68 research outputs found

    Monolithic Integration of CMOS Charge Pumps for High Voltage Generation beyond 100 V

    Get PDF
    Monolithic integration of step-up DC-DC converters used to be one of the largest challenges in high voltage CMOS SoCs. Charge pumps are considered as the most promising solution regarding in- tegration levels compared to boost converter with bulky inductors. However, conventional charge pump architectures usually show significant drawbacks and reliability problems, when used as on- chip high voltage generators. Hence, innovative charge pump architectures are required to realize the monolithic integration of charge pumps in high voltage applications. In this dissertation, three 4-phase charge pump architectures with the dynamic body biasing tech- nique and clock schemes with dead time techniques were proposed to overcome drawbacks such as body effect and reverse current problem of traditional Pelliconi charge pump. The influences of high voltage CMOS sandwich capacitors on the voltage gain and power efficiency of charge pumps were extensively investigated. The most reasonable 4-phase charge pump architecture with a suitable configuration of high voltage sandwich capacitors regarding the voltage gain and power efficiency was chosen to implement two high voltage ASICs in an advanced 120 V 0.35 μm high voltage CMOS technology. The first test chip operates successfully and is able to generate up to 120 V from a 3.7 V low voltage DC supply, which shows the highest output voltage among all the reported fully integrated CMOS charge pumps. The measurement results confirmed the benefits of the proposed charge pump architectures and clock schemes. The second chip providing a similar output voltage has a reduced chip size mainly due to decreased capacitor areas by increased clock frequencies. Fur- thermore, the second chip with an on-chip clock generator works independently of external clock signals which shows the feasibility of integrated charge pumps as part of high voltage SoCs. Based on the successful implementation of those high voltage CMOS ASICs, further discussions on the stability of the output voltage, levels of integration and limitations in the negative high voltage generation of high voltage CMOS charge pumps are held with the aid of simulation or measurement results. Feed- back regulation by adjusting the clock frequency or DC power supply is able to stabilize the voltage performance effectively while being easily integrated on-chip. Increasing the clock frequency can significantly reduce the required capacitor values which results in reduced chip sizes. An application example demonstrates the importance of fully integrated high voltage charge pumps. Besides, a new design methodology for the on-chip high voltage generation using CMOS technolo- gies was proposed. It contains a general design flow focusing mainly on the feasibility and reliability of high voltage CMOS ASICs and design techniques for on-chip high voltage generators. In this dissertation, it is proven that CMOS charge pumps using suitable architectures regarding the required chip size and circuit reliability are able to be used as on-chip high voltage generators for voltages beyond 100 V . Several methods to improve the circuit performance and to extend the functionalities of high voltage charge pumps are suggested for future works

    Digital-Based Analog Processing in Nanoscale CMOS ICs for IoT Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    On-chip Voltage Regulator– Circuit Design and Automation

    Get PDF
    Title from PDF of title page viewed May 24, 2021Dissertation advisors: Masud H Chowdhury and Yugyung LeeVitaIncludes bibliographical references (page 106-121)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2021With the increase of density and complexity of high-performance integrated circuits and systems, including many-core chips and system-on-chip (SoC), it is becoming difficult to meet the power delivery and regulation requirements with off-chip regulators. The off-chip regulators become a less attractive choice because of the higher overheads and complexity imposed by the additional wires, pins, and pads. The increased I2R loss makes it challenging to maintain the integrity of different voltage domains under a lower supply voltage environment in the smaller technology nodes. Fully integrated on-chip voltage regulators have proven to be an effective solution to mitigate power delivery and integrity issues. Two types of regulators are considered as most promising for on-chip implementation: (i) the low-drop-out (LDO) regulator and (ii) the switched-capacitor (SC)regulator. The first part of our research mainly focused on the LDO regulator. Inspired by the recent surge of interest for cap-less voltage regulators, we presented two fully on-chip external capacitor-less low-dropout voltage regulator design. The second part of this proposal explores the complexity of designing each block of the regulator/analog circuit and proposed a design methodology for analog circuit synthesis using simulation and learning-based approach. As the complexity is increasing day-by-day in an analog circuit, hierarchical flow mostly uses for design automation. In this work, we focused mainly on Circuit-level, one of the significant steps in the flow. We presented a novel, efficient circuit synthesis flow based on simulation and learning-based optimization methods. The proposed methodology has two phases: the learning phase and the evaluation phase. Random forest, a supervised learning is used to reduce the sample points in the design space and iteration number during the learning phase. Additionally, symmetric constraints are used further to reduce the iteration number during the sizing process. We introduced a three-step circuit synthesis flow to automate the analog circuit design. We used H-spice as a simulation tool during the evaluation phase of the proposed methodology. The three most common analog circuits are chosen: single-stage differential amplifier, operational transconductance amplifier, and two-stage differential amplifier to verify the algorithm. The tool is developed in Python, and the technology we used is0.6um. We also verified the optimized result in Cadence Virtuoso.Introduction -- On-chip power delivery system -- Fundamentals of on-chip voltage regulator -- LDO design in 45NM technology -- LDO design in technology -- Analog design automation -- Proposed analog design methodology -- Energy efficient FDSOI and FINFET based power gating circuit using data retention transistor -- Conclusion and future wor

