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Abstract 

Today‟s society is more and more concerned with the integration of disabled people in 

the community. Wheelchair patients are an example of a group that still faces segregation, 

mainly due to their dependence on other people for a large part of their daily routines. With 

the increase of wheelchair users and the disparity of afflictions that impose such a condition, 

scientific research in the area has become more pertinent and significant. Some handicaps 

that affect arm movements, motor coordination or sight, make it impossible to drive a 

common powered wheelchair. Patients who have such physical disabilities will benefit from 

intelligent wheelchair projects, which can give some independence back to them. 

Numerous intelligent wheelchair prototypes are in development worldwide and several 

hardware platforms have been developed. As such, the challenge now is to develop the 

control algorithms, in particular complex high level control strategies. Direct implementation 

of new software modifications in real wheelchairs is not viable due to financial costs and, 

more importantly, to the involvement of human risk. The solution is to use simulation for the 

control model validation thus bringing great savings both in time and money to algorithm 

development, testing and validation. 

This dissertation describes the development of an intelligent wheelchair simulator. It 

starts by going through the description of the intelligent wheelchair concept and the reasons 

of its increasing importance. It justifies the need for simulation during the development 

process, all the way from initial testing until the final implementation. The document 

continues with the description of the intelligent wheelchair project - Intelwheels – under 

development at the Artificial Intelligence and Computer Science Lab of the University of 

Porto that directly led to this simulation development. 

This document also presents the state of the art in robotic simulation. Special attention is 

given to Ciber-Rato, a simulator developed at University of Aveiro for a robotics competition, 

which was the base for the simulator developed during this project, called Intelwheels 

Simulator. It then goes through the architecture and the implemented algorithms of the 

Intellwheels simulator itself. The developed robotic controlling agents are presented, with 
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special focus of the modifications made to the Intellwheels Control Software, previously 

developed. Finally it goes through the graphic application for realistic simulation viewing and 

discusses the results of real, virtual and mixed reality tests that prove the capabilities and 

advantages of the simulator developed and its importance in IW development.  
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Resumo 

Cada vez é maior a preocupação da sociedade com a integração na comunidade de 

pessoas portadoras de deficiência.  Os utilizadores de cadeiras de rodas são exemplo de um 

grupo social que ainda se defronta com segregação, devida, em grande parte, à sua 

dependência relativamente a inúmeras tarefas quotidianas.  A investigação científica nesta 

área ganhou importancia e significado com o aumento do número de pessoas com necessidade 

de utilizar cadeira de rodas.  Deficiências tais como as que afectam os movimentos dos 

braços, a coordenção motora ou até a visão tornam impossível a condução de uma cadeira de 

rodas electrica com um joystick convencional. As pessoas que sofrem de tais incapacidades 

irão certamente beneficiar com  projectos de desenvolvimento de cadeiras de rodas 

“inteligentes”, capazes de lhes restituir alguma independência. 

Numerosos protótipos de cadeiras de rodas inteligentes são alvo de desenvolvimento em 

todo os mundo, tal como o têm sido várias plataformas de hardware.  Assim, o desafio centra-

se agora no desenvolvimento de algoritmos de controlo, particularmente estratégias de 

controlo de alto nível. A aplicação directa, em cadeiras de rodas reais, de novos algoritmos 

não é viável não só devido a  razões financeiras, mas, sobretudo, pelo risco de segurança 

pessoal associado. A solução surge com o recurso à simulação para a validação dos modelos, 

possibilitando significativas poupanças tanto em tempo como em recursos económicos no 

desenvolvimento, teste e validação do software. 

Esta dissertação procura descrever o desenvolvimento de um simulador de cadeiras de 

rodas inteligentes, começando pela descrição do conceito de cadeira de rodas inteligente 

assim como pelas razões que justificam a sua importância crescente. É justificada a 

necessidade de simulação durante todo o processo de desenvolvimento, desde o primeiro 

teste de baixo-nivel até à sua implementação final. O documento descreve ainda o projecto 

de cadeira de rodas inteligente que conduziu directamente ao desenvolvimento desta 

simulação – Intelwheels – em desenvolvimento no Laboratório de Inteligência Artificial e 

Ciência de Computadores (LIACC), na Universidade do Porto. 

O documento descreve ainda o estado actual da simulação robótica, analisando a 

arquitectura e os algoritmos implementados.  Foi dada especial atenção ao Ciber-Rato, um 

simulador desenvolvido na Universidade de Aveiro destinado à competição robótica que 

esteve na base do designado Simulador Intelwheels desenvolvido neste projecto. São ainda 

apresentados os agentes de controlo robótico desenvolvidos, focando em particular as 

modificações introduzidas no sofware de Controlo Intelwheels, anteriormente desenvolvido no 

LIACC. Finalmente aborda a aplicação grafica desenvolvida destinada à visualização da 

simulação de uma forma realista. São apresentados os resultados de testes em ambientes 
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reais, virtuais e mistos que procuram mostrar as capacidades e vantagens do simulador 

desenvolvido assim como a sua importância no contexto do desenvolvimento de cadeiras de 

rodas inteligentes. 
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Chapter 1  

 

Introduction 

1.1 - Motivation 

Nowadays one can witness the increase of world population carrying some form of 

physical incapability, affecting locomotion. Based on World Health Organization (WHO) data, 

it is estimated that around 2% of world population (130 million people) live with physical 

handicaps[1][2]. This number is due to various reasons and it has been, in fact, growing. The 

aging of population due to life expectancy increase, environmental degradation and sub 

nutrition lead to the appearance of chronic diseases which, together with factors like traffic 

and work accidents, wars and congenital deficiencies, contribute to the increase of people 

with mobility difficulties[2][3]. 

With the objective of responding to numerous mobility problems, various intelligent 

wheelchair related projects have been created in the last years. They try not only to give 

mobility to handicapped people but, more importantly, they are aiming at doing it in an 

autonomous way, independent of third party help. Aside with other projects, the Artificial 

Intelligence and Computer Science Lab of the University of Porto (LIACC) is developing an 

Intelligent Wheelchair (IW) prototype[2]. Through hardware such as sensors, communication 

boards and simple human-chair interface devices, the IW is capable of understanding high 

level orders, such as going from a room to a toilet[4][5]. A complex system of navigation with 

trajectory planning algorithms, communication and interaction (with other IWs and other 

intelligent systems), make this IW a solution that will give patients high degrees of 

independence[6]. They will be able to so, even if their levels of disability are such that, in a 

common electrical wheelchair, would not be possible for them to correctly drive it with the 

joystick. 

The development of this IW project is in an advanced stage of development. Therefore, 

the challenge is now to test and validate the high level control solutions: tests to intelligence 
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and to reliability. In fact, testing new control algorithms in real systems is not viable due to 

low IWs‟ availability, time and space needed. Moreover, placing real IW prototypes in a real 

hospital situation would create risks for humans, which is not acceptable. 

Solving this problem involves the development of a simulation environment that will allow 

testing every aspect of a modification or an addition to the existing system, without 

submitting the real system resources to disturbances. The advantages of developing a 

simulation system for IWs and their surrounding environment are numerous when comparing 

to an immediate real implementation. Disposing of a large number of IWs, for collaborative 

algorithm testing, would incur in large associated costs while, on the other hand, simulating 

multiple IWs in a computer will not have any addition cost [7]. Through simulation it is 

possible to compress time, in the sense that viewing all the consequences of a modification in 

a fraction of the otherwise necessary real time. Error tracking is simplified: finding the “why” 

of a certain occurrence is possible through an isolation and detailed analysis of a specific 

event or period of time. Additionally, requirement specification is possible and more focused. 

For example, simulation can identify what will be the necessary resolution for a given sensor, 

so that the system will behave correctly. 

The IW project currently being developed in LIACC has the objective of being as modular 

as possible so that it can be adapted to any electric wheelchair, any type of sensors and 

motors. In order to continue this philosophy, the IW simulator should be no different. Apart 

from being a high level control algorithm test board, the simulator must be able to adapt to 

any type of sensors and hardware characteristics used in each chair.  

 

1.2 - Objectives 

This project will be based on the IW prototype developed at LIACC and on the “Ciber-

Rato” software, developed by University of Aveiro[8]. “Ciber-Rato” is a robotic simulator for 

a competition where the goal is to develop an agent which will control the simulated robot 

and guide it through a maze[9]. The agent must, through signals from the simulator (that 

represent sensor values), send power values to left and right motors of the simulated 

differential robot.  

Based on “Ciber-Rato”, the new intelligent wheelchair simulator must contain every 

functionality needed to test the LIACC‟s IW system. Therefore, the main objectives of this 

project are: 

 Development of a simulation server, based on “Ciber-Rato”, which is able to simulate 

the wheelchair‟s body, sensoring information and world map. The simulator should 

accept purely virtual wheelchair agents as well as real wheelchairs (allowing 

augmented reality mode). 
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 Development of a simulation viewer, adapted to IW requirements, such as the correct 

view of robot‟s body (allowing different body types and sizes) and “first person” 

viewing capabilities. 

 Adaptation of the wheelchair‟s control software to allow it to work as a purely virtual 

robotic agent (connecting only to the simulator), as a purely real wheelchair 

controller (connection only to the real wheelchair) or in an augmented reality mode 

(connecting to both the real wheelchair and the simulator). 

 

1.3 - Dissertation Structure 

This dissertation is organized in 8 chapters, the first of which is this introduction to the 

intelligent wheelchair simulation project. 

On the second chapter it is given an overview the LIACC‟s “Intellwheels” project. The 

motivation, vision, architecture and present stage of development are discussed. 

The third chapter will offer a vision on the main projects in robotic simulation, with 

emphasis on intelligent wheelchair simulation projects. It analyses the state-of-the-art on this 

topic and special attention is given to University of Aveiro‟s “Ciber-Rato”, thoroughly 

describing the simulator. 

On chapter four, it is presented the developed simulator, designated “IntellWheels 

Simulator”, in accordance to the main project‟s name. It starts by defining the software‟s 

architecture and continues with the explanation of the modifications to “Ciber-Rato” and the 

new implemented algorithms. 

The fifth chapter contains the work done on developing robot controlling agents that 

connect with the simulator. A robot represents any type of object, depending on the control 

it is applied. This chapter analyses the developed generic robotic agent and the door agent. It 

finishes by describing the applied modifications to the IntellWheels Controller software for 

added simulation functionalities, including communication requirements. 

Chapter six goes through the developed visualization agent for the simulation. The 

motivations for its development as well as the requirements of an intelligent wheelchair-

specific viewer are discussed. It also introduces the 2D and 3D drawing software and 

algorithms. 

The seventh chapter explains the methodology for the experimental tests. It expresses 

the results of both real and simulator tests for better comparison. It also demonstrates the 

simulation projects‟ functionalities with an augmented reality test. 

On the eighth and final chapter of this dissertation, conclusions on the entire simulation 

project are drawn with more detail on the final test results. To finalize, the chapter 

recommends possible paths for additional development. 
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Chapter 2  

Intellwheels Project 

The need for an intelligent wheelchair simulator has its origin in the intelligent 

wheelchair project, which is being developed in LIACC, at the Faculty of Engineering of 

University of Porto. Although there are more than 40 distinct IW related publications 

registered with IEEE since year 2000 [10], the Intellwheels Project aims to contribute to the 

advance in the field. Its main objective is to create a complete intelligent system with 

hardware and software that can be incorporated into any commercial electric wheelchair. In 

addition, the system is to be installed in such method that causes little, or none, visual or 

design impact, which otherwise would further discriminate their handicapped users. 

Moreover, it must contemplate every type of wheelchair user, from those with small 

locomotion disabilities to those with mental handicaps that prevent normal arm and hand 

movements. This is achieved through an advanced software control system that goes from 

simple shared control, where it “merely” guarantees that the user‟s manual control does not 

take him to dangerous situations (such as going through gaps on the ground, steps and 

collisions), to complex high lever orders made through voice recognition, path planning and 

autonomous driving and strategy definition for multiple high level goal achievements. 

2.1 – Architecture 

Intellwheels project‟s architecture is presented in Figure 2.1, where the different 

modules of the project are evident. The red square highlights the simulation module which 

was then main focus and the point of start for this dissertation. 
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Figure 2.1 - Intellwheels Project Architecture (from[2]) 

2.1.1 – Hardware 

The main hardware of any electric wheelchair are the motors and batteries, but the core 

of an IW are its sensors. It is through them that it can perceive the world and make intelligent 

decisions on the orders to give to the motors. Intellwheels‟ wheelchairs contain sonar and 

infra-red sensors for object distance detection and encoders on their motors for position 

calculation. Electronic acquisition plates are also installed for that is what permits remote 

actuation on the motors and sensor information gathering and sending for the control 

software. These plates connect to the computer hosting the control software through RS232. 

 

2.1.2 – Main Interface 

The main interface is where all the information is gathered. It is through it that all the 

other modules reach the actual wheelchair and, as such, it is responsible for handling all 

UDP/IP connections. Every detail of the configurations is dealt with in this main application. 

It displays relevant information in real time: sensor readings, speed, position, orientation, 

motor power and operational mode (real, augmented reality or simulated). Figure 2.2 displays 

the visual form of the module. 
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Figure 2.2 - Main Application (adapted from [1]) 

2.1.3 – Intelligence 

Intellwheels project has a multilevel control architecture [2], as illustrated in Figure 2.3. 

The lower levels - basic control - are handled by the main application itself, separating the 

higher levels – tactical 4th level and the strategy level - from the Intelligence module. 

 

 

Figure 2.3 - Intellwheels Control Architecture from [2]. 

The cognitive agent is responsible for high level decisions, such as continuous planning, 

runtime monitoring and cooperation with other intelligent agents. An example of the 4th level 

is the generation of path to achieve a specific location, though the application of A*1 

algorithm. Over this stage a strategic defining level sets the sequence for wheelchair 

objective (e.g. “pick up” patient from room 10 and take him to doctor office number 2). 

                                                 
1 A* is a path planning algorithm [6] [3], widely used in intelligent robotics. 
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The result of this module will be a series of low level instructions to be given to the 

wheelchair‟s motors through the main application, independently of details of how those 

orders are given. 

 

2.1.4 – Multimodal Interface 

Making the wheelchair‟s control correctly and fully understand the user‟s orders is 

essential, otherwise the control algorithms and intelligence could work against the patient 

instead of working for him. Simultaneously to the development of this dissertation, Marcio 

Sousa is developing a project designated “Multimodal Interface for an Intelligent 

Wheelchair”. This multimodal interface is where all the possible user inputs are handled and 

it has two main objectives: 

 Recognizing sequences of commands which represent specific high medium level 

orders. This functionality works in a very similar form to “combos” in computer 

games, where depending on the order of the buttons pressed, the arrow keys could 

originate different moves. 

 Creating the possibility of receiving those orders through as many different inputs as 

needed: voice recognition, face recognition, joystick or keyboard. 

 

2.1.5 – Simulator 

The simulation module was the main focus of this dissertation and a vital one on the 

Intellwheels project. 

This module creates a virtual world and its main objective is to test the control 

algorithms. In fact, using the real environment every time the control application is modified 

is not viable. On the other hand, it is not possible to validate a change without a form of 

testing it. The control application may connect to the simulator, instead of the real 

wheelchair, and all the consequences of a modification can be verified in a matter of 

seconds. 

However, the simulator‟s involvement in the IW project is even greater, as the notion of 

augmented reality is introduced. An interaction of real wheelchair with virtual ones sets the 

tone for a complete new range of possible testing. Large scale cooperative tests (intelligence 

module) are possible, no matter how little real IW prototypes are available (Figure 2.4). 
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Virtual sensor values 

 

Figure 2.4 - Augmented Reality Concept. 

The possibilities for a system where any object (even virtual, intelligent or static) can be 

placed for real testing are vast:  

 Obstacle avoiding. 

 Complex path planning.  

 Cooperation scenarios. 

