

Faculdade de Engenharia da Universidade do Porto

Intelligent Wheelchair Simulation

Pedro Miguel Candeias de Castro Malheiro

Dissertation executed under the
Integrated Master in Electrotechnical and Computer Engineering

Major in Automation

Supervisor: Prof. Dr. Luis Paulo Reis

July 2008

ii

© Pedro Malheiro, 2008

Dedicated to

My parents, for their support, trust and for having always believed in me

iv

v

Abstract

Today‟s society is more and more concerned with the integration of disabled people in

the community. Wheelchair patients are an example of a group that still faces segregation,

mainly due to their dependence on other people for a large part of their daily routines. With

the increase of wheelchair users and the disparity of afflictions that impose such a condition,

scientific research in the area has become more pertinent and significant. Some handicaps

that affect arm movements, motor coordination or sight, make it impossible to drive a

common powered wheelchair. Patients who have such physical disabilities will benefit from

intelligent wheelchair projects, which can give some independence back to them.

Numerous intelligent wheelchair prototypes are in development worldwide and several

hardware platforms have been developed. As such, the challenge now is to develop the

control algorithms, in particular complex high level control strategies. Direct implementation

of new software modifications in real wheelchairs is not viable due to financial costs and,

more importantly, to the involvement of human risk. The solution is to use simulation for the

control model validation thus bringing great savings both in time and money to algorithm

development, testing and validation.

This dissertation describes the development of an intelligent wheelchair simulator. It

starts by going through the description of the intelligent wheelchair concept and the reasons

of its increasing importance. It justifies the need for simulation during the development

process, all the way from initial testing until the final implementation. The document

continues with the description of the intelligent wheelchair project - Intelwheels – under

development at the Artificial Intelligence and Computer Science Lab of the University of

Porto that directly led to this simulation development.

This document also presents the state of the art in robotic simulation. Special attention is

given to Ciber-Rato, a simulator developed at University of Aveiro for a robotics competition,

which was the base for the simulator developed during this project, called Intelwheels

Simulator. It then goes through the architecture and the implemented algorithms of the

Intellwheels simulator itself. The developed robotic controlling agents are presented, with

vi

special focus of the modifications made to the Intellwheels Control Software, previously

developed. Finally it goes through the graphic application for realistic simulation viewing and

discusses the results of real, virtual and mixed reality tests that prove the capabilities and

advantages of the simulator developed and its importance in IW development.

vii

Resumo

Cada vez é maior a preocupação da sociedade com a integração na comunidade de

pessoas portadoras de deficiência. Os utilizadores de cadeiras de rodas são exemplo de um

grupo social que ainda se defronta com segregação, devida, em grande parte, à sua

dependência relativamente a inúmeras tarefas quotidianas. A investigação científica nesta

área ganhou importancia e significado com o aumento do número de pessoas com necessidade

de utilizar cadeira de rodas. Deficiências tais como as que afectam os movimentos dos

braços, a coordenção motora ou até a visão tornam impossível a condução de uma cadeira de

rodas electrica com um joystick convencional. As pessoas que sofrem de tais incapacidades

irão certamente beneficiar com projectos de desenvolvimento de cadeiras de rodas

“inteligentes”, capazes de lhes restituir alguma independência.

Numerosos protótipos de cadeiras de rodas inteligentes são alvo de desenvolvimento em

todo os mundo, tal como o têm sido várias plataformas de hardware. Assim, o desafio centra-

se agora no desenvolvimento de algoritmos de controlo, particularmente estratégias de

controlo de alto nível. A aplicação directa, em cadeiras de rodas reais, de novos algoritmos

não é viável não só devido a razões financeiras, mas, sobretudo, pelo risco de segurança

pessoal associado. A solução surge com o recurso à simulação para a validação dos modelos,

possibilitando significativas poupanças tanto em tempo como em recursos económicos no

desenvolvimento, teste e validação do software.

Esta dissertação procura descrever o desenvolvimento de um simulador de cadeiras de

rodas inteligentes, começando pela descrição do conceito de cadeira de rodas inteligente

assim como pelas razões que justificam a sua importância crescente. É justificada a

necessidade de simulação durante todo o processo de desenvolvimento, desde o primeiro

teste de baixo-nivel até à sua implementação final. O documento descreve ainda o projecto

de cadeira de rodas inteligente que conduziu directamente ao desenvolvimento desta

simulação – Intelwheels – em desenvolvimento no Laboratório de Inteligência Artificial e

Ciência de Computadores (LIACC), na Universidade do Porto.

O documento descreve ainda o estado actual da simulação robótica, analisando a

arquitectura e os algoritmos implementados. Foi dada especial atenção ao Ciber-Rato, um

simulador desenvolvido na Universidade de Aveiro destinado à competição robótica que

esteve na base do designado Simulador Intelwheels desenvolvido neste projecto. São ainda

apresentados os agentes de controlo robótico desenvolvidos, focando em particular as

modificações introduzidas no sofware de Controlo Intelwheels, anteriormente desenvolvido no

LIACC. Finalmente aborda a aplicação grafica desenvolvida destinada à visualização da

simulação de uma forma realista. São apresentados os resultados de testes em ambientes

viii

reais, virtuais e mistos que procuram mostrar as capacidades e vantagens do simulador

desenvolvido assim como a sua importância no contexto do desenvolvimento de cadeiras de

rodas inteligentes.

ix

Acknowledgments

I would like to thank my supervisor, Prof. Dr. Luis Paulo Reis, for initially suggesting this

dissertation and for the precious reviews of my work. I also want to thank Rodrigo Braga for

the fantastic work environment he provided during this time. Not only did I gain experience

and knowledge but I also enjoyed it.

I want to thank my parents, my brother and my sister for the support and for all the help they

gave me.

Joana… thank you for reviewing my writing and especially for bearing by my side the load of

the working days and long nights. Finally…

Last but not least, thank you to my friends. Bits and pieces of your words have surely echoed,

in some form, along my work as well.

x

xi

List of Contents

Abstract ... v

Resumo .. vii

Acknowledgments ... ix

List of Contents .. xi

List of Figures .. xv

List of Tables .. xix

Abbreviations ... xx

Chapter 1 ... 1

Introduction ... 1
1.1 - Motivation ... 1
1.2 - Objectives ... 2
1.3 - Dissertation Structure ... 3

Chapter 2 ... 4

Intellwheels Project ... 4
2.1 – Architecture .. 4

2.1.1 – Hardware ... 5
2.1.2 – Main Interface ... 5
2.1.3 – Intelligence .. 6
2.1.4 – Multimodal Interface ... 7
2.1.5 – Simulator ... 7

2.2 – Development Status ... 8
2.3 – Summary ... 9

Chapter 3 .. 10

Robotic Simulation ... 10
3.1 - Generic Robotic Simulators .. 10
3.2 – Intelligent Wheelchair Simulators .. 11

3.2.1 - Bremen Autonomous Wheelchair .. 12
3.2.2 - Vehicule Autonome pour Handicapés Moteurs ... 12

3.3 – University of Aveiro‟s Ciber-Rato ... 13
3.3.1 – Architecture ... 13
3.3.2 – Communications .. 14

xii

3.3.3 – Virtual Robot .. 15
3.3.4 – Robot-Robot Communication ... 17
3.3.5 – Map and Wall Modeling .. 17
3.3.6 – Simulation Viewer .. 18

3.4 – Summary .. 19

Chapter 4 .. 21

Intellwheels Simulator .. 21
4.1 – Architecture .. 21

4.1.1 – Augmented Reality Theory .. 23
4.1.2 – Mixed Reality Support .. 25

4.2 – Programming Technologies .. 26
4.3 – Modifications to Ciber-Rato .. 26

4.3.1 – Robot Body ... 27
4.3.2 - Top Speed and Motor Acceleration Curve .. 29
4.3.3 – Next Position Calculation ... 30
4.3.4 – Collision Detection ... 31
4.3.5 – Proximity Sensors ... 34

4.4 – XML Communications .. 35
4.4.1 – Registering Physical Characteristics .. 35
4.4.2 – Registering Sensors ... 36
4.4.3 – Moving Robot .. 37
4.4.4 – Viewer Agent .. 38

4.4 – Summary .. 39

Chapter 5 .. 40

Simulation Agents .. 40
5.1 – Simple UDP Agent .. 40
5.2 – Wheelchair Robotic Agent .. 42
5.3 – Door Agent .. 44
5.4 – Intellwheels Control Agent ... 46

5.4.1 - Virtual Reality Mode ... 47
5.4.2 - Real Mode .. 47
5.4.3 - Augmented Reality Mode and Sensor Merging ... 48
5.4.4 - Simulator Connection .. 49

5.5 – Summary .. 50

Chapter 6 .. 52

Intellwheels Viewer ... 52
6.1 – Architecture .. 53
6.1 - Main Form ... 54
6.2 – Communication Handling ... 54
6.3 - 2D Viewer ... 55

6.3.1 – Robot and Wall Drawing ... 56
6.3.2 – 2D Options ... 57

6.4 - 3D Viewer ... 57
6.4.1 – OpenGL in Delphi 7 ... 58
6.4.2 – 3D Options ... 59

6.5 – Summary .. 60

Chapter 7 .. 62

Simulator Tests ... 62
7.1 – Experiment Definitions ... 62
7.2. – Dynamic Characteristic Tests ... 63
7.3 – Obstacle Avoidance Test ... 64

7.3.1 – Real Manual Driving .. 65
7.3.2 – Virtual Manual Driving ... 66

xiii

7.3.3 – Real Automatic Driving .. 66
7.3.4 – Virtual Automatic Driving ... 66
7.3.5 – Augmented Reality Automatic Driving .. 66
7.3.6 – Obstacle Avoidance Results ... 66

7.4 – Automatic Door ... 69
7.5 – Summary ... 70

Chapter 8 .. 71

Conclusions.. 71
8.1 - Objective Achievement ... 71
8.2 – Main Results... 72
8.3 – Simulator‟s Capabilities .. 72
8.4 – Future Work ... 73
8.5 – Final Remarks ... 74

Bibliography ... 75

ANNEXES ... 78

A – Ciber-Rato map XML file ... 79

B – STL Parser for 3D Model Loading .. 80

C – Test Registrations (Log File Example) ... 82

D – LIACC XML MAP ... 83

xiv

xv

List of Figures

Figure 2.1 - Intellwheels Project Architecture (from[2]) ... 5

Figure 2.2 - Main Application (adapted from [1]) .. 6

Figure 2.3 - Intellwheels Control Architecture from [2]. ... 6

Figure 2.4 - Augmented Reality Concept. ... 8

Figure 3.1 - Architecture of the “Ciber-Rato” robotic simulator system 14

Figure 3.2 - XML message for robotic agent registration. .. 14

Figure 3.3 - UML sequence diagram of robotic and viewing agents‟ messaging with the
simulator. ... 15

Figure 3.4 - Ciber-Rato‟s robots‟ body and sensors. ... 15

Figure 3.5 - XML message for robot counter-clockwise rotation 16

Figure 3.6 - Robot direction information, sent by Ciber-Rato's compass sensor. 16

Figure 3.7 - Ciber-Rato Viewer‟s design of a XML modeled wall. 18

Figure 3.8 - Original "Ciber-Rato" Viewer information display 19

Figure 4.1 - Intellwheels Simulator's architecture ... 22

Figure 4.2 - Technology implemented for Intellwheels simulation. 23

Figure 4.3 - Real to Virtual continuum ... 24

Figure 4.4 - Maze example. .. 25

Figure 4.5 - Overlaps of a rectangle shaped robot with a circular shaped one. 27

Figure 4.6 - Virtual Body for modeled by Intellwheels simulator. 27

Figure 4.7 - Algorithm for the determination of the robot's corner absolute position. 28

Figure 4.8 - Output charts of a situation where curve=0.2 (on the right) and curve=0.8 (on
the left) and both with constant input at 100%. ... 30

Figure 4.9 - Line Intersection Verification .. 32

Figure 4.10 - Cycle for checking collision on all lines from every robot 33

Figure 4.11 - UML diagram of the “Determine Intersection” function. 33

Figure 4.12 - Comparison between the modeled body‟s and sensors of the simulated
robots in Ciber-Rato (a) and Intellwheels (b). ... 34

Figure 4.13 - Intellwheels robotic agent registration XML message 36

xvi

Figure 4.14 - Default sensor location with COM=0.5, a), and COM=0.8, b). 37

Figure 4.15 - XML message for robot registration sensor definition 37

Figure 4.16 - XML message example for motor order ... 38

Figure 4.17 - XML message of type real robot position information 38

Figure 4.18: XML messages of viewer registration ... 39

Figure 5.1 - Simple UDP Agent .. 41

Figure 5.2: UDP packet header structure ... 41

Figure 5.3 - TRobot Class ... 43

Figure 5.4 - Wheelchair Robotic Agent .. 44

Figure 5.5 – UML stat diagram of the door control algorithm .. 45

Figure 5.6 - Simulation-Ready structures on Intellwheels main application (adapted from
[1]) ... 46

Figure 5.7 - Simulated Operation Mode .. 47

Figure 5.8 - Purely Real Operation Mode .. 47

Figure 5.9 - Augmented Reality Operation Mode .. 48

Figure 5.10 - Sensor Merging Algorithm .. 49

Figure 5.11- Simulator Configuration Form ... 50

Figure 5.12 - XML message for IW registration, for prototype wheelchair. 50

Figure 6.1 - Intellwheels Viewer Architecture .. 53

Figure 6.2 - Intellwheels Viewer Main Form .. 54

Figure 6.3 - Viewer XML received message of robot information 55

Figure 6.4 - 2D View ... 55

Figure 6.5 - Map outer limit drawing code .. 56

Figure 6.6 - Implemented code for wall drawing .. 56

Figure 6.7 - Intellwheels Viewer's 2D Options .. 57

Figure 6.8 - Intellwheels Viewer 3D, 1st person view. .. 58

Figure 6.9 - 3D viewing: Shape vs Shapless Chair. ... 59

Figure 6.10 - 3D Options .. 59

Figure 6.11 - 3D viewing with free camera mode .. 60

Figure 7.1 – CAD drawing of the plant for the LIACC floor. .. 62

xvii

Figure 7.2 – Intellwheels modeled map of LIACC floor .. 63

Figure 7.3 - Acceleration Curve of Real Wheelchair. .. 63

Figure 7.4 - Acceleration Curve of Virtual Wheelchair .. 64

Figure 7.5 – Section of 2D LIACC map, with checkpoints and obstacles 65

Figure 7.6 – Trajectory results from obstacle avoidance test 67

Figure 7.7 - Virtual Reality, Manual Control Test .. 68

Figure 7.8 - Augmented reality test .. 68

Figure 7.9 - Representation of the modeled door ... 69

Figure 7.10 - Automatic opening of the door ... 69

xviii

xix

List of Tables

Table 3.1 - Ciber-Rato‟s sensor characteristics .. 17

Table 3.2 - Sequence of XML messages sent from viewer to simulation server, at
initialization. ... 18

Table 4.1 - Robot's corners relative position coordinates .. 28

Table 4.2 - Equations implemented to determine corner positions, relatively to the robot's
center coordinates .. 29

Table 4.3 - XML tags for robot registration ... 35

Table 4.4 - Sensor Registration XML tags .. 36

Table 4.5 - Default sensor characteristics ... 37

Table 5.1 - XML messages for agent‟s buttons. ... 42

Table 7.1 - Checkpoint Coordinates .. 65

Table 7.2 - Obstacle Coordinates ... 65

Table 7.3 - Obstacle Test Success Information ... 67

xx

Abbreviations

List of abbreviations

AR – Augmented Reality

COM – Center of Movement

DCOSS – Distributed Computing in Sensor Systems

FEUP – Faculdade de Engenharia da Universidade do Porto

IP – Internet Protocol

IR – Infra-Red

IW – Intelligent Wheelchair

LIACC – Laboratório de Inteligencia Artificial e de Computadores

MR – Mixed Reality

OS – Operating System

UDP – User Datagram Protocol

UML – Unified Modeling Language

VR – Virtual Reality

XML – Extensible Markup Language

xxi

1

Chapter 1

Introduction

1.1 - Motivation

Nowadays one can witness the increase of world population carrying some form of

physical incapability, affecting locomotion. Based on World Health Organization (WHO) data,

it is estimated that around 2% of world population (130 million people) live with physical

handicaps[1][2]. This number is due to various reasons and it has been, in fact, growing. The

aging of population due to life expectancy increase, environmental degradation and sub

nutrition lead to the appearance of chronic diseases which, together with factors like traffic

and work accidents, wars and congenital deficiencies, contribute to the increase of people

with mobility difficulties[2][3].

With the objective of responding to numerous mobility problems, various intelligent

wheelchair related projects have been created in the last years. They try not only to give

mobility to handicapped people but, more importantly, they are aiming at doing it in an

autonomous way, independent of third party help. Aside with other projects, the Artificial

Intelligence and Computer Science Lab of the University of Porto (LIACC) is developing an

Intelligent Wheelchair (IW) prototype[2]. Through hardware such as sensors, communication

boards and simple human-chair interface devices, the IW is capable of understanding high

level orders, such as going from a room to a toilet[4][5]. A complex system of navigation with

trajectory planning algorithms, communication and interaction (with other IWs and other

intelligent systems), make this IW a solution that will give patients high degrees of

independence[6]. They will be able to so, even if their levels of disability are such that, in a

common electrical wheelchair, would not be possible for them to correctly drive it with the

joystick.

The development of this IW project is in an advanced stage of development. Therefore,

the challenge is now to test and validate the high level control solutions: tests to intelligence

2 Introduction

and to reliability. In fact, testing new control algorithms in real systems is not viable due to

low IWs‟ availability, time and space needed. Moreover, placing real IW prototypes in a real

hospital situation would create risks for humans, which is not acceptable.

Solving this problem involves the development of a simulation environment that will allow

testing every aspect of a modification or an addition to the existing system, without

submitting the real system resources to disturbances. The advantages of developing a

simulation system for IWs and their surrounding environment are numerous when comparing

to an immediate real implementation. Disposing of a large number of IWs, for collaborative

algorithm testing, would incur in large associated costs while, on the other hand, simulating

multiple IWs in a computer will not have any addition cost [7]. Through simulation it is

possible to compress time, in the sense that viewing all the consequences of a modification in

a fraction of the otherwise necessary real time. Error tracking is simplified: finding the “why”

of a certain occurrence is possible through an isolation and detailed analysis of a specific

event or period of time. Additionally, requirement specification is possible and more focused.

