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Resumo

A quarta revolução industrial que está a ser testemunhada atualmente, também conhecida
como Indústria 4.0, está fortemente associada à digitalização dos sistemas de produção e à in-
tegração de diferentes tecnologias para otimização da produção. Ao combinar a aquisição de
dados através de sensores específicos e algoritmos de machine learning para analisar os dados
adquiridos e prever uma falha antes que esta aconteça, a Manutenção Preditiva é uma ferramenta
crítica a ser implementada para reduzir o tempo de paragem devido a erros ou falhas.

Com base na realidade da fábrica de Conti Special Tires da Continental Mabor - Indústria de
Pneus, S.A., o presente trabalho fornece uma descrição de vários problemas relacionados com
a manutenção de equipamentos. Aproveitando as informações recolhidas no estudo dos pro-
cessos incorporados na fábrica, concebemos um modelo de solução para aplicar um sistema de
manutenção preditiva sobre esses processos.

O modelo é dividido em duas camadas principais, o hardware e o software. A camada de
hardware consiste em sensores e respectivas aplicações. A camada de software compreende téc-
nicas de análise de dados, nomeadamente algoritmos de machine learning, para analisar os dados
adquiridos e detectar possíveis falhas.

Os algoritmos de machine learning para detetar, diagnosticar e prever falhas com base nos
sinais de vibração de rolamentos foram desenvolvidos para serem implantados numa máquina
específica que deve ser equipada com os sensores adequados. Após testar os algoritmos, estes
poderão ser expandidos para lidar com outro tipo de sinais complexos.

Os algoritmos foram desenvolvidos em MATLAB e testados com dados disponibilizados pela
MathWorks, com apoio da toolbox de MATLAB relativa a Manutenção Preditiva. Com os dados
utilizados, os resultados obtidos foram positivos, sendo que foi possível detetar, diagnosticar e
prever a ocorrência de falhas.
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Abstract

The fourth industrial revolution that is being witnessed nowadays, also known as Industry
4.0, is heavily related to the digitization of manufacturing systems and the integration of different
technologies to optimize manufacturing. By combining data acquisition using specific sensors and
machine learning algorithms to analyze the data and predict a failure before it happens, Predic-
tive Maintenance is a critical tool to implement towards reducing downtime due to unpredicted
stoppages caused by malfunctions.

Based on the reality of Conti Special Tires plant at Continental Mabor - Indústria de Pneus,
S.A., the present work provides a description of several problems faced regarding equipment main-
tenance. Taking advantage of the information gathered from studying the processes incorporated
in the plant, we conceived a solution model for applying predictive maintenance in these processes.

The model is divided in two primary layers, the hardware and software. The hardware layer
consists of sensors and respective applications. The software layer contains techniques of data
analysis namely machine learning algorithms to study the collected data to detect possible failures.

Machine learning algorithms to detect, diagnose, and predict failures based on bearing vibra-
tion signals were developed to be deployed into a specific machine that should be equipped with
the proper sensors. After testing the algorithms, these could be expanded to handle other complex
signals.

The mentioned algorithms were developed using MATLAB, with the support of the Predictive
Maintenance toolbox, and the datasets used for training and testing are available in the Math-
Works database. We obtained positive results, as the implemented algorithms were able to detect,
diagnose, and predict the occurrence of failures.
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Chapter 1

Introduction

1.1 Context & Motivation

The present dissertation was carried out in an industrial environment, at Continental Mabor

- Indústria de Pneus, S.A., a company whose main focus is tire manufacturing. Production is

divided into two plants: Passengers & Light Tires (PLT) Tires and Conti Special Tires (CST). The

work was developed in the Engineering Department #7, associated with the CST plant.

Today’s industry is extremely oriented towards increasing efficiency and reducing costs and

downtime at the production level. With this, efforts have been made to evolve to zero time loss

due to malfunctions. However, malfunctions are usually difficult to solve since they involve the

detection of the problem and correction or replacement of the equipment, being one of the main

causes of delays in terms of production [60]. Therefore, the new industrial revolution, known

as Industry 4.0, aims at implementing a predictive maintenance (PM) system, that is, a system

capable of detecting anomalies in the production line, thus anticipating possible malfunctions and

providing this information to the maintenance staff so they can perform the proper maintenance

before the failure occurs.

Taking into account the current industrial state, the above-mentioned system proves to be ex-

tremely advantageous as it should predict the occurrence of malfunctions before they happen,

allowing the maintenance team to intervene on the machine prior to the failure, reducing stoppage

time. In addition, it also makes possible discarding the current maintenance plan based on stan-

dard periods of time for calibration or equipment replacement. The referred plan is standardized

as mandatory in most industries but has been proven inefficient, as mentioned in [33]. In this way,

it is possible to reduce the costs related to maintenance or replacements that are sometimes unnec-

essary, as these will be carried out only based on the indications obtained by the new monitoring

system.