A complete description of the simulator, its capabilities, algorithms and modes of 

operation are included further ahead, in Chapter 4 of this dissertation. 

2.2 – Development Status 

At the present stage, the Intellwheels project is in a midpoint state of development, 

which adds importance to the simulation project. The present stage requires intensive high 

level algorithm testing, to which the simulator brings faster, simpler and more focused 

verification methods. 

In terms of hardware implementation, two commercial electric wheelchairs have been 

modified and transformed into intelligent wheelchair prototypes. Both of them are equipped 

sonar and IR sensors for proximity calculation, cameras for ground marking orientation, 

encoders for speed calculation and position determination and communication plates for 

computer and software control connection. 

Low level controlling is fully developed [1], as basic functions like straight driving, turning 

and going to a point in the Cartesian system were already implemented with success. Medium 

and high level algorithms, such as automatic object avoidance and path planning, are well 

advanced as successful tests have been registered. Strategy defining procedures are in design 

status. Despite this, the basis for implementation is completely developed and a fully 

functioning intelligent prototype is in the verge of achievement. 

The multimodal interface was being developed at the same time as this simulation project 

itself. Notwithstanding, apart from common powered wheelchair joystick, the IW is already 

Simulator

Multiple Virtual 
Wheelchair Controller

Real Wheelchair 
Control Agent

Chair position and orientaion 

Motor Power Orders 

Virtual Sensor Perception 
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able to accept direct commands (forward, backward and turning) through the WII and 

Playstation remote controllers and a virtual keyboard. The camera for face recognition was 

developed apart from the Intellwheels project even though it is fully operative, its 

integration with the current control application is not yet complete. 

The Simulation module was completely achieved and it is now possible to fully test 

control algorithms in any type of scenario, with as many virtual or real IW as intended. 

Moreover, additional possibilities for its usage, such as full intelligent environment (e.g. 

intelligent doors) were proposed which increase value of the module. 

2.3 – Summary 

This chapter presented the intelligent wheelchair project being developed in LIACC – 

Intellwheels Project. It introduced the project‟s architecture, presenting all of its modules: 

hardware, main application, intelligence, multimodal interface and simulation. It sums up by 

presenting the current stage of development of each one of the modules. 

This dissertation‟s main applicability will be on the Intellwheels and its simulator module. 

As such, its architecture and the concepts presented on this chapter will be referred to in 

every other section ahead. Moreover, the initial step for this thesis was the review of the 

state-of-the-art in robotic simulation, which is done in the following chapter. 
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Chapter 3   

Robotic Simulation 

This Simulation project was started with the decision to use the Ciber-Rato simulator 

usage already taken (which is detailed in depth ahead, in section 3.2). The reasons that lead 

to this are connected to the proven performance and flexibility of this software, as it has 

been used in different applications and adaptations. It has been successfully used for various 

competitions: Micro-Rato[11][8][12][13] (2001-2008), CiberMouse@RTSS[14] (2007-2008) and 

CiberMouse@DCOSS[15] (2008). It was also previously used at LIACC in several research 

projects such as a computational study on emotions and temperament in Multi-Agent 

Systems[16][17] and development of cooperative rescue operations[18]. Moreover, previous 

work had already been done in the Intellwheels project on Ciber-Rato usage for intelligent 

wheelchair simulation, proving the software‟s value and suggesting further development on 

the topic[3]. 

Despite the choice of the base application already dealt with, it was of relevance to study 

similar simulation projects in order to incorporate additional concepts into this dissertation. 

3.1 - Generic Robotic Simulators 

A reference in robotic scientific development is RoboCup. RoboCup is, more than a 

competition, a complete initiative with the vision of creating a robotic soccer team to win a 

match against a human one [19]. During the meetings organized each year, robotic soccer and 

search and rescue competitions are held. They have both simulated and real environment 

contests, which have been used as inspiration for other robotic conferences around the world, 

such as Micro-Rato[11] itself. 

The RoboCup Simulation 2D League has various points in which it touches this IW 

simulation project. This competition creates a virtual soccer field and models the two teams, 

each with 11 players. In an attempt to closely mimic the real robot competition, the virtual 

bodies of the players are circular, with differential virtual motors for movement control and 
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possess sensors to aid decision making. Finally each team has a coach, which is a special 

agent that holds unique information concerning the whole simulation. The coach differs from 

the player agents in the sense that the data they receive are limited (e.g. by distance) are 

have noise variation. Because of the differences between each agent inside a team, the focus 

on this competition is on high level cooperation and control algorithms[20]. For visual 

simulation following, 2D and 3D viewers are available, although the 3D characteristics are not 

modeled by the simulator and only appear for better appeal. 

Ciber-Rato follows the concepts of the RoboCup 2D League and, consequently, so does the 

Intellwheels Simulator, developed during this dissertation. 

A 3D League was later developed, which implemented profound modifications to the 2D 

version, especially in terms of world modelling and communications handling, as the SPADES2 

platform was introduced. Once again, in an effort to add more realism to the simulation 

itself, apart from the full 3D environment, a visual sensor was the main form of perceiving 

the world. Furthermore, the robot model evolved from the initial sphere to a humanoid, in 

2007. 

Other robotic simulators were studied during the initial part of this dissertation, which 

include: 

 Gazebo / Player Project[21][22], a simulator for specific robot models, and is capable 

of generating a wide number of robots with sensors in a three dimensional world. 

 UsarSim[23], a simulator that takes advantage of the realistic graphic and physics 

power of the Unreal Engine, developed by Epic Games enterprise. Through TCP 

protocol connections, this simulator allows the connection a control application and 

provide it with a wide variety of sensors: encoders, touch, proximity, RFID, camera, 

sound and motion sensors. 

 Microsoft released, in 2007, a generic robotic simulation environment called Microsoft 

Robotics Studio[24]. Its target destination was not only the academic developers but 

commercial ones as well, as the product could simulate a wide range of robotic 

hardware. Moreover, visual programming language (VPL) was used, allowing easy 

controlling. Rich environments could be set, as it uses the AGEIA PhysX[25] for world 

physics calculations. The software rapidly proved its value, as illustrates the 2007 

RoboCup[20]. 

3.2 – Intelligent Wheelchair Simulators 

A literature review for other projects focused on intelligent wheelchair simulation was 

performed and two projects stood out. 

                                                 
2 System for Parallel Agent and Discrete Event Simulation (SPADES) is an agent focused framework for 
communication handling, agent-world interaction and physics modeling [46]. 
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3.2.1 - Bremen Autonomous Wheelchair 

The Bremen Autonomous Wheelchair (BAW)[26], initiated a simulation related project, 

motivated by reasons that are shared with this Intellwheels intelligent wheelchair project. As 

a consequence of developing new hardware platform, there is no commercial simulator that 

can be directly used. Moreover, the final decision on sensory and communication equipment 

is not yet defined thus creating the need for a software that is flexible enough to adapt. The 

Bremen team started with a basic software, developed in their own university, called 

SimRobot[27], and then set a methodology where they would systematically expand the 

application each time they would find it necessary. They would submit the real chair to a test 

and then apply the same test to the simulator. Afterwards, the results from both of them 

were compared and, in case differences were found, they would upgrade the SimRobot 

accordingly. 

The entire simulation project is, therefore, an enduring evolution towards the equilibrium 

between the real environment and the simulated one. 

Differences, from the objectives of the Intellwheels project, arise when conceptual 

architectures and simulation objectives are compared. While Bremen simulation is based on a 

single chair, Intelwheels is multi-agent based, in the sense that a dynamic, more complex 

environment with multiple intelligent and collaborative objects is intended. Furthermore, 

BAW simulation segregates completely real and virtual worlds, leaving no room for augmented 

reality model. 

 

3.2.2 - Vehicule Autonome pour Handicapés Moteurs 

An intelligent wheelchair developed in 1998 at the University of Metz, in France - 

Vehicule Autonome pour Handicapés Moteurs (VAHM)[28] – was, in 2000, extended with a 

simulation project[29]. The objective of this project was to solve a difficulty encountered 

during the development: real disabled patient testing. Costly, time wasting and often 

physically harmful, these tests became a burden that led to need of a simulator. 

The simulator‟s concept was to enable the wheelchair with computer connection abilities 

and create a software that would simulate the world perception to the chair. The chair was 

to be the same has the real environment only with a breaking system disabling actual 

movement, although allowing encoder perception. The patient is then equipped with a virtual 

reality helmet with which he would see the virtual world. This blend of real variables with 

the virtual world created mixed reality environment is very similar to what Intellwheels 

project implements (which will be thoroughly detailed in chapter 4). The chair provides the 

simulator with real encoder values and the software, in return, sends measures of virtual 

ultrasonic sensors. 
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Overall architecture, on the other hand, is then distinguished from Intelwheels‟. VAHM‟s 

simulation project range ends with the single chair test, while Intellwheels interest goes 

further into higher level multiple IW collaborative algorithms. 

3.3 – University of Aveiro’s Ciber-Rato 

 Ciber-Rato is a robotic simulation software developed for a competition, held at 

University of Aveiro. The reason for its development was to provide a form of integrating 

participants whose hardware skills weren‟t sufficient enough for real robot building, for the 

older “Micro-Rato” competition. Through “Ciber-Rato” they could concentrate solely on the 

control algorithms and software issues, as their robots are purely virtual[8]. 

The game consists of 3 “mice” (robotic agents that control their robot by sending motor 

power inputs to the simulator) finding their way to a beacon. The agents are applications 

developed by the contestants, thus separate of the simulator itself. They communicate with 

it via UDP protocol and XML messaging. The virtual robots have a circular body and have 

differential drive: a simulated motor for each of its two wheels (illustrated in Figure 3.4). At 

start, the world is unknown to the agents and they rely on 3 IR sensors, 1 ground sensor, a 

bumper sensor and a beacon compass to achieve the objective (in a testing mode, a GPS 

sensor can be used for debugging but its usage is not allowed in the actual competition). The 

agent that reaches the beacon with the best score (less time and less collisions) wins the 

match. 

The “Ciber-Rato” Simulator developers also created a modified version for a different 

competition, in the 2008 edition of the International Conference on Distributed Computing in 

Sensor Systems (DCOSS „08). The goal now is to make a team of 5 agents go to a single beacon 

and the main difference, in terms of simulation, is that the robots can send messages to each 

other. Their communication is limited by distance and message size, approaching a more 

realistic scenario and encouraging development of information exchange algorithms. 

 

3.3.1 – Architecture 

Being “Ciber-Rato” itself based on the RoboCup simulation league, it follows the same 

basic concepts: a distributed architecture where the simulation engine works as a server for 

all other agents (clients) to connect to[8]. Figure 3.1 gives an overview on the system‟s 

conceptual design. 
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Figure 3.1 - Architecture of the “Ciber-Rato” robotic simulator system 

Since every agent is an external application, they can all be developed in a different 

programming language, having only the concern of using the same communication protocol as 

the simulator. This possibility is particularly valuable since, in the actual competition, each 

contestant can use their own computer and operating system. 

 

3.3.2 – Communications 

Information exchange between the agents and the simulator and even between the 

simulator and the viewer are made through UDP and IP protocols. This allows not only to run 

simulation with different applications for each agent but to run them from different 

computers, as long as they are connected through an IP network. 

The messages themselves are in XML language. Its usage allows not only an easy 

processing by the programs but, on the other hand, it is concise, formal and human-legible 

[30]. Figure 3.2 is an example of the XML message that needs to be sent to the simulator 

server, to initiate the robot simulation. 

 

Figure 3.2 - XML message for robotic agent registration. 

It identifies the main tag has a Robot and defines its name has “IntellWheels” and its Id as 

“1”. 

In order to initiate a correct simulation, with robotic and visualization agents, a series of 

XML messages should be sent to the simulator. A possible sequence is represented in the UML 

sequence diagram on Figure 3.3. 

Ciber-
Rato 

Simulator

Robot A 
Control

Robot B 
Control

Simulation 
Viewer

<Robot

Name="IntellWheels"

Id="1">

</Robot>
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Viewer Simulator Robot

Registration

Confirm Registration

Request Map

Return Map Information

Request Grid

Registration Request

Confirm Registration

World perception

Motor Power Orders

Simulation EndSimulation End

Simulation StartSimulation Start
. . . . . .

 

Figure 3.3 - UML sequence diagram of robotic and viewing agents‟ messaging with the simulator. 

3.3.3 – Virtual Robot 

The body of all simulated robots is circular, with a radius of 0.5 units. They are 

differential robots, i.e., they are modeled with two wheels, as shown in Figure 3.4. 

60º
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º
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Sensor

Proximity 

Sensor

 

Figure 3.4 - Ciber-Rato‟s robots‟ body and sensors. 
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 The center of the circular body is also the center of movement of the robot as the wheels 

are located symmetrically. Each wheel has its motor and can be controlled by the agent 

through an XML message, containing the power to be applied in each motor. 

 

Figure 3.5 - XML message for robot counter-clockwise rotation 

As an example, the command represented in Figure 3.5 will set the robot to rotate in its 

own center.  

By default every robot has their four proximity sensors placed in the perimeter, radially 

oriented. The arc cone of the sensor‟s sight is fixed at 60º. On the DCOSS „08 version of 

“Ciber-Rato”, the location of the sensors can be set by each robot. An angle, relative to the 

robot‟s frontal direction, will define where, in the circle perimeter, will the sensors be 

placed [31]. Although not completely configurable, this possibility gives the “Ciber-Rato” 

simulator a more general and adaptable software for other uses, such has this intelligent 

wheelchair simulation project. 

A beacon sensor is also available. Through this sensor, the simulator will send the robot 

controlling application a value in degrees (from -180º to 180º), indicating the direction of the 

beacon, relatively to the robot‟s current direction. Approaching realistic conditions, if the 

beacon if too far or if the obstacle between the robot and the beacon is too high, the 

simulator will not send the beacon sensor reading. 

To inform on the robot‟s direction, a compass sensor is offered, located in the center of 

the robot. The sensor points in the direction of the rising X axis, as shown in Figure 3.6. 

  

Y

X

 

Y

X

 

Y

X

 
Direction = 0º Direction = 90º Direction = -135º 

Figure 3.6 - Robot direction information, sent by Ciber-Rato's compass sensor. 

The sensor‟s values range from -180º to +180º. Figure 3.6 a. represents a robot oritented 

purely on the X axis (direction=0º), on Figure 3.6 b. is show a robot directed only on the Y 

axis (direction=90º) and Figure 3.6 c. exemplifies a robot facing towards negative X and Y 

coordinates, relatively to its center (Direction=-135º). 

<Actions

LeftMotor="0.1"

RightMotor="-0.1"

/>
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A GPS sensor is also available, returning information on X and Y positions and, also, on 

robot orientation. These values have addictive noise (as exposed on Table 3.1), with different 

maximum variations, which confers this sensor a distinct function to the regular compass. 

Table 3.1 - Ciber-Rato‟s sensor characteristics 

Sensor Range Resolution Noise Type Deviation 

Proximity [0.0;100.0] 0.1 adivtive 0.1 

Beacon [-180º;+180º] 1 Adivtive 2.0 

Compass [-180º;+180º] 1 Adivtive 2.0 

GPS (position) N/A 1 Adivtive 0.5 

GPS (orientation) [-180º;+180º] 1 adivtive 5.0 

Collision N/A 

Ground N/A 

 

The last two sensors defined in Table 3.1 – Collision sensor and Ground sensor – have 

binary responses. The collision sensor will return “Yes” in case the robot touches any other 

robot or a wall. The Ground sensor will return “Yes” if the robot‟s center is over a target 

area, defined in the map XML document. In the competition, the target area is a circle with a 

radius of 2.0 units. 

