207 research outputs found

    Analysis of the visually detectable wear progress on ball screws

    Get PDF
    The actual progression of pitting on ball screw drive spindles is not well known since previous studies have only relied on the investigation of indirect wear effects (e. g. temperature, motor current, structure-borne noise). Using images from a camera system for ball screw drives, this paper elaborates on the visual analysis of pitting itself. Due to its direct, condition-based assessment of the wear state, an image-based approach offers several advantages, such as: Good interpretability, low influence of environmental conditions, and high spatial resolution. The study presented in this paper is based on a dataset containing the entire wear progression from original condition to component failure of ten ball screw drive spindles. The dataset is being analyzed regarding the following parameters: Axial length, tangential length, and surface area of each pit, the total number of pits, and the time of initial visual appearance of each pit. The results provide evidence that wear development can be quantified based on visual wear characteristics. In addition, using the dedicated camera system, the actual course of the growth curve of individual pits can be captured during machine operation. Using the findings of the analysis, the authors propose a formula for standards-based wear quantification based on geometric wear characteristics

    Analysis of the Visually Detectable Wear Progress on Ball Screws

    Get PDF
    The actual progression of pitting on ball screw drive spindles is not well known since previous studies have only relied on the investigation of indirect wear effects (e. g. temperature, motor current, structure-borne noise). Using images from a camera system for ball screw drives, this paper elaborates on the visual analysis of pitting itself. Due to its direct, condition-based assessment of the wear state, an image-based approach offers several advantages, such as: Good interpretability, low influence of environmental conditions, and high spatial resolution. The study presented in this paper is based on a dataset containing the entire wear progression from original condition to component failure of ten ball screw drive spindles. The dataset is being analyzed regarding the following parameters: Axial length, tangential length, and surface area of each pit, the total number of pits, and the time of initial visual appearance of each pit. The results provide evidence that wear development can be quantified based on visual wear characteristics. In addition, using the dedicated camera system, the actual course of the growth curve of individual pits can be captured during machine operation. Using the findings of the analysis, the authors propose a formula for standards-based wear quantification based on geometric wear characteristics

    Intelligent Machining Systems

    Get PDF
    Machining is one of the most widespread manufacturing processes and plays a critical role in industries. As a matter of fact, machine tools are often called mother machines as they are used to produce other machines and production plants. The continuous development of innovative materials and the increasing competitiveness are two of the challenges that nowadays manufacturing industries have to cope with. The increasing attention to environmental issues and the rising costs of raw materials drive the development of machining systems able to continuously monitor the ongoing process, identify eventual arising problems and adopt appropriate countermeasures to resolve or prevent these issues, leading to an overall optimization of the process. This work presents the development of intelligent machining systems based on in-process monitoring which can be implemented on production machines in order to enhance their performances. Therefore, some cases of monitoring systems developed in different fields, and for different applications, are presented in order to demonstrate the functions which can be enabled by the adoption of these systems. Design and realization of an advanced experimental machining testbed is presented in order to give an example of a machine tool retrofit aimed to enable advanced monitoring and control solutions. Finally, the implementation of a data-driven simulation of the machining process is presented. The modelling and simulation phases are presented and discussed. So, the model is applied to data collected during an experimental campaign in order to tune it. The opportunities enabled by integrating monitoring systems with simulation are presented with preliminary studies on the development of two virtual sensors for the material conformance and cutting parameter estimation during machining processes

    Design of an intelligent embedded system for condition monitoring of an industrial robot