In order to develop the mentioned system, it is vital to understand and characterize the ma-

chine in which the system will be implemented. Therefore, a scheme containing the processes,

inputs and outputs, failure rates, installation complexity, and criticality for the process, should be

developed.
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2 Introduction

In addition, a reliability study must be carried out, which will represent the probability of

the system performing the function for which it was designed continuously for an interval of

time. For this, the characterizations of failures and the frequency of their occurrence must be

understood [50].

The aforementioned monitoring implies the proper sensor placement in the equipment to be

controlled for real-time data acquisition. Depending on the system selected, the critical parts to be

monitored may fall into the categories of hydraulics, pneumatics, motors, rotors, electrical panels,

among others. For this, the set of sensors must be chosen and placed carefully and appropriately.

Also, as mentioned, it is intended to acquire data in real-time, which implies their integration in a

communication network with this capacity. Concerning data collection, we must take into account

the types of failures that may occur, how the failure process develops, and what parts of the system

relate to each type of failure.

Based on the acquired data, a machine learning (ML) algorithm can be developed. The al-

gorithm should provide automatic anomaly detection and prediction and can vary in terms of

complexity, depending on the type and amount of data available and the existence of historical

data for training and verification.

At last, to provide the information to system users, it is essential to create a human-machine

interface that presents the acquired data and history in a simple, organized, and intuitive way.

With this motivation and context, we set out the objectives in the following section.

1.2 Dissertation Goals

This project will consider the set of preparation and construction machines at Continental

Mabor’s Conti Special Tires (CST) unit, as previously mentioned. Therefore, we set the following

objectives:

• Contextualization with the machine set, studying processes, inputs, and outputs, and the

monitoring already installed.

• Damage and breakdown reports analysis with the purpose of identifying the main compo-

nents to monitor, considering their relevance on the machine and their impact on production.

• Comparative assessment of possible sensors and monitoring techniques for the different

components identified, considering the complexity and cost of installing the equipment.

• Model machine identification and functional layout design, taking into account the impact

of failure rates of the various components and respective failure modes.

• Solution development, presenting the main components to be monitored and the respec-

tive monitoring techniques to be carried out. Sensor listing for budgeting purposes should

be taken into account, as the solution is intended to be installed in an industrial environ-

ment. Furthermore, algorithms to detect, diagnose and predict failures should be developed,

trained, and tested.
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• Sensor installation and PLC level data acquisition and treatment.

• Developed algorithms deployment and adjustment based on the acquired real data.

• Implementation of a HMI to provide clear information to the maintenance team.

1.3 Results of this Dissertation

With the objectives referred above, we started by doing a preliminary study of subjects re-

lated to the work to be developed, such as PM, ML algorithms, reliability models, and sensors

for component monitoring. Within the premises of Continental, we performed an analysis of the

processes included in the CST plant and a review on the 2019 breakdown report. Unfortunately,

the COVID-19 pandemic forced a shutdown of the plant that forced us to continue the work re-

motely. However, this had a strong impact on the work since it was impossible to deploy an actual

system in a concrete machine. Therefore, we used MATLAB as a basis for developing our work,

implementing and testing our algorithms with the data set provided in the MATLAB Predictive-

Maintenance Toolbox. In summary, we achieved:

• Process contextualization, reviewing operation manuals and the breakdown report available.

• Model machine layout design and maintenance protocols.

• Sensor identification for different types of components and quantities.

• ML algorithms developed with MATLAB for detecting, diagnosing and predicting failures,

using MathWorks data sets.

1.4 Dissertation Outline

In addition to the Introduction, this document includes 4 chapters. Chapter 2 reviews the lit-

erature approaching the main concepts in the scope of this dissertation. Chapter 3 describes the

problem in which this work is based on, analyzing failure reports and identifying the main com-

ponents to monitor from these. It also describes the methodology to be followed. The proposed

solution is exposed in chapter 4 which explains the methods and tools (software and hardware)

to be used. Lastly, chapter 5 reviews the work that was carried out in this project and presents

perspectives for future work.



Chapter 2

Literature Review

This chapter describes critical techniques and concepts for a better understanding of the so-

lution that will be presented later on. It covers the topics of data treatment, machine learning

algorithms, reliability models, sensors working principles, and development of human-machine

interfaces.

2.1 Machine Learning applied to Predictive Maintenance

Failures in industrial machines have a wide range of variety regarding the failure complexity

and the consequences it incurs. While simpler cases may only require components replacement,

others can cause serious accidents, costing millions in terms of production, injuries, and environ-

ment pollution [2]. Thus, maintaining good maintenance programs to quickly solve or avoid faults

can be very rewarding. Currently, there are 3 types of maintenance being used in the industrial

context [33][46]:

• Run-to-Failure - interventions occur only after failures occur.

• Time-based - maintenance is performed according to a schedule based on the number of the

process iterations. It is better than the Run-to-Failure type in terms of avoiding failures but

sometimes incurs in unnecessary expenses or the failure still occur ahead of schedule.