For example, simulation can identify what will be the necessary resolution for a given sensor,

so that the system will behave correctly.

The IW project currently being developed in LIACC has the objective of being as modular

as possible so that it can be adapted to any electric wheelchair, any type of sensors and

motors. In order to continue this philosophy, the IW simulator should be no different. Apart

from being a high level control algorithm test board, the simulator must be able to adapt to

any type of sensors and hardware characteristics used in each chair.

1.2 - Objectives

This project will be based on the IW prototype developed at LIACC and on the “Ciber-

Rato” software, developed by University of Aveiro[8]. “Ciber-Rato” is a robotic simulator for

a competition where the goal is to develop an agent which will control the simulated robot

and guide it through a maze[9]. The agent must, through signals from the simulator (that

represent sensor values), send power values to left and right motors of the simulated

differential robot.

Based on “Ciber-Rato”, the new intelligent wheelchair simulator must contain every

functionality needed to test the LIACC‟s IW system. Therefore, the main objectives of this

project are:

 Development of a simulation server, based on “Ciber-Rato”, which is able to simulate

the wheelchair‟s body, sensoring information and world map. The simulator should

accept purely virtual wheelchair agents as well as real wheelchairs (allowing

augmented reality mode).

Dissertation Structure 3

 Development of a simulation viewer, adapted to IW requirements, such as the correct

view of robot‟s body (allowing different body types and sizes) and “first person”

viewing capabilities.

 Adaptation of the wheelchair‟s control software to allow it to work as a purely virtual

robotic agent (connecting only to the simulator), as a purely real wheelchair

controller (connection only to the real wheelchair) or in an augmented reality mode

(connecting to both the real wheelchair and the simulator).

1.3 - Dissertation Structure

This dissertation is organized in 8 chapters, the first of which is this introduction to the

intelligent wheelchair simulation project.

On the second chapter it is given an overview the LIACC‟s “Intellwheels” project. The

motivation, vision, architecture and present stage of development are discussed.

The third chapter will offer a vision on the main projects in robotic simulation, with

emphasis on intelligent wheelchair simulation projects. It analyses the state-of-the-art on this

topic and special attention is given to University of Aveiro‟s “Ciber-Rato”, thoroughly

describing the simulator.

On chapter four, it is presented the developed simulator, designated “IntellWheels

Simulator”, in accordance to the main project‟s name. It starts by defining the software‟s

architecture and continues with the explanation of the modifications to “Ciber-Rato” and the

new implemented algorithms.

The fifth chapter contains the work done on developing robot controlling agents that

connect with the simulator. A robot represents any type of object, depending on the control

it is applied. This chapter analyses the developed generic robotic agent and the door agent. It

finishes by describing the applied modifications to the IntellWheels Controller software for

added simulation functionalities, including communication requirements.

Chapter six goes through the developed visualization agent for the simulation. The

motivations for its development as well as the requirements of an intelligent wheelchair-

specific viewer are discussed. It also introduces the 2D and 3D drawing software and

algorithms.

The seventh chapter explains the methodology for the experimental tests. It expresses

the results of both real and simulator tests for better comparison. It also demonstrates the

simulation projects‟ functionalities with an augmented reality test.

On the eighth and final chapter of this dissertation, conclusions on the entire simulation

project are drawn with more detail on the final test results. To finalize, the chapter

recommends possible paths for additional development.

4

Chapter 2

Intellwheels Project

The need for an intelligent wheelchair simulator has its origin in the intelligent

wheelchair project, which is being developed in LIACC, at the Faculty of Engineering of

University of Porto. Although there are more than 40 distinct IW related publications

registered with IEEE since year 2000 [10], the Intellwheels Project aims to contribute to the

advance in the field. Its main objective is to create a complete intelligent system with

hardware and software that can be incorporated into any commercial electric wheelchair. In

addition, the system is to be installed in such method that causes little, or none, visual or

design impact, which otherwise would further discriminate their handicapped users.

Moreover, it must contemplate every type of wheelchair user, from those with small

locomotion disabilities to those with mental handicaps that prevent normal arm and hand

movements. This is achieved through an advanced software control system that goes from

simple shared control, where it “merely” guarantees that the user‟s manual control does not

take him to dangerous situations (such as going through gaps on the ground, steps and

collisions), to complex high lever orders made through voice recognition, path planning and

autonomous driving and strategy definition for multiple high level goal achievements.

2.1 – Architecture

Intellwheels project‟s architecture is presented in Figure 2.1, where the different

modules of the project are evident. The red square highlights the simulation module which

was then main focus and the point of start for this dissertation.

2.1 – Architecture 5

Figure 2.1 - Intellwheels Project Architecture (from[2])

2.1.1 – Hardware

The main hardware of any electric wheelchair are the motors and batteries, but the core

of an IW are its sensors. It is through them that it can perceive the world and make intelligent

decisions on the orders to give to the motors. Intellwheels‟ wheelchairs contain sonar and

infra-red sensors for object distance detection and encoders on their motors for position

calculation. Electronic acquisition plates are also installed for that is what permits remote

actuation on the motors and sensor information gathering and sending for the control

software. These plates connect to the computer hosting the control software through RS232.

2.1.2 – Main Interface

The main interface is where all the information is gathered. It is through it that all the

other modules reach the actual wheelchair and, as such, it is responsible for handling all

UDP/IP connections. Every detail of the configurations is dealt with in this main application.

It displays relevant information in real time: sensor readings, speed, position, orientation,

motor power and operational mode (real, augmented reality or simulated). Figure 2.2 displays

the visual form of the module.

6 Intellwheels Project

Figure 2.2 - Main Application (adapted from [1])

2.1.3 – Intelligence

Intellwheels project has a multilevel control architecture [2], as illustrated in Figure 2.3.

The lower levels - basic control - are handled by the main application itself, separating the

higher levels – tactical 4th level and the strategy level - from the Intelligence module.

Figure 2.3 - Intellwheels Control Architecture from [2].

The cognitive agent is responsible for high level decisions, such as continuous planning,

runtime monitoring and cooperation with other intelligent agents. An example of the 4th level

is the generation of path to achieve a specific location, though the application of A*1

algorithm. Over this stage a strategic defining level sets the sequence for wheelchair

objective (e.g. “pick up” patient from room 10 and take him to doctor office number 2).

1 A* is a path planning algorithm [6] [3], widely used in intelligent robotics.

2.1 – Architecture 7

The result of this module will be a series of low level instructions to be given to the

wheelchair‟s motors through the main application, independently of details of how those

orders are given.

2.1.4 – Multimodal Interface

Making the wheelchair‟s control correctly and fully understand the user‟s orders is

essential, otherwise the control algorithms and intelligence could work against the patient

instead of working for him. Simultaneously to the development of this dissertation, Marcio

Sousa is developing a project designated “Multimodal Interface for an Intelligent

Wheelchair”. This multimodal interface is where all the possible user inputs are handled and

it has two main objectives:

 Recognizing sequences of commands which represent specific high medium level

orders. This functionality works in a very similar form to “combos” in computer

games, where depending on the order of the buttons pressed, the arrow keys could

originate different moves.

 Creating the possibility of receiving those orders through as many different inputs as

needed: voice recognition, face recognition, joystick or keyboard.

2.1.5 – Simulator

The simulation module was the main focus of this dissertation and a vital one on the

Intellwheels project.

This module creates a virtual world and its main objective is to test the control

algorithms. In fact, using the real environment every time the control application is modified

is not viable. On the other hand, it is not possible to validate a change without a form of

testing it. The control application may connect to the simulator, instead of the real

wheelchair, and all the consequences of a modification can be verified in a matter of

seconds.

However, the simulator‟s involvement in the IW project is even greater, as the notion of

augmented reality is introduced. An interaction of real wheelchair with virtual ones sets the

tone for a complete new range of possible testing. Large scale cooperative tests (intelligence

module) are possible, no matter how little real IW prototypes are available (Figure 2.4).

8 Intellwheels Project

Virtual sensor values

Figure 2.4 - Augmented Reality Concept.

The possibilities for a system where any object (even virtual, intelligent or static) can be

placed for real testing are vast:

 Obstacle avoiding.

 Complex path planning.

 Cooperation scenarios.

A complete description of the simulator, its capabilities, algorithms and modes of

operation are included further ahead, in Chapter 4 of this dissertation.

2.2 – Development Status

At the present stage, the Intellwheels project is in a midpoint state of development,

which adds importance to the simulation project. The present stage requires intensive high

level algorithm testing, to which the simulator brings faster, simpler and more focused

verification methods.

In terms of hardware implementation, two commercial electric wheelchairs have been

modified and transformed into intelligent wheelchair prototypes. Both of them are equipped

sonar and IR sensors for proximity calculation, cameras for ground marking orientation,

encoders for speed calculation and position determination and communication plates for

computer and software control connection.

Low level controlling is fully developed [1], as basic functions like straight driving, turning

and going to a point in the Cartesian system were already implemented with success. Medium

and high level algorithms, such as automatic object avoidance and path planning, are well

advanced as successful tests have been registered. Strategy defining procedures are in design

status. Despite this, the basis for implementation is completely developed and a fully

functioning intelligent prototype is in the verge of achievement.

The multimodal interface was being developed at the same time as this simulation project

itself. Notwithstanding, apart from common powered wheelchair joystick, the IW is already

Simulator

Multiple Virtual
Wheelchair Controller

Real Wheelchair
Control Agent

Chair position and orientaion

Motor Power Orders

Virtual Sensor Perception

2.3 – Summary 9

able to accept direct commands (forward, backward and turning) through the WII and

Playstation remote controllers and a virtual keyboard. The camera for face recognition was

developed apart from the Intellwheels project even though it is fully operative, its

integration with the current control application is not yet complete.

The Simulation module was completely achieved and it is now possible to fully test

control algorithms in any type of scenario, with as many virtual or real IW as intended.

Moreover, additional possibilities for its usage, such as full intelligent environment (e.g.

intelligent doors) were proposed which increase value of the module.

2.3 – Summary

This chapter presented the intelligent wheelchair project being developed in LIACC –

Intellwheels Project. It introduced the project‟s architecture, presenting all of its modules:

hardware, main application, intelligence, multimodal interface and simulation. It sums up by

presenting the current stage of development of each one of the modules.

This dissertation‟s main applicability will be on the Intellwheels and its simulator module.

As such, its architecture and the concepts presented on this chapter will be referred to in

every other section ahead. Moreover, the initial step for this thesis was the review of the

state-of-the-art in robotic simulation, which is done in the following chapter.

10 Robotic Simulation

Chapter 3

Robotic Simulation

This Simulation project was started with the decision to use the Ciber-Rato simulator

usage already taken (which is detailed in depth ahead, in section 3.2). The reasons that lead

to this are connected to the proven performance and flexibility of this software, as it has

been used in different applications and adaptations. It has been successfully used for various

competitions: Micro-Rato[11][8][12][13] (2001-2008), CiberMouse@RTSS[14] (2007-2008) and

CiberMouse@DCOSS[15] (2008). It was also previously used at LIACC in several research

projects such as a computational study on emotions and temperament in Multi-Agent

Systems[16][17] and development of cooperative rescue operations[18]. Moreover, previous

work had already been done in the Intellwheels project on Ciber-Rato usage for intelligent

wheelchair simulation, proving the software‟s value and suggesting further development on

the topic[3].

Despite the choice of the base application already dealt with, it was of relevance to study

similar simulation projects in order to incorporate additional concepts into this dissertation.

3.1 - Generic Robotic Simulators

A reference in robotic scientific development is RoboCup. RoboCup is, more than a

competition, a complete initiative with the vision of creating a robotic soccer team to win a

match against a human one [19]. During the meetings organized each year, robotic soccer and

search and rescue competitions are held. They have both simulated and real environment

contests, which have been used as inspiration for other robotic conferences around the world,

such as Micro-Rato[11] itself.

The RoboCup Simulation 2D League has various points in which it touches this IW

simulation project. This competition creates a virtual soccer field and models the two teams,

each with 11 players. In an attempt to closely mimic the real robot competition, the virtual

bodies of the players are circular, with differential virtual motors for movement control and

3.2 – Intelligent Wheelchair Simulators 11

possess sensors to aid decision making. Finally each team has a coach, which is a special

agent that holds unique information concerning the whole simulation. The coach differs from

the player agents in the sense that the data they receive are limited (e.g. by distance) are

have noise variation. Because of the differences between each agent inside a team, the focus

on this competition is on high level cooperation and control algorithms[20]. For visual

simulation following, 2D and 3D viewers are available, although the 3D characteristics are not

modeled by the simulator and only appear for better appeal.

Ciber-Rato follows the concepts of the RoboCup 2D League and, consequently, so does the

Intellwheels Simulator, developed during this dissertation.

A 3D League was later developed, which implemented profound modifications to the 2D

version, especially in terms of world modelling and communications handling, as the SPADES2

platform was introduced. Once again, in an effort to add more realism to the simulation

itself, apart from the full 3D environment, a visual sensor was the main form of perceiving

the world. Furthermore, the robot model evolved from the initial sphere to a humanoid, in

2007.

Other robotic simulators were studied during the initial part of this dissertation, which

include:

 Gazebo / Player Project[21][22], a simulator for specific robot models, and is capable

of generating a wide number of robots with sensors in a three dimensional world.

 UsarSim[23], a simulator that takes advantage of the realistic graphic and physics

power of the Unreal Engine, developed by Epic Games enterprise. Through TCP

protocol connections, this simulator allows the connection a control application and

provide it with a wide variety of sensors: encoders, touch, proximity, RFID, camera,

sound and motion sensors.

 Microsoft released, in 2007, a generic robotic simulation environment called Microsoft

Robotics Studio[24]. Its target destination was not only the academic developers but

commercial ones as well, as the product could simulate a wide range of robotic

hardware. Moreover, visual programming language (VPL) was used, allowing easy

controlling. Rich environments could be set, as it uses the AGEIA PhysX[25] for world

physics calculations. The software rapidly proved its value, as illustrates the 2007

RoboCup[20].

3.2 – Intelligent Wheelchair Simulators

A literature review for other projects focused on intelligent wheelchair simulation was

performed and two projects stood out.

2 System for Parallel Agent and Discrete Event Simulation (SPADES) is an agent focused framework for
communication handling, agent-world interaction and physics modeling [46].

12 Robotic Simulation

3.2.1 - Bremen Autonomous Wheelchair

The Bremen Autonomous Wheelchair (BAW)[26], initiated a simulation related project,

motivated by reasons that are shared with this Intellwheels intelligent wheelchair project. As

a consequence of developing new hardware platform, there is no commercial simulator that

can be directly used. Moreover, the final decision on sensory and communication equipment

is not yet defined thus creating the need for a software that is flexible enough to adapt. The

Bremen team started with a basic software, developed in their own university, called

SimRobot[27], and then set a methodology where they would systematically expand the

application each time they would find it necessary. They would submit the real chair to a test

and then apply the same test to the simulator. Afterwards, the results from both of them

were compared and, in case differences were found, they would upgrade the SimRobot

accordingly.

The entire simulation project is, therefore, an enduring evolution towards the equilibrium

between the real environment and the simulated one.

Differences, from the objectives of the Intellwheels project, arise when conceptual

architectures and simulation objectives are compared. While Bremen simulation is based on a

single chair, Intelwheels is multi-agent based, in the sense that a dynamic, more complex

environment with multiple intelligent and collaborative objects is intended. Furthermore,

BAW simulation segregates completely real and virtual worlds, leaving no room for augmented

reality model.

3.2.2 - Vehicule Autonome pour Handicapés Moteurs

An intelligent wheelchair developed in 1998 at the University of Metz, in France -

Vehicule Autonome pour Handicapés Moteurs (VAHM)[28] – was, in 2000, extended with a

simulation project[29]. The objective of this project was to solve a difficulty encountered

during the development: real disabled patient testing. Costly, time wasting and often

physically harmful, these tests became a burden that led to need of a simulator.

The simulator‟s concept was to enable the wheelchair with computer connection abilities

and create a software that would simulate the world perception to the chair. The chair was

to be the same has the real environment only with a breaking system disabling actual

movement, although allowing encoder perception. The patient is then equipped with a virtual

reality helmet with which he would see the virtual world. This blend of real variables with

the virtual world created mixed reality environment is very similar to what Intellwheels

project implements (which will be thoroughly detailed in chapter 4). The chair provides the

simulator with real encoder values and the software, in return, sends measures of virtual

ultrasonic sensors.

3.3 – University of Aveiro‟s Ciber-Rato 13

Overall architecture, on the other hand, is then distinguished from Intelwheels‟. VAHM‟s

simulation project range ends with the single chair test, while Intellwheels interest goes

further into higher level multiple IW collaborative algorithms.

3.3 – University of Aveiro’s Ciber-Rato

 Ciber-Rato is a robotic simulation software developed for a competition, held at

University of Aveiro. The reason for its development was to provide a form of integrating

participants whose hardware skills weren‟t sufficient enough for real robot building, for the

older “Micro-Rato” competition. Through “Ciber-Rato” they could concentrate solely on the

control algorithms and software issues, as their robots are purely virtual[8].

The game consists of 3 “mice” (robotic agents that control their robot by sending motor

power inputs to the simulator) finding their way to a beacon. The agents are applications

developed by the contestants, thus separate of the simulator itself. They communicate with

it via UDP protocol and XML messaging. The virtual robots have a circular body and have

differential drive: a simulated motor for each of its two wheels (illustrated in Figure 3.4). At

start, the world is unknown to the agents and they rely on 3 IR sensors, 1 ground sensor, a

bumper sensor and a beacon compass to achieve the objective (in a testing mode, a GPS

sensor can be used for debugging but its usage is not allowed in the actual competition). The

agent that reaches the beacon with the best score (less time and less collisions) wins the

match.

The “Ciber-Rato” Simulator developers also created a modified version for a different

competition, in the 2008 edition of the International Conference on Distributed Computing in

Sensor Systems (DCOSS „08). The goal now is to make a team of 5 agents go to a single beacon

and the main difference, in terms of simulation, is that the robots can send messages to each

other. Their communication is limited by distance and message size, approaching a more

realistic scenario and encouraging development of information exchange algorithms.