    Get PDF
    PhD ThesisIndustrial robots have long been used in production systems in order to improve productivity, quality and safety in automated manufacturing processes. There are significant implications for operator safety in the event of a robot malfunction or failure, and an unforeseen robot stoppage, due to different reasons, has the potential to cause an interruption in the entire production line, resulting in economic and production losses. Condition monitoring (CM) is a type of maintenance inspection technique by which an operational asset is monitored and the data obtained is analysed to detect signs of degradation, diagnose the causes of faults and thus reduce maintenance costs. So, the main focus of this research is to design and develop an online, intelligent CM system based on wireless embedded technology to detect and diagnose the most common faults in the transmission systems (gears and bearings) of the industrial robot joints using vibration signal analysis. To this end an old, but operational, PUMA 560 robot was utilized to synthesize a number of different transmission faults in one of the joints (3 - elbow), such as backlash between the gear pair, gear tooth and bearing faults. A two-stage condition monitoring algorithm is proposed for robot health assessment, incorporating fault detection and fault diagnosis. Signal processing techniques play a significant role in building any condition monitoring system, in order to determine fault-symptom relationships, and detect abnormalities in robot health. Fault detection stage is based on time-domain signal analysis and a statistical control chart (SCC) technique. For accurate fault diagnosis in the second stage, a novel implementation of a time-frequency signal analysis technique based on the discrete wavelet transform (DWT) is adopted. In this technique, vibration signals are decomposed into eight levels of wavelet coefficients and statistical features, such as standard deviation, kurtosis and skewness, are obtained at each level and analysed to extract the most salient feature related to faults; the artificial neural network (ANN) is then used for fault classification. A data acquisition system based on National Instruments (NI) software and hardware was initially developed for preliminary robot vibration analysis and feature extraction. The transmission faults induced in the robot can change the captured vibration spectra, and the robot’s natural frequencies were established using experimental modal analysis, and also the fundamental fault frequencies for the gear transmission and bearings were obtained and utilized for preliminary robot condition monitoring. In addition to simulation of different levels of backlash fault, gear tooth and bearing faults which have not been previously investigated in industrial robots, with several levels of ii severity, were successfully simulated and detected in the robot’s joint transmission. The vibration features extracted, which are related to the robot healthy state and different fault types, using the data acquisition system were subsequently used in building the SCC and ANN, which were trained using part of the measured data set that represents the robot operating range. Another set of data, not used within the training stage, was then utilized for validation. The results indicate the successful detection and diagnosis of faults using the key extracted parameters. A wireless embedded system based on the ZigBee communication protocol was designed for the application of the proposed CM algorithm in real-time, using an Arduino DUE as the core of the wireless sensor unit attached on the robot arm. A Texas Instruments digital signal processor (TMS320C6713 DSK board) was used as the base station of the wireless system on which the robot’s fault diagnosis algorithm is run. To implement the two stages of the proposed CM algorithm on the designed embedded system, software based on the C programming language has been developed. To demonstrate the reliability of the designed wireless CM system, experimental validations were performed, and high reliability was shown in the detection and diagnosis of several seeded faults in the robot. Optimistically, the established wireless embedded system could be envisaged for fault detection and diagnostics on any type of rotating machine, with the monitoring system realized using vibration signal analysis. Furthermore, with some modifications to the system’s hardware and software, different CM techniques such as acoustic emission (AE) analysis or motor current signature analysis (MCSA), can be applied.Iraqi government, represented by the Ministry of Higher Education and Scientific Research, the Iraqi Cultural Attaché in London, and the University of Technology in Baghda

    Murskainlaitosten kunnonvalvontasovellukset

    Get PDF
    Effective use of machinery and maintenance planning requires improving of situational awareness and knowing the condition of the machinery. In mineral and aggregate industry, the maintenance is traditionally performed according to fixed time intervals or when the machines break down. One implemented solution for improving situational awareness is different kind of remote monitoring solutions. Knowing the condition of the machines improves the up-time and helps to prevent unexpected failures of the machines that work in difficult conditions. There are various condition monitoring products and services on the market, but they may not fulfil directly all of the requirements of this industry. It may therefore be a risk that the condition monitoring may not be comprehensive enough, if they are implemented with those commercial services. The goal of this work is divided in three research questions. The focus of the work is on the first one. The question number one is associated with searching of condition monitoring applications, which are application specific for mineral and aggregate industry. In this context, this work reviews different condition monitoring methods, but the actual measurements are implemented by using vibration sensors. The found application specific condition monitoring methods are tested by designing and implementing measurement setup. The measurement setup is installed on a mobile crushing unit – Metso Lokotrack LT106. The measurement setup includes measuring of machine orientation, monitoring of a frame bearing of the crusher and monitoring vibration of machine’s main conveyor. The used data-analysis methods are calculating the machine frame orientation by using the measured direction of gravity, monitoring of vibration root-mean-square velocity, envelope analysis of bearing high-frequency vibration and analysis of vibration frequency spectrum. The second research question estimates the minimum hardware requirements for the measurements, so that the desired phenomena can be reliably detected. The third question is to assess the economic feasibility of the selected measurements. Based on the results of this work, the current single point measurement of unit orientation is insufficient solution. Elastic frame may twist too much during use of the machine, and the operator may not notice it. On the other hand, inclination of the machine may change excessively during the use, if the ground under the machine sinks. In case of the crusher frame bearing, the result of envelope analysis indicates developing faults in a rolling element and inner race of the bearing. In turn, monitoring of the vibration root-mean-square velocity of the main conveyor does detect excessive vibration during the monitoring period, which is quite expected result, because the conveyor is accurately designed by using Finite element method. Based on the results, the orientation of the machine would be worthwhile to implement as commercial product, as well as the crusher bearing condition monitoring