• Condition-based - through automatic fault detection and prediction systems, this type moni-

tors the state of the machine or component in real-time, and maintenance is performed based

on the state estimate, which enables efficiency improvement and cost reduction, regarding

equipment replacement and associated down-time.

The last type, also called PM, is the one with a higher economic benefit and production efficiency.

Therefore, it is the principal focus in the sections that follow.

4
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2.1.1 Predictive Maintenance Basic Concepts

PM is based on a decision support system that contains indicators representing the system

state. These indicators are associated with specific problems to be solved [46] [67]. Consequently,

considering all types of failures is crucial. The failures can be detected through parameter analysis

such as geometric measurements, vibrations, temperature, lubrication oils, among others [48].

In this case, to deal with large amounts of data from various sensors ML algorithms are very

beneficial, as they allow building different analysis and forecasting models. The type of algorithm

used may vary depending on historical data availability.

Figure 2.1: Predictive Maintenance Process

As described in figure 2.1, a PM cycle starts by measuring machine physical characteristics

through the installed sensors. The acquired data is then transmitted to the module responsible

for processing and analyzing using an appropriate ML algorithm, which will try to characterize

the current system state, identifying if it is correct or has some type of anomaly or defect. If

an anomaly is detected, it must be displayed on the HMI allowing the user to make an informed

decision regarding the equipment maintenance or correction.

2.1.2 Data Pre-Processing

The collected data often contains irrelevant or redundant parts, in particular noise or incom-

plete data, which needs to be filtered before starting the ML detection algorithm training phase.

For this, the data must go through several pre-processing phases, as stated in [48]:

• Cleaning - Filter the signal to reduce noise and irrelevant data. The corrupted data, like

outliers points, should be smoothened or eliminated.

• Integration - Group data from different sources, improving the component estimated state

precision. Considering that data from different sources may have different standard scales,

it is crucial to adjust the scales ensuring that all measurements have the same "impact"
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classifying the component. Autoscaling, mentioned in [55], is a technique used for this

purpose.

• Reduction - reduce the data volume, simplifying the detection algorithm complexity, while

ensuring that the same classification is obtained.

• Transformation - consolidate the data in order to apply the desired algorithm.

The acquired data can be simple, where only a certain absolute value is recorded at each

moment along with the respective timestamp, or it can be more complex, like acquiring component

vibrations, in which it is necessary to filter the noise, extract the relevant part within the time

spectrum and possibly make a conversion to the frequency domain. This last function requires

a higher pre-processing treatment. Therefore, the complexity of the steps mentioned above may

vary, depending on the amount and type of the data being acquired.

For the latter case, i.e., more complex signals such as vibration or current, it is not the acquired

signal that is used directly as input to the monitoring system, but rather some of its characteristics

in the time and frequency domain, for instance, maximum, minimum, mean, standard deviation,

asymmetry, kurtosis, and RMS values [7][83]. Generally, two methods are used to extract the

referred characteristics in the frequency domain: a Fourier transform or wavelet transform. The

first is useful in simpler cases, especially when the signal resembles a sinusoidal wave and does

not exhibit sudden variations. However, frequently the signal presents abrupt irregularities and in

this case, the wavelet transform is most suitable, as it does not express the signal as a sum of sine

waves, but as a sum of wavelets, granting better analysis flexibility [86].

After extracting the characteristics, as already mentioned, it is essential to reduce data quantity

to be inserted in the model, since often excessive data is proved to be irrelevant or redundant,

only contributing to increasing model complexity while not affecting the quality of the solution.

The most common method used for this purpose is called Principal Components Analysis (PCA),

which highlights the most relevant components of the dataset. The PCA algorithm transforms the

data matrix into a projection of that same matrix sorted by order of variance, allowing the columns

with the highest variance to be emphasized while discarding the ones with the lowest variance,

considering that the latter will have a near-zero impact on the detection algorithm, performing the

desired dimensional reduction [54][55]. The algorithm works as follows [6]:

1. Considering the acquired dataset stored in a matrix [X]mxn, where each line (m) represents

a different acquisition and each column (n) a different measure;

2. The mean is subtracted to each dimension:

[X ]n− [X̄ ]n (2.1)

3. Compute de covariance matrix [c]mxn and the respective eigenvectors and eigenvalues:

([c]nxn− Inxnλ )Xnx1 = 0 (2.2)
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4. Store the eigenvector in a matrix and the eigenvalues in a diagonal matrix:

[P]nxn = [{X1}{X2}...{Xn}] (2.3)

[Val]nxn (2.4)

5. Sort the eigenvalues matrix by decreasing order and determine the number (r) of values to

keep. The same process should be applied to eigenvectors matrix:

[Val]rxr (2.5)

[P]nxr = [{X1}{X2}...{Xr}] (2.6)

6. Lastly, the principal components matrix [U] is calculated, which is projected in the data

matrix:

[U ]mxr = [X ]mxn[P]mxr (2.7)

Ultimately, we can analyze the importance of each component and define how many compo-

nents we intend to consider to obtain a certain precision. Some programs, like MATLAB, already

have functions that automatically apply this algorithm based on the Singular Value Decomposition.

