1,044 research outputs found

    A Low-Cost Tele-Presence Wheelchair System

    Full text link
    This paper presents the architecture and implementation of a tele-presence wheelchair system based on tele-presence robot, intelligent wheelchair, and touch screen technologies. The tele-presence wheelchair system consists of a commercial electric wheelchair, an add-on tele-presence interaction module, and a touchable live video image based user interface (called TIUI). The tele-presence interaction module is used to provide video-chatting for an elderly or disabled person with the family members or caregivers, and also captures the live video of an environment for tele-operation and semi-autonomous navigation. The user interface developed in our lab allows an operator to access the system anywhere and directly touch the live video image of the wheelchair to push it as if he/she did it in the presence. This paper also discusses the evaluation of the user experience

    Electric Wheelchair Hybrid Operating System Coordinated with Working Range of a Robotic Arm

    Get PDF
    Electric wheelchair-mounted robotic arms can help patients with disabilities to perform their activities in daily living (ADL). Joysticks or keypads are commonly used as the operating interface of Wheelchair-mounted robotic arms. Under different scenarios, some patients with upper limb disabilities such as finger contracture cannot operate such interfaces smoothly. Recently, manual interfaces for different symptoms to operate the wheelchair-mounted robotic arms are being developed. However, the stop the wheelchairs in an appropriate position for the robotic arm grasping task is still not easy. To reduce the individual’s burden in operating wheelchair in narrow spaces and to ensure that the chair always stops within the working range of a robotic arm, we propose here an operating system for an electric wheelchair that can automatically drive itself to within the working range of a robotic arm by capturing the position of an AR marker via a chair-mounted camera. Meanwhile, the system includes an error correction model to correct the wheelchair’s moving error. Finally, we demonstrate the effectiveness of the proposed system by running the wheelchair and simulating the robotic arm through several courses

    The Remote Controllable Electric Wheelchair System combined Human and Machine Intelligence for Caregivers and Care Receivers

    Get PDF
    Thesis (Master of Science in Informatics)--University of Tsukuba, no. 41280, 2019.3.2

    A reconfigurable wheelchair for mobility and rehabilitation:Design and development

    Get PDF
    This paper presents the design and development of a prototype of a reconfigurable wheelchair for rehabilitation and self-assistance to fit the size of a seven years old child (average 35 kg weight). Though the developed prototype is developed at this stage to fit a child, it can be resized, after considering variations in weight and size, to fit an older adult. The developed prototype has a mechanism that enables the user to transform from sit-to-stand (STS) posture and vice versa. With the help of the developed wheelchair, the user will also be able to adjust the posture of his upper body using an adjustable back support using two linear actuators. This configuration will allow the user to use the wheelchair as a mobility device as well as for rehabilitation purposes without the need of external support. The availability of STS and back adjustment mechanisms will allow the user to do regular exercising which will enhance blood circulation as sitting for long periods inflates lower limbs disability. The proposed configuration will help in enhancing the functional capabilities of end-users allowing for increased independence and ultimately quality of life

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Wheelchair control using EEG signal classification

    Get PDF
    Tato diplomová práce představuje koncept elektrického invalidního vozíku ovládaného lidskou myslí. Tento koncept je určen pro osoby, které elektrický invalidní vozík nemohou ovládat klasickými způsoby, jakým je například joystick. V práci jsou popsány čtyři hlavní komponenty konceptu: elektroencefalograf, brain-computer interface (rozhraní mozek-počítač), systém sdílené kontroly a samotný elektrický invalidní vozík. V textu je představena použitá metodologie a výsledky provedených experimentů. V závěru jsou nastíněna doporučení pro budoucí vývoj.This diploma thesis presents the concept of mind-controlled electric wheelchair designed for people who are not able to use other interfaces such as hand joystick. Four main components of concept are described: electroencephalography, brain-computer interface, shared control and the electric wheelchair. In the text used methodology is described and results of conducted experiments are presented. In conclusion suggestions for future development are outlined.

    Master of Science

    Get PDF
    thesisIncreased demand for powered wheelchairs and their inherent mobility limitations have prompted the development of omnidirectional wheelchairs. These wheelchairs provide improved mobility in confined spaces, but can be more difficult to control and impact the ability of the user to embody the wheelchair. We hypothesize that control and embodiment of omnidirectional wheelchairs can be improved by providing intuitive control with three degree of freedom (3-DOF) haptic feedback that directly corresponds to the degrees of freedom of an omnidirectional wheelchair. This thesis introduces a novel 3-DOF Haptic Joystick designed for the purpose of controlling omnidirectional wheelchairs. When coupled with range finders, it is able to provide the user with feedback that improves the operator's awareness of the area surrounding the vehicle and assists the driver in obstacle avoidance. The haptic controller design and a stability analysis of the coupled wheelchair joystick systems are presented. Experimental results from the coupled systems validate the ability of the controller to influence the trajectory of the wheelchair and assist in obstacle avoidance

    Intelligent wheelchair simulation

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores - Major Automação. Faculdade de Engenharia. Universidade do Porto. 200
    corecore