAMs, IEEE Macro, Vol.
21(1), pp. 36–47, 2001.

[12] H. T. Kung, Gigabit Local Area Networks: A systems perspective, IEEE
Communications Magazine, pp. 79-89, 1992.

[13] P. Winzer, Beyond 100G Ethernet, IEEE Communications Magazine, Vol.
48(7), pp. 26-30, 2010.

[14] Nielsen’s Law of Internet Bandwidth [Online]. Available:
https://www.nngroup.com/articles/law-of-bandwidth/.

[15] Mathieu Tahon, Marlies Van der Wee, Sofie Verbrugge, Didier Colle, Mario
Pickavet, The Impact of Inter-platform. Competition on the Economic Viability
of Municipal Fiber Networks, OFC, 2014.

[16] Al-Fares, A. Loukissas, and A. Vahdat, A scalable, commodity data cen-
ter network architecture, In ACM SIGCOMM Computer Communication
Review, volume 38, pp. 6374, 2008.

INTRODUCTION 49

[17] NEC SDN Fabric [Online]. Available: http://www.necam.com/SDN/.

[18] Sheinbein, D. and Weber, R.P., Stored Program Controlled Network: 800
Service using SPC network capability, The Bell System Technical Journal,
Vol. 61(7), pp. 1737-1744, 1982.

[19] Van der Merwe, J., Cepleanu, A., D’Souza, K., Freeman, B., Greenberg, A.,
Knight, D., McMillan, R., Moloney, D., Mulligan, J., Nguyen, H., Nguyen,
M., Ramarajan, A., Saad, S., Satterlee, M., Spencer, T., Toll, D., Zelingher, S.,
Dynamic Connectivity Management with an Intelligent Route Service Con-
trol Point, Proceedings of the SIGCOMM Workshop on Internet Network
Management, pp. 29-34, 2006.

[20] J. T. Moore and Scott M. Nettles, Towards practical programmable packets,
20th IEEE Conf. on Computer Commun. (INFOCOM), pp. 41-50, 2001.

[21] David Wetherall, John Guttag and David Tennenhouse, ANTS: Network Ser-
vices without the Red Tape, IEEE Computer, Vol. 32(4), 42-49, 1999.

[22] Schwartz, B., Jackson, A.W., Strayer, W.T., Wenyi Zhou, Rockwell, R.D.,
Partridge, C, Smart Packets for active networks, IEEE Second Conference on
Open Architectures and Network Programming, 90-97, 1999.

[23] Silva, S., Yemini, Y., Florissi, D., The NetScript active network system, IEEE
Journal on Selected Areas in Communications, Vol. 19(3), pp. 538-551, 2001.

[24] Alexander, D.S., Arbaugh, W.A., Keromytis, A.D. and Smith, J.M., A secure
active network environment architecture: realization in SwitchWare, IEEE
Network, Vol. 12(3), pp. 37-45, 1998.

[25] Van der Merwe, J.E., Rooney, S., Leslie, I., Crosby, S., The Tempest-a prac-
tical framework for network programmability, IEEE Network, Vol. 12(3), pp.
20-28, 1998.

[26] A. A. Lazar, K.-S. Lim, and F. Marconcini, xbind: The system programmers
manual, tech. rep., Technical Report, 1996.

[27] Jaco E. van der Merwe and Ian M. Leslie, Switchlets and dynamic vir-
tual ATM networks, the IFIP/IEEE International Symposium on Integrated
Network Management (IM97), pp. 355368, 1997.

[28] Feamster, Nick, Rexford, Jennifer and Zegura, Ellen, The Road to SDN,
ACM Queue, Vol. 11(12), 2013.

[29] Bo Han; Gopalakrishnan, V.; Lusheng Ji; Seungjoon Lee, Network
function virtualization: Challenges and opportunities for innovations, in
Communications Magazine, IEEE , vol.53, no.2, pp.90-97, Feb. 2015.

50 CHAPTER 1

[30] A. Doria, J. Hadi Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal,
Forwarding and Control Element Separation (ForCES) Protocol Specification,
Internet Engineering Task Force (IETF), RFC 5810, 2010.

[31] R. Enns, M. Bjorklund,J. Schoenwaelder, A. Bierman, Network Configura-
tion Protocol (NETCONF), IETF RFC 4741, 2011.

[32] A. Atlas, J. Halpern, S. Hares, D. Ward, T. Nadeau, An Architecture for the
Interface to the Routing System, IETF Work in progress, 2015.

[33] M. Bjorklund, YANG - A Data Modeling Language for the Network Config-
uration Protocol (NETCONF), IETF RFC 6020, 2010.

[34] Greenberg Albert, Hjalmtysson Gisli, Maltz David A., Myers Andy, Rexford
Jennifer, Xie, Geoffrey, Yan, Hong, Zhan, Jibin, Zhang Hui, A Clean Slate 4D
Approach to Network Control and Management, ACM SIGCOMM Comput.
Commun. Rev., Vol. 35(5), pp.41-54, 2005.

[35] Martin Casado , Michael J. Freedman , Justin Pettit , Jianying Luo , Nick
McKeown , Scott Shenker, Ethane: taking control of the enterprise, ACM
SIGCOMM Computer Communication Review, vol. 37(4), 2007.

[36] Martin Casado , Tal Garfinkel , Aditya Akella , Michael J. Freedman , Dan
Boneh , Nick McKeown , Scott Shenker, SANE: a protection architecture for
enterprise networks, Proceedings of the 15th conference on USENIX Security
Symposium, 2006.

[37] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker, and J. Turner, OpenFlow: Enabling Innovation in Cam-
pus Networks, SIGCOMM Comput. Commun. Rev., Vol. 38(2), pp. 69–74,
2008.

[38] Bansal et al., Openflow management and configuration protocol, 2014.
[Online]. Available: https://www.opennetworking.org/sdnresources/onf
-specifications/openflow-config.

[39] B Pfaff et al., The open vswitch database management protocol, IETF RFC
7047, Dec 2013.

[40] Open vSwitch Configurations [Online]. Available: http://openvswitch.org/
support/dist-docs/ovs-ofctl.8.txt.

[41] NOX and POX repository [Online]. Available: https://github.com/noxrepo/.

[42] David Erickson, The Beacon OpenFlow Controller, HotSDN, pp. 2013.

INTRODUCTION 51

[43] Maestro code Repository [Online]. Available:
https://code.google.com/p/maestro-platform/.

[44] Trema OpenFlow controller [Online]. Available:
https://trema.github.io/trema/.

[45] Ryu OpenFlow controller [Online]. Available: https://osrg.github.io/ryu/.

[46] Floodlight code Repository [Online]. Available:
http://www.projectfloodlight.org/floodlight/.

[47] OpenDayLight code Repository [Online]. Available:
https://www.opendaylight.org/.

[48] ONOS code Repository [Online]. Available: http://onosproject.org/.

[49] D. Y. Huang et. al., High-Fidelity Switch Models for Software-Defined
Network Emulation, HotSDN, pp. 43-48, 2013.

[50] H. Pan et al., The FlowAdapter: enable flexible multi-table processing on
legacy hardware, HotSDN, pp. 85-90, 2013.

[51] J. Vasseure, M. Pickavet, Piet Demeester, Network Recovery - Protection
and Restoration of Optical, SONET-SDH, IP, and MPLS, Morgan Kaufmann
Publishers, 2004.

[52] Benjamin J. van Asten, Niels L. M. van Adrichem, Fernando A. Kuipers,
Scalability and resilience of software-defined networking: an Overview,
arXiv:1408.6760, 2014.

[53] H. Zeng, P. Kazemian, G. Varghese and N. McKeown, Automatic Test Packet
Generation, CoNEXT, pp. 241–252, 2012.

[54] S. Son, S. Shin, V. Yegneswaran, G. Gu, Model checking invariant security
properties in OpenFlow, ICC, pp. 1974-1979, 2013.

[55] E. Al-Shaer and S. Al-Haj, FlowChecker: configuration analysis and verifi-
cation of federated openflow infrastructures, SafeConfig, pp. 37–44, 2010.

[56] P. Kazemian, G. Varghese, N. McKeown, Header Space Analysis: Static
Checking for Networks, NSDI, pp. 113–126, 2012.

[57] A. Khurshid, and W. Zhou, M. Caesar, Matthew, Godfrey, P. Brighten, Veri-
Flow: Verifying Network-wide Invariants in Real Time, HotSDN, pp. 49–54,
2012.

52 CHAPTER 1

[58] M. Haohui, A. Khurshid, R. Agarwal, M. Caesar, P. Brighten Godfrey, S.
T. King, Debugging the Data Plane with Anteater, ACM SIGCOMM, pp.
290–301, 2011.

[59] R. Droms, Dynamic Host Configuration Protocol,
https://www.ietf.org/rfc/rfc2131.txt, RFC 2131, 1999.

[60] Federal Communications Commission FCC 10-201. [Online]. Available:
https://apps.fcc.gov/edocs public/attachmatch/FCC-10-201A1.pdf.

[61] J. Gettys et. al., Bufferbloat: dark buffers in the internet, Communications of
the ACM, Vol. 55(1), pp. 57–65, 2012.

[62] iLabt.iMinds [Online]. Available: http://ilabt.iminds.be/.

[63] Mininet Virtualization Platform [Online]. Available: http://mininet.org/.

[64] DPDK Platform [Online]. Available: http://dpdk.org/.

[65] NS3 [Online]. Available: https://www.nsnam.org/.

2
OpenFlow: Meeting carrier-grade

recovery requirements

This chapter investigates fast-failure recovery techniques for meeting carrier-
grade quality in an out-of-band OpenFlow network. Out-of-band means that there
is a separate network for control traffic and for data traffic. To achieve carrier-
grade quality, the network should be able to recover from a failure within 50 ms.
Therefore, we apply two well-known failure recovery techniques, restoration and
protection, in OpenFlow. In the case of restoration, recovery paths are established
after a failure occurs and in the case of protection, recovery paths are established
before a failure occurs and hence, when the failure is detected, traffic is redirected
to the recovery path. The chapter concludes that OpenFlow can restore traffic, but
its dependency on the centralized controller means that it is hard to achieve 50
ms restoration in a large network serving many flows, so we need to remove this
dependency and switch to protection to meet the carrier-grade recovery require-
ment.

? ? ?

54 CHAPTER 2

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet,
and Piet Demeester

Published in Computer Communications, March 2013 1

Abstract OpenFlow, initially launched as a technology-enabling network and
application experimentation in a campus network, has a disruptive potential
in designing a flexible network, fostering innovation, reducing complexity and
delivering the right economics. This paper focuses on fault tolerance of OpenFlow
to deploy it in carrier-grade networks. The carrier-grade network has a strict
requirement that the network should recover from a failure within a 50 ms
interval. We apply two well-known recovery mechanisms to OpenFlow networks:
restoration and protection, and run extensive emulation experiments. In OpenFlow,
the controlling software is moved to one or more servers (controllers) which can
control many switches. For fast failure recovery, the controller must notify all
the affected switches about the recovery action within a ms interval. This leads
to a significant load on the controller. We show that OpenFlow may not be able
to achieve failure recovery within a 50 ms interval in this situation. We add the
recovery action in the switches themselves so that the switches can do recovery
without contacting the controller. We show that this approach can achieve recovery
within 50 ms in a large-scale network serving many flows.

Keywords

Carrier-grade; OpenFlow; Protection; Restoration

2.1 Introduction

There is almost no practical way to experiment with new protocols in sufficiently
realistic settings (e.g., at the scale carrying real traffic) to gain the confidence
needed for their widespread deployment. In this context, OpenFlow [1] has
caught attention of many researchers and router vendors. It is developed in a
clean-slate future internet program by Stanford University, which aims to offer
a programmable network to test new protocols in current Internet platforms. If
operators want to program the behavior of networking devices such as routers or
switches, they require direct programming of the forwarding hardware. The core
idea of OpenFlow is to provide direct programming of a router or switch to monitor
and modify the way in which the individual packets are handled by the device. It
is based on the fact that most modern routers/switches contain a proprietary FIB

1Compared to the publication in Computer Communications, additional section “Related work”
(Section 2.6), footnote 2, and references [22], [23], [24], [25] and [26] are added to the chapter.

FAST FAILURE RECOVERY TECHNIQUES 55

(Forwarding Information Base) which is implemented in the forwarding hardware
using TCAMs (Ternary Content Addressable Memory). OpenFlow provides the
concept of a FlowTable that is an abstraction of the FIB. In addition to this, it
provides a protocol to program the FIB via “adding/deleting/modifying” entries
in the FlowTable. This is achieved by one or more separate devices (so-called
controllers) that communicate with the OpenFlow switches via the OpenFlow
protocol. The switch/router that exposes its FlowTable through the OpenFlow
protocol is called an OpenFlow switch/router.

The standard switch/router consists of interlinked elements that handle
forwarding of packets (data plane) as well as controlling of forwarding (control
plane). The control plane of these switches/routers implements almost all the
standard protocols. However, only few of the protocols are required and effectively
used. This makes switches/routers complex, expensive, and difficult to extend with
new functions. OpenFlow addresses these issues by separating the control and
forwarding plane. An OpenFlow network has a centralized programming model,
where one or more controllers manage the underlying switches. This design is
highly flexible, since it is the controller that can decide what actions (forward or
drop) have to be taken for the different packets and at the same time forwarding
can be done in hardware. Furthermore, the new functions can also be deployed
very easily by just changing the software of one or more controllers.

Controller
OpenFlow

Protocol

Secure

Channel

Flow Entry
<Packet Header, Statistics, Actions>

Flow Table

Flow Entry

Flow Entry

OpenFlow

Switch/Router

Figure 2.1: OpenFlow principle

An entry in the FlowTable consists of (1) a “packet header” that defines the
flow, (2) “statistics” which keep track of matching packets per flow, and (3)
“actions” which define how incoming packet should be processed. When a packet
arrives at the OpenFlow switch, it is compared against the Flow Entries in the
FlowTable. If a match is found, the actions of that entry are performed. If no
match is found, the packet (a part thereof) is forwarded to the controller over the

56 CHAPTER 2

secure channel (shown in Figure 2.1). Thereafter, the controller can determine
how the packet can be handled. It may return the packet to the switch indicating
the forwarding port, or it may add the valid Flow Entries in the switches.

Large-scale experimental testbeds are available for researchers in the US
through the GENI (Global Environment for Network Innovations) [2], in Japan
through the JGN2plus research network [3], and in Europe through the OFELIA
(OpenFlow in Europe: Linking Infrastructure and Applications) [4] projects.
Several algorithms resulting from experiments on those testbeds have been
deployed in many networks supporting various applications. Currently, industrial
players such as Deutsche Telekom, Google, Microsoft, Verizon, and Yahoo
have shown substantial interest towards OpenFlow and have formed ONF (Open
Networking Foundation) [5] to standardize the OpenFlow protocol.

At present, one of the European projects named SPARC (SPlit ARchitecture
Carrier-Grade Networks) [6] examines how carrier-grade networks can benefit
from OpenFlow. Carrier-grade networks have a high capacity to support hundreds
of thousands of customers and assume extremely high availability. Carrier-grade
supports services such as cellular-telephone conversations, credit-card transactions
that assume the availability of a reliable network. The requirement for the
availability in commercial telecom networks is typically 99.999% [7]. The
disruption of communication can suspend critical operations. In fact, there is
a service level agreement between the business customer and a service provider
to deliver a high-quality service. If a network operator is unable to meet the
agreement, the service providers have to compensate for the loss of service. A
failure recovery requirement in a carrier-grade network is sub-50 ms [8], which
implies that the failure should be detected and the traffic should be recovered
within a 50 ms interval.

Failure recovery in OpenFlow requires modification and addition of the Flow
Entries in the OpenFlow switches. This paper studies fault tolerance of OpenFlow
networks in large-scale carrier-grade networks. We implement two well-known
mechanisms of failure recovery i.e., restoration and protection, in OpenFlow
networks. In the case of restoration, alternative paths are not established until a
failure occurs. In the case of protection, alternative paths are reserved before the
failure occurs in the network. The controller in restoration must notify all the
affected switches about a recovery action immediately. This leads to a significant
load on the controller that delays the recovery action within the switches. We
show that OpenFlow because of its centralized architecture may not be able to
achieve failure recovery within a 50 ms interval in this situation. For protection,
we add the recovery action in the switches themselves so that the switches can do
recovery without contacting the controller. We perform an extensive emulation of
our recovery mechanisms in different network scenarios and test OpenFlow with
increased number of flows. We show that protection can achieve recovery within

FAST FAILURE RECOVERY TECHNIQUES 57

50 ms in a large-scale network serving many flows.

The rest of the paper is organized as follows: Section 2.2 presents network
resiliency, Section 2.3 describes the emulation environment, Section 2.4 presents
results, Section 2.5 describes additional considerations, Section 2.6 describes the
related work and finally Section 2.7 concludes.

2.2 Network resiliency

Network resilience is the ability to provide and maintain an acceptable level of
service in presence of failures. We first describe general mechanisms that are
used in carrier-grade networks to recover from failures. Then, we describe the
integration of those mechanisms in OpenFlow in order to fulfill the network
availability requirements of carrier-grade networks.

The recovery mechanisms [10, 11] that are used in carrier-grade networks are
divided into two categories: restoration and protection. In the case of restoration,
recovery paths can be either pre-planned or dynamically allocated, but resources
required by the recovery paths are not allocated until a failure occurs. Thus, when
the failure occurs, additional signaling is required to establish the restoration path.
However, in the case of protection, recovery paths are always pre-planned and
reserved before a failure occurs. Hence, when the failure occurs, no additional
signaling is needed to establish the protection path and traffic can immediately
be redirected. In segment protection, an end-to-end working path is divided into
segments, each of which is protected by a unique backup segment. However,
in path protection, a complete end-to-end working path is protected by a unique
backup path. There are different types of protection schemes available for carrier
grade networks. These are: 1+1, 1:1, 1:N and M:N protection [11].

Resilience is achieved in carrier-grade networks by first designing a network
topology with failures in mind in order to provide alternate paths. The next step is
adding the ability to detect the failures and react to them using a proper recovery
mechanism. Loss of Signal (LOS) and Bidirectional Forwarding Detection (BFD)
[9] are widely used to detect failures in carrier-grade networks. LOS can detect a
failure in one particular port of the forwarding device, whereas BFD can detect
failures in the path between any two forwarding devices. BFD is a simple
Hello protocol that in many aspects is similar to the detection components of
many routing protocols like OSPF (Open Shortest Path First). A pair of systems
(end-to-end devices) transmits BFD packets periodically between each other, and
if a system stops receiving BFD packets, the path between neighboring systems is
assumed to have failed.

58 CHAPTER 2

2.2.1 Resilience for an OpenFlow Network

A failure can be detected in OpenFlow by a Loss of Signal. It causes an OpenFlow
port to change to the “down” state from the “up” state. An OpenFlow port
is the port bounded to an OpenFlow switch to transmit and receive packets.
This mechanism (i.e., LOS) detects only link-local failures and may be used in
restoration. However, for path protection, end-to-end failure detection in any path
in forwarding switches is required.

Recovery in OpenFlow can be done in essentially two different ways. One
approach is to support the recovery mechanisms of a specific implemented
protocol like MPLS (Multi Protocol Label Switching Protocol) [12, 13] into
OpenFlow. The other approach is to build resilience, supporting recovery of
arbitrary flows, regardless of the type of traffic they carry. We explore this option
for OpenFlow networks.

(B)

(C)
Modifying

Flows

Deleting

Flows

Working Path

Deleting

Flows

Adding

FlowsRestoration Path

(D)

(E)

(A)

Adding

Flows
Adding

Flows

Figure 2.2: Restoration mechanism

Fast restoration in OpenFlow can be implemented in the controller. It requires
an immediate action of the controller after a notification of a change in a link status
(i.e., LOS). Failure recovery can be performed by removing affected Flow Entries
and installing new entries in the affected switches as fast as possible following the
failure notification [14, 15]. The restoration mechanism can be seen in Figure 2.2
which consists of OpenFlow switches A, B, C, D and E. Assuming the controller
knows the network topology, we can calculate a path from a source node to a
destination node. In Figure 2.2, the controller first installs path < ABC >

by adding the Flow Entries in the switches A, B and C. Once the controller
receives the failure-notification message of link BC, it calculates a new path, i.e.,
< ADEC >. For OpenFlow switch A, as the flow in the Flow Entry for the
working path (< ABC >) and the restoration path (< ADEC >) is identical but
the action is different (i.e. to forward to switch B or D), the controller modifies
the Flow Entry at A. In addition, for the restoration path (< ADEC >), there
are no Flow Entries installed in the switches D, E, and C related to this flow, the
controller must add these entries in the respective switches. The Flow Entries in

FAST FAILURE RECOVERY TECHNIQUES 59

C for the working path (< ABC >) and the restoration path (< ADEC >) are
different, since the incoming port is assumed to be a part of the matching header
in Flow Entries. Once all the affected Flow Entries are updated/installed in all
the switches, the flow is recovered from a failure. After the immediate action of
restoration, the controller can clean up the other switches by deleting the Flow
Entries at B and C related to the older path (< ABC >).

Flow Entry

Flow Entry

Flow Entry

Group Entry

Flow Entry

Flow Entry

Flow Entry

Alive Status

& Actions

Alive Status

& Actions

Group Table

FlowTable FlowTableFlowTable

Secure Channel

to the Controller

Group

ID
Group

Type

Action

Buckets
Group Entry

Group Entry

(A)

Protection Path

(D)

(E)

(A)

(B)

(C)

One Group Entry

One Flow Entry

One Flow Entry

One Flow Entry

One Flow Entry

Working Path

One Flow Entry

(Working Path)

One Flow Entry

(Protection Path)

(B)

Figure 2.3: (A) Group Table Concept (B) Protection Mechanism

In the time between failure detection and completion of restoration, data
packets may be lost. In order to further reduce the packet loss resulting from
delay in the restoration action, we can turn to protection. Protection removes the
need of OpenFlow switches to contact the controller for modification and addition
of the Flow Entries to establish the alternative path. This can be accomplished
by pre-computing the protection path and establishing it together with the working
path. In 1+1 protection, traffic is duplicated at both the protected and working path,
and in 1:1 protection, traffic is transmitted to the protection path upon a failure at
the working path. Protection allows fast recovery, but requires a large FlowTable.

To implement a protection scheme, we applied the Group Table concept
specified for OpenFlow in its version 1.1 [16]. Unlike the FlowTable, the
GroupTable consists of Group Entries that in turn contain a number of actions.
To execute any specific entry in the GroupTable, a Flow Entry forwards packets
to a Group Entry having a specific group ID. Each Group Entry consists of the
group ID (must be unique), a group type and a number of action buckets (shown
in Figure 2.3A). An action bucket consists of an alive status (e.g., watch port and
watch group in OpenFlow version 1.1 [16]) and a set of actions that are to be
executed based on the value of the associated alive status. OpenFlow introduces
the fast-failover group type [16] in order to perform fast failover without needing to
involve the controller. This group type is important for our protection mechanism.
Any group entry of this type consists of two or more action buckets with a

60 CHAPTER 2

well-defined order. A bucket is considered alive if its associated alive status is
within a specific range (i.e., watch port or watch group is not equal to 0xffffffffL).
The first action bucket describes what to do with a packet under normal conditions.
If this action bucket has been declared as unavailable that is due to change in status
of a bucket (i.e, 0xffffffffL), the packet is treated according to the next available
bucket. The status of the bucket can be changed by the monitored port going into
the “down” state or through other mechanisms such as BFD.

In our 1:1 path protection mechanism, the above Group Table concept of
OpenFlow is used without any modification. We used BFD to detect failures. Once
BFD declares a failure in the working path, the action bucket associated with this
path in the GroupTable is made unavailable by changing the value of the alive
status.

1:1 path protection can be seen in Figure 2.3B. When a packet arrives at the
ingress OpenFlow switch (A), the controller installs two disjoint paths: one in
< ABC > and the other in < ADEC >. The ingress OpenFlow switch (A)
is the switch that actually needs to take a switching action on a failure condition,
i.e., to send a packet to B during the normal condition and to send a packet to D
during the failure condition. For this particular flow of the packet, the Group Table
concept can be applied at the ingress OpenFlow switch (A). The Group Entry in
this switch may contain two action buckets: one for output port B and the other
for output port D. In addition, one entry is added in the FlowTable of switch A,
which points matched packets to the above Group Entry in the GroupTable. For
the other switches, B and C for the working path, and D, E and C for the protection
path, only one Flow Entry is added. Thus in our case, switch C contains two Flow
Entries: one for the working path < ABC > and the other for the protection
path < ADEC >. Once a failure is detected by BFD in the working path, the
ingress OpenFlow switch (A) changes the alive status of the first bucket in the
Group Entry. Thus, the action related to the next bucket, whose output port is D,
can be taken. As the Flow Entries in D, E and C related to the < ADEC > path
are already present, there is no need to install these in the respective switches upon
the failure.

2.3 Emulation environment

In [14], we have shown that restoration meets the 50 ms recovery requirement
when there are two flows in a small network. However, as carrier-grade networks
are typically large, serving many flows, we emulated restoration and protection
on increasing number of flows in a large-scale European network. The emulated
European topologies, testbed and methodology are described in this section.

FAST FAILURE RECOVERY TECHNIQUES 61

2.3.1 Emulation testbed and topologies

E1200

ESD Strap

PEM 0 PEM 1

CC-E12 00 -FL TR

0 1 2 3 4 5 6 R0 R1 7 8 9 10 11 12 13

PEM

CAUT ION- Use c o pp er co n du cto rs on l y

La tch Rel e as e Sta tu s

CCE12 0 0-PW R-DC

PEM

- +

CC-E-SF M

Ac t i ve

Sta tus

Switch Fabric

P EM

C AUT ION- Use c o pp er co nd u ctors on ly

La tch Re l ea se Sta tu s

CCE12 0 0-PW R-DC

P EM

- +

CC-E-SFM

Acti ve

Sta tus

Switch Fabric

CC-E-SFM

Ac ti v e

Statu s

Switch Fabric

CC-E-SFM

Ac tiv e

Sta tu s

Switch Fabric

CC-E-SFM

Acti ve

Sta tus

Switch Fabric

CC-E-SFM

Acti ve

Statu s

Switch Fabric

CC-E-SFM

Ac tiv e

Sta tu s

Switch Fabric

CC-E-SFM

Activ e

Sta tus

Switch Fabric

CC-E-SFM

Ac ti ve

Statu s

Switch Fabric

Internet

Force10 Ethernet

Switch

Typhon Router

D-Link Ethernet Switch

Node 1 Node 100Node 75Node 25

(A) (B)
Oslo

Stockholm

Copenhagen

Amsterdam

Dublin

London Brussels

Paris

Madrid

Zurich Milan

Berlin

Athens

BudapestVienna

Prague

Warsaw

Munich

Rome

Hamburg

Barcelona

Bordeaux Lyon

Frankfurt

Glasgow

Belgrade

Strasbourg

Zagreb

Figure 2.4: (A) Virtual wall testbed (B) BT topology

Our virtual-wall emulation testbed is a generic test environment (based on
emulab [17]) for advanced network, distributive software and service evaluation.
It consists of 100 physical nodes (dual processor, dual core servers and up to six
1 Gb/s interfaces per node) interconnected by a non-blocking 1.5 Tb/s Force10
Ethernet switch (shown in Figure 2.4A). It uses the concept of Virtual LAN
(VLAN) to build arbitrary topologies. The nodes in our testbed may be used for
network emulation (bandwidth, delay, packet loss) of a real network environment.

Amsterdam

London

Brussels

Paris

Zurich
Milan

Berlin

Vienna

Prague
Munich

Rome

Hamburg

Lyon

Frankfurt

Strasbourg

Zagreb

1
3

2

6

4
14

9

8
7

5

11

10

12

13

15

16 17
(Link ID)

(Link ID)

(A) Oslo

Stockholm

Copenhagen

Amsterdam

Dublin

London Brussels

Paris

Madrid

Zurich Milan

Berlin

Athens

BudapestVienna

Prague

Warsaw

Munich

Rome

Hamburg

Barcelona

Bordeaux Lyon

Frankfurt

Glasgow

Belgrade

Strasbourg

Zagreb

(B)

Figure 2.5: (A) CT topology (B) RT topology

We emulated an extensive failure recovery experiment using the topologies
that were developed within the COST 266 action project. In this project, a
basic reference topology (BT topology in Figure 2.4B) and variations of the BT

62 CHAPTER 2

topology (e.g., Figure 2.5), suited for a pan-European network, were designed. The
variations of the BT topology, Core Topology (CT), Large Topology (LT), Ring
Topology (RT) and Triangular Topology (TT), were obtained by varying the total
number of nodes and the degree of meshedness. The CT, and LT differ with respect
to the number of nodes. The BT consists of 28 nodes, the CT consists of 16 nodes,
and the LT consists of 37 nodes. The other derived topologies contained the same
number of nodes as the BT, but the difference lies in the degree of meshedness.
The topology called Ring topology (RT), Figure 2.5B, is much sparser than the
BT. The details of these topologies can also be found in [19]. We used the BT, CT
and RT topologies for our experiments.

In our experiments, each node of the considered COST 266 topologies acted as
an OpenFlow switch. In our emulation, we connected a server to each OpenFlow
switch (not shown in Figure 2.4B and 2.5). We built these topologies in our
virtual-wall testbed. A virtual-wall node (shown in Figure 2.4A) acted as an
OpenFlow switch as well a server in our emulation. In our emulation, one CPU
core of a virtual-wall node has been assigned to an OpenFlow switch and another
CPU core has been assigned to a server. Each of the OpenFlow switches has also
been provided a dedicated interface to a switched Ethernet LAN, which establishes
a connection to the single controller, i.e., out-of-band connection. Out-of-band
means that there is a separate channel for the control and data plane i.e. a failure
in the data plane does not affect communication between the switches and the
controller.

2.3.2 Emulation methodology

There are many extensions for the OpenFlow protocol. These extensions have been
released publicly in the form of OpenFlow versions. In April 2012, OpenFlow
version 1.3 has been released by ONF. In addition, many OpenFlow controllers
are also available for controlling OpenFlow networks. These are NOX, Beacon,
Onix, Helios and Maestro. We implemented restoration and protection in the NOX
controller and in the OpenFlow version 1.1 (developed by Ericsson [18]) and used
these for our emulations.

To evaluate the recovery time, each server generated packets to all other servers
using the Linux kernel module PKTGEN. Each server sent packets to all the other
servers at the constant interval of 6 ms. The size of the PKTGEN packets was
64 bytes. We manually configured the routing table in each server to transmit the
packets to the OpenFlow network.

For failure detection in protection, each working path was monitored by adding
an additional BFD flow in the OpenFlow switches. BFD transmits a failure
notification message when its session breaks. To receive the failure notification
message, a virtual link (the link between veth1 and veth2 in Figure 2.6) has been

FAST FAILURE RECOVERY TECHNIQUES 63

OpenFlow

Data-Plane

eth1

veth1

K

e

r

n

e

l

eth1:1

veth2
BFD

Control-Plane

Failure/Alive

Notification

Figure 2.6: Integration of BFD in OpenFlow

created between the OpenFlow switch and BFD (two different processes in each
OpenFlow switch). Furthermore, an alias of the OpenFlow port (eth1:1) has been
created for BFD to receive packets from the OpenFlow port (eth1). The BFD
failure detection time in our emulation was 40 to 44 ms. 2 For restoration, we did
not establish a BFD session. The OpenFlow switches detected the failure when an
LOS was declared by a port as a “port down” event.

We derive an analytical model for the recovery time in the next section. The
first experiment was performed to measure parameters of the analytical model. We
used these parameters to verify our model. The second experiment was carried out
on the CT topology. In this experiment, each server sent two different flows to all
other servers. This experiment was performed with 480 flows in the network.
The aim of this experiment was to find the recovery time experimentally and
compare with the mathematical results that are calculated via our analytical model.
The third experiment was similar to the second experiment, but was performed
with all the different topologies. The aim of this experiment was to compare the
recovery time in different network topology scenarios. The fourth experiment was
performed using a node failure instead of a link failure. The aim of this experiment
was to test OpenFlow with a node failure condition. The fifth experiment was
performed by increasing the number of flows in the CT topology. We increased the
number of flows up to 24000 in this experiment. The aim of this experiment was
to do a scalability experiment (i.e., how the number of flows affects the recovery
time) in an OpenFlow network.

We now describe the second experiment in detail. All the further experiments
are based on the second experiment. In the second experiment, we break a link

2The packet send interval is kept as 10 ms and if continuously 4 BFD packets are missed, BFD
detects a failure.

64 CHAPTER 2

 0

 100

 200

 300

 400

 500

 600

-100 -80 -60 -40 -20 0 20 40

T
ra

ff
ic

 (
N

o
.

o
f

P
ac

k
et

s
p

er
 1

0
0

 m
s)

Experiment Time in Seconds

Critical Time
For Controller

(A)

 0

 100

 200

 300

 400

 500

 600

-100 -80 -60 -40 -20 0 20 40

T
ra

ff
ic

 (
N

o
.

o
f

P
ac

k
et

s
p

er
 1

0
0

 m
s)

Experiment Time in Seconds

(B)

Figure 2.7: (A) Restoration (NOX intensity) (B) protection (NOX intensity)

at the 0 s and find the recovery time. We describe the link break by failing the
London-Amsterdam link in the CT topology (Figure 2.5A). Figure 2.7 shows
the traffic that was captured using the tcpdump utility in the NOX controller.
At the beginning of the experiment, there were 16 spikes (from -106 to -92 s)
after each one-second interval. These spikes were due to the traffic from the
OpenFlow switches to establish paths between servers. The one-second between
the spikes occured because we have started sending the pktgen traffic after waiting
one-second between each server. The one-second interval was used to avoid
overloading the NOX controller as the switches can try to establish too many
flows in a short time span. The spikes in Figure 2.7B are higher than the spikes
in Figure 2.7A because protection establishes an alternative path together with
the working path. In protection, each OpenFlow switch also established the BFD
sessions (the spikes from -78 to -64 s in Figure 2.7B) for each different working
path. There were small spikes periodically in the controller traffic. These were
the echo messages that were sent to check aliveness of the controller links. The
height and number of these spikes are different in Figure 2.7A and 2.7B. This was
due to the minor time difference between the start of both experiments. At the 0 s,
we have failed the link London-Amsterdam by disabling the Ethernet interface
at London. When the OpenFlow switch (London) detected this failure, the
notification message was sent to the controller. Since the controller in restoration
starts recovery upon a failure notification, there is a large spike at around 0 s

in Figure 2.7A. These were the flow-mod messages and the acknowledgments of
these messages sent to reestablish the new path. In protection, as backup flows
were installed before the failure occurs, the controller does not take any action
upon the failure. Therefore, we do not see any spike at 0 s in Figure 2.7B.

Figure 2.7 shows that in normal operation, the control network load is generally
low. Implementing a high speed control network only for restoration (shown
by critical time in Figure 2.7A) will probably not make sense. Implementing

FAST FAILURE RECOVERY TECHNIQUES 65

protection mechanisms in the switches will be more cost-efficient, it may
slightly increase the bandwidth requirement at flow setup time due to extra
protection information to be sent to the switch, but highly decrease the bandwidth
requirements during the failures by allowing the switch to perform the protection
switching without the controller interference.

2.4 Results

This section is structured according to the number of different experiments
performed for our emulation.