2.1.3 Types of Algorithms

Generally, ML algorithms use 3 different types of inputs: previous failures records, mainte-

nance records, and real-time machine operating conditions. Depending on the availability of these

types of information, the choice of an algorithm may vary. The algorithms fall into two broad

categories: predictive or supervised and descriptive or unsupervised [46][48].

2.1.3.1 Supervised Algorithms

Supervised algorithms are suitable for situations where the input and result data are available,

enabling the training of a classification system. By using the trained classification system with

new input data (interpolated or extrapolated), it is expected that the results will remain consistent

[26]. Algorithms like Decision Table, Random Forest, Support Vector Machine, Neural Networks

(Perceptron) are some examples in this class.

As stated in [18] and [26], the procedure for implementing this type of algorithms must follow

the steps in the figure 2.2.
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Figure 2.2: Supervised Algorithms Implementation Process - Source: [26]

The first step is to define what is to be detected, i.e., the function outputs, based on the available

data. Then, determine the set of examples that will be used for training the algorithm, and the set

for testing and validating. With these established, algorithm training should be started, evaluating

its reliability at the end of each iteration and making the necessary parametric adjustments, until

the model provides a consistent detection, reflecting what was initially observed from the data

source.

2.1.3.2 Unsupervised Algorithms

The unsupervised algorithms class is utilized when there are only logistical and process data

and there is no data related to failures and previous maintenance, i.e., it is not known beforehand

the corresponding correct detection values for the input data. These algorithms are used to build

models without historical data since these allow cluster identification. Therefore, to classify the

obtained data, the recognized clusters may be classified as ’stable’, ’in danger’, and ’faulty’, for

example. Through tests using acquired data, the algorithm parameters can be adjusted, improving

the accuracy of the solution until it reaches a static level. Hotelling T2 Statistic, Hierarchical

clustering, K-means, Fuzzy C-Means clustering, and Model-based clustering, are some of the

algorithms included in this class [6][46]. Considering that in the present work there is no historical

data available to train the algorithms, these type of models should be preferred.

Hotelling T2 consists in a multivariate analysis used for online monitoring as it is calculated

for each new observation [35]. The upper confidence limit is obtained using the F-distribution,

where n is the number of samples, a is the number of principal components, α is the level of



2.2 Reliability Models 9

significance [6]:

T 2
l,n,α =

l(n−1)
n− l

Fl,n−l,α (2.8)

It is used as a detection method and does not provide fault classification, as it only allows compar-

ing the values with a defined threshold and the points above this will indicate the occurrence of a

fault.

The clustering algorithms are able to identify different failure stages by assigning each cluster

to a different stage. The number of clusters can be determined using various methods, such as the

elbow method or Bayesian inference.

Regarding the Hierarchical Clustering algorithm, as the name implies, the clustering is per-

formed hierarchically and follows the subsequent steps:

1. Define each data point as an individual cluster;

2. Group into one cluster the two nearest clusters;

3. Calculate new distances between clusters, having into consideration the new cluster;

4. Repeat the previous steps until the ideal number of clusters previously defined is reached.

The K-means algorithm divides data into a predetermined number of clusters based on the

Euclidean distance between them. In the Fuzzy C-means algorithm, each data point belongs to all

clusters in different degrees.

Model-based algorithms assume that data can be grouped according to a given model, for

example, the Gaussian Mixture Model. This model is used when the data points can be modeled

by a Gaussian distribution. Thus, it seeks to calculate an estimate of density as a non-parametric

method, since it tries to group a set of supposedly random values according to a known distribution,

providing a probability for the equipment state.

2.2 Reliability Models

As stated in [50], reliability is defined as the probability of a system acting according to its

design purpose, i.e., fulfilling the function it was designed for, during adequate time intervals.

Reliability models are mathematical models that associate different system components and

respective failures, which can be conducted by ML data analysis, as seen previously.

2.2.1 Principles and Methodology

System characterization in terms of reliability is based on a model development that should

take into account the type of data and quantity available, whether it is regarding a machine or a

production cell. Furthermore, it is also vital to consider the fault coverage, i.e., the probability of

the system being able to perform its function after the occurrence of a failure.