 

3.3.4 – Robot-Robot Communication 

The DCOSS version of Ciber-Rato was meant to encourage information exchange. To 

achieve this, a robot-robot communication feature was implemented, only on this version, 

which allows messaging between robots. They are not directly peer to peer. Instead, the 

messages are sent via the simulation server (through UDP protocol, similarly to the motor 

power orders) and broadcasted to every robot. This feature allows every robot to receive all 

the information and decide itself whether to use it or not. To approach real situations, only 

robots within 8 units of distance of the emissary robot will receive the message. It is possible 

to send a message of a maximum of 100 bytes but, on the other hand, it is possible to receive 

a total of 400 bytes at once. 

 

3.3.5 – Map and Wall Modeling 

It is possible to load, from an external flat file, the map, in XML language. The map outer 

limits are a rectangle which is defined by height and width information. Inside the limits 

there can be walls which are defined by the coordinates of their corners and its height. For 

competition purposes, a wall can have different heights, which affect the compass sensor of 

the robot: if the wall is high the beacon will not be in the robot‟s line of sight, thus disabling 

compass sensor readings. An ordered sequence of consecutive corner coordinates (minimum 

of three corners) defines a wall and one map can contain any amount of walls (Annex A). 
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Figure 3.7 exemplifies a wall construction in XML and its representation, made by the Ciber-

Rato Viewer. 

 

[…] 

<Wall Height="1.00"> 

  <Corner X="16.50" Y="10.00" /> 

  <Corner X="16.50" Y="5.50" /> 

  <Corner X="21.00" Y="5.50" /> 

  <Corner X="21.00" Y="6.50" /> 

  <Corner X="17.50" Y="6.50" /> 

  <Corner X="17.50" Y="10.00" /> 

</Wall> 

[…] 

 

Figure 3.7 - Ciber-Rato Viewer‟s design of a XML modeled wall. 

The wall is defined on the content of a XML file of a Ciber-Rato Map (on the left). Through 

those six corners, the viewer can then graphically draw the wall, as shown on the print screen 

of the Ciber-Rato Viewer, on the right. The wall is the blue, L-shaped piece. To adjust to the 

competitions rules, a second XML file is needed (associated with the map) which contains 

information characterizing the beacon‟s position and the target areas (which activates the 

robot‟s ground sensor). 

 

3.3.6 – Simulation Viewer 

To visually follow the games, a simulator viewer was also developed, again in C++ 

programming language[32], using QT libraries[33]. 

Similarly to the robotic controlling agents, the viewer was also an external application 

that connected to the simulation server with UDP protocol, under IP. To correctly initialize 

the viewing the software must send the sequence of XML messages shown in Table 3.2. 

Table 3.2 - Sequence of XML messages sent from viewer to simulation server, at initialization. 

 XML message Message purpose 

1 <View/> 
Register itself with the simulation 

server, as a viewing agent 

2 <LabReq/> 
Request information regard map limits 

and wall locations 

3 <GridReq/> 
Request information concerning the 

starting points of the robots 
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Using the assumption that the agents are robots with the characteristics previously 

explained, the visual appearance of the robots was made through the loading of a bitmap 

image file. Also, assuming that there would only be three agents connected, a different 

image was loaded, depending whether the robot‟s Id was 1, 2 or 3. 

Competition related information is also displayed: number of collisions for each robot, 

elapsed time, robot score and the robot state (through allusive images), as illustrated in 

Figure 3.8. 

 

Figure 3.8 - Original "Ciber-Rato" Viewer information display 

Additionally trough the information display, the viewer is also capable of some simulation 

orders. It can start and stop the simulation and remove any specific robot from the 

simulation. Removing a robot, aside from stop drawing in the viewer screen, the simulation 

engine will then skip collision verification and sensor information calculation. 

3.4 – Summary 

The chapter gave an overview on status of the robotic simulation state of the art by 

present some important projects, such as Robocup, Gazebo/Player Project, UsarSim and the 

Microsoft Robotics Studio. Since the key topic is intelligent wheelchairs, more focused 

literature review revealed the Bremen Autonomous Wheelchair and the Vehicule Autonome 

pour Handicapés Moteurs (VAHM) projects. 

The main section of this chapter was the Ciber-Rato simulator presentation. Both versions 

of Ciber-Rato (Micro-Rato and DCOSS) have already implemented some features as noise in 

sensor readings, which is very important in IW realistic simulation. However, the main 

setback with the adoption of “Ciber-Rato” as the base simulation environment is the lack of 

flexibility in parameterization of the robots‟ characteristics. In fact, the main requirement of 

an IW simulator is to be able to simulate and handle wheelchairs of different dimensions as 

well as different sensors and their location. The simplest example is the wheelchair‟s body: 

as “Ciber-Rato” simulates only circular robots it is unfit for wheelchair simulation for the 

error of rounding a rectangle (with its height and width parameters) to a circle if too great. 

Moreover, originally, there is no form of setting different radius for different robots, which 

means that all wheelchairs would have to be the same size. 
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This scenario justifies the need for an IW-specific simulator that is generic enough to 

model a wide variety of IWs and their sensors. In addition, the study revealed that Ciber-Rato 

is a good base for the functionalities needed. 
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Chapter 4  

Intellwheels Simulator 

The main objective of this project was to develop simulation software to function as a 

test board for control algorithms for intelligent wheelchairs. Converging with the larger 

project it is inserted into (described in Chapter 2), the software was designated as 

“Intellwheels Simulator”. 

As core functions, this application creates a virtual world, complete with map definition, 

where robotic agents can connect to. The simulator regulates the connection attempts, 

handles the communications and returns to the agents the perception of the world, similarly 

to what a real robot would get from the real environment around it, through its sensors. 

The robot control software should treat the awareness information not discriminating it 

from real or simulated, therefore producing the result independently: it produces orders 

every connected actuators, being real or virtual. This scenario leads to the subject of reality 

definitions. In fact, the usage of the same software for real situations as for virtual tests, 

suggests a leap forward into the augmented reality concept, in which virtual world objects 

interact with the real world. 

This chapter will go through the simulator‟s conceptual architecture, including how the 

support for mixed reality was implemented. It goes through the modifications made to Ciber-

Rato simulation environment and the new algorithms implemented to correctly simulate IWs. 

 

4.1 – Architecture 

Being essentially based in the Ciber-Rato source code, the Intellwheels Simulator has its 

main basic architecture. Conceptually it is illustrated in Figure 4.1. 

In a higher abstraction level, it consists of a central simulation server to which every 

agent, independently of its type, will connect to. Furthermore, to have a structure as 

modular as possible, the agents are external applications, developed in any kind of language 
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and running in any type of operating system, must connect via IP and UDP protocols. Through 

this obligation, the spectrum of possibilities for agent development is greatly broadened. 

 

Figure 4.1 - Intellwheels Simulator's architecture 

The simulator server is responsible for all calculations concerning simulation (collision 

detection, position calculation, wheel motor emulation and world perception sensors‟ 

values). It is also the assurance of communications between every intelligent agent 

(independently of their type). Viewer agents are able to graphically draw the modeled world, 

as the simulator sends them map definition, and robotic agents‟ positions. These agents, on 

the other hand, have a more intense interaction with the server. They not only receive 

information concerning their virtual sensors‟ perception but also need to send power input 

orders to their virtual motors. 

The physical implementation of this architecture resulted in the usage of laptop 

computers. They house the simulation and agent applications, which connect through a Wi-Fi 

wireless network under protocol 802.11g and cabled Ethernet connections, as illustrated in 

Figure 4.2. 

 

 

S
im

u
la

ti
o
n
 S

e
rv

e
r 



4.1 – Architecture  23 

 

 

Intellwheels Simulator Server

Ethernet

UDP/IP

Real Wheechair 

Control Agent

Wi-Fi 

Viewer Agent
Virtual Door Agent

Virtual Wheelchair Control Agent

Ethernet

RS-232

 

Figure 4.2 - Technology implemented for Intellwheels simulation. 

The core of the system is a central computer that runs the simulator server, to which 

every agent application connects to. The information exchange is made through XML 

messaging which ensure human and machine-readable content.  

The system is composed by a simulator server, which can be a Linux OS or a Windows OS 

(although, during this project, it was only compiled a Windows version of Intellwheels 

Simulator). It sets a UDP listen port, to which it will await agents‟ registration requests. 

Through specifically ports, attributed individually to each agent, it sends information of their 

concern: sensor perception (in case of robotic agents) and map, collisions and positioning 

information (in case of viewer agents). The simulator is also capable of accepting incoming 

messages to these ports to update the simulation: robot action orders and simulation 

commands from the viewers. 

 

4.1.1 – Augmented Reality Theory 

By definition, augmented reality (AR) is system that allows interaction between real and 

virtual objects, in a real world[34]. An AR system will synchronize both realities with each 

other thus ensuring consistency in information merging. Moreover, the concealing must be in 

real time in order to allow the direct association between virtual and real data. 

The conceptual gap between virtual reality (VR) and augmented reality is filled with 

sublevels of mixed reality definitions[35], as portrayed in Figure 4.3. 
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Mixed Reality 
 

 

Figure 4.3 - Real to Virtual continuum 

In real environment there is no interaction what so ever between the physical objects and 

computer generated information. The System is composed solely by its real objects (walls, 

tables, chairs, etc.) and perceptions (sonar sensor readings, VGA cameras, etc.). 

A similar consideration can be made to the purely virtual environment. A system is 

mathematically modeled and the entire perception of the world is limited to what the virtual 

data contains. Every influencing parameter is calculated within a computer and the results 

are based entirely on the initially programmed information. In the middle of the virtual and 

the real worlds there can exist blended reality constructions. 

In an augmented reality situation, the world is expanded with virtual data. An intelligent 

agent (e.g. a human person) is able to alter their decisions based on this additional 

information. A maze solving attempt is an example on where the virtual information would 

affect the real world. If a person had entered a known building floor and was to go to room 1, 

shown in Figure 4.4, the choice on which side to go to would be through the left, shorter 

path. 
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Figure 4.4 - Maze example. 

In reality either side will take the subject to its destination, although one path is 

preferred to the other. In spite of this, if the person was to be informed, by a visual screen at 

the entrance, that the corridor to the left was blocked due to repainting work in progress, he 

would chose to take the path to the right. The information received is taken as true, although 

it may not, thus turning virtual information relevant in the real world. 

Conceptually, the augmented virtuality is very similar to the augmented reality, with the 

differentiation that the influence, in this case, is made by the real world, affecting the 

virtual workflow. The undergoing virtual process, generated by the computer is disturbed by 

real world perceptions, therefore adjusting itself to the data received. 

The aggregation of the augmented reality and augmented virtuality sets the definition of 

mixed reality. The two-way interaction of the concepts creates a richer environment where 

both worlds gain additional information and, as consequence, can produce better judgments 

in decision making stages. 

 

4.1.2 – Mixed Reality Support 

An important part of the simulator is its capability of admitting the connection of 

different robotic agents. Specifically, it is possible to distinguish an agent that controls a 

virtual IW from an agent the controls a real IW ergo, there simulator can register two types of 

robotic agents: “Real” and “Simulated”. 

If a type “Simulated” robotic agent connects to the server, it will treat it as a controller 

for a purely virtual robot. The simulation will then provide it with the world perception, 

through the modeled virtual sensors. It will also accept incoming XML messages containing 

actions that set the desired input power to be given to the motors which, consequently, will 

be a parameter that the simulation engine itself will use to calculate the robot‟s following 

position. It is a completely virtual environment. 

In a case where the robot‟s type is “Real”, the simulator will regard this agent as an 

application controlling a real IW, in a mixed reality mode. It is expected that the agent 
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provides the simulation with the IW‟s X and Y coordinates (in meters) as well as the angle (in 

degrees). This allows the virtual world modeled in the simulator to expand with information 

concerning the real wheelchair. On the other hand, knowing the real wheelchair‟s position, 

direction and physical characteristics, the simulator can virtually insert sensors on to it and 

calculate their values. As an example, the simulator could detect the proximity of the real 

wheelchair to any other object in the simulation, being virtual or real, like another IW. In 

sending this new data to the real wheelchair, the simulator is augmenting its reality 

perception, now acknowledging more information than it could by itself. 

This kind of scenario confers the simulator a mixed reality support characteristic that 

greatly increases the testing capabilities of the software. The IW prototype numbers and costs 

are no longer obstacles in cooperative and complex experimentations. 

4.2 – Programming Technologies 

Being based in Ciber-Rato, the Intellwheels simulator is in C++ language. It also uses a set 

of libraries, with special classes and functions: QT libraries from Trolltech[36]. These libraries 

are cross-platform (in the sense that they can be used in various operating systems, including 

Windows and Linux) and provide various class libraries that aid in the low level functions, 

allowing a higher level of programming. Visual graphic drawing is an example of the 

contribution that QT made, with cutting time spent on, for example, window and button 

creation. 

Since all the other software applications developed for the Intellwheels Project have been 

and are being developed under Windows OS, this simulator project should follow the same 

pattern. This ensures better computability between interacting software and reduces the 

combined diversity of programming software requirements. 

To code and compile under windows it was used the Microsoft Visual Studio C++ 

integrated software. Not only does this software provide a simple to use programming 

environment, it also allows direct QT integration, valued ability in these circumstances. 

4.3 – Modifications to Ciber-Rato 

Although already including a wide range of robotic simulation requirements‟, the Ciber-

Rato by itself is not IW simulating ready, in the sense that it does not fully meet its needs, 

hence the need for modifications. 

Main alterations were done in every function that related to the robot‟s body definition, 

starting from the body itself. Changing from circular body to a rectangular one imposes 

algorithm modification to various modules, mainly collision detection, angular speed and 

sensor value calculation. 
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4.3.1 – Robot Body 

Intellwheels simulator assumes that all robots have a rectangular form, with a 

configurable height and width. The original “Ciber-Rato” simulators‟ robots were circular and 

with a fixed radius. The error created by approximating a wheelchair‟s shape to a circle is too 

great, therefore not even modifying the software to allow adaptable radius would produce 

satisfactory results, as shown on Figure 4.5. 

 

Figure 4.5 - Overlaps of a rectangle shaped robot with a circular shaped one. 

Moreover, a wheelchair does not have its center of movement where the center of the 

physical form. Instead, it is near the rear of the robot, where the axis of the wheels is. On 

both wheelchairs, as in most of wheelchairs available in the market, the center is on half of 

its height and on between 70%~90% of the robot‟s width, as exemplified in Figure 4.6. 
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Figure 4.6 - Virtual Body for modeled by Intellwheels simulator. 

The robot‟s Center of Movement (COM) ranges from 0.00 to 1.00 and defines the position 

of the robot‟s wheels‟ axis, relatively to its width. A COM of 0.8 would set the axis closer to 

the rear of the robot whereas a COM of 0.5 would set the axis would set it in the center of 

the robot. This point, where the axis of the wheels meet the half of the robot‟s height will be 

referred to as the robot‟s center. 

To fully acknowledge the complete body location of the robot, its corners‟ coordinates 

and its orientation must be calculated. This is done based solely on the robot‟s center 



28  Intellwheels Simulator 

 

position (X, Y and angle) and physical characteristics (width, height and COM). Through the 

physical characteristics, the relative position of each corner is determined (see Table 4.1). 

Table 4.1 - Robot's corners relative position coordinates 

Corner 
Id 

X relative 
position (m) 

Y relative 
position (m) 

0 COM*Width Height/2 

1 COM*Width - Height/2 

2 - (1-COM)*Width Height/2 

3 - (1-COM)*Width - Height/2 

 

The current absolute position can be computed by applying a transform matrix, using the 

center position information, as illustrated in Figure 4.7. 

 

Figure 4.7 - Algorithm for the determination of the robot's corner absolute position. 

The rotation matrix, referred of in the matrix equation 4.1, is a generic equation that will 

rotate any given point, using the Z as the axis around which the spin will be done. Assuming 

that the robot‟s center is in the Z axis, the matrix can be applied to determine the robot‟s 

corners absolute coordinates. 