2.4.1 Analytical model and measurement of its parameters

Controller
TLU TCALC TFM TLU

TFM

1st affected flow 2nd affected flow 3rd

Failure

Notification

Message

TCALC

OFS1
OFS2
OFS3

OFSn

Failure

TFD

TUPDATE TUPDATE

Figure 2.8: Analytical model for restoration

In this section, we derive an analytical model to calculate the failure recovery
time in an OpenFlow network. Our model is based on the failure recovery
model described in [10] and [20]. We extended this model for our implemented
restoration scheme.

Figure 2.8 shows the recovery time in restoration, i.e, when the failure
is detected (TFD), the failure notification message is sent, the affected flow
is searched (TLU), a new path is calculated (TCALC) and then the flow-mod
messages (TFM) are sent, then again the next affected flow is searched (TLU)
and so on. When switches receive the flow-mod message, the FlowTable is also
updated with a new Flow Entry (TUPDATE). We calculate the mathematical

66 CHAPTER 2

expression for the restoration time (TR) for N affected flows (f) and it is shown in
Eq. 2.1. TPROP in Eq. 2.1 is the propagation time. TLU,f , TCALC,f and TFM,f

are the TLU , TCALC and TFM for the affected flow f .

TR = TFD +TPROP +

N∑
f=1

(TLU,f +TCALC,f +TFM,f)+TPROP +TUPDATE

(2.1)

6

8

10

12

C
o

n
tr

o
ll

er
 L

o
o

k
u

p
 T

im
e

(m
s)

RT BT CT

0

2

4

0 1000 2000 3000 4000

C
o

n
tr

o
ll

er
 L

o
o

k
u

p
 T

im
e

(m
s)

Number of Flows

(A)

P
at

h
 C

al
cu

la
ti

o
n

 T
im

e
(m

s)

100

150

200

250
RT CT BT

Number of Paths Calculated

P
at

h
 C

al
cu

la
ti

o
n

 T
im

e

0

50

100

0 100 200 300 400

(B)

Figure 2.9: (A) Flow lookup time (affected/unaffected) (B) Controller path calculation time

In our implemented mechanism, the affected port is searched in the flow path
linearly for the link failure. If it is found, the flow is declared to be affected. The
lookup time for the number of flows is shown in Figure 2.9A.

If a flow is declared to be affected, a new shortest path is calculated in our
algorithm. Figure 2.9B shows the path calculation time in the RT, BT and CT
topology. The paths calculated in our experiment are the shortest paths obtained
via the Dijkstra algorithm. The time complexity of the implemented Dijkstra
algorithm is O(n2) where n is the number of nodes. This time can be decreased to
E + n× log(n) (E is the number of edges) by using a Fibonacci heap for storing
the topology graph. The path calculation times are measured for all topologies
used in experiments and are shown in Figure 2.9B.

We measured the flow-mod transmission capacity of the controller over a
1000 Mbps link. Figure 2.10A shows the transmission capacity of the controller
link when the flow-mod messages were transmitted over 1, 3, 4 and 12 TCP
connections. We observed 38%, 100%, 100%, and 100% of the CPU utilization for
1, 3, 4 and 12 TCP connections respectively. The flow-mod transmission capacity
decreased when the controller started transmitting flow-mod messages on all the 12
TCP connections. This is because of context switching between the different TCP
connections. Figure 2.10A shows the maximum flow-mod transmission capacity
as 15000 to 40000 packets per second.

A FlowTable in the OpenFlow 1.1 software, implemented by Ericsson, is a
linear table. If a match is found, the entry is modified in the table. Otherwise, a

FAST FAILURE RECOVERY TECHNIQUES 67

 1000

 2000

 3000

 4000

 5000

 6000

 0 1 2 3 4 5 6 7

B
an

d
w

id
th

 U
sa

g
e

p
er

 1
0
0
 m

s

Experiment Time in Seconds

1 TCP connection
2 TCP connections
4 TCP connections

12 TCP connections

Powered by TCPDF (www.tcpdf.org)

 3
1 TCP Connection
 3 TCP Connections
4 TCP Connections
12 TCP Connections

Experiment Time in Seconds

1 TCP Connection
3 TCP Connections
 4 TCP Connections
12 TCP Connections

Experiment Time in Seconds

(A)

0

1

2

3

4

5

6

7

8

0 5000 10000

Flow Entries in the FlowTable

Min

Max

Avg (Modify)

Add

F
lo

w
 E

n
tr

y
 A

d
d

/M
o

d
if

y
 T

im
e

(m
s)

(B)

Figure 2.10: (A) Controller flow-mod transmission capacity (B) Flow entry
modification/addition time

new entry is added at the end. The time for modification (minimum, average and
maximum) and addition of an entry with respect to the number of Flow Entries in
the table is shown in Figure 2.10B.

We calculated each time (flow lookup, path calculation, flow-mod transmission
and flow-entry addition) separately to determine the recovery time (Eq. 2.1) which
we compare with the experimental results in the next section.

Now we describe the time complexity of our protection mechanism. The
recovery time in the protection mechanism depends on the time the switch takes
to modify the alive-status of the Group Entries. The switch takes O (1) time
(approximately 5.8 microsecond) to modify the alive-status of one Group Entry.
For n Group Entries, it takes O(n) time. For our experiment, the number of Group
Entries in a switch is equal to the number of different paths that are established
by it. Thus, the number of Group Entries (per switch) for the CT, BT, and RT
topology is 15, 27, and 27 respectively.

2.4.2 Emulation results

We now show the results of the experiment in which the link London-Amsterdam
was failed in the emulated CT topology (the second experiment). Figure 2.11
shows the traffic at the London-Amsterdam (from -0.2 to 0.3 s) link, which was
captured at Amsterdam. As the port at London was disabled at 0 s, London
stopped transmitting packets at this link. However, as the port at Amsterdam was
not disabled, Amsterdam continued transmitting traffic on the same link until the
controller establishes new fault-free paths. There is no traffic in Figure 2.11A after
0.240 s because all the traffic has been switched to some other fault-free path.
However, the total traffic becomes equal to the BFD traffic after about 0.05 s in
Figure 2.11B. This is because only BFD traffic remained on this link. It was not
switched to some other path.

68 CHAPTER 2

 0

 20

 40

 60

 80

 100

 120

 140

-0.2 -0.1 0 0.1 0.2 0.3

T
ra

ff
ic

 (
N

o
.

o
f

P
ac

k
et

s
p

er
 1

0
 m

s)

Experiment Time in Seconds

Total Traffic
Traffic from London (Server)

Traffic from Amsterdam (Server)

(A)

 0

 20

 40

 60

 80

 100

 120

 140

-0.2 -0.1 0 0.1 0.2 0.3

T
ra

ff
ic

 (
N

o
.

o
f

P
ac

k
et

s
p

er
 1

0
 m

s)

Experiment Time in Seconds

Total Traffic
Traffic from London (Server)

Traffic from Amsterdam (Server)
BFD Traffic

(B)

Figure 2.11: (A) Restoration (Traffic on the affected link) (B) Protection (Traffic on the
affected link)

0

10

20

30

40

50

60

70

80

-0.2 0 0.2 0.4

T
ra

ff
ic

 (
N

o
.

o
f

P
ac

k
et

s
p

er
 1

0
 m

s)

Experiment Time in Seconds

Total PKTGEN Traffic

Traffic London (Server)

(A)

0

10

20

30

40

50

60

70

80

-0.2 -0.1 0 0.1 0.2 0.3 0.4

T
ra

ff
ic

 (
N

o
.

o
f

P
ac

k
et

s
p

er
 1

0
 m

s)

Experiment Time in Seconds

Total PKTGEN Traffic

Traffic London (Server)

BFD Traffic

(B)

Figure 2.12: (A) Restoration (traffic on the restored link) (B) Protection (traffic on the
protected path)

Figure 2.12 shows the traffic on the link London-Paris. Traffic London (Server)
in Figure 2.12 is the traffic from London (server) to all the other servers. The traffic
from -0.2 to 0.4 s is shown in Figure 2.12. After the failure recovery action at 0
s, this was only the link connecting London, so all the traffic from and towards
London (server) has to pass through this link. At the time of the link failure (at 0
s), Figure 2.12 shows a drop in the total PKTGEN traffic on this link. The dropped
traffic was the traffic that was coming from the link London-Amsterdam to the link
London-Paris. Restoration/protection reroutes the affected traffic. Figure 2.12A
shows that there is a drop in the total traffic for approximately 0.190 s, followed
by a step-wise increase in traffic until 0.240 s when all flows in our experiment
were restored. Figure 2.12B shows this time as approximately 0.040 s, followed
by a stepwise increase until 0.050 s for protection. Figure 2.12B shows a small
decrease in the BFD traffic after the failure because the BFD traffic from the link

FAST FAILURE RECOVERY TECHNIQUES 69

London-Amsterdam through London was completely lost after the link failure.

 0

 2

 4

 6

 8

 10

 12

 14

 0.18 0.19 0.2 0.21 0.22 0.23 0.24

F
lo

w
_
M

o
d
 P

ac
k
et

s
p
er

 1
 m

s

Experiment Time in Seconds

Figure 2.13: NOX Flow-mod traffic in restoration

In our restoration mechanism, London detected the failure at about 0.187 s.
However, restoration took approximately 0.053 s to restore all the flows (0.187
to 0.240 s). Figure 2.13 shows a detail of 0.045 s interval (0.187 to 0.232 s) in
which the NOX controller searched the affected flows, calculated new paths and
sent flow-mod traffic to the switches.

100

1000

R
ec

o
v
er

y
 T

im
e

in
 m

s

Minimum Average Maximum
Minimum Average Maximum

Restoration:
Protection:

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
ec

o
v
er

y
 T

im
e

in
 m

s

ID of the Broken Link

16 20 28 30 32 38 40 44 48 48 60 64 66 80 88 90 108
Number of Affected Flows

(A)

-2
0
2
4
6
8

10
12
14

D
if

fe
re

n
ce

 b
et

w
ee

n
 A

n
al

y
ti

ca
l

an
d

 E
x

p
er

im
en

ta
l

ca
lc

u
la

ti
o

n

(m
s)

Restoration Protection

-10
-8
-6
-4
-2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

D
if

fe
re

n
ce

 b
et

w
ee

n
 A

n
al

y
ti

ca
l

an
d

 E
x

p
er

im
en

ta
l

ca
lc

u
la

ti
o

n

ID of the Broken Link

(B)

Figure 2.14: (A) Recovery time (experimental) (B) Recovery time difference

We did the link failure experiment for all the indicated links of Figure
2.5A. The results are depicted in Figure 2.14A. The x-axis shows the ID of the
broken links and the number of affected flows. The y-axis shows the minimum
restoration/protection time (the time it took to recover the first flow), the maximum
restoration/protection time (the time it took to recover all the flows) and the average
restoration/protection time (the expected time for any flow to be recovered after

70 CHAPTER 2

a failure). The recovery time is calculated as the number of packets dropped
multiplied by the packet send interval. The links are ordered from left to right
according to the number of flows that were affected by the link failure (Figure
2.14A) .

The Figure 2.14A shows the difference in the time when the first flow was
restored after each failure. The reason behind this is that switches detected the
failure at different time points. In our Linux node, it is difficult to measure this
failure detection time in ms, as there is some random time between the moment
we break the link and the moment the Linux system has actually disabled the link
(both receive and transmit disabled). The first flow was restored in 2 to 3 ms.
So the failure detection time in our experiment was approximately equal to the
time when the first flow was restored. In Figure 2.14A, the maximum restoration
time after failure detection is shown by the link ID 17, which is equal to 60 ms.
Figure 2.14A illustrates the dependence on the number of flows that have been
restored. Figure 2.14A also shows that all the flows were protected between 42
to 48 ms in protection. This includes the failure detection time of BFD which
was approximately 40 to 44 ms. Figure 2.14B shows the difference between the
analytical and experimental calculation of the restoration and protection time. In
the restoration calculation, the failure detection time is assumed the time when the
first flow restored in our experiment. In the protection calculation, it is assumed
44 ms. As the average path length in the CT topology is 3, we assumed that the
controller has transmitted 4 flow-mod message per affected flow in restoration.
Figure 2.14B shows the difference of ±9 ms for restoration and the difference of
-2 to +4 for protection. This difference includes the error in the recovery time
calculation that is generated by the packet send interval (6 ms) in our experimental
results.

Now we show the results of the link failure and the node failure experiment
performed on all different topologies (the third and fourth experiment). In the
link failure experiment, a link was broken, and the number of affected flows and
the recovery time were calculated. In the node failure experiment, the failure was
given by running “poweroff” command on one the CT OpenFlow switches that are
present in all the topologies, and the number of affected flows and the recovery
time were calculated. In this experiment, the controller receives a FIN message
because an OpenFlow switch disconnects from the controller. The controller then
starts the same restoration activity as performed in the link failure experiment.
The results of both experiments are depicted in Figure 2.15. The x-axis shows the
number of affected flows. The y-axis shows the recovery time after the first flow
was restored in the experiment. (Link) and (Node) in Figure 2.15 are referred to
the link and node failure experiment respectively. The number of servers in the CT,
BT and RT are 16, 28 and 28 respectively. As each server transmitted packets to
all the other servers present in the topology, we observed different number of flows

FAST FAILURE RECOVERY TECHNIQUES 71

1

10

100

1000

10000

100000

1000000

0 100 200 300 400 500 600 700R
ec

o
v

er
y
 T

im
e

af
te

r
th

e
fi

rs
t

fl
o

w
 r

ec
o

v
er

ed
 (

m
s)

Number of Affected Flows

CT BT RT

CT BT RT

CT, BT, RT

Restoration:

Protection:

Restoration:

(Link) (Link) (Link)

(Node)

(Link and Node Failure)

(Node) (Node)

Figure 2.15: Link and node failure experiment on the CT, BT and RT topologies

affected by failing the same link or the same node in different topologies. Figure
2.15 shows that the restoration time depends on the number of affected flows in
all the topologies. The results also show that the CT topology has less restoration
time than the BT or RT topology because the path calculation time in the CT is
less than the BT or RT topology.

0.1

1

10

100

1000

10000

100000

0 20 40 60 80 100 120

R
ec

o
v

er
y
 T

im
e

af
te

r
th

e
fi

rs
t

fl
o

w
 r

ec
o

v
er

ed
 (

m
s)

Growth Factor in the number of flows

(1 factor = 240 flows)

Experimental Analytical

Experimental Analytical

Restoration:

Protection:

Figure 2.16: Scalability experiment

To test scalability, we did the experiment on the CT topology, where the
number of flows from each server was increased by a factor n (1 to 100) and the link
London-Amsterdam was failed during the experiment (the fifth experiment). The

72 CHAPTER 2

factor n means each server transmitted n different flows to all other servers. In the
factor 1, there were 240 flows in the network and 33 were affected by the failure.
In the factor 100, there were 24000 flows in the network and 3300 were affected
by the failure. The experimental and analytical results are shown in Figure 2.16.
We found a linear increment in the restoration time. We observed approximately
2.5 s restoration time when we increased the number of flows by the factor 100.
However, in protection, we did not observe dependence on the increased number of
flows. This is because in protection, we established 15 Group Entries (per switch)
for all the flows in the CT topology, and modification of the affected entries has
taken less than a 1 ms time (O(n)).

We evaluated restoration and protection in mesh topologies. Carrier-grade
networks often feature a ring topology for the aggregation segments. For resiliency
on rings, typically protection is used, as each switch has only two directions.
If a connection is broken, traffic is sent along the other direction on the ring.
A standardized protection solution for packet networks is Resilient Packet Ring
(RPR, IEEE 802.17). RPR has two modes of protection, wrapping and steering.
In wrapping, when a failure is detected, traffic going towards and from the failure
direction is wrapped (looped) back to go in the opposite direction on the other ring
(subject to the protection hierarchy). In steering, traffic is redirected in the source
node to the opposite ring. Wrapping and steering can be easily implemented in
OpenFlow by the GroupTable concept where the first action bucket in a Group
Entry contains the action for the working path and the second action bucket
contains the action for the protection path. Performance-wise, this will perform
similarly (or even better, since only 2 action buckets are needed) to the protection
on a mesh, so 50 ms protection in Openflow can be met on a ring.

2.5 Additional considerations

2.5.1 Memory size requirement in protection

Our results show that protection is better than restoration because the former
reduces the time required for fault recovery and avoids the sudden increase
of traffic load in the controller at the time of failure detection. However,
protection needs to maintain additional information of alternative paths together
with the working path. Thus, the memory requirement in protection is more than
restoration.

In restoration, the controller replaces the Flow Entry of the working path
in the ingress OpenFlow switch (e.g. switch A in Figure 2.2), which implies
that one Flow Entry per flow is required at any time in this switch. However,
the ingress OpenFlow switch for protection (e.g. switch A in Figure 2.3B)
installs an additional Group Entry for failure recovery. Thus, the additional

FAST FAILURE RECOVERY TECHNIQUES 73

memory requirement of the ingress OpenFlow switch for protection is the size
of GroupTable i.e. the number of Group Entries in the GroupTable.

As the TCAM memory is expensive, it is the size requirement of this memory
which is important for OpenFlow switches. The size requirement of this memory
depends on implementation of OpenFlow switches. The OpenFlow switch
implemented in HP procurve 5400 zl series [21] manages FlowTables in hardware
and in software. The FlowTable in software has the full set of Flow-Entries, and the
FlowTable in hardware has the subset of Flow Entries. The FlowTable in hardware
is managed using a TCAM that translates a Flow Entry into a TCAM entry. When
a packet does not match to any TCAM entry, the packet is forwarded to software.
If the matching entry is found in software, it is installed in the TCAM and the
packet is forwarded.

Thus, the Flow Entries related to the protection path can be installed in
software, and the Flow Entries related to the working path can be installed in
hardware. Once a failure occurs in the working path, the Flow entries related to
the protection path can be moved to the TCAM. Furthermore, as the GroupTable
requires a 32 bit match on the Group ID, the GroupTable can be present in the
static or dynamic RAM. Thus, for this type of OpenFlow switch implementation,
the protection path does not require the additional Flow Entries to be installed in
the TCAM. Therefore, the TCAM memory requirement of protection can be equal
to restoration.

2.5.2 Reliability of the control plane

In this paper, we considered failures in the data-plane side i.e. recovery from
a failure when a data traffic path fails. However, because Openflow is a split
architecture (relying on the controller to take actions when a new flow is introduced
in the network), reliability of the control plane is also an important issue. The
controller should also be resilient against targeted attacks. There are multiple
options for control plane resiliency. One can provide two controllers, each on a
separate control network and when a connection to one controller is lost, the switch
can switch over to the backup network. This is a very expensive solution. Another
option is to try to restore the connection to the controller by routing the control
traffic over the data network. When a switch loses a connection to the Openflow
controller, it can send its control traffic to a neighboring switch, which will require
the controller to detect such messages and establish Flow Entries for routing
the control traffic through this neighbor switch. This through-the-data-plane
solution is an intermediate step towards full in-band control. An effective scheme
for carrier grade networks may be to implement out-of-band control in the
failure-free scenario, switching to in-band control for switches which lose the
controller connection after a failure. In-band control is supported in the Openflow

74 CHAPTER 2

specification. There could be a situation where the controller itself crashes. In
this situation, we can have two controllers so that when the one controller crashes
then OpenFlow switches can rely on a backup controller. In future work, we will
consider those situations in OpenFlow networks.

2.6 Related work

To the best of our knowledge, the research presented in this chapter (or paper) is the
first work performed for achieving carrier-grade quality in OpenFlow. However,
currently, many other research groups and projects have been showing significant
interest in exploring many other mechanisms to achieve fast failure recovery
requirements (such as carrier-grade). Some of these works are listed below:

In [22], segment protection is implemented in an OpenFlow based Ethernet
network. In this protection scheme, the working and backup paths (with different
priorities) are pre-configured for a segment of the network and when a failure is
detected in the working path, an auto reject mechanism (proposed for protection)
removes the working path and therefore, enables traffic to be forwarded through
the backup path Flow Entries.

In [23], protection schemes are implemented for each link in a network (instead
of for each path). In these schemes, a protection path (and a BFD session) is
established for each link and when a failure occurs in a link, traffic is redirected to
the corresponding protection path. In addition, control traffic protection schemes
are researched in [24]. In these schemes, multiple controllers are used to recover
from controller failures scenario. In [25], a mechanism is proposed to recover from
a failure when the fast-failover group type in an OpenFlow switch is not available.
For this case, another group type (such as SELECT [16]) is used to implement
protection.

Currently, the EU-FP7 BEBA project [26] has been showing a lot of interest
in implementing fast failure recovery in SDN with zero packet loss regardless of
controller reachability and even when OpenFlow’s fast-failover feature cannot be
used. The proposed mechanism is based on OpenState, an OpenFlow extension
that allows a programmer to specify how forwarding rules should autonomously
adapt in a stateful fashion, reducing the need to rely on remote controllers.

2.7 Conclusions

In this paper, we have presented restoration and path protection for OpenFlow to
deploy it in a carrier grade network. We ran extensive experiments on emulated
pan-European network topologies and tested OpenFlow in a real environment via
our virtual-wall testbed facility. We showed that OpenFlow can restore traffic,

FAST FAILURE RECOVERY TECHNIQUES 75

but its dependency on the centralized controller means that it will be hard to
achieve 50 ms restoration in a large-scale carrier grade network. We used the
group table concept (recently proposed for OpenFlow) to implement protection. In
this paper, we proposed the first implementation of protection based on the group
table concept. Finally, we showed that OpenFlow can achieve the carrier-grade
requirement of a 50 ms interval if protection is implemented in these networks to
recover from failures.

Acknowledgment

The research leading to these results has received funding from the European
Communitys Seventh Framework Programme (FP7) under Grant agreement no.
258457 (SPARC) and no. 258365 (OFELIA).

References

[1] N. McKeown, T. Andershnan, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, Openflow: Enabling innovation in
campus networks, ACM Computer Communication Review, Vol. 38, Issue 2,
pp. 69-74, New York, USA, 2008.

[2] GENI [Online]. Available: http://www.geni.net.

[3] JGN2plus research and development test-bed network [Online]. Available:
http://www.jgn.nict.go.jp/.

[4] OFELIA [Online]. Available: http://www.fp7-ofelia.eu/ .

[5] ONF [Online]. Available: https://www.opennetworking.org/.

[6] SPARC [Online]. Available: http://www.fp7-sparc.eu/ .

[7] D. Collins, Carrier-grade Voice over IP, McGrawa Hill, 2000.

[8] B. Jenkins, D. Brungard, M. Betts, N. Sprecher, and S. Ueno, MPLS-TP
requirements, RFC 5654, IETF, 2009.

[9] D. Katz, and D. Ward, Bidirectional Forwarding Detection, RFC-5880, IETF,
2010.

[10] J. P. Vasseur, M. Pickavet, P. Demeester, Network recovery: protection and
restoration of optical, SONET-SDH, IP and MPLS, Morgan Kaufmann, 2004.

76 CHAPTER 2

[11] E. Mannie and D. Papadimitriou, Recovery (Protection and Restoration) Ter-
minology for Generalized Multi-Protocol Label Switching (GMPLS), RFC
4427, IETF, 2006.

[12] A. R. Sharafat, S. Das, G. Parulkar, and N. McKeown, MPLS-TE and MPLS
VPNs with Openflow, ACM Computer Communication Review, Vol. 41,
Issue 4, pp. 452-453, New York, USA, 2011.

[13] D. Jocha, A. Kern, A. Takacs, P. Skoldstrom, MPLS-Openflow based ac-
cess/aggregation network, GENI Engineering Conference, Puerto Rico, US,
2011.

[14] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, En-
abling Fast Failure Recovery in OpenFlow Networks, Design of Reliable
Communication Networks, pp. 164 - 171, Krakow, Poland, 2011.

[15] D. Staessens, S. Sharma, D. Colle, M. Pickavet, P. Demeester, Soft-
ware Defined Networking: Meeting Carrier Grade Requirements, Local &
Metropolitan Area Networks, pp. 1-6, North Carolina, USA 2011.

[16] OpenFlow Switch Specification: Version 1.1.0 (Wire Protocol 0x02)
[Online]. Available: http://www.openflow.org/, 2011.

[17] Emulab Network Emulation [Online]. Available: http://www.emulab.net011.

[18] Ericsson OpenFlow and NOX Controller Software [Online].
Available:https://github.com/TrafficLab.

[19] S. D. Maesschalck, D. Colle, I. Lievens, M. Pickavet, P. Demeester, C. Mauz,
M. Jaeger, R. Inkret, B. Mikac and J. Derkacz, Pan-European Optical Trans-
port Networks: An Availability-based Comparison, Photonic Network Com-
munications, Vol. 5, Issue 3, pp. 203-225, 2003.

[20] V. Sharma, F. Hellstrand, Framework for Multi-Protocol Label Switching
(MPLS)-based Recovery, RFC 3469, IETF, 2003.

[21] OpenFlow switch HP procurve 5400 zl series [Online]. Available:
http://www.openflow.org/wp/switch-hp/.

[22] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,
OpenFlow-Based Segment Protection in Ethernet Networks, Journal of
Optical Networks, Vol. 5(9), 2013

[23] L. M. Niels, J. Benjamin and A. Fernando, Fast Recovery in Software-
Defined Networks, EWSDN, 2014

FAST FAILURE RECOVERY TECHNIQUES 77

[24] Y. Hu, Wang Wendong, G. Xiangyang, C. H. Liu, X. Que and S. Cheng,
Control Traffic Protection in Software-Defined Networks, IEEE Globecom,
2014

[25] K. Nguyen, Q. T. Minh, S. Yamada, Novel Fast Switchover on OpenFlow
Switch, IEEE CCNC, 2014

[26] BEBA Project [Online]. Available: http://www.beba-project.eu/

3
Verification of Flow Matching

Functionality in the Forwarding Plane
of OpenFlow Networks

In the previous chapter, we considered node and link failures, and proposed fail-
ure detection and recovery mechanisms for OpenFlow. However, failures can also
be caused by other errors in forwarding functionality (such as matching errors).
This chapter proposes a mechanism which can be used to detect matching errors in
the forwarding functionality of OpenFlow switches/routers. Finding all the match-
ing errors is difficult by just analyzing the configuration of a network. Therefore,
the mechanism transmits test packets in the network to find matching errors. The
mechanism can be executed from the controller, or on an additional device or
server (or virtual machines) attached to the network. The experimental results
evaluate the trade-off between the verification time and the required resources, en-
abling the user of the mechanism to choose which bandwidth to reserve for given
verification time.

? ? ?

80 CHAPTER 3

Sachin Sharma, Wouter Tavernier, Sahel Sahhaf, Didier Colle,
Mario Pickavet, Piet Demeester

Published in IEICE Transactions on Communications, November 2015.1

Abstract In OpenFlow, data and control plane are decoupled from switches or
routers. While the data plane resides in the switches or routers, the control plane
might be moved into one or more external servers (controllers). In this article,
we propose verification mechanisms for the data plane functionality of switches.
The latter consists of two parts: (1) Flow-Match Header part (to match a flow
of incoming packets) and (2) action part (e.g., to forward incoming packets to
an outgoing port). We propose a mechanism to verify the Flow-Match Header
part of the data plane. The mechanism can be executed at the controller, or
on an additional device or server (or virtual machines) attached to the network.
Deploying a virtual machine (VM) or server for verification may decrease the
load of the controller and/or consumed bandwidth between the controller and a
switch. We propose a heuristic to place external verification devices or VMs in
a network such that the verification time can be minimized. Verification time
with respect to consumed resources are evaluated through emulation experiments.
Results confirm that the verification time using the proposed heuristic is indeed
shortened significantly, while requiring low bandwidth resources.

Keywords

OpenFlow; In-band; Out-of-band; Verification

3.1 Introduction

OpenFlow [1] decouples the control plane from the data plane of switches or
routers and embeds it into one or more external servers (controllers). The core idea
of OpenFlow is to provide programmability of the data plane from the controllers
using the OpenFlow protocol. In fact, the controllers program the data plane
by “adding/ modifying/deleting” entries in the FlowTables (forwarding table) of
switches.

An entry in a FlowTable contains: (1) Flow-Match Header, which defines a
flow, (2) actions, which define how packets should be forwarded (i.e., forward to
an output port or to a different FlowTable) and (3) some additional fields such as
priority, statistics and cookie identifier (Fig. 3.1). When a packet arrives at an
OpenFlow switch, it is matched against the Flow-Match Header (wildcarded or

1Compared to the publication in IEICE Transactions on Communications, footnote 2, 3, and 4 are
added to the chapter.

VERIFICATION TECHNIQUES 81

Flow-Match Header part actions additional fields

Ingress

port

Dst

MAC

Src

MAC

Src

IP

Dst

IP

Src

port

Dst

port

Port or

Table

Priority statistics cookie

identifier

1 * * * 1.2.3.* 1 1 Port:2 3245 325 2

*=wildcards

Figure 3.1: Example of a Flow Entry

exact match) of the entries of the FlowTable. If a match is found, the statistics of
that entry is updated and the actions are performed. If two or more matches are
found, the actions of the highest priority number entry are performed. If no match
is found, the packet (a part thereof) is forwarded to the controller. Thereafter, the
controller determines how the packet can be handled. It may return the packet to
the switch indicating the forwarding port, or it may add a Flow Entry in the switch
to forward the packet.

The research challenge that we consider in this article is the verification of
matching of incoming packets with the Flow-Match Header of a Flow Entry.
There can be two causes of incorrect or no matching of packets: (1) bugs in
OpenFlow switch implementation and (2) errors in FlowTable configuration. Bugs
in OpenFlow switch implementation [2] may be caused by bugs in the hardware
or software part of switches. The errors in FlowTable configuration may be
caused by: (1) bugs in controller software for the addition of a Flow Entry and/or
(2) presence of a high priority error-prone Flow Entry (added manually or by
a controller) that gives a match with the incoming packets [3]. The objective
of verification is to find this incorrect or no matching and hence, to find the
packet-headers that cannot be matched or can be matched incorrectly with the
Flow-Match Header of a Flow Entry. In the absence of this verification, it may be
difficult to find which packets cannot be delivered or can be delivered incorrectly
by a switch.

Most of the existing verification tools such as HSA (Header Space Analysis)
[4], Anteater [5], VeriFlow [6] detect matching issues by analyzing configuration
of switches. However, without sending real packets, it is difficult for these tools
to find software or hardware bugs in flow matching. Recently, the automatic
test packet generation (ATPG) tool [7] is proposed to verify the network by
transmitting test packets. ATPG verifies only one (or more than one) of the packet
headers that gives a match with a wildcarded Flow Entry, whereas matching of
all the other packet headers remains untested. In the (short) demo paper [8],
we demonstrated a mechanism to verify this matching functionality of a switch,
where the controller is used for verification. However, this mechanism requires
modification of the Flow Entries, which may not be acceptable in operational
networks. In this article, we propose a mechanism to verify the Flow Entries

82 CHAPTER 3

without modifying them.

Our mechanism transmits test packets to verify that all the packet-headers
match correctly with the Flow-Match Header or not. However, if the test
packets have to match with the Flow Entries of data packets, these would need
additional bandwidth to be reserved for test packets on the links corresponding
to the outgoing actions of the matched Flow Entries. To overcome the
challenge (additional bandwidth requirement), we forward the test packets through
duplicated Flow Entries, which either drop or forward the test packets to the
controller (instead of forwarding these on the outgoing links).

Our mechanism copies all the Flow Entries of a FlowTable to a new table (i.e,
any other FlowTable of a switch), and the new table is verified then by sending test
packets and performing a verification activity. As the Flow-Match Headers of the
Flow Entries in the new table is the exact copy of the Flow-Match headers in the
original table, the assumption is that if a flow matching failure is reported by the
new table, the failure is also present in the original table. Moreover, as the action
part (verification of the action part is already covered by ATPG) of the Flow Entries
in the new table is different from the corresponding Flow Entries in the original
table, all the test packets can be forwarded through the new table without being
sent on the outgoing action of the original Flow Entries. Therefore, the objective of
copying Flow Entries is to: (1) maintain the same set of Flow-Match Headers in the
new table (as the original table) for finding FlowTable specific matching issues [3],
and (2) prevent forwarding of test packets through outgoing links (actions of Flow
Entries in the original table) of a switch and therefore, decreasing the bandwidth
requirements of those links for verification. Furthermore, as the mechanism does
not verify the original Flow Entries, there may be some cases when our mechanism
is not able to verify matching functionality for some software or hardware bugs.
These cases are described in Section 3.2.1.

Our mechanism can be executed by the controller. However, it requires
computational resources (to generate test packets) of the controller and the
bandwidth resources between the controller and a switch (which are also utilized
for the other controller activities) to perform verification. Therefore, to decrease
the controller requirements for these resources, we consider a network in which
servers (custom machines) can be attached to a switch or router to transmit or
receive packets [9]. For verification, either these servers can be used directly for
verification or these can host virtual machines (VM) to perform verification.

Deploying a VM or server over the network infrastructure may increase the
cost, as it requires additional resources (memory, CPU etc.,) to be reserved for
verification. Nevertheless, the VM may need to transmit test packets to a switch
through the data path links of other switches, as all the switches may not have a
direct link with the VM. Therefore, if the VM is placed at a location from where
test packets need to travel a long path or same links to reach all or some switches,

VERIFICATION TECHNIQUES 83

the bandwidth requirements of all these links for verification will increase. Hence,
we also propose a heuristic to efficiently place the VMs or servers and efficiently
select a path between switches and the VMs so that the verification time is reduced
and resource requirements are distributed over many links in the network.

We perform extensive emulation experiments on the Fed4Fire testbed facility
provided by iMinds [10]. In our experiments, verification using the controller and a
VM (or server) is emulated. Software matching errors are emulated by translating
some packets of a flow to incorrect headers. This leads to matching of these
packets with an incorrect Flow Entry. In our results we show the verification time
(the time required to find these matching errors) with respect to resources available
in the network. The experiments validate the proposed approach and evaluate the
trade-off between the verification time and the required resources, enabling the
user of the mechanism to choose which bandwidth to reserve for given verification
time. Additionally, our proposed heuristic is compared for different types of
topologies which vary with the number of switches and degree of meshedness.
The results show that the network can be verified in limited time, when a VM is
placed using our proposed heuristics.

The mechanism is implemented as part of the verification functionality of the
integrated prototype of the UNIFY project [9]. Section 3.2 provides errors in
Flow Matching Functionality and Section 3.3 presents our proposed mechanism,
Section 3.4 presents in-band or out-of-band verification, Section 3.5 and Section
3.6 present emulations and results, and then finally Section 3.7 concludes.

3.2 Errors in flow-matching functionality

In OpenFlow switches, there can be two types of Flow Entries: (1) exact match
and (2) wildcarded Entries [11]. In case of the exact match entries, all the
matching-header fields are specified for a Flow Entry. However, in case of the
wildcarded entries, some of fields can be wildcarded for a Flow Entry. Finding
matching issues in the exact match entries is simple, as these entries can match
only one type of a flow. However, as wildcarded flows can match many different
flows, it is complex to verify matching of these flows in OpenFlow networks.
Our mechanism can verify the matching of these wildcarded flows. However, the
similar mechanism can be used to verify the exact match flows. In this section, we
describe the Flow-Matching bugs that can be present in an OpenFlow switch and
the errors that can be identified by our proposed verification mechanism.

3.2.1 Software or hardware bugs in flow matching

The proposed mechanism can be used to find errors due to configuration issues
and software or hardware bugs of flow matching. These bugs can be present at any

84 CHAPTER 3

block of software or hardware programming [2]. Fig. 3.2 depicts the functional
blocks of OpenFlow switches such as HP, NEC switches [13] [14], and indicates
where flow matching occurs. It also shows in which blocks matching-related bugs
can be present, and which errors can be detected through our mechanism. Here,
errors mean which packet-headers are not matched correctly or can be matched
incorrectly by the Flow-Match Header due to a software or hardware bug.