The standard methodology is based on the following steps [13]:
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1. Define the elements susceptible to failure, i.e., the components or subsystems that constitute

the system and the connections among them;

2. Identify failure modes and equipment performance limits;

3. Develop a simulation model based on a given platform, to test the failure’s effect;

4. Perform tests by simulating faults;

5. With the results obtained, analyze all combinations of existing failures, in order to define

the system failure coverage index;

6. Finally, with all the necessary data acquired, build the reliability model.

During the application of this methodology, some difficulties may be uncovered, such as quan-

tifying all the system characteristics. Ergo, it might be necessary to assume some of the unknown

values, based on the component structure, or consider generic parameters values [12]. Regarding

the causes of failure, two groups of responsible mechanisms are considered: shock and degrada-

tion or natural wear [85]. In other words, typically historical data is required to perform the model

estimation, however, if this data is not available, the model can be based only on the known failure

rates.

Figure 2.3: Breakdown Rate Evolution Overtime - Source: [50]

As highlighted in figure 2.3, the failure rate evolution is divided in three major periods:

• Infancy - the rate is high in this period with a tendency to decrease and stabilize. The

main causes of damage are equipment deficiencies or defects caused during transportation

or installation.

• Useful life - usually the reliability studies focus on this time interval, where the variation is

practically zero.

• Old age - Period in which specific equipment or components reach high levels of wear

becoming obsolete, causing an increase in the failure rate. This condition can be avoided by

performing maintenance, by repairing or replacing components.
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2.2.2 Component Reliability

Considering that the reliability studies are made for the useful life span of the equipment as

mentioned in [50], i.e., after passing the infancy period, the reliability of a component at time t

(R(t)) can be defined as in Eq. 2.9, in which λ (t) is the failure rate as a function of time

R(t) = e−
∫ t

0 λ (t)dt (2.9)

Thus, reliability can be described as the probability of obtaining 0 malfunctions at a certain

time t. Assuming a constant failure rate λ in the useful life period, reliability can be obtained

through Eq. 2.10.

R(t) = e−λ t (2.10)

Ergo, it is possible to define the mean time between consecutive failures (MTBF - Mean Time

Between Failures) as

MT BF =
1
λ

(2.11)

2.2.3 Availability

In addition to the reliability of a component, system, or equipment, availability is also very sig-

nificant information. In some industry cases, availability is even more valued than reliability, as it

provides an easier understanding of maintenance downtime issues. According to [41], availability

can have several definitions, such as inherent, achieved, or operational.

Inherent availability (DI) considers only corrective maintenance interventions, i.e., when sys-

tem malfunctions occur and it is necessary to repair or replace a component. This allows to evalu-

ate the performance of a given system between planned shutdowns and is given by:

DI =
MT BF

MT BF +MT T R
(2.12)

where MTTR - Mean Time To Repair - is the average time it takes to perform a corrective mainte-

nance activity.

Achieved availability (DA) aims to quantify the probability of a system being available to

operate at a certain time, taking into account all the maintenance work, i.e., corrective but also

preventive maintenance activities. It is calculated as:

DA =
MT BM

MT BM+ M̄
(2.13)

where MTBM - Mean Time Between Maintenance - represents the average time between

maintenance activities on the system, regardless of its type, and M̄ - represents the average time of

these activities,where stopping the machine is mandatory.

Lastly, operational availability (DO) is an indicator used often at administrative level or cus-

tomer perspective assessments as it represents precisely availability from the customer’s point of
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view. It considers the total monitoring time in which the calculation is performed (cycle) and the

actual time the system was operating/producing during the monitoring cycle (uptime). Thus, is

determined by:

DO =
U ptime
Cycle

(2.14)

2.2.4 Types of Predictive Models

As mentioned in [60] and [72], predictive modeling techniques are divided into 3 major groups:

Figure 2.4: Predictive Models Taxonomy - Adapted from [72]

Regarding the Knowledge-Based category, the models are defined based on a set of previously

defined rules. These are divided into Expert Systems - where the knowledge of an expert in the

matter is translated into a set of rules - and Fuzzy Logic - for when there is a lack of information

and it is not possible to define specific intervals for rule establishment.

The models in the Data-Driven category are built based on historical and real-time data. They

are divided into Life Expectancy and Artificial Neural Networks. Life Expectancy models are

characterized by individually determining the reliability for each component taking into account

the expected deterioration, while Artificial Neural Networks determines an estimate of the sys-

tem reliability based on a mathematical model generated from historical data, without needing to

understand failure processes.

Physical models are the most complex and challenging because they consist of mathemati-

cal analytical models that simulate physical processes and are very specific to each application,

making the adaptation to different situations very hard.

2.3 Systems and Components Monitoring

One of the reasons for the evolution that has been observed in the detection of anomalies

and failures in equipment is the sensors’ quality and precision improvement. The sensors have

evolved in terms of the quantities they are capable of measuring, the response time, the reliability

and precision with which measurements are carried out. In parallel with these improvements, the

communication protocols responsible for integrating the sensors in modern networks and trans-

mitting the acquired data have also evolved by using time synchronization, becoming more robust,

and reducing noise and errors. Ergo, it is possible to acquire more data with better quality, allowing

the user to get a more accurate picture of the system status in real-time.
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2.3.1 Components Description

This section presents a description and analysis of some common systems and components

present in the industry, and more specifically in the plant related to the present work. The descrip-

tion considers their subcomponents and main points and characteristics of failures.