3.3.1 – Architecture

Being “Ciber-Rato” itself based on the RoboCup simulation league, it follows the same

basic concepts: a distributed architecture where the simulation engine works as a server for

all other agents (clients) to connect to[8]. Figure 3.1 gives an overview on the system‟s

conceptual design.

14 Robotic Simulation

Figure 3.1 - Architecture of the “Ciber-Rato” robotic simulator system

Since every agent is an external application, they can all be developed in a different

programming language, having only the concern of using the same communication protocol as

the simulator. This possibility is particularly valuable since, in the actual competition, each

contestant can use their own computer and operating system.

3.3.2 – Communications

Information exchange between the agents and the simulator and even between the

simulator and the viewer are made through UDP and IP protocols. This allows not only to run

simulation with different applications for each agent but to run them from different

computers, as long as they are connected through an IP network.

The messages themselves are in XML language. Its usage allows not only an easy

processing by the programs but, on the other hand, it is concise, formal and human-legible

[30]. Figure 3.2 is an example of the XML message that needs to be sent to the simulator

server, to initiate the robot simulation.

Figure 3.2 - XML message for robotic agent registration.

It identifies the main tag has a Robot and defines its name has “IntellWheels” and its Id as

“1”.

In order to initiate a correct simulation, with robotic and visualization agents, a series of

XML messages should be sent to the simulator. A possible sequence is represented in the UML

sequence diagram on Figure 3.3.

Ciber-
Rato

Simulator

Robot A
Control

Robot B
Control

Simulation
Viewer

<Robot

Name="IntellWheels"

Id="1">

</Robot>

3.3 – University of Aveiro‟s Ciber-Rato 15

Viewer Simulator Robot

Registration

Confirm Registration

Request Map

Return Map Information

Request Grid

Registration Request

Confirm Registration

World perception

Motor Power Orders

Simulation EndSimulation End

Simulation StartSimulation Start
.

Figure 3.3 - UML sequence diagram of robotic and viewing agents‟ messaging with the simulator.

3.3.3 – Virtual Robot

The body of all simulated robots is circular, with a radius of 0.5 units. They are

differential robots, i.e., they are modeled with two wheels, as shown in Figure 3.4.

60º

6
0
º

60º 60º

0.5u

Collision

Sensor

Proximity

Sensor

Figure 3.4 - Ciber-Rato‟s robots‟ body and sensors.

16 Robotic Simulation

 The center of the circular body is also the center of movement of the robot as the wheels

are located symmetrically. Each wheel has its motor and can be controlled by the agent

through an XML message, containing the power to be applied in each motor.

Figure 3.5 - XML message for robot counter-clockwise rotation

As an example, the command represented in Figure 3.5 will set the robot to rotate in its

own center.

By default every robot has their four proximity sensors placed in the perimeter, radially

oriented. The arc cone of the sensor‟s sight is fixed at 60º. On the DCOSS „08 version of

“Ciber-Rato”, the location of the sensors can be set by each robot. An angle, relative to the

robot‟s frontal direction, will define where, in the circle perimeter, will the sensors be

placed [31]. Although not completely configurable, this possibility gives the “Ciber-Rato”

simulator a more general and adaptable software for other uses, such has this intelligent

wheelchair simulation project.

A beacon sensor is also available. Through this sensor, the simulator will send the robot

controlling application a value in degrees (from -180º to 180º), indicating the direction of the

beacon, relatively to the robot‟s current direction. Approaching realistic conditions, if the

beacon if too far or if the obstacle between the robot and the beacon is too high, the

simulator will not send the beacon sensor reading.

To inform on the robot‟s direction, a compass sensor is offered, located in the center of

the robot. The sensor points in the direction of the rising X axis, as shown in Figure 3.6.

Y

X

Y

X

Y

X

Direction = 0º Direction = 90º Direction = -135º

Figure 3.6 - Robot direction information, sent by Ciber-Rato's compass sensor.

The sensor‟s values range from -180º to +180º. Figure 3.6 a. represents a robot oritented

purely on the X axis (direction=0º), on Figure 3.6 b. is show a robot directed only on the Y

axis (direction=90º) and Figure 3.6 c. exemplifies a robot facing towards negative X and Y

coordinates, relatively to its center (Direction=-135º).

<Actions

LeftMotor="0.1"

RightMotor="-0.1"

/>

3.3 – University of Aveiro‟s Ciber-Rato 17

A GPS sensor is also available, returning information on X and Y positions and, also, on

robot orientation. These values have addictive noise (as exposed on Table 3.1), with different

maximum variations, which confers this sensor a distinct function to the regular compass.

Table 3.1 - Ciber-Rato‟s sensor characteristics

Sensor Range Resolution Noise Type Deviation

Proximity [0.0;100.0] 0.1 adivtive 0.1

Beacon [-180º;+180º] 1 Adivtive 2.0

Compass [-180º;+180º] 1 Adivtive 2.0

GPS (position) N/A 1 Adivtive 0.5

GPS (orientation) [-180º;+180º] 1 adivtive 5.0

Collision N/A

Ground N/A

The last two sensors defined in Table 3.1 – Collision sensor and Ground sensor – have

binary responses. The collision sensor will return “Yes” in case the robot touches any other

robot or a wall. The Ground sensor will return “Yes” if the robot‟s center is over a target

area, defined in the map XML document. In the competition, the target area is a circle with a

radius of 2.0 units.

3.3.4 – Robot-Robot Communication

The DCOSS version of Ciber-Rato was meant to encourage information exchange. To

achieve this, a robot-robot communication feature was implemented, only on this version,

which allows messaging between robots. They are not directly peer to peer. Instead, the

messages are sent via the simulation server (through UDP protocol, similarly to the motor

power orders) and broadcasted to every robot. This feature allows every robot to receive all

the information and decide itself whether to use it or not. To approach real situations, only

robots within 8 units of distance of the emissary robot will receive the message. It is possible

to send a message of a maximum of 100 bytes but, on the other hand, it is possible to receive

a total of 400 bytes at once.

3.3.5 – Map and Wall Modeling

It is possible to load, from an external flat file, the map, in XML language. The map outer

limits are a rectangle which is defined by height and width information. Inside the limits

there can be walls which are defined by the coordinates of their corners and its height. For

competition purposes, a wall can have different heights, which affect the compass sensor of

the robot: if the wall is high the beacon will not be in the robot‟s line of sight, thus disabling

compass sensor readings. An ordered sequence of consecutive corner coordinates (minimum

of three corners) defines a wall and one map can contain any amount of walls (Annex A).

18 Robotic Simulation

Figure 3.7 exemplifies a wall construction in XML and its representation, made by the Ciber-

Rato Viewer.

[…]

<Wall Height="1.00">

 <Corner X="16.50" Y="10.00" />

 <Corner X="16.50" Y="5.50" />

 <Corner X="21.00" Y="5.50" />

 <Corner X="21.00" Y="6.50" />

 <Corner X="17.50" Y="6.50" />

 <Corner X="17.50" Y="10.00" />

</Wall>

[…]

Figure 3.7 - Ciber-Rato Viewer‟s design of a XML modeled wall.

The wall is defined on the content of a XML file of a Ciber-Rato Map (on the left). Through

those six corners, the viewer can then graphically draw the wall, as shown on the print screen

of the Ciber-Rato Viewer, on the right. The wall is the blue, L-shaped piece. To adjust to the

competitions rules, a second XML file is needed (associated with the map) which contains

information characterizing the beacon‟s position and the target areas (which activates the

robot‟s ground sensor).

3.3.6 – Simulation Viewer

To visually follow the games, a simulator viewer was also developed, again in C++

programming language[32], using QT libraries[33].

Similarly to the robotic controlling agents, the viewer was also an external application

that connected to the simulation server with UDP protocol, under IP. To correctly initialize

the viewing the software must send the sequence of XML messages shown in Table 3.2.

Table 3.2 - Sequence of XML messages sent from viewer to simulation server, at initialization.

 XML message Message purpose

1 <View/>
Register itself with the simulation

server, as a viewing agent

2 <LabReq/>
Request information regard map limits

and wall locations

3 <GridReq/>
Request information concerning the

starting points of the robots

3.4 – Summary 19

Using the assumption that the agents are robots with the characteristics previously

explained, the visual appearance of the robots was made through the loading of a bitmap

image file. Also, assuming that there would only be three agents connected, a different

image was loaded, depending whether the robot‟s Id was 1, 2 or 3.

Competition related information is also displayed: number of collisions for each robot,

elapsed time, robot score and the robot state (through allusive images), as illustrated in

Figure 3.8.

Figure 3.8 - Original "Ciber-Rato" Viewer information display

Additionally trough the information display, the viewer is also capable of some simulation

orders. It can start and stop the simulation and remove any specific robot from the

simulation. Removing a robot, aside from stop drawing in the viewer screen, the simulation

engine will then skip collision verification and sensor information calculation.

3.4 – Summary

The chapter gave an overview on status of the robotic simulation state of the art by

present some important projects, such as Robocup, Gazebo/Player Project, UsarSim and the

Microsoft Robotics Studio. Since the key topic is intelligent wheelchairs, more focused

literature review revealed the Bremen Autonomous Wheelchair and the Vehicule Autonome

pour Handicapés Moteurs (VAHM) projects.

The main section of this chapter was the Ciber-Rato simulator presentation. Both versions

of Ciber-Rato (Micro-Rato and DCOSS) have already implemented some features as noise in

sensor readings, which is very important in IW realistic simulation. However, the main

setback with the adoption of “Ciber-Rato” as the base simulation environment is the lack of

flexibility in parameterization of the robots‟ characteristics. In fact, the main requirement of

an IW simulator is to be able to simulate and handle wheelchairs of different dimensions as

well as different sensors and their location. The simplest example is the wheelchair‟s body:

as “Ciber-Rato” simulates only circular robots it is unfit for wheelchair simulation for the

error of rounding a rectangle (with its height and width parameters) to a circle if too great.

Moreover, originally, there is no form of setting different radius for different robots, which

means that all wheelchairs would have to be the same size.

20 Robotic Simulation

This scenario justifies the need for an IW-specific simulator that is generic enough to

model a wide variety of IWs and their sensors. In addition, the study revealed that Ciber-Rato

is a good base for the functionalities needed.

4.1 – Architecture 21

Chapter 4

Intellwheels Simulator

The main objective of this project was to develop simulation software to function as a

test board for control algorithms for intelligent wheelchairs. Converging with the larger

project it is inserted into (described in Chapter 2), the software was designated as

“Intellwheels Simulator”.

As core functions, this application creates a virtual world, complete with map definition,

where robotic agents can connect to. The simulator regulates the connection attempts,

handles the communications and returns to the agents the perception of the world, similarly

to what a real robot would get from the real environment around it, through its sensors.

The robot control software should treat the awareness information not discriminating it

from real or simulated, therefore producing the result independently: it produces orders

every connected actuators, being real or virtual. This scenario leads to the subject of reality

definitions. In fact, the usage of the same software for real situations as for virtual tests,

suggests a leap forward into the augmented reality concept, in which virtual world objects

interact with the real world.

This chapter will go through the simulator‟s conceptual architecture, including how the

support for mixed reality was implemented. It goes through the modifications made to Ciber-

Rato simulation environment and the new algorithms implemented to correctly simulate IWs.

4.1 – Architecture

Being essentially based in the Ciber-Rato source code, the Intellwheels Simulator has its

main basic architecture. Conceptually it is illustrated in Figure 4.1.

In a higher abstraction level, it consists of a central simulation server to which every

agent, independently of its type, will connect to. Furthermore, to have a structure as

modular as possible, the agents are external applications, developed in any kind of language

22 Intellwheels Simulator

and running in any type of operating system, must connect via IP and UDP protocols. Through

this obligation, the spectrum of possibilities for agent development is greatly broadened.

Figure 4.1 - Intellwheels Simulator's architecture

The simulator server is responsible for all calculations concerning simulation (collision

detection, position calculation, wheel motor emulation and world perception sensors‟

values). It is also the assurance of communications between every intelligent agent

(independently of their type). Viewer agents are able to graphically draw the modeled world,

as the simulator sends them map definition, and robotic agents‟ positions. These agents, on

the other hand, have a more intense interaction with the server. They not only receive

information concerning their virtual sensors‟ perception but also need to send power input

orders to their virtual motors.

The physical implementation of this architecture resulted in the usage of laptop

computers. They house the simulation and agent applications, which connect through a Wi-Fi

wireless network under protocol 802.11g and cabled Ethernet connections, as illustrated in

Figure 4.2.

S
im

u
la

ti
o
n
 S

e
rv

e
r

4.1 – Architecture 23

Intellwheels Simulator Server

Ethernet

UDP/IP

Real Wheechair

Control Agent

Wi-Fi

Viewer Agent
Virtual Door Agent

Virtual Wheelchair Control Agent

Ethernet

RS-232

Figure 4.2 - Technology implemented for Intellwheels simulation.

The core of the system is a central computer that runs the simulator server, to which

every agent application connects to. The information exchange is made through XML

messaging which ensure human and machine-readable content.

The system is composed by a simulator server, which can be a Linux OS or a Windows OS

(although, during this project, it was only compiled a Windows version of Intellwheels

Simulator). It sets a UDP listen port, to which it will await agents‟ registration requests.

Through specifically ports, attributed individually to each agent, it sends information of their

concern: sensor perception (in case of robotic agents) and map, collisions and positioning

information (in case of viewer agents). The simulator is also capable of accepting incoming

messages to these ports to update the simulation: robot action orders and simulation

commands from the viewers.

4.1.1 – Augmented Reality Theory

By definition, augmented reality (AR) is system that allows interaction between real and

virtual objects, in a real world[34]. An AR system will synchronize both realities with each

other thus ensuring consistency in information merging. Moreover, the concealing must be in

real time in order to allow the direct association between virtual and real data.

The conceptual gap between virtual reality (VR) and augmented reality is filled with

sublevels of mixed reality definitions[35], as portrayed in Figure 4.3.

24 Intellwheels Simulator

Mixed Reality

Figure 4.3 - Real to Virtual continuum

In real environment there is no interaction what so ever between the physical objects and

computer generated information. The System is composed solely by its real objects (walls,

tables, chairs, etc.) and perceptions (sonar sensor readings, VGA cameras, etc.).

A similar consideration can be made to the purely virtual environment. A system is

mathematically modeled and the entire perception of the world is limited to what the virtual

data contains. Every influencing parameter is calculated within a computer and the results

are based entirely on the initially programmed information. In the middle of the virtual and

the real worlds there can exist blended reality constructions.

In an augmented reality situation, the world is expanded with virtual data. An intelligent

agent (e.g. a human person) is able to alter their decisions based on this additional

information. A maze solving attempt is an example on where the virtual information would

affect the real world. If a person had entered a known building floor and was to go to room 1,

shown in Figure 4.4, the choice on which side to go to would be through the left, shorter

path.

Real
Environment

Augmented
Reality

Augmented
Virtuality

Virtual
Environment

4.1 – Architecture 25

Room 1

Entrance

Information Screen

Left

Corridor

Right

Corridor

Figure 4.4 - Maze example.

In reality either side will take the subject to its destination, although one path is

preferred to the other. In spite of this, if the person was to be informed, by a visual screen at

the entrance, that the corridor to the left was blocked due to repainting work in progress, he

would chose to take the path to the right. The information received is taken as true, although

it may not, thus turning virtual information relevant in the real world.

Conceptually, the augmented virtuality is very similar to the augmented reality, with the

differentiation that the influence, in this case, is made by the real world, affecting the

virtual workflow. The undergoing virtual process, generated by the computer is disturbed by

real world perceptions, therefore adjusting itself to the data received.

The aggregation of the augmented reality and augmented virtuality sets the definition of

mixed reality. The two-way interaction of the concepts creates a richer environment where

both worlds gain additional information and, as consequence, can produce better judgments

in decision making stages.

4.1.2 – Mixed Reality Support

An important part of the simulator is its capability of admitting the connection of

different robotic agents. Specifically, it is possible to distinguish an agent that controls a

virtual IW from an agent the controls a real IW ergo, there simulator can register two types of

robotic agents: “Real” and “Simulated”.

If a type “Simulated” robotic agent connects to the server, it will treat it as a controller

for a purely virtual robot. The simulation will then provide it with the world perception,

through the modeled virtual sensors. It will also accept incoming XML messages containing

actions that set the desired input power to be given to the motors which, consequently, will

be a parameter that the simulation engine itself will use to calculate the robot‟s following

position. It is a completely virtual environment.

In a case where the robot‟s type is “Real”, the simulator will regard this agent as an

application controlling a real IW, in a mixed reality mode. It is expected that the agent

26 Intellwheels Simulator

provides the simulation with the IW‟s X and Y coordinates (in meters) as well as the angle (in

degrees). This allows the virtual world modeled in the simulator to expand with information

concerning the real wheelchair. On the other hand, knowing the real wheelchair‟s position,

direction and physical characteristics, the simulator can virtually insert sensors on to it and

calculate their values. As an example, the simulator could detect the proximity of the real

wheelchair to any other object in the simulation, being virtual or real, like another IW. In

sending this new data to the real wheelchair, the simulator is augmenting its reality

perception, now acknowledging more information than it could by itself.

This kind of scenario confers the simulator a mixed reality support characteristic that

greatly increases the testing capabilities of the software. The IW prototype numbers and costs

are no longer obstacles in cooperative and complex experimentations.

4.2 – Programming Technologies

Being based in Ciber-Rato, the Intellwheels simulator is in C++ language. It also uses a set

of libraries, with special classes and functions: QT libraries from Trolltech[36]. These libraries

are cross-platform (in the sense that they can be used in various operating systems, including

Windows and Linux) and provide various class libraries that aid in the low level functions,

allowing a higher level of programming. Visual graphic drawing is an example of the

contribution that QT made, with cutting time spent on, for example, window and button

creation.

Since all the other software applications developed for the Intellwheels Project have been

and are being developed under Windows OS, this simulator project should follow the same

pattern. This ensures better computability between interacting software and reduces the

combined diversity of programming software requirements.

To code and compile under windows it was used the Microsoft Visual Studio C++

integrated software. Not only does this software provide a simple to use programming

environment, it also allows direct QT integration, valued ability in these circumstances.

4.3 – Modifications to Ciber-Rato

Although already including a wide range of robotic simulation requirements‟, the Ciber-

Rato by itself is not IW simulating ready, in the sense that it does not fully meet its needs,

hence the need for modifications.