    Predictive Maintenance Support System in Industry 4.0 Scenario

    Get PDF
    The fourth industrial revolution that is being witnessed nowadays, also known as Industry 4.0, is heavily related to the digitization of manufacturing systems and the integration of different technologies to optimize manufacturing. By combining data acquisition using specific sensors and machine learning algorithms to analyze this data and predict a failure before it happens, Predictive Maintenance is a critical tool to implement towards reducing downtime due to unpredicted stoppages caused by malfunctions. Based on the reality of Commercial Specialty Tires factory at Continental Mabor - Indústria de Pneus, S.A., the present work describes several problems faced regarding equipment maintenance. Taking advantage of the information gathered from studying the processes incorporated in the factory, it is designed a solution model for applying predictive maintenance in these processes. The model is divided into two primary layers, hardware, and software. Concerning hardware, sensors and respective applications are delineated. In terms of software, techniques of data analysis namely machine learning algorithms are described so that the collected data is studied to detect possible failures

    Wireless sensor networks, actuation, and signal processing for apiculture

    Get PDF
    Recent United Nations reports have stressed the growing constraint of food supply for Earth's growing human population. Honey bees are a vital part of the food chain as the most important pollinator for a wide range of crops. Protecting the honey bee population worldwide, and enabling them to maximise productivity, are important concerns. This research proposes a framework for addressing these issues by considering an inter-disciplinary approach, combining recent developments in engineering and honey bee science. The primary motivation of the work outlined in this thesis was to use embedded systems technology to improve honey bee health by developing state of the art in-hive monitoring systems to classify the colony status and mechanisms to influence hive conditions. Specific objectives were identified as steps to achieve this goal: to use Wireless Sensor networks (WSN) technology to monitor a honey bee colony in the hive and collect key information; to use collected data and resulting insights to propose mechanisms to influence hive conditions; to use the collected data to inform the design of signal processing and machine learning techniques to characterise and classify the colony status; and to investigate the use of high volume data sensors in understanding specific conditions of the hive, and methods for integration of these sensors into the low-power and low-data rate WSN framework. It was found that automated, unobtrusive measurement of the in-hive conditions could provide valuable insight into the activities and conditions of honey bee colonies. A heterogeneous sensor network was deployed that monitored the conditions within hives. Data were collected periodically, showing changes in colony behaviour over time. The key parameters measured were: CO2, O2, temperature, relative humidity, and acceleration. Weather data (sunshine, rain, and temperature) were collected to provide an additional analysis dimension. Extensive energy improvements reduced the node’s current draw to 150 µA. Combined with an external solar panel, self-sustainable operation was achieved. 3,435 unique data sets were collected from five test-bed hives over 513 days during all four seasons. Temperature was identified as a vital parameter influencing the productivity and health of the colony. It was proposed to develop a method of maintaining the hive temperature in the ideal range through effective ventilation and airflow control which allow the bees involved in the activities above to engage in other tasks. An actuator was designed as part of the hive monitoring WSN to control the airflow within the hive. Using this mechanism, an effective Wireless Sensor and Actuator Network (WSAN) with Proportional Integral Derivative (PID) based temperature control was implemented. This system reached an effective set point temperature within 7 minutes of initialisation, and with steady state being reached by minute 18. There was negligible steady state error (0.0047%) and overshoot of <0.25 °C. It was proposed to develop and evaluate machine learning solutions to use the collected data to classify and describe the hive. The results of these classifications would be far more meaningful to the end user (beekeeper). Using a data set from a field deployed beehive, a biological analysis was undertaken to classify ten important hive states. This classification led to the development of a decision tree based classification algorithm which could describe the beehive using sensor network data with 95.38% accuracy. A correlation between meteorological conditions and beehive data was also observed. This led to the development of an algorithm for predicting short term rain (within 6 hours) based on the parameters within the hive (95.4% accuracy). A Random Forest based classifier was also developed using the entire collected in-hive dataset. This algorithm did not need access to data from outside the network, memory of previous measured data, and used only four inputs, while achieving an accuracy of 93.5%. Sound, weight, and visual inspection were identified as key methods of identifying the health and condition of the colony. Applications of advanced sensor methods in these areas for beekeeping were investigated. A low energy acoustic wake up sensor node for detecting the signs of an imminent swarming event was designed. Over 60 GB of sound data were collected from the test-bed hives, and analysed to provide a sound profile for development of a more advanced acoustic wake up and classification circuit. A weight measuring node was designed using a high precision (24-bit) analogue to digital converter with high sensitivity load cells to measure the weight of a hive to an accuracy of 10g over a 50 kg range. A preliminary investigation of applications for thermal and infrared imaging sensors in beekeeping was also undertaken