2.3.1.1 Motors

Electric motors are the most used elements at an industrial level and are associated with all

types of machines and systems, like extruders, treadmills, rollers, cutting tools, among others.

The main constituents to be taken into account are the rotor, stator, housing, shaft, bearings,

and electrical supply. Sometimes, it may also be interesting to consider the gearbox for monitoring

purposes.

Figure 2.5: Electric Motor generic composition - Source: [81]

The possible faults observed in a motor are full breakdown (when the motor can not even start),

slower start, excessive noise when starting or during operation, increasingly working temperature,

and accentuated vibration levels. The faults can be caused by several problems and in most cases,

these are only identifiable when inspecting the motor. Some examples of fault causes regarding

electric motors are overloads, phase interruption, converter or drive errors, obstructions in the

fan and heat dissipation surfaces, damage to the bearings or other mechanical components, and

imbalance or misalignment of the rotor or shaft.

Consequently, monitoring motor vibrations, noise, temperature, and the current supplied is

crucial in order to detect anomalies, some of which may not be directly monitored but may be

acquired based on the interpolation of others [39] [77] [78].
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2.3.1.2 Bearings

Bearings are often present in motors and one of the main reasons for their failure. Besides,

they are also associated with other systems in the manufacturing field and for that reason are

elements to be monitored. There are several types of bearings such as simple, ball, roller magnetic,

among others. Although they may behave slightly differently, in essence, they all fulfill the same

objective: facilitating and stabilizing the rotation of a shaft, some of which are inserted directly

into motors, as mentioned above.

In the case of ball bearings, the main constituents are outer ring, spheres, cage (surrounding

the spheres), and an inner ring.

Figure 2.6: Bearing generic composition - Source: [56]

All these elements are exposed to wear and spontaneous tear, thus any component can be

the reason for a malfunction. Therefore, monitoring the status of every component is essential.

Generally, all have a certain vibration frequency associated and deviation in it can be a good

indicator of wear and the consequent need for repairment or replacement [63].

As mentioned, bearing elements defects have specific components in the vibration frequency.

Given the bearing dimensions and the standard rotation speed, the characteristic frequencies of the

subcomponents can be calculated as follows [21], where n is the number of spheres, fr the speed

of rotation (rot/min), dB the diameter of the spheres, dA the inner diameter of the outer ring, and

φ the contact angle of the spheres:

• Outer ring (fOR)

f OR =
n
2
· fr · (1−

dB
dA

cosφ) (2.15)

• Inner ring (fIR)

f IR =
n
2
· fr · (1+

dB
dA

cosφ) (2.16)

• Sphere (rolling element) (fSPH)

f SPH =
dA

2dB
· fr · (1− (

dB
dA

cosφ)2) (2.17)
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• Cage (fC)

f C =
1
2
· fr · (1+

dB
dA

cosφ) (2.18)

2.3.1.3 Extruder

The extruder is the element responsible for extracting and shaping the rubber used in some

components that integrate the tire. It consists fundamentally on a compound feeder, a spindle

or screw, a cylinder body that surrounds the spindle, a gate (where the rubber exits the extruder,

passing through the die, responsible for defining the desired rubber profile) and other adjacent

elements, such as the motor (responsible for the rotation of the spindle), the temperature control

units (responsible for heating and cooling other extruder parts) and the hydraulic system, in charge

of fixing the desired opening in the gate.

Figure 2.7: Extruder generic composition - Source: [19]

The main failure reason regarding the extruder is not removing all the rubber from the extruder

at the end of the production process, which causes damage to its spindle.

2.3.1.4 Temperature Control Unit - TCU

The temperature control units (TCU), in this case, associated with the extrusion process, are

responsible for controlling the temperature of the extruder components (body, spindle, and gate).

In essence, they consist of a water circuit (piping and valves), a pump responsible for ensuring

circulation, a tank responsible for heating the water, and a temperature controller, that includes

temperature meters and the electrical circuit that allows heating and regulating the water tem-

perature. In conclusion, TCUs are in charge of preheating the extruder components prior to the

production and dissipating the heat generated by the material while operation, maintaining the

desired working temperature in a stable manner.
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Figure 2.8: TCU generic composition - Adapted from [84]

The principal faults recorded are pump malfunctioning, the temperature falling below the re-

quested value, and insufficient cooling power. These can be related to errors like insufficient

pressures, valves in the wrong position, clogged filters, and worn heating resistors.

2.3.1.5 Hydraulic Unit

The hydraulic unit, like the TCUs, is associated with the extrusion process and is responsible

for ensuring the desired pressure in the extruder gate. It is constituted by an oil reservoir, a pump

responsible for oil pressure (powered by an electric motor), control valves (for pressure control and

fluid direction), filters (for filtering the returning oil), and finally an actuator (engine or cylinder)

that converts hydraulic pressure into a mechanical movement. The system also contains sensors

and respective oil level indicators, manometers, and thermometers, providing operational control.