Main alterations were done in every function that related to the robot‟s body definition,

starting from the body itself. Changing from circular body to a rectangular one imposes

algorithm modification to various modules, mainly collision detection, angular speed and

sensor value calculation.

4.3 – Modifications to Ciber-Rato 27

4.3.1 – Robot Body

Intellwheels simulator assumes that all robots have a rectangular form, with a

configurable height and width. The original “Ciber-Rato” simulators‟ robots were circular and

with a fixed radius. The error created by approximating a wheelchair‟s shape to a circle is too

great, therefore not even modifying the software to allow adaptable radius would produce

satisfactory results, as shown on Figure 4.5.

Figure 4.5 - Overlaps of a rectangle shaped robot with a circular shaped one.

Moreover, a wheelchair does not have its center of movement where the center of the

physical form. Instead, it is near the rear of the robot, where the axis of the wheels is. On

both wheelchairs, as in most of wheelchairs available in the market, the center is on half of

its height and on between 70%~90% of the robot‟s width, as exemplified in Figure 4.6.

Width

H
e

ig
h

t

COM*Width

H
e

ig
h

t
/
2

0

1

2

3

Figure 4.6 - Virtual Body for modeled by Intellwheels simulator.

The robot‟s Center of Movement (COM) ranges from 0.00 to 1.00 and defines the position

of the robot‟s wheels‟ axis, relatively to its width. A COM of 0.8 would set the axis closer to

the rear of the robot whereas a COM of 0.5 would set the axis would set it in the center of

the robot. This point, where the axis of the wheels meet the half of the robot‟s height will be

referred to as the robot‟s center.

To fully acknowledge the complete body location of the robot, its corners‟ coordinates

and its orientation must be calculated. This is done based solely on the robot‟s center

28 Intellwheels Simulator

position (X, Y and angle) and physical characteristics (width, height and COM). Through the

physical characteristics, the relative position of each corner is determined (see Table 4.1).

Table 4.1 - Robot's corners relative position coordinates

Corner
Id

X relative
position (m)

Y relative
position (m)

0 COM*Width Height/2

1 COM*Width - Height/2

2 - (1-COM)*Width Height/2

3 - (1-COM)*Width - Height/2

The current absolute position can be computed by applying a transform matrix, using the

center position information, as illustrated in Figure 4.7.

Figure 4.7 - Algorithm for the determination of the robot's corner absolute position.

The rotation matrix, referred of in the matrix equation 4.1, is a generic equation that will

rotate any given point, using the Z as the axis around which the spin will be done. Assuming

that the robot‟s center is in the Z axis, the matrix can be applied to determine the robot‟s

corners absolute coordinates.

,

(4.1)

where Xrel and Yrel are the corner‟s position, relative to the robot center, Xabs and Yabs are the

absolute position and θ is the robot‟s angle. The application of the (5.1) matrix equation

resulted in the a new one for each coordinate of each corner, all displayed in Table 4.2.

Select Robot
Corner

•The four
corners of the
robot have a
position that is
calculated
throught its
height, width
and COM.

Apply Robot
center position

•The relative
position of the
corner is
updated by
addition of X
and Y absolute
coordinates of
the robot.

Apply rotation
matrix

•The corner is
rotated into
the new
position,
considering
the robot's
orientation
angle.

4.3 – Modifications to Ciber-Rato 29

Table 4.2 - Equations implemented to determine corner positions, relatively to the robot's center
coordinates

Corner
Id

Equation for X absolute calculation Equation for Y absolute calculation

0

1

2

3

For all equations show in the table above, Rx and Ry stand for the robot‟s absolute center

coordinates, BigDiag is the distance from the center to corners 0 and 1 and SmallDig is the

distance to 1 and 2 corners, as equations 4.2 and 4.3 detail.

 (4.2)

 (4.3)

These calculations define the robot‟s body and are, therefore, a key for input for all

simulation functionalities.

4.3.2 - Top Speed and Motor Acceleration Curve

One of the basic wheelchair‟s parameters that needs to be configurable is the top speed.

Each IW will have different maximum speed and the simulation engine was adapted in that

direction. In function for next position calculation, the current velocity is initially

determined. This equation now in function of the maximum speed parameter of that unique

robot (it is a class variable), therefore allowing differentiation between robots. A robotic

agent, at registration, should indicate its maximum speed. If it fails to do so, the simulator

will set the default speed of 1 meter per second.

An additional modification was made on the dynamic characteristics of the motors‟

acceleration curves. Since the original software was designed to ensure all robots were equal,

every robot connected had to had the same dynamic characteristic. In this IW simulation

environment it is expected that the robots connecting may have different dynamic

characteristics. Similarly to size and center of movement characteristics, a new robot

registration parameter was implemented to allow each robot to define their curve. For

30 Intellwheels Simulator

acceleration control, an equation (4.4) was used when calculating the motor‟s output power,

given an input power value.

 , (4.4)

where outputn is the new motor power output, curve is a value between 0.00 and 1.00,

defining the slope of the acceleration curve, and outputn-1 is the power value from the

previous period. Figure 4.8 plots the output of equation (4.4). Chart on the left has a curve

parameter at 0.2. Chart on the right has curve parameter at 0.8. Both charts use the input

constant at 100%. This equation was applied for the robot's acceleration curve characteristic.

Figure 4.8 - Output charts of a situation where curve=0.2 (on the right) and curve=0.8 (on the left) and
both with constant input at 100%.

As an example, if period time was set to 100ms, an IW with curve = 0.8 would take

approximately 1.5 seconds to reach the maximum speed, whereas an IW with curve = 0.2

would take only 0.4 seconds, as demonstrated on Figure 4.8. Considering the error 1%, an IW

with curve = 0.8 would take approximately 2.1 seconds to reach the maximum speed whereas

an IW with curve = 0.2 would take only 0.3 seconds.

In ensuring that this parameter is configurable, the simulator is able to improve the

convergence to the real wheelchairs‟ characteristics, optimizing the environment for control

algorithm tests.

4.3.3 – Next Position Calculation

Having modeled the wheelchair‟s motor response, through it it is possible to calculate the

position of the robot on the following period. Using the robot‟s top speed and the output,

given by the motor acceleration equation, the simulator calculates the robot‟s linear (eq. 4.5)

and angular (eq. 4.6) speeds.

 (4.5)

0

20

40

60

80

100

0 2 4 6 8 10 12 14

O
u

tp
u

t
v
al

u
e

(%
)

Periods

Acceleration Curve (curve = 0.8)

0

20

40

60

80

100

0 2 4 6 8 10 12 14

O
u

tp
u

t
v
al

u
e

(%
)

Periods

Acceleration Curve (curve = 0.2)

4.3 – Modifications to Ciber-Rato 31

 (4.6)

The linear speed will affect the robot‟s next X and Y coordinates, whereas the angular

speed will affect the robot‟s next orientation. Equations 4.7, 4.8 and 4.9 allow these

calculations.

 (4.7)

 (4.8)

 (4.9)

where Xn and Yn are the current robot‟s center coordinates, Xn+1and Yn+1 are the calculated

values for the robot‟s next coordinates, θn and θn+1 are current and next values for the

orientation and TimeStep is the time period of time, in seconds, between calculations. This

later parameter is used so that the robot‟s speed is the indicated by the agent at registration,

may be in meters/second. Finally it is relevant to mention that the orientation angle is

normalized to the ranges from -180º do + 180º and this restriction must be taken care of at

the time of the next angle calculation. In a case where θn+1 calculation results in a value over

+180, it is transformed by subtracting 360º. Similarly, if it decreases under -180 it will be

added 360º.

Every period, the next position of the robot is calculated and then, the values are used to

move the robot. Although being its main usage, this calculation serves other purposes, such as

aid in the collision algorithm. The collision detection must be tested with the next and not

the current robot‟s position. If it was not as such, the limit that is made to the robot‟s

movements, while in collision would permanently block its movement.

4.3.4 – Collision Detection

The starting point for the adaption of the DCOSS version of “Ciber-Rato” Simulator was

the conversion from circular to rectangular body robots. The main usage of the robot‟s body

is in the collision detection verification. A robot‟s shape has to be defined in mathematical

equations that will enable the detection of intersection with other objects. In this simulator

there will only be modeled 2 types of objects: walls and robots. Therefore collision checking

will only have to be performed with these two types.

Originally, for Robot-Robot collision checking, the “Ciber-Rato” simulator checked

whether the distance that separates the robots‟ centers (through X and Y coordinates) was

smaller than two times a robot‟s radius (all robots were circular with the same radius). This

simple algorithm is not applicable for different radius robots neither for rectangle shaped

robots. The wheelchairs‟ size and position on the map were now modeled by four parameters:

32 Intellwheels Simulator

Center of movement point, the wheelchair‟s orientation angle, the width and height. Through

this information all the robots‟ corners coordinates can be calculated. Using this information

the new collision detection algorithm is as follows:

 Using pairs of corners as line segment defining points, it is calculated an equation for

one line segment for each robot.

 The intersection point of the two lines is calculated. If lines are parallel no point is

calculated for there is no intersection.

 Both X and Y coordinates are checked to find whether they are located within each

robot line segment. If so, then there is a collision between the two robots.

 This process is repeated until the 4 lines of each robot are checked with the lines of

every other robot.

Figure 4.9 gives an example on one of the tests performed during this algorithm.

0

1

2

3

0

1

2

3

Intersection

Pont

Figure 4.9 - Line Intersection Verification

The line defined by corners 0 and 1 of wheelchair A is being checked against the line defined

by corners 0 and 2 of robot B. The intersection point is within the line 0->2 segment of robot

A, but it is outside the line segment of robot B. Therefore, no collision is detected. Every

robots‟ lines must be checked with the other robots‟, a cycle illustrated in Figure 4.10. During

this cycle the “Determine Intersection” function is called (taking two corners of each robot as

parameters) and returns true or false, depending whether a collision was identified. The

“Determine Intersection” function is represented in UML diagram of Figure 4.11.

4.3 – Modifications to Ciber-Rato 33

Select New

Robot1 from

Robot List

Select New

Robot2 from

Robot List

Start

Select New Line

from Robot1

Select New Line

from Robot2

Was it the last

Line from

Robot2?

Was Robot2 the last

of the Robot List?

Was Robot1 the last

of the Robot List?
Yes

No

No

Set Collision=True

on both robots
Yes

Yes

End

Is Robot1 =

Robot2 ?
No

No

No

Was it the last

Line from

Robot1?

YesYes

No

Yes

Execute

“Detemine

Intersection”

Function

Encountered

Collistion?

Set

Collision=False on

all robots

Figure 4.10 - Cycle for checking collision on all lines from every robot

Select 2 consecutive corners from Robot1: (X11,Y11);(X12,Y12) Select 2 consecutive corners from Robot2: (X21, Y21);(X22,Y22)

Determine line equation of Robot1 Determine line equation of Robot2

Calculate Intersection Point (Xi,Yi)

[impossible]

[determined]

Lines are Parallel

[X11>X12]

[X11<X12]

[Xi>X11 and Xi<X12]

[Yi>Y11 and Yi<Y12]

[Xi<X11 and Xi>X12]

[Y11<Y12] [Y11>Y12]

[Yi<Y11 and Yi>Y12]

[X21>X22]
[X21<X22]

[Xi>X21 and Xi<X22]

[Yi>Y21 and Yi<Y22]

[Xi<X21 and Xi>X22]

[Y21<Y22] [Y21>Y22]

[Yi<Y21 and Yi>Y22]

Return Collision=False

Return Collision=False Return Collision=False

[Xi<X11 or Xi>X12] [Xi<X21 or Xi>X22]

[Yi<Y11 or Yi>Y12] [Yi<Y21 or Yi>Y22]

Intersection point hits Robot1 Intersection point hits Robot2

Return Collision=True

[Intersection point Hit both Robots]

Figure 4.11 - UML diagram of the “Determine Intersection” function.

34 Intellwheels Simulator

Robot-Wall collision checking also endured structural changes but, after concluding the

robot-robot check it was a simple implementation. In the simulator, walls are stored in an

array of walls and each wall is an array of corners (a corner is defined by its X and Y

coordinates). Hence, the concept of the wall collision check algorithm is similar to the Robot-

Robot. Every two consecutive corners define a line segment that will be checked with the

robots line segment. If the intersection point is within the two segments, then a collision

exists.

4.3.5 – Proximity Sensors

The proximity sensor positioning was the next functionality to be adapted. Originally, the

Ciber-Rato simulated an infra-red sensor that could only be positioned in the perimeter of a

circle, with a fixed cone of sight and a fixed direction, radial to the robot. To be true to the

rectangular form, the sensor definition was modified, as illustrated in Figure 4.12.

6
0
º

60º

6
0

º
6

0
º

0
.5

u

Collision

Sensor

Proximity

Sensor

Cone = 80º

Angle=0º

Cone = 40º

Angle=45º

Cone = 10º

Angle=-90º

Cone = 40º

Angle=180º

a. b.

Figure 4.12 - Comparison between the modeled body‟s and sensors of the simulated robots in Ciber-Rato
(a) and Intellwheels (b).

It can now be configurable by X and Y coordinates, relatively to the robot‟s movement

center, and both the cone of sight and the direction can be redefined. All these parameters

are now configurable by the agent, at the time of registration with the simulator. The sheer

modification of enabling configurable cone allows the agent to register different proximity

sensors. A wider cone would resemble a sonar proximity sensor whereas as thinner cone

would be more similar to an infrared proximity sensor.

To better approach to the real IW used in LIACC, the simulator raised the robots‟

proximity sensor number to 8.

4.4 – XML Communications 35

4.4 – XML Communications

The Extensible Markup Language (XML) is now a widely used standard, mainly due to its

characteristic of facilitating communications across different systems[30]. Specifically in the

Intellwheels Simulator‟s environment, it is expected that different applications, developed in

different platforms exchange data in an easy human understandable way. Ciber-Rato

originally was set for its usage and, with proven success, the concept endured in Intellwheels

Simulator.

XML tags were defined for every kind information exchange between the simulator and

the agents.

4.4.1 – Registering Physical Characteristics

The first action that a robotic agent should take is to register itself with the simulation

server, through the UDP protocol. In order to so, a XML message must be sent to port 6000 of

the IP of the computer that is running Intellwheels simulator. This registration can be as

simple as a single XML tag containing the IW‟s name or as complex as a full clarification of all

its characteristics. Table 4.3 details all the tags that can be inputted at registration.

Table 4.3 - XML tags for robot registration

Tag Definition Type Range
Default
Value

Name robot‟s name string Up to 20 characters N/A

Id Robot‟s Id number Integer [1;Map Grid] Simulator

Height Robot‟s Height float >0 (meters) 1.0

Width Robot‟s Width float >0 (meters) 1.0

COM
Robot‟s Center of

Movement
float]0;1[0.5

X
Robot‟s starting X

coordinate
float >0 (meters) Map Grid

Y
Robot‟s starting Y

coordinate
float >0 (meters) Map Grid

DIR
Robot‟s staring angle in

degrees
float [-180;+180] (degrees) Map Grid

Type Type of agent connecting N/A
{Simulated, Real,

Door}
Simulated

MaxSpeed Robot‟s top speed float
>0 (meters per

second)
0.5

AccerelationCurve Robot‟s acceleration curve float]0;1] 0.5

Apart from the Name, all the other XML tags will assume a default value if they are

omitted. Figure 4.13 exemplifies a registration message that the simulator would

acknowledge and accept.

36 Intellwheels Simulator

Figure 4.13 - Intellwheels robotic agent registration XML message

4.4.2 – Registering Sensors

Intellwheels allows registering up to 8 robot sensors wherever they are needed. Usually an

IW will have their proximity sensors located near the perimeter, but they can also be placed

more to its inside. The sensor‟s positioning is now made through a definition of their X and Y

coordinates relative to the robot‟s center and their cone of sight and orientation can also be

configured. The registering of sensors must be done at the initial robot registration with the

server and with all the tags shown in Table 4.4.

Table 4.4 - Sensor Registration XML tags

Tag Definition Type Range

Id Unique identification integer [1;8]

X
X coordinate of the sensor position, relatively to the

center of the robot
Float >= 0 (meters)

Y
Y coordinate of the sensor position, relatively to the

center of the robot
Float >= 0 (meters)

Angle Angle, in degrees, of the sensor direction. Float [-180;180] (degrees)

Cone Arc of sensor vision, in degrees. float]0;180[(degrees)

In order to simplify the future development of controlling agents, virtual sensor will be

created and placed even if its registration is not done. The simulator will place the sensors in

accordance with the physical characteristics of the wheelchair. Four sensors will be placed on

the perimeter with default relative positions, cones and orientations. Table 4.5 details this

positioning, which is illustrated in Figure 4.14. It is important to notice that sensor registering

and positioning is independent of the robot type. They shall be created and placed in their

positions, independently if the agent is a simulated robot controller or a real robot one

controller.

<Robot

Name="IntellWheels" Id="1" Width="1.0" Heigth="1.0" DIR="0.0" COMass="0.5" Type="Real"
X="13.0" Y="7.0" DIR=”0.0” MaxSpeed=”0.5” AccelerationCurve=”0.7”>

</Robot>

4.4 – XML Communications 37

Table 4.5 - Default sensor characteristics

ID X (m) Y (m) Angle (º) Cone (º)

0 width * COM 0.0 0.0 60

1 0.0 0.5 * height 90 60

2 0.0 -0.5 * height -90 60

3 - width * (1-COM) 0.0 180 60

a) b)

Figure 4.14 - Default sensor location with COM=0.5, a), and COM=0.8, b).

Even though these default sensor will be placed, if sensor individual positioning is

intended, that information must be sent together with the robot‟s physical characteristics

information. Figure 4.15 is an example of a XML message containing sensor information that is

accepted by the simulator.

Figure 4.15 - XML message for robot registration sensor definition

4.4.3 – Moving Robot

After robot registration (independently of its type), every communication to must be sent

trough the new UDP port specified by the simulator. Moving the robot is also done through

XML messaging, however, it now depends on its type.