    Energy harvesting from body motion using rotational micro-generation

    Get PDF
    Autonomous system applications are typically limited by the power supply operational lifetime when battery replacement is difficult or costly. A trade-off between battery size and battery life is usually calculated to determine the device capability and lifespan. As a result, energy harvesting research has gained importance as society searches for alternative energy sources for power generation. For instance, energy harvesting has been a proven alternative for powering solar-based calculators and self-winding wristwatches. Thus, the use of energy harvesting technology can make it possible to assist or replace batteries for portable, wearable, or surgically-implantable autonomous systems. Applications such as cardiac pacemakers or electrical stimulation applications can benefit from this approach since the number of surgeries for battery replacement can be reduced or eliminated. Research on energy scavenging from body motion has been investigated to evaluate the feasibility of powering wearable or implantable systems. Energy from walking has been previously extracted using generators placed on shoes, backpacks, and knee braces while producing power levels ranging from milliwatts to watts. The research presented in this paper examines the available power from walking and running at several body locations. The ankle, knee, hip, chest, wrist, elbow, upper arm, side of the head, and back of the head were the chosen target localizations. Joints were preferred since they experience the most drastic acceleration changes. For this, a motor-driven treadmill test was performed on 11 healthy individuals at several walking (1-4 mph) and running (2-5 mph) speeds. The treadmill test provided the acceleration magnitudes from the listed body locations. Power can be estimated from the treadmill evaluation since it is proportional to the acceleration and frequency of occurrence. Available power output from walking was determined to be greater than 1mW/cm³ for most body locations while being over 10mW/cm³ at the foot and ankle locations. Available power from running was found to be almost 10 times higher than that from walking. Most energy harvester topologies use linear generator approaches that are well suited to fixed-frequency vibrations with sub-millimeter amplitude oscillations. In contrast, body motion is characterized with a wide frequency spectrum and larger amplitudes. A generator prototype based on self-winding wristwatches is deemed to be appropriate for harvesting body motion since it is not limited to operate at fixed-frequencies or restricted displacements. Electromagnetic generation is typically favored because of its slightly higher power output per unit volume. Then, a nonharmonic oscillating rotational energy scavenger prototype is proposed to harness body motion. The electromagnetic generator follows the approach from small wind turbine designs that overcome the lack of a gearbox by using a larger number of coil and magnets arrangements. The device presented here is composed of a rotor with multiple-pole permanent magnets having an eccentric weight and a stator composed of stacked planar coils. The rotor oscillations induce a voltage on the planar coil due to the eccentric mass unbalance produced by body motion. A meso-scale prototype device was then built and evaluated for energy generation. The meso-scale casing and rotor were constructed on PMMA with the help of a CNC mill machine. Commercially available discrete magnets were encased in a 25mm rotor. Commercial copper-coated polyimide film was employed to manufacture the planar coils using MEMS fabrication processes. Jewel bearings were used to finalize the arrangement. The prototypes were also tested at the listed body locations. A meso-scale generator with a 2-layer coil was capable to extract up to 234 µW of power at the ankle while walking at 3mph with a 2cm³ prototype for a power density of 117 µW/cm³. This dissertation presents the analysis of available power from walking and running at different speeds and the development of an unobtrusive miniature energy harvesting generator for body motion. Power generation indicates the possibility of powering devices by extracting energy from body motion