Figure 2.9: Hydraulic unit generic composition - Source: [37]
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The main faults that can occur are pump not supplying the liquid with the desired pressure,

excessive noise or heat when working, and leaks through cylinders or valves. The causes of these

failures are mainly due to lack of liquid, wear of components, and filter clogging.

2.3.2 Monitoring Systems

This section describes the types of monitoring and data acquisition systems. Sensors used by

these different techniques are also studied, in order to understand which systems can be used to

monitor the different selected components, taking into account the existing constraints.

According to [49] there are 4 main technologies for monitoring equipment: temperature mea-

surement, vibration analysis, chemical analysis (oil), and ultrasonic measurement. In addition to

the above-mentioned, current signal analysis, pressure measurement, and displacement detection.

Another method that allows irregularities detection in the machines is based on the collection

of utility consumption data, whether it is water, compressed air, or electricity. Through the analysis

of trends, anomalies, or components malfunctioning can be identified, as these errors can imply a

higher consumption rate.

Concerning sensors selection, it is essential to take into consideration some specific charac-

teristics, such as: "range of use, sensitivity, frequency (or response time), compatibility with the

environment, precision, electrical characteristics, application conditions and robustness" [70].

2.3.2.1 Temperature Measurement

Four types of sensors are considered regarding temperature measurement [79]. Mechanical

temperature sensors are based on volume varying of a fluid, such as mercury or alcohol. Taking

into account that the volume of the fluid varies with temperature, it is possible to calculate the

latter by establishing a linear relationship between them. However, these have been abandoned

due to the toxicity of mercury and not being adaptable to some situations.

Electric temperature sensors are the most commonly used and can be separated into four dif-

ferent types:

• Thermocouples

Figure 2.10: Thermocouple circuit diagram - Source:[57]
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Thermocouples are the most common for industrial applications and operate based on the

Seebeck Effect, joining two metals at two different points (measurement point and reference

point). Assuming the reference is always kept at the same temperature, with the temperature

variation at the measurement point, an electromotive force is generated due to the tempera-

ture difference between the two points. By calculating the electromotive force it is possible

to obtain the respective temperature (Tsense) using the established relationship between both,

where E0j is the calculated electromotive force and G () is the relation between this and the

temperature. This relation is usually given by an equation or can be tabulated [65].

T sense = G(E0j) (2.19)

• Resistance Temperature Detector (RTD)

Figure 2.11: RTD circuit diagram - Source:[64]

RTD operation is based on the use of a resistive material (usually platinum) as a tempera-

ture gauge, as its electrical resistance varies almost linearly with the temperature. Ergo, the

resistance value is easily obtained by measuring the voltage in the bridge hence the temper-

ature is easily obtained by the relation given by the Callendar-Van Dusen equation, where

RT is the resistance value at a certain temperature and R0 is the resistance at 0 ◦C.

RT = R0
[
1+AT +BT 2 +CT 3(T −100)

]
(−200 ◦C < T < 0 ◦C), (2.20)

RT = R0
[
1+AT +BT 2](0 ◦C≤ T < 850 ◦C) (2.21)

For positive temperatures, we have:

T =

−A+

√
A2−4B

(
1− RT

R0

)
2B

. (2.22)
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• Thermistors - similar function to RTD, i.e., the temperature is measured through a resistance

that varies with temperature. They are usually cheaper than the previous ones, but they are

also less accurate. The most commonly used are the NTC (Negative Temperature Coeffi-

cient), that despite having a non-linear relation, with the increase in temperature there is a

decrease in resistance and vice versa.

• Integrated circuits semiconductors - these sensors measure the temperature considering the

physical properties of a transistor and its behavior with temperature variation. Since they

are used to control the temperature of all types of circuits, like computers, they are among

the most used today. The output can be analog or digital, depending on the application.

Ultrasonic sensors measure temperature based on the variation in the propagation speed of the

emitted ultrasonic wave. These are the lesser used for temperature measurement purposes.

At last, the main objective of thermography or thermal imaging is to detect temperature peaks

and hot spots (overheating). By detecting an unexpected temperature rise, this technique enables

the identification of anomalies or wear and tear. This solution turns out to be quite expensive

compared to others, due to the measuring equipment used. The technology is based on the fact

that all bodies with temperatures above absolute zero (0K) emit infrared radiation and that emitted

radiation can be given as a function of the object’s temperature, i.e., the higher the temperature,

the greater the intensity of the radiation emitted [11].