For a robot type “Simulated”, the simulator will be responsible for new position

calculation. It will also handle the modeling of the motors and thus the translation of the

input power to robot‟s speed. As such, to move the robot, its controlling agent must send a

<Robot

Name="Teste" Id="1" Width="2.0" Heigth="1.0" DIR="0.0" COM="0.5" X="11.0" Y="11.0">

<IRSensor Id="0" X="1.0" Y="0.0" Angle="0.0" Cone=”60”/>

<IRSensor Id="1" X="0.0" Y="0.5" Angle="90" Cone=”50”/>

<IRSensor Id="2" X="0.0" Y="-0.5" Angle="-90" Cone=”30”/>

<IRSensor Id="3" X="-1.0" Y="0.0" Angle="180” Cone=”60"/>

</Robot>

38 Intellwheels Simulator

XML message, sending the power values to attribute to each motor, as exemplified in Figure

4.16.

Figure 4.16 - XML message example for motor order

The power values range from -0.15 to 0.15. During the development of this project it was

considered to change this range to -100 to + 100, as it would set the power setting more

obvious values. On the other hand, this modification would invalidate the usage of agents

developed for the original “Ciber-Rato” to control the motors. Because of this, the original

range was kept.

In case the connecting agent is a real IW controller (in augmented reality mode) the

simulator relinquishes the task of position determination to the agent itself. Conceptually,

the simulator in working in augmented virtuality mode and so, the agent must inform it, at all

times, it‟s X and Y coordinates (in meters) and orientation (in degrees). Through this action it

is possible to allow interaction between the real and virtual world, particularly updates on

virtual sensor value calculation and collision detection. The XML message that the agent must

send to the simulation server is as illustrated in Figure 4.17.

Figure 4.17 - XML message of type real robot position information

4.4.4 – Viewer Agent

One of the key features of Intellwheels is the possibility of connecting a viewer agent, to

visually represent the simulation. The application is external to the simulator itself, alike the

robotic agents, requiring only the usage of UDP/IP protocols to exchange XML messages.

Regarding these messages, they should be sent in a particular order, so that the visualization

is proper. Once again, it was intended that the Ciber-Rato viewers could be applied to this

simulator and, therefore, the sequence of XML messages is identical to the Ciber-Rato‟s,

illustrated in Table 3.2. To illustrate, Figure 4.18 gives an example of the initial registration

message sent from the viewer agent and the simulator‟s response.

<Actions LeftMotor="0.1" RightMotor="-0.1" />

<Actions X="10" Y="5" DIR="45"/>

4.4 – Summary 39

Agent sends: Simulator Responds:

<View/>

<Reply Status="Ok">

<Parameters SimTime="1800" CycleTime="1000"
CompassNoise="2" BeaconNoise="2”
ObstacleNoise="0.1" MotorsNoise="1.5"
RunningTimeout="1350" GPS="Off"
ScoreSensor="Off" ShowActions="False"
NBeacons="1" RequestsPerCycle="2"
ObstacleRequestable="On"
BeaconRequestable="On" GroundRequestable="On"
CompassRequestable="On"
CollisionRequestable="Off" ObstacleLatency="1"
BeaconLatency="5" GroundLatency="1"
CompassLatency="5" CollisionLatency="1"
BeaconAperture="3.141593" />

</Reply>

Figure 4.18: XML messages of viewer registration

It is appropriate to mention that, although Ciber-Rato remains connectable to Intelwheels

simulator, not all information sent to it is used (such as robot‟s physical characteristics). In

spite of this, the visualization may not be accurate but can still give some rough visual

information on the simulation.

4.4 – Summary

The Intellwheels Simulator, expanded the Ciber-Rato project it is was based on, acquiring

important features which are critical for intelligent wheelchair simulation.

This chapter stated by giving an overview on the intellwheels conceptual architecture and

the technology it used for the development and implementation. It presented the concepts of

the multi-agent system and the support for external application connection. Intellwheels

provides a new mode of IW simulation where it is possible to connect not only agents for

virtual robots but, at the same time, real IW controllers which can, themselves work on

augmented reality mode. The simulator, on the other hand, will be under an augmented

virtuallity environment, receiving information of real wheelchairs and calculating their

interaction result with the virtual objects modeled.

Every robot is modeled with a rectangle shaped body, with configurable center of

movement, height and width. Additional physical characteristics, different in every electrical

wheelchair, are also adaptable, such as the acceleration curve and the maximum speed it can

achieve. A new algorithm was developed for the key function of collision detection, taking

the rectangle shape on consideration. The proximity sensors can be defined by their opening

cone of sight and their orientation, in degrees, and can be placed through X and Y

coordinates relatively to the robot‟s center. Finally, the simulators XML messages were

detailed, exemplifying how robotic agents and viewer agents register and communicate with

the simulator.

40 Simulation Agents

Chapter 5

Simulation Agents

During the development of the Intellwheels Simulator, a need for agents that would test

the implemented algorithms was evident. Although the first objective was to modify and

adapt the Intellwheels Control Agent (previously developed by LIACC), so it would be able to

connect with the simulator and control the virtual robot, other simpler and more generic

controlling agents where created.

The applications were built with Borland[37] Delphi 7. Delphi 7 is an integrated software

development environment that allows visual, event-oriented programming through Pascal

programming language[38]. The main reason for its decision was related with assuring

homogenous software usage throughout most of the Intellwheels models (detailed in Chapter

2).

This chapter will be initiated by explaining the basic Intellwheels agents developed for

simulator testing purposes and shall finalize by presenting the project‟s main control agent,

with its features, possibilities, adoptions and operational modes.

5.1 – Simple UDP Agent

To overcome the initial difficulties in the Ciber-Rato study, an agent was developed, in

Delphi 7, to test UDP communications with Ciber-Rato as well as XML messaging. This

application was also to work as a base code for communication handling in all robotic agents

to be developed afterwards.

The main purpose of this application was to have the ability to connect to the original

Ciber-Rato as a robotic agent and as a simulation viewer agent. As additional functionalities,

it is be able to create a text file with the XML messages sent and received and four movement

buttons (up, down, left, right) to control the robotic agent, shown in Figure 5.1.

5.1 – Simple UDP Agent 41

Figure 5.1 - Simple UDP Agent

Concerning, the UDP connection, the main difficulties encountered were related to the

definition of the IP ports. Delphi 7 contains a UDP component (from the TidUDPServer class)

that can be “drag and dropped” onto the form, instantiating it, remaining the task of its

configuration. The initial step, to register, is taken by the agent, as it defines a listen port

and a destination port and sends the registration XML message, ensuring that the local listen

port is the “Source Port” in the UDP datagram, as shown in Figure 5.2[39], for that will be the

port that the simulator will respond to.

The simulator, by default, is listening to every communication sent to port 6000. Once it

receives a message, it is analyzed and checked for a Robot or Viewer agent XML registering

message. If the message does not match with any of these, the message will be ignored. In a

case it is a robot connecting and if the Id is specified, it must not already be in use in the

simulation, otherwise the registry will be denied.

In a successful registration, the simulator will send an XML message confirming it. In this

first message, the UDP datagram sent will specify a new port, to which every robot action (or

viewer command, depending on which agent type connected) must be sent.

+ Bits 0-35 16-31

0 Source Port Destination Port

32 Length Checksum

64 Data

… …

Figure 5.2: UDP packet header structure

The simulator binds the robotic agent‟s sending IP and port to this new port. No

communication can be done to any other port, from this point forward. The main reason for

this behavior is to ensure that port 6000 remains free for new robot registration.

Up, Down, Left and Right buttons on this agent simple send an action message to the

simulator, as shows Table 5.1.

42 Simulation Agents

Table 5.1 - XML messages for agent‟s buttons.

Button XML message Purpose

UP
<Actions LeftMotor="0.1" RightMotor="0.1"/>

Move the robot forward

Down
<Actions LeftMotor="-0.1" RightMotor="-0.1"/>

Move the robot backward

Left
<Actions LeftMotor="-0.1" RightMotor="0.1"/>

Rotate the robot anti-clockwise

Right
<Actions LeftMotor="0.1" RightMotor="-0.1"/>

Rotate the robot clockwise

Apart from the messages sent through the buttons, the application allows custom message

sending, through an edit box seen at the top of the application (Figure 5.1). This permits that

any message can be sent to the simulator, testing its response. All ingoing and outgoing

communications are shown in the debug text boxes and can be stored in a “log.txt” file,

through the “Start Log” button.

This application was developed to serve as the simplest UDP communications test tool and

simulator response validation. Additionally, it proved to be a fine core source not only for

more advanced, generic wheelchair robotic simulators but for the Intellwheels Control Agent

itself and even the Intellwheers Viewer agent, detailed in Chapter 5. All these applications, in

some form, use functions of this “Simple UDP Agent”.

5.2 – Wheelchair Robotic Agent

As the simulator evolved into an IW simulator, the requirements to test the algorithms

being implemented became more complex, thus requesting the development of an agent that

would validate those modifications. Direct implementation on the existing Intellwheels

Control Software would implicate increased difficulty due to the current complexity of the

application. For that reason the solution was to expand the previous “Simple UDP Agent” into

a Wheelchair Robotic Agent. Its objectives are:

 Allow multiple robotic connections in only one application;

 Permit the manual definition of the physical characteristics of the wheelchair;

 Customize the sensor‟s positioning, cone and orientation;

 Enable the option for definition of the robot‟s initial position on the map;

 Give Visual information of the virtual sensors readings;

 Admit simple, low level, controlling of the wheelchair through buttons and the arrow

keys on the keyboard.

To implement the multiple robot connection, the answer was to dynamically create instances

of the Delphi UDP component. A solution that would solve not only this requirement but also

allow storing of different IWs‟ individual information is to create a class. The TRobot class

was developed and it would store all the information concerning the robot‟s physical

characteristics and communication related information. Figure 5.3 is the UML diagram

5.2 – Wheelchair Robotic Agent 43

representation of the implemented TRobot class, indicating the major attributes and

operations involved. Programming robustness was taken into consideration, therefore the

class‟s attributes were created as protected attributes, and operations were created to allow

secure access.

+GetId()

+SetId()

+GetName()

+SetName()

+GetX()

+SetX()

+GetY()

+SetY()

+GetHeight()

+SetHeight()

+GetCOM()

+SetCOM()

+GetAngle()

+SetAngle()

+GetType()

+SetType()

+GetLocalPort()

+SetLocalPort()

+XMLSend()

-Read()

#Id : int

#Name : string(idl)

#X : double

#Y : double

#Height : double

#Width : double

#COM : double

#Angle : double

#Type : string(idl)

#Collision : bool

#Connection

-LocalPort : int

-CommPort : int

TRobot

Figure 5.3 - TRobot Class

In a situation where this application has multiple robots connected to the simulator, each

instance of the TRobot class will have a unique listen port (enforced by the simulator) and the

information will be stored only into the robot that matched that specific port. Figure 5.4 is a

print screen of the application, in a moment where three robots were connected to the

simulator.

44 Simulation Agents

Figure 5.4 - Wheelchair Robotic Agent

Individual selection, information view and control of each robot is possible through a combo

box that keeps a list of the TRobot instances. Once a movement button is pressed, or a

custom message is sent, the application uses the XMLSend operation of the selected TRobot

instance to do it. Similarly, once an instance receives a message to its port, a check of the

combo box selection is made and, in case the selected one matches the received information,

it will update the values on the main form of the application.

Although it possesses no intelligent behavior (being simply reactive or pre-planned), this

application proved to be valuable in simulator testing for XML messaging handling as well as

for the core algorithm implementations detailed in Chapter 4.

5.3 – Door Agent

To provide a wider variety of testing fields for the IW control algorithms, another type of

agent was allowed to connect to the simulator. The type “Door Agent” modeled doors, for

they are key objects in this type of simulation environment. Since every parameter of the

robot‟s rectangle form is now adjustable by each agent, it is possible to turn a robot with a

very small height, proportional width and a center of movement at the bottom of the robot

(e.g.: COM=0.99) into a conventional door. The similarities are such that this application is

itself an adaptation of the Wheelchair Agent presented before.

Although it would be possible to create additional restrictions to a door type agent‟s

movement inside the simulator software, this solution was declined, allowing the agent itself

to limit the movement (by the virtual left and right motor power orders). This way, it is

possible to create any kind for door needed. To test and use this functionality, a Door agent

was created with the capability of connection of multiple predefined and custom doors.

5.3 – Door Agent 45

The predefined types created were:

 Normal Door

o Height=1.0m; width=0.1m; COM=0.99;

o Left Motor power = - Right motor power

 Sliding Door

o Height=1.0m; width=0.1m; COM=0.99;

o Left Motor power = Right Motor power

 Rotating Door

o Height=1.0m; width=0.1m; COM=0.5;

o Left Motor power = - Right motor power

A low level button was created that would open and close the door, depending on its

type. Figure 5.5 illustrates the implemented algorithm for this control button.

Door Closed

Proximity sensor detection

Opening Door
90º rotation detected

entry/Start Timer

Door Open

Timeout and No sensor detection

Door Closing

90º rotation detected

Movement Stop

Collision detection

No Collision Detection

Movement Stop

Collision detection

No Collision Detection

Figure 5.5 – UML stat diagram of the door control algorithm

To demonstrate the extra capabilities of the door as an intelligent agent, sensor

treatment was implemented into the application for automatic door open usage. If the door‟s

46 Simulation Agents

proximity sensors indicate an object close enough, it would automatically open the door. This

behavior is similar to the behavior of a common automatic door. So, after a fixed period of

time without sensor detection, the doors will close. Moreover, through the collision detection

sensor, the door stops its movement in case of contact, waits a determined period of time

and then tries to proceed the previous action.

Possibilities for an intelligent robotic door agent are vast and in the last chapter of this

dissertation, future work on this matter is proposed. A sample of the capabilities is the

communications module. A particularly interesting feature is to open or close from received

communications rather than by the proximity sensors. In fact, with integration with the IW‟s

controlling agent, the door could open as a part of a trajectory plan of the wheelchair. This

would set the environment more intelligent, efficient and more secure.

5.4 – Intellwheels Control Agent

One of the main objectives of this dissertation is to allow the same controlling software to

be used for real wheelchair control, virtual wheelchair or both (simultaneously).

Furthermore, this should be done in such a fashion that the same medium level algorithms

could be used transparently to the hardware (or virtual hardware) to which the software is

connected.

The software itself was originally developed already with the intent of, later, adding the

simulation features. This was done by the creation of the simulator configuration tab (Figure

5.6-b.) and the operation mode selection (Figure 5.6-a.).

a. b.

Figure 5.6 - Simulation-Ready structures on Intellwheels main application (adapted from [1])

These design spaces were left with no code within and, apart from the connection handling,

the modifications to this software went deeper inside, onto sensor information treatment,

motor power order decisions and simulation communication requirements.

5.4 – Intellwheels Control Agent 47

5.4.1 - Virtual Reality Mode

The first modification implemented on this agent was the adaptation to pure virtual

environment control, which corresponds to Simulation selection in the “Operation Mode”

(Figure 5.6-a). The control applications connect to the simulation server through UDP and IP.

The simulator will provide this application world perception through GPS sensor (for

positioning), compass (for orientation), virtual sonars and IR sensors (for obstacle detection),

as Figure 5.7 represents.

Intellwheels Simulator server IW Control Apllication

UDP/IP

Virtual Sensor perception

Motor power inputs

Figure 5.7 - Simulated Operation Mode

The advantages of this operation mode are the testing possibilities it allows. It is possible

to test the functionality of the control algorithms in a sensor error free environment and, on

the other hand, test error treatment excluding other wheelchair movement tribulations.

5.4.2 - Real Mode

Real wheelchair connection was already implemented at the beginning of this project. It

consists on a RS232 connection with the acquisition boards on the wheelchair for sonar and IR

sensor readings and motors‟ power inputs send, illustrated in Figure 5.8.

IW Control Apllication

RS232

Motor Power Inputs

Real Sensor Perception

Figure 5.8 - Purely Real Operation Mode

48 Simulation Agents

The control of the chair can either be manual or in an automatic mode where the power

inputs are defined in function of the planned task. The greatest inconvenience of this mode is

the lack of reliability that real sensors can offer. The sonar and IR sensors have random

reading errors and, on some objects and surfaces, they might even fail to detect anything at

all (e.g. tables, black or rough surfaces).

The chair‟s localization is made through odometery. The impulses read on each encoder

will allow left and right wheels speed calculation which, no its turn, permits angular

movement as well as X and Y variations. Once more, this is a real sensor and, in case of wheel

sliding, impulse readings induce into false speed calculations, thus making the wheelchair

“lose” its position.

5.4.3 - Augmented Reality Mode and Sensor Merging

Final operation mode (Figure 5.6) will make the application connect simultaneously to the

real wheelchair, through RS232, and to the virtual world of the simulator, through IP and

UDP. This mode requires the localization calculations, made through real wheelchair sensors,

to be very precise as the virtual world generated by the simulator relies solely on that

information for real wheelchair incorporation.

RS232

Intellwheels Simulator server IW Control Apllication

UDP/IP

Virtual Sensor perception

Motor power inputs

Real Sensor perception

Wheelchair Real Position

Figure 5.9 - Augmented Reality Operation Mode

As the simulator creates a virtual projection of the real chair on its world, it is able to

place virtual sensors onto it and provide the control software with additional perception

information. In addition to the real sensors, control algorithms may count with error and

variation free information that the simulator can provide.

Summing up, the IW control application will receive real and virtual sensor information

and send the wheelchair‟s position to the simulator and motor power inputs to the real

wheelchair.

During the augmented reality operation mode this application will treat information from

virtual and real sensors. The challenge is how to merge all the information to achieve the

best possible control decision. Since this is a project that deals with humans, the information

merging algorithm implemented followed a safe, conservative ideology. If the virtual and real

5.4 – Intellwheels Control Agent 49

sensors offered different perceptions on the world around, the control should decide using

the values that better protect the chair (and the patient himself). As example, if the virtual

proximity sensors read an object 30cm away in front, and the real sensors read the same

object at 60 cm, the closer value is the one to be used in the decision for motor power input.

Figure 5.10 graphically represents this algorithm.

Read Virtual

Proximity Sensor

Read Real

Proximity Sensor

Virtual Value

<

 Real Value?

Use Virtual Value

for control

decisions

Use Real Value

for control

decisions

Yes No

Figure 5.10 - Sensor Merging Algorithm

5.4.4 - Simulator Connection

The development of the simulator allowed parameter configuration that was not foreseen

in the initial stages of the application development. As detailed in chapter 4, the registration

of the wheelchair with the simulator should include all of its physical characteristics.

Therefore, a modification to the simulator configuration form was made, to allow the

parameter configuration (Figure 5.11).