 

 
, 

(4.1) 

where Xrel and Yrel are the corner‟s position, relative to the robot center, Xabs and Yabs are the 

absolute position and θ is the robot‟s angle. The application of the (5.1) matrix equation 

resulted in the a new one for each coordinate of each corner, all displayed in Table 4.2. 
  

Select Robot 
Corner

•The four 
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Apply rotation 
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considering 
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Table 4.2 - Equations implemented to determine corner positions, relatively to the robot's center 
coordinates 

Corner 
Id 

Equation for X absolute calculation Equation for Y absolute calculation 

0   

1   

2   

3   

 

For all equations show in the table above, Rx and Ry stand for the robot‟s absolute center 

coordinates, BigDiag is the distance from the center to corners 0 and 1 and SmallDig is the 

distance to 1 and 2 corners, as equations 4.2 and 4.3 detail. 

  (4.2) 

  (4.3) 

These calculations define the robot‟s body and are, therefore, a key for input for all 

simulation functionalities. 

 

4.3.2 - Top Speed and Motor Acceleration Curve 

One of the basic wheelchair‟s parameters that needs to be configurable is the top speed. 

Each IW will have different maximum speed and the simulation engine was adapted in that 

direction. In function for next position calculation, the current velocity is initially 

determined. This equation now in function of the maximum speed parameter of that unique 

robot (it is a class variable), therefore allowing differentiation between robots. A robotic 

agent, at registration, should indicate its maximum speed. If it fails to do so, the simulator 

will set the default speed of 1 meter per second. 

An additional modification was made on the dynamic characteristics of the motors‟ 

acceleration curves. Since the original software was designed to ensure all robots were equal, 

every robot connected had to had the same dynamic characteristic. In this IW simulation 

environment it is expected that the robots connecting may have different dynamic 

characteristics. Similarly to size and center of movement characteristics, a new robot 

registration parameter was implemented to allow each robot to define their curve. For 
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acceleration control, an equation (4.4) was used when calculating the motor‟s output power, 

given an input power value. 

 

 , (4.4) 

 

where outputn is the new motor power output, curve is a value between 0.00 and 1.00, 

defining the slope of the acceleration curve, and outputn-1 is the power value from the 

previous period. Figure 4.8 plots the output of equation (4.4). Chart on the left has a curve 

parameter at 0.2. Chart on the right has curve parameter at 0.8. Both charts use the input 

constant at 100%. This equation was applied for the robot's acceleration curve characteristic. 

 

  

Figure 4.8 - Output charts of a situation where curve=0.2 (on the right) and curve=0.8 (on the left) and 
both with constant input at 100%. 

As an example, if period time was set to 100ms, an IW with curve = 0.8 would take 

approximately 1.5 seconds to reach the maximum speed, whereas an IW with curve = 0.2 

would take only 0.4 seconds, as demonstrated on Figure 4.8. Considering the error 1%, an IW 

with curve = 0.8 would take approximately 2.1 seconds to reach the maximum speed whereas 

an IW with curve = 0.2 would take only 0.3 seconds. 

In ensuring that this parameter is configurable, the simulator is able to improve the 

convergence to the real wheelchairs‟ characteristics, optimizing the environment for control 

algorithm tests. 

 

4.3.3 – Next Position Calculation 

Having modeled the wheelchair‟s motor response, through it it is possible to calculate the 

position of the robot on the following period. Using the robot‟s top speed and the output, 

given by the motor acceleration equation, the simulator calculates the robot‟s linear (eq. 4.5) 

and angular (eq. 4.6) speeds. 
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  (4.6) 

 

The linear speed will affect the robot‟s next X and Y coordinates, whereas the angular 

speed will affect the robot‟s next orientation. Equations 4.7, 4.8 and 4.9 allow these 

calculations. 

 

  (4.7) 

  (4.8) 

  (4.9) 

where Xn and Yn are the current robot‟s center coordinates, Xn+1and Yn+1 are the calculated 

values for the robot‟s next coordinates, θn and θn+1 are current and next values for the 

orientation and TimeStep is the time period of time, in seconds, between calculations. This 

later parameter is used so that the robot‟s speed is the indicated by the agent at registration, 

may be in meters/second. Finally it is relevant to mention that the orientation angle is 

normalized to the ranges from -180º do + 180º and this restriction must be taken care of at 

the time of the next angle calculation. In a case where θn+1 calculation results in a value over 

+180, it is transformed by subtracting 360º. Similarly, if it decreases under -180 it will be 

added 360º. 

Every period, the next position of the robot is calculated and then, the values are used to 

move the robot. Although being its main usage, this calculation serves other purposes, such as 

aid in the collision algorithm. The collision detection must be tested with the next and not 

the current robot‟s position. If it was not as such, the limit that is made to the robot‟s 

movements, while in collision would permanently block its movement. 

 

4.3.4 – Collision Detection 

The starting point for the adaption of the DCOSS version of “Ciber-Rato” Simulator was 

the conversion from circular to rectangular body robots. The main usage of the robot‟s body 

is in the collision detection verification. A robot‟s shape has to be defined in mathematical 

equations that will enable the detection of intersection with other objects. In this simulator 

there will only be modeled 2 types of objects: walls and robots. Therefore collision checking 

will only have to be performed with these two types. 

Originally, for Robot-Robot collision checking, the “Ciber-Rato” simulator checked 

whether the distance that separates the robots‟ centers (through X and Y coordinates) was 

smaller than two times a robot‟s radius (all robots were circular with the same radius). This 

simple algorithm is not applicable for different radius robots neither for rectangle shaped 

robots. The wheelchairs‟ size and position on the map were now modeled by four parameters: 
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Center of movement point, the wheelchair‟s orientation angle, the width and height. Through 

this information all the robots‟ corners coordinates can be calculated. Using this information 

the new collision detection algorithm is as follows: 

 Using pairs of corners as line segment defining points, it is calculated an equation for 

one line segment for each robot. 

 The intersection point of the two lines is calculated. If lines are parallel no point is 

calculated for there is no intersection. 

 Both X and Y coordinates are checked to find whether they are located within each 

robot line segment. If so, then there is a collision between the two robots. 

 This process is repeated until the 4 lines of each robot are checked with the lines of 

every other robot. 

Figure 4.9 gives an example on one of the tests performed during this algorithm. 
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Figure 4.9 - Line Intersection Verification 

The line defined by corners 0 and 1 of wheelchair A is being checked against the line defined 

by corners 0 and 2 of robot B. The intersection point is within the line 0->2 segment of robot 

A, but it is outside the line segment of robot B. Therefore, no collision is detected. Every 

robots‟ lines must be checked with the other robots‟, a cycle illustrated in Figure 4.10. During 

this cycle the “Determine Intersection” function is called (taking two corners of each robot as 

parameters) and returns true or false, depending whether a collision was identified. The 

“Determine Intersection” function is represented in UML diagram of Figure 4.11. 
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Figure 4.10 - Cycle for checking collision on all lines from every robot 

Select 2 consecutive corners from Robot1:  (X11,Y11);(X12,Y12) Select 2 consecutive corners from Robot2: (X21, Y21);(X22,Y22)

Determine line equation of Robot1 Determine line equation of Robot2

Calculate Intersection Point (Xi,Yi)

[impossible] 

[determined] 

Lines are Parallel

[X11>X12] 

[X11<X12] 

[Xi>X11 and Xi<X12] 

[Yi>Y11 and Yi<Y12] 

[Xi<X11 and Xi>X12] 

[Y11<Y12] [Y11>Y12] 

[Yi<Y11 and Yi>Y12] 

[X21>X22] 
[X21<X22] 

[Xi>X21 and Xi<X22] 

[Yi>Y21 and Yi<Y22] 

[Xi<X21 and Xi>X22] 

[Y21<Y22] [Y21>Y22] 

[Yi<Y21 and Yi>Y22] 

Return Collision=False

Return Collision=False Return Collision=False

[Xi<X11 or Xi>X12] [Xi<X21 or Xi>X22] 

[Yi<Y11 or Yi>Y12] [Yi<Y21 or Yi>Y22] 

Intersection point hits Robot1 Intersection point hits Robot2

Return Collision=True

[Intersection point Hit both Robots] 

 

Figure 4.11 - UML diagram of the “Determine Intersection” function. 



34  Intellwheels Simulator 

 

Robot-Wall collision checking also endured structural changes but, after concluding the 

robot-robot check it was a simple implementation. In the simulator, walls are stored in an 

array of walls and each wall is an array of corners (a corner is defined by its X and Y 

coordinates). Hence, the concept of the wall collision check algorithm is similar to the Robot-

Robot. Every two consecutive corners define a line segment that will be checked with the 

robots line segment. If the intersection point is within the two segments, then a collision 

exists. 

 

4.3.5 – Proximity Sensors 

The proximity sensor positioning was the next functionality to be adapted. Originally, the 

Ciber-Rato simulated an infra-red sensor that could only be positioned in the perimeter of a 

circle, with a fixed cone of sight and a fixed direction, radial to the robot. To be true to the 

rectangular form, the sensor definition was modified, as illustrated in Figure 4.12. 
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Figure 4.12 - Comparison between the modeled body‟s and sensors of the simulated robots in Ciber-Rato 
(a) and Intellwheels (b). 

It can now be configurable by X and Y coordinates, relatively to the robot‟s movement 

center, and both the cone of sight and the direction can be redefined. All these parameters 

are now configurable by the agent, at the time of registration with the simulator. The sheer 

modification of enabling configurable cone allows the agent to register different proximity 

sensors. A wider cone would resemble a sonar proximity sensor whereas as thinner cone 

would be more similar to an infrared proximity sensor. 

To better approach to the real IW used in LIACC, the simulator raised the robots‟ 

proximity sensor number to 8. 
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4.4 – XML Communications 

The Extensible Markup Language (XML) is now a widely used standard, mainly due to its 

characteristic of facilitating communications across different systems[30]. Specifically in the 

Intellwheels Simulator‟s environment, it is expected that different applications, developed in 

different platforms exchange data in an easy human understandable way. Ciber-Rato 

originally was set for its usage and, with proven success, the concept endured in Intellwheels 

Simulator. 

XML tags were defined for every kind information exchange between the simulator and 

the agents. 

 

4.4.1 – Registering  Physical Characteristics 

The first action that a robotic agent should take is to register itself with the simulation 

server, through the UDP protocol. In order to so, a XML message must be sent to port 6000 of 

the IP of the computer that is running Intellwheels simulator. This registration can be as 

simple as a single XML tag containing the IW‟s name or as complex as a full clarification of all 

its characteristics. Table 4.3 details all the tags that can be inputted at registration. 

Table 4.3 - XML tags for robot registration 

Tag Definition Type Range 
Default 
Value 

Name robot‟s name string Up to 20 characters N/A 

Id Robot‟s Id number Integer [1;Map Grid] Simulator 

Height Robot‟s Height float >0 (meters) 1.0 

Width Robot‟s Width float >0 (meters) 1.0 

COM 
Robot‟s Center of 

Movement 
float ]0;1[ 0.5 

X 
Robot‟s starting X 

coordinate 
float >0 (meters) Map Grid 

Y 
Robot‟s starting Y 

coordinate 
float >0 (meters) Map Grid 

DIR 
Robot‟s staring angle in 

degrees 
float [-180;+180] (degrees) Map Grid 

Type Type of agent connecting N/A 
{Simulated, Real, 

Door} 
Simulated 

MaxSpeed Robot‟s top speed float 
>0 (meters per 

second) 
0.5 

AccerelationCurve Robot‟s acceleration curve float ]0;1] 0.5 

 

Apart from the Name, all the other XML tags will assume a default value if they are 

omitted. Figure 4.13 exemplifies a registration message that the simulator would 

acknowledge and accept. 
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Figure 4.13 - Intellwheels robotic agent registration XML message 

4.4.2 – Registering Sensors 

Intellwheels allows registering up to 8 robot sensors wherever they are needed. Usually an 

IW will have their proximity sensors located near the perimeter, but they can also be placed 

more to its inside. The sensor‟s positioning is now made through a definition of their X and Y 

coordinates relative to the robot‟s center and their cone of sight and orientation can also be 

configured. The registering of sensors must be done at the initial robot registration with the 

server and with all the tags shown in Table 4.4. 

Table 4.4 - Sensor Registration XML tags 

Tag Definition Type Range 

Id Unique identification integer [1;8] 

X 
X coordinate of the sensor position, relatively to the 

center of the robot 
Float >= 0 (meters) 

Y 
Y coordinate of the sensor position, relatively to the 

center of the robot 
Float >= 0 (meters) 

Angle Angle, in degrees, of the sensor direction. Float [-180;180] (degrees) 

Cone Arc of sensor vision, in degrees. float ]0;180[ (degrees) 

 

In order to simplify the future development of controlling agents, virtual sensor will be 

created and placed even if its registration is not done. The simulator will place the sensors in 

accordance with the physical characteristics of the wheelchair. Four sensors will be placed on 

the perimeter with default relative positions, cones and orientations. Table 4.5 details this 

positioning, which is illustrated in Figure 4.14. It is important to notice that sensor registering 

and positioning is independent of the robot type. They shall be created and placed in their 

positions, independently if the agent is a simulated robot controller or a real robot one 

controller. 

 

 

 

 

<Robot 

Name="IntellWheels" Id="1" Width="1.0" Heigth="1.0" DIR="0.0" COMass="0.5" Type="Real" 
X="13.0" Y="7.0" DIR=”0.0” MaxSpeed=”0.5” AccelerationCurve=”0.7”> 

</Robot>



4.4 – XML Communications  37 

 

 

Table 4.5 - Default sensor characteristics 

ID X (m) Y (m) Angle (º) Cone (º) 

0 width * COM 0.0 0.0 60 

1 0.0 0.5 *  height 90 60 

2 0.0 -0.5 *  height -90 60 

3 - width * (1-COM) 0.0 180 60 

 

  

a) b) 

Figure 4.14 - Default sensor location with COM=0.5, a), and COM=0.8, b). 

Even though these default sensor will be placed, if sensor individual positioning is 

intended, that information must be sent together with the robot‟s physical characteristics 

information. Figure 4.15 is an example of a XML message containing sensor information that is 

accepted by the simulator. 

 

 

Figure 4.15 - XML message for robot registration sensor definition 

4.4.3 – Moving Robot 

After robot registration (independently of its type), every communication to must be sent 

trough the new UDP port specified by the simulator. Moving the robot is also done through 

XML messaging, however, it now depends on its type. 

For a robot type “Simulated”, the simulator will be responsible for new position 

calculation. It will also handle the modeling of the motors and thus the translation of the 

input power to robot‟s speed. As such, to move the robot, its controlling agent must send a 

<Robot 

Name="Teste" Id="1" Width="2.0" Heigth="1.0" DIR="0.0" COM="0.5" X="11.0" Y="11.0">

<IRSensor Id="0" X="1.0" Y="0.0" Angle="0.0" Cone=”60”/>

<IRSensor Id="1" X="0.0" Y="0.5" Angle="90" Cone=”50”/>

<IRSensor Id="2" X="0.0" Y="-0.5" Angle="-90" Cone=”30”/>

<IRSensor Id="3" X="-1.0" Y="0.0" Angle="180” Cone=”60"/>

</Robot>
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XML message, sending the power values to attribute to each motor, as exemplified in Figure 

4.16. 

 

Figure 4.16 - XML message example for motor order 

The power values range from -0.15 to 0.15. During the development of this project it was 

considered to change this range to -100 to + 100, as it would set the power setting more 

obvious values. On the other hand, this modification would invalidate the usage of agents 

developed for the original “Ciber-Rato” to control the motors. Because of this, the original 

range was kept. 

In case the connecting agent is a real IW controller (in augmented reality mode) the 

simulator relinquishes the task of position determination to the agent itself. Conceptually, 

the simulator in working in augmented virtuality mode and so, the agent must inform it, at all 

times, it‟s X and Y coordinates (in meters) and orientation (in degrees). Through this action it 

is possible to allow interaction between the real and virtual world, particularly updates on 

virtual sensor value calculation and collision detection. The XML message that the agent must 

send to the simulation server is as illustrated in Figure 4.17. 