The incident radiation on an object can be dissipated through absorption, reflection, and trans-

mission and each body can be characterized with specific parameters that indicate the fraction

of energy dissipated in each form. Nevertheless, the three parameters sum must always equal 1,

regardless of the wavelength [80][62]:

αλ +ρλ + τλ = 1 (2.23)

In the case of black bodies, all incident radiation is absorbed (αλ = 1). In this case, the relation

between radiation intensity and wavelength is dictated by Planck’s Law, where C1 and C2 are

radiation constants, λ is the wavelength, and T the temperature. [53]:

Wn =
C1

λ 5(e
C2
λT −1)

(2.24)

As shown in figure 2.12, the radiation curve for higher temperatures has a higher peak, and the

higher the temperature, the shorter the wavelength at which the peak occurs. The wavelength of

this peak can then be calculated by Wien’s law:

λ peak =
2898

T
(µm) (2.25)

Integrating equation 2.24 from 0 to ∞, we obtain the Stefan-Boltzmann formula, allowing the

intensity of radiation from a black body to be calculated using the Stefan-Boltzmann constant
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Figure 2.12: Planck Law example - Relationship between radiation, temperature and wavelength
- Source:[76]

(σ = 5,67 ·10−8W/m2K4):

Wn = σ ·T 4 (2.26)

Regarding real objects, only a fraction of the radiation emitted by a blackbody at the same

temperature is emitted and this relationship is given by the emissivity of the object:

ελ =
Wλ

Wn
(2.27)

The emissivity usually varies with the wavelength, but considering the thermography works

only in a small range of the spectrum (between 0.8µm and 14µm approximately), we can consider

real objects as bodies gray, i.e., the energy emitted by these is the same as the energy emitted by a

blackbody reduced in a proportion of value ε . Thus, the Stefan-Boltzmann law for real bodies is

defined as:

W obj = εσ ·T obj
4 (2.28)

It is now possible to move on to the temperature measurement. It is important to consider that

not all radiation is emitted by the object, so it is necessary to filter radiation from other sources

like the atmosphere. The total radiation received by the measuring equipment will be a sum of the

radiation coming from the object, the surfaces around the object and reflected by it, and also from

the atmosphere.

W tot = Eobj +E refl +Eatm (2.29)

Eobj = εobj · τatm ·W obj (2.30)

Erefl = ρobj · τatm ·W refl = (1− εobj) · τatm ·W refl (2.31)
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Eatm = εatm ·W atm = (1− τatm) ·W atm (2.32)

It is noteworthy that for the radiations emitted and reflected by the object, the transmittance of

the atmosphere is considered since to reach the measuring equipment camera, the radiation has to

go through the atmosphere.

By replacing the equations 2.30 to 2.32 in the equation 2.29 the object temperature is obtained

as follows:

W tot = εobj · τatm ·W obj +(1− εobj) · τatm ·W obj +(1− τatm) ·W obj (2.33)

T obj =
4

√
W tot− (1− εobj) · τatm ·W refl− (1− τatm) ·W atm

εobj · τatm ·σ
(2.34)

2.3.2.2 Vibration Analysis

Vibration analysis is one of the most used techniques in condition monitoring as it allows ex-

tracting information of several components in a mechanical system, with a low implementation

cost. It intends to create a graphical representation of the various components working frequen-

cies, enabling the detection of problems related to misalignment or imbalance and deterioration

or wear of components. This technique is widely used in motors and bearings and generally uses

multiple sensors, each one placed on a different axis (vertical, horizontal, and axial), to acquire the

vibration frequencies [40] [89]. To fulfill this purpose, 3 types of sensors are usually employed -

accelerometers, strain gauges, and proximity probes. In some special cases, speed sensors (when

operating at very high temperatures) or laser sensors for detecting displacement can be used.

Different types of accelerometers can be utilized for PM, for example, piezoresistive, capaci-

tive, electromagnetic, optical, et cetera [8]. The most commonly used in vibrations measurement

at an industrial level is the piezoelectric sensor. Preference is given to these due to the low cost,

durability, robustness, variety, and ease of assembly (various types of mounting like screw, glue,

magnetic base, ferrule) [70].

Figure 2.13: Piezoelectric accelerometer schematic - Source:[9]
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Piezoelectric sensors are capable of converting a force into an electrical signal and, for that

reason, they require direct contact with the device to be monitored. The above-mentioned conver-

sion is based on the piezoelectric effect, which states that piezoelectric materials/crystals, when

exposed to a certain force (in this case caused by vibration), generate an electric charge propor-

tional to the mechanical deformation they suffer due to the force. The generated charge is then

amplified to be suitable for the data acquisition software [28]. The applied force can be considered

as a product of mass and acceleration, according to Newton’s Second Law. Thus, the generated

charge is proportional to this product, and, taking into account that the mass is constant, the gen-

erated charge will be proportional to the acceleration [82], where Q is the electric charge, V the

voltage, C1 and C2 piezoelectric constants, e the material thickness, and Ar its area:

F = m ·a (2.35)

Q =C1 ·F =C1 ·m ·a (2.36)

V =
C1 · e

C2 ·Ar
·F =

C1 · e
C2 ·Ar

·m ·a (2.37)

Strain gauges are