50 Simulation Agents

Figure 5.11- Simulator Configuration Form

Since it was intended to model as closely as possible the real wheelchairs, the prototypes

in LIACC were measured resulting in the definition of their physical characteristics.

Comparison between virtual and real sensors was also looked-for. As a result the location of

every sensor was measured (relatively to the wheelchair‟s center of movement). This

information must also be sent in the initial connection with the simulator. Figure 5.12 shows

the XML message to be sent for full IW agent registration.

Figure 5.12 - XML message for IW registration, for prototype wheelchair.

5.5 – Summary

This chapter discussed the developed agents for connection with the simulator. The

agents were vital in various stages of the simulator‟s development, even in the initial Ciber-

Rato study, to which the Simple UDP Tool intended.

<Robot
Name="WheelChair1"
Type="Simulated"
Height="0.66" Width="1.04" COM="0.81"
MaxSpeed="0.5" AccelerationCurve="0.2">
<IRSensor Id="0" X="0.72" Y="0.24" Angle="0.0" Cone="60"/>
<IRSensor Id="1" X="0.72" Y="-0.24" Angle="0.0" Cone="60"/>
<IRSensor Id="2" X="0.54" Y="0.24" Angle="90" Cone="60"/>
<IRSensor Id="3" X="0.54" Y="-0.24" Angle="-90" Cone="60"/>
<IRSensor Id="4" X="0.05" Y="0.28" Angle="90" Cone="60"/>
<IRSensor Id="5" X="0.05" Y="-0.28" Angle="-90" Cone="60"/>
<IRSensor Id="6" X="-0.03" Y="0.28" Angle="180" Cone="60"/>
<IRSensor Id="7" X="-0.03" Y="-0.28" Angle="180" Cone="60"/>

</Robot>

5.5 – Summary 51

The Wheelchair Agent was later developed, as the simulator was able to accept full

electric wheelchair characteristics (from size, center of movement, acceleration to top speed

and sensor definition). This agent is also able to perform basic commands for movement

(forward, back, turn left and right) which allows full test of the Intellwheels capabilities for

wheelchair simulation.

One of the main objectives of this dissertation was to be able to have one unique

application for real and virtual wheelchair controlling. This was successfully completed and

moreover, and augmented reality feature was able to be implemented, where the application

is able to receive and reason with virtual and world information, simultaneously.

52 Intelwheels Viewer

Chapter 6

Intellwheels Viewer

Visualization is of great significance in simulation in the sense that it is a mean to easily

understand a large quantity of information, which would otherwise be too great or complex

for most people to fully grasp. Graphical representation is now taken for granted and it would

be unconceivable to develop a simulator without some sort of visual illustration. Humans

construct and comprehend the world in a graphical way for we have an innate ability to

process graphic information in a preconscious, involuntary fashion, similar to breathing[40].

Visualization is, therefore, the foundation for our understanding. In spite of its importance it

is critical to ensure quality in a few elements, when developing simulation graphics:

 There must exist good interactivity during the simulation, in order to display the

information the user intends to see;

 Skepticism to computer generated images is still very high and to provide credibility,

it is necessary to ensure realism;

 Associated with the realism factor is the animation‟s performance. If jumps or

glitches are seen, it is difficult to extract conclusions;

 The animation must be flexible enough to enable and disable parts of it, avoiding

heavy computational and visual efforts.

Taking these concepts into consideration, is becomes clear that the original viewer for

Ciber-Rato would not fit the needs of the Intellwheels Simulator. The decision to develop a

new viewer from scratch was made based on various factors:

 Ciber-Rato Viewer was not flexible for it was focused on a competition environment

and, even more critical, restricted to robots with the same circular shape and radius.

Visualizing rectangular shapes, with variation height and width, was not possible;

 The drawing of the robot‟s themselves was done through the loading of bitmap

images which invalidates the possibility of dynamic modifications, through the

simulator;

 Taking realism into consideration, a 3D display of the simulation became important. It

would be possible to view the entire simulation as if one was sitting on the real

wheelchair. Ciber-Rato did not contain a 3D display option and modification of the

6.1 – Architecture 53

original source code would be more difficult and more time consuming, without

better final results.

6.1 – Architecture

Conceptually, the viewer developed contains 5 main software modules (Figure 6.1).

Figure 6.1 - Intellwheels Viewer Architecture

The main module (main form) is where everything comes together. It permits the

communication configuration activation, robot selection (for selected information display)

and visualization selections. This main module is also responsible for storing the information

concerning the map‟s characteristics and wall definition. The map and wall information is

sent from the simulator to the viewer at the beginning and that is the information that will be

used for the drawing modules. It is appropriate to mention that since the simulator sends the

wall definition by their corner definition that concept will be kept.

The communications module contains the IP/UDP configurations and handling and XML

message parsing. This module ensures that the messages sent by the simulator are correctly

received and transformed into system variables for direct usage from the other modules.

The Robot module is where all the robots‟ information is stored. Their physical

characteristics, status, position and orientation are kept and secured here. It is through this

module that the rest of the application will access updated and ordered information on the

robots, either for show purposes or for calculations.

The 2D and 3D modules have similar functioning modes. They access the map and robot‟s

information and reproduce them graphically. The only special characteristic of the 3D module

is that is calls and uses external OpenGL libraries[41][42]. Since the simulator only provides

2D information, the 3D viewer will generate the Z axis coordinate in such a wall that will

allow realism and good simulation visualization at the same time.

54 Intelwheels Viewer

In terms of sequence of events, after the main form is created, the only operation

allowed is the configuration of the UDP parameters. Once the task is done (or default values

are accepted) the application must send the simulator a registration XML message, from

which it will receive a confirmation. The next steps are to request map information after

which robot information will continuously be sent, with the frequency defined for simulation

step. When requested, the 2D and 3D display modules will graphically draw the information

already stored in the robot and map modules.

Alike the agents, this viewer was also developed with Delphi 7[37][38], ensuring, once

again, consistency on the projects requirements of programming software.

6.1 - Main Form

The main module (main form) is where every configuration parameter can be adjusted,

starting from the local UDP listening port and the IP and port for the remote simulation sever.

Figure 6.2 - Intellwheels Viewer Main Form

When the user presses the “Start Listen” button, the UDP component will be activated,

and immediately send a registration XML message to the server (as detailed in chapter 4,

section 4.4). This form allows modifying parameters specific for 2D and 3D viewing (which will

be explained later on this chapter) and contains a combo box where every Wheelchair is

listed. The selected wheelchair on that list will have its information (physical characteristics,

status, position and orientation) updated on the memo box at the side.

6.2 – Communication Handling

Communication between the viewer and de simulator is made through the UDP protocol

and XML messages. Similarly to the robotic agent connection, the viewer must connect itself

by sending a registration message to port 6000 of the server. The response of the server will

be made through a port that will, from then on, be bind to a unique application. As a

consequence, every communication to the simulator from this specific viewer must be done

6.3 - 2D Viewer 55

through that new port. A good example is the map information request. If the simulator

responded from port 4000 to the registration, the map request XML message must be sent to

the port 4000 of the simulator.

After this initial adaptation, the simulator will continuously send information on the

robots within the simulation. A XML message of robot information update (exemplified in

Figure 6.3) is sent every simulation step, which ensures the real time characteristic of the

visualization.

Figure 6.3 - Viewer XML received message of robot information

The simulator sends a message for each robot every time step. For example, if there are 5

IW agents connected to the simulator, it will send the viewer 5 XML messages with every

information needed for robot drawing: position, orientation, dimensions, COM, type and

collision details.

The same XML parser used in the robotic agents (Chapter 4) was used in this application

(proving the advantages of maintaining the same programming software through the various

applications of the project.

6.3 - 2D Viewer

The simplest form of viewing the entire simulation is in a 2D viewer. It displays

information of the complete simulation including every robotic agent.

Figure 6.4 - 2D View

<Robot

Name="Teste" Id="1" Height="1" Width="1" CenterOfMovement="0.5" Type="Simulated"
Time="0" Collisions="0" Collision="False" State="Stopped">
<Position X="6" Y="11" Dir="0"/>

</Robot>

56 Intelwheels Viewer

6.3.1 – Robot and Wall Drawing

The map‟s outer limits are draw through the definition of a polygon whose vertexes are

calculated with the map‟s height and width. Figure 6.5 is a section of the source code, in

Pascal language, where that functionality is implemented.

Figure 6.5 - Map outer limit drawing code

Form2 is the base canvas for the 2D drawings. For map outer limit drawing, a rectangle with

vertexes of (0,0), (0,Height), (Width,Height), (Width,0) were drawn.

With the communication module, the application received the information regarding wall

vertexes and stored. Since each wall is an array of vertexes and a vertex is an array with 2

values type double – X and Y coordinates – map is constituted map an array of array of array

of double, as illustrated in the code below.

Figure 6.6 - Implemented code for wall drawing

A wall is drawn by ordering a polygon draw of every vertex when the vertex list ends. The

Polygon draw function automatically connects every vertex and prints it onto the canvas.

Although Robot drawing uses the same Delphi “Polygon” function, the calculations

required to determine the corner points of the robot are more complex. Since the simulator

outerlimits : array of TPoint;

[...]

form2.Canvas.Brush.Bitmap:=Bitmap;

SetLength(outerlimits,4);

canvas.MoveTo(0,0);

outerlimits[0]:=Point(0,0);

outerlimits[1]:=Point(0,Round(Form1.LabHeight));

outerlimits[2]:=point(Round(Form1.LabWidth),Round(Form1.LabHeight));

outerlimits[3]:=point(Round(Form1.Labwidth),0);

canvas.Polygon(outerlimits);

Wall : array of array of array of double;

CurrentWall : array of TPoint;

[...]

Form2.Canvas.Brush.Bitmap := Bitmap_wall;

For i:=0 to Length(Form1.Wall)-1 do begin

k:=Length(Form1.Wall[i]);

SetLength(CurrentWall,Length(Form1.Wall[i]));

For j:=0 to (Length(Form1.Wall[i])-1) do begin

canvas.MoveTo(Round(Form1.Wall[i,j,0]),Round(Form1.LabHeight- Form1.Wall[i,j,1]));

CurrentWall[j]:=point(Round(Form1.Wall[i,j,0]),Round(Form1.LabHeight)-Round(Form1.Wall[i,j,1]));

end;

canvas.Polygon(CurrentWall);

end;

6.4 - 3D Viewer 57

only sends information on the position and orientation, the absolute coordinates of the

corners must be calculated. The implementation was, fortunately, relatively easy as the

algorithm is the same already implemented in the simulator (see 4.3.1). An adaptation from

C++ language to Pascal solved the corner determination problem.

6.3.2 – 2D Options

A few options are available in this application, to increase the value of the 2D

visualization. Through the “2D options” tab at the top of the application window it is possible

to change the zoom of the 2D view, add name labels to the robots and display a unitary grid

on the floor.

Figure 6.7 - Intellwheels Viewer's 2D Options

In terms of algorithm the zoom change will affect a parameter that multiplies the maps

height and width as well as the coordinates of the walls‟ vertexes, robots‟ centers and their

height and width.

6.4 - 3D Viewer

Although the most critical simulation information is correctly represented in the 2D

viewer (correct shape, positioning and orientation of the robots and walls), an illustration

closer to reality was considered necessary. Taking Matthew Rohrer‟s conclusions [40] on the

preconscious image processing capabilities of human beings, the visualization for this

intelligent wheelchair simulation will as better as its proximity to real visualization (Figure

6.8). Therefore the objective was not only to create a 3D environment but to allow world

visualization as we would perceive it while sitting on the real chair.

58 Intelwheels Viewer

Figure 6.8 - Intellwheels Viewer 3D, 1st person view.

6.4.1 – OpenGL in Delphi 7

Although it is important to maintain the Delphi 7 development environment as base, its

native graphical drawing capabilities are somewhat limited. In fact, there are no high level

functions for 3D drawing, which would demand unacceptable effort for low-level drawing on a

canvas. The solution adopted for was to use OpenGL libraries, within then Delphi 7

environment.

Through OpenGL libraries, it became possible to draw the objects in a very similar way to

the 2D mode, on a Delphi form canvas. One can draw the shapes by their polygons and their

coordinates, relatively to a given center. The difference is in the extra Z coordinate that

needs to be referred however, since the simulation itself is conceptually in 2D, the extra

coordinate it purely for visual purposes. As an example, drawing a cube is done by indicating

the corner coordinates of each of the six faces. When the camera viewing point is set, the

OpenGL motor itself automatically handles the complete redrawing of the shown image. It

continues to do so automatically, once the camera view position changes.

In what concerns drawing calculations, the only major divergence from the 2D

visualization if the complex models for the objects. While the simulator models the

wheelchairs and doors by rectangles, as long as they occupy the same space in X and Y

coordinates on the 3D viewer, there is no restriction on how the object itself is drawn. In

fact, if one could actually see the chair, instead of a mere cube, it would make the

visualization (and consequently the simulation itself) more credible. In Figure 6.9 is evident

the difference, even though both objects have the same height width and COM (which is all

that is used for simulation calculations and for 2D drawing).

6.4 - 3D Viewer 59

Figure 6.9 - 3D viewing: Shape vs Shapless Chair.

This kind of modeling is too complex to be made “by hand” through low level programming.

Instead, a 3D drawing software was used to create the 3D model of the chair, and saved in a

stereolithography file type (STL)[43][44]. STL is a flat file type which stores information of

the 3D object‟s vertexes (X, Y and Z coordinates) and faces‟ normal orientation. To load this

object onto the visualization, a STL parser was developed which read the STL file and stored

the face and vertex information onto an OpenGL display list. The implemented algorithm, in

Pascal language, is included in Annex B.

With the 3D objects loaded, the drawing of the simulation is done by resizing the objects

to the information on stored on each robot (position, orientation, COM and height and width).

6.4.2 – 3D Options

Being the 3D version more complex than the 2D, there are a few additional parameters

that can be configured, as shown in Figure 6.10.

Figure 6.10 - 3D Options

These options include:

 Resolution variation (default is 640x480 but more powerful computers may allow

better resolution);

60 Intelwheels Viewer

 Camera view variation:

o Free View – user can move the camera freely through the 3D world (Figure

6.9);

o 1st Person – Camera is fixed on the chair, as if one was sitting on it (Figure

6.8);

o 3rd Person – Camera is placed with fixed coordinates relatively to the chair

and behind it.

 Object quality – The objects on STL files have 3 versions where with different number

of vertexes. More vertexes correspond to increase in object quality but requires

significantly more loading time and processor capacity during simulation run;

 Name labels on robotic agents (including IWs and intelligent doors);

 Ground grid drawing for easy position identification for the viewer.

Figure 6.11 shows a simulation with ground grid, high object quality (chairs), 640x480

resolution and free camera viewing.

Figure 6.11 - 3D viewing with free camera mode

6.5 – Summary

Due to the available Ciber-Rato original viewer‟s limitations, mostly its lack of flexibility,

it was not liable to attempt its adaptation for intelligent wheelchair simulation. This showed

6.5 – Summary 61

the need to develop a new viewer that was constructed using Delphi and OpenGL (for 3D

building).

The developed viewer successfully creates credible graphical representation of the

simulation and contributes to the entire simulation project with an evolved scenario. The

Intellwheels Viewer implements drawing algorithms and 3D model loading functions that

produce a full fluid, realistic and focused visual representation of intelligent wheelchair

simulation. Moreover, the application itself is flexible enough in the sense that it can be

easily expanded for increased performance or modified for different purposes, other than IW

simulation. The application developed successfully creates credible graphical representation

of the simulation and contributes to the entire simulation project with an evolved scenario.

62 Simulator Tests

Chapter 7

Simulator Tests

To validate the performance of the simulator and confirm its importance for intelligent

wheelchair development, a series of tests was performed. These tests were based on driving

analysis from real, virtual and augmented reality runs, which were compared against each

other.

7.1 – Experiment Definitions

These tests were performed indoors, on the floor where LIACC is set, in FEUP. They

consisted of various wheelchair driving runs. To achieve realistic simulation, LIACC‟s floor was

modeled onto an XML file (Annex D includes the created XML file), so it could be read by the

simulator, and later displayed in the Intellwheels Viewer (Figure 7.2). For realism comparison

between the real plant and the modeled map, Figure 7.1 is the CAD drawing of the floor

LIACC is in: 1st floor, block I.

Figure 7.1 – CAD drawing of the plant for the LIACC floor.

7.1 – Experiment Definitions 63

Figure 7.2 – Intellwheels modeled map of LIACC floor

The additional room divisions (shown in Figure 7.1) were not necessary for any of the

required tests and, therefore, where not converted into XML map file. Nevertheless, the

dimensions are faithful to the real floor as are the positions of the walls, on the modeled

map.

7.2. – Dynamic Characteristic Tests

In order to correctly simulate the acceleration curve and the top speed, the first stage of

the tests was to determine these characteristics of the real wheelchair. This initial test

consisted on driving the wheelchair forward, inputting maximum values to the motors while

starting from full stop (speed=0m/s). This test was performed with the Intellwheels Control

Software and, through its log of odometry readings, the acceleration curve displayed in Figure

7.3 was obtained.

Figure 7.3 - Acceleration Curve of Real Wheelchair.

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Sp
e

e
d

 (
m

/s
)

Step

64 Simulator Tests

The evident variations are due to odometry errors, another problem of real tests and

consequently an advantage of simulated environment.

A new line of the log file was registered every time step (100ms). The data analysis

revealed a maximum speed of approximately 0.49 m/s and a rise time (from 10% to 90% of top

speed) of 1.4 seconds.

Using this information and the new functionalities of the Intellwheels simulation, in terms

of robot configuration parameters, it was possible to model a very similar characteristic for

the virtual wheelchair. Using the same maximum speed detected for the real wheelchair

(0.26m/s) and an “AccelerationCurve”=0.83 parameter (AccelerationCurve defined in Chapter

4), the Intellwheels Control Software connected only the simulator. The log of the position

allowed the determination of the speed, which provided the results shown in Figure 7.4.

Figure 7.4 - Acceleration Curve of Virtual Wheelchair

By performing an analysis on the log file, similar to the previous, it was concluded that

the maximum speed was the expected 0.49m/s and the rise time was of 1.6 seconds. Despite

not being a perfect match to the real wheelchair‟s results, this difference of 0.2 seconds was

low enough. Another noticeable difference is the curve itself. The simulated acceleration has

a logarithmic shape which although slightly different than the real one, once again does not

represent significant consequences in the outcome of the tests nor on the conclusions drawn

from them.