Hardware Part

Software Part

Input

Arbiter

Header

Extractor

Match

Lookup

Match

Found

Packet

Editor

Output

Queues

Header

translation

Match

(Linear or

Hash Table)

Lookup

Match

Found

Install a Flow

Entry and forward

the packet

Send the packet

to the controller

X Hardware bugs X TCAM/RAM issues X Software bugs

A S
A

N

A

A

A

S

X = A (All errors may be covered by our mechanism) X = S (Some errors may be covered by our

mechanism) X = N (None of the errors is covered by our mechanism)

N

No

Yes

Yes

No

Incoming

Packets
Input Queue

(Buffer full

issues)

1 2

3

4

5

N

Figure 3.2: Hardware or software bugs in OpenFlow switches

Figure 3.2 shows matching in both software and hardware. In fact, many
switches such as HP, NEC switches contain FlowTables in software as well as
in hardware. Usually, the software table contains the full set of Flow Entries,
while the hardware table contains a subset of the Flow Entries. When a packet
arrives at a switch (Input Arbiter in Fig. 3.2), the packet is stored in the input
queue and the packet-header is first extracted by the header extractor and then
the packet header is matched against all the entries (TCAM or SRAM) present in
hardware. If a match is found, the Packet-Editor forwards the packet to the output
port/queue from the input queue. If no match is found, the packet is forwarded
to software which translates again the packet into headers. If a matching entry is
found in software, the entry is installed in the hardware FlowTable and the packet
is forwarded through the Packet-Editor (Fig. 3.2). Otherwise, it is forwarded to
the controller to define its action.

All the bugs in this packet forwarding are listed in Fig. 3.2. Some of these are
also listed below:

VERIFICATION TECHNIQUES 85

1. In the header extractor (block 1 in Fig. 3.2), there can be hardware bugs
related to extracting of some header fields (such as specific MAC address).
In this case, the same set of packet-headers may be extracted incorrectly.
Our mechanism can find the errors generated due to these hardware bugs.

2. In the match lookup in TCAM or SRAM (block 2 in Fig. 3.2), there
can bugs related to specific TCAM bits2. For example, if a TCAM bit
is supposed to be x, but it is always 1, then all packets with a 0 at that
location will be ignored. If this issue is present in all TCAM entries, the
errors can be reported correctly by our mechanism. However, if this issue is
specific to some entries, it cannot be correctly identified by the mechanism.
This is because test packets used in verification may be matched against an
error-free or error-prone TCAM entry.

3. In the software part of packet translation (block 3 in Fig. 3.2), there may be
some bugs related to the translation of some header fields. The errors due to
these bugs can be detected by our mechanism.

4. In the hash table lookup in software (block 4 in Fig. 3.2), bugs may occur
related to calculating the hash for specific headers. The errors due to these
bugs can be identified using our mechanism.

5. In the Flow Entry addition from software to hardware (block 5 in Fig. 3.2),
there may be bugs related to installing Flow Entries containing specific
header fields. These errors can be also found through our mechanism.

3.3 Verification mechanism

Our mechanism uses a header field such as EtherType (or VLAN ID) for
differentiating test packets from data packets and assumes that this header field
(e.g., EtherType) is wildcarded in the Flow-Match Header part of Flow Entries.

The mechanism performs three steps for verification: (1) flow duplication,
(2) test packet generation, and (3) matching errors identification. In the flow
duplication step, the mechanism duplicates the Flow Entries from a FlowTable to
another FlowTable. In the test packet generation step, the mechanism generates
and transmits test packets that can match with the Flow-Match Header of
duplicated Flow Entries. In the matching errors identification step, the mechanism
calculates the matching errors either by reading the counters (statistics) of the
duplicated Flow Entries or by comparing the sent and received test packets.

The flow duplication step can be performed by the controller, as it only needs
to insert additional Flow Entries in the switches for verification. However, for test

2This bug can be efficiently tracked by a unit test of the TCAM memory modules.

86 CHAPTER 3

packet generation and matching errors identification, either the controller or a VM
(or server, see Introduction) can be used. It reduces the load of the controller (i.e.,
due to generation, transmission or reception of many test packets) for performing
verification. We describe now all the steps in detail.

3.3.1 Flow duplication step

In the flow duplication step, for verifying FlowTable x (Fig. 3.3), the controller
copies all the flows from FlowTable x to FlowTable y (x and y are ≥ 0 and y >

x). The Flow-Match Header in Fig. 3.3 is an IP address field, but it can be any
field (one or more) of the Flow-Match Header of Flow Entries. Fig. 3.3 shows
that the Flow-Match Header of all the duplicated flows in FlowTable y is same
as the Flow-Match Header part of the original flows in FlowTable x. However,

FlowTable x FlowTable x FlowTable y

Prio, matching header: actions

(Prio, EtherType, IP):actions

(P, *, 10.1.*.*/16): Port:2

(P, *, 10.2.*.*/16): Port:2

(P, *, 10.3.*.*/16): Port:2

(P, *, 10.4.*.*/16): Port:2

1

2

3

4

Prio, matching header: actions

(Prio, EtherType, IP):actions

(P, *, 10.1.*.*/16): Port:2

(P, *, 10.2.*.*/16): Port:2

(P, *, 10.3.*.*/16): Port:2

(P, *, 10.4.*.*/16): Port:2

(P+,E,*,): Table:y

1

2

3

4

(P, *, 10.1.*.*/16): A

(P, *, 10.2.*.*/16): A

(P, *, 10.3.*.*/16): A

(P, *, 10.4.*.*/16): A

A = DROP/CONT/VM

1

2

3

4

5

high priority Flow

Entry for test packets

After the flow duplication stepBefore the flow duplication step

*=wildcard

FlowTable x FlowTable x FlowTable y

Figure 3.3: Flow Entries before and after the flow duplication step. E is the EtherType of
the test packets, P+ is the priority number higher than P. DROP, CONT or VM are actions

for the duplicated FlowTable

the difference lies only in the action part. The action of all these duplicated flows
is DROP, CONT, or VM. “DROP” means drop all the packets that match with
the Flow Entry. “CONT” or “VM” means send all the matched packets to the
controller or to the VM respectively.

Moreover, the controller inserts an additional Flow Entry (5th entry in
FlowTable x in Fig. 3.3) in FlowTable x to forward all the test packets to FlowTable
y (action=Table:y). To match all test packets with this entry, the entry contains
a higher priority (P+) number than the priority (P) number of the existing Flow
entries in FlowTable x and the Flow-Match Header contains the Ethertype (E) of
test packets and all other fields as wildcarded fields.

VERIFICATION TECHNIQUES 87

3.3.2 Test packet generation step

In this step, the controller or VM transmits test packets to the switch whose entries
are needed to be verified. For this, the controller or VM can transmit all the
test packets that can give a match with the Flow-Match Header of a Flow Entry.
However, if all the fields of the Flow-Match Header are wildcarded, there is a need
to transmits lots of test packets (e.g., 232 different packets if there is a wildcard in
all bits of the IP address field), increasing the bandwidth requirements and time for
verifying the Flow Entries. To decrease the bandwidth requirement, we propose to
transmit only those test packets that give a match with a partially wildcarded field
and in a fully wildcarded field, we suggest to fill randomly generated values. This
is proposed because if a field is partially wildcarded (such as wildcards in last 8
bits of IP address), there is a complex software implemented for matching a Flow
Entry, as a part of a field is needed to be matched with the incoming packets [15].
This may lead to a matching error in any of these flows. However, if a field is
fully wildcarded, matching implementation will be very simple (i.e., just ignore or
do not match the header of the field [15]). Therefore, if these are tested with the
limited number of headers, these can be considered as error free.

Buffer ID

In-Port

Action Len Padding

Actions []

OpenFlow header

0xffffffff

Ingress Port

32 bits Padding

TABLE

A packet header that can

OpenFlow header Indicates that the test

packet is present in

its Data[] field

Equals to the ingress

port in the matching-

header field of a

Flow Entry

The action to perform

matching of the test

packet through the

Data []

A packet header that can

match with the Flow-Match

Header of a Flow Entry

(A) Packet-Out message (B) Packet-Out message

according to OpenFlow 1.5 containing a test packet

packet through the

FlowTables

Test packet

Figure 3.4: Packet-out message for the test packet generation step

In our mechanism, the test packets are generated in the form of packet-out
messages. Packet-out messages [12] are defined in OpenFlow to send packets from
the controller through the FlowTables or to an outgoing port of a switch. We use
these messages to transmit test packets to the switch (under verification). Fig. 3.4A
describes all the fields of the packet-out messages according to OpenFlow version
1.5. Fig. 3.4B describes these fields for generating a test packet. In Fig. 3.4B,
the packet-out message contains the ingress port of the Flow-Match Header in the

88 CHAPTER 3

In-Port location and the test packet-header (i.e., all the other matching fields) in the
Data[] location. As the action of the packet out messages is TABLE in Fig. 3.4B,
it is matched against the Flow Entries of the FlowTables when it is received by the
switch. Therefore, the matching errors can now be found using the Matching Error
identification step.

3.3.3 Matching error identification

For this step, we describe two methods: (1) binary search and (2) packet-reception.
The binary search method applies the well known binary search algorithm to find
the matching errors. The packet-reception method receives the sent test packets
and from the unreceived/received test packets, the method finds the matching
errors. The advantage of the binary search method is that it reduces the upstream
bandwidth to receive the test packets. However, the disadvantage is that it takes
more time to find matching errors.

3.3.3.1 Binary-search method

For the binary-search method3, the action of all the Flow Entries in FlowTable y is
“DROP”. The method is described in Fig. 3.5. Our explanation for the method is
given for the Flow-Match Header as 10.1.1.* and the matching error is present in
the packet that contains the IP address as 10.1.1.65. However, this explanation is
applicable for more than one matching fields or errors.

To find the matching error in IP 10.1.1.65, the controller first transmits all test
packets (i.e., containing the IP address from 10.1.1.0 to 10.1.1.255) to the switch
(BS1 in Fig. 3.5). The controller then finds the number of errors by subtracting
the number of sent test packets (256) from the increase in the counters of the Flow
Entry (i.e., under verification) of FlowTable y. As the Flow Entry cannot match
one IP address (i.e., 10.1.1.65), the increase in the counters of the Flow Entry will
be one less than the total sent test packets (i.e., 255). Therefore, the controller at
this time knows that there is one matching error. However, it does not know that
which flow (i.e., 10.1.1.65) cannot be matched through the Flow Entry. Therefore,
to find this flow, the controller now transmits the first half of the test packets (i.e.

3In case of the binary search method, the well-known binary search algorithm is applied to find
matching errors. However, there can be another method (known as linear search method) in which
matching errors are found linearly i.e., test packets can be transmitted one by one and the counters
of the Flow Entry (under verification) can be checked after each transmission for finding matching
issues. For selecting a method (binary or linear), we can consider the following two parameters: (1)
verification time and (2) bandwidth usage. The bandwidth requirement of the binary search method
is more than the linear search method. However, the problem with the linear search method is that
it needs to request counters from switches more times than the binary search method and the cost of
requesting counters from switches is high in terms of time (the minimum time to update the counters in
most of switches such as HP and Open vSwitch is 1 second). Therefore, compared to the binary search
method, the linear search method will take more time to find matching errors.

VERIFICATION TECHNIQUES 89

.128 to .255

.0 to .255

.0 to .127

.0 to .63 .64 to .127 .128 to .191 .192 to .255

…… … … … … … …

.

.x = IP address 10.1.1.x
The Flow-Match Header part

= 10.1.1.* (i.e., it can match

10.1.1.0 to 10.1.1.255)

BS1

BS2

BS3

BS4

BS

BS1 ... BSn are

iterations to find

a matching error

in .65

.0 .1 .2 .3 .4 …………|.65|…… ……………………………..... ……..… .251 .252 .253 .254 .255

BSn

Figure 3.5: Binary-search Method

10.1.1.0 to 10.1.1.127, BS2 in Fig. 3.5) and then finds the matching errors by
the same formula (i.e., subtracting the number of sent packets from the counter
increments). The controller will again find one error and therefore, it again sends
the first half of the test packets (i.e. 10.1.1.0 to 10.1.1.63, the third row in Fig. 3.5)
and finds no error. As there is no error in this first half, it now knows that the error
is in the second half. Therefore, the controller now switches to the second half
(i.e., 10.1.1.64 to 10.1.1.127, BS3) and then process is repeated until it reaches to
the last row of Fig. 3.5 (BSn) in which it transmits only one test packet i.e., the
test packet containing IP 10.1.1.65 and finds the error using the same formula. The
controller then reports IP (10.1.1.65) as a matching error.

3.3.3.2 Packet-reception method

For this method, the action of all the Flow Entries in FlowTable y is CONT or
VM. If this step is performed by the controller, the action is CONT. If this step
is performed by a VM, the action is VM. Due to this action, the test packets are
sent back to the controller or to the VM in the form of packet-In messages [12]
after matching with the Flow-Match Header of a Flow Entry. If a test packet is not
received back by the controller or the VM, it declares that it is due to a matching
issue present in the respective Flow Entry and therefore, reports this matching
issue.

To find matching with an incorrect Flow Entry, the packet-reception method
depends on the flow cookie identifier [12] (Fig. 3.1), which is a unique 32 bit
number associated with each Flow Entry in a switch. When a test packet is sent to
the controller or VM back after matching a Flow Entry, the flow cookie identifier of
the matched Flow Entry is copied in the packet-in message. The controller or VM
receives this message. If it finds that the flow cookie identifier in the message is not

90 CHAPTER 3

same as the cookie identifier that is associated with the Flow Entry that must have
a match with the test packet, the method declares that it is due to matching with an
incorrect Flow Entry. This may happen because the received test packet has found
a match with a Flow Entry that actually should not match with the test packet
header (e.g., due to configuration errors or bugs in the switch implementation).

3.4 Out-of-band or in-band verification

Out-of-band means that control traffic is sent on a separate channel (or network).
In-band means that control traffic is sent on the same infrastructure as the data
plane [16]. As described earlier, the controller can perform all the steps of
verification (Section 3.3) using out-of-band or in-band networks (without the VM
part in Fig. 3.6A and Fig. 3.6B). However, in this case, the bandwidth requirement
of the control network will increase due to the transmission of the large number
of test packets for verification. Furthermore, if an in-band network is used (Fig.
3.6B) for the controller communication, the bandwidth requirement of the link
between the controller and the switch (switch C in Fig. 3.6B) which connects the
data network with the controller, will increase substantially as this link will be used
for the communication between many switches and the controller. Nevertheless,
this also increases the computational requirement of the controller to perform
verification. Therefore, we propose that the steps – test packet generation and
matching-error identification – which increase the computational and bandwidth
requirement of the controller significantly, can be performed by a VM.

Instead of using additional controllers, we propose to use light-weight VMs
for distributing the load of the controller. This is because the resources of a VM
can be released once verification is completed, whereas in case of using additional
controllers, these controllers may need to be present in the network all the time just
for verification. This may be a wastage of the controller resources in the network.

For performing verification through VMs, we assume that there are some
servers in the network that have capability to create VMs [9]. However, if a server
has a capability to transmit test packets and can perform the verification activity,
the server can be used directly for verification. In emulation, the controller creates
VMs, makes a connection between a VM and a switch, and establishes paths
between switches and the VM (Fig. 3.6). Currently, OpenStack neutron with the
OpenDayLight [17] or Floodlight controllers [18] defines the API to create VMs
from the controller.

We propose that the VM would be part of the control plane and should establish
an OpenFlow session with the switches in order to perform the verification activity.
As not every switch is directly connected to a cluster of servers capable of hosting
VMs (we assume this to be only possible for some switches, which have for
example a direct data center link), the VM needs to establish an OpenFlow session

VERIFICATION TECHNIQUES 91

B

Controller

VM

2

1

C

V

2

OpenStack

(neutron)

C

Controller

V

OpenFlow

Protocol

OpenStack

(neutron)

VM

3

2
1

2
B

33

OpenFlow

Protocol

A,B,C,D and E

are OpenFlow

switches

(A) (B)

C

A

D

1

1

1
2

2

V

E E

C

3

3

1

23

4
1

1

2

2

3

3

2

3

4
1

1

A
D

1,2,3,4 are port

numbers of a

switch

(A) Out-of-band network for controller (B) In-band network for

communication controller communication

33

Figure 3.6: VM connections with switches

path with these switches through other switches in the data plane. In this proposal,
the VM works like an additional controller in the network. This is proposed
because of the following two capabilities of a controller application:

1. The capability to generate test packets with an ingress port as a matching
field

2. The capability to verify two or more switches at the same time.

The first capability is required because the Flow-Match Header part of a Flow
Entry may contain an ingress port as a matching field [12]. Without having the
first capability, the VM may need to send test packets through additional links in
order to match the Flow Entry with the test packets, requiring more bandwidth for
verification. This can be explained through Fig. 3.6. Suppose that switch A has a
Flow Entry, containing port 1 (i.e., port AB) in the ingress port of the Flow-Match
Header. For verifying this entry, the VM needs to send a test packet to switch A
through path VADCBA. This requires bandwidth to be reserved in links AD, DC,
CB, and BA for verification. However, if there is an OpenFlow session between
the VM and switch A through path VA, the VM can directly send a test packet to
switch A through link VA in the form of a packet out message that contains port
1 (or any port) in its ingress port field. This decreases the bandwidth required for
verification.

92 CHAPTER 3

The second capability is required because it is possible that VM needs to verify
two or more switches at the same time to decrease the verification time. However,
if there is no OpenFlow session between the VM and switches, the verification
of two or more switches at the same time may be difficult to implement or if it
is implemented, the verification time will increase significantly. This can also be
explained through Fig. 3.6. In Fig. 3.6, the VM transmits test packets to B through
A, as switch A is the only node connecting VM to the switch topology. If the VM
wants to send the test packets to switch A and B simultaneously, switch A should
have a way to distinguish which test packets are sent to it and which test packets
are sent to switch B. This may be possible if the test packet specific entries are
present in A to forward the test packets of switch B. However, as these entries
are first needed to be verified before the entries in switch B, it will increase the
verification time. However, if there is OpenFlow sessions between the VM and
switches, the VM can send test packets to switch A and B at the same time by
sending them through their OpenFlow session paths, decreasing the verification
time.

3.4.1 OpenFlow session path selection in in-band networks

Suppose that the OpenFlow session paths between a VM and switches are along the
data plane switches and contain the same subset of data plane links. In this case,
as the VM can verify one or more switches at the same time (second capability,
described above), the bandwidth requirement of these subset of links will increase
significantly for verification. In addition, if bandwidth for verification is limited
for a link, some switches have to wait for other switches to complete verification.
This will increase the verification time, as some switches have to wait for other
switches in the verification path to complete verification. Therefore, we propose to
distribute the load of verification into many links (load balancing/load distributed
approach) and therefore, the verification paths for different switches does not
contain the same subset of links, decreasing the waiting time of switches.

For the load distributed approach, we assume that there is limited bandwidth
(let say b) available in each switch link for verification. This bandwidth is assumed
to be equal for each link. Furthermore, as the VM links (the link between VM and
switch A in Fig. 3.6) are the links which will be used to create OpenFlow session
paths for many switches, we assume that the VM links have enough bandwidth
(equal to the bandwidth required to verify multiple switches at the same time) for
verification.

We consider a network of N switches denoted by vi connected through a link
set eij and link cost cij , where eij is the link incident to nodes vi and vj , and
cij(≥ 1) is the cost associated with eij . In addition, VM has a direct connection
with m (1 ≤ m ≤ N) switches in the network. The edge between the VM and

VERIFICATION TECHNIQUES 93

switch k is denoted by evk and the cost of the link between the VM and switch
k is denoted by cvk. The cost of each link (switch links and the link between the
VM and a switch k) is 1 by default. However, the cost of a link cij including the
VM links cvk will increase depending on the load on the link due to selection of
the link for OpenFlow session paths. Let P represents a path between the VM and
switch t, where

xij =

{
1 the path P traverses eij
0 otherwise

We assume that P is a path that contains no cycle. This path is not required to
be the shortest path between VM and t pair. In our mechanism we choose a path
for establishing an OpenFlow session for which the cost

∑
i,j

cijxij is minimal. If a

session path for a switch is selected, which goes through a link eij (including a VM
link), the cost of that link (eij) will increase by the load that the session path will
generate on the link. This load is represented by the number of test packets that
the session path needs to transmit for verifying Flow Entries. The number of test
packets is equal to the number of packet-headers that a partially wildcarded field
of Flow Entries in the switch can match (i.e.,

∑
∀f

Ff , where Ff is the number of

different packet-headers that the Flow-Match Header of Flow Entry f can match).
Suppose that the maximum value of the number of test packets that an OpenFlow
session transmits is FMax. Then, the cost of link eij will increase by:

cij = cij +

∑
∀f

Ff

FMax
(3.1)

For selection of a path to a switch, this cost will be taken into account.

3.4.2 VM placement

For VM placement, we rely on “betweenness centrality” 4 which is the number of
paths from all nodes to all other nodes that crosses a given switch. We believe
that this is a good indication where the VM should be placed in the network.
Because if we place a VM in a switch (i.e., a direct connection between the VM
and the switch) with the highest “betweenness centrality”, the VM will become
close to many switches and OpenFlow session paths of many switches may contain
different links. In this case, due to the second capability (discussed above),
switches can be verified in the limited time. For example, if a VM is placed at
switch E (switch E has the highest “betweenness centrality” in Fig. 3.6), the VM

4Betweenness centrality of node v can be expressed mathematically by:
∑

s 6=v 6=t
Pst(v)
Pst

. Here
where Pst is the total number of shortest paths from node s to node t and Pst(v) is the number of
those paths that pass through v.

94 CHAPTER 3

will become close to each switch and the session paths for switch A, B, C, D
will contain different links from switch E, decreasing the verification time of these
links for verification. However, in a network, there can be only some switches that
have capability to place a VM (i.e., having a direct connection). Therefore, for
VM placement, we consider only those switches to calculate the ”betweenness
centrality” and place the VM in the switch that has the highest “betweenness
centrality”.

Using our emulations, we show that the “betweenness centrality” is a good
indication of the placement of VMs. The future work is to place more than one
VM in the network such that verification time can be reduced. For this, we can
partition the network into k partitions and place the VM in each partition with the
switch having the highest “betweenness centrality”.

3.5 Emulation

We performed emulations on the Fed4fire testbed facility at iMinds [10]. The
testbed is a generic test environment for advanced network, distributive software
and service evaluation. It consists of 100 physical nodes interconnected by a
non-blocking 1.5 Tb/s Force10 Ethernet switch. Each node has 4 CPU cores and
4 GB RAM. We generated emulated pan-European topologies using the nodes of
the testbed and performed extensive verification experiments.

Amsterdam
London

Brussels

Paris

Berlin

Prague

Munich

Hamburg

Frankfurt

Strasbourg
Controller

Zurich

Milan

Vienna

Rome

Lyon

Zagreb

OpenFlow

switch

Figure 3.7: Pan European Topology

Fig. 3.7 shows one of the emulated pan-European topologies that contains 16
OpenFlow switches connected with each other in a mesh fashion. Each switch of
the topology has also provided a dedicated interface to a switched Ethernet LAN
(not shown in Fig. 3.7), which establishes an out-of-band connection with a single

VERIFICATION TECHNIQUES 95

controller (the controller is shown in Fig. 3.7).
We perform three different ranges of experiments - (1) (out-of-band)

controller-induced verification, (2) (in-band) VM-induced verification, (3)
validation on multiple topologies - in our testbed. Each of these will be handled in
more detail in the following subsections. For our emulation, we implemented the
proposed verification mechanism in the Floodlight controller that uses OpenFlow
version 1.3 [18] in its implementation. In addition, we used Open vSwitch [15] for
running OpenFlow in the switches of the emulated topology. In the experiments,
software matching errors are emulated by translating some packets of a flow to
incorrect headers. In our emulations, we find these errors and find verification
time. In all the experiments, multiple switches are verified at the same time.

3.5.1 Controller-induced verification experiment

In the controller-induced experiment, the controller makes an out-of-band
connection with switches and performs all the steps of verification. Flow-Match
Header errors are detected either via the packet-reception or via the binary-search
method.

4

8

12

16

T
r
a

ff
ic

 (
M

b
/s

)

Downstream traffic Upstream traffic

Verification

Time (171s)

BS1 BS2

4

8

12

16

T
r
a

ff
ic

 (
M

b
/s

)

Downstream Traffic Upstream Traffic

Verification

Time (69s)

Flow Entries

establishment

time

OpenFlow

session time

0

-100 -50 0 50 100 150 200

Emulation time (s)

0

-100 -50 0 50 100 150 200

Emulation Time (s)

(A) Packet-Reception Method (B) Binary-Search Method

Figure 3.8: Traffic on the controller link (controller verification experiment)

Fig. 3.8 shows the emulation methodology using traffic captured on
the controller when the binary-search or packet-reception method is used for
verification. Traffic is shown from second -100 to 200, when 1 Mbps is available in
between each switch and the controller for verification. In emulation, each switch
in the emulated pan-European topology first establishes an OpenFlow session
over the TCP session with the controller. The spikes in Fig. 3.8 from -100 to
-90 seconds are due to traffic exchanged between the controller and switches to
establish OpenFlow sessions. At emulation time -50 seconds, the controller adds

96 CHAPTER 3

Flow Entries in each switch to forward data traffic. The Flow Entries contain
the ingress port, source IP address and destination IP address as matching fields.
The source and destination IP addresses are 24 bit addresses and therefore, the
controller needs to transmit 65536 different test packets for verification. However,
due to the generated bug, each Flow Entry is not able to match correctly 256 flows
out of 65536 flows. At second 0, the controller starts verification of the Flow
Entries. In Fig. 3.8, traffic generated due the verification of one Flow Entry is
shown.

Fig. 3.8 shows that the verification time (time to find matching errors) using
the packet reception method is 69 seconds (Fig. 3.8A) and using the binary-search
method is 171 seconds (Fig. 3.8B). Fig. 3.8A shows that downstream and
upstream traffic due to the packet-reception method are about 16.2 Mb/s. Fig. 3.8B
shows that there is about 16 Mb/s downstream traffic and about 5 Mb/s upstream
traffic using the binary-search method. In this method, downstream traffic is
present because the controller sends test packets in the downstream direction in
the form of packet-out messages to verify the Flow Entries of switches. The
TCP session in switches then sends the acknowledgments of the sent traffic in
the upstream direction. The upstream traffic in the binary-search method (Fig.
3.8) includes this acknowledgment traffic. Additionally, it includes the traffic sent
by the switches in sending counters of Flow Entries. However, the total traffic in
the downstream and upstream direction using the packet-reception method is only
0.2 Mb/s more than the traffic in the downstream direction using the binary-search
method (i.e., 16 Mb/s). It means that there is only 0.2 Mb/s additional traffic
generated by TCP for acknowledgments of test packets in the packet reception
method. This traffic is very small compared to the acknowledgment traffic in the
binary search method (5Mb/s). This is because of the push ACK functionality [19]
of TCP in which TCP sends data in the acknowledgments of packets.

Fig. 3.8B also shows the iterations (BS1 and BS2) of the binary-search method.
As the counter read interval of Open vSwitch in our implementation is 2 seconds,
we see a downstream spike of 2 seconds after BS1, BS2 and so on.

3.5.2 VM-induced verification experiment

In the VM-induced verification, the controller triggers the creation of a VM (light
weight Linux container) and connects it with one of the switches in the network
(Hamburg in Fig. 3.7). We use the packet-reception method for calculating
the matching errors in the network. We compare the verification time when
our approach (i.e., load balancing approach, Section 3.4.1) or the shortest path
approach is used to select OpenFlow session paths between switches and VM.

We now explain the emulation methodology of the VM-induced verification
experiment using the traffic captured on the controller and the VM link. Traffic is

VERIFICATION TECHNIQUES 97

2

4

6

8

10

C
o

n
tr

o
ll

e
r

T
r
a

ff
ic

 (
M

b
/s

)

Downstream Traffic Upstream Traffic

2

4

6

8

10

V
M

 T
r
a

ff
ic

 (
M

b
/s

)

Upstream Traffic Downstream Traffic

Flow Entry

establishment

time

OpenFlow

Session

Time

VM creation and

establishment of

VM session paths

Verification

Time (396s)

VM creation

time (19s)

(A) Traffic on the controller link (B) Traffic on the link between VM and Hamburg

0

-100 -50 0 50C
o

n
tr

o
ll

e
r

T
r
a

ff
ic

 (
M

b
/s

)

Emulation Time (s)

0

0 200 400 600

V
M

 T
r
a

ff
ic

 (
M

b
/s

)

Emulation Time (s)

Figure 3.9: Traffic Intensity (VM-induced verification experiment)

shown when the VM is created in the Hamburg switch of the emulated topology
(Fig. 3.7) and verification uses data plane links for transmitting or receiving test
packets. The emulation methodology of this experiment is same as the controller
verification experiment (Fig. 3.8) in which switches establish OpenFlow session
paths with the controller from second -100 to -90 and at second -50, the controller
adds Flow Entries in switches to forward data traffic. At second 0, the controller
starts verification by copying Flow Entries to another table, creating a VM at the
Hamburg switch, and establishing Flow Entries for making OpenFlow sessions
between the VM and switches. We see small spike in Fig. 3.9 at second 0 due to
this traffic.

In our emulation, the controller creates a VM using the RPC (Remote
Procedural Call) commands. Fig. 3.9B shows that the time to create a VM is about
19 seconds. After creating the VM, the VM establishes OpenFlow session paths
with all the switches in the network and starts verification. For verification, we
reserved 1 Mb/s bandwidth in each switch link. In our mechanism, the controller
controls the rate of test packets according to the bandwidth available in each link of
its OpenFlow session. Additionally, the bandwidth between VM and the Hamburg
switch is kept as 4Mb/s. Fig. 3.9B shows that the total verification time of a Flow
Entry is 396 seconds.

3.5.3 Validation on multiple topologies

In the validation of multiple topologies experiments, different topologies are
used for verification. The topologies are: core topology (CT), Basic Reference
Topology (BT), and Ring topology (RT). The difference between BT and CT is
that BT contains more switches than CT. BT contains 28 switches and CT contains

98 CHAPTER 3

16 switches. The difference between BT and RT is in the degree of meshedness.
RT has a lower meshedness than BT. All the other details of the topologies can be
found in [16]. In these experiments, the VM is connected with one of the switches
in the network in different experiments and the verification time is evaluated
for each placement of the VM. In a network, there may be only some switches
that have a direct connection with the VM (or the data center hosting the VM).
However, for the completeness of the multiple topology experiments, we assume
that each switch in the considered topology has this capability.

3.6 Results
In this section, we present the results gathered by performing all the experiments.

3.6.1 Controller-induced verification experiment

Fig. 3.10 depicts the verification time when the bandwidth between the controller
and switches are varied. For transmitting test packets, the controller sets the rate
of the test packets according to the bandwidth available between the controller and
switches for verification. In case of the binary-search method, the verification time
is calculated by subtracting the time when the last counter read reply message is
received by the controller with the time when the first counter read request message
is sent by the controller. In case of the packet-reception method, the verification
time is calculated by subtracting the time when the first packet-out containing a test
packet is sent by the controller with the time when the last packet-in containing a
test packet is received by the controller. All the results are taken 50 times and the
average is shown in Fig. 3.10.

(1.2 s)

50

100

150

200

250

300

350

400

450

V
e
r
if

ic
a

ti
o

n
 T

im
e
 (

s) Packet Reception Method

Binary-Search Method

0

50

1 10 100 1000

Downstream Bandwith (Mb/s)

Figure 3.10: Verification time using the packet-reception and binary-search method
(controller out-of-band network scenario)

As expected, Fig. 3.10 shows that the verification time of the Flow Entries

VERIFICATION TECHNIQUES 99

decreases with the increase in the bandwidth reserved for verification. In this
experiment, five Flow Entries are verified in each switch for Flow-Match Header
issues. Fig. 3.10 also shows that the verification time in the binary-search method
is longer than the verification time in the packet-reception method. This is because
the binary-search method sends more number of test packets for verification
through binary search iterations, leading to increase in the verification time. In
addition, as the counter update interval is 2 seconds in our emulation, it further
increases the verification time in the binary-search method. Furthermore, the
binary search method performs the verification of the Flow Entries one by one.
However, the packet-reception method can perform the verification all the Flow
Entries at the same time, leading to decrease in the verification time. For the packet
reception method, the minimum value of the verification time is 1.2 seconds in our
emulations.

2

3

4

5

6

7

8

U
p

st
re

a
m

 b
a

n
d

w
id

th
 (

M
b

/s
)

Packet-Reception Method Binary-Search Method

0

1

0 1 2 3 4 5 6 7

U
p

st
re

a
m

 b
a

n
d

w
id

th
 (

M
b

/s
)

Downstream bandwidth (Mb/s)

Figure 3.11: Upstream bandwidth usage (controller out-of-band scenario)

Fig. 3.11 shows that the upstream bandwidth usage in the packet-reception
method is higher than the upstream bandwidth usage in the binary search method.
This is because the packet-reception method sends back the matched test packets
to the controller, leading to increase in the bandwidth requirements in the
upstream direction. Furthermore, the binary search method drops all the test
packets matched with a Flow Entry. However, we see in Fig. 3.11 that when
the downstream traffic increases, the traffic in upstream direction due to the
binary-search method also increases. These are due to the acknowledgments of
test packets sent in the upstream direction by TCP.

Fig. 3.10 and Fig. 3.11 show the results when there are only 5 wildcarded
Flow Entries (wildcards in the last 8 bits of source and destination IP address)
in each switch for verification. In this case, verification is completed in limited
time. However, when the number of Flow Entries is increased in switches, the

100 CHAPTER 3

verification time will increase significantly. Fig. 3.12 shows the results when the
number of Flow Entries is increased from 5 to 400. In this experiment, 5 Mb/s of
bandwidth is available in between each switch and the controller for performing
verification.

0

5000

10000

15000

20000

25000

0 50 100 150 200 250 300 350 400

V
e
r
if

ic
a

ti
o

n
 T

im
e
 (

s)

Packet Reception Method Binary-Search Method

0 50 100 150 200 250 300 350 400

Number of wildcarded Flow Entries under verification

Figure 3.12: Verification time when 5 Mb/s bandwidth available in each controller link for
verification

Fig. 3.12 illustrates that the verification time becomes significantly long as
the number of Flow Entries increases. This is because if more Flow Entries are
present for verification, more test packets are required to be sent to the switches.
As the bandwidth is limited, the controller needs to wait long time to send all the
test packets, increasing the verification time.

We see that the binary-search method leads to long verification time as
compared to the packet-reception method (Fig. 3.10 and Fig. 3.12). However, as
the bandwidth requirements of the binary-search method in the upstream direction
are less compared to those of the packet-reception method (Fig. 3.11), the
binary-search method can be used when upstream bandwidth is a bottle-neck.

3.6.2 VM-induced (in-band) verification experiment

For in-band verification, we assume that different queues are installed in OpenFlow
switches for control and data traffic. Configuration of these queues is described
in [16]. As traffic flows using different queues do not interfere with each other [16],
we do not consider data traffic in our experiments.