    Mehatronički pristup pozicioniranju ultravisokih preciznosti i točnosti

    Get PDF
    Ultra-high precision mechatronics positioning systems are critical devices in current precision engineering and micro- and nano-systems’ technologies, as they allow repeatability and accuracy in the nanometric domain to be achieved. The doctoral thesis deals thoroughly with nonlinear stochastic frictional effects that limit the performances of ultra-high precision devices based on sliding and rolling elements. The state-of-the-art related to the frictional behavior in the pre-sliding and sliding motion regimes is considered and different friction models are validated. Due to its comprehensiveness and simplicity, the generalized Maxwell-slip (GMS) friction model is adopted to characterize frictional disturbances of a translational axis of an actual multi-degrees-of-freedom point-to-point mechatronics positioning system aimed at handling and positioning of microparts. The parameters of the GMS model are identified via innovative experimental set-ups, separately for the actuator-gearhead assembly and for the linear guideways, and included in the overall MATLAB/SIMULINK model of the used device. With the aim of compensating frictional effects, the modeled responses of the system are compared to experimental results when the system is controlled by means of a conventional proportional-integral-derivative (PID) controller, when the PID controller is complemented with an additional feed-forward model-based friction compensator and, finally, when the system is controlled via a self-tuning adaptive regulator. The adaptive regulator, implemented within the real-time field programmable gate array based control system, is proven to be the most efficient and is hence used in the final repetitive point-to-point positioning tests. Nanometric-range precision and accuracy (better than 250 nm), both in the case of short-range (micrometric) and long-range (millimeter) travels, are achieved. Different sensors, actuators and other design components, along with other control typologies, are experimentally validated in ultra-high precision positioning applications as well.Mehatronički sustavi ultra-visokih (nanometarskih) preciznosti i točnosti pozicioniranja su u današnje vrijeme vrlo važni u preciznom inženjerstvu i tehnologiji mikro- i nano-sustava. U disertaciji se temeljito analiziraju nelinearni stohastički učinci trenja koji vrlo često ograničavaju radna svojstva sustava za precizno pozicioniranje temeljenih na kliznim i valjnim elementima. Analizira se stanje tehnike za pomake pri silama manjim od sile statičkog trenja, kao i u režimu klizanja, te se vrednuju postojeći matematički modeli trenja. U razmatranom slučaju mehatroničkog sustava ultra-visokih preciznosti i točnosti pozicioniranja, namijenjenog montaži i manipulaciji mikrostruktura, trenje koje se javlja kod linearnih jednoosnih pomaka se, zbog jednostavnosti i sveobuhvatnosti toga pristupa, modelira generaliziranim Maxwell-slip (GMS) modelom trenja. Parametri GMS modela se identificiraju na inovativnim eksperimentalnim postavima, i to posebno za pokretački dio analiziranog sustava, koji se sastoji od istosmjernog motora s reduktorom, te posebno za linearni translator. Rezultirajući modeli trenja se zatim integriraju u cjeloviti model sustava implementiran u MATLAB/SIMULINK okruženju. S ciljem minimizacije utjecaja trenja, modelirani odziv sustava uspoređuje se potom s eksperimentalnim rezultatima dobivenim na sustavu reguliranom pomoću često korištenog proporcionalno-integralno-diferencijalnog (PID) regulatora, kada se sustav regulira po načelu unaprijedne veze, te kada se regulira prilagodljivim upravljačkim algoritmom. Regulator s prilagodljivim vođenjem, implementiran unutar stvarno-vremenskog sustava temeljenog na programibilnim logičkim vratima, pokazao se kao najbolje rješenje te se stoga koristi u uzastopnim eksperimentima pozicioniranja iz točke u točku, koji predstavljaju željenu funkcionalnost razmatranog sustava. Postignute su tako nanometarska preciznost i točnost (bolje od 250 nm) i to kako kod kraćih (mikrometarskih), tako i duljih (milimetarskih) pomaka. U završnom se dijelu disertacije eksperimentalno analizira i mogućnost korištenja drugih pokretača, osjetnika i strojnih elemenata kao i različitih upravljačkih pristupa pogodnih za ostvarivanje ultra-visokih preciznosti i točnosti pozicioniranja

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:• Robots• Control and Intelligence• Sensing• Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area
    corecore