This simulator was now able to model an electric wheelchair very similar to the real one

and these simulation parameters were used throughout the remaining tests.

7.3 – Obstacle Avoidance Test

The aim of this test was to compare real, virtual and augmented reality IW performances.

It consisted on driving through a course that imposed a kind of slalom. The check points are

marked on the map below (Figure 7.5) and their coordinates in Table 3.1. The chair must go

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9 111315171921232527293133353739414345474951

Sp
e

e
d

 (
m

/s
)

Step

7.3 – Obstacle Avoidance Test 65

from checkpoint #1 to checkpoint #2 and deviate from the obstacles put along the way. It is

important to refer that the obstacle position is not known by the chair, only the proximity

sensors (either real or virtual) will send that perception to the control software (in

autonomous driving).

Figure 7.5 – Section of 2D LIACC map, with checkpoints and obstacles

Marks 1 and 2 are simply coordinates for the starting and finishing points of the tests,

whereas marks A and B are obstacles and were placed in the same position and same

dimension in both real and virtual environments.

Table 7.1 - Checkpoint Coordinates

Point X (m) Y (m)

1 10.0 6.1

2 20.0 6.1

Table 7.2 - Obstacle Coordinates

Obstacle Xmin (m) Ymin (m) Xmax (m) Ymax (m)

A 17 6.1 17.6 6.4

B 19.4 5.5 20 5.9

Table 7.2 defines the obstacles placed for the collision avoidance tests, detailed further

in this chapter. Both objects are shaped as a rectangle (in the real and in the virtual

environments). The minimum point and the maximum point coordinates define the position

and size of the rectangle.

7.3.1 – Real Manual Driving

While sitting on the actual wheelchair, the user would command it using the PSX joystick

to drive the wheelchair through the defined path. Trajectory deviation and final position and

orientation are registered for comparison procedures. For this experiment, there is no

connection with the simulator, only real environment is being tested.

66 Simulator Tests

7.3.2 – Virtual Manual Driving

Through the first person view option on the Intellwheels Viewer, a virtual wheelchair must

be driven through the defined path. It is important to refer that the controller used for input

orders is the same. There is no connection to the real wheelchair, and the user must drive

only by seeing the display screen (Figure 7.7 displays the view of the operator).

7.3.3 – Real Automatic Driving

For this test, the control algorithms for automatic driving are tested as well as noise

treatment for the sonar proximity sensors. The Intellwheels Control Software must be set up

(through its implemented control algorithms) in such manner that it should go past the

checkpoints defined and automatically deviate from real obstacles. No simulation connection

is present during this experiment.

7.3.4 – Virtual Automatic Driving

Using the same automatic plan used in the previous test, the IW control application was

disconnected for the real wheelchair and connected only to the simulation server. Through its

virtual sensors, the wheelchair must navigate, once again, through the checkpoints and avoid

virtual objects.

7.3.5 – Augmented Reality Automatic Driving

On this test, the wheelchair uses perception from the real world (sonars and IR sensors) as

well as from the virtual world (simulator generated sensors). The controlling agent will be

submitted to the same autonomous driving as before, although now it disposes of virtual

sensors for additional collision avoidance.

7.3.6 – Obstacle Avoidance Results

During the test, a log of the control software‟s awareness of the chair‟s position (X and Y

coordinates) was made. Annex C includes a log file example and the manual log sheet. The

results, for each of the operation modes, are graphically represented in Figure 7.6.

7.3 – Obstacle Avoidance Test 67

Figure 7.6 – Trajectory results from obstacle avoidance test

The red horizontal lines evident in Figure 7.6 represent the corridor walls delimitating the

free space in which the chairs can move. Shown below, Table 3.1 indicates whether the run

was successful and how many times the wheelchair touched a wall or obstacle.

Table 7.3 - Obstacle Test Success Information

Operation mode Reached Checkpoint #2 (Yes/No) Collision Count

Real/Manual Yes 0

Virtual/Manual Yes 0

Real/Autonomous No 1

Virtual/Automatic Yes 0

Augmented/
Autonomous

Yes 0

The first test taken was the Real mode with manual driving. In terms of Control Agent

testing, only the low level algorithms are tested (basic movements). As these have already

been correctly implemented during the initial stage of prototype development [2][1], this run

would provide valuable information of the odometer sensor. It is evident on the graphic that

the readings were not reliable, for the X and Y coordinate calculations (determined from the

odometer readings) are incorrect. In fact, the powered wheelchair was manually controlled

through the corridor, without ever crashing. Had the chair be driven automatically relying

solely on odometry it would undoubtedly collide with the wall.

Purely virtual test ran successfully without difficulties. The Intellwheels Viewer (Chapter

5) was set to 1st person viewing mode for added realism – illustrated in Figure 7.7 - and

controlling the chair manually (with the PS2 controller) was easy. The log of the control agent

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10 15 20 25 30

Y
 P

o
si

ti
o

n
 (

m
e

te
rs

)

X Position (meters)

Virtual Autonumous

Real Manual

Augmented Reality
Autonomous

Real Autonomous

Virtual Manual

68 Simulator Tests

registered X and Y coordinates without error and, as it is evident on Figure 7.6, there were no

collisions.

a b c d

Figure 7.7 - Virtual Reality, Manual Control Test

On the test with the real wheelchair (no simulation connection) on autonomous driving,

some problems were encountered since, as it can be seen on Table 7.3, the chair collided

with the wall. Despite the fact that the odometry errors were little (the chair‟s position

calculation still placed it inside the corridor) this test was still unsuccessful. This outcome

could have been cause either by imperfect sonar readings, or by algorithmic errors. This type

uncertainty is one of the problems that simulation can solve by eliminating noise from

sensors. A conclusion on the subject is done on this chapter‟s summary and on chapter 8 –

Conclusions.

The virtual environment (real wheelchair not involved) autonomous driving test

performed with a successful outcome. The chair successfully drove itself from point #1 to

point #2 and deviated from the obstacles without any collisions. It is possible to conclude

that, in a noise-free environment, the control algorithm uses correctly the sensor readings

and avoids impacts.

The test with the real wheelchair in augmented reality operation mode on autonomous

driving was a great success. The real movement of the chair was mimicked perfectly in the

virtual world as shown in Figure 7.8.

a b c d

Figure 7.8 - Augmented reality test

7.3 – Obstacle Avoidance Test 69

 Once again, similarly to the Real/Autonomous test, the odometry errors were very small.

This led to the correct positioning of the wheelchair on the simulator which, on its turn,

resulted in correct and virtual sensor readings. Consequently the wheelchair avoided real

object, through its virtual representation. The wheelchair had, in fact, a position log very

close to the virtual/autonomous test, as shown in Figure 7.6. Through this test, sensor

merging algorithm implementation was validated.

7.4 – Automatic Door

In order to verify the correct implementation of the developed door agent (detailed in

Chapter 5), a simple test was performed. The door agent was defined with height=0.1m,

width=1.0m and COM=0.99. Two proximity sensors were defined at each side of the door, to

detect approaching objects, as illustrated by Figure 7.9.

Cone = 40º

Angle=90º

Cone = 40º

Angle=-90º

Figure 7.9 - Representation of the modeled door

Using the Wheelchair Agent, a virtual wheelchair was connected to the simulator and the

test of door automatic opening was executed. Figure 7.10 is a series of print screens of the

Intellwheels 3D viewer. The IW agent ordered the chair to move forward, regardless of what

its own proximity sensors detect. On the other hand, the door agent was programmed to open

if an object was detected and close only when the sensors stop detecting (as detailed in

Chapter 5).

a b c d

Figure 7.10 - Automatic opening of the door

70 Simulator Tests

7.5 – Summary

This chapter presented the tests performed to compare simulated and real wheelchair

movement. Tests were repeated through 5 operational and control methods:

 Real mode with manual control;

 Virtual mode with manual control;

 Real mode with automatic control;

 Virtual mode with automatic control;

 Augmented reality mode with automatic control.

The results showed that simulation-aided algorithm testing performed far better than

purely real tests. The main reason for this was the errors in odometer-based positioning

(which accumulates error) and sonar noise which sets the chair‟s controlling software into

erratic decisions. It is also noticeable that the behavior of the wheelchair is almost equal in

virtual and augmented reality modes.

Through these tests it was possible to determine that the simulation is an important mean

to allow control algorithm test. It is possible to completely eliminate sensor reading errors,

thus concentrating purely on the control section. Despite problems with real sensors, this

simulation‟s value was proved with the success of the virtual environment tests. The control

algorithm is correctly implemented, which is a conclusion that, without simulated testing,

could not have been reached.

8.1 - Objective Achievement 71

Chapter 8

Conclusions

This chapter will argue on the achievement of the initially proposed objectives for the

project. It will discuss the results that were achieved from the tests performed, making a

comparison between the system capabilities before the implementation of a simulation

module and its present capabilities. It will also discuss the additional practical applications

that the developed systems can have and finalizes with a view on what else can be expect on

future work on this subject.

8.1 - Objective Achievement

The main goal for this research project was to build a simulation environment capable of

testing the challenges that arise during the development of an intelligent wheelchair system.

As a result, this work yielded not only a single application, but a complete testing system,

with:

 World simulation, including map loading capabilities;

 Virtual robotic bodies, giving the objects movement capabilities limited by the rules

of physics;

 Virtual sensors, for movement control and noise treatment algorithms testing;

 Augmented reality, for real and virtual environment interaction;

 Generic robotic agents, allowing various object load onto the simulation;

 Realistic computer generated graphics, conferring additional simulation credibility.

As a final implementation, the Intellwheels Control Software, previously developed in

LIACC, was adapted now allowing operability with the simulator. Through this

implementation, the developed simulator was proven a success. Not less important, the

algorithms already implemented on it could be tested with focus on their purposes. It is now

possible to ensure the functionality of a movement control algorithm (such as the obstacle

72 Conclusions

avoidance subsumption algorithm), eliminating sensor noise errors, since the virtual sensors

can provide error-free readings.

The simulator is now in use at the present stage of the Intellwheels Project development,

at LIACC, in different modules: “Main application” and “Intelligence” (see Chapter 2) for

control and stratergy algorithm tests and even in “Multimodal interface” for integration and

order validation.

8.2 – Main Results

This simulator was submitted to tests with wheelchairs under manual and autonomous

driving. These tests were able to prove the concept that the simulator is a capable

application when generating all the virtual information that an intelligent agent requires for

autonomous navigation in an unknown environment.

The tests were also able to establish that, in a virtual environment, the IW autonomous

driving, performs better than in the real environment, navigating with encoders for speed and

position calculation and real sonar sensors for autonomous driving. From these results one is

able to infer that additional development is required on noise treatment for these sensors,

rather than holding the control algorithms responsible for failure in autonomous driving.

8.3 – Simulator’s Capabilities

The original intent of this simulator was to aid in the development of IWs and it is indeed

being used in such manner.

The simulator‟s capabilities stretch beyond IW wheelchair simulation, due to its origins

(Ciber-Rato) and to the generalization that was applied to it. In fact, this simulator can now

accept connections from any type of robotic agents, limited only to how the differential robot

modeled is able to move. Car and pedestrian simulation can be performed, not only through

their physical interaction (collisions) but emotional relations as well, since data

communication between agents is available. Having a distributed architecture, Intellwheels

Simulator expects the agents to be external applications that connect through UDP. Because

of this attribute, it is able to involve in a unique simulation a vast number of intelligent

agents, adding the possibility of testing algorithms results in a dynamic, complex

environment.

A limit may be imposed by the visualization software (Intellwheels Viewer), as it does not

yet have the full capability of dynamically loading any type of 3D object. Currently it

possesses a small range of 3D models and they are allocated to the type XML tag of the

object: only doors, tables and wheelchairs have dedicated 3D models, at the current version.

Nevertheless, the current application‟s source code is very flexible and basic shapes are

loaded in case a different type is identified, thus providing the sense of size and volume in

8.4 – Future Work 73

the virtual world‟s space. In fact, since it constructs the modules depending on the physical

characteristics provided by the simulator, the images offered will reflect the occupied space

of the object, independently of its nature.

Due to the origins of Intellwheels Simulator, it accepts robotic agents from the original

Ciber-Rato Simulato, with minor ajustments. The competition orientated mentality of the

agent needs to be modified, as well as sensor registration, but these are not core changes to

a controller software. Furthermore, the Ciber-Rato competition itself may evolve through the

new implemented parameters. The Intellwheels‟ concepts of using intelligent robotic agents

as dynamic scenario and the mixed reality feature (real and virtual environment interaction)

could add value and interest to the University of Aveiro‟s competition.

8.4 – Future Work

Time constraints were severe during the development of this research project. Thus, a

great number of features, that would add value to the simulation project, could not be

implemented in time for the imposed writing and presentation deadlines.

For the simulator itself, the most relevant issues are related with the inclusion of

additional sensors. Although not being presently in use by the Intellwheels Control Software,

a digital camera is physically mounted on the chair. Ground marking localization algorithms,

if implemented, using this camera, will add increased accuracy to the IW‟s awareness of its

position on the world. This action will help in the solution of one of the problems detected

during the tests performed on this dissertation.

Linked to this aspect are the encoder sensors. The real wheelchair uses encoders for

movement calculation but, on the other hand, the simulated robot receives this information

directly, through a virtual GPS. The possibility of encoder based navigation will increase

realism and allow testing navigation algorithms themselves.

A final note on what could be done concerning the sensor simulation concerns the

characteristic curve definition. Although the proximity sensors have configurable parameters,

the output equation itself is not re-definable. Allowing this would approximate the virtual

behavior even more to the real one.

Simulation agent development can still improve immensely, especially intelligent control

for objects (other than wheelchairs). An unexplored, although available, feature is the

communication module. Increased messaging capabilities between agents will allow:

 Doors that open by communication orders instead of proximity perception.

 Distributed planning: wheelchairs and other devices could jointly create plans to

fulfill some given tasks in a cooperative manner.

 Strategy and tactics: wheelchairs could choose, between themselves, which one

would fulfill an order given by an outside entity. A gain in service quality will be

achieved with such an implementation.

74 Conclusions

 Complex calculations, such as path planning, could benefit from distributing

computing between connected agents. Threads for the calculations could be spread

among the other agents, allowing a uniform capacity usage.

Finally, in respect of the Intellwheels Viewer application, developed for simulation

visualization, the potential is vast for future implementations. The user could use

information, specific for each robotic agent, sent from the simulator to load (or even

dynamically construct) a 3D model of the object. A possible implementation is to analyze the

name of the agent and, through it, guess an object type. With a list of 3D object models, it

would select the most appropriate and load it, through OpenGL, adjusting to the individual

size definitions.

Associated with this topic is the notion of scenario-related object agent integration. A

simulation, in order to be as interactive as possible, could allow direct insertion of objects,

during its run. An intuitive mean to do so is by visualizing the world and space onto which it

will be inserted. If the viewer had the capability of creating and controlling a table, cabinet

or door agents it would greatly simplify the inserting task and converging with the notion of

interaction importance on computer generated graphics [36].

A last functionality, that would increase the flexibility and the applicability of the viewer

application, is to fully integrate the viewer with the Ciber-Rato competition. Having been

designed for XML messaging, at the image of the original competition‟s software, the

additional coding would bring interesting results. A selectable operation mode, choosing from

IW Simulation or Ciber-Rato Simulation, would define how the robots are drawn: wheelchairs

or circular robots. This work would certainly bring added value to the competition and

probably interest more participants.

8.5 – Final Remarks

Having worked with the Ciber-Rato since the first day of this research project, the

following final comments arise. As a matter a fact, the software proved to be very flexible as

the adaptation modifications were implemented with success. Integration of the new

algorithms and functions within the original code itself was good, due to its well structured

characteristic.

This dissertation was made on a short period of time, however the developed applications

have proved to be of value to LIACC‟s Intellwheels Project as conclusions concerning the

previously developed control algorithms have already been taken. These new applications

developed are a very solid base for further work and the possibilities for expansion of agents,

viewer and the simulator itself are vast.

 75

Bibliography

[1] M. R. Petry, "Desenvolvimento de um Protótipo e de Metodologias de Controlo de uma
Cadeira de Rodas Inteligente," Dissertation for Masters Degree, Departamento de
Engenharia Electrotecnica e de Computadores, Faculdade de Engenharia da Universidade
do Porto, Porto, 2008.

[2] R. A. M. Braga, M. Petry, A. P. Moreira, and L. P. Reis, "INTELLWHEELS - A Development
Platform for Intelligent Wheelchairs for Disabled People," in 5th International
Conference on Informatics in Control, Automation and Robotics, vol. I, Funchal, Madeira,
Portugal, 2008, pp. 115-121.

[3] R. A. M. Braga, M. Petry, E. Oliveira, and L. P. Reis, "Multi-Level Control Of An Intelligent
Wheelchair In a Hospital Environment Using A Cyber-Mouse Simulation System," in 5th
International Conference on Informatics in Control, Automation and Robotics, Funchal,
Madeira, Portugal, 2008, pp. 179-182.

[4] P. M. Faria, R. A. M. Braga, E. Valgôde, and L. P. Reis, "Platform to Drive an Intelligent
Wheelchair using Facial Expressions," in Proceedings 9th International Conference on
Enterprise Information Systems - Human-Computer Interaction (ICEIS 2007), Funchal,
Madeira, 2007, pp. 164-169.

[5] P. M. Faria, R. A. M. Braga, E. Valgôde, and L. P. Reis, "Interface framework to drive an
intelligent wheelchair using facial expressions," in IEEE International Symposium on
Industrial Electronics (ISIE 2007), 2007, pp. 1791-1796.

[6] R. A. M. Braga, M. R. Petry, A. P. Moreira, and L. P. Reis, "Platform for intelligent
wheelchairs using multi-level control and probabilistic motion model," in 8th Portuguese
Conference on Automatic Control, Controlo 2008, Vila Real, Portugal, 2008.

[7] J. Banks, "Introduction to Simulation," in Proceedings of the 2000 Winter Simulation
Conference, vol. I, Phoenix, Arizona, United States, 2000, pp. 7-13.

[8] N. Lau, A. Pereira, A. Melo, A. Neves, and J. Figueiredo, "Ciber-Rato: Um Ambiente de
Simulação de Robots Móveis e Autónomos," Revista do DETUA, 2002.