Fig. 3.13 shows the results of the experiments when the bandwidth of each
switch links is limited between 0.5 to 5.5 Mb/s (value is shown in the figure)
for verification. The emulation methodology of these experiments is provided
in Section 3.5.2. In these experiments, the VM makes an in-band connection
with switches in the network and sets the rate of the test packets according to
the verification bandwidth available in all the links along the OpenFlow session

VERIFICATION TECHNIQUES 101

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1 2 3 4 5 6

V
e
r
if

ic
a

ti
o

n
 T

im
e
 (

s) Load distributed approach

Shortest path approach

0 1 2 3 4 5 6
Bandwidth of each switch link (Mb/s)

Figure 3.13: Limited bandwidth scenario (VM in-band control scenario)

paths. As the paths for verification for some of switches is through other
switches in the network, the switches may have to wait for verification until the
intermediate switches in the path perform verification. This leads to increase in
the verification time in the VM-induced verification experiment as compared to
the controller verification experiment (Fig. 3.10) in which the controller makes
an out-of-band connection with the switches. However, an out-of-band control
network is not always possible (for example, in widely distributed central offices
in access networks). In this case, the controller may itself need to communicate
with switches in the network using in-band control paths [16] (Fig. 3.6B). Even
if an out-of-band control network is present, there may not be enough bandwidth
in this network to perform verification. Therefore, in this case verification traffic
may need to send through the data plane links by reserving some bandwidth over
the data network for verification.

We compare the results of the load distributed/balancing approach (discussed
in Section 3.4.1) with the shortest path approach (Fig. 3.13). In this experiment,
the bandwidth is limited and therefore, if the same subset of links are used for
verification paths of many switches (most probable case in the shortest path
approach), it will increase the verification time (explained in Section 3.4). Fig.
3.13 shows that the verification time using the load distributed approach is shorter
than the verification time using the shortest path approach (even though the path is
shortest). This is because using the load balancing approach, the load is distributed
among all the nodes in the network and the same subset of links are not used
for many OpenFlow session paths. This leads to decrease in the waiting time of
switches for performing verification. Additionally, it shows that if the bandwidth in
each switch link for verification increases, verification can be performed in limited
time.

102 CHAPTER 3

(S) = Shortest path Approach (L) = Load distributed approach

Point of the maximum “Betweeness centrality”

Topologies of the experiments

Figure 3.14: Verification time and switch centrality

3.6.3 Validation on multiple topologies

This experiment will evaluate how the verification time varies with the placement
of a VM in a network for a range of different topologies, given that the bandwidth
of each link between switches available for verification is restricted 1Mb/s. Fig.
3.14 shows the minimum value, lower quartile, median, upper quartile and the
maximum value of the verification time when the VM is placed at the different
locations. It shows that if the VM is not placed at the correct switch, the
verification time could be as worse as the maximum value. Fig. 3.14 also confirms
that the verification time is minimal for all topologies when the VM is placed at the
switch containing the maximum value of “Betweenness centrality”. Additionally,
we see that the verification time has the order CT < BT < RT . This is because
BT contains more switches than CT and hence, the VM needs to verify more
switches, leading to an increase in the verification time. Additionally, as RT has a
lower meshedness than BT, there can be many overlapping session paths links in
RT than BT, which leads to an increase in the verification time in RT. Furthermore,
as the bandwidth is limited, we see that the load distributed approach performs
better than the shortest path approach.

3.7 Conclusions

In this article, we have proposed a mechanism for the verification of the
Flow-Match Header part of Flow Entries in OpenFlow switches. The proposed
mechanism might be executed within the OpenFlow controller(s), or within
external devices or servers (e.g., on VMs), using the existing data network (in-band
verification) or using an external control/verification network (out-of-band). The

VERIFICATION TECHNIQUES 103

proposed mechanism was evaluated in extensive emulation experiments. The
results illustrated that the verification time depends on the bandwidth available
in the network for verification. If bandwidth is unlimited, verification can be
achieved in a very short time interval. However, if bandwidth limitations exist,
the verification time might increase significantly. Therefore, we proposed a load
balancing approach to distribute the load induced by verification traffic among
many links in the network. Our results indicate that the approach performs
better compared to a load-agnostic shortest path strategy when limited bandwidth
is available. Additionally, we evaluated the relationship between verification
time and the placement of the verification functionality in the network (i.e., VM
placement). Experiments validated that placing the verification functionality close
to or at the node with maximal “betweenness centrality” is beneficial with respect
to reducing the verification time of the entire process.

Acknowledgment
This research has received funding from the EU FP7 under agreement no 619609
(UNIFY).

References
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, OpenFlow: En- abling innovation
in campus networks, SIGCOMM Comput. Com- mun. Rev., vol.38, no.2,
pp.6974, 2008.

[2] Bugs in OpenFlow switches [Online]. Available:
http://osrg.github.io/ryu/certification.html.

[3] D. Kreutz, F.M.V. Ramos, P.E. Verissimo, C.E. Rothenberg, S. Azodolmolky,
and S. Uhlig, Software-defined networking: A com- prehensive survey, Proc.
IEEE, vol.103, no.1, pp.1476, 2015.

[4] P. Kazemian et al., Header space analysis: Static checking for networks,
NSDI, 2012.

[5] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P.B. Godfrey, and S.T. King,
Debugging the data plane with anteater, Proc. ACM SIGCOMM, pp.290301,
2011.

[6] A. Khurshid, W. Zhou, M. Caesar, and P.B. Godfrey, Veriflow: Verifying
network-wide invariants in real time, SIGCOMM Comput. Commun. Rev.,
vol.42, no.4, pp.467472, 2012.

104 CHAPTER 3

[7] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, Automatic test packet
generation, IEEE/ACM Transaction Networking., vol.22, no.2, pp.554566,
2014.

[8] S. Sharma, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester, Verifi-
cation of aggregated flows in OpenFlow networks, 2015 IEEE Conference
on Computer Communications Workshops (IN- FOCOM WKSHPS), pp.78,
2015.

[9] A. Csaszar, W. John, M. Kind, C. Meirosu, G. Pongracz, D. Staessens, A.
Takacs, and F.-J. Westphal, Unifying cloud and car- rier network: EU FP7
project UNIFY, 2013 IEEE/ACM 6th Inter- national Conference on Utility
and Cloud Computing, pp.452457, 2013.

[10] M. Berman, P. Demeester, J.W. Lee, K. Nagaraja, M. Zink, D. Colle, D.K.
Krishnappa, D. Raychaudhuri, H. Schulzrinne, I. Seskar, and S. Sharma, Fu-
ture internets escape the simulator, Commun. ACM, vol.58, no.6, pp.7889,
2015.

[11] K. Suzuki, K. Sonoda, N. Tomizawa, Y. Yakuwa, T. Uchida, Y. Higuchi, T.
Tonouchi, and H. Shimonishi, A survey on Open- Flow technologies, IEICE
Trans. Commun., vol.E97-B, no.2, pp.375386, 2014.

[12] ONF OpenFlow features and specifications [Online]. Available:
www.opennetworking.org.

[13] HP procurve 5400 zl series [Online]. Available:
http://archive.openflow.org/wp/wp-content/uploads/2011/04/HP Procurve -
OpenFlow support.pdf.

[14] D.Y. Huang, K. Yocum, and A.C. Snoeren, High-fidelity switch models
for software-defined network emulation, Proc. Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking HotSDN13,
pp.4348, 2013.

[15] Open vSwitch [Online]. Available: http://openvswitch.org/.

[16] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, In-band
control, queuing, and failure recovery functionalities for OpenFlow, IEEE
Network, Vol. 30(1), pp. 116-124, 2016.

[17] OpenStack interface [Online]. Available: https://www.openstack.org/
summit/openstack-summit-hong-kong-2013/session-videos/presentation/
opendaylight-an-open-source-sdn-for-your-openstack-cloud.

VERIFICATION TECHNIQUES 105

[18] Floodlight Controller [Online]. Available:
http://sdnhub.org/releases/floodlight-plus-openflow13-support/.

[19] TCP RFC [Online]. Available: https://www.ietf.org/rfc/rfc793.txt.

4
In-Band Control, Queuing, and Failure

Recovery Functionalities for
OpenFlow

This chapter investigates bootstrapping, queuing, and fast failure recovery tech-
niques for in-band OpenFlow networks in which control traffic (traffic to or from
the controller) is sent on the same infrastructure (or the same network) used to
transport data traffic. For bootstrapping, we propose a method with which Open-
Flow devices can be bootstrapped without having any manual configurations. This
chapter provides a brief description of the method, while Appendix A gives a de-
tailed description. For queuing, we extend the queuing functionality of OpenFlow
to add queues with different priorities. We used this extended queuing function-
ality for adding separate queues for control and data traffic in in-band networks
and by serving the control traffic queue before the data traffic queue. For fast fail-
ure recovery, we propose restoration and protection techniques for control traffic,
while utilizing the previously proposed restoration and protection schemes of out-
of-band networks for data traffic (Chapter 2). In addition, prototyping details for
a wide range of OpenFlow implementations are presented. Moreover, extensive
experiments are performed to measure the suitability of the proposed techniques
for OpenFlow.

? ? ?

108 CHAPTER 4

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet,
and Piet Demeester

Published in IEEE Network Magazine, January 2016.

Abstract In OpenFlow, a network as a whole can be controlled from one or
more external entities (controllers) using in-band or out-of-band control networks.
In this article, we propose in-band control, queuing, and failure recovery
functionalities for OpenFlow. In addition, we report experimental studies and
practical challenges for implementing these functionalities in existing software
packages containing different versions of OpenFlow. The experimental results
show that the in-band control functionality is suitable for all types of topologies.
The results with the queuing functionality show that control traffic can be served
with the highest priority in in-band networks and hence, data traffic cannot affect
the communication between the controller and networking devices. The results
with the failure recovery functionality show that traffic can be recovered from
failures within 50 ms.

4.1 Introduction

In recent decades, the Internet has grown from being an experimental research
network to a broadband commercial platform. At the same time, the Internet has
been facing many technical challenges such as complexity and inflexibility to meet
changing requirements. To solve these challenges, numerous research activities
such as the Clean Slate Internet program [1] and the Future Internet [2] have been
started to develop appropriate solutions. A major outcome of the former is the
idea of decoupling the control plane from the data plane in Internet devices (e.g.
switches/routers) and embedding the control plane into one or more servers, called
controllers. This enables independent evolution of the control and data plane. In
addition, an interface between the data and control plane has been proposed. The
most prominent protocol implementing such an interface is the OpenFlow protocol
[3].

The current research of OpenFlow focuses mainly on an out-of-band network
(Fig. 4.1a) in which control traffic (traffic to or from the controller) is sent on
a separate network [4]. Such an out-of-band network has the following main
advantages:

• High security is provided for control/management information because a
separate network is used for communication.

• Access to the switches is possible through the separate network even if there
are failures in the data traffic paths.

NON-PRODUCTION TO PRODUCTION NETWORKS TECHNIQUES 109

B

C

D

AA

Controller Controller

Control traffic Path

Data traffic Path

(a) (b)

D

A

B

C

A

B

C

OpenFlow ProtocolOpenFlow Protocol

A

F F

Same network for

both control and

data traffic

Separate network

for control traffic

and for data traffic

OpenFlow

Switch/Router

Figure 4.1: OpenFlow network: (a) out-of-band (b) in-band control.

However, these networks are expensive to build due to the requirement of a
separate network. Also, building a separate network may not be feasible in some
scenarios (e.g. widely distributed central offices in access networks).

To solve the above problems, OpenFlow is required to be implemented for
an in-band control network (Fig. 4.1b) in which control traffic is sent on the
same infrastructure as the data plane [5]. However, for such a network OpenFlow
does not describe how a switch can establish a communication path (e.g. control
traffic path in Fig. 4.1b) with the controller. Without configuring these paths
automatically, operators may face many manual configuration problems such as
going into the field to configure the switches. In this article, we implement a
method (known as bootstrapping) that inserts this information automatically in
in-band networks. We refer to this as in-band control functionality.

In in-band control networks, control traffic may compete with data traffic for
network resources (e.g. bandwidth) [6] as both share the same infrastructure.
Therefore, due to an increase in data traffic, the control plane operations (such as
new service establishment, failure recovery, load sharing) may suffer significant
delay, and the controller and switches may even disconnect. To solve these
problems, we extend the in-band functionality by implementing separate queues
for control and data traffic, and by serving the control traffic queue before the data
traffic queue. We refer to this mechanism as queuing functionality.

In in-band control networks, failures in the data plane (switch or link failures)
can affect both data and control traffic. As a loss in data traffic causes a disruption
of service, and a loss in control traffic prevents any new service establishment
from the switches affected by failures, failure recovery is important for both
data and control traffic. For failure recovery, some networks offer carrier-grade

110 CHAPTER 4

quality (RFC 5654), meaning that a network should recover from failures within
50 ms. Therefore, we explore two well known techniques, restoration and
path protection, for fast failure recovery of both control and data traffic. In
restoration, an alternative path is established after a failure. In path protection,
a disjoint alternative path is established before a failure, and when the failure
is detected, traffic is redirected to the alternative path. For failure detection in
restoration, loss-of-signal (LOS) can be used because it can detect failures in any
forwarding port. However, as LOS cannot detect failures in any path in protection,
bidirectional forwarding detection (BFD) (RFC 5880) can be used.

We proposed in-band control and failure recovery functionalities in [7] and
[8] respectively. In this article, we extend these functionalities with queuing
functionality and integrate BFD in OpenFlow switches for fast failure recovery.
In addition, we report practical challenges for implementing these in existing
OpenFlow packages, containing different OpenFlow versions. Furthermore, we
implement these functionalities in one of the OpenFlow software packages and
perform extensive experiments. The experiments with in-band control show that
the implemented method is suitable for all types of topologies. The experiments
with queuing show that data traffic does not affect the communication between
the controller and switches, and the experiments with failure recovery show that
carrier-grade quality can be achieved in OpenFlow.

The following section describes our proposed functionalities, the third section
describes practical challenges, the fourth describes experimentation, and the final
section concludes the article.

4.2 Functionalities for OpenFlow

4.2.1 In-band control functionality

For in-band control, each switch and the controller have to establish an OpenFlow
session over a transport layer protocol such as TCP, SCTP, or UDP. As switches
and the controller need a reliable connection between each other, TCP or SCTP
are preferred over UDP. In addition, as not all the platforms support SCTP, TCP is
mostly used for establishing sessions.

The method for in-band control may differ with the types of OpenFlow
switches used in the network. Today, there are two types of OpenFlow switches:
pure and hybrid [9]. Pure switches support only OpenFlow operations for
forwarding packets. Hybrid switches support both OpenFlow and traditional
switching operations (e.g. layer 2 Ethernet switching, layer 3 routing, and VLAN
isolations) for forwarding packets, and are common with many manufacturers
such as Brocade, Juniper, and Cisco. We implement a loop free in-band control
method using hybrid switches. In this method, at the time of bootstrapping, a

NON-PRODUCTION TO PRODUCTION NETWORKS TECHNIQUES 111

switch applies Ethernet switching operations to forward its own traffic and applies
OpenFlow operations to forward control traffic of other switches.

We frame the following three challenges for implementing in-band control:

• Each switch needs to configure a unique IP address for itself.

• Each switch needs to know the IP address and transport layer port (e.g. TCP
port) of the controller.

• Communication paths need to be established for the switches (B, C, and D
in Fig. 4.1b) that are not directly connected with the controller.

To solve the first and the second challenge, the followings are performed:

• Each switch runs a DHCP (Dynamic Host Configuration Protocol) client.

• Each switch runs a hybrid stack to forward its own traffic (e.g. DHCP
traffic).

• The DHCP server is configured with a vendor-specific option containing the
IP address and transport layer port of the controller.

• Either the DHCP server is located on the controller or the DHCP server and
the controller share IP (sub) networks (direct communication) with the same
switch switch A in Fig. 4.1b).

To solve the third challenge, the controller establishes communication paths
through the switches that have already established OpenFlow sessions.

Our in-band control method using DHCP solves the problems of configuring
each switch with a unique IP address and other transport layer parameters (e.g.
TCP port) of an OpenFlow session.

The four steps to perform in-band control are:

1. Notification of the required network parameters.

2. Establishment of a TCP session.

3. Establishment of an OpenFlow session.

4. Discovering the topology.

For the first step, each switch periodically sends DHCP messages to its neighbors
until it receives a reply from the DHCP server. If a neighbor is the DHCP server,
it replies to the switch (A in Fig. 4.1b). Otherwise, the neighboring switch may
forward or drop the messages, depending on whether it has an OpenFlow session
with the controller. In case the neighboring switch has the session, the controller
allows the neighboring switch to forward the DHCP messages to the DHCP server.

112 CHAPTER 4

When a switch knows its IP address and the IP address of the controller (using
DHCP), it runs ARP to know the MAC address of the controller. After knowing
the MAC address, the switch performs the second step.

In the second step, the switch establishes a TCP session with the controller.
Either it establishes the session directly (in case of switch A) or the controller
specifies a session path (shortest path) through the switches having an OpenFlow
session.

In the third step, the switch instantiates an OpenFlow session with the
controller [9].

In the fourth step, the controller discovers links of a switch after establishing
the session with it. For this, the controller allows the switch to flood probe
messages (Link Layer Discovery Protocol messages). From the received
messages, the controller discovers links of the switch [10]. In addition, the
controller discovers links of DHCP clients (for switches B, C, and D) and the
DHCP server on reception of DHCP messages from them, and the same flooding
mechanism (as probe messages) is exploited to infer the location of the DHCP
server. In this case, instead of probe messages, DHCP messages are flooded.

4.2.2 Queuing functionality

A part of queuing functionality, i.e. the creation of queues, is out-of-scope for
OpenFlow. However, with the OpenFlow protocol, a packet can be redirected
through an already created queue. For the creation of queues, switches can rely on
a separate protocol such as OF-Config (OpenFlow Configuration and Management
Protocol) or OVS-DB (Open vSwitch Database Management Protocol) [11]. For
the case when switches do not support these protocols, vendor specific options of
the OpenFlow protocol can be used for the creation of queues. Many switches
such as HP, Reference, Indigo, Trafficlab1.1, and Trafficlab1.3 (Table 4.1) allow
queue creation through vendor-specific options. However, with these options,
only a few types of queues (such as rate limiting queues) can be created. In
this article, we propose to extend the vendor-specific option of switches to create
queues with different priorities. In our proposal, the queue creation message of
the vendor-specific option is extended to add a priority number, and therefore, on
reception of this message, a switch can create queues having different priorities
using switch traffic control commands (e.g. Linux traffic control commands in the
Reference, Trafficlab1.1, and Trafficlab1.3 switches).

In queuing functionality, the aforementioned extension is used for creating
different queues for control and data traffic. The control traffic queue is given
the highest priority, and hence is served before any other queue. When all switch
port information is received, the controller creates the control traffic queue on
each port of the switch. For data traffic, the controller can create queues either in

NON-PRODUCTION TO PRODUCTION NETWORKS TECHNIQUES 113

advance or on reception of data traffic. In addition, when the controller receives
traffic to define its forwarding, the controller adds a forwarding entry to redirect
control traffic to the control traffic queue and data traffic to the data traffic queue.
For separating control and data traffic, the controller uses the source IP address,
destination IP address, and transport layer parameters of an OpenFlow session in
a forwarding entry of control traffic.

4.2.3 Failure recovery functionality

In OpenFlow, a switch sends an echo-request to the controller after an idle
timeout. If it does not receive an echo-reply before an echo timeout, it declares
failures. The switch then tries to establish a new session. If it fails, it waits
for a backoff timeout to re-establish the session. As the minimum value of idle,
echo, and backoff timeouts are 1 second, failure recovery cannot be achieved in
milliseconds. Therefore, we implement two fast recovery techniques, restoration
and path protection, for single failure scenarios in in-band networks.

For implementing restoration, the controller depends on a failure notification
(PORT STATUS [9]) instead of the echo timeout to declare failures. The controller
receives the notification when a switch detects LOS and still has a connection
with the controller. The challenge behind restoration is that the controller has lost
communication with the affected switches and therefore it cannot establish paths
from (or along) these switches.

To overcome the challenge, during bootstrapping the controller establishes a
one-hop restoration path together with the working path for control traffic. In
this path, the source switch floods its own traffic, only one neighbor (which is
along the working path) forwards the traffic, and other neighbors just drop it. On
the failure notification, the controller first makes a list of affected switches that
can be restored first and then restores the affected switches according to the list.
This is done because the restoration path of affected switches may be along the
switches that are affected by the failure, and hence before establishing the path
these switches are needed to be restored.

In addition to restoration, failure recovery can be achieved by protection.
Protection removes the need of establishing an alternative path after a failure by
installing it in advance. We implement 1:1 path protection in which the ingress
switch redirects traffic to a pre-established disjoint alternative path when a failure
is detected in the working path. For pre-establishing the path, the controller
uses the group-table concept (fast-failover) [9] at the ingress switch and uses the
flow-table concept in all other switches along the paths. With the group-table
concept, two rules are kept for traffic forwarding. Before a failure, the ingress
switch applies the first rule (which corresponds to the working path), and after the
failure it applies the second rule, which corresponds to the alternative path.

114 CHAPTER 4

In addition to control traffic, we apply the above restoration and protection
techniques for data traffic. However, in the case of restoration of data traffic,
the one-hop restoration paths are not established in advance, and after recovering
control traffic, data traffic is restored.

In the case of protection of both control and data traffic, BFD can be used.
In BFD, a pair of switches transmits BFD packets periodically between each
other, and if a switch stops receiving the packets, the path between the switches is
assumed to be failed.

OpenFlow does not define how to run BFD in the switches. Therefore, we
propose to integrate BFD in the local networking stack of switches and add a
vendor-specific extension in the OpenFlow protocol to run it through the switches.
With this vendor-specific extension, the controller sends a message containing
information about a BFD session (RFC 5880). Upon reception of this message,
the switch runs the BFD session on the local networking stack, which allows the
switch to send BFD packets through its local port (reserved port of the switch).

In protection, when the controller establishes the working and alternative
path between two edge switches, the controller sends vendor-specific messages
to edge switches to start a BFD session between them. In addition, the controller
establishes a path for the BFD session, which follows the same path as the working
path. Hence, when BFD detects the failure, the ingress switch declares the working
path as a faulty path and therefore, the ingress switch can now apply the second
rule.

4.3 Practical challenges

4.3.1 Evolution of OpenFlow specifications

Stanford University released specifications for OpenFlow known as version 1.0
and 1.1 in 2009 and 2011, respectively, and industrial players such as Deutsche
Telekom, Google, Microsoft, and Yahoo! have shown substantial interest in this
technology. These companies then formed ONF (Open Networking Foundation)
to standardize and release the versions of OpenFlow according to their demands.
Since then, six more versions (1.2, 1.3.0, 1.3.1, 1.3.2, 1.3.3, and 1.4.0 [9]) have
been released publicly. Hence, the challenge is to choose which version to use
for implementation of our functionalities. In addition, as OpenFlow is evolving
quickly, not all the versions or all the enhancements of the released versions are
implemented for OpenFlow.

4.3.2 Availability of required switch components

Table 4.1 shows the availability of the required components in existing
implementations. The functions of these components are described below:

NON-PRODUCTION TO PRODUCTION NETWORKS TECHNIQUES 115

Table 4.1: Features required/present in different implementations of OpenFlow switches.
VS is the vendor-specific extension, OVS-DB is the Open vSwitch database management

protocol, and VER is the Open vSwitch version

R
ef

er
en

ce
sw

itc
h

In
di

go
sw

itc
h

O
pe

n
vS

w
itc

h
(u

p
to

V
E

R
1.

11
.0

)
Tr

af
fic

la
b1

.1
Tr

af
fic

la
b1

.3

So
ft

w
ar

e
C

om
po

ne
nt

(L
ic

en
se

B
SD

)
(L

ic
en

se
E

cl
ip

se
)

(L
ic

en
se

A
pa

ch
e

2.
0)

(L
ic

en
se

B
SD

)
(L

ic
en

se
B

SD
)

w
w

w.
op

en
flo

w
-

.o
rg

w
w

w.
op

en
flo

w
-

hu
b.

or
g

w
w

w.
op

en
vs

w
itc

h.
or

g
ht

tp
s:

//g
ith

ub
.c

om
/-

Tr
af

fic
La

b
ht

tp
s:

//g
ith

ub
-

.c
om

/C
P

qD
D

H
C

P
C

lie
nt

Y
es

Y
es

N
ot

fu
nc

tio
na

lf
or

in
-b

an
d

co
nt

ro
l

N
ot

fu
nc

tio
na

l
N

ot
fu

nc
tio

na
l

In
-b

an
d

N
O

R
M

A
L

St
ac

k
Y

es
Y

es
Y

es
Y

es
N

ot
fu

nc
tio

na
l

T
C

P
St

ac
k

Y
es

Y
es

Y
es

Y
es

Y
es

O
pe

nF
lo

w
St

ac
k

Y
es

Y
es

Y
es

Y
es

Y
es

Q
ue

ue
fo

rw
ar

di
ng

Y
es

Y
es

Y
es

Y
es

Y
es

Q
ue

ui
ng

Q
ue

ue
cr

ea
tio

n
Y

es
(w

ith
V

S)
Y

es
(w

ith
V

S)
Y

es
(w

ith
O

V
S-

D
B

)
Y

es
(w

ith
V

S)
Y

es
(w

ith
V

S)
Q

ue
ue

s
w

ith
pr

io
ri

tie
s

N
o

N
o

Y
es

N
o

N
o

L
O

S
fa

ilu
re

de
te

ct
io

n
Y

es
Y

es
Y

es
Y

es
Y

es

Fa
ilu

re
R

ec
ov

er
y

B
FD

fa
ilu

re
de

te
ct

io
n

N
o

N
o

N
o

N
o

N
o

G
ro

up
-t

ab
le

(f
as

t-
fa

ilo
ve

r)
N

o
N

o
N

o
Y

es
Y

es

116 CHAPTER 4

With a DHCP client [12], a switch can generate/receive DHCP messages from
the local port. With the NORMAL stack [9], a source switch can forward its
messages using L2 learning when it does not have an OpenFlow session with the
controller. Using the TCP stack, a switch can establish a TCP session. Using the
OpenFlow stack [9], a switch can establish an OpenFlow session. Using queue
forwarding [9], traffic can be forwarded through queues. With the queue creation
component, queues can be created in switches. Using queues having different
priorities, queues can be served on a priority basis. Using LOS, a switch can detect
failures in restoration. Using BFD, switches can detect failures in protection,
and with the group-table fast-failover type, switches can change the actions of
forwarding packets without contacting the controller.

The existing implementations for required components are Reference switch,
Indigo, Open vSwitch, Trafficlab1.1, and Trafficlab1.3 (Table 4.1). Reference
switch [3] is the first software release of OpenFlow version 1.0. Indigo is
a hardware-switching release based on Reference switch. Open vSwitch is
a production quality release of OpenFlow. Trafficlab1.1 is the extension of
Reference switch to incorporate version 1.1, and Trafficlab1.3 contains version
1.3.0.

Table 4.1 shows that not all the required components are present in a
single implementation. Therefore, the challenge is to integrate all the required
components in one implementation. In addition, vendor-specific extensions of
switches are required to configure queues with different priorities. Furthermore,
BFD is not present in any implementations. Hence, it is needed to be either
implemented fully or imported from any open-source implementations of BFD.
Some modifications related to BFD are also required. The modifications are:
running BFD sessions on the local networking stack; listening or sending BFD
packets on the local port; and modifying a group-table entry on detection of a
failure.

4.3.3 Availability of required controller components

The required controller components are:

• In-band control, which can run in-band functionality on the controller.

• Queuing, which can establish queues (with different priorities) in the
switches.

• Failure recovery, which can implement restoration or protection for control
and data traffic.

Currently, none of the available controllers (e.g. NOX, POX, Floodlight)
implement these components.

NON-PRODUCTION TO PRODUCTION NETWORKS TECHNIQUES 117

For the implementation of these components, the available controllers can
generate several events. The events, which are important for the required
components, are:

• Switch-join, which is generated when a switch establishes an OpenFlow
session with the controller.

• Switch-leave, which is generated when a switch disconnects from the
controller.

• Port-config, which is generated when the controller receives all port
information.

• Packet-in, which is generated when a packet is received to decide its
forwarding action.

• Port-status, which is generated when an LOS is detected or repaired in one
of the ports in a switch.

Using these events, all the proposed functionalities can be implemented in all the
available controllers.

4.4 Experimental studies

Table 4.2: Emulated topologies

Topologies #switches #links switch degree

min mean max

1 Pan

European

Topologies

Core topology 16 23 2 2.88 4

Basic reference 28 41 2 2.93 5

Large topology 37 57 2 3.08 5

Ring topology 28 34 2 2.43 4

Triangular topology 28 61 2 4.36 7

2 Ring 100 99 2 2 2

3 Random Regular Graph 100 150 3 3 3

4 Balanced Binary Tree (height=5) 63 62 1 1.97 3

5 Star 100 99 1 1.98 99

We implemented our proposed functionalities in Traffliclab1.3 and in its
compatible controller (NOX1.3). We used this switch because at the time
of our implementation this was the only available soft switch containing the
latest version and the group table concept. We implemented all the unavailable

118 CHAPTER 4

and non-functional software components (Table 4.1) in this switch using the
mechanisms provided above.

The experiments are carried out using the emulated topologies described in
Table 4.2. The pan-European topologies in Table 4.2 are basic reference topology
(BT), core topology (CT), large topology (LT), ring topology (RT), and triangular
topology (TT). The topologies that vary with the degree of meshedness are RT
and TT, and the topologies in accordance with the number of switches are CT and
LT. The other used topologies are ring, star, random regular graph, and balance
binary tree. For experiments, one of the switches is physically connected with the
controller, and the DHCP server is located on the controller.

For the in-band experiments, we use a single node of the iMinds island of
the OFELIA testbed [13], and mininet [14] is used for emulating topologies. For
all other experiments, a node of the island is dedicated to a single switch or the
controller, and the topologies are generated using the emulab interface of the
island.

4.4.1 In-band control experiments

5

6

7

8

9

10

11

12

13

14

B
o

o
ts

tr
a

p
p

in
g

 T
im

e
 (

se
c
o

n
d

s)

Pan European Topologies Ring Topology

Random Regular Graph Balanced Binary Tree

Star Topology50

49

48

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9

B
o

o
ts

tr
a

p
p

in
g

 T
im

e
 (

se
c
o

n
d

s)

Minimum distance from the controller

(number of hops)

1 2 3 4 5 6 7 51

Figure 4.2: Bootstrapping time for all emulated topologies. The error bars show the
minimum, average, and maximum values of the bootstrapping time.

In the case of in-band control experiments, the DHCP retransmit timeout is
kept as 1 second (minimum value) and the bootstrapping time (the total time to
establish OpenFlow sessions) of switches is calculated with respect to the distance
from the controller. As the bootstrapping time for all pan-European topologies is

NON-PRODUCTION TO PRODUCTION NETWORKS TECHNIQUES 119

approximately the same, we show the bootstrapping time of all these topologies
by a single bar (Fig. 4.2). In addition, at the distance where there is no switch in
the topologies, no bar is shown in Fig. 4.2.

For one-hop, the bootstrapping time is approximately zero because the switch
at one-hop does not wait for the DHCP timeout to retransmit a DHCP request.
As the distance from the controller increases, Fig. 4.2 shows an increase in the
bootstrapping time, because the switches, which are n hop (n > 1) away from
the controller, are able to establish the session, if at least one of its neighbors
has an OpenFlow session with it. When more switches are located at a certain
distance from the controller (at distance 2 for star, at distance 6 for balance-binary
tree, and at distance 6 and 7 for random-regular graph), we found a significant
increase in the bootstrapping time, because in this case the in-band component of
the controller receives lots of messages at about the same time. Until the controller
replies, the messages stay in the packet-in buffer, increasing the bootstrapping
time. In addition, as the buffer can overflow at some point, some of the messages
have to be dropped. If a dropped message is a DHCP request, a switch waits for
the next DHCP timeout to retransmit the DHCP request, and hence delays the
bootstrapping time for an additional 1 second.

4.4.2 With queuing and without queuing experiments

120

140

160

180

200

220

240

Bootstrapping Time (WQ) Bootstrapping Time (Q)

New Service Installation Time (WQ) New Service Installation Time (Q)

Restoration Time (WQ) Restoration Time (Q)

Protection Time (WQ) Protection Time (Q)
>20000

15125

10250

5375

500

-20

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1 1.2 1.4

T
im

e
 (

m
s)

Normalized Load on each Link

(data rate/link capacity)

Figure 4.3: Impact of data traffic on control plane operations. WQ means in-band control
without queuing functionality and Q means in-band control with queuing functionality.

120 CHAPTER 4

In these experiments, the rate of data traffic (Poisson distributed on an average
interval) is varied on each link of the CT topology, and the impact of data rate
on control plane operations such as new switch connection (bootstrapping), new
service installation, and failure recovery is calculated using queuing (Q) and
without using queuing functionality (WQ). Each link of the topology is assigned a
capacity of 10 Mb/s, and the size of data packets is 1000 bytes. All the results are
calculated 50 times, and the average is shown in Fig. 4.3.

Figure 4.3 shows that under a low load (load < 0.9), bootstrapping, new
service installation, restoration, and protection time is comparable for Q and WQ.
However, at a high load (load > 0.9), due to congestion WQ takes a significantly
longer time than Q for bootstrapping, new service installation, and restoration.
In this case, as the load increases, switches drop more control and data packets.
After dropping control packets, switches and the controller have to retransmit these
packets after their timeouts, increasing the delay in completing bootstrapping, new
service installation, and restoration. Moreover, at a load > 1.04, WQ has a
lower protection time (less than 40 ms) than Q. This is because due to congestion,
switches have dropped some BFD packets (sent interval = 20 ms and timeout = 40

ms) just before a failure, allowing BFD to detect failures faster than in a normal
condition. Furthermore, after a load ≥ 1.08, a large number of BFD packets
drops in WQ due to congestion, and therefore BFD declares its timeout without the
presence of the actual failure (link failure). This is the reason for zero protection
time in WQ at a load ≥ 1.08 as traffic is already on the protection path at the time
of failure. The results also show that all control plane operations take significantly
shorter time in in-band control with queuing (Q) in all load conditions. Indeed,
queuing functionality circumvents the competition between control and data traffic
by implementing separate queues.

4.4.3 Failure recovery experiments

We performed the following three types of failure recovery experiments for
in-band OpenFlow using queuing functionality: (1) Control and data traffic, (2)
Multiple topologies, and (3) Switches disconnection experiments.

In control and data traffic experiments, the failure recovery time is calculated
for one of the combinations of restoration and protection for control and data
traffic. In multiple topology experiments, the recovery time is calculated for
different types of topologies, and in switch disconnection experiments, the
recovery time is calculated to show the impact of the increased number of
disconnected switches along the recovery path. In the experiments, a failure is
given by disabling Ethernet interfaces, and for restoration, LOS is used to detect
failures and the failure detection time is between 50 to 60 ms. For protection, BFD
is used and the failure detection time is about 40 ms. All the results are calculated

NON-PRODUCTION TO PRODUCTION NETWORKS TECHNIQUES 121

1000

F
a

il
u

re
 r

e
c
o

v
e
r
y

 t
im

e
 (

m
s)

Control Traffic (Rest-Rest) Data traffic (Rest-Rest)

Control Traffic (Rest-Prot) Data Traffic (Rest-Prot)

Control Traffic (Prot-Rest) Data Traffic (Prot-Rest)

Control Traffic (Prot-Prot) Data Traffic (Prot-Prot)

10

100

0 5 10 15 20 25 30 35

F
a

il
u

re
 r

e
c
o

v
e
r
y

 t
im

e

Growth factor in the number of data flows

(1 factor = 240 flows and 16 affected data flows)

50

50 ms

Figure 4.4: Recovery time of control and data traffic using all combinations of restoration
and protection

50 times and the average is shown in Fig. 4.4.
In the control and data traffic experiments, the number of data flows (240 to

8400) is increased in the CT topology, and one of the combinations of restoration
and protection is applied for control and data traffic. These combinations are:

• Restoration of both control and data traffic (Rest-Rest).