    Digital-based analog processing in nanoscale CMOS ICs for IoT applications

    Get PDF
    The Internet-of-Things (IoT) concept has been opening up a variety of applications, such as urban and environmental monitoring, smart health, surveillance, and home automation. Most of these IoT applications require more and more power/area efficient Complemen tary Metal–Oxide–Semiconductor (CMOS) systems and faster prototypes (lower time-to market), demanding special modifications in the current IoT design system bottleneck: the analog/RF interfaces. Specially after the 2000s, it is evident that there have been significant improvements in CMOS digital circuits when compared to analog building blocks. Digital circuits have been taking advantage of CMOS technology scaling in terms of speed, power consump tion, and cost, while the techniques running behind the analog signal processing are still lagging. To decrease this historical gap, there has been an increasing trend in finding alternative IC design strategies to implement typical analog functions exploiting Digital in-Concept Design Methodologies (DCDM). This idea of re-thinking analog functions in digital terms has shown that Analog ICs blocks can also avail of the feature-size shrinking and energy efficiency of new technologies. This thesis deals with the development of DCDM, demonstrating its compatibility for Ultra-Low-Voltage (ULV) and Power (ULP) IoT applications. This work proves this state ment through the proposing of new digital-based analog blocks, such as an Operational Transconductance Amplifiers (OTAs) and an ac-coupled Bio-signal Amplifier (BioAmp). As an initial contribution, for the first time, a silicon demonstration of an embryonic Digital-Based OTA (DB-OTA) published in 2013 is exhibited. The fabricated DB-OTA test chip occupies a compact area of 1,426 µm2 , operating at supply voltages (VDD) down to 300 mV, consuming only 590 pW while driving a capacitive load of 80pF. With a Total Harmonic Distortion (THD) lower than 5% for a 100mV input signal swing, its measured small-signal figure of merit (FOMS) and large-signal figure of merit (FOML) are 2,101 V −1 and 1,070, respectively. To the best of this thesis author’s knowledge, this measured power is the lowest reported to date in OTA literature, and its figures of merit are the best in sub-500mV OTAs reported to date. As the second step, mainly due to the robustness limitation of previous DB-OTA, a novel calibration-free digital-based topology is proposed, named here as Digital OTA (DIG OTA). A 180-nm DIGOTA test chip is also developed exhibiting an area below the 1000 µm2 wall, 2.4nW power under 150pF load, and a minimum VDD of 0.25 V. The proposed DIGOTA is more digital-like compared with DB-OTA since no pseudo-resistor is needed. As the last contribution, the previously proposed DIGOTA is then used as a building block to demonstrate the operation principle of power-efficient ULV and ultra-low area (ULA) fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA) such as extreme low area Body Dust. Measured results in 180nm CMOS confirm that the proposed BioDIGOTA can work with a supply voltage down to 400 mV, consuming only 95 nW. The BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art while keeping reasonable system performance, such as 7.6 Noise Efficiency Factor (NEF) with 1.25 µVRMS input-referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of the common-mode rejection ratio (CMRR) and 55 dB of power supply rejection ratio (PSRR). After reviewing the current DCDM trend and all proposed silicon demonstrations, the thesis concludes that, despite the current analog design strategies involved during the analog block development

    Low power digital baseband core for wireless Micro-Neural-Interface using CMOS sub/near-threshold circuit

    Get PDF
    This thesis presents the work on designing and implementing a low power digital baseband core with custom-tailored protocol for wirelessly powered Micro-Neural-Interface (MNI) System-on-Chip (SoC) to be implanted within the skull to record cortical neural activities. The core, on the tag end of distributed sensors, is designed to control the operation of individual MNI and communicate and control MNI devices implanted across the brain using received downlink commands from external base station and store/dump targeted neural data uplink in an energy efficient manner. The application specific protocol defines three modes (Time Stamp Mode, Streaming Mode and Snippet Mode) to extract neural signals with on-chip signal conditioning and discrimination. In Time Stamp Mode, Streaming Mode and Snippet Mode, the core executes basic on-chip spike discrimination and compression, real-time monitoring and segment capturing of neural signals so single spike timing as well as inter-spike timing can be retrieved with high temporal and spatial resolution. To implement the core control logic using sub/near-threshold logic, a novel digital design methodology is proposed which considers INWE (Inverse-Narrow-Width-Effect), RSCE (Reverse-Short-Channel-Effect) and variation comprehensively to size the transistor width and length accordingly to achieve close-to-optimum digital circuits. Ultra-low-power cell library containing 67 cells including physical cells and decoupling capacitor cells using the optimum fingers is designed, laid-out, characterized, and abstracted. A robust on-chip sense-amp-less SRAM memory (8X32 size) for storing neural data is implemented using 8T topology and LVT fingers. The design is validated with silicon tapeout and measurement shows the digital baseband core works at 400mV and 1.28 MHz system clock with an average power consumption of 2.2 μW, resulting in highest reported communication power efficiency of 290Kbps/μW to date

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Engineering Education and Research Using MATLAB

    Get PDF
    MATLAB is a software package used primarily in the field of engineering for signal processing, numerical data analysis, modeling, programming, simulation, and computer graphic visualization. In the last few years, it has become widely accepted as an efficient tool, and, therefore, its use has significantly increased in scientific communities and academic institutions. This book consists of 20 chapters presenting research works using MATLAB tools. Chapters include techniques for programming and developing Graphical User Interfaces (GUIs), dynamic systems, electric machines, signal and image processing, power electronics, mixed signal circuits, genetic programming, digital watermarking, control systems, time-series regression modeling, and artificial neural networks
    • …
    corecore