[9] N. Lau, A. Pereira, A. Melo, J. Neves, and J. Figueiredo, "Ciber-Rato: Uma Competição
Robótica num Ambiente Virtual," Revista do DETUA, vol. 3, no. 7, pp. 647-650, Sep.
2002.

[10] Institute of Electrical and Electronics Engineers. (2008, Apr.) IEEE - The world's leading
professional association. [Online]. www.ieee.org

[11] Universidade de Aveiro. (2008, Jun.) Concurso Micro-Rato. [Online].
http://microrato.ua.pt

[12] L. P. Reis, "Ciber-Feup - Ensino de Robótica e Inteligência Artificial através da
Participação em Competições Robóticas," Electrónica e Comunicações, vol. 7, no. 3, Sep.
2002.

[13] L. Almeida, P. Fonseca, L. J. Azevedo, and B. Cunha, "The Micro-Rato Contest: Mobile
Robotics for All," in CONTROLO 2000, The Portguese Control Conference, Guimarães,
Portugal, 2000.

[14] RTSS - Real-Time Systems Symposium. (2008, Jun.) RTSS - Real-Time Systems Symposium.
[Online]. http://www.rtss.org/

file:///C:\Documents%20and%20Settings\Pedro%20Malheiro\Desktop\Tese\www.ieee.org
http://microrato.ua.pt/
http://www.rtss.org/

76

[15] (2008, Jun.) CiberMouse@DCOSS08. [Online]. http://www.ieeta.pt/lse/ciberdcoss08/

[16] D. Barteneva, N. Lau, and L. P. Reis, "Implementation of Emotional Behaviors in Multi-
Agent System using Fuzzy Logic and Temperamental Decision Mechanism," in Proceedings
of EUMAS 2006, Lisbon, Portugal, 2006, pp. 5-15.

[17] D. Barteneva, N. Lau, and L. P. Reis, "Bylayer Agent-Based Model of Social Behavior: How
Temperament Influences on Team Performance," in 21st European Conference on
Modelling and Simulation – ECMS 2007, Prague, Czech Republic, 2007, pp. 181-187.

[18] L. Lemos, F. Cruz, and L. P. Reis, "Sistema de Resgate e Salvamento Coordenado
Utilizando o Simulador Ciber-Rato," in CISTI 2007 - 2ª Conferência Ibérica de Sistemas e
Tecnologias de Informação, Novas Perspectivas em Sistemas e Tecnologias de
Informação, Porto, Portugal, 2007.

[19] M. Chen, et al. (2002, Aug.) RoboCup Official Site. [Online]. http://www.robocup.org/

[20] N. Lau and L. P. Reis, "FC Portugal - High-level Coordination Methodologies in Soccer
Robotics," in Robotic Soccer, Dec. 2007, p. 598.

[21] Gazebo / Player Project. (2008, Mar.) Gazebo / Player Project. [Online].
http://playerstage.sourceforge.net/index.php?src=gazebo

[22] B. Gerkey, R. Vaughan, and A. Howard, "The Player/Stage Project:Tools for Multi-Robot
and Distributed Sensor Systems," in International Conference on Advanced Robotics,
Coimbra, Portugal, 2003, pp. 317-323.

[23] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, "USARSim: a robot simulator
for research and education," in IEEE International Conference onRobotics and
Automation, 2007, pp. 1400-1405.

[24] Microsoft. (2008, Mar.) Microsoft Robotics. [Online]. http://msdn.microsoft.com/en-
us/robotics/default.aspx

[25] AGEIA. (2008, Mar.) AGEIA PhysX. [Online]. http://www.ageia.com/physx/

[26] T. Röfer, "Strategies for Using a Simulation in the Development of the Bremen
Autonomous Wheelchair," in Proceedings of the 12th European Simulation
Multiconference on Simulation - Past, Present and Future, 1998, pp. 460-464.

[27] Universität Bremen. (2008, Apr.) SimRobot - 3D-Robotiksimulator. [Online].
http://www.informatik.uni-bremen.de/simrobot/

[28] G. Bourhis and Y. Agostini, "The Vahm Robotized Wheelchair: System Architecture and
Human-Machine Interaction," Journal of Intelligent and Robotic Systems, vol. 22, no. 1,
pp. 39-50, May 1998.

[29] H. Niniss and A. Nadif, "Simulation of the behaviour of a powered wheelchair using virtual
reality," in Proc. 3rd Intl Conf. Disability, Virtual Reality & Assoc. Tech, Alghero, Italy,
2000.

[30] J. C. Lopes and C. Ribeiro. (2008, Feb.) João Correia Lopes | Homepage. [Online].
http://paginas.fe.up.pt/~jlopes/teach/2007-08/LAPD/lectures/01-XML-intro.pdf

[31] Departamento de Electrónica, Telecomunicações e Informática. (2008, Mar.) CiberMouse
at DCOSS08. [Online].
http://www.ieeta.pt/lse/ciberdcoss08/docs/ciberDCOSS08_Rules.pdf

[32] B. Stroustrup, The C++ programming language, 2nd ed.. USA: Addison-Wesley Longman
Publishing Co., Inc, 1991.

[33] M. K. Dalheimer, Programming with Qt, 2nd ed.. O'Reilly, 2002.

http://www.ieeta.pt/lse/ciberdcoss08/
http://www.robocup.org/
http://playerstage.sourceforge.net/index.php?src=gazebo
http://msdn.microsoft.com/en-us/robotics/default.aspx
http://msdn.microsoft.com/en-us/robotics/default.aspx
http://www.ageia.com/physx/
http://www.informatik.uni-bremen.de/simrobot/
http://paginas.fe.up.pt/~jlopes/teach/2007-08/LAPD/lectures/01-XML-intro.pdf
http://www.ieeta.pt/lse/ciberdcoss08/docs/ciberDCOSS08_Rules.pdf

 77

[34] R. Azuna, et al., "Recent Advances in Augmented Reality," IEEE Computer Graphics and
Applications, vol. 21, no. 6, pp. 34-37, Nov. 2001.

[35] P. Milgram and F. Kishino, "A Taxonomy of Mixed Reality Visual Displays," in IEICE
Transactions on Information Systems, vol. E77-D, 1994, pp. 1321-1329.

[36] Trolltech. Code Less. Create More. Deploy Everywhere. - Trolltech.

[37] Borland Software Company. Borland Software Company. [Online].
http://www.borland.com

[38] M. Cantù, Mastering Delphi 7, 1st ed.. Sybex, 2003.

[39] D. P. Reed. (1980, Aug.) Internet Engeneering Task Force. [Online].
http://tools.ietf.org/html/rfc768

[40] M. R. Rohrer, "Seeing is Believing: The Importance Of Visualization in Manufacturing
Simulation," in Winter Simulation Conference, 2000, pp. 1211-1216.

[41] OpenGL. (2008, May) The Industry's Foundation for High Performance Graphics. [Online].
http://www.opengl.org/

[42] M. Woo, J. Neider, and T. Davis, OpenGL Programming Guide, Third Edition: The Official
Guide to Learning OpenGL, Version 1.2. Addison-Wesley, 1999.

[43] E. Béchet, J. C. Cuilliere, and F. Trochu, "Generation of a finite element MESH from
stereolithography (STL) files," Computer-Aided Design, vol. 34, no. 1, pp. 1-17, Jan.
2002.

[44] M. Burns, "The StL Format," in Automated Fabrication. Prentice Hall, 1989, ch. Section
6.5.

[45] A. Neves, J. Figueiredo, N. Lau, A. Pereira, and A. Melo, "O Visualizador do Ambiente de
Simulação Ciber-Rato," Revista do DETUA, vol. 3, no. 7, pp. 651-654, Sep. 2002.

[46] P. Riley and G. Riley, "SPADES - a distributed agent simulation environment with
software-in-the-loop execution," in Winter Simulation Conference, vol. 1, 2003, pp. 817-
825.

[47] T. Bräunl, "The EyeSim Mobile Robot Simulator," Computer Science Department of The
University of Auckland, 2000.

[48] B. Martins, E. Valgôde, P. Faria, and L. P. Reis, "Multimedia Interface with an Intelligent
Wheelchair," in Proc. of CompImage 2006 –Computational Modelling of Objects
Represented in Images: Fundamentals Methods and Applications, Coimbra, Portugal,
2006, pp. 267-274.

[49] M. Burns, "The STL File Format," in Automated Fabrication - Improving Productivity in
Manufacturing. Prentice Hall, 1993, ch. Section 6.5.

[50] Faculdade de Engenharia da Universidade do Porto. (2008, Jun.) Faculdade de Engenharia
da Universidade do Porto. [Online]. http://www.fe.up.pt/

http://www.borland.com/
http://tools.ietf.org/html/rfc768
http://www.opengl.org/
http://www.fe.up.pt/

78

ANNEXES

 79

A – Ciber-Rato map XML file

File name: ThesisExampleMap.XML
File content:

<Lab Name="ThesisExampleMap" Width="28.000000" Height="14.000000">

 <Beacon X="25.000000" Y="7.000000" Height="30.000000" />

 <Target X="25.000000" Y="7.000000" Radius="1.500000" />

 <Wall Height="2.500000">

 <Corner X="11.500000" Y="11.500000" />

 <Corner X="11.500000" Y="2.500000" />

 <Corner X="13.500000" Y="2.500000" />

 <Corner X="13.500000" Y="11.500000" />

 </Wall>

 <Wall Height="1.000000">

 <Corner X="16.500000" Y="10.000000" />

 <Corner X="16.500000" Y="5.500000" />

 <Corner X="21.000000" Y="5.500000" />

 <Corner X="21.000000" Y="6.500000" />

 <Corner X="17.500000" Y="6.500000" />

 <Corner X="17.500000" Y="10.000000" />

 </Wall>

</Lab>

80

B – STL Parser for 3D Model Loading

During the OpenGL programming for the 3D viewer, a STL file type parser was developed,

in order to load 3D models. The algorithm for the parser is detailed below, in the STL loading

and vertex parsing code sections. Since the 3D viewer was built with Delphi 7, the code is in

Pascal Language.

AssignFile(STLFile,filename);

Reset(STLFile);

while not Eof(STLFile) do

begin

ReadLn(STLFile, straux);

IF pos('facet normal',straux)>0 then begin

FacetCount:=FacetCount+1;

SetLength(FacetNormalMatrix,FacetCount);

FacetNormalMatrix[FacetCount-1,0]:=ParseSTLFacet(straux,1,1);

FacetNormalMatrix[FacetCount-1,1]:=ParseSTLFacet(straux,1,2);

FacetNormalMatrix[FacetCount-1,2]:=ParseSTLFacet(straux,1,3);

end;

IF pos('vertex',straux)>0 then begin

STLmessage:=STLmessage+straux;

vertexcount:=vertexcount+1;

SetLength(vertexmatrix,vertexcount);

vertexMatrix[vertexcount-1,0]:=ParseSTLVertex(straux,1,1);

vertexMatrix[vertexcount-1,1]:=ParseSTLVertex(straux,1,2);

vertexMatrix[vertexcount-1,2]:=ParseSTLVertex(straux,1,3);

end;

 81

Function ParseSTLVertex(STLMsg : string; VertexNo: integer; ValueNo: integer): double;

var

PValue : double;

submsg:string;

aux : integer;

i, j: integer;

VertexCT, ValueCount:integer;

begin

VertexCT:=1;

ValueCount:=1;

submsg:=STLMsg;

For VertexCT:=1 to VertexNo do begin

IF Pos('vertex',submsg)<0 then exit;

submsg:=RightStr(submsg,Length(submsg)-Pos('vertex',submsg)-6);

IF VertexNo=VertexCT then

begin

IF POS('vertex',submsg)>0 then

submsg:=LeftStr(submsg,Pos('vertex',submsg)-2);

for ValueCount:=1 to ValueNo do begin

IF ValueCount=ValueNo then

begin

IF ValueCount<3 then submsg:=LeftStr(submsg,Pos(' ',submsg)-1);

PValue:=StrToFloat(submsg);

ParseSTLVertex:=Pvalue;

exit;

end;

submsg:=RightStr(submsg,Length(submsg)-Pos(' ',submsg));

end;

end;

end;

end;

82

C – Test Registrations (Log File Example)

This file is an example of the logs produced by the Intellwheels Control Software. The

character comma separates the collums. The sequence of columns represents the (orderly)

the following details: Time Step; Ticks Left encoder; Ticks Right encoder; Sonar Front; Sonar

Right; Sonar Back; Sonar Left; Robot Orientation; X coordinate (meters); Y coordinate

(meters).

File name: “log.txt”

File content:

V=[

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1

0.0600,0.00,0.00,174.00/145.92,72.96/78.07,210.50/49.75,94.54/106.20,0.00,10.00,6.1

]

 83

D – LIACC XML MAP

To increase reality and also to allow more augmented reality rests, a XML map of the

LIACC‟s floor on FEUP was created. This XML map is compatible with Intellwheels and Ciber-

Rato simulators.

<Lab Name="IW_LIACC" Width="44.000000" Height="17.75">

 <Wall Height="2.500000">

 <Corner X="9.370000" Y="0.000000" />

 <Corner X="9.370000" Y="5.400000" />

 <Corner X="9.519000" Y="5.400000" />

 <Corner X="9.519000" Y="0.000000" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="9.519000" Y="5.130400" />

 <Corner X="9.618400" Y="5.130400" />

 <Corner X="9.618400" Y="4.992100" />

 <Corner X="9.519000" Y="4.992100" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="10.4159" Y="5.130400" />

 <Corner X="32.84" Y="5.130400" />

 <Corner X="32.84" Y="4.9903" />

 <Corner X="10.4159" Y="4.9903" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="9.370000" Y="6.59" />

 <Corner X="9.519000" Y="6.59" />

 <Corner X="9.519000" Y="7.66" />

 <Corner X="9.370000" Y="7.66" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="9.519000" Y="7.66" />

 <Corner X="9.370000" Y="7.66" />

 <Corner X="9.370000" Y="7.56" />

 <Corner X="9.519000" Y="7.56" />

 </Wall>

84

 <Wall Height="2.500000">

 <Corner X="0.0" Y="7.56" />

 <Corner X="0.0" Y="7.29" />

 <Corner X="9.37" Y="7.29" />

 <Corner X="9.37" Y="7.56" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="3.18" Y="7.29" />

 <Corner X="3.18" Y="6.8725" />

 <Corner X="9.37" Y="6.8725" />

 <Corner X="9.37" Y="7.29" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="9.37" Y="8.56" />

 <Corner X="9.519" Y="8.56" />

 <Corner X="9.519" Y="10.75" />

 <Corner X="9.37" Y="10.75" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="9.519000" Y="10.6" />

 <Corner X="9.619000" Y="10.6" />

 <Corner X="9.619000" Y="10.75" />

 <Corner X="9.519000" Y="10.75" />

 </Wall>

 <Wall Height="2.5">

 <Corner X="0.0" Y="10.33" />

 <Corner X="0.0" Y="10.05" />

 <Corner X="9.519" Y="10.05" />

 <Corner X="9.519" Y="10.33" />

 </Wall>

 <Wall Height="2.5">

 <Corner X="3.18" Y="10.33" />

 <Corner X="9.519" Y="10.33" />

 <Corner X="9.519" Y="10.75" />

 <Corner X="3.18" Y="10.75" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="11.08" Y="10.75" />

 85

 <Corner X="11.08" Y="17.75" />

 <Corner X="11.23" Y="17.75" />

 <Corner X="11.23" Y="10.75" />

 </Wall>

 <Wall Height="2.5">

 <Corner X="10.81" Y="10.75" />

 <Corner X="14.26" Y="10.75" />

 <Corner X="14.26" Y="10.6" />

 <Corner X="10.81" Y="10.6" />

 </Wall>

 <Wall Height="2.5">

 <Corner X="10.91" Y="10.6" />

 <Corner X="13.52" Y="10.6" />

 <Corner X="13.52" Y="7.21" />

 <Corner X="10.91" Y="7.21" />

 </Wall>

 <Wall Height="2.5">

 <Corner X="13.52" Y="6.91" />

 <Corner X="32.84" Y="6.91" />

 <Corner X="32.84" Y="7.21" />

 <Corner X="13.52" Y="7.21" />

 </Wall>

 <Wall Height="2.5">

 <Corner X="32.84" Y="6.91" />

 <Corner X="32.84" Y="6.79" />

 <Corner X="32.69" Y="6.79" />

 <Corner X="32.69" Y="6.91" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="38.71" Y="0.0" />

 <Corner X="38.71" Y="7.85" />

 <Corner X="38.56" Y="7.85" />

 <Corner X="38.56" Y="0.0" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="32.69" Y="5.13" />

 <Corner X="32.69" Y="0.0" />

 <Corner X="38.56" Y="0.0" />

86

 <Corner X="38.56" Y="5.13" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="32.69" Y="5.13" />

 <Corner X="32.69" Y="5.25" />

 <Corner X="32.84" Y="5.25" />

 <Corner X="32.84" Y="5.13" />

 </Wall>

 <Wall Height="2.500000">

 <Corner X="37.0" Y="7.40" />

 <Corner X="37.0" Y="10.17" />

 <Corner X="34.23" Y="10.17" />

 <Corner X="34.23" Y="7.40" />

 </Wall>

 <Wall Height="2.5">

 <Corner X="38.56" Y="9.75" />

 <Corner X="38.71" Y="9.75" />

 <Corner X="38.71" Y="17.75" />

 <Corner X="38.56" Y="17.75" />

 </Wall>

 <Wall Height="2.5">

 <Corner X="38.56" Y="11.75" />

 <Corner X="32.69" Y="11.75" />

 <Corner X="32.69" Y="11.90" />

 <Corner X="38.56" Y="11.90" />

 </Wall>

 <Wall Height="2.5">

 <Corner X="32.84" Y="11.75" />

 <Corner X="32.84" Y="7.21" />

 <Corner X="32.69" Y="7.21" />

 <Corner X="32.69" Y="11.75" />

 </Wall>

</Lab>

	Início
	Abstract
	Resumo
	Acknowledgments
	List of contents
	List of figures
	List of tables
	Abbreviations
	1. Introduction
	2. Intellwheels project
	3. Robotic simulation
	4. Intellwheels simulator
	5. Simulation agents
	6. Intellwheels viewer
	7. Simulator tests
	8. Conclusions
	Bibliography
	Annexes