• Restoration of control traffic and protection of data traffic (Rest-Prot).

• Protection of control traffic and restoration of data traffic (Prot-Rest).

• Protection of both control and data traffic (Prot-Prot).

In all the combinations, Fig. 4.4 shows that restoration does not meet the
carrier-grade requirement of 50 ms, while protection meets the requirement. In
addition, the restoration time of data traffic (Rest-Rest and Prot-Rest) increases
with the increase in the number of affected data flows, because as the number of
affected data flows increases, a higher number of data traffic paths needs to be
configured after the failure.

In the multiple topology experiments, different types of pan-European
topologies (CT, BT, and RT) are used, and we found that the restoration
time increases with the number of switches in a topology, because in our

122 CHAPTER 4

implementation the path calculation time grows as O(n2), where n is the number
of switches. In addition, as the degree of meshedness increases, the restoration
time decreases, because in this case fewer hops are required for the restoration
path, and therefore the controller needs to configure fewer switches in the network.
Furthermore, protection does not require controller intervention, and therefore it is
far less dependent on the network topology.

In the switch disconnection experiments, ring topologies are used, and the
restoration time follows a linear relationship with the number of affected switches
along the restoration path. For protection, the recovery time is always within 50
ms and meets the requirement.

4.5 Conclusion and future work

In this article, we have explored OpenFlow for in-band control, queuing,
and failure recovery functionalities, and have performed extensive experiments.
The in-band control experiments conclude that the proposed method allows
bootstrapping in all types of topologies. With this method, switches of emulated
pan-European topologies have taken a maximum of 5 seconds to perform
bootstrapping. The queuing experiments demonstrate that in-band control traffic
can be served first before any other traffic, and hence it can avoid competition with
data traffic for network resources. The failure recovery experiments conclude that
restoration in OpenFlow does not allow achieving 50 ms recovery, and protection
for both control and data traffic allows achieving recovery within 50 ms. In
our results, we did not take into account the propagation delay. Among all the
presented results, the restoration time may significantly increase with the increase
in the propagation delay, further strengthening the conclusion of the article that
restoration cannot meet the requirement of 50 ms. As future work, the effects of
propagation delay can be studied to quantify the degradation of the restoration time
with an increase in propagation delay.

Based on the presented emulation results, we believe that our functionalities
can be applied in production networks. However, to improve the accuracy of
results, our experiments can also be performed on real environment testbeds
such as GENI (Global Environment for Network Innovations) or FIBRE (Future
Internet testbeds/experimentation between Brazil and Europe). Using these
testbeds, OpenFlow hardware switches can be used for experimentation and the
topologies can be generated in real environment settings. In the experiments, the
impact of real environment factors (e.g. hardware dependent parameters such as
packet forwarding, processing, and queuing) on the results can be studied. For the
bootstrapping time, we believe that this impact will be negligible, as the DHCP
retransmit timeout (i.e. 1 second) dominates the bootstrapping time. For the
restoration time, the impact can be significant as the restoration time is measured in

NON-PRODUCTION TO PRODUCTION NETWORKS TECHNIQUES 123

milliseconds and a small variation due to real factors will influence the results. For
the protection time, the impact will be negligible because only the ingress switch
along the protection path is involved for the protection activity.

In this article, we have not explored security and controller failure issues for
in-band OpenFlow. For security, there can be many concerns related to DHCP
[12], transport layer [15], and OpenFlow messages. These concerns are security
issues related to:

• TCP or DHCP requests from bad actors.

• DHCP messages from an unauthorized DHCP server.

• Denial of service from the DHCP server or the controller.

• Switch datapath ID conflicts.

Nevertheless, transport layer security (TLS) described in OpenFlow [9] can be
applied in the bootstrapping phase. However, the problem is that OpenFlow does
not provide any details of TLS operations. This could lead to interoperability
issues. In addition, TLS has many technical barriers for operators. These are:

• Assigning controller certificates.

• Assigning switch certificates.

• Signing the certificates with a private key.

• Installing the keys and certificates into all network devices.

In future work, we will consider the aforementioned security issues and will
explore controller failure solutions for in-band OpenFlow. To solve the controller
failure issues, we will use two controllers. Hence, when one controller crashes,
switches can rely on a backup controller to take actions.

Acknowledgments

This research has received funding from EU FP7 under agreement no 317576
(CityFlow), 258457 (SPARC) and 258365 (OFELIA).

References

[1] J. Rexford, Future Internet Architecture: Clean-Slate Versus Evolutionary
Research, Communications of the ACM, Vol. 53, no. 9, September 2010, pp.
36–40.

124 CHAPTER 4

[2] J. Pan, S. Paul, and R. Jain, A survey of the research on future internet ar-
chitectures, IEEE Communications Magazine, Vol. 49, no. 7, July 2011, pp.
26–36.

[3] N. McKeown, T. Andershnan, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, J. Turner, OpenFlow: Enabling innovation in cam-
pus networks, ACM Computer Communication Review, Vol. 38, no. 2, April
2008, pp. 69–74.

[4] R. Ahmed and R. Boutaba, Design considerations for managing wide area
software defined networks, IEEE Communications Magazine, Vol. 52, no. 7,
July 2014, pp. 116 - 123.

[5] C. Tu, P. Wang, and T. Chiueh, In-Band Control for an Ethernet-Based
Software-Defined Network, ACM SYSTOR, 2014, pp. 1–11.

[6] P. Skoldstrom and K. Yedavalli, Network virtualization and resource allo-
cation in OpenFlow-based wide area networks, IEEE ICC, June 2012, pp.
6622–6626.

[7] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, Automatic
bootstrapping of OpenFlow networks, IEEE LANMAN, April 2013, pp. 1–6.

[8] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, Fast
failure recovery for in-band OpenFlow networks, DRCN, March 2013, pp.
44–51.

[9] OpenFlow specifications [Online]. Available:
https://www.opennetworking.org/sdn- resources/onf-specifications.

[10] A. S. Tan, O. Karakaya, A. Ulas, M. Parlakisik, O. Kupusoglu, O. Erhan, E.
Lokman, Automatic topology discovery in software defined networks, SIU,
April 2014, pp. 939- 942.

[11] S. Sharma, D. Staessens, D. Colle, D. Palma, J. Goncalves, M. Pickavet,
L. Cordeiro, P. Demeester, Demonstrating resilient quality of service in
Software Defined Networking, IEEE INFOCOM WKSHPS, May 2014, pp.
133–134.

[12] S. Duangphasuk, S. Kungpisdan, S. Hankla, Design and implementation of
improved security protocols for DHCP using digital certificates, IEEE ICON,
December 2011, pp. 287–292.

[13] M Sune, L Bergesio, H Woesner, et. al., Design and implementation of the
OFELIA FP7 facility: the European OpenFlow testbed, Computer Networks,
Vol. 61, March 2014, pp. 132–150.

NON-PRODUCTION TO PRODUCTION NETWORKS TECHNIQUES 125

[14] V. Antonenko and R. Smelyanskiy, Global Network Modelling Based on
Mininet Approach, HotSDN, 2013, pp. 145–146.

[15] P. Casas, J. Mazel, and P. Owezarski, Knowledge-Independent Traffic Moni-
toring: Unsupervised Detection of Network Attacks, IEEE Network, Vol. 26,
no. 1, January 2012, pp. 13–21.

5
CityFlow, Enabling Quality of Service

in the Internet: Opportunities,
Challenges, and Experimentation

This chapter proposes the introduction of Quality of Service (QoS) techniques for
the Future internet enabled with OpenFlow. For implementing QoS techniques, we
explore the queuing functionality proposed for OpenFlow in the previous chapter
and implement a framework with which a high priority user connected to an Open-
Flow network is dynamically allocated a right of way between any two endpoints,
on multiple autonomous systems, for a given application flow. The framework is
evaluated in a wide range of network scenarios for a city with a population of 1
million inhabitants on a large-scale experimental facility in Europe. The scenarios
include both data and control traffic scalability, as well as, failure recovery. For
failure recovery, we do not focus on fast failure recovery (Chapter 2 and Chap-
ter 4), but we focus on the mechanisms with which high quality can be achieved
for high-priority users in all scenarios including failure scenarios. This chapter
presents a brief description of the QoS mechanism proposed for providing high
QoS under failure conditions, while Appendix C gives a detailed description about
the mechanism.

? ? ?

128 CHAPTER 5

Sachin Sharma, David Palma, Joao Goncalves, Dimitri Staessens,
Nick Johnson, Charaka Palansuriya, Ricardo Figueiredo, Luis
Cordeiro, Donal Morris, Adam Carter, Rob Baxter, Didier Colle

Submitted to Computer Networks, November 2015.

Abstract By including a dynamic right of way in the Future Internet, services
can be delivered more efficiently and effectively. In this article, we propose
an OpenFlow enabled Internet infrastructure, using virtual path slicing, so that
any user connected to an OpenFlow network substrate is dynamically allocated
a corresponding right of way. This approach allows an interference-free path,
from other traffic, between any two endpoints, on multiple autonomous systems,
for a given application flow (e.g., WebHD Video Streaming or HD Video to
Video). Additionally, we propose an operational model for the Future Internet
and extend the virtual path slice engine, which enables virtual path slicing over the
Internet, to support future Internet technologies such as OpenFlow. The proposed
architecture was evaluated in distinct reference network-scenarios for a city with a
population of 1 million inhabitants, emulating xDSL (Digital Subscriber Line),
LTE (Long-Term Evolution) and Fibre networking scenarios. The obtained
results confirmed the suitability of the proposed architecture between multiple
autonomous systems, considering both data and control traffic scalability, as well
as resilience and failure recovery.

Keywords

OpenFlow; Quality-of-Service; Internet; Border Gateway Protocol

5.1 Introduction

In recent years, Internet traffic from content provider companies (e.g., Skype,
Google, Netflix, Akamai, Facebook) has increased drastically due to the
exponential usage of over-the-top applications by users. This traffic is expected
to keep increasing, as content providers launch more and more over-the-top
applications. However, telecommunication companies, who bear the operational
and maintenance cost of the Internet infrastructure, are not interested in investing
on additional infrastructure capacity to provide the required bandwidth for these
applications without an adequate return on network capital employed.

Since no content provider has created a successful business model for large
scale quality of service (QoS) over the Internet [1], it is very difficult for Internet
infrastructure owners to get profit from the growing demand for bandwidth and
quality. Currently, the Internet works on a best-effort basis and content owners,

QUALITY OF SERVICE TECHNIQUES 129

who obtain revenue for their applications, can inject traffic into the Internet
at an originating Autonomous System (AS) and expect it to be carried over
the Internet to a destination autonomous system without sharing revenue with
infrastructure owners. Differentiation is one possible solution. In addition, it
would be interesting for content provider and users to open a guaranteed pipe over
the Internet using differentiation.

In the CityFlow project1, we propose a differentiated Internet based on virtual
path slicing (VPS) and Software Defined Networking (SDN) technologies, such
as OpenFlow. Using SDN [2], the control plane can be separated from the data
plane of Internet devices and can be embedded into one or more external servers
called controllers. Using VPS [3], telecommunication companies can enable a
right of way for users’ traffic over the Internet without interference from best-effort
traffic. In this article, VPS is enabled using the virtual path slice engine, which
is a commercial product of Redzinc, Ireland2 and it is extended to support SDN
technologies.

For the differentiated Internet, we propose an operational model for the Internet
and give opportunity for infrastructure owners, content providers, and users to
benefit from it. In the operational model, we propose that traffic engineers
of the Internet infrastructure dimension their networks into two categories:
(1) aggregated traffic, which is historically the best-effort Internet, and (2)
personalized flows, which are treated as high-priority traffic. For treating traffic
as a personalized flow, the infrastructure owners can charge users or their content
providers. Our model can raise questions regarding network neutrality [4].
Network neutrality means that no bit of information should be prioritized over
another on the Internet. This is a complicated regulatory issue, and a full
discussion is out of scope of this article. Nevertheless, it is worth mentioning
that technical methods used in our model are based on the requirements of
reasonable network management practices including transparency, non-blocking,
and no unreasonable discrimination [5].

We test our model using a wide range of large-scale multi autonomous
signaling experiments that are performed on the OFELIA testbed (OpenFlow in
Europe Linking Infrastructure and Applications). The OFELIA testbed [6] is
a large-scale experimental facility in Europe. One of the experiments is also
performed on the public Internet using the Amazon cloud facility. Our experiments
mimicked the conditions that would be required for WebHD Video Streaming and
HD Video to Video. All the experiments are performed by taking into account
the key Internet technologies (4G/xDSL/Fibre) for a mid-sized European city of
around 1 million inhabitants.

Section 5.2 presents the proposed CityFlow model, architecture and

1The CityFlow project: https://www.cityflow.eu/
2www.redzinc.net

130 CHAPTER 5

components, followed by the presentation of the defined CityFlow network
scenarios in Section 5.3. Section 5.4 provides details about the performed
experimentations and the obtained results are discussed in Section 5.5. Finally,
in Section 5.6, concluding remarks and future directions are presented.

5.2 QoS model for the Internet

In the CityFlow project, deployment of a virtual path slice over the Internet is
influenced by the research performed by the EuQoS project [3] which promises
to provide end-to-end QoS over heterogeneous networks. The essential principal
of the research is that bandwidth resources are managed in an on-path off-line
manner. By on-path we mean that resource management follows the forwarding
path of the IP packets, across multiple autonomous systems, as determined by BGP
(Border Gateway Protocol). By off-line we mean that the resource management is
implemented in software off-line from the network elements that are responsible
for packet forwarding. Along the path, capacity management is implemented only
at choke points which are mostly the interconnection points and the edges.

5.2.1 VPS engine overview

Our model uses the VPS engine3 to setup virtual path slices over the Internet.
This engine contains three main interfaces (shown in Fig. 5.1): (1) the first one
is to receive requests from users, (2) the second one is for inter-carrier domain
communication and (3) the third one is to communicate with the infrastructure
networks. The first interface is implemented to receive requests from users to
reserve a right of way in the Internet. The implementation of the second interface
within the VPS engine (i.e., for inter-carrier domain) is largely influenced by the
initial work done in the the Internet Engineering Task Force (IETF) for Next Steps
in Signalling (NSIS) [7]. The implementation of the third interface was developed
in order to communicate with OpenFlow-based infrastructure networks, detailed
in the next subsection.

The VPS engine contains also a MySQL Database, translation layer component
and invocation controller, responsible for storing all the information about
invocations, topology and resources. The translation layer component is
responsible to translate the input of the VPS client to the NSIS protocol input
and the invocation controller is responsible to reserve resources in networks for
establishing a right of way for services.

3Commercial product from Redzinc

QUALITY OF SERVICE TECHNIQUES 131

Virtual Path

Slice (VPS)

Engine

VPS Client

Application

Best-Effort

Internet

High Priority

Slice

High Priority

Slice

(2) Interface for

inter carrier domain

(1) API to request service

operations (e.g., triggering)

through the VPS Engine

End User Video

Server

(3) Interface for setting up service

operations on infrastructure networks

Figure 5.1: VPS engine overview

5.2.2 Components of the proposed model

The architecture devised by CityFlow was envisaged for future OpenFlow
networks, enabling them with the possibility to dynamically configure paths with
guaranteed traffic performance. Motivated by the separation between data and
control planes followed by the software-defined networking paradigm, additional
business intelligence is included on top of the control plane, which in turn enforces
the necessary decisions on the data plane. Fig. 5.2 depicts a high-level perspective
of this approach.

RESTful

Virtual

Path Slice

Engine

Controller + QueuePusherRouteFlow

Pulse Generator

(for generating

data traffic)

Pulse Generator

(for generating

invocations)

Measurement

System

Flow Core or Appco

enabled with SDN

technologies

Autonomous

System

RESTful

OpenFlow and OVSDB protocol

Figure 5.2: CityFlow’s architecture and components

132 CHAPTER 5

In particular, in CityFlow, the Virtual Path Slice (VPS) engine is the entity
responsible for the business intelligence and manages the relationship with
the remaining CityFlow components, namely RouteFlow [8] and the controller
extended with the QueuePusher module [9]. RouteFlow is used for running routing
protocols such as BGP in the OpenFlow networks. The QueuePusher module4 is
used to set up queues for providing high QoS to the personalized flows.

Since the beginning of this project several platforms have been developed for
SDN. In fact, even though during the development of this work the Floodlight
controller was chosen due to its northbound API, nowadays, other controllers
provide similar characteristics (e.g. the Open Daylight controller). Nonetheless,
the conclusions presented by this article are independent of these factors and could
be verified with the latest available SDN solutions.

In the proposed architecture, the communication between the components
within the control plane is based on a RESTful interface, so that it can easily ported
between different software solutions, while interactions with OpenFlow switches
and the controller are supported by the OpenFlow and OVSDB (Open vSwitch
Database Management) protocols. Other supporting tools such as Pulse Generator
and CityFlow’s measurement system are also developed for enabling the scenarios
presented in Section 5.3. The pulse generator tool is developed to transmit high
rate of control or data traffic to cover 1 million city population. The measuring
tool is developed to gather the measurement data from the system.

5.2.3 Operational model for the Internet

A high level view of our proposed operational model is shown in Fig. 5.3. The
essential idea is to segment the network capacity into a Best-Effort (BE) and a
high priority (HP) domain. As capacity grows an operator can make a policy
decision regarding the proportion to be allocated to the BE or HP domain. Initially,
the HP domain might have a low share of capacity, but as demand grows, and
BE becomes constrained, new capacity could be allocated to the HP domain.
This can be implemented by using an aggregated queue in a gateway network
element dimensioned for x% (can be 50%) of the capacity for traffic painted as BE
using DiffServ code points. The remaining capacity (i.e., HP) can be painted as
Expedited Forwarding or Assured Forwarding using DiffServ code points.

Content or application providers (appcos) with multiple applications in the area
of Internet of Things, eHealth, Consumer, Cloud and Social Media can use the
slicing mechanism (queuing mechanism shown in Fig. 5.2) through VPS to obtain
a slice of bandwidth in the HP domain across multiple autonomous systems and to
the consumer connected via optic fibre access or 4G/5G radio access network. In

4The source code of QueuePusher is available at:
https://github.com/OneSourceConsult/floodlight-queuepusher

QUALITY OF SERVICE TECHNIQUES 133

Figure 5.3: Conceptual operational model for the Internet

exchange for obtaining guaranteed bandwidth to users, the applications provider
who will be able to drive new business models (e.g., 4K webTV) can expect to
receive a charge for conveying the guaranteed traffic. This can be implemented
using cascade charging on a wholesale basis, from access-to-core to applications
provider.

The concept model in Fig. 5.3 is based on the separation of control from the
data plane and the inclusion of features for business engagement. We add some
business logic and event signalling between the remote “appco” application traffic
source and the flow core at traffic sink where the consumer is located. A gateway
distributes the application traffic on the BE or HP domain based on DSCP and/or
MPLS EXP marking. The flow core allocates a discrete flow in the distribution
and access network onwards to the consumer. While the consumer has a contract
relationship (e.g., Netflix contract) with the appco. Cascade charging from the
access to the core to the appco enables all infrastructure stakeholders in the traffic
pathway share in the economic activity.

Our model works based on the requests from the user application to the VPS
Engine as the user request determines the end points themselves. The OpenFlow
controller, which in the case of the CityFlow project is Floodlight, tells the VPS
Engine (c.f. Fig. 5.2 and Fig. 5.3) where those endpoints are connected in the
data plane (i.e. the switch). RouteFlow by running BGP determines the output
ports of the end points for delivering the user application. The VPS engine then
replicates the existing best-effort flow rules and creates a new flow on the output
port of the ingress switch. This new flow is ‘painted’ with the DiffServ code point
for expedited forwarding. In parallel with this, a new flow is assigned to a queue
that is given a scheduler rate corresponding to the bandwidth for the associated

134 CHAPTER 5

virtual path slice.
From a path point of view, the virtual path slice model follows the path

determined by BGP between different autonomous systems and OpenFlow areas.
The bandwidth of the slice is determined by the rate in the shaper of policer on
the ingress switch. The model is relevant for a mixed topology including legacy IP
routers and new OpenFlow switches. Connection Admission Control (also known
as RACF – Resource Admission Control Function) is implemented at the ingress.
A count is taken of the allocated capacity and a “busy tone” is implemented if a
threshold is reached.

5.3 Reference scenarios for experimentation

The CityFlow experimentation was defined considering a target population of 1
million inhabitant, representing a mid-sized city as a reasonable and practical
dimension – not too large and not too small – implementable on the OFELIA
testbed. We have analyzed the network infrastructure of Brussels, population 1.1
million, in order to obtain reference scenarios for mobile (LTE), xDSL, and Fibre.
Unfortunately, Brussels has currently no fibre access network deployed, thus in
order to have a more future-proof reference network, we add Fibre-To-The-Home
(FTTH) data from other European cities of similar size (e.g., Cologne). Starting
from real data gives us a realistic scenario from which we can base our
experiments. In reference scenarios, we use the ACG study [12] to design LTE,
FTTH, and DSL networks for our experimental city, Flowville. As a city can
contain mobile, DSL, and FTTH networks simultaneously, we also present an
integrated model that combines these networks.

For mobile networks, we collect data from real sources i.e., BIPT (Belgian
Institute for Postal Services and Telecommunications). According to BIPT, there
are 958 radio base stations in Brussels. These stations provide wireless access to
all users in the city. In addition, there are three large mobile operators: (1) Base, (2)
Mobistar, and (3) Proximus. For each of the mobile operators, we consider a latest
radio access technology, e.g., LTE. For each LTE, we place 958 base stations in the
access rings of Flowville. According to the ACG Study, a maximum of 25 radio
base stations operated over a ring can be connected with a pre-aggregation site.
Therefore, there can be a maximum of 39 pre-aggregation sites (958/25=39) for
Flowville. In addition, as there can be a maximum of 16 pre-aggregation sites per
one aggregation site (ACG Study), there can be a maximum of three aggregation
sites (39/16=3) in the aggregation network. Moreover, in order to connect these
three aggregation sites to the core, we require two core locations [12].

In xDSL scenarios, DSLAMs (Digital Subscriber Line Access Multiplexers)
are used to connect multiple customer Digital Subscriber Lines (DSL) to an
aggregation network. Currently, Brussels has only VDSL (Very high bit rate

QUALITY OF SERVICE TECHNIQUES 135

Access Network

Aggregation

Network

LTE1

LTE2

LTE3

Backhaul-A

Backhaul-B

CoreA

CoreB

xDSL

Fiber

Content
(CDN)

Core Network

CDN Network

Figure 5.4: CityFlow reference city (Flowville, integrated model)

Digital Subscriber Line) technology and 59.29% of Brussels population use this
technology. In our design, we assured that 90% of DSLAMs in Flowville are
with 8 line cards and 10% of DSLAMs are with 3 line cards. Therefore, the
number of DSLAMs required for Flowville is 1026, as one DSLAM line card
can serve a maximum of 48 households [13]. As a DSL-based access/aggregation
network is operating over rings, we can use similar architecture as the LTE case.
Therefore, there can be a maximum of 42 pre-aggregation sites (1026/25=42) and
three aggregation sites (42/16=3) in the aggregation network for Brussels.

In FTTH scenarios, we assume that 20% of population will use FTTH
connections. In FTTH, we assume Passive Optical Networks (PONs), which
consist of Optical Line Terminals (OLTs) and Optical Network Units (ONUs). The
OLT resides in the central office, and the ONU resides in the customer’s premises.
For PON, there can be 48 subscriptions per OLT [14]. As there is an average
of 2.06 persons per household, Flowville requires 11,518 OLTs to cover the total
population. For 20% of population, Brussels requires around 2300 OLTs. As OLTs
resides in the central offices and one central office can have up to 500 OLTs, we
require 5 central offices to cover 20% of Flowville’s population. If we consider 3%
growth rate in FTTH adoption, we will require seven central offices. Assuming that
one central office is directly connected with one pre-aggregation site, we require
seven pre-aggregation sites and one aggregation site for Brussels.

In Brussels, there are two operators in the Backhaul network: (1) Telenet
(Backhaul-A in Fig. 5.4) and (2) Belgacom (Backhaul-B in Fig. 5.4). These
operators connect the access network to the core network. Therefore, for the
integrated model, we connect one LTE and one DSL or Fibre network to one of
the Backhaul operators, and the remaining to the second Backhaul operator (Fig.

136 CHAPTER 5

5.4). Here, LTE 1, LTE 2 and LTE 3 are the access network scenario from three
mobile operators in Flowville. In this design, all core locations are connected with
the CDN (content delivery network) servers. The goal of a CDN server is to serve
content to end-users with high availability and high performance.

5.4 Experimentation

In this section, we report the experimentation methodology for setting city
experiments on the OFELIA testbed.

5.4.1 Software used for experimentation

Due to emerging importance of SDN, a large number of OpenFlow switches and
controllers are currently available. In particular, software-based switches such
as Open vSwitch (OvS), Trafficlab 1.1, Indigo, CpQd could have been used for
CityFlow experimentations. This also includes a large number of controllers
such as Open DayLight, NOX, POX and Floodlight. As previously mentioned,
Floodlight was chosen as the reference controller for the CityFlow project due
to its RESTFul API and associated high performance, which was not rivaled by
any other controller when this research work was conducted. Moreover, OvS was
chosen over the reference OpenFlow switch implementation due to its production
quality and stability.

5.4.2 Topology setup on the OFELIA testbed

The OFELIA testbed has 10 islands located in different places in Europe
(Germany, Belgium, Switzerland, Spain, UK, Italy and others.). The iMinds
island, which is located in Belgium, has resources to perform large-scale
emulations and has the ability to emulate multiple AS experiments. Therefore,
most of the CityFlow experiments are performed on the iMinds island. However,
one of the experiments is also performed on different islands in which some of
islands worked like autonomous systems of the Internet.

5.4.2.1 Topology setup on the iMinds island

The iMinds island has a limitation that there can only be a maximum of 100
physical nodes in an experiment with a maximum of 6 interfaces per node.
Therefore, for the experiments, we converted the reference Flowville scenarios
to an experimental setup (Fig. 5.5), which could be implemented in the iMinds
island.

The access networks in the island are implemented by nodes USER1, USER2
and USER3. In these nodes, multiple access clients (the numbers are described

QUALITY OF SERVICE TECHNIQUES 137

USER

1,2,3
Nodes in access

networks

Open vSwitchOVS Floodlight

controller
VPS Engine

Duplicated

topology for the

bidirectional

connection

LAN

EBGP

IBGP

IBGP

IBGP

IBGP

Figure 5.5: Flowville for CityFlow experimentation on the OFELIA testbed

in Section 5.3) are emulated using virtual interfaces. There are three ASs (AS1,
AS2 or AS3) that represent aggregation networks, one AS represents the core
network and one AS represents the CDN network, running OvS for forwarding
user traffic. Each of these ASs is connected with a separate Floodlight controller.
Similarly, OvSs representing the aggregation networks and CDN AS nodes are
also connected with the VPS Engine through the connected Floodlight controller.
For load sharing, we use three VPS Engines (shown in Fig. 5.5). In addition, for
bidirectional experiments (i.e., user to CDN and CDN to user), we duplicate the
access and aggregate networks as shown in Fig. 5.5.

5.4.2.2 Topology setup in multiple islands

All the islands have real OpenFlow switches and virtual machines (VMs) to
perform experiments. As users do not have low-level access in OpenFlow
switches, we chose virtual machines present in each island to perform CityFlow
experiments. Additionally, we extended the Redzinc lab5 at Dublin to the OFELIA
testbed. Therefore, the Redzinc lab also worked like an additional OFELIA
island in our experiments. We configured 4 virtual machines (VM) at each of the
following islands: TUB (Berlin), ETH (Zurich) and Dublin islands. Our objective

5www.redzinc.net

138 CHAPTER 5

was to setup an OpenFlow environment on the virtual machines of each island and
to make virtual machines of each island behave like an autonomous system. For
topology creation of the autonomous system, we needed to setup virtual interfaces
on top the interfaces of the virtual machines in different islands. For creating
virtual interfaces to create the required topology, we used GRE TAP interfaces on
the top of interfaces of virtual machines. Additionally, VPS, Floodlight Controller
and Open vSwitch are installed on the virtual machines of the islands.

5.4.3 Scale of test platform

Establishing very large topology emulation in the OFELIA testbed was a
challenging task due to: (1) installation and running of software on many nodes,
collecting the debugging data, and parsing the debugging data. To overcome the
challenge, we made Linux images in which OvS, Floodlight, RouteFlow, and VPS
are already installed. In addition, we made scripts to automatically run OvS,
Floodlight, RouteFlow in the large-scale experiment of CityFlow. For collecting
and parsing the debugging data, we built a measurement system6 (Fig. 5.2).

Another challenge for test platform was to configure RouteFlow. Before
running RouteFlow, an administrator needs to devote significant amount of time
in configurations. For a large topology (typically for 100 switches), it may
take many hours to configure RouteFlow. To overcome the issue, we proposed
and implemented a framework to automatically configure RouteFlow [10]. In
this framework, we use an additional controller module, which runs a topology
discovery module to know network configurations. The network configurations
are then sent to RouteFlow7.

5.4.4 Implementation of test harness

In order to provide a realistic test of the topology and technology we implemented
a test harness designed to provide high volume control plane (CP) traffic and to
trigger appropriate traffic generators for data plane (DP) traffic. This allowed a
stress test of the VPS server alone (by not enabling DP traffic) and of the whole
CityFlow stack. We were able to supply the test harness with recipes for different
traffic mixes; for example different rates of CP traffic where we could control the
duration, inter-arrival time and magnitude of the traffic. We are also able to overlay
more than one traffic recipe and be selective about which recipes trigger associated
DP traffic8.

6The source code of the measurement system is available at www.cityflow.eu
7The source code of RouteFlow configuration is available at:

https://github.com/routeflow/AutomaticConfigurationRouteFlow
8The source code of the test harness is available at www.cityflow.eu

QUALITY OF SERVICE TECHNIQUES 139

5.5 Results
We performed four different experiments in CityFlow: (1) data traffic, (2) control
traffic, (3) failure recovery, (4) multiple islands. The first three experiments are
performed on the iMinds island, the fourth one is performed on multiple islands of
OFELIA. Additionally, the control traffic experiment (the second experiment) was
also performed on the Amazon cloud facility.

5.5.1 Data traffic experiments

In order to understand how the data plane responds in different situations,
using the setup previously presented, data traffic was rate-limited and forwarded
through OpenFlow switches dynamically configured by the VPS. In particular,
this experiment aims at emulating and analyzing the performance of typical video
streaming, being shaped (resorting to queues) at the edge of the source network.

(A) Average Bit Rate of 250 VPS service events

0.838

0.842

0.846

0.85

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

Average delay (seconds)

0

5000

10000

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

Average bit rate (Kbps)

(B) Average delay of 250 VPS service events

Flow ID Flow ID

Figure 5.6: Data traffic experiments

Having considered two variations of the same setup, the first version of the
experiment measures the performance of traffic where 13.75Mbps of UDP packets,
resembling a typical HD video stream, are sent from source to destination, being
inserted into a queue configured with maximum bandwidth rate at 10Mbps for
each of 250 invocations. The route of the flow is same as the route discovered by
routing protocols in the current Infrastructure. The chosen limit for the created
queue has around 30% less bandwidth, allowing the impact of this queue to be
noticeable throughout the experiment. The purpose is to understand how traffic
injected in both ways (unidirectional and bidirectional), such as interactive video
between source and destination, impacts the overall system performance. The
considered traffic pattern consisted the injection of 250 flows with a duration of
45s per flow. The results for measured bit rate and delay are shown in Fig. 5.6.
Another important aspect of this experiment is creation and installation of queues
and their associated flows, which implies the creation and deletion of 250 queues
per receiving site (500 queues in the bidirectional scenario). The results of queue
creation and removal (with average throttled speed) are depicted in Table 5.1.

140 CHAPTER 5

Table 5.1: Data traffic experiment results

Average Queue Average queue Source Capacity Throttled
Installation time removal time speed Average speed

48.3 ms 452ms 13.75Mbps 10Mbps 9.2Mbs

The obtained results revealed that the VPS engine was able to cope with the
amount of requested invocations, efficiently issuing the respective queue and flow
management. Moreover the process of creating or installing queues revealed to be
quite efficient, taking on average less than 50 milliseconds. On the other hand, the
queue removal or deletion process took unexpectedly more time (approx. 450ms,
Table 5.1). After a close analysis we were able to conclude that this was due to
internal OvS database verifications for consistency, regarding the installed flows
and queues for each QoS entry. Regarding the flow management operations there
was no significant limitation or variation, presenting a very good performance in
data traffic scenarios. These results also showed that the expected traffic shaping
introduced by the create queues successfully limits the amount of transmitted data.
The registered average value is around 9.2Mbps, which is lower than the expected
10Mbps.

5.5.2 Control traffic experiments

For this experiment, a city of 1 million inhabitants was considered and assumed
that the service provider has a penetration in such a market of 20%, giving a
possibility of 200,000 users. Two busy periods during the day were considered: a
mid-morning period driven by enterprise traffic and an early evening period driven
by domestic traffic (2 hours of duration each). In the busy period, it was considered
that 75% of the users are active. We consider two cases in this experiment: (1)
baseline and (2) expansive. In the baseline case we consider that each customer
demands 1 event during the busy hour. This baseline case equates to a requirement
to handle 75,000 events during the busy hour. In the expansive case we consider
that each customer demands 3 events during the busy hour. This expansive case
equates to a requirement to handle 225,000 events during the busy hour.

We then consider what engineering headroom is needed for expansion. In a
voice network today, service growth is low as voice is a mature service, so the
systems operate with a low headroom, but in the Internet with the rapid arrival of
new services, growth can be quite fast. So in the expansive case we consider a
headroom factor of 2. In a production network it typically takes 6 to 12 weeks
to upgrade capacity so a headroom of 2 seems reasonable to cope with a 100%
increase in demand. Therefore, for the expansion case, the VPS Engine needs to
handle 450,000 events during the busy hour.

QUALITY OF SERVICE TECHNIQUES 141

In the iMinds testbed we emulate the baseline case and in the Amazon
cloud facility, we increase the number of invocations and show that how many
invocations can be handled by the VPS Engine for the expansion case.

5.5.2.1 Experiment on the iMinds testbed

With the purpose of assessing the VPS controller, and its associated software
stack performance, this experiment submits it to a high-load of signaling requests
(i.e., mimics a high number of users). For this purpose a pulse generator was
employed to create signaling pulses, in a two-hour interval distributed according
to a Poisson distribution and with random service duration of between 3 minutes
and 30 minutes. This was employed for a closer approximation to a real world
scenario, focusing on the measurement of the Busy Hour Flow Invocation (BHFI)
indicator, which determines the number of simultaneous flows supported by the
VPS controller.