 

Figure 4.17 - XML message of type real robot position information 

4.4.4 – Viewer Agent 

One of the key features of Intellwheels is the possibility of connecting a viewer agent, to 

visually represent the simulation. The application is external to the simulator itself, alike the 

robotic agents, requiring only the usage of UDP/IP protocols to exchange XML messages. 

Regarding these messages, they should be sent in a particular order, so that the visualization 

is proper. Once again, it was intended that the Ciber-Rato viewers could be applied to this 

simulator and, therefore, the sequence of XML messages is identical to the Ciber-Rato‟s, 

illustrated in Table 3.2. To illustrate, Figure 4.18 gives an example of the initial registration 

message sent from the viewer agent and the simulator‟s response. 

 

 

 

<Actions LeftMotor="0.1" RightMotor="-0.1" />

<Actions X="10" Y="5" DIR="45"/>
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Agent sends: Simulator Responds: 

<View/> 

<Reply Status="Ok"> 

<Parameters SimTime="1800" CycleTime="1000" 
CompassNoise="2" BeaconNoise="2” 
ObstacleNoise="0.1" MotorsNoise="1.5" 
RunningTimeout="1350" GPS="Off" 
ScoreSensor="Off" ShowActions="False" 
NBeacons="1" RequestsPerCycle="2" 
ObstacleRequestable="On" 
BeaconRequestable="On" GroundRequestable="On" 
CompassRequestable="On" 
CollisionRequestable="Off" ObstacleLatency="1" 
BeaconLatency="5" GroundLatency="1" 
CompassLatency="5" CollisionLatency="1" 
BeaconAperture="3.141593" /> 

</Reply> 

Figure 4.18: XML messages of viewer registration 

It is appropriate to mention that, although Ciber-Rato remains connectable to Intelwheels 

simulator, not all information sent to it is used (such as robot‟s physical characteristics). In 

spite of this, the visualization may not be accurate but can still give some rough visual 

information on the simulation. 

4.4 – Summary 

The Intellwheels Simulator, expanded the Ciber-Rato project it is was based on, acquiring 

important features which are critical for intelligent wheelchair simulation.  

This chapter stated by giving an overview on the intellwheels conceptual architecture and 

the technology it used for the development and implementation. It presented the concepts of 

the multi-agent system and the support for external application connection. Intellwheels 

provides a new mode of IW simulation where it is possible to connect not only agents for 

virtual robots but, at the same time, real IW controllers which can, themselves work on 

augmented reality mode. The simulator, on the other hand, will be under an augmented 

virtuallity environment, receiving information of real wheelchairs and calculating their 

interaction result with the virtual objects modeled. 

Every robot is modeled with a rectangle shaped body, with configurable center of 

movement, height and width. Additional physical characteristics, different in every electrical 

wheelchair, are also adaptable, such as the acceleration curve and the maximum speed it can 

achieve. A new algorithm was developed for the key function of collision detection, taking 

the rectangle shape on consideration. The proximity sensors can be defined by their opening 

cone of sight and their orientation, in degrees, and can be placed through X and Y 

coordinates relatively to the robot‟s center. Finally, the simulators XML messages were 

detailed, exemplifying how robotic agents and viewer agents register and communicate with 

the simulator. 
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Chapter 5  

Simulation Agents 

During the development of the Intellwheels Simulator, a need for agents that would test 

the implemented algorithms was evident. Although the first objective was to modify and 

adapt the Intellwheels Control Agent (previously developed by LIACC), so it would be able to 

connect with the simulator and control the virtual robot, other simpler and more generic 

controlling agents where created. 

The applications were built with Borland[37] Delphi 7. Delphi 7 is an integrated software 

development environment that allows visual, event-oriented programming through Pascal 

programming language[38]. The main reason for its decision was related with assuring 

homogenous software usage throughout most of the Intellwheels models (detailed in Chapter 

2). 

This chapter will be initiated by explaining the basic Intellwheels agents developed for 

simulator testing purposes and shall finalize by presenting the project‟s main control agent, 

with its features, possibilities, adoptions and operational modes. 

5.1 – Simple UDP Agent 

To overcome the initial difficulties in the Ciber-Rato study, an agent was developed, in 

Delphi 7, to test UDP communications with Ciber-Rato as well as XML messaging. This 

application was also to work as a base code for communication handling in all robotic agents 

to be developed afterwards. 

The main purpose of this application was to have the ability to connect to the original 

Ciber-Rato as a robotic agent and as a simulation viewer agent. As additional functionalities, 

it is be able to create a text file with the XML messages sent and received and four movement 

buttons (up, down, left, right) to control the robotic agent, shown in Figure 5.1. 
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Figure 5.1 - Simple UDP Agent 

Concerning, the UDP connection, the main difficulties encountered were related to the 

definition of the IP ports. Delphi 7 contains a UDP component (from the TidUDPServer class) 

that can be “drag and dropped” onto the form, instantiating it, remaining the task of its 

configuration. The initial step, to register, is taken by the agent, as it defines a listen port 

and a destination port and sends the registration XML message, ensuring that the local listen 

port is the “Source Port” in the UDP datagram, as shown in Figure 5.2[39], for that will be the 

port that the simulator will respond to. 

The simulator, by default, is listening to every communication sent to port 6000. Once it 

receives a message, it is analyzed and checked for a Robot or Viewer agent XML registering 

message. If the message does not match with any of these, the message will be ignored. In a 

case it is a robot connecting and if the Id is specified, it must not already be in use in the 

simulation, otherwise the registry will be denied. 

In a successful registration, the simulator will send an XML message confirming it. In this 

first message, the UDP datagram sent will specify a new port, to which every robot action (or 

viewer command, depending on which agent type connected) must be sent. 

 

+ Bits 0-35 16-31 

0 Source Port Destination Port 

32 Length Checksum 

64 Data 

… … 

Figure 5.2: UDP packet header structure 

The simulator binds the robotic agent‟s sending IP and port to this new port.  No 

communication can be done to any other port, from this point forward. The main reason for 

this behavior is to ensure that port 6000 remains free for new robot registration. 

Up, Down, Left and Right buttons on this agent simple send an action message to the 

simulator, as shows Table 5.1. 
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Table 5.1 - XML messages for agent‟s buttons. 

Button XML message Purpose 

UP 
<Actions LeftMotor="0.1" RightMotor="0.1"/> 

Move the robot forward 

Down 
<Actions LeftMotor="-0.1" RightMotor="-0.1"/> 

Move the robot backward 

Left 
<Actions LeftMotor="-0.1" RightMotor="0.1"/> 

Rotate the robot anti-clockwise 

Right 
<Actions LeftMotor="0.1" RightMotor="-0.1"/> 

Rotate the robot clockwise 

 

Apart from the messages sent through the buttons, the application allows custom message 

sending, through an edit box seen at the top of the application (Figure 5.1). This permits that 

any message can be sent to the simulator, testing its response. All ingoing and outgoing 

communications are shown in the debug text boxes and can be stored in a “log.txt” file, 

through the “Start Log” button. 

This application was developed to serve as the simplest UDP communications test tool and 

simulator response validation. Additionally, it proved to be a fine core source not only for 

more advanced, generic wheelchair robotic simulators but for the Intellwheels Control Agent 

itself and even the Intellwheers Viewer agent, detailed in Chapter 5. All these applications, in 

some form, use functions of this “Simple UDP Agent”. 

5.2 – Wheelchair Robotic Agent 

As the simulator evolved into an IW simulator, the requirements to test the algorithms 

being implemented became more complex, thus requesting the development of an agent that 

would validate those modifications. Direct implementation on the existing Intellwheels 

Control Software would implicate increased difficulty due to the current complexity of the 

application. For that reason the solution was to expand the previous “Simple UDP Agent” into 

a Wheelchair Robotic Agent. Its objectives are: 

 Allow multiple robotic connections in only one application; 

 Permit the manual definition of the physical characteristics of the wheelchair; 

 Customize the sensor‟s positioning, cone and orientation; 

 Enable the option for definition of the robot‟s initial position on the map; 

 Give Visual information of the virtual sensors readings; 

 Admit simple, low level, controlling of the wheelchair through buttons and the arrow 

keys on the keyboard. 

To implement the multiple robot connection, the answer was to dynamically create instances 

of the Delphi UDP component. A solution that would solve not only this requirement but also 

allow storing of different IWs‟ individual information is to create a class. The TRobot class 

was developed and it would store all the information concerning the robot‟s physical 

characteristics and communication related information. Figure 5.3 is the UML diagram 
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representation of the implemented TRobot class, indicating the major attributes and 

operations involved. Programming robustness was taken into consideration, therefore the 

class‟s attributes were created as protected attributes, and operations were created to allow 

secure access. 

 

+GetId()

+SetId()

+GetName()

+SetName()

+GetX()

+SetX()

+GetY()

+SetY()

+GetHeight()

+SetHeight()

+GetCOM()

+SetCOM()

+GetAngle()

+SetAngle()

+GetType()

+SetType()

+GetLocalPort()

+SetLocalPort()

+XMLSend()

-Read()

#Id : int

#Name : string(idl)

#X : double

#Y : double

#Height : double

#Width : double

#COM : double

#Angle : double

#Type : string(idl)

#Collision : bool

#Connection

-LocalPort : int

-CommPort : int

TRobot

 

Figure 5.3 - TRobot Class 

In a situation where this application has multiple robots connected to the simulator, each 

instance of the TRobot class will have a unique listen port (enforced by the simulator) and the 

information will be stored only into the robot that matched that specific port. Figure 5.4 is a 

print screen of the application, in a moment where three robots were connected to the 

simulator. 
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Figure 5.4 - Wheelchair Robotic Agent 

Individual selection, information view and control of each robot is possible through a combo 

box that keeps a list of the TRobot instances. Once a movement button is pressed, or a 

custom message is sent, the application uses the XMLSend operation of the selected TRobot 

instance to do it. Similarly, once an instance receives a message to its port, a check of the 

combo box selection is made and, in case the selected one matches the received information, 

it will update the values on the main form of the application. 

Although it possesses no intelligent behavior (being simply reactive or pre-planned), this 

application proved to be valuable in simulator testing for XML messaging handling as well as 

for the core algorithm implementations detailed in Chapter 4. 

5.3 – Door Agent 

To provide a wider variety of testing fields for the IW control algorithms, another type of 

agent was allowed to connect to the simulator. The type “Door Agent” modeled doors, for 

they are key objects in this type of simulation environment. Since every parameter of the 

robot‟s rectangle form is now adjustable by each agent, it is possible to turn a robot with a 

very small height, proportional width and a center of movement at the bottom of the robot 

(e.g.: COM=0.99) into a conventional door. The similarities are such that this application is 

itself an adaptation of the Wheelchair Agent presented before.  

Although it would be possible to create additional restrictions to a door type agent‟s 

movement inside the simulator software, this solution was declined, allowing the agent itself 

to limit the movement (by the virtual left and right motor power orders). This way, it is 

possible to create any kind for door needed. To test and use this functionality, a Door agent 

was created with the capability of connection of multiple predefined and custom doors.  
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The predefined types created were: 

 Normal Door 

o Height=1.0m; width=0.1m; COM=0.99; 

o Left Motor power = - Right motor power 

 Sliding Door 

o Height=1.0m; width=0.1m; COM=0.99; 

o Left Motor power = Right Motor power 

 Rotating Door 

o Height=1.0m; width=0.1m; COM=0.5; 

o Left Motor power = - Right motor power 

A low level button was created that would open and close the door, depending on its 

type. Figure 5.5 illustrates the implemented algorithm for this control button. 

 

Door Closed

Proximity sensor detection 

Opening Door
90º rotation detected 

entry/Start Timer

Door Open

Timeout and No sensor detection 

Door Closing

90º rotation detected 

Movement Stop

Collision detection 

No Collision Detection 

Movement Stop

Collision detection 

No Collision Detection 

 

Figure 5.5 – UML stat diagram of the door control algorithm 

To demonstrate the extra capabilities of the door as an intelligent agent, sensor 

treatment was implemented into the application for automatic door open usage. If the door‟s 
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proximity sensors indicate an object close enough, it would automatically open the door. This 

behavior is similar to the behavior of a common automatic door. So, after a fixed period of 

time without sensor detection, the doors will close. Moreover, through the collision detection 

sensor, the door stops its movement in case of contact, waits a determined period of time 

and then tries to proceed the previous action. 

Possibilities for an intelligent robotic door agent are vast and in the last chapter of this 

dissertation, future work on this matter is proposed. A sample of the capabilities is the 

communications module. A particularly interesting feature is to open or close from received 

communications rather than by the proximity sensors. In fact, with integration with the IW‟s 

controlling agent, the door could open as a part of a trajectory plan of the wheelchair. This 

would set the environment more intelligent, efficient and more secure. 

5.4 – Intellwheels Control Agent 

One of the main objectives of this dissertation is to allow the same controlling software to 

be used for real wheelchair control, virtual wheelchair or both (simultaneously). 

Furthermore, this should be done in such a fashion that the same medium level algorithms 

could be used transparently to the hardware (or virtual hardware) to which the software is 

connected. 

The software itself was originally developed already with the intent of, later, adding the 

simulation features. This was done by the creation of the simulator configuration tab (Figure 

5.6-b.) and the operation mode selection (Figure 5.6-a.). 

 

  

a. b. 

Figure 5.6 - Simulation-Ready structures on Intellwheels main application (adapted from [1]) 

These design spaces were left with no code within and, apart from the connection handling, 

the modifications to this software went deeper inside, onto sensor information treatment, 

motor power order decisions and simulation communication requirements. 
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5.4.1 - Virtual Reality Mode 

The first modification implemented on this agent was the adaptation to pure virtual 

environment control, which corresponds to Simulation selection in the “Operation Mode” 

(Figure 5.6-a). The control applications connect to the simulation server through UDP and IP. 

The simulator will provide this application world perception through GPS sensor (for 

positioning), compass (for orientation), virtual sonars and IR sensors (for obstacle detection), 

as Figure 5.7 represents. 

 

Intellwheels Simulator server IW Control Apllication

UDP/IP

Virtual Sensor perception

Motor power inputs
 

Figure 5.7 - Simulated Operation Mode 

The advantages of this operation mode are the testing possibilities it allows. It is possible 

to test the functionality of the control algorithms in a sensor error free environment and, on 

the other hand, test error treatment excluding other wheelchair movement tribulations. 

 

5.4.2 - Real Mode 

Real wheelchair connection was already implemented at the beginning of this project. It 

consists on a RS232 connection with the acquisition boards on the wheelchair for sonar and IR 

sensor readings and motors‟ power inputs send, illustrated in Figure 5.8. 

 

IW Control Apllication

RS232

Motor Power Inputs

Real Sensor Perception
 

Figure 5.8 - Purely Real Operation Mode 
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The control of the chair can either be manual or in an automatic mode where the power 

inputs are defined in function of the planned task. The greatest inconvenience of this mode is 

the lack of reliability that real sensors can offer. The sonar and IR sensors have random 

reading errors and, on some objects and surfaces, they might even fail to detect anything at 

all (e.g. tables, black or rough surfaces). 

The chair‟s localization is made through odometery. The impulses read on each encoder 

will allow left and right wheels speed calculation which, no its turn, permits angular 

movement as well as X and Y variations. Once more, this is a real sensor and, in case of wheel 

sliding, impulse readings induce into false speed calculations, thus making the wheelchair 

“lose” its position. 

 

5.4.3 - Augmented Reality Mode and Sensor Merging 

Final operation mode (Figure 5.6) will make the application connect simultaneously to the 

real wheelchair, through RS232, and to the virtual world of the simulator, through IP and 

UDP. This mode requires the localization calculations, made through real wheelchair sensors, 

to be very precise as the virtual world generated by the simulator relies solely on that 

information for real wheelchair incorporation. 

