9 research outputs found

    Abstract Canonical Inference

    Full text link
    An abstract framework of canonical inference is used to explore how different proof orderings induce different variants of saturation and completeness. Notions like completion, paramodulation, saturation, redundancy elimination, and rewrite-system reduction are connected to proof orderings. Fairness of deductive mechanisms is defined in terms of proof orderings, distinguishing between (ordinary) "fairness," which yields completeness, and "uniform fairness," which yields saturation.Comment: 28 pages, no figures, to appear in ACM Trans. on Computational Logi

    Computing a Gröbner basis of a polynomial ideal over a Euclidean domain

    Get PDF
    AbstractAn algorithm for computing a Gröbner basis of a polynomial ideal over a Euclidean domain is presented. The algorithm takes an ideal specified by a finite set of polynomials as its input; it produces another finite basis of the same ideal with the properties that using this basis, every polynomial in the ideal reduces to 0 and every polynomial in the polynomial ring reduces to a unique normal form. The algorithm is an extension of Buchberger's algorithms for computing Gröbner bases of polynomial ideals over an arbitrary field and over the integers as well as our algorithms for computing Gröbner bases of polynomial ideals over the integers and the Gaussian integers. The algorithm is simpler than other algorithms for polynomial ideals over a Euclidean domain reported in the literature; it is based on a natural way of simplifying polynomials by another polynomial using Euclid's division algorithm on the coefficients in polynomials. The algorithm is illustrated by showing how to compute Gröbner bases for polynomial ideals over the integers, the Gaussian integers as well as over algebraic integers in quadratic number fields admitting a division algorithm. A general theorem exhibiting the uniqueness of a reduced Gröbner basis of an ideal, determined by an admissible ordering on terms (power products) and other conditions, is discussed

    Higher-dimensional normalisation strategies for acyclicity

    Get PDF
    We introduce acyclic polygraphs, a notion of complete categorical cellular model for (small) categories, containing generators, relations and higher-dimensional globular syzygies. We give a rewriting method to construct explicit acyclic polygraphs from convergent presentations. For that, we introduce higher-dimensional normalisation strategies, defined as homotopically coherent ways to relate each cell of a polygraph to its normal form, then we prove that acyclicity is equivalent to the existence of a normalisation strategy. Using acyclic polygraphs, we define a higher-dimensional homotopical finiteness condition for higher categories which extends Squier's finite derivation type for monoids. We relate this homotopical property to a new homological finiteness condition that we introduce here.Comment: Final versio

    Rigid E-unification: NP-completeness and applications to equational matings

    Get PDF
    AbstractRigid E-unification is a restricted kind of unification modulo equational theories, or E-unification, that arises naturally in extending Andrew's theorem proving method of matings to first-order languages with equality. This extension was first presented by J. H. Gallier, S. Raatz, and W. Snyder, who conjectured that rigid E-unification is decidable. In this paper, it is shown that rigid E-unification is NP-complete and that finite complete sets of rigid E-unifiers always exist. As a consequence, deciding whether a family of mated sets is an equational mating is an NP-complete problem. Some implications of this result regarding the complexity of theorem proving in first-order logic with equality are also discussed

    Rigid E-Unification: NP-Completeness and Applications to Equational Matings

    Get PDF
    Rigid E-unification is a restricted kind of unification modulo equational theories, or E-unification, that arises naturally in extending Andrews\u27s theorem proving method of matings to first-order languages with equality. This extension was first presented in Gallier, Raatz, and Snyder, where it was conjectured that rigid E-unification is decidable. In this paper, it is shown that rigid E-unification is NP-complete and that finite complete sets of rigid E-unifiers always exist. As a consequence, deciding whether a family of mated sets is an equational mating is an NP-complete problem. Some implications of this result regarding the complexity of theorem proving in first-order logic with equality are also discussed

    Theorem Proving Using Equational Matings and Rigid E-Unifications

    Get PDF
    In this paper, it is shown that the method of matings due to Andrews and Bibel can be extended to (first-order) languages with equality. A decidable version of E-unification called rigid E-unification is introduced, and it is shown that the method of equational matings remains complete when used in conjunction with rigid E-unification. Checking that a family of mated sets is an equational mating is equivalent to the following restricted kind of E-unification. Problem: Given →/E = {Ei | 1 ≤ i ≤ n} a family of n finite sets of equations and S = {〈ui, vi〉 | 1 ≤ i ≤ n} a set of n pairs of terms, is there a substitution θ such that, treating each set θ(Ei) as a set of ground equations (i.e. holding the variables in θ(Ei) rigid ), θ(ui) and θ(vi) are provably equal from θ(Ei) for i = 1, ... ,n? Equivalently, is there a substitution θ such that θ(ui) and θ(vi) can be shown congruent from θ(Ei) by the congruence closure method for i 1, ... , n? A substitution θ solving the above problem is called a rigid →/E-unifier of S, and a pair (→/E, S) such that S has some rigid →/E-unifier is called an equational premating. It is shown that deciding whether a pair 〈→/E, S〉 is an equational premating is an NP-complete problem

    Term rewriting systems

    Get PDF
    corecore