Figure 5.7: 75000 Busy Hour Flow Invocations on the Virtual Path Slice Engine

The obtained results (Fig. 5.7) revealed that even under high-load, and for
prolonged period, the VPS engine is capable of handling triggers in under 400ms

142 CHAPTER 5

for the baseline case (with the arrival of invocations in Poisson distribution). The
VPS trigger time in Fig. 5.7 is the time to trigger allocation of resources for the
invocation requests, and the VPS drop time is the time to delete the resources of
the invocations. From the results, it is concluded that the VPS Engine can scale to
a high volume of flow invocations and terminations, to support a busy hour flow
invocation capacity of 75000 events on mid-range servers.

5.5.2.2 Experiment on the Amazon cloud facility

An initial investigation into cloud deployment was carried out to examine the
ability of the VPS to handle high rate of requests, find out suitable deployment
configurations and to document the scalability and useful characteristics.

Figure 5.8: Scaled experiment for high volume invocations on Amazon

In this experiment, the VPS engine showed the capability to handle up to 4800
requests per minute (see Fig. 5.8). That is, up to a total of 288000 requests in
a one-hour period that would constitute a Busy Hour, well above the estimated
75000 requests in the baseline situation. The results show a BHFI capacity of
288000 on one server, which is 64% to our target of 450,000 in the expansion
situation. This number, however ultimately depends on the performance of the

QUALITY OF SERVICE TECHNIQUES 143

associated OpenFlow controller and network hardware. One, two, and three server
Cloud deployments were used as the basis of comparisons with the rest of the
deployments. In one server deployment, VPS is deployed in one VM and the
test harness is deployed in another VM, both of which are in the same Amazon
availability zone.

In the two-server deployment scenario, one VPS server contains all
components - including the MySQL database and the other VPS server
contains just Translation Layer and Invocation Controller components and has to
communicate to the remote VPS server with the common database component
to coordinate the scheduling. These components are placed behind an Amazon
Elastic Load Balancer. Surprisingly, response times when the two VPS servers
were used via the Amazon ELB were more than the single-server scenario. This
indicates that the communication time between the VPS sever containing just
the processing components and the remote common database may be impacting
performance. The results obtained from the two-server deployment of VPS
indicated that it may be better to deploy the common database and the components
of VPS that control access to this database to a separate server. This would mean
that each VPS server will be performing processing tasks alone and have to access
a separate remote server to gain access to the common database which holds
the scheduling data. This should give a similar communication costs to the two
VPS servers and allow investigation of scalability with comparable processing and
communication costs to each VPS server involved. In the three-server deployment
scenario, the response times for requests did not show any improvements over
testing against a single VPS server.

5.5.3 Failure recovery experiments

For failure recovery experiments, we implemented a framework [15] with which
high quality of service can also be achieved in failure conditions. In this
framework, under failure conditions, the controller reroutes traffic to a failure-free
path gained through BGP. Regarding the implementation, we did not focus
on fast failure recovery [16], but instead, we focus on scenarios in which
high-priority should be provided to high-priority over best-effort users. We
conducted emulations on the iMinds islands with different rate of traffic and one
of the links between aggregation and core networks is failed (or made down).
With results (Fig. 5.9), we were able to conclude that when there is enough
bandwidth of the failure recovery path, neither high-priority nor best-effort traffic
gets affected after re-routing traffic to a failure-free path. On the other hand,
when there is limited available bandwidth, best-effort traffic experiences packet
loss in order to meet the requirements of high-priority traffic. Finally, when the
total amount of bandwidth is insufficient even for high-priority traffic, despite

144 CHAPTER 5

40

60

80

100

120

140
P

e
rc

e
n

ta
g

e
 o

f
re

c
e
iv

e
d

 t
r
a

ff
ic

Best-Effort Traffic before link down High-Prioirty Traffic before link down

Best-Effort Traffic after link down High-Priority Traffic after link down

-20

0

20

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

P
e
rc

e
n

ta
g

e
 o

f
re

c
e
iv

e
d

 t
r
a

ff
ic

Data rate of the CDN server to each client (Mb/s)

(30% High-Priority Traffic and 70% Best-Effort Traffic)

Unlimited bandwidth Limited bandwidth Insufficient bandwidth

Figure 5.9: Failure recovery experiment results

registering some losses it still maintains its priority above best-effort traffic, which
causes no interference.

5.5.4 Multiple island Experiment

We performed experiments for the multiple island scenarios described in Section
5.3. The topology of the experiments is shown in Fig. 5.10.

Redzinc island (AS1)

Figure 5.10: Multiple islands experiment on the OFELIA testbed

For this, we calculated response time (time taken to response a user request),
CPU usage, and memory usage of VPS. All the tests used the ETHZ island as

QUALITY OF SERVICE TECHNIQUES 145

the source, having the services triggered by the test harness from a user machine
installed on the aforementioned island. To validate the experiments, two tests were
performed: (1) triggers originating from the ETHZ island were performed, having
the Dublin island as destination during 1 hour duration; (2) triggers originating
from the ETHZ island were performed, having the TUB island as destination
during 1 hour.

Table 5.2: VPS machine CPU usage and memory usage

Indicator Dublin island TUB island ETH Zurich
(Average) (Average) (Average)

CPU usage 33% 40% 35%
Memory usage 21% 15% 41%

Table 5.2 presents the CPU usage and memory usage of the VPS machine
during the span of experiments.

0

0.5

1

1.5

2

2.5

3

Dublin island TUB island ETHZ island

R
es

p
o

n
se

 t
im

e
(s

ec
o

n
d

s)

Figure 5.11: Response time. Error bars show the minimum and maximum response time

Fig. 5.11 shows the response time in different islands. It shows that the
response time in these islands is significantly longer than the iMinds islands (see
results in previous subsections). Due to the fact that the machines present on these
OFELIA islands, as well as the Dublin island, are underpowered (i.e., virtualized)
when compared with the machines on iMinds island could justify the increase in
response time. Additionally, the results obtained against TUB and ETH islands
show a small difference between them.

5.6 Conclusions
In this article we have presented the CityFlow project’s proposal of dynamic
OpenFlow capable public networks, capable of addressing the challenge of the
current and future Internet data-traffic growth. Large-scale experiments for a city

146 CHAPTER 5

of one million inhabitants were performed in order to demonstrate the feasibility
of this proposal, considering scenarios involving multiple autonomous systems.
These experiments were undertaken on multiple islands of the OFELIA testbed
emulating different technology networks.

Based on the obtained results, we have confirmed that an OpenFlow network
with virtual path slice coordination between multiple autonomous systems is
feasible and is able to achieve all of the proposed objectives. These results
motivate future research, upgrading the used network emulation platform, based
on OpenFlow software-switches, into a a production network for validating the
proposed architecture with OpenFlow-enabled hardware switches. Moreover, this
conclusion further reveals that support of quality of service queues on commercial
OpenFlow switches would be required in the future.

Acknowledgment

This work was conducted within the framework of the FP7 CityFlow project
(agreement no. 317576), which is partially funded by the Commission of the
European Union.

References

[1] Aref Meddeb. Internet QoS: Pieces of the Puzzle, IEEE Communications
Magazine, vol. 48 (1), pp. 86-94, 2010.

[2] N. McKeown, T. Andershnan, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, OpenFlow: Enabling innovation in
campus networks, ACM Computer Communication Review, Vol. 38(2), pp.
69-74, 2008.

[3] T. Braun, M. Diaz, J. E. Gabeiras, Staub, End-to-End Quality of Service Over
Heterogeneous Networks, Springer, 2008.

[4] S. Jordan, Implications of Internet architecture on net neutrality, ACM
Transactions on Internet Technology, vol. 9(2), Article 5, 2009.

[5] Federal Communications Commission FCC 10-201. [Online]. Available:
https://apps.fcc.gov/edocs public/attachmatch/FCC-10-201A1.pdf.

[6] M. Sune, L. Bergesio, H. Woesner et. al., Design and implementation of the
OFELIA FP7 facility: the European OpenFlow testbed, Computer Networks,
Vol. 61, pp. 132-150, 2014.

QUALITY OF SERVICE TECHNIQUES 147

[7] R. Hancock, G. Karagiannis, J. Loughney, S. Van den Bosch, Next Steps in
Signaling (NSIS): Framework, RFC 4080, IETF, 2005.

[8] C. Esteve Rothenberg, Marcelo R. Nascimento et.al, Revisiting Routing Con-
trol Platforms with the Eyes and Muscles of Software-Defined Networking,
HotSDN, Helsinki, Finland, Aug 2011.

[9] D. Palma, J. Goncalves, B. Sousa, L. Cordeiro, P. Simoes, S. Sharma, D.
Staessens, The QueuePusher: Enabling Queue Management in OpenFlow,
EWSDN, 125-126, 2014.

[10] S. Sharma, D. Staessens, D. Colle, M. Pickavet, P. Demeester, Automatic
configuration of routing control platforms in OpenFlow networks, ACM
SIGCOMM Computer Communication Review, Vol. 43(4), pp. 491-492,
2014.

[11] B. Pfaff and B. David, The Open vSwitch Database Management Protocol,
RFC 7047, 2013.

[12] M. Kennedy, A TCO Analysis of Ericsson’s Virtual Network System Concept
Applied to Mobile Backhaul, ACG Research Inc., 2012.

[13] J. P. Pereira, Telecommunication Policies for Broadband Access Net-
works, in Proceedings of the 37th Research Conference on Communication,
Information and Internet Policy, pp. 1-13, 2009.

[14] M. V. Wee, K. Casier, K. Bauters, S. Verbrugge, D. Colle, M. Pickavet, A
modular and hierarchically structured echno-economic model for FTTH de-
ployments, ONDM, pp. 1-6, 2012.

[15] S. Sharma, D. Staessens, D. Colle, D. Palma, J. Goncalves, M. Pickavet, L.
Cordeiro, and Piet Demeester, Demonstrating Resilient Quality of Service in
Software Defined Networking, IEEE INFOCOM, pp. 133-134, 2014.

[16] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and Piet Demeester,
OpenFlow: Meeting carrier-grade recovery requirements, Computer
Communications, Vol. 36(6), pp. 656-665, 2013.

6
Inter-Burst Segregation Protocol

guaranteeing loss-free packet-switched
networks

This chapter proposes the inter-burst segregation protocol (IBSP) for guarantee-
ing zero packet-loss in packet-switched networks. For implementation, the proto-
col requires three buffers at each port of network devices and an additional func-
tionality (i.e., transmission/processing of end-of-frames after periodic intervals).
The protocol is implemented and evaluated using traditional packet-switched net-
works. For the implementation of the protocol in OpenFlow, three buffers per port
can be created using the queuing functionality described in Chapter 4 and Chap-
ter 5. However, the additional functionality (i.e., transmission and processing of
end-of-frames) is not currently supported by OpenFlow switches/routers. In future,
OpenFlow switches/routers can be extended to add this functionality.

? ? ?

Sachin Sharma, Didier Colle, Wouter Tavernier, Mario Pickavet,
and Piet Demeester

Submitted to IEEE Communications Letter, February 2016.

Abstract Traditional packet-switched networks suffer from a number of
limitations (such as packet-loss, jitter, and operational efficiency). The current

150 CHAPTER 6

solutions (IEEE 802.17 for optical fiber and IEEE 802.1Qbb for Ethernet) to
overcome the limitations are distance dependent. We address these shortcomings
and propose a novel protocol called Inter-Burst Segregation Protocol (IBSP),
which guarantees zero packet loss and low jitter. The protocol is implemented and
tested in Network Simulator-3 (NS-3) and in the DPDK (Data Plane Development
Kit) platform implemented by INTEL. The results confirm that using IBSP,
bandwidth can be used almost upto 100% without having any packet loss. In
addition, the jitter using IBSP is low and bounded.

6.1 Introduction

TDM (Time Division Multiplexing) based networks, such as SONET/SDH
(Synchronous Optical Networks/Synchronous Digital Hierarchy), deliver high
Quality of Service (QoS) in terms of packet-loss, jitter, and bandwidth. This is
because resources (i.e., bandwidth) are statically divided into different time slots
in periodic time intervals (i.e., timeframes) and each user is allocated a unique time
slot (in each timeframe) to transmit data traffic. However, the problem is that if a
user (for example, transmitting bursty traffic such as media traffic) does not have
traffic to transmit, its allocated time slot (i.e., resources) gets wasted. This problem
is solved by packet-switched networks in which resources are dynamically shared
with many users. However, due to accumulated congestion, these networks cannot
guarantee QoS in terms of packet-loss, jitter, and bandwidth.

Many standards, such as IEEE 802.17 for optical fiber [1] and IEEE 802.1Qbb
(approved in 2011) for Ethernet [2], have been proposed to decrease the packet
loss. In these standards, a control packet is sent back to the sender to notify about
congestion and hence, to control its traffic rate (or burstiness). The issue here is that
if the control packet is lost or there is a large distance between the congested and
sender node, the former may suffer buffer overflow and packet-loss can happen
[3, 4]. Furthermore, QoS mechanisms such as DiffServ (differentiated services)
are proposed to deliver QoS to high-priority traffic in packet-switched networks.
However, Diffserv can only work for (small) fractions of high priority traffic [5].
In addition, it does not guarantee zero packet-loss.

Moreover, traffic shaping (e.g., leaky bucket) at the ingress nodes is proposed
to control burstiness in a packet-switched network [6]. However, due to many
factors (e.g., interference among different flows), burstiness may still increase
within the network and packet-loss can happen.

In this article, we first describe the possibility of packet-loss (i.e, increased
burstiness) in packet-switched networks (Section 6.2) and then propose a novel
protocol, Inter-Burst Segregation Protocol (IBSP), to guarantee zero packet-loss
(Section 6.3). In IBSP, each node controls burstiness by separating different bursts
of each source. The basic principle of IBSP is taken from SONET/SDH, where

LOSS-LESS PACKET-SWITCHING TECHNIQUES 151

there are periodic time intervals (i.e., timeframes) and the idea is to make sure
that traffic in different timeframes on an incoming port is transmitted in separate
timeframes on an outgoing port. Using this principle, different bursts of a source
can be separated by transmitting them in separate timeframes (i.e., time intervals).

Compared to SONET/SDH, packet-switched networks have an advantage that
if a flow does not have traffic to transmit in a time interval, the allocated resources
may be used by other flows (e.g., best-effort flows). We implement IBSP using
three buffers at each port. The solution is implemented in Network Simulator-3
(NS-3) and in DPDK (Data Plane Development Kit) provided by INTEL. Our
results show that using IBSP almost all the bandwidth can be used without having
any packet loss. Using IBSP, the jitter is low and bounded.

6.2 Packet-loss in packet-switched networks
In this section, we present a worst case network scenario (Fig. 6.1) in which
packet-loss can happen, although the offered traffic load in the network is less than
(or equal to) the load that can be handled by the network. Therefore, we assume
that the link capacity (in bits/s) between devices (e.g., routers or hosts) is at least
equal to the average of incoming rates of different data transfers from customers.
The rate of a data transfer depends on the bandwidth assured in a service level
agreement (or contract) with the customer.

Small Bursts

Large Gap

Large Bursts (size=L)

Small Bursts Large Bursts (size = L)

Small Gap

R

The required buffer size =

(n-1)×L (very large)

(size = S)

(size = S)

Port pH1

Hn

Ingress

bandwidth

shaping

Network N1

Network Nn

=>Router

=>Host

h1

h2 h3
h4

hm h(m-1)

Figure 6.1: Worst case network scenario of lossy packet-switched networks

In Fig. 6.1, host Hi (1 ≤ i ≤ n) is directly connected with network Ni which
is connected with Router R. Router R is then connected with other routers (not
shown in Fig. 6.1) through port p. As shown in Fig. 6.1, Ni may contain many
routers and hosts (hj , where 1 ≤ j ≤ m), and therefore, bursts of Hi may have to
suffer interference from bursts of other hosts connected to the network. In addition,

152 CHAPTER 6

bursts from all Hi have to collide at router R. To illustrate packet-loss, we derive
the required buffer size of router R at port p.

In Fig. 6.1, traffic shaping such as leaky bucket is applied at all the ingress
nodes (i.e., Hi and hj). Leaky buckets shape traffic such that burstiness is bounded
and on top of that it limits traffic by dropping (or marking) excess traffic beyond
the contract or SLA (service level agreement). In case of a well-dimensioned
non-overbooked network, using leaky buckets the average load will not exceed
what the network can handle.

In the network scenario (Fig. 6.1), bursts originating from Hi are small in size
(S) and when a burst from Hi passes through Ni, due to interference from bursts of
other hosts (hj), the burst of Hi may have to wait in the network until the bursts of
other hosts are transmitted. Therefore, it may happen that the current burst catches
up with previous bursts of Hi, which have been queued somewhere in the network
and hence, makes a large burst (size = L) at the end of Ni. The value of L can be
represented as Eq. 6.1, i.e., as a function of the size of bursts originated from Hi

(i.e, S), the average number of interfering flows per hop (i.e., f), the average delay
(i.e., d) occurred per interfering flow, the number of hops traveled (i.e., h), and the
time interval at which bursts are transmitted by Hi (i.e., t).

L = F (S, f, d, h, t) (6.1)

Let T be a time interval in which a burst of size L is transmitted from router R
through port p (i.e., L = bitrate× T , where bitrate is the bandwidth (bits/s) of
port p). As network scenarios for all Ni are same in Fig. 6.1, router R receives
bursts (i.e., each having size L) from n hosts (i.e., H1 to Hn) at interval T . So,
the total size of incoming bursts at R is n× L. As the size of an outgoing burst at
interval T is given by L, the buffer size requirement of port p is given by:

Bp = n× L− L = (n− 1)× L (6.2)

Eq. 6.2 illustrates that if L is very large (i.e., many bursts of hosts catch up
with previous bursts), router R requires a very large buffer in order to guarantee
zero packet loss. The presence of large buffers may result into unnecessary latency
and poor performance (bufferbloat problem [7]). However, in the absence of large
buffers, packet-loss will happen.

6.3 Inter-Burst Segregation Protocol (IBSP)

This section provides a description about our proposed protocol, which guarantees
loss-free packet-switched networks.

LOSS-LESS PACKET-SWITCHING TECHNIQUES 153

6.3.1 Our approach

Like SONET/SDH, IBSP transmits data (i.e., a stream of packets) in timeframes
and in each timeframe, data from multiple users are transmitted. The data reserved
(or transmitted) for a user in a timeframe depends on the bandwidth assured in an
SLA with the user. Unlike SONET/SDH, IBSP has an advantage that resources
reserved for a user in a timeframe can be used by other flows (such as best-effort
flows), when the user does not have packets to transmit.

By transmitting packets in timeframes, IBSP controls burstiness (i.e., separates
bursts of each source) in each device and hence, prevents making a large burst (e.g,
a burst of size L in Fig. 6.1). Using IBSP, bursts (size S) of Hi always remain
separated from their previous bursts in Fig. 6.1. For controlling burstiness, IBSP
proposes three buffers (of equal size) in each port, and needs to perform ping-pong
buffering [8] for filling and emptying buffers. In ping-pong buffering, while one
buffer is being filled, the other buffer is emptied. The difference between our
mechanism and ping-pong buffering is that the latter uses two buffers, while our
mechanism uses three buffers (the reason of using three buffers is explained in the
next subsection). However, the main objective of both the mechanisms is similar
(i.e., filling and emptying are not performed on the same buffer at the same time).
The followings are the three main activities of IBSP:

1. Timer-start activity: Each node starts a timer of a fixed duration (referred
to as timeframe). This duration is assumed to be equal for all nodes in a
network.

2. Timer-expiration activity: Each node notifies the expiration of the
timeframe to its neighboring nodes by transmitting a control packet
(end-of-frame, EOF).

3. Inter-burst separation activity: Each node ensures that bursts in different
timeframes on an incoming port are transmitted in separate timeframes on
an outgoing port.

The timer-start activity can be implemented by running a periodic timer that
measures the duration of timeframes. The timeframe size is fixed and same for
each node in the network.

The timer-expiration activity can be performed by transmitting an EOF when
the duration of a timeframe expires. The EOFs are used by neighboring nodes to
know that all the packets received after an EOF on an incoming port belong to
a different timeframe. Therefore, in the inter-burst separation activity, packets
of different timeframes on an incoming port can be transmitted in separate
timeframes on an outgoing port.

The inter-burst separation activity starts at the beginning of the timer-start
activity and completes at the end of the timer-expiration activity. During this

154 CHAPTER 6

EOF detected => triggers next

buffer selection for filling

A timeframe expires =>

generate an EOF and

select a next buffer for

emptying (i.e., the next

timer-start activity)
Buffer 1

Buffer 2

Buffer 3

Port 1

Port 2

Port 3

Port 4

Port 5

Filling

Filling

Filling

Emptying

Figure 6.2: Filling and emptying buffers. Each buffer (i.e., buffer 1, 2 and 3) has a
capacity to accommodate one timeframe of bursts. In addition, bursts of different

timeframes are in separate buffers.

activity, each node performs two tasks: (1) fill a buffer and (2) empty a buffer.
For filling a buffer of an outgoing port (see Port 5 in Fig. 6.2), IBSP depends on
EOFs received from incoming ports (see Port 1, 2, 3, 4 in Fig. 6.2). By default,
in beginning, IBSP selects a buffer, which is not currently used for emptying.
Then, each time when an EOF is received on a port, the next buffer (chosen in a
round-robin fashion) is selected for filling packets from that port.

For emptying a buffer, IBSP depends on the timer-start activities. At the
triggering of the first timer-start activity, IBSP selects one of the buffers (in each
port) for emptying. It then selects the next buffer (chosen in a round-robin order)
at the occurrence of the next timer-start activity (see at Port 5 in Fig. 6.2). This
process is then repeated forever.

In IBSP, the duration of timeframes is assumed to be equal for all nodes in
a network and is given by Tf (Eq. 6.3). In Eq. 6.3, there are F (p) flows to be
transmitted from port p in a network, and each flow fi has allocated an amount
s(fi) (in bits) of data to be transmitted in each timeframe. s(fi) depends on the
contract (SLA) with the user of flow fi.

Tf = max
∀p in a network

(

∑F (p)
i=1 s(fi)

bitrate
) + padding (6.3)

The padding time (shown in Eq. 6.3) is described in Section 6.3.3 and bitrate

is the bandwidth (in bits/s) of each port. Furthermore, each buffer in IBSP is
assumed to have a capacity to accommodate data of the timeframe duration (i.e.,
Tf × bitrate).

LOSS-LESS PACKET-SWITCHING TECHNIQUES 155

6.3.2 Justification of using three buffers

IBSP proposes three buffers (instead of two) in each outgoing port. However, if
input is exactly aligned with output (i.e., EOFs from incoming ports are received
exactly at the same time when the timer-start activities are triggered by IBSP),
IBSP only requires two buffers. Fig. 6.3A illustrates such a case. It shows that
two buffers are sufficient for implementing IBSP, as filling and emptying tasks
(described above) can be performed on separate buffers all the time.

1 2 1 2

Time

1

2 1 2 1 2

In
p

u
t

i
O

u
tp

u
t

Empty

buffer 2

Empty

buffer 1

Empty

buffer 2

Empty

buffer 1

Empty

buffer 2

13213

Time

21321

Empty

buffer 3

Empty

buffer 1
Empty

buffer 2

Empty

buffer 3

Empty

buffer 1

(A): Exact alignment (Two buffers required) (B): Inexact alignment (Three buffers required)

Fill buffer 1

Fill buffer 2

Fill buffer 1 Fill buffer 1

Fill buffer 2

Fill buffer 3
Fill buffer 1

Fill buffer 2

Fill buffer 2

Fill buffer 1

Fill buffer 3Fill buffer 2

Figure 6.3: Buffers for implementing IBSP. 1, 2, and 3 are the buffer numbers and all
rectangles are timeframes.

The problem is that it is not possible to make inputs aligned exactly with the
output (i.e., due to the clock difference between two nodes, propagation delay,
etc.). Because of this issue, it may happen that a buffer (in case of two buffers)
is filled (EOF is received from an input) and the output is still transmitting from
the other buffer (i.e., the current timeframe is not yet expired). So, at this time, no
buffer can be used for filling. To solve the issue, we propose the third buffer in
each port (Fig. 6.3B). Buffers are numbered 1, 2, and 3 in Fig. 6.3B. Therefore,
when an EOF is received while emptying buffer 1, the input selector is advanced
from buffer 2 to 3. In addition, when an EOF is received while emptying buffer
2, the input selector is advanced from buffer 3 to 1. Furthermore, when an EOF is
received while emptying buffer 3, the input selector is advanced from buffer 1 to
2.

6.3.3 Solutions to the issues of our approach

There are still two additional issues that our approach needs to resolve. These
issues may occur due to the clock difference between two nodes. This clock
difference can be very marginal (e.g., can be expressed in parts per million, i.e.,
ppm).

156 CHAPTER 6

1. The next selected buffer for filling is the buffer that is currently used for
emptying

3213

Time

212

Empty

buffer 3

Empty

buffer 1
Empty

buffer 2

Empty

buffer 3

Fill buffer 1
Fill buffer 1

Fill buffer 3

Fill buffer 2

3

(A) Fast input issue: The selected buffer for filling

(buffer 1 above) is the buffer that is currently used

for emptying => INTRODUCE PADDING.

3213

131

Empty

buffer 3

Empty

buffer 1
Empty

buffer 2

Empty

buffer 3

Fill buffer 1

Fill buffer 3 Fill buffer 2Fill buffer 2

Fill buffer 3

(B) Slow input issue: The selected buffer for

emptying (buffer 2 above) is the buffer that is

currently used for filling.

Time

O
u

tp
u

t
In

p
u

t
i

2

Figure 6.4: Issues that may occur due to clock difference between different nodes

This issue may occur due to the fast clock of a neighboring node. In Fig.
6.4A, when the input selects buffer 1 for filling, the output is still emptying
this buffer. To solve this issue (i.e., input and output should not be on
the same buffer), we propose padding (i.e., no data to be allocated) at
the end of each timeframe. Therefore, when the issue occurs, the node
should immediately expire the current timeframe and should start the next
timer-start activity (i.e., emptying the next buffer). As we propose that a
node should not transmit any data during the padding time, the expiration of
the timeframe before the actual timer expires will not cause any packet-loss.
The padding time can be equal to the size needed to accommodate the clock
difference due to the fast input. As the clock difference can be expressed in
ppm, a very small padding per timeframe is needed in IBSP.

2. The next selected buffer for emptying is the buffer that is currently used
for filling

This issue may occur due to the slow clock of a neighboring node. In
Fig. 6.4B, when the output selects buffer 2 for emptying, the input is still
filling this buffer. To solve this issue, we propose that the input should
immediately switch to the next consecutive buffer for filling (in Fig. 6.4B,
the next consecutive buffer is 3), when the issue occurs. In this case, when
sufficient padding is present at the end of the received timeframe, no data
will be received anymore before the receipt of the upcoming EOF, which
will advance the buffer for this input once more. Thus, virtually a timeframe
at the output will not contain any data for this input port (slow input port).

LOSS-LESS PACKET-SWITCHING TECHNIQUES 157

6.3.4 Delay and jitter using IBSP

In IBSP, as each node first fills a buffer (duration of 1 timeframe) and then empties
it, the delay per hop using IBSP can be of 1 timeframe duration. Furthermore,
as due to slow input the buffer for filling is forcefully moved to the next buffer,
the maximum delay per hop could be 1 timeframe longer than the normal case.
Similarly, the jitter (end-to-end) can be within 1 timeframe and is 1 timeframe
longer than the normal case when the slow input catches up with fast output (does
not happen very often). As the size of timeframes can be short (e.g., 125us), the
jitter will be low using IBSP.

6.4 Experimental study
We performed NS-3 simulations for verifying the proof-of-concept of IBSP, and
then performed emulations on a high performance platform (i.e., DPDK) to check
the suitability of IBSP in a real environment. The worst-case scenario (shown in
Fig. 6.1) is tested. The worst-case scenario is tested because it is difficult emulate
such a scenario in real settings. The topology for Ni in Fig. 6.1 is depicted in Fig.
6.5. A chain of routers (Rj , 1 ≤ j ≤ n) is present in Ni in a linear fashion. Router
Rj in Fig. 6.5 is also connected with host hj through 4 ports (p1, p2, p3, p4),
emulating 4 different flows generating collided bursts to bursts from Hi.

6.4.1 Simulations

In the simulations, host hj transmits bursts to its neighboring host hj+1 through
all of its ports and therefore, bursts of Hi (shown in Fig. 6.1) have to compete with
bursts of hj in the router’s outgoing port (p5) for forwarding. In order to create
interference, each hj in our simulation starts transmitting bursts such that these
bursts reach to Rj just before the bursts of Hi. Therefore, bursts of Hi have to
wait in Rj until bursts of hj are transmitted. The propagation delay and bandwidth
of each link in our simulation is 100us and 1 Gb/s respectively. In addition, the
packet size is 624 bytes.

The bursts of Hi in our simulation have to pass through 100 routers to reach
the destination node. In addition, bursts of Hi reach at router R after traveling 96

routers of Ni. There are five such Hi in our simulation. The ontime of bursts
originated from Hi and hj is kept as 24us. As there can be five small bursts in
each router (including Rj and R), the timeframes in IBSP should be at least 120us
(i.e., 5 × 24us). We keep 5us as the padding time. Therefore, the duration of
timeframes in our experiment is 125us. We also perform simulations of legacy
packet-switched networks where only a single buffer is used. To make a fair
comparison between the legacy packet-switched networks and the networks using
IBSP, the size of the buffer in the legacy packet-switched networks is kept three

158 CHAPTER 6

R1 R2
Rn

h1 h2 hi

p1 p2 p1 p4 p1 p5p3
p4

Link to

Router R
Link to Hi

p2 p3 p2
p3

Network Ni

Small size Bursts Large size Burst

p5 p5

p5

Figure 6.5: Topology of Network Ni in Fig. 6.1

times the single buffer size in IBSP. The bandwidth (BW) usage in our experiment
is measured in router R at port p.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 20 40 60 80 100

N
o

.
o

f
p

ac
k

et
s

d
ro

p
p

ed
 p

er

se
co

n
d

BW Usage (%)

Using legacy packet-switching technology

Using IBSP

0

0.005

0.01

0.015

0.02

0.025

0.03

0 20 40 60 80 100

E
n

d
-t

o
-E

n
d

 d
el

ay
 (

se
co

n
d

s)

BW Usage (%)

Using legacy packet-switching technology
Using IBSP

96% bandwidth

usage (no loss)

(A) (B)

Figure 6.6: Zero packet-loss (see A) and low jitter (error bars in B) using IBSP

We run different experiments for a different bandwidth usage to see the impact
on packet-loss, delay, and jitter. Fig. 6.6A illustrates that there is packet-loss in
legacy packet-switched networks even at a low bandwidth usage (i.e., 12%). It
then increases with the increase in the bandwidth usage. However, there is no
packet-loss using IBSP. Moreover, the jitter is significantly low using IBSP (Fig.
6.6B).

6.4.2 DPDK emulations

For implementation, IBSP requires a platform which can process packets
(incoming and outgoing) at line rate (i.e., very fast). This is possible by
implementing IBSP in: (1) hardware or (2) high performance software. We have
chosen the second option and hence, implemented IBSP in DPDK and have tested
it in the FIRE testbed facility provided by iMinds [9].

The emulation scenario is similar to the scenario used for simulations. The
difference lies in the number of routers in the linear chain and the size of bursts

LOSS-LESS PACKET-SWITCHING TECHNIQUES 159

0

3

6

9

12

15

18

125 250 500

E
n

d
-t

o
-E

n
d

 D
el

ay
 (

m
s)

Duration of timeframes (us)

0

20

40

60

80

100

125 250 500

M
ax

.
B

W
 u

sa
g

e
(%

)

ac
h

ie
v

in
g

 z
er

o
 p

ac
k

et
-

lo
ss

Duration of timeframes (us)

(A) (B)

Figure 6.7: Emulation results using DPDK implementation of IBSP

generated by hosts. There are 20 routers in emulations and the burst size is chosen
according to the timeframe size and the bandwidth usage shown in Fig. 6.7. In
our implementation, due to timing inaccuracy in software, the padding time may
include the time needed to process EOFs or the other packets. Therefore, we need
to put additional padding in each timeframe to guarantee zero packet-loss. Fig.
6.7A confirms that using IBSP, the maximum of 76% of bandwidth can be used
without having any packet-loss for short timeframes (125us). However, when the
timeframe size is increased, the bandwidth can be used more than 90%, without
having any packet-loss. Fig. 6.7B illustrates that the end-to-end delay increases,
as the timeframe size increases. In addition, the jitter increases, when the size of
timeframes increases.

6.5 Conclusions

In this article, we have proposed a novel protocol, the inter-burst segregation
protocol (IBSP), to guarantee zero packet-loss (with low jitter) in packet-switched
networks. The results confirmed that traditional packet-switched networks cannot
guarantee zero packet-loss, although the bandwidth usage is very low. However,
using IBSP, zero packet-loss can be guaranteed, even though nearly all the
bandwidth is consumed in the network. In addition, the jitter using IBSP is low.

Acknowledgment

This work was partly funded by ICON project - MECaNO (grant no. 130646).

160 CHAPTER 6

References
[1] IEEE Standard for Resilient packet ring (RPR) access method and physical

layer specifications, IEEE 802.17: RESILIENT PACKET RINGS, pp. 1–712,
2011 (Revised version).

[2] IEEE standard for local and metropolitan area networksmedia access con-
trol (MAC) bridges and virtual bridged local area networks, IEEE Std
802.1Qbb-2011, pp. 1–40, 30 2011.

[3] S.-A. Reinemo, et. al., Ethernet for high performance data centers: On the
new IEEE datacenter bridging standards, IEEE Micro, vol. 30, no. 4, pp.
42–51, 2010.

[4] G. Rodrguez de los Santos et. al., Buffer Design Under Bursty Traffic with
Applications in FCoE Storage Area Networks, IEEE Communications Letter,
Vol. 17(2), pp. 413–416, 2013.

[5] T. Brans et. al., End-to-End Quality of Service Over Heterogeneous Networks,
Springer, 2008.

[6] T. G. Orphanoudakis et. al., Leaky-bucket Shaper design based on time interval
grouping, IEEE Communications Letter, Vol. 9 (6), pp. 573-575, 2005.

[7] J. Gettys et. al., Bufferbloat: dark buffers in the internet, Communications of
the ACM, Vol. 55(1), pp. 57–65, 2012.

[8] Y. Joo et. al., Doubling Memory Bandwidth for Network Buffers, IEEE
INFOCOM, pp. 808–815, 1998.

[9] M. Berman et. al., Future internets escape the simulator, Communications of
the ACM, Vol. 58(6), pp. 78–89, 2015.

7
Concluding remarks and future

directions

“I think and think for months and years. Ninety-nine times, the conclusion is false.
The hundredth time I am right”

–Albert Einstein

Current operational networks are the results of over 40 years development,
beginning with the ARPANET (in the late 1960s) and the formulation of the
TCP/IP protocol suit (in early 1970s). At present, network devices (of operational
networks) contain two elements: control plane and data plane, and a proprietary
interface (i.e., closed implementation) to communicate between them. We are
now moving towards the next major change in networking with the introduction of
Software Defined Networking (SDN). OpenFlow is the current open de-facto SDN
standard for communication between the control plane and data plane. In reality,
OpenFlow is accepted by network industries and is feasible to implement, making
it possible to move the control plane implementation to a separate network element
(i.e., external servers) called controller. Moreover, it allows taking one control
plane implementation and use it to steer different data plane implementations. This
is useful because it prevents vendor lock-in (at least on the hardware side). In
addition, network devices have become much simpler and inexpensive, as these do
not have to deal with complicated and distributed information and decision-making
(control plane). Furthermore, OpenFlow can also accelerate innovations for
services, as it is easier to prototype them in software.