RS232

Intellwheels Simulator server IW Control Apllication

UDP/IP

Virtual Sensor perception

Motor power inputs

Real Sensor perception

Wheelchair Real Position

 

Figure 5.9 - Augmented Reality Operation Mode 

As the simulator creates a virtual projection of the real chair on its world, it is able to 

place virtual sensors onto it and provide the control software with additional perception 

information. In addition to the real sensors, control algorithms may count with error and 

variation free information that the simulator can provide. 

Summing up, the IW control application will receive real and virtual sensor information 

and send the wheelchair‟s position to the simulator and motor power inputs to the real 

wheelchair. 

During the augmented reality operation mode this application will treat information from 

virtual and real sensors. The challenge is how to merge all the information to achieve the 

best possible control decision. Since this is a project that deals with humans, the information 

merging algorithm implemented followed a safe, conservative ideology. If the virtual and real 
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sensors offered different perceptions on the world around, the control should decide using 

the values that better protect the chair (and the patient himself). As example, if the virtual 

proximity sensors read an object 30cm away in front, and the real sensors read the same 

object at 60 cm, the closer value is the one to be used in the decision for motor power input. 

Figure 5.10 graphically represents this algorithm. 

 

Read Virtual 

Proximity Sensor

Read Real 

Proximity Sensor

Virtual Value 

<

 Real Value?

Use Virtual Value 

for control 

decisions

Use Real Value 

for control 

decisions

Yes No

 

Figure 5.10 - Sensor Merging Algorithm 

5.4.4 - Simulator Connection 

The development of the simulator allowed parameter configuration that was not foreseen 

in the initial stages of the application development. As detailed in chapter 4, the registration 

of the wheelchair with the simulator should include all of its physical characteristics. 

Therefore, a modification to the simulator configuration form was made, to allow the 

parameter configuration (Figure 5.11). 

 



50  Simulation Agents 

 

 

Figure 5.11- Simulator Configuration Form 

Since it was intended to model as closely as possible the real wheelchairs, the prototypes 

in LIACC were measured resulting in the definition of their physical characteristics. 

Comparison between virtual and real sensors was also looked-for. As a result the location of 

every sensor was measured (relatively to the wheelchair‟s center of movement). This 

information must also be sent in the initial connection with the simulator. Figure 5.12 shows 

the XML message to be sent for full IW agent registration. 

 

 

Figure 5.12 - XML message for IW registration, for prototype wheelchair. 

5.5 – Summary 

This chapter discussed the developed agents for connection with the simulator. The 

agents were vital in various stages of the simulator‟s development, even in the initial Ciber-

Rato study, to which the Simple UDP Tool intended.  

<Robot 
Name="WheelChair1" 
Type="Simulated" 
Height="0.66" Width="1.04" COM="0.81" 
MaxSpeed="0.5" AccelerationCurve="0.2"> 
<IRSensor Id="0" X="0.72" Y="0.24" Angle="0.0" Cone="60"/>
<IRSensor Id="1" X="0.72" Y="-0.24" Angle="0.0" Cone="60"/> 
<IRSensor Id="2" X="0.54" Y="0.24" Angle="90" Cone="60"/> 
<IRSensor Id="3" X="0.54" Y="-0.24" Angle="-90" Cone="60"/> 
<IRSensor Id="4" X="0.05" Y="0.28" Angle="90" Cone="60"/> 
<IRSensor Id="5" X="0.05" Y="-0.28" Angle="-90" Cone="60"/> 
<IRSensor Id="6" X="-0.03" Y="0.28" Angle="180" Cone="60"/> 
<IRSensor Id="7" X="-0.03" Y="-0.28" Angle="180" Cone="60"/>

</Robot>
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The Wheelchair Agent was later developed, as the simulator was able to accept full 

electric wheelchair characteristics (from size, center of movement, acceleration to top speed 

and sensor definition). This agent is also able to perform basic commands for movement 

(forward, back, turn left and right) which allows full test of the Intellwheels capabilities for 

wheelchair simulation. 

One of the main objectives of this dissertation was to be able to have one unique 

application for real and virtual wheelchair controlling. This was successfully completed and 

moreover, and augmented reality feature was able to be implemented, where the application 

is able to receive and reason with virtual and world information, simultaneously. 

 

 



52  Intelwheels Viewer 

 

Chapter 6  

Intellwheels Viewer 

Visualization is of great significance in simulation in the sense that it is a mean to easily 

understand a large quantity of information, which would otherwise be too great or complex 

for most people to fully grasp. Graphical representation is now taken for granted and it would 

be unconceivable to develop a simulator without some sort of visual illustration. Humans 

construct and comprehend the world in a graphical way for we have an innate ability to 

process graphic information in a preconscious, involuntary fashion, similar to breathing[40]. 

Visualization is, therefore, the foundation for our understanding. In spite of its importance it 

is critical to ensure quality in a few elements, when developing simulation graphics: 

 There must exist good interactivity during the simulation, in order to display the 

information the user intends to see; 

 Skepticism to computer generated images is still very high and to provide credibility, 

it is necessary to ensure realism; 

 Associated with the realism factor is the animation‟s performance. If jumps or 

glitches are seen, it is difficult to extract conclusions; 

 The animation must be flexible enough to enable and disable parts of it, avoiding 

heavy computational and visual efforts. 

Taking these concepts into consideration, is becomes clear that the original viewer for 

Ciber-Rato would not fit the needs of the Intellwheels Simulator. The decision to develop a 

new viewer from scratch was made based on various factors: 

 Ciber-Rato Viewer was not flexible for it was focused on a competition environment 

and, even more critical, restricted to robots with the same circular shape and radius. 

Visualizing rectangular shapes, with variation height and width, was not possible; 

 The drawing of the robot‟s themselves was done through the loading of bitmap 

images which invalidates the possibility of dynamic modifications, through the 

simulator; 

 Taking realism into consideration, a 3D display of the simulation became important. It 

would be possible to view the entire simulation as if one was sitting on the real 

wheelchair. Ciber-Rato did not contain a 3D display option and modification of the 
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original source code would be more difficult and more time consuming, without 

better final results. 

6.1 – Architecture 

Conceptually, the viewer developed contains 5 main software modules (Figure 6.1).  

 

Figure 6.1 - Intellwheels Viewer Architecture 

The main module (main form) is where everything comes together. It permits the 

communication configuration activation, robot selection (for selected information display) 

and visualization selections. This main module is also responsible for storing the information 

concerning the map‟s characteristics and wall definition. The map and wall information is 

sent from the simulator to the viewer at the beginning and that is the information that will be 

used for the drawing modules. It is appropriate to mention that since the simulator sends the 

wall definition by their corner definition that concept will be kept. 

The communications module contains the IP/UDP configurations and handling and XML 

message parsing. This module ensures that the messages sent by the simulator are correctly 

received and transformed into system variables for direct usage from the other modules. 

The Robot module is where all the robots‟ information is stored. Their physical 

characteristics, status, position and orientation are kept and secured here. It is through this 

module that the rest of the application will access updated and ordered information on the 

robots, either for show purposes or for calculations. 

The 2D and 3D modules have similar functioning modes. They access the map and robot‟s 

information and reproduce them graphically. The only special characteristic of the 3D module 

is that is calls and uses external OpenGL libraries[41][42]. Since the simulator only provides 

2D information, the 3D viewer will generate the Z axis coordinate in such a wall that will 

allow realism and good simulation visualization at the same time. 
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In terms of sequence of events, after the main form is created, the only operation 

allowed is the configuration of the UDP parameters. Once the task is done (or default values 

are accepted) the application must send the simulator a registration XML message, from 

which it will receive a confirmation. The next steps are to request map information after 

which robot information will continuously be sent, with the frequency defined for simulation 

step. When requested, the 2D and 3D display modules will graphically draw the information 

already stored in the robot and map modules. 

Alike the agents, this viewer was also developed with Delphi 7[37][38], ensuring, once 

again, consistency on the projects requirements of programming software. 

6.1 - Main Form 

The main module (main form) is where every configuration parameter can be adjusted, 

starting from the local UDP listening port and the IP and port for the remote simulation sever. 

 

 

Figure 6.2 - Intellwheels Viewer Main Form 

When the user presses the “Start Listen” button, the UDP component will be activated, 

and immediately send a registration XML message to the server (as detailed in chapter 4, 

section 4.4). This form allows modifying parameters specific for 2D and 3D viewing (which will 

be explained later on this chapter) and contains a combo box where every Wheelchair is 

listed. The selected wheelchair on that list will have its information (physical characteristics, 

status, position and orientation) updated on the memo box at the side. 

6.2 – Communication Handling 

Communication between the viewer and de simulator is made through the UDP protocol 

and XML messages. Similarly to the robotic agent connection, the viewer must connect itself 

by sending a registration message to port 6000 of the server. The response of the server will 

be made through a port that will, from then on, be bind to a unique application. As a 

consequence, every communication to the simulator from this specific viewer must be done 
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through that new port. A good example is the map information request. If the simulator 

responded from port 4000 to the registration, the map request XML message must be sent to 

the port 4000 of the simulator. 

After this initial adaptation, the simulator will continuously send information on the 

robots within the simulation. A XML message of robot information update (exemplified in 

Figure 6.3) is sent every simulation step, which ensures the real time characteristic of the 

visualization. 

 

Figure 6.3 - Viewer XML received message of robot information 

The simulator sends a message for each robot every time step. For example, if there are 5 

IW agents connected to the simulator, it will send the viewer 5 XML messages with every 

information needed for robot drawing: position, orientation, dimensions, COM, type and 

collision details. 

The same XML parser used in the robotic agents (Chapter 4) was used in this application 

(proving the advantages of maintaining the same programming software through the various 

applications of the project. 

6.3 - 2D Viewer 

The simplest form of viewing the entire simulation is in a 2D viewer. It displays 

information of the complete simulation including every robotic agent. 

 

 

Figure 6.4 - 2D View 

<Robot

Name="Teste" Id="1" Height="1" Width="1" CenterOfMovement="0.5" Type="Simulated" 
Time="0" Collisions="0" Collision="False" State="Stopped">
<Position X="6" Y="11" Dir="0"/>

</Robot>
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6.3.1 – Robot and Wall Drawing 

The map‟s outer limits are draw through the definition of a polygon whose vertexes are 

calculated with the map‟s height and width. Figure 6.5 is a section of the source code, in 

Pascal language, where that functionality is implemented. 

 

 

Figure 6.5 - Map outer limit drawing code 

Form2 is the base canvas for the 2D drawings. For map outer limit drawing, a rectangle with 

vertexes of (0,0), (0,Height), (Width,Height), (Width,0) were drawn.  

With the communication module, the application received the information regarding wall 

vertexes and stored. Since each wall is an array of vertexes and a vertex is an array with 2 

values type double – X and Y coordinates – map is constituted map an array of array of array 

of double, as illustrated in the code below. 

 

Figure 6.6 - Implemented code for wall drawing 

A wall is drawn by ordering a polygon draw of every vertex when the vertex list ends. The 

Polygon draw function automatically connects every vertex and prints it onto the canvas. 

Although Robot drawing uses the same Delphi “Polygon” function, the calculations 

required to determine the corner points of the robot are more complex. Since the simulator 

outerlimits : array of TPoint;

[...]

form2.Canvas.Brush.Bitmap:=Bitmap;

SetLength(outerlimits,4);

canvas.MoveTo(0,0);

outerlimits[0]:=Point(0,0);

outerlimits[1]:=Point(0,Round(Form1.LabHeight));

outerlimits[2]:=point(Round(Form1.LabWidth),Round(Form1.LabHeight));

outerlimits[3]:=point(Round(Form1.Labwidth),0);

canvas.Polygon(outerlimits);

Wall : array of array of array of double;

CurrentWall : array of TPoint;

[...]

Form2.Canvas.Brush.Bitmap := Bitmap_wall;

For i:=0 to Length(Form1.Wall)-1 do begin

k:=Length(Form1.Wall[i]);

SetLength(CurrentWall,Length(Form1.Wall[i]));

For j:=0 to (Length(Form1.Wall[i])-1) do begin

canvas.MoveTo(Round(Form1.Wall[i,j,0]),Round(Form1.LabHeight- Form1.Wall[i,j,1]));

CurrentWall[j]:=point(Round(Form1.Wall[i,j,0]),Round(Form1.LabHeight)-Round(Form1.Wall[i,j,1]));

end;

canvas.Polygon(CurrentWall);

end;
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only sends information on the position and orientation, the absolute coordinates of the 

corners must be calculated. The implementation was, fortunately, relatively easy as the 

algorithm is the same already implemented in the simulator (see 4.3.1). An adaptation from 

C++ language to Pascal solved the corner determination problem. 

 

6.3.2 – 2D Options 

A few options are available in this application, to increase the value of the 2D 

visualization. Through the “2D options” tab at the top of the application window it is possible 

to change the zoom of the 2D view, add name labels to the robots and display a unitary grid 

on the floor. 

 

Figure 6.7 - Intellwheels Viewer's 2D Options 

In terms of algorithm the zoom change will affect a parameter that multiplies the maps 

height and width as well as the coordinates of the walls‟ vertexes, robots‟ centers and their 

height and width. 

6.4 - 3D Viewer 

Although the most critical simulation information is correctly represented in the 2D 

viewer (correct shape, positioning and orientation of the robots and walls), an illustration 

closer to reality was considered necessary. Taking Matthew Rohrer‟s conclusions [40] on the 

preconscious image processing capabilities of human beings, the visualization for this 

intelligent wheelchair simulation will as better as its proximity to real visualization (Figure 

6.8). Therefore the objective was not only to create a 3D environment but to allow world 

visualization as we would perceive it while sitting on the real chair. 
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Figure 6.8 - Intellwheels Viewer 3D, 1st person view. 

6.4.1 – OpenGL in Delphi 7 

Although it is important to maintain the Delphi 7 development environment as base, its 

native graphical drawing capabilities are somewhat limited. In fact, there are no high level 

functions for 3D drawing, which would demand unacceptable effort for low-level drawing on a 

canvas. The solution adopted for was to use OpenGL libraries, within then Delphi 7 

environment. 

Through OpenGL libraries, it became possible to draw the objects in a very similar way to 

the 2D mode, on a Delphi form canvas. One can draw the shapes by their polygons and their 

coordinates, relatively to a given center. The difference is in the extra Z coordinate that 

needs to be referred however, since the simulation itself is conceptually in 2D, the extra 

coordinate it purely for visual purposes. As an example, drawing a cube is done by indicating 

the corner coordinates of each of the six faces. When the camera viewing point is set, the 

OpenGL motor itself automatically handles the complete redrawing of the shown image. It 

continues to do so automatically, once the camera view position changes. 

In what concerns drawing calculations, the only major divergence from the 2D 

visualization if the complex models for the objects. While the simulator models the 

wheelchairs and doors by rectangles, as long as they occupy the same space in X and Y 

coordinates on the 3D viewer, there is no restriction on how the object itself is drawn. In 

fact, if one could actually see the chair, instead of a mere cube, it would make the 

visualization (and consequently the simulation itself) more credible. In Figure 6.9 is evident 

the difference, even though both objects have the same height width and COM (which is all 

that is used for simulation calculations and for 2D drawing). 
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Figure 6.9 - 3D viewing: Shape vs Shapless Chair. 

This kind of modeling is too complex to be made “by hand” through low level programming. 

Instead, a 3D drawing software was used to create the 3D model of the chair, and saved in a 

stereolithography file type (STL)[43][44]. STL is a flat file type which stores information of 

the 3D object‟s vertexes (X, Y and Z coordinates) and faces‟ normal orientation. To load this 

object onto the visualization, a STL parser was developed which read the STL file and stored 

the face and vertex information onto an OpenGL display list. The implemented algorithm, in 

Pascal language, is included in Annex B. 

With the 3D objects loaded, the drawing of the simulation is done by resizing the objects 

to the information on stored on each robot (position, orientation, COM and height and width). 

 

6.4.2 – 3D Options 

Being the 3D version more complex than the 2D, there are a few additional parameters 

that can be configured, as shown in Figure 6.10. 

 

   

Figure 6.10 - 3D Options 

These options include:  

 Resolution variation (default is 640x480 but more powerful computers may allow 

better resolution); 
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 Camera view variation:  

o Free View – user can move the camera freely through the 3D world (Figure 

6.9); 

o 1st Person – Camera is fixed on the chair, as if one was sitting on it (Figure 

6.8); 

o 3rd Person – Camera is placed with fixed coordinates relatively to the chair 

and behind it. 

 Object quality – The objects on STL files have 3 versions where with different number 

of vertexes. More vertexes correspond to increase in object quality but requires 

significantly more loading time and processor capacity during simulation run; 

 Name labels on robotic agents (including IWs and intelligent doors); 

 Ground grid drawing for easy position identification for the viewer. 

Figure 6.11 shows a simulation with ground grid, high object quality (chairs), 640x480 

resolution and free camera viewing. 

 

 

Figure 6.11 - 3D viewing with free camera mode 

6.5 – Summary 

Due to the available Ciber-Rato original viewer‟s limitations, mostly its lack of flexibility, 

it was not liable to attempt its adaptation for intelligent wheelchair simulation. This showed 
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the need to develop a new viewer that was constructed using Delphi and OpenGL (for 3D 

building). 

The developed viewer successfully creates credible graphical representation of the 

simulation and contributes to the entire simulation project with an evolved scenario. The 

Intellwheels Viewer implements drawing algorithms and 3D model loading functions that 

produce a full fluid, realistic and focused visual representation of intelligent wheelchair 

simulation. Moreover, the application itself is flexible enough in the sense that it can be 

easily expanded for increased performance or modified for different purposes, other than IW 

simulation. The application developed successfully creates credible graphical representation 

of the simulation and contributes to the entire simulation project with an evolved scenario. 
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Chapter 7  

Simulator Tests 

To validate the performance of the simulator and confirm its importance for intelligent 

wheelchair development, a series of tests was performed. These tests were based on driving 

analysis from real, virtual and augmented reality runs, which were compared against each 

other. 

7.1 – Experiment Definitions 

These tests were performed indoors, on the floor where LIACC is set, in FEUP. They 

consisted of various wheelchair driving runs. To achieve realistic simulation, LIACC‟s floor was 

modeled onto an XML file (Annex D includes the created XML file), so it could be read by the 

simulator, and later displayed in the Intellwheels Viewer (Figure 7.2). For realism comparison 

between the real plant and the modeled map, Figure 7.1 is the CAD drawing of the floor 

LIACC is in: 1st floor, block I. 

 

 

Figure 7.1 – CAD drawing of the plant for the LIACC floor. 
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Figure 7.2 – Intellwheels modeled map of LIACC floor 

The additional room divisions (shown in Figure 7.1) were not necessary for any of the 

required tests and, therefore, where not converted into XML map file. Nevertheless, the 

dimensions are faithful to the real floor as are the positions of the walls, on the modeled 

map. 

7.2. – Dynamic Characteristic Tests 

In order to correctly simulate the acceleration curve and the top speed, the first stage of 

the tests was to determine these characteristics of the real wheelchair. This initial test 

consisted on driving the wheelchair forward, inputting maximum values to the motors while 

starting from full stop (speed=0m/s). This test was performed with the Intellwheels Control 

Software and, through its log of odometry readings, the acceleration curve displayed in Figure 

7.3 was obtained. 

 

 

Figure 7.3 - Acceleration Curve of Real Wheelchair. 
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The evident variations are due to odometry errors, another problem of real tests and 

consequently an advantage of simulated environment. 

A new line of the log file was registered every time step (100ms). The data analysis 

revealed a maximum speed of approximately 0.49 m/s and a rise time (from 10% to 90% of top 

speed) of 1.4 seconds. 

Using this information and the new functionalities of the Intellwheels simulation, in terms 

of robot configuration parameters, it was possible to model a very similar characteristic for 

the virtual wheelchair. Using the same maximum speed detected for the real wheelchair 

(0.26m/s) and an “AccelerationCurve”=0.83 parameter (AccelerationCurve defined in Chapter 

4), the Intellwheels Control Software connected only the simulator. The log of the position 

allowed the determination of the speed, which provided the results shown in Figure 7.4. 

 

 

Figure 7.4 - Acceleration Curve of Virtual Wheelchair 

By performing an analysis on the log file, similar to the previous, it was concluded that 

the maximum speed was the expected 0.49m/s and the rise time was of 1.6 seconds. Despite 

not being a perfect match to the real wheelchair‟s results, this difference of 0.2 seconds was 

low enough. Another noticeable difference is the curve itself. The simulated acceleration has 

a logarithmic shape which although slightly different than the real one, once again does not 

represent significant consequences in the outcome of the tests nor on the conclusions drawn 

from them. 

This simulator was now able to model an electric wheelchair very similar to the real one 

and these simulation parameters were used throughout the remaining tests. 

7.3 – Obstacle Avoidance Test 

The aim of this test was to compare real, virtual and augmented reality IW performances. 

It consisted on driving through a course that imposed a kind of slalom. The check points are 

marked on the map below (Figure 7.5) and their coordinates in Table 3.1.  The chair must go 
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from checkpoint #1 to checkpoint #2 and deviate from the obstacles put along the way. It is 

important to refer that the obstacle position is not known by the chair, only the proximity 

sensors (either real or virtual) will send that perception to the control software (in 

autonomous driving). 

 

 

Figure 7.5 – Section of 2D LIACC map, with checkpoints and obstacles 

Marks 1 and 2 are simply coordinates for the starting and finishing points of the tests, 

whereas marks A and B are obstacles and were placed in the same position and same 

dimension in both real and virtual environments. 

Table 7.1 - Checkpoint Coordinates 

Point X (m) Y (m) 

1 10.0 6.1 

2 20.0 6.1 

 

Table 7.2 - Obstacle Coordinates 

Obstacle Xmin (m) Ymin (m) Xmax (m) Ymax (m) 

A 17 6.1 17.6 6.4 

B 19.4 5.5 20 5.9 

 

Table 7.2 defines the obstacles placed for the collision avoidance tests, detailed further 

in this chapter. Both objects are shaped as a rectangle (in the real and in the virtual 

environments). The minimum point and the maximum point coordinates define the position 

and size of the rectangle. 

 

7.3.1 – Real Manual Driving 

While sitting on the actual wheelchair, the user would command it using the PSX joystick 

to drive the wheelchair through the defined path. Trajectory deviation and final position and 

orientation are registered for comparison procedures. For this experiment, there is no 

connection with the simulator, only real environment is being tested. 

 



66  Simulator Tests 

 

7.3.2 – Virtual Manual Driving 

Through the first person view option on the Intellwheels Viewer, a virtual wheelchair must 

be driven through the defined path. It is important to refer that the controller used for input 

orders is the same. There is no connection to the real wheelchair, and the user must drive 

only by seeing the display screen (Figure 7.7 displays the view of the operator). 

 

7.3.3 – Real Automatic Driving 

For this test, the control algorithms for automatic driving are tested as well as noise 

treatment for the sonar proximity sensors. The Intellwheels Control Software must be set up 

(through its implemented control algorithms) in such manner that it should go past the 

checkpoints defined and automatically deviate from real obstacles. No simulation connection 

is present during this experiment. 

 

7.3.4 – Virtual Automatic Driving 

Using the same automatic plan used in the previous test, the IW control application was 

disconnected for the real wheelchair and connected only to the simulation server. Through its 

virtual sensors, the wheelchair must navigate, once again, through the checkpoints and avoid 

virtual objects. 

 

7.3.5 – Augmented Reality Automatic Driving 

On this test, the wheelchair uses perception from the real world (sonars and IR sensors) as 

well as from the virtual world (simulator generated sensors). The controlling agent will be 

submitted to the same autonomous driving as before, although now it disposes of virtual 

sensors for additional collision avoidance. 

 

7.3.6 – Obstacle Avoidance Results 

During the test, a log of the control software‟s awareness of the chair‟s position (X and Y 

coordinates) was made. Annex C includes a log file example and the manual log sheet. The 

results, for each of the operation modes, are graphically represented in Figure 7.6. 
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Figure 7.6 – Trajectory results from obstacle avoidance test 

The red horizontal lines evident in Figure 7.6 represent the corridor walls delimitating the 

free space in which the chairs can move. Shown below, Table 3.1 indicates whether the run 

was successful and how many times the wheelchair touched a wall or obstacle. 

Table 7.3 - Obstacle Test Success Information 

Operation mode Reached Checkpoint #2 (Yes/No) Collision Count 

Real/Manual Yes 0 

Virtual/Manual Yes 0 

Real/Autonomous No 1 

Virtual/Automatic Yes 0 

Augmented/ 
Autonomous 

Yes 0 

 

The first test taken was the Real mode with manual driving. In terms of Control Agent 

testing, only the low level algorithms are tested (basic movements). As these have already 

been correctly implemented during the initial stage of prototype development [2][1], this run 

would provide valuable information of the odometer sensor. It is evident on the graphic that 

the readings were not reliable, for the X and Y coordinate calculations (determined from the 

odometer readings) are incorrect. In fact, the powered wheelchair was manually controlled 

through the corridor, without ever crashing. Had the chair be driven automatically relying 

solely on odometry it would undoubtedly collide with the wall. 

Purely virtual test ran successfully without difficulties. The Intellwheels Viewer (Chapter 

5) was set to 1st person viewing mode for added realism – illustrated in Figure 7.7 - and 

controlling the chair manually (with the PS2 controller) was easy. The log of the control agent 
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registered X and Y coordinates without error and, as it is evident on Figure 7.6, there were no 

collisions. 

 

    

a b c d 

Figure 7.7 - Virtual Reality, Manual Control Test 

On the test with the real wheelchair (no simulation connection) on autonomous driving, 

some problems were encountered since, as it can be seen on Table 7.3, the chair collided 

with the wall. Despite the fact that the odometry errors were little (the chair‟s position 

calculation still placed it inside the corridor) this test was still unsuccessful. This outcome 

could have been cause either by imperfect sonar readings, or by algorithmic errors. This type 

uncertainty is one of the problems that simulation can solve by eliminating noise from 

sensors. A conclusion on the subject is done on this chapter‟s summary and on chapter 8 – 

Conclusions. 

The virtual environment (real wheelchair not involved) autonomous driving test 

performed with a successful outcome. The chair successfully drove itself from point #1 to 

point #2 and deviated from the obstacles without any collisions. It is possible to conclude 

that, in a noise-free environment, the control algorithm uses correctly the sensor readings 

and avoids impacts. 

The test with the real wheelchair in augmented reality operation mode on autonomous 

driving was a great success. The real movement of the chair was mimicked perfectly in the 

virtual world as shown in Figure 7.8. 

 

    

    

    

a b c d 

Figure 7.8 - Augmented reality test 
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 Once again, similarly to the Real/Autonomous test, the odometry errors were very small. 

This led to the correct positioning of the wheelchair on the simulator which, on its turn, 

resulted in correct and virtual sensor readings. Consequently the wheelchair avoided real 

object, through its virtual representation. The wheelchair had, in fact, a position log very 

close to the virtual/autonomous test, as shown in Figure 7.6. Through this test, sensor 

merging algorithm implementation was validated. 

7.4 – Automatic Door 

In order to verify the correct implementation of the developed door agent (detailed in 

Chapter 5), a simple test was performed. The door agent was defined with height=0.1m,  

width=1.0m and COM=0.99. Two proximity sensors were defined at each side of the door, to 

detect approaching objects, as illustrated by Figure 7.9. 

Cone = 40º

Angle=90º

Cone = 40º

Angle=-90º

 

Figure 7.9 - Representation of the modeled door 

Using the Wheelchair Agent, a virtual wheelchair was connected to the simulator and the 

test of door automatic opening was executed. Figure 7.10 is a series of print screens of the 

Intellwheels 3D viewer. The IW agent ordered the chair to move forward, regardless of what 

its own proximity sensors detect. On the other hand, the door agent was programmed to open 

if an object was detected and close only when the sensors stop detecting (as detailed in 

Chapter 5). 

 

    

a b c d 

Figure 7.10 - Automatic opening of the door 
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7.5 – Summary 

This chapter presented the tests performed to compare simulated and real wheelchair 

movement. Tests were repeated through 5 operational and control methods: 

 Real mode with manual control; 

 Virtual mode with manual control; 

 Real mode with automatic control; 

 Virtual mode with automatic control; 

 Augmented reality mode with automatic control. 

The results showed that simulation-aided algorithm testing performed far better than 

purely real tests. The main reason for this was the errors in odometer-based positioning 

(which accumulates error) and sonar noise which sets the chair‟s controlling software into 

erratic decisions. It is also noticeable that the behavior of the wheelchair is almost equal in 

virtual and augmented reality modes. 

Through these tests it was possible to determine that the simulation is an important mean 

to allow control algorithm test. It is possible to completely eliminate sensor reading errors, 

thus concentrating purely on the control section. Despite problems with real sensors, this 

simulation‟s value was proved with the success of the virtual environment tests. The control 

algorithm is correctly implemented, which is a conclusion that, without simulated testing, 

could not have been reached. 
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Chapter 8  

Conclusions 

This chapter will argue on the achievement of the initially proposed objectives for the 

project. It will discuss the results that were achieved from the tests performed, making a 

comparison between the system capabilities before the implementation of a simulation 

module and its present capabilities. It will also discuss the additional practical applications 

that the developed systems can have and finalizes with a view on what else can be expect on 

future work on this subject.  

8.1 - Objective Achievement 

The main goal for this research project was to build a simulation environment capable of 

testing the challenges that arise during the development of an intelligent wheelchair system. 

As a result, this work yielded not only a single application, but a complete testing system, 

with: 

 World simulation, including map loading capabilities; 

 Virtual robotic bodies, giving the objects movement capabilities limited by the rules 

of physics; 

 Virtual sensors, for movement control and noise treatment algorithms testing; 

 Augmented reality, for real and virtual environment interaction; 

 Generic robotic agents, allowing various object load onto the simulation; 

 Realistic computer generated graphics, conferring additional simulation credibility. 

As a final implementation, the Intellwheels Control Software, previously developed in 

LIACC, was adapted now allowing operability with the simulator. Through this 

implementation, the developed simulator was proven a success. Not less important, the 

algorithms already implemented on it could be tested with focus on their purposes. It is now 

possible to ensure the functionality of a movement control algorithm (such as the obstacle 
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avoidance subsumption algorithm), eliminating sensor noise errors, since the virtual sensors 

can provide error-free readings. 

The simulator is now in use at the present stage of the Intellwheels Project development, 

at LIACC, in different modules: “Main application” and “Intelligence” (see Chapter 2) for 

control and stratergy algorithm tests and even in “Multimodal interface” for integration and 

order validation. 

8.2 – Main Results 

This simulator was submitted to tests with wheelchairs under manual and autonomous 

driving. These tests were able to prove the concept that the simulator is a capable 

application when generating all the virtual information that an intelligent agent requires for 

autonomous navigation in an unknown environment. 

The tests were also able to establish that, in a virtual environment, the IW autonomous 

driving, performs better than in the real environment, navigating with encoders for speed and 

position calculation and real sonar sensors for autonomous driving. From these results one is 

able to infer that additional development is required on noise treatment for these sensors, 

rather than holding the control algorithms responsible for failure in autonomous driving. 

8.3 – Simulator’s Capabilities 

The original intent of this simulator was to aid in the development of IWs and it is indeed 

being used in such manner.  