162 CHAPTER 7

In this dissertation, we performed research on how OpenFlow networks can
be adapted to be suited for future communication services. The research aimed
at providing fast failure recovery, verification, automatic bootstrapping, high
quality-of-service, and loss-free packet-switching solutions to OpenFlow.

For the fast-failure recovery research, we investigated how carrier-grade
quality can be achieved in an OpenFlow network. To achieve carrier-grade quality,
the network should be able to recover from a failure within 50 ms. In fact, in
traditional networks, carrier-grade quality is achieved by first designing a network
topology with failures in mind in order to provide alternate paths upon a failure.
The next step is to add the ability to detect failures and react to them using a
proper recovery mechanism. In OpenFlow, we first investigated how failures
can be detected, which may be present due to link and node failures, and then
two failure recovery mechanisms - restoration and protection - were proposed.
Furthermore, extensive experiments were performed in a wide range of emulated
network topologies in real settings on the testbed facility provided by iMinds.
From the results of restoration experiments, we conclude that it is difficult for
restoration to meet carrier-grade recovery requirements in a large scale network
serving many flows. This is because due to the centralized nature of OpenFlow, the
controller has to transmit lots of messages in the network to establish alternative
paths upon a failure. This increases the load of the controller at the restoration
time. In addition, the restoration time may increase significantly with the increase
in the propagation delay, further strengthening the conclusion of our research
that restoration cannot meet the requirement of 50 ms. In order to meet the
carrier-grade requirement, we conclude that protection, where recovery actions
are taken by OpenFlow devices themselves without contacting the controller, does
not suffer from limitations of centralized control (i.e., load and propagation delay).
From the results of protection experiments, it has been concluded that protection
is a way in OpenFlow to meet carrier-grade recovery requirements.

In the next study, we proposed a mechanism to detect failures that can be
present due to flow-matching errors in the OpenFlow data plane. The mechanism
transmits test packets to find flow-matching errors. The study concludes that
the verification time depends on the bandwidth available in the network for
verification. If bandwidth is unlimited, verification can be achieved in a very short
time interval. However, if bandwidth limitations exist, the verification time might
increase significantly.

We also performed research about bootstrapping and quality of service (QoS)
in OpenFlow. For bootstrapping, we proposed a method with which OpenFlow
devices can be bootstrapped without having any manual configurations (in in-band
and out-of-band networks). The research concludes that the proposed method
allows bootstrapping in a minimal time, making it suitable for large networks. For
QoS, we implemented a framework to achieve high quality service to high-priority

CONCLUSION 163

users in OpenFlow networks. We implemented quality of service in the paths
chosen by standard routing protocols (OSPF and BGP) in OpenFlow. The
framework is tested in real settings on a large-scale European testbed facility (i.e.,
in the OFELIA testbed) by taking into account reference scenarios for a city of 1
million users. The results conclude that an OpenFlow network is able to achieve
high QoS for high-priority users in all conditions including failure conditions.

Finally, we conclude that packet-switched networks (including OpenFlow
networks) cannot guarantee zero packet-loss, although the overall bandwidth
usage is low. Therefore, we proposed the inter-burst segregation protocol (IBSP)
for guarantying zero packet loss. Based on the results obtained from the
experiments with IBSP in simulations and in a high performance platform (i.e.,
DPDK), we confirmed the suitability of IBSP in packet-switched networks for
guaranteeing zero packet-loss. However, for implementing IBSP in OpenFlow,
additional functionality (i.e., transmission/processing of end-of-frames after
periodic intervals) in OpenFlow devices is required. Therefore, in future these
functionalities/extensions can be added in OpenFlow to guarantee zero packet-loss
in OpenFlow networks.

7.1 Future directions - deploying SDN into opera-
tional networks

In this section, we provide future research directions and argue that where this PhD
research fits into a broad scope of SDN.

7.1.1 Transition from legacy networks to SDN

We have seen that SDN has a number of advantages (such as designing a flexible
network, fostering innovations, and reducing complexity). Therefore, currently
researchers are finding ways to deploy SDN into operational networks [1]. The
transition from a current legacy network to a completely software defined network
may take long time. Hence, SDN devices may need to communicate with legacy
devices in a network. Therefore, further research could be focused on:

1. How many of existing legacy devices of a network need to be upgraded to
use the SDN technology?

2. How important is the actual placement of the legacy devices that have to be
upgraded to SDN?

In fact, in order to deploy SDN devices in a network where there are some (or
more) legacy devices, SDN should be able to run protocols that are currently used
in legacy networks. These networks generally run IP routing protocols (such as

164 CHAPTER 7

OSPF and BGP) to route packets towards destinations. To run such protocols in
SDN networks, RouteFlow (discussed in Chapter 5) [2] can be used. In addition,
we provided a framework (in Chapter 5 and Appendix B) which can automatically
configure Routeflow with minimal configurations. This framework can be used in
SDN to deploy its devices together with legacy devices.

7.1.2 Performance concerns

As a single controller can control many network devices in SDN, the future
research can be focused on how many devices of a network can be controlled
through a single controller, meeting all requirements (such as performance, e.g.,
latency, throughput, and reliability requirements). For a small network, a single
controller may be enough to control all the devices of the network. However, as
the network size increases, more events/requests will be sent to the controller and
therefore, it may not be able to handle all the requests. The following three topics
could be researched to overcome these problems: (1) inserting proactive flows,
(2) deploying multiple controllers for a network device, (3) deploying multiple
controllers where a part of a network is controlled by one controller and the other
part is controlled by another controller. All these solutions are discussed in detail
in following paragraphs.

The future research could be focused on how proactive schemes (i.e.,
establishing flows before a packet arrives at a device) can be deployed in OpenFlow
networks. Proactive approaches do not insert additional delay in forwarding.
In our research, we have shown that for issues such as failure recovery, these
proactive schemes (i.e., protection) are more important than reactive schemes (e.g.,
restoration) because these schemes (i.e., proactive) do not require a high-speed
controller. Implementing such a controller (i.e., high performance controller) only
for restoration will probably not make sense because the high-speed controller
is required momentarily at the time of a failure. Establishing proactive flows
(i.e., protection mechanisms) in network devices for failure recovery will be more
cost-efficient (Chapter 2 and Chapter 4). It may slightly increase the bandwidth
requirement at flow setup time due to extra protection information to be sent
to devices, but highly decrease the bandwidth requirements during failures, as
alternative paths (established as proactive flows) to recover from failures are
already established.

As discussed above, multiple controllers for a device can be deployed in a
network for sharing the load of a controller. It can be further researched that
if multiple controllers are present per device, which type of requests should be
forwarded to which controller (for sharing the load). The simple mechanism
could be that all the incoming TCP packets are forwarded to one controller and
all the incoming UDP packets are forwarded to another controller. In future, all

CONCLUSION 165

these mechanisms could be researched. In Chapter 3, we deployed an additional
controller in a virtual machine to perform verification activities (for sharing the
load with the controller). In operational networks, implementing such techniques
would be useful to overcome performance concerns of the controller.

Furthermore, controllers can be deployed in a distributed manner where a part
of a network is controlled by a separate controller. This is similar to our research
on deploying quality of service mechanisms on multiple autonomous systems
(in Chapter 5). In our research, we deployed one controller per autonomous
system and for communication between different controllers, we used a traditional
packet switching network protocol (i.e., BGP). As OpenFlow currently does not
define protocols for controller-to-controller communications, new protocols could
be researched for controller-to-controller communication. This is because some
networks may not be running BGP for communicating between controllers of
different domains.

Other issues for deploying OpenFlow networks are to handle controller failure
and controller placement scenarios. In this dissertation (Chapter 2 and Chapter
4), we presented future directions on how controller failure scenarios can be
deployed in OpenFlow networks, i.e., we can deploy two controllers (one as a
master and the other as a slave) and when the communication with the master
controller fails, network devices can rely on the other available controller in the
network. However, there are still some concerns on how state synchronization
(or consistency) between two controllers (i.e., master and slave) can be performed
[3]. For other issues such as controller placement problems (e.g., in an in-band
network), we can place a controller from where it becomes close to all devices in
the network (i.e., at the center of the network). These placement algorithms are
briefly discussed in Chapter 3.

The above future directions are related to controller issues. From the data plane
side, there can be issues related to TCAM memory size. As this memory is costly,
OpenFlow devices may contain a FlowTable with a limited size. The limited size of
FlowTables can create many problems. For example, when a FlowTable becomes
full, the device must first remove an old entry before inserting a new entry. If the
entry, which is removed, represents an active flow in the network, the device has to
send any subsequent packets from that flow to the controller, as they do not match
any forwarding entries. This may increase the load on the controller. In addition,
some of these packets can be dropped in the controller (or in the packet-in buffer),
resulting in a significant drop in flow throughput.

The other issues related to the data plane side are for congestion (or
packet-loss). We have shown in Chapter 6 that a packet-switched network
cannot guarantee zero packet-loss. The same issue is present in an OpenFlow
network. Therefore, we proposed inter-burst segregation protocol to guarantee
zero packet-loss in packet-switched networks and described some extensions (i.e.,

166 CHAPTER 7

transmission/processing of end-of-frames after periodic intervals) to implement
it in OpenFlow networks. The future research could be focused on how these
extensions can be implemented in OpenFlow.

7.1.3 Support for Network Function Virtualization

Although Software Defined Networking and Network Function Virtualization
(NFV) are closely related terms, they are not really dependent on each other.
NFV is similar to traditional server virtualization mechanisms, but focuses on
networking services (or network functions such as network address translation,
firewall, intrusion detection, domain name service and caching). Within NFV,
there are virtualized network functions (VNFs). A VNF may consist of one
or more virtual machines (running different software and processes) on top of
commercial off-the-shelf (COTS) programmable hardware, switches and storage,
or even cloud infrastructure (instead of having custom hardware devices for each
network function). By leveraging virtualization technologies, NFV decouples
network functions from proprietary hardware.

In fact, NFV and SDN are mutually beneficial. While NFV can be
implemented without SDN (i.e., without the separation of the control plane from
network devices), usage of SDN can simplify NFV for automatic configuration,
facilitating compatibility with existing deployments, and enabling operation and
maintenance procedures.

In [12], many challenges for NFV (i.e., performance, reliability, manageability,
and security) have been discussed. Regarding performance, a great concern has
been shown on how performance (such as throughput and latency) will be affected
when virtualized network functions will be deployed on general-purpose servers.
It is argued that using NFV it may be difficult to achieve the same performance
as dedicated hardware. For manageability, the concerns are about instantiation
of VNFs in the right locations at right time, and therefore, it includes dynamic
allocation of hardware resources for them.

In traditional networks, network functions (deployed on dedicated hardware)
devices can achieve strict requirements (e.g., reliability requirements) because they
are specifically dedicated to perform these tasks. To meet the same requirements
(i.e., reliability), NFV needs to build resilience into software (or software running
on virtual machines). Therefore, it may be difficult to meet the same requirements
(or performance) in NFV as traditional devices. In addition, for security threats, it
is easier for attackers to replace one virtual network function (VNF) with another
than one hardware box with another. Therefore, when deploying VNFs, operators
need to make sure that security features of their networks are not be affected. In
addition, VNFs may be run in the network infrastructure that are not owned by
network operators directly. Therefore, new security threats can also be introduced

CONCLUSION 167

when the underlying infrastructure and storage are shared, for example, when
running network functions in a VM that shares physical resources with other VMs
(or network functions).

SDN together with NFV does not overcome all the above concerns, however
it simplifies some of concerns such as manageability and reliability. As the SDN
controller has a global view of the underlying infrastructure (e.g., topology and
network resources), it can simplify the manageability task of NFV. In addition, for
reliability, NFV together with SDN can propose new algorithms to recover from
failures. For this, our work on failure recovery for SDN is the first step to perform
failure recovery in these networks. In addition, for automatic configuration of
network functions, our research on bootstrapping and automatic configuration of
RouteFlow is useful.

7.1.4 Troubleshooting

Troubleshooting a network is always a complex and difficult task. In traditional
networks, engineers and developers have to use tools, such as ping, traceroute,
and tcpdump, for debugging a network. In fact, troubleshooting is usually manual
and therefore, time consuming in traditional networks. However, due to a high
degree of flexibility and programmability offered by SDN, it is currently opening
up automatic ways for developing tools to debug, troubleshoot, verify and test
networks [4], [5], [6], [7], [8], [9], [10].

Early debugging tools for SDN/OpenFlow, such as ndb [4] and OFRewind [5],
make it easier to discover the source of network problems such as faulty device
firmware. Like the well-known gdb software debugger [11], ndb provides basic
debugging actions such as breakpoint and packet backtracing. A breakpoint shows
the history of function calls leading to that breakpoint, while a packet backtrace
in ndb lets us define a packet breakpoint (e.g., a dropped packet or a packet filter)
and then shows the sequence of forwarding actions seen by that packet leading to
the breakpoint. These actions help programmers to debug networks in a similar
way to traditional software. In contrast, OF-Rewind works in a different way. It
enables record and replay network events, in particular control messages events.
The motivation behind OFRewind is that by recording and replaying, many of the
bugs can be reproduced (or detected).

Other debugging tools for OpenFlow are: NICE [6], FlowChecker [7], OFTEN
[8], VeriFlow [9], and ATPG [10]. NICE [6] verifies controller programs to
detect an incorrect behavior by automatically generating a streams of packets
under many possible events. FlowChecker [7], OFTEN [8], and VeriFlow [9]
are three examples of tools to verify correctness properties of a system. While
the former two are based on offline analysis, the latter is capable of online
checking of network invariants. Verification parameters include security issues,

168 CHAPTER 7

reachability issues, loops, black holes, etc. The next tool, i.e., ATPG, is proposed
for automatic verification of all flows by transmitting test packets in networks for
finding action faults in Flow Entries. However, this tool does not verify (or verifies
partially) the matching header part of aggregated flows for matching issues. In
this dissertation, we proposed a mechanism to verify all the aggregated flows for
matching issues (Chapter 3). Like ATPG, the mechanism transmits test packets
in a network to verify aggregated flows. There can be two reasons for matching
errors in aggregated flows: (1) bugs (software or hardware) in OpenFlow switch
implementation and (2) errors in FlowTable configuration. The objective of the
verification mechanism is to find this incorrect or no matching and hence, to find
the packet-headers that cannot be matched or can be matched incorrectly with the
matching-header part of a Flow Entry.

As OpenFlow/SDN accelerates innovations (i.e., many features can be
introduced in short timeframes), it may give rise to many other troubleshooting
challenges (not discussed above) depending on the features introduced. Therefore,
new troubleshooting mechanisms may be researched in future to overcome these
challenges. The next challenge could be that where to place troubleshooting
functionalities in SDN networks to get the maximum benefits (such as short
troubleshooting time and minimum required resources).

7.1.5 Security concerns

Traditional networks have natural protection against security threats. This is
because of the closed (proprietary) nature of network devices, their fairly static
design, and the decentralized nature of the control plane. A common SDN
standard (e.g., OpenFlow) among vendors and clients increases the risk of
threats, by the possible introduction of faults in SDN networks. In [13], many
threats for SDN networks are researched. These attacks may be present due to
vulnerabilities in switches, attacks in the controller to the switch communications,
and vulnerabilities in the controller. Some of security threats are also discussed in
Chapter 4. In these threats, security problems of establishing an OpenFlow session
are discussed.

References
[1] D. Levin, M. Canini, S. Schmid, and A. Feldmann, Incremental SDN De-

ployment in Enterprise Networks, Proceedings of the ACM SIGCOMM 2013
Conference, Vol. 43, No. 4, pp.473 – 474, 2013.

[2] C. Esteve Rothenberg, Marcelo R. Nascimento, Marcos R. Salvador, Carlos
Corrła, Sidney Lucena, and Robert Raszuk. Revisiting Routing Control Plat-
forms with the Eyes and Muscles of Software-Defined Networking, ACM

CONCLUSION 169

SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN), pp. 13-18, 2012.

[3] S. H. Yeganeh, A. Tootoonchian, Y. Ganjali, On scalability of software-defined
networking, in Communications Magazine, IEEE, Vol. 51(2), pp. 136 – 141,
2013.

[4] N. Handigol, B. Heller, V. Jeyakumar, and N. McKeown, Where is the Debug-
ger for My Software-defined Network?, ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking (HotSDN), pp. 55 – 60, 2012.

[5] A. Wundsam, D. Levin, S. Seetharaman, A. Feldmann, OFRewind: Enabling
Record and Replay Troubleshooting for Networks, Proceedings of the 2011
USENIX Conference on USENIX Annual Technical Conference, 2011.

[6] M. Canini, D. Venzano, P. Pereni, D. Kosti and J. Rexford, A NICE way to
test openflow applications, 9th USENIX conference on Networked Systems
Design and Implementation, 2012.

[7] E. Al-Shaer and S. Al-Haj, FlowChecker: configuration analysis and verifica-
tion of federated openflow infrastructures, SafeConfig, pp. 37–44, 2010.

[8] M. Kuzniar, M. Canini D. Kostic, OFTEN Testing OpenFlow Networks,
European Workshop on Software Defined Networks, pp. 54-60, 2012.

[9] A. Khurshid, and W. Zhou, M. Caesar, Matthew, Godfrey, P. Brighten, Veri-
Flow: Verifying Network-wide Invariants in Real Time, HotSDN, pp. 49–54,
2012.

[10] H. Zeng, P. Kazemian, G. Varghese and N. McKeown, Automatic Test Packet
Generation, CoNEXT, pp. 241–252, 2012.

[11] GNU GDB: [Online]. Available: https://www.gnu.org/software/gdb/.

[12] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, Network Function Virtualiza-
tion: Challenges and Opportunities for Innovations, IEEE Communications
Magazine, Vol 53(6), pp. 90-96, 2015.

[13] D. Kreutz, F. Ramos, P. Verissimo, Towards Secure and Dependable
Software-Defined Networks,ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (HotSDN), pp. 55-60, 2013.

A
Automatic bootstrapping of OpenFlow

networks

In this Appendix, the work presented in Chapter 4 about automatic bootstrapping
has been presented in detail.

? ? ?

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet,
and Piet Demeester

Published in IEEE LANMAN, April 2013.

Abstract OpenFlow decouples the control plane functionality from switches, and
embeds it into one or more servers called controllers. One of the challenges of
OpenFlow is to deploy a network where control and data traffic are transmitted
on the same channel (in-band mode). Implementing such an in-band mode is
complex, since switches have to search and establish a path to the controller
through the other switches in the network (bootstrapping). In this paper, we
propose a method that facilitates this automatic bootstrapping of switches. In this
method, the controller establishes its own control network through the neighbor
switches that are connected to it by the OpenFlow protocol. We measure suitability
of the proposed method by performing bootstrapping experiments in different
types of topologies: linear, ring, star and mesh topologies. The experimental

172 APPENDIX A

results show that the proposed method allows bootstrapping in a minimal time,
which makes it suitable even for a large network.

A.1 Introduction

There is sometimes need to define behavior of networks in a custom manner.
Historically, this was possible only by proprietary hardware that was prohibitively
expensive or impossible to obtain by researchers and experimenters. The need
of this functionality exists in order to run wide-scale projects implementing new
experimental protocols. Therefore, in the field of networks, OpenFlow [1] which
controls networks freely by software located at one or more servers (so called
controllers), has caught attention of many research communities. OpenFlow
is developed in a clean-slate future internet program by Stanford University,
which aims to offer a programmable network to test new protocols in current
Internet platforms. The core idea of OpenFlow is to decouple the control plane
functionality from network switches, and to embed it into one or more servers
called controllers. This makes switches/routers inexpensive. In addition, this
imparts flexibility, as the control plane functionality is moved to the controllers,
while only forwarding is required to be done in hardware.

OpenFlow is based on the fact that most modern routers/switches contain a
proprietary FIB (Forwarding Information Base) which is implemented in hardware
using TCAMs (Ternary Content Addressable Memory). OpenFlow provides
the concept of a FlowTable that is an abstraction of the FIB. Additionally, it
provides a protocol to program the FIB via adding/deleting/modifying entries in
the FlowTable. This is achieved by one or more controllers that communicate with
the OpenFlow switches using the OpenFlow protocol (Fig. A.1). The switch/router
that exposes its FlowTable through the OpenFlow protocol is called an OpenFlow
switch/router.

An entry in the FlowTable consists of: (1) a set of packet fields to match
with incoming packets (called as flow), (2) statistics which keep track of matching
packets per flow, and (3) actions which define how packets should be processed.
When a packet arrives at an OpenFlow switch, it is compared with the Flow Entries
in the FlowTable. If a match is found, the actions specified in the matching entry
are performed. If no match is found, the packet (a part thereof) is forwarded to the
controller. Thereafter, the controller makes a decision on how to handle the packet.
It may return the packet to the switch indicating the forwarding port, or it may add
a Flow Entry directing the switch on how to forward packets with the same flow.

In OpenFlow, control messages (e.g., messages to add Flow Entries in
switches) are required to be exchanged between the controller and switches. These
messages can be exchanged either in an in-band or in an out-of-band mode. In the
case of an in-band mode, control messages are sent on the same channel used to

AUTOMATIC BOOTSTRAPPING 173

D

A

S

OpenFlow Protocol

Controller

A, B, C ,D

D

A

S

OpenFlow Protocol

Controller

Control

traffic path

Data traffic

path

(A) (B)

C

B

A, B, C ,D

are OpenFlow

switches

C

B

A, B, C ,D

are OpenFlow

switches

path

Figure A.1: OpenFlow network: (A) In-Band Mode (B) Out-of-Band Mode

transport data traffic, whereas in the case of an out-of-band mode, control messages
are sent on a different channel. As shown in Fig. A.1, in the in-band mode,
switches B, C and D share the same channel for control and data traffic, and in
the out-of-band mode, switches A, B, C and D use a different channel for control
and data traffic. The out-of-band mode is simpler and easier to design because
the controller is directly connected (physically) to each of the switches through a
separate network. However, the out-of-band mode might not be possible in some
scenarios, for example, a widely distributed central offices in access networks. In
addition, due to the requirement of a separate network, the out-of-band mode is
expensive to build in a real network.

In the in-band mode, switches do not need a separate network for control
traffic. OpenFlow defines a virtual port (reserved) in a switch called as local
port, which enables remote entities (e.g. controller) to interact with the switch
via an OpenFlow network (in-band mode). OpenFlow, however, does not describe
how control traffic paths can be established in the OpenFlow network. This task
is especially challenging in the case of the in-band mode, since switches need
to establish these paths through the other switches in the network. Establishing
control paths is important because an OpenFlow session needs to be established
through these paths (bootstrapping). In this paper, we propose a method that
facilitates this automatic bootstrapping of switches. In this method, the controller
establishes its own control network through the switches that are connected to it
by the OpenFlow protocol.

The proposed method is emulated using different types of topologies, which
vary with different scales (degree, number of nodes, and distance from the

174 APPENDIX A

controller). The emulation results show that the proposed method allows
bootstrapping in a minimal time. It shows that the scalability and simplicity of
the method make it suitable even for a large network.

The rest of the paper is organized as follows: section A.2 presents our approach
of bootstrapping, section A.3 describes the emulation environment and results, and
finally section A.4 concludes.

A.2 Bootstrapping of OpenFlow networks
This section is divided into three parts. The first part gives an overview of our
bootstrapping approach. The second part describes OpenFlow mechanisms and the
messages that are used for bootstrapping. The third part gives the bootstrapping
approach in detail.

A.2.1 Overview of our bootstrapping approach

Bootstrapping of a switch in an OpenFlow network requires at least two steps:

1. Assignment of connection identifiers for connecting the switch to the
controller. The connection identifiers required are at least the IP address
of the local port and the IP address of the controller. The other identifiers
can be MAC and transport layer parameters. Transport layer parameters
may include a transport layer protocol and a port number.

2. Instantiation of an OpenFlow session with the controller.

The first step can be accomplished by using protocols such as DHCP
(Dynamic Host Configuration Protocol), OF-CONFIG (OpenFlow management
and configuration protocol) [2] or ARP (Address Resolution Protocol). ARP can
allow switches to know the MAC address of the controller. DHCP or OF-CONFIG
can assign a unique IP address to a switch (i.e., local port), and can allow it to know
the other identifiers (IP address of the controller and transport layer parameters) to
connect with the controller.

We used ARP and DHCP to accomplish the first step. In the case of DHCP,
we assumed that either the DHCP server is located in the controller node or it is
the neighbor of the switch that is directly connected (physically) to the controller
through a separate network.

For bootstrapping, each switch runs a DHCP client and keep on flooding
DHCP messages to its neighbors until it receives a reply from the DHCP server.
If a neighbor is the DHCP server, it replies to the switch. In the case the neighbor
is a switch connected to the controller by the OpenFlow protocol, the controller
allows the switch to forward DHCP messages to the DHCP server. In the case the
neighbor switch is not connected to the controller, the messages are dropped.

AUTOMATIC BOOTSTRAPPING 175

Once a switch has an IP address and it knows the other identifiers by the DHCP
protocol, the switch learns the MAC address of the controller by the ARP protocol.
If the transport layer protocol between the switch and the controller is TCP
(Transmission Control Protocol), the switch then establishes a TCP connection
with the controller. The switch is able to establish the connection in at least one
of the following cases: (1) the controller is directly connected (physically) to the
switch, (2) a neighbor switch has an OpenFlow session with the controller.

When a switch has a transport layer connection with the controller, the switch
instantiates an OpenFlow session (the second step). The OpenFlow session can be
established along the same path used to establish the transport layer connection.
Bootstrapping of an OpenFlow network completes when each switch in the
network has an OpenFlow session.

A.2.2 OpenFlow mechanisms and messages in bootstrapping

We used the local and normal stack of OpenFlow to implement the bootstrapping
approach mentioned in the previous subsection. By the local stack, we refer to the
local networking stack of an OpenFlow switch, which can be used to communicate
with remote entities (DHCP server or controller). In order to communicate with
remote entries, OpenFlow defines a local port. The local port allows the local
networking stack to send or receive packets to or from remote entities. In addition,
we run a DHCP client, a TCP/IP stack, and an OpenFlow stack in the local stack
to perform bootstrapping.

In the case of the normal stack, an OpenFlow switch can also forward packets
using Ethernet switching technologies such as MAC learning. In the case of MAC
learning, MAC addresses are learned through the source MAC address and the
incoming port of a packet. In the case the destination address is an unknown
address or the broadcast address, the packet is flooded. In the case the destination
address is already learned, the packet is forwarded through the learned port. This
mechanism is used in our bootstrapping approach when a switch is not connected
with the controller and the switch has to forward its own control traffic (e.g., DHCP
messages or messages to instantiate an OpenFlow session) without contacting the
controller.

In order to perform bootstrapping, we also used some of the messages of the
OpenFlow protocol. These messages are Hello, Feature-Request, Feature-Reply,
Packet-In, Packet-Out and Flow-Mod messages. With a Hello message, a switch
and the controller match a version of the supported OpenFlow protocol. In
the case the version matches, the controller requests the features of the switch
by sending a Feature-Request message. Upon receipt of the Feature-Request
message, the switch replies the controller by sending a Feature-Reply message.
These messages (Hello, Feature-Request and Feature-Reply) are used to instantiate

176 APPENDIX A

an OpenFlow session. The other messages such as Packet-In, Packet-Out and
Flow-Mod messages are used to control packet forwarding in switches. In the
case a switch needs to transmit an unknown packet, the packet is first sent to the
controller in a Packet-In message. In the case the controller needs to send a packet
through a port of a switch, the packet is sent to the switch in a Packet-Out message.
In the case the controller needs to add a Flow Entry in a switch, the controller sends
a Flow-Mod to the switch.

3

1

1

4

1

D

B

C

A

S

1
2

2

2

Controller

DHCP Server

A, B, C, D are the OpenFlow switches

The numbers on a link (e.g. 1, 2, 3 or 4)

are the port numbers of the switches

connected by the link

2

Figure A.2: A topology to describe bootstrapping

A.2.3 Detailed bootstrapping

In this section, we describe bootstrapping in detail by taking an example of an
OpenFlow network shown in Fig. A.2. In Fig. A.2, the DHCP server and the
controller are directly connected (physically) with switch A. For bootstrapping,
DHCP is enabled with Option 43 [3]. This option allows a programmer to program
vendor-specific information in the DHCP server. In our case, vendor-specific
information is the controller IP address and transport layer parameters. The
DHCP clients in our bootstrapping approach request this information by sending a
“vendor class identifier” in a DHCP Discover message.

The controller in our approach maintains a topology database which contains
IDs (switches IDs, the controller ID and the DHCP server ID) and links
information. We assigned the ID of a switch equal to the MAC address of the
switch local port. At the initial stage when no switch is connected with the
controller, the topology database has only the controller and the DHCP server
as IDs. During bootstrapping, the controller gathers a topology of neighbor
switches by transmitting a special kind of probe messages from (or to) the recently

AUTOMATIC BOOTSTRAPPING 177

connected switch. The format of these probe messages is inline with the Link
Layer Discovery Protocol (LLDP) [4]. Topology gathering is important in our
approach because during bootstrapping the controller needs to find a path to any
switch or to the DHCP server.

(10) Hello

(11) Hello

OpenFlow

Switch
Remote Entities

(DHCP Server or Controller)

(1) DHCP Discover

(2) DHCP Offer

(3) DHCP Request

(4) DHCP Ack

(5) ARP Request

(6) ARP Reply

(7) TCP Syn

(8) TCP Syn ack

(9) TCP Ack

(12) Feature Request

(13) Feature Reply

(14) Probe messages

DHCP Handshake to provide

connection identifiers for

connecting a switch to the

controller

ARP messages to provide the

controller MAC address to a switch

TCP 3-way handshake to establish

a connection between a switch and

the controller

Messages to establish an

OpenFlow session between a

switch and the controller

Probe messages to discover a

topology

Figure A.3: Message exchange between a switch and the controller

In bootstrapping, each switch and remote entities exchange a sequence of
messages. This sequence is shown in Fig. A.3. In order to exchange these
messages, a switch uses the local and the normal stack of OpenFlow.

We now explain bootstrapping of switches A,B,C, and D (shown in Fig.
A.2). The first message exchanged by each of the switches is the DHCP Discover
message (shown in Fig. A.3). At the stage, when the local port of a switch does
not have an IP address, a DHCP client in the local networking stack transmits a
DHCP Discover message from its local port.

The DHCP Discover message transmitted from the local port (switch own
control traffic) is handled by the normal stack of the same switch. As the
destination MAC address of a DHCP Discover message is the broadcast address,
the normal stack of each switch floods the DHCP Discover message through all its
outgoing ports (e.g., 1, 2, 3, or 4 in Fig. A.2).

A.2.3.1 Bootstrapping of switch A

At the stage when no switch is connected with the controller, all DHCP Discover
messages are dropped except the one that is transmitted through port 1 of switch A

178 APPENDIX A

(see Fig. A.2). The messages are dropped in our bootstrapping approach because
neighbor switches or the controller that have received these messages have no way
to forward unknown traffic. The DHCP Discover message of switch A, which is
not dropped, reaches to the DHCP server. Upon receipt of the DHCP Discover
message from the DHCP client of switch A, the DHCP server returns a DHCP
Offer message (message (2) in Fig. A.3). The DHCP Offer message contains an
unleased IP address and the string containing vendor-specific information. Switch
A receives this message through port 1. As the destination MAC address of the
DHCP Offer message is the MAC address of the local port (switch A’s own control
traffic), the message is handled by the normal stack of switch A. Thereafter, the
normal stack forwards the message to the local port. The message reaches to the
DHCP client of switch A via the local port.

The DHCP client of switch A now stores vendor-specific information from
the DHCP Offer message, and responds by transmitting a DHCP Request message
(message (3) in Fig. A.3) through the local port. The DHCP Request from the local
port is handled by the normal stack of switch A. The normal stack then floods the
DHCP request message through all its ports because the destination MAC address
is the broadcast address. The DHCP Request, which is transmitted through port
1 of switch A, reaches to the DHCP server. The DHCP server acknowledges the
DHCP Request by sending a DHCP Ack message (message (4) in Fig. A.3). Upon
receipt of the DHCP Ack, the normal stack of switch A transmits the Ack to its
local port, and thereby, the DHCP client receives this message. Thereafter, the
DHCP client assigns the IP address to the local port. The local networking stack
of switch A now parses the vendor-specific information (stored at the time of the
DHCP offer message), and it knows the controller IP address and transport layer
parameters to connect with the controller.

The local networking stack of switch A now transmits an ARP request message
(message (5) in Fig. A.3) through the local port to know the controller MAC
address. The ARP request is now flooded by the normal stack of switch A. The
controller receives this request through port 2 of switch A. Upon receipt of the
ARP request, the controller returns the MAC address in an ARP reply message
(message (6) in Fig. A.3). Switch A receives this reply through port 2. The
normal stack of switch A then forwards the reply to its local networking stack by
sending it to the local port. In addition, MAC learning mechanism in switch A
learns the output port (i.e., port 2) to reach the controller.

Assuming TCP as a transport layer protocol in the vendor specific information,
the local networking stack of switch A starts a TCP connection upon receipt of the
ARP reply. In this TCP connection, the local networking stack sends a TCP syn
message (message (7) in Fig. A.3) from the local port of switch A. The normal
stack of switch A then sends it through port 2 (learned port for the controller).
Upon receipt of the TCP Syn, the controller sends a TCP Syn Ack (message (8) in

AUTOMATIC BOOTSTRAPPING 179

Fig. A.3) to switch A. When switch A receives the Syn Ack, the normal stack of
switch A forwards it to the local port. The local networking stack acknowledges
then the Syn-Ack by sending a TCP Ack (message (9) in Fig. A.3). At this stage,
switch A has a TCP connection with the controller.

After establishing the TCP connection, the OpenFlow stack in the local stack of
switch A instantiates an OpenFlow session by sending a Hello message (message
(10) in Fig. A.3) to the controller through the local port. The normal stack
then sends the Hello message via port 2. Upon receipt of the Hello message, the
controller replies back with the Hello message (message (11) in Fig. A.3). The
controller then sends a Feature request message (message (12) in Fig. A.3). Upon
receipt of the Feature Request message, the OpenFlow stack of switch A sends
a Feature Reply message (message (13) in Fig. A.3) through the local port. The
normal stack sends this message to the controller via port 2. The controller receives
the Feature Reply message, and declares an OpenFlow session with switch A. In
the Feature reply message, switch A has sent all its attributes/parameters including
the MAC address of its local port. Henceforth, the controller adds the MAC
address of the local port as the ID of switch A in its topology database.

At this time the controller does not know how switch A (this is the only switch
present in the topology database) is connected with the controller. To know this,
the controller sends a probe message to switch A. Upon receipt of the message,
switch A treats this as unknown traffic, and sends this back to the controller as a
Packet-In message. The Packet-In message includes the ID of switch A and the
incoming port of the probe message (i.e., port 2) in its message. Upon receipt
of the Packet-In message, the controller now finds that the Packet-In message is
generated by switch A and there is no path in its topology database to reach from
switch A to the controller. Therefore, the controller adds a link in its topology
database such that switch A is connected to the controller through port 2. In order
to take control over control traffic of switch A, the controller at this time may
add two Flow Entries in switch A. The first entry can be for the flows containing
the destination MAC address as the MAC address of the local port. The second
entry can be for the flows containing the incoming port as the local port and the
destination address as the controller address.

A.2.3.2 Bootstrapping of switches B, C and D

When switch A established a session with the controller, switch B, switch C and
switch D are still in the initial phase of transmitting DHCP Discover messages.
As switch B and switch D in Fig. A.2 are directly connected (physically) with
switch A, DHCP Discover messages from switch B and switch D reach at switch
A. switch A has now an OpenFlow session with the controller. Therefore, upon
receipt of the DHCP Discover messages, switch A sends these messages to the
controller in Packet-In messages. Let us take the case when the DHCP Discover

180 APPENDIX A

message from switch B reaches to switch A. The Packet-In message in this case
includes the ID of switch A and the incoming port of the DHCP message, i.e., port
4 in its message. Upon receipt of the Packet-In message, the controller finds that
the message in the Packet-In is the DHCP message (because the message has the
destination transport layer port equals to 67) and the source of the DHCP message
(i.e the local port of switch B) is not present in its topology database. Therefore,
the controller adds the ID of switch B in its topology database. In addition to
the ID, the controller adds a link in its topology database such that switch B is
connected to switch A through the incoming port of the DHCP message (i.e., port
4).

The controller does not know at this time the location of the DHCP server,
therefore, it sends a Packet-Out message to switch A to flood the DHCP Discover
message from all ports of switch A except the incoming port of the DHCP Discover
message (port 4). Upon receipt of the DHCP Discover message from port 1 of
switch A, the DHCP server sends the DHCP offer message to switch B. The DHCP
Offer message is now received by switch A through port 1. However, switch A
does not know how to handle this message. Therefore, it sends the message to the
controller in the Packet-In message. This Packet-In message includes the incoming
port of the DHCP Offer message (port 1) and ID of switch A in its message. Upon
receipt of the Packet-In message, the controller calculates a path from switch A
to the destination of the DHCP offer message (i.e., switch B). As the controller
knows the path to switch B through port 4 of switch A, the controller sends a
Packet-Out message to switch A to forward the DHCP Offer message via port 4.
In addition, the controller finds that this DHCP message is from the DHCP server
(because the message contains the transport port of the source as 67). Therefore,
the controller adds a link in its database such that switch A is connected to the
DHCP server through the incoming port of the DHCP Offer message (i.e., port 1).

Upon receipt of the DHCP offer message, the normal stack of switch B handles
this message, and forwards this to its local port. Switch B now exchanges the other
messages (the message (1) to (13) in Fig. A.3) to instantiate an OpenFlow session.
In this cases, all messages of switch B go through switch A.

Note that the controller at this time (the time when the switch B has exchanged
all messages (1) to (13)) does not have complete information about the links
of switch B. In our case, the controller does not know which port of switch B
connected to port 4 of switch A. Therefore, the controller transmits probe messages
through each port of switch B after having the OpenFlow session with it. A
probe message contains the ID and the outgoing port of switch B from where
the probe message has to be transmitted. The probe message of switch B, which
is sent from port 1 of switch B, reaches to switch A through port 4. As the probe
message is unknown traffic for switch A, it is sent to the controller in a Packet-In
message. Upon receipt of the Packet-In message, the controller now parses the

AUTOMATIC BOOTSTRAPPING 181

probe message, and finds that the message is sent from port 1 of switch B. As the
incoming port of the Packet-In is port 4 of switch A. The controller updates the
link of switch A in its topology database such that port 4 of switch A is connected
to switch B by port 1. After this, the controller adds Flow Entries in switch A and
switch B for the control traffic of switch B.

Like switch B, switch D in our bootstrapping approach also establishes an
OpenFlow session with the controller. Like the same way, the controller transmits
probe messages from switch D after having the session with it, knows the link
connecting switch D to switch A, and adds Flow Entries in switch A and switch D
for the control traffic of switch D.

At the time switches A, B and D have OpenFlow sessions with the controller,
switch C may be in the initial stage of transmitting the DHCP Discover messages.
In the case of switch C, the DHCP Discover messages are received by switch B and
switch D. switch B and switch D have now OpenFlow sessions with the controller.
Therefore, the DHCP messages from switch B and switch D will be sent to the
controller in Packet-In messages. Let the Packet-In message from switch B first
reaches the controller. Upon receipt of the Packet-In message from switch B,
the controller adds switch C in its database and adds a link in its database such
that switch B is connected to switch C through port 2. In the case the controller
does not know the port of switch B along the calculated path to the DHCP server
(because the controller may have not transmitted/received a probe message giving
information about the link between switch B and switch A), the controller replies
switch B to drop the message. In the case the controller knows the port of switch
B along the calculated path to the DHCP server, it replies to B to forward the
message along the path.

In the case of the Packet-In message from switch D, the controller adds a link
in its topology database such that switch D is connected to switch C through port
1. Like the DHCP Discover message from switch B, the controller replies switch
D to forward the message to the DHCP server along the available path. Thereafter,
two DHCP Discover messages from switch C may reach to the DHCP server (the
one from the path C-D-A and the other from the path C-B-A). Upon receipt of
these messages, the DHCP server replies to only one DHCP Discover message by
sending a DHCP Offer message. Therefore, at the end one DHCP Offer message
reaches to switch C. switch C now exchanges all other messages (shown in Fig.
A.3) with the DHCP server and the controller. The messages exchanged are similar
to the sequence of messages exchanged at the time of bootstrapping of switches A,
B and D. After exchange of the messages, switch C will have an OpenFlow session
with the controller.

The controller now gathers information about all links of switch C by
transmitting probe messages from all ports of switch C. After this, for the control
traffic of switch C, the controller adds the Flow Entries along a calculated path

182 APPENDIX A

(shortest) from switch C to the controller.

A.3 Emulation environment and results

In this section, we describe the testbed, topologies, methodology and results of the
bootstrapping experiments.

We performed emulation on our virtual-wall testbed which is a generic test
environment for advanced network, distributive software and service evaluation.
We created linear, ring, star and mesh topologies in our testbed nodes to perform
boostrapping in OpenFlow networks. The topologies were created by using Linux
processes in different network namespaces. In all topologies, we connected the
controller and the DHCP server to one of the switches present in the topology.
In the case of a star topology, we connected the controller and the DHCP server
to the central switch connecting all the other switches in the star network. The
number of switches connecting the central switch is varied and the effect on the
bootstrapping time is shown in the results. In the case of mesh topologies, we
used topologies that were developed within the COST 266 action project [6]. In
this project, a basic reference topology (BT topology) and variations of the BT
topology, suited for a pan-European network, were designed. The variations of
the BT topology were Core Topology (CT), Large Topology (LT), Ring Topology
(RT) and Triangular Topology (TT). These were obtained by varying the total
number of nodes and the degree of meshedness. The CT topology and the LT
topology differ with respect to the number of nodes. The BT consists of 28 nodes,
the CT consists of 16 nodes and the LT consists of 37 nodes. The other derived
topologies contained the same number of nodes as the BT, but the difference lies
in the degree of meshedness. The maximum degree of nodes in these topologies is
7. We performed the bootstrapping experiments on all these topologies.

There are many extensions of the OpenFlow protocol. Some of the extensions
have been released publicly in the form of versions. The OpenFlow 1.0 version
that is developed by Stanford is called as the reference switch [7]. This reference
switch contains the DHCP client software in its implementation. However, this
software is abandoned in the higher versions. We integrated this DHCP client
software in the OpenFlow 1.1 version (developed by Ericsson), and used this for
our implementation. In addition, many OpenFlow controllers are also available
for controlling OpenFlow networks. These are NOX, Beacon, Onix, Floodlight,
Helios and Maestro. We implemented our bootstrapping approach in the NOX
controller (developed by Ericsson [8]) and used this in our emulation.

In our emulation, the DHCP server is enabled with two options: ping checked
enabled and ping check disabled. The ping check may be required to verify address
availability before offering it to a client. We tested our bootstrapping approach
with both the options and calculated the bootstrapping time. In the case of ping

AUTOMATIC BOOTSTRAPPING 183

check enabled, the DHCP server pings an IP address before offering it to the DHCP
client. In the case the DHCP server does not receive a reply of a ping until a certain
time (1 second in our case), it offers the IP address to the client. In the case of ping
check disabled, the DHCP server offers an IP address to the DHCP client without
pinging the IP address. For the transmission of the DHCP Discover message,
we kept the retransmission time of the DHCP Discover messages (the time if a
DHCP client does not receive a reply of the DHCP Discovery message) equals to
1 second. The DHCP client in an OpenFlow switch changes this value to a random
interval between 0.90 to 1.10 second.

80

100

120

140

160

B
o

o
ts

tr
ap

p
in

g
 t

im
e

o
f

sw
it

ch
es

(s
ec

o
n

d
s)

Linear topology with ping check disabled

Linear topology with ping check enabled

Ring topology with ping check disabled

Ring topology with ping check enabled

0

20

40

60

0 10 20 30 40 50

B
o

o
ts

tr
ap

p
in

g
 t

im
e

o
f

(s
ec

o
n

d
s)

Shortest distance from the controller (no. of hops)

Figure A.4: Bootstrapping experiments on linear and ring topologies

We now show the results of the experiments performed on different topologies.
Fig. A.4 shows the results of the experiments performed on linear and ring
topologies. The results show a linear relationship between the bootstrapping time
and the shortest distance (number of hops) from the controller. In the case of ping
check enabled, the bootstrapping time of switches is delayed by an additional time.
This is because the DHCP server waited 1 second before offering an IP address to
each of the switches. In the case of the linear topology of 50 nodes, bootstrapping
of all the switches took approximately 40 seconds with the ping check disabled
option and 91 seconds with the ping check enabled option. In the case of the ring
topology of 50 nodes, bootstrapping took approximately 23 seconds with the ping
check disabled option and 50 seconds with the ping check enabled option.

Fig. A.5 shows the results of the experiments performed on the star topologies.
The results show that until the degree of the central switch is 30, bootstrapping
took approximately 1 second in the case of the ping check disabled option and 2
seconds in the case of the ping check enabled option. After this, the bootstrapping
time increases with the increased degree of the central switch. This is because as

184 APPENDIX A

8

10

12

14

16
T

o
ta

l
b

o
o

ts
tr

ap
p

in
g

 t
im

e

(s
ec

o
n

d
s)

ping check disabled

ping check enabled

0

2

4

6

0 10 20 30 40 50 60

T
o

ta
l

b
o

o
ts

tr
ap

p
in

g
 t

im
e

(s
ec

o
n

d
s)

Degree of the central switch

Figure A.5: Bootstrapping experiments on star topologies

the degree of the central switch increases, more messages will be buffered in the
packet-in buffer of the central switch. A message remains in the buffer until the
controller responds on a forwarding decision of the message. This led to overflow
of the packet-in buffer, and resulted into drop of some of the messages. In the
case a DHCP Discover message drops, bootstrapping in our emulation will take
additional 1 second to retransmit the next DHCP Discover message. In the case a
TCP syn message drops, the TCP stack will take an additional time to retransmit
the TCP syn message. This additional time increases exponentially in TCP with
the number of Syn messages dropped [9].

8

10

12

14

16

B
o

o
ts

tr
ap

p
in

g
 T

im
e

o
f

 s
w

it
ch

es

(s
ec

o
n

d
s)

Minumum Average Maximum

Miniumum Average Maximum

Ping check disabled:

Ping check enabled:

0

2

4

6

8

0 1 2 3 4 5 6 7

B
o

o
ts

tr
ap

p
in

g
 T

im
e

o
f

 s
w

it
ch

es

(s
ec

o
n

d
s)

Shortest distance from the controller (no. of hops)

Figure A.6: Bootstrapping experiments on mesh topologies

AUTOMATIC BOOTSTRAPPING 185

Fig. A.6 shows the results of the experiment performed on the mesh topologies
developed in the COST 266 action project. The figure shows the minimum, the
average, and the maximum time of bootstrapping. In emulated mesh topologies,
we found a linear relationship between the bootstrapping time and the minimum
distance from the controller. With the ping disable option, our method took 6
seconds (approximately), and with the ping enable option, our method took 12
seconds (approximately) to bootstrap the emulated mesh networks.

A.4 Conclusions

In this paper, we have proposed a method that facilitates automatic bootstrapping
in an in-band case of OpenFlow networks. We have performed extensive
experiments on different types of topologies, and have shown that the proposed
method allows automatic bootstrapping in a minimal time. In our emulation,
bootstrapping took a maximum of 12 seconds to discover the OpenFlow network
created by well known pan-European topologies developed in the COST 266
action project.

In this work, bootstrapping of OpenFlow networks is performed by using
existing auto-configuration mechanisms such as DHCP. However, with the recent
addition of OF-config to the OpenFlow architecture, there is an additional interface
available, dedicated for configuration tasks. OF-config is based on NETCONF
(network configuration protocol) [10], a transactional protocol that uses remote
procedure calls on top of a secure transport channel to manage configurations on
remote devices. Hence, in future work we will use OF-config, and will compare it
with DHCP for auto-configuration of OpenFlow switches.

There are two topics that can enhance the work performed in this paper:
(1) consideration of multi-controller networks, and (2) failure recovery in the
in-band case of OpenFlow networks. In [11] [12], we performed a failure recovery
experiment for the in-band case of an OpenFlow network, and achieved failure
recovery within a reasonable amount time.

Acknowledgment

The research leading to these results has received funding from the EU
FP7 programme under grant agreement no 258457 (SPARC) and no 258365
(OFELIA).

186 APPENDIX A

References
[1] N. McKeown et al., Openflow: Enabling innovation in campus networks,

ACM Computer Communication Review, 2008.

[2] OF-Config [Online]. Available: https://www.opennetworking.org/standards/of-config.

[3] S. Alexander et al., DHCP Options and BOOTP Vendor Extensions, RFC
2132, 1997.

[4] IEEE standard 802.1AB [Online]. Available: http://standards.ieee.org/
getieee802/download/802.1AB-2009.pdf.

[5] OpenFlow Switch Specification: Version 1.0.0 (Wire Protocol 0x01)[Online].
Available: www.openflow.org/documents/openflow-spec-v1.0.0.pdf.

[6] S. D. Maesschalck et al., Pan-European Optical Transport Networks: An
Availability-based Comparison, Photonic Network Communications, Vol. 5,
Issue 3, pp. 203-225, 2003.

[7] OpenFlow reference switch implementation [Online]. Available:
http://www.openflow.org/.

[8] Ericsson OpenFlow and NOX Controller Software [Online]. Available:
https://github.com/TrafficLab.

[9] V. Paxson et al., Computing TCP’s Retransmission Timer, RFC 2988, 2000.

[10] R. Enns et al., Network Configuration Protocol, RFC 6241, 2011.

[11] S. Sharma et al., Fast failure recovery for in-band OpenFlow networks,
DRCN, 2013.

[12] S. Sharma et al., A demonstration of automatic bootstrapping of resilient
OpenFlow networks, IFIP/IEEE Integrated Network Management Symposium
(IM), 2013.

B
Automatic configuration of routing

control platforms in OpenFlow
networks

In this appendix, automatic configuration of routing control platforms used in
Chapter 5 is presented.

? ? ?

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet,
and Piet Demeester

Published in ACM SIGCOMM Computer Communication Review, August
2013.

Abstract RouteFlow provides a way to run routing control platforms (e.g.
Quagga) in OpenFlow networks. One of the issues of RouteFlow is that an
administrator needs to devote a lot of time (typically 7 hours for 28 switches)
in manual configurations. We propose and demonstrate a framework that can
automatically configure RouteFlow. For this demonstration, we use an emulated
pan-European topology of 28 switches. In the demonstration, we stream a video
clip from a server to a remote client, and show that the video clip reaches at the
remote client within 4 minutes (including the configuration time). In addition,

188 APPENDIX B

we show automatic configuration of RouteFlow using a GUI (Graphical User
Interface).

B.1 Introduction

OpenFlow decouples control plane functionality from forwarding functionality of
switches, and embeds it into one or more servers called controllers. In OpenFlow
networks, RouteFlow [1] provides a way to run routing control platforms (e.g.
Quagga). It executes switches’ (OF-A, OF-B, OF-C and OF-D in Fig. B.1)
control logic through virtual machines (VM-A, VM-B, VM-C and VM-D in Fig.
B.1) which mirror a physical topology. Each virtual machine (VM) runs a routing
control platform (e.g., Quagga) and is dynamically interconnected with other VMs.

Figure B.1: RouteFlow Design

Currently, configurations of RouteFlow are not automatic. Before running
RouteFlow, an administrator needs to devote a lot of time in configurations: (1)
creating VMs, (2) creating mapping between a VM and an OpenFlow switch, (3)
creating mapping between VM interfaces and switch interfaces, and (4) writing
routing configuration files (e.g., ospf.conf, zebra.conf) for each VM. For a large
topology (typically for 1000 switches), it may take many days to configure
RouteFlow.

We propose a framework to automatically configure RouteFlow. In our
framework, we use an additional controller which runs a topology discovery
module [3] to know network configurations. The network configurations are
then sent to RouteFlow using configuration messages. Using these messages,
RouteFlow configures itself.

For this demonstration, we use an emulated pan-European topology of 28

AUTOMATIC CONFIGURATIONS OF ROUTEFLOW 189

switches. In the demonstration, we stream a video clip from a server to a
remote client. This video clip reaches at the remote client within 4 minutes
(including the configuration time). This is quite optimal compared to the time
consumed in manual configurations. In addition, we show automatic configuration
of RouteFlow by showing configurations of VMs in a GUI.

B.2 Automatic configuration of RouteFlow

In this section, we introduce our framework and present the results of the
experiments performed on the OFELIA testbed [2].

Figure B.2: Framework for automatic configuration of Routeflow

Fig. B.2 shows five different components of the proposed framework: (1)
RF-controller, which runs RouteFlow without any manual configuration of VMs,
(2) Topology controller, which gathers topology information (switches and links
information) by sending probe messages in the physical topology [3], and contains
a very small part of configurations from the administrator (e.g., a range of IP
addresses for the virtual environment), (3) RPC (remote procedural call) client,
which collects configuration information from the topology controller, and sends
it to a server called RPC server, (4) RPC server, which resides in the RF-controller
and configures RouteFlow on reception of configuration messages from the RPC
client, (5) FlowVisor, which acts as a proxy server between a switch and controllers
(the topology controller and the RF-controller in our framework).

In our framework, we used different controllers (e.g., topology controller) for
gathering topology information and running RouteFlow. This is done to share the
load of automatic configuration of RouteFlow.

190 APPENDIX B

At the initial stage, the RF-controller does not have any configurations i.e.
there are no virtual machine to run Quagga. On detection of a new switch, the
topology controller sends a configuration message to the RPC client, which then
forwards it to the RPC server. This configuration message contains the ID of the
switch and the number of switch ports. Upon receiving of the message, the RPC
server creates a VM with an ID identical to the switch ID and the number of ports
equivalent to the switch ports.

On detection of a new link, the topology controller computes unique IP
addresses (from the range of IP addresses) for the corresponding VM interfaces,
and sends this information to the RPC server through the RPC client. The RPC
server then configures IP addresses of the VM interfaces.

Additionally, the RPC server writes routing configuration files (e.g. ospf.conf,
zebra.conf, bgp.conf) using the information present in the configuration message
sent by the RPC client.

B.3 Results of automatic configuration experiments

We perform experiments to automatically configure RouteFlow that uses OSPF
(Open Shortest Path First) as a routing protocol. The experiments are performed on
ring topologies with different number of switches. These topologies are generated
on a node of the OFELIA testbed by using Linux processes in different network
namespaces. In each Linux process, we run Open vSwitch 1.4.1 implementation
[4]. Separate nodes of the testbed are used to run FlowVisor, the topology
controller and the RF-controller.

Figure B.3: Configuration Time

Fig. B.3 shows the time of automatic and manual configurations of RouteFlow.

AUTOMATIC CONFIGURATIONS OF ROUTEFLOW 191

We calculate the time in manual configurations based on personal experience.
In manual configurations, we assume that the administrator takes 5 minutes in
creating a VM (writing VM configurations, installing Linux distributions and
routing packages like Quagga), 2 minutes in creating mapping between switch
interfaces and VM interfaces, and 8 minutes in writing routing configurations for
a VM. The figure shows that there is a large difference between automatic and
manual configurations of RouteFlow.

B.4 Demonstration setup

We demonstrate the proposed framework to automatically configure RouteFlow
in OpenFlow networks. For the demonstration, we connect two laptops using an
Ethernet cable. The first laptop contains the RF-controller, the RPC server, the
RPC client, the topology controller and the FlowVisor. The second laptop contains
an emulated OpenFlow network topology, which is a pan European topology [5]
consisting of 28 nodes. The clients and servers are connected with the nodes of
this topology.

In the demonstration, we show automatic configuration of RouteFlow by
showing switches with red and green colors in a GUI. The color of a switch
remains red until it is configured by the RPC server. Otherwise, it changes to
green. Note that a switch is considered as configured when it has a corresponding
VM.

At the start of the experiment, we stream a video clip from a server to a remote
client. At this point, there is no virtual machine present in the RF-controller.
However, thanks to the proposed framework, the VMs are created and the routing
protocol is enabled within a very short time, and the video clip reaches (after
around 4 minutes) at the remote client.

Acknowledgment

The research leading to these results has received funding from the EU FP7
programme under grant agreement no 317576 (CityFlow) and no 258365
(OFELIA).

References

[1] C. E. Rothenberg et al., Revisiting Routing Control Platforms with the Eyes
and Muscles of Software Defined Networking, HotSDN, pp. 13–18, 2012.

[2] OFELIA Testbed [Online]. Available: http://www.fp7-ofelia.eu/.

192 APPENDIX B

[3] Topology Discovery module [Online]. Available: https://github.com/noxrepo/
nox-classic/wiki/Discovery.

[4] Open vSwitch [Online]. Available: http://openvswitch.org/.

[5] S. D. Maesschalck et al., Pan-European optical transport networks: an
availability-based comparison, Photonic Network Communications, Vol. 5(3),
pp. 203-225, 2003.

C
Demonstrating resilient quality of

service in Software Defined
Networking

In this Appendix, a resilient quality of service framework proposed for OpenFlow
is presented. This framework is explained briefly in Chapter 5.

? ? ?

Sachin Sharma, Dimitri Staessens, Didier Colle, Mario Pickavet,
and Piet Demeester

Published in IEEE INFOCOM, August 2014.

Abstract Software defined Networking (SDN) such as Open-Flow decouples the
control plane from forwarding devices and embeds it into one or more external
entities called controllers. We implemented a framework in OpenFlow through
which business customers receive higher Quality of Service (QoS) than best-effort
customers in all conditions (e.g. failure conditions). In the demonstration, we
stream video clips (business and best-effort customer’s traffic) through an emulated
OpenFlow topology. During the demonstration, we trigger a failure in the paths
of video clips and show an effectively higher QoS for business customers when
compared against best-effort customers. This is demonstrated by simply watching
the video clips at the receiver.

194 APPENDIX C

C.1 Introduction

Nowadays, providing users with a guaranteed Quality of Service (QoS), meeting
the service level agreements, is of paramount importance. However, implementing
such a QoS system is challenging in the current Internet. This is because in the
current Internet, each forwarding device runs its own control plane software to
make the forwarding decisions, lacking a broader picture of network resources,
and there is no standard protocol available to configure QoS parameters in the
forwarding devices. In this environment, a QoS provider (e.g., bandwidth broker
in a single autonomous system) uses vendor-specific protocols to configure QoS
parameters. However, not all forwarding devices support all of these protocols.

The Software Defined Networking (SDN) approach, such as OpenFlow [1], is
one of the emerging Future Internet technologies in which control plane software
is removed from all forwarding devices (switches or routers) of a network and is
embedded into one or more external entities called controllers. In OpenFlow, the
available network resources can be known by simply requesting the controller and
in addition, there are standard protocols (OpenFlow configuration protocols [1, 2])
available to configure QoS parameters.

We implemented a QoS framework in OpenFlow, which divides different types
of traffic (business and best-effort traffic) into different flows (services), configures
priority queues, and redirects different flows to a suitable priority queue. Upon a
failure, our framework reconfigures the network and provides high QoS to the
business customers. In future versions of OpenFlow, namely since version 1.3,
flow-related meters can also be used in this framework.

In the demonstration, we stream video clips (business and best-effort traffic) in
an emulated OpenFlow pan-European topology, and show that business customers
achieve high quality of service than best-effort customers using our framework.
In addition, during the demonstration, we trigger a failure in the paths of video
clips and show an effectively higher QoS for business customers as compared to
best-effort customers.

C.2 Resilient QoS framework for OpenFlow

In our framework, we use the OpenFlow protocol together with the OVSDB
(Open vSwitch Database Management Protocol) configuration protocol [2] to
provide high QoS. The OpenFlow protocol is used to divide different types of
traffic into different flows and to redirect these flows through a suitable priority
queue. The configuration protocol is used to configure suitable priority queues in
the OpenFlow routers (or switches). Both of these protocols are used between
the controller and the OpenFlow switches. As the current controllers such as
Floodlight do not support the OVSDB protocol, the Floodlight controller is

RESILIENT QUALITY OF SERVICE 195

extended to support this feature. In addition, for communication with a QoS
provider, we use the Northbound API (Application Program Interface) of the
controller and for routing, we use a standard routing protocol (OSPF, Open
Shortest Path First). Furthermore, for running OSPF in OpenFlow, we rely on
our previously presented framework [3] for RouteFlow [4].

Starting on an OpenFlow router, three queues are configured on each port of
the OpenFlow router. The first queue has the highest priority and therefore, traffic
from this queue is forwarded first, then from the second queue, and so on. The
first queue is configured to traverse control traffic, the second queue is configured
to traverse business traffic, and the third queue is configured to traverse best-effort
traffic. The traffic is called business traffic, if the TOS (Type of Service) field of
the traffic is enabled. The traffic is called best-effort traffic, if the TOS field is not
enabled. The edge OpenFlow router enables the TOS field of business traffic.

When the controller, running the RouteFlow framework, discovers a
new routing entry for an OpenFlow Router, the controller establishes two
corresponding Flow Entries on the router. With the first flow entry, business traffic
(TOS field enabled) is traversed through the second queue (configured above),
and with the second flow entry, best-effort traffic (TOS field disabled) is traversed
through the third queue (configured above).

When a QoS provider receives a request to reserve a bandwidth from a
business customer, a confirmation regarding the availability of network resources
is performed through the NorthBound API of the controller. If the resources are
available on the path retrieved by OSPF, a rate limiter queue (Q) having the same
priority as the second queue is configured on the edge router. Moreover, in order to
enable the TOS field of business traffic and to redirect this traffic to the rate limiter
queue, a forwarding entry is established on the edge router.

Upon a failure, the flow entries on the affected paths are re-established and the
edge router reconfigures its rate limiter queues appropriately, along the available
alternative path.

C.3 Results and discussions

In order to assess the described framework, experiments were performed on the
OFELIA testbed facility provided by iMinds [5]. Fig. C.1A represents an emulated
pan-European topology. Each switch in the topology also makes an out-of-band
connection with a single controller. For emulation purposes, Open vSwitch was
used as OpenFlow software and RouteFlow with our QoS framework was used as
controller software. The bandwidth capacity of each link in the topology was
limited to 50 Mb/s. In the experiments, each server sent both business traffic
(30%) and best-effort traffic (70%) to all other servers in the topology using DITG
(Distributed Internet Traffic Generator) [6]. In order to assess the framework, the

196 APPENDIX C

London
Paris

Lyon

Amsterdam

Brussels

Frankfurt

Hamburg

Strasbourg

Zurich

First

Ethernet

cable

OpenFlow

Switch

Client or Server

(A) (B)

Video Clips

First

Laptop

Second

Ethernet

Berlin

Vienna

Prague

Zagreb

Rome

Milan

Munich

Controller
cable

Second

Laptop

Ethernet

cable
Working path of

Video clips

Figure C.1: (A) Emulated pan-European topology (B) Portable testbed

rate of both traffic sources, following a Poisson distribution, was varied and one
of the links was torn down. Afterwards, the effects on QoS of these operations
on business and best-effort traffic were thoroughly analyzed. Regarding failure
recovery, we do not focus on providing fast-failure recovery [7] but instead,
we focus on the scenarios in which high-priority traffic always gets a higher
precedence than best-effort traffic.

Three distinct scenarios of business traffic were analyzed: low data-rate (less
than 2.4 Mb/s of business traffic from each server to other server); medium
data-rate (between 2.4 and 7 Mb/s); and high data-rate (more than 7 Mb/s). For the
low data-rate scenarios, neither business nor best-effort customer traffic received
the degraded service. This was because the failure-free path (before and after the
link down) had enough bandwidth to accommodate both business customer and
best-effort traffic. In the medium rate scenarios, only best-effort traffic received
the degraded service. This was because the failure-free path (before and after the
link down) had only enough bandwidth for business traffic. As a result, some of
the best-effort traffic had to drop in order to meet the requirements of the business
traffic. Finally, for the high data rate scenarios, business traffic had also received
the degraded service after the link down. This was because in this scenario, some
of links in the failure-free path after the link down had not the enough bandwidth
to accommodate all the business customer’s traffic. Therefore, some of business
traffic was also dropped. In these links, we observed about 0 Mb/s best-effort

RESILIENT QUALITY OF SERVICE 197

traffic.

C.4 Demonstration on portable testbed

With the portable testbed (two laptops, Fig. C.1), we show the working of our
QoS framework using an emulated pan-European topology. With the Mininet
software [8], the half of the topology is emulated on the first laptop and the other
half is emulated on the second laptop. The connection between the emulated
topologies on different laptops is done using two Ethernet cables, shown in the
figure. The controller, which runs our framework, is located on the second laptop.
The controller controls all the switches of the topologies including the switches on
the first laptop by the second Ethernet cable.

The link and traffic characteristics in the demonstration is replicated from the
scenarios presented in the previous subsection. Hence, DITG is used to send
business and best-effort traffic from each server. In addition, the server connected
to Paris (which is present on the first laptop) streams two video clips – one as
business traffic and the other as best-effort traffic – to the server connected to
Rome (which is present on the second laptop). These video clips follow the path
through the first Ethernet cable of the laptops.

In the demonstration, we show all the three scenarios presented in the previous
subsection by simply watching the video clips of business and best-effort traffic
on the second laptop. These three scenarios are shown by varying business
and best-effort traffic (DITG traffic) from each server of the topology. For a
failure condition of these scenarios, during the demonstration, we remove the first
Ethernet cable of the laptops (the working path of video clips) and show switching
of the video clips from the first Ethernet cable to the second Ethernet cable. After
the failure, we show that business traffic always gets better QoS than best-effort
traffic.

Acknowledgment

This research has received funding from the EU FP7 under agreement no 317576
(CityFlow), and no 258365 (OFELIA).

References

[1] OpenFlow and OF-ConFig: https://www.opennetworking.org/.

[2] B. Pfaff et al., The Open vSwitch Database Management Protocol, IETF, 2013
(http://tools.ietf.org/html/draft-pfaff-ovsdb-proto-04).

198 APPENDIX C

[3] S. Sharma et al., Automatic configuration of routing control platforms in Open-
Flow networks, ACM SIGCOMM, Vol. 43(4), pp. 491-492, 2013.

[4] RouteFlow code [Online]. Available: https://sites.google.com/site/routeflow/.

[5] OFELIA testbed [Online]. Available: Available: http://www.fp7-ofelia.eu/.

[6] A. Botta et al., A tool for the generation of realistic network workload for
emerging networking scenarios, Computer Networks, 2012.

[7] S. Sharma et al., OpenFlow: Meeting carrier-grade recovery requirements,
Computer Communications, Vol. 36(6), pp. 656-665, 2013.

[8] Mininet Software [Online]. Available: http://mininet.org/.

	Front cover
	Title page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	Background
	Layered model
	Network elements
	Addressing schemes
	Software switches/routers vs. hardware switches/routers
	Control plane and data Plane
	Packet-flow (or simply flow)
	Overview of the Internet Infrastructure

	Problems of the Internet
	The road towards SDN (Software Defined Networking)
	Early SDN initiatives
	Recent SDN initiatives

	Software Defined Networking using OpenFlow
	Network design for OpenFlow
	Introduction to OpenFlow and its functionalities
	Extensions in different OpenFlow versions
	OpenFlow capable hardware switches
	OpenFlow capable soft switches
	OpenFlow controllers

	Research challenges and possible solutions
	Fast failure recovery
	Verification of data plane functionality
	Bootstrapping
	Quality of Service
	Loss-free packet switching

	Research contributions
	Publications
	Publications in international journals (SCI)
	Publications in international conferences (SCI)
	Publications in other international conferences
	Publications in IETF Drafts
	Other publications
	Publications in national conferences

	References

	Fast failure recovery techniques
	Introduction
	Network resiliency
	Resilience for an OpenFlow Network

	Emulation environment
	Emulation testbed and topologies
	Emulation methodology

	Results
	Analytical model and its parameters
	Emulation results

	Additional considerations
	Memory size requirement in protection
	Reliability of the control plane

	Related work
	Conclusions
	References

	Verification techniques
	Introduction
	Errors in flow-matching functionality
	Software or hardware bugs in flow matching

	Verification mechanism
	Flow duplication step
	Test packet generation step
	Matching error identification
	Binary-search method
	Packet-reception method

	Out-of-band or in-band verification
	OpenFlow session path selection in in-band networks
	 VM placement

	Emulation
	Controller-induced verification experiment
	VM-induced verification experiment
	Validation on multiple topologies

	Results
	Controller-induced verification experiment
	VM-induced (in-band) verification experiment
	Validation on multiple topologies

	Conclusions
	References

	Non-production to production networks techniques
	Introduction
	Functionalities for OpenFlow
	In-band control functionality
	Queuing functionality
	Failure recovery functionality

	Practical challenges
	Evolution of OpenFlow specifications
	Availability of required switch components
	Availability of required controller components

	Experimental studies
	In-band control experiments
	With queuing and without queuing experiments
	Failure recovery experiments

	Conclusion and future work
	References

	Quality of Service techniques
	Introduction
	QoS model for the Internet
	VPS engine overview
	Components of the proposed model
	Operational model for the Internet

	Reference scenarios for experimentation
	Experimentation
	 Software used for experimentation
	Topology setup on the OFELIA testbed
	Topology setup on the iMinds island
	Topology setup in multiple islands

	Scale of test platform
	Implementation of test harness

	Results
	Data traffic experiments
	Control traffic experiments
	Experiment on the iMinds testbed
	Experiment on the Amazon cloud facility

	Failure recovery experiments
	Multiple island Experiment

	Conclusions
	References

	Loss-less packet-switching techniques
	Introduction
	Packet-loss in packet-switched networks
	Inter-Burst Segregation Protocol (IBSP)
	Our approach
	Justification of using three buffers
	Solutions to the issues of our approach
	Delay and jitter using IBSP

	Experimental study
	Simulations
	DPDK emulations

	Conclusions
	References

	Concluding remarks
	Future directions - deploying SDN into operational networks
	Transition from legacy networks to SDN
	Performance concerns
	Support for Network Function Virtualization
	Troubleshooting
	Security concerns

	References

	Automatic Bootstrapping
	Introduction
	Bootstrapping of OpenFlow networks
	Overview of our bootstrapping approach
	OpenFlow mechanisms and messages in bootstrapping
	Detailed bootstrapping
	Bootstrapping of the first switch
	Bootstrapping of other switches

	Emulation environment and results
	Conclusions
	References

	Automatic configurations of RouteFlow
	Introduction
	Automatic configuration of RouteFlow
	Results of automatic configuration experiments
	Demonstration setup
	References

	Resilient Quality of Service
	Introduction
	Resilient QoS framework for OpenFlow
	Results and discussions
	Demonstration on portable testbed
	References