The simulator‟s capabilities stretch beyond IW wheelchair simulation, due to its origins 

(Ciber-Rato) and to the generalization that was applied to it. In fact, this simulator can now 

accept connections from any type of robotic agents, limited only to how the differential robot 

modeled is able to move. Car and pedestrian simulation can be performed, not only through 

their physical interaction (collisions) but emotional relations as well, since data 

communication between agents is available. Having a distributed architecture, Intellwheels 

Simulator expects the agents to be external applications that connect through UDP. Because 

of this attribute, it is able to involve in a unique simulation a vast number of intelligent 

agents, adding the possibility of testing algorithms results in a dynamic, complex 

environment. 

A limit may be imposed by the visualization software (Intellwheels Viewer), as it does not 

yet have the full capability of dynamically loading any type of 3D object. Currently it 

possesses a small range of 3D models and they are allocated to the type XML tag of the 

object: only doors, tables and wheelchairs have dedicated 3D models, at the current version. 

Nevertheless, the current application‟s source code is very flexible and basic shapes are 

loaded in case a different type is identified, thus providing the sense of size and volume in 
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the virtual world‟s space. In fact, since it constructs the modules depending on the physical 

characteristics provided by the simulator, the images offered will reflect the occupied space 

of the object, independently of its nature. 

Due to the origins of Intellwheels Simulator, it accepts robotic agents from the original 

Ciber-Rato Simulato, with minor ajustments. The competition orientated mentality of the 

agent needs to be modified, as well as sensor registration, but these are not core changes to 

a controller software. Furthermore, the Ciber-Rato competition itself may evolve through the 

new implemented parameters. The Intellwheels‟ concepts of using intelligent robotic agents 

as dynamic scenario and the mixed reality feature (real and virtual environment interaction) 

could add value and interest to the University of Aveiro‟s competition. 

8.4 – Future Work 

Time constraints were severe during the development of this research project. Thus, a 

great number of features, that would add value to the simulation project, could not be 

implemented in time for the imposed writing and presentation deadlines. 

For the simulator itself, the most relevant issues are related with the inclusion of 

additional sensors. Although not being presently in use by the Intellwheels Control Software, 

a digital camera is physically mounted on the chair. Ground marking localization algorithms, 

if implemented, using this camera, will add increased accuracy to the IW‟s awareness of its 

position on the world. This action will help in the solution of one of the problems detected 

during the tests performed on this dissertation. 

Linked to this aspect are the encoder sensors. The real wheelchair uses encoders for 

movement calculation but, on the other hand, the simulated robot receives this information 

directly, through a virtual GPS. The possibility of encoder based navigation will increase 

realism and allow testing navigation algorithms themselves. 

A final note on what could be done concerning the sensor simulation concerns the 

characteristic curve definition. Although the proximity sensors have configurable parameters, 

the output equation itself is not re-definable. Allowing this would approximate the virtual 

behavior even more to the real one. 

Simulation agent development can still improve immensely, especially intelligent control 

for objects (other than wheelchairs). An unexplored, although available, feature is the 

communication module. Increased messaging capabilities between agents will allow: 

 Doors that open by communication orders instead of proximity perception. 

 Distributed planning: wheelchairs and other devices could jointly create plans to 

fulfill some given tasks in a cooperative manner. 

 Strategy and tactics: wheelchairs could choose, between themselves, which one 

would fulfill an order given by an outside entity. A gain in service quality will be 

achieved with such an implementation. 
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 Complex calculations, such as path planning, could benefit from distributing 

computing between connected agents. Threads for the calculations could be spread 

among the other agents, allowing a uniform capacity usage. 

Finally, in respect of the Intellwheels Viewer application, developed for simulation 

visualization, the potential is vast for future implementations. The user could use 

information, specific for each robotic agent, sent from the simulator to load (or even 

dynamically construct) a 3D model of the object. A possible implementation is to analyze the 

name of the agent and, through it, guess an object type. With a list of 3D object models, it 

would select the most appropriate and load it, through OpenGL, adjusting to the individual 

size definitions. 

Associated with this topic is the notion of scenario-related object agent integration. A 

simulation, in order to be as interactive as possible, could allow direct insertion of objects, 

during its run. An intuitive mean to do so is by visualizing the world and space onto which it 

will be inserted. If the viewer had the capability of creating and controlling a table, cabinet 

or door agents it would greatly simplify the inserting task and converging with the notion of 

interaction importance on computer generated graphics [36]. 

A last functionality, that would increase the flexibility and the applicability of the viewer 

application, is to fully integrate the viewer with the Ciber-Rato competition. Having been 

designed for XML messaging, at the image of the original competition‟s software, the 

additional coding would bring interesting results. A selectable operation mode, choosing from 

IW Simulation or Ciber-Rato Simulation, would define how the robots are drawn: wheelchairs 

or circular robots. This work would certainly bring added value to the competition and 

probably interest more participants.  

8.5 – Final Remarks 

Having worked with the Ciber-Rato since the first day of this research project, the 

following final comments arise. As a matter a fact, the software proved to be very flexible as 

the adaptation modifications were implemented with success. Integration of the new 

algorithms and functions within the original code itself was good, due to its well structured 

characteristic. 

This dissertation was made on a short period of time, however the developed applications 

have proved to be of value to LIACC‟s Intellwheels Project as conclusions concerning the 

previously developed control algorithms have already been taken. These new applications 

developed are a very solid base for further work and the possibilities for expansion of agents, 

viewer and the simulator itself are vast. 
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A – Ciber-Rato map XML file 

File name: ThesisExampleMap.XML 
File content: 
 
<Lab Name="ThesisExampleMap" Width="28.000000" Height="14.000000"> 

 <Beacon X="25.000000" Y="7.000000" Height="30.000000" /> 

 <Target X="25.000000" Y="7.000000" Radius="1.500000" /> 

 <Wall Height="2.500000"> 

  <Corner X="11.500000" Y="11.500000" /> 

  <Corner X="11.500000" Y="2.500000" /> 

  <Corner X="13.500000" Y="2.500000" /> 

  <Corner X="13.500000" Y="11.500000" /> 

 </Wall> 

 <Wall Height="1.000000"> 

  <Corner X="16.500000" Y="10.000000" /> 

  <Corner X="16.500000" Y="5.500000" /> 

  <Corner X="21.000000" Y="5.500000" /> 

  <Corner X="21.000000" Y="6.500000" /> 

  <Corner X="17.500000" Y="6.500000" /> 

  <Corner X="17.500000" Y="10.000000" /> 

 </Wall> 

</Lab> 
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B – STL Parser for 3D Model Loading 

During the OpenGL programming for the 3D viewer, a STL file type parser was developed, 

in order to load 3D models. The algorithm for the parser is detailed below, in the STL loading 

and vertex parsing code sections. Since the 3D viewer was built with Delphi 7, the code is in 

Pascal Language. 

 

 

AssignFile(STLFile,filename);

Reset(STLFile);

while not Eof(STLFile) do

begin

ReadLn(STLFile, straux);

IF pos('facet normal',straux)>0 then begin

FacetCount:=FacetCount+1;

SetLength(FacetNormalMatrix,FacetCount);

FacetNormalMatrix[FacetCount-1,0]:=ParseSTLFacet(straux,1,1);

FacetNormalMatrix[FacetCount-1,1]:=ParseSTLFacet(straux,1,2);

FacetNormalMatrix[FacetCount-1,2]:=ParseSTLFacet(straux,1,3);

end;

IF pos('vertex',straux)>0 then begin

STLmessage:=STLmessage+straux;

vertexcount:=vertexcount+1;

SetLength(vertexmatrix,vertexcount);

vertexMatrix[vertexcount-1,0]:=ParseSTLVertex(straux,1,1);

vertexMatrix[vertexcount-1,1]:=ParseSTLVertex(straux,1,2);

vertexMatrix[vertexcount-1,2]:=ParseSTLVertex(straux,1,3);

end;
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Function ParseSTLVertex(STLMsg : string; VertexNo: integer; ValueNo: integer): double;

var

PValue : double;

submsg:string;

aux : integer;

i, j: integer;

VertexCT, ValueCount:integer;

begin

VertexCT:=1;

ValueCount:=1;

submsg:=STLMsg;

For VertexCT:=1 to VertexNo do begin

IF Pos('vertex',submsg)<0 then exit;

submsg:=RightStr(submsg,Length(submsg)-Pos('vertex',submsg)-6);

IF VertexNo=VertexCT then

begin

IF POS('vertex',submsg)>0 then

submsg:=LeftStr(submsg,Pos('vertex',submsg)-2);

for ValueCount:=1 to ValueNo do begin

IF ValueCount=ValueNo then

begin

IF ValueCount<3 then submsg:=LeftStr(submsg,Pos(' ',submsg)-1);

PValue:=StrToFloat(submsg);

ParseSTLVertex:=Pvalue;

exit;

end;

submsg:=RightStr(submsg,Length(submsg)-Pos(' ',submsg));

end;

end;

end;

end;



82   

 

C – Test Registrations (Log File Example) 

This file is an example of the logs produced by the Intellwheels Control Software. The 

character comma separates the collums. The sequence of columns represents the (orderly) 

the following details: Time Step; Ticks Left encoder; Ticks Right encoder; Sonar Front; Sonar 

Right; Sonar Back; Sonar Left; Robot Orientation; X coordinate (meters); Y coordinate 

(meters). 

 

File name: “log.txt” 

File content: 

 

V=[ 

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1 

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1 

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1 

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1 

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1 

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1 

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1 

] 
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D – LIACC XML MAP 

To increase reality and also to allow more augmented reality rests, a XML map of the 

LIACC‟s floor on FEUP was created. This XML map is compatible with Intellwheels and Ciber-

Rato simulators. 

 

<Lab Name="IW_LIACC" Width="44.000000" Height="17.75"> 

 <Wall Height="2.500000"> 

  <Corner X="9.370000" Y="0.000000" /> 

  <Corner X="9.370000" Y="5.400000" /> 

  <Corner X="9.519000" Y="5.400000" /> 

  <Corner X="9.519000" Y="0.000000" /> 

 </Wall> 

 <Wall Height="2.500000"> 

  <Corner X="9.519000" Y="5.130400" /> 

  <Corner X="9.618400" Y="5.130400" /> 

  <Corner X="9.618400" Y="4.992100" /> 

  <Corner X="9.519000" Y="4.992100" /> 

 </Wall> 

 <Wall Height="2.500000"> 

  <Corner X="10.4159" Y="5.130400" /> 

  <Corner X="32.84" Y="5.130400" /> 

  <Corner X="32.84" Y="4.9903" /> 

  <Corner X="10.4159" Y="4.9903" /> 

 </Wall> 

 <Wall Height="2.500000"> 

  <Corner X="9.370000" Y="6.59" /> 

  <Corner X="9.519000" Y="6.59" /> 

  <Corner X="9.519000" Y="7.66" /> 

  <Corner X="9.370000" Y="7.66" /> 

 </Wall> 

 <Wall Height="2.500000"> 

  <Corner X="9.519000" Y="7.66" /> 

  <Corner X="9.370000" Y="7.66" /> 

  <Corner X="9.370000" Y="7.56" /> 

  <Corner X="9.519000" Y="7.56" /> 

 </Wall> 
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 <Wall Height="2.500000"> 

  <Corner X="0.0" Y="7.56" /> 

  <Corner X="0.0" Y="7.29" /> 

  <Corner X="9.37" Y="7.29" /> 

  <Corner X="9.37" Y="7.56" /> 

 </Wall> 

 <Wall Height="2.500000">   

  <Corner X="3.18" Y="7.29" /> 

  <Corner X="3.18" Y="6.8725" /> 

  <Corner X="9.37" Y="6.8725" /> 

  <Corner X="9.37" Y="7.29" />  

 </Wall> 

 <Wall Height="2.500000"> 

  <Corner X="9.37" Y="8.56" /> 

  <Corner X="9.519" Y="8.56" /> 

  <Corner X="9.519" Y="10.75" /> 

  <Corner X="9.37" Y="10.75" /> 

 </Wall> 

 <Wall Height="2.500000"> 

  <Corner X="9.519000" Y="10.6" /> 

  <Corner X="9.619000" Y="10.6" /> 

  <Corner X="9.619000" Y="10.75" /> 

  <Corner X="9.519000" Y="10.75" /> 

 </Wall> 

 <Wall Height="2.5"> 

  <Corner X="0.0" Y="10.33" /> 

  <Corner X="0.0" Y="10.05" /> 

  <Corner X="9.519" Y="10.05" /> 

  <Corner X="9.519" Y="10.33" /> 

 </Wall> 

 <Wall Height="2.5"> 

  <Corner X="3.18" Y="10.33" /> 

  <Corner X="9.519" Y="10.33" /> 

  <Corner X="9.519" Y="10.75" /> 

  <Corner X="3.18" Y="10.75" /> 

 </Wall> 

 <Wall Height="2.500000"> 

  <Corner X="11.08" Y="10.75" /> 
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  <Corner X="11.08" Y="17.75" /> 

  <Corner X="11.23" Y="17.75" /> 

  <Corner X="11.23" Y="10.75" /> 

 </Wall> 

 <Wall Height="2.5"> 

  <Corner X="10.81" Y="10.75" /> 

  <Corner X="14.26" Y="10.75" /> 

  <Corner X="14.26" Y="10.6" /> 

  <Corner X="10.81" Y="10.6" /> 

 </Wall> 

 <Wall Height="2.5"> 

  <Corner X="10.91" Y="10.6" /> 

  <Corner X="13.52" Y="10.6" /> 

  <Corner X="13.52" Y="7.21" /> 

  <Corner X="10.91" Y="7.21" /> 

 </Wall> 

 <Wall Height="2.5"> 

  <Corner X="13.52" Y="6.91" /> 

  <Corner X="32.84" Y="6.91" /> 

  <Corner X="32.84" Y="7.21" /> 

  <Corner X="13.52" Y="7.21" /> 

 </Wall> 

 <Wall Height="2.5"> 

  <Corner X="32.84" Y="6.91" /> 

  <Corner X="32.84" Y="6.79" /> 

  <Corner X="32.69" Y="6.79" /> 

  <Corner X="32.69" Y="6.91" /> 

 </Wall> 

 <Wall Height="2.500000"> 

  <Corner X="38.71" Y="0.0" /> 

  <Corner X="38.71" Y="7.85" /> 

  <Corner X="38.56" Y="7.85" /> 

  <Corner X="38.56" Y="0.0" /> 

 </Wall> 

 <Wall Height="2.500000"> 

  <Corner X="32.69" Y="5.13" /> 

  <Corner X="32.69" Y="0.0" /> 

  <Corner X="38.56" Y="0.0" /> 
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  <Corner X="38.56" Y="5.13" /> 

 </Wall>  

 <Wall Height="2.500000"> 

  <Corner X="32.69" Y="5.13" /> 

  <Corner X="32.69" Y="5.25" /> 

  <Corner X="32.84" Y="5.25" /> 

  <Corner X="32.84" Y="5.13" /> 

 </Wall> 

 <Wall Height="2.500000"> 

  <Corner X="37.0" Y="7.40" /> 

  <Corner X="37.0" Y="10.17" /> 

  <Corner X="34.23" Y="10.17" /> 

  <Corner X="34.23" Y="7.40" /> 

 </Wall> 

 <Wall Height="2.5"> 

  <Corner X="38.56" Y="9.75" /> 

  <Corner X="38.71" Y="9.75" /> 

  <Corner X="38.71" Y="17.75" /> 

  <Corner X="38.56" Y="17.75" /> 

 </Wall> 

 <Wall Height="2.5"> 

  <Corner X="38.56" Y="11.75" /> 

  <Corner X="32.69" Y="11.75" /> 

  <Corner X="32.69" Y="11.90" /> 

  <Corner X="38.56" Y="11.90" /> 

 </Wall>  

  <Wall Height="2.5"> 

  <Corner X="32.84" Y="11.75" /> 

  <Corner X="32.84" Y="7.21" /> 

  <Corner X="32.69" Y="7.21" /> 

  <Corner X="32.69" Y="11.75" /> 

 </Wall>  

</Lab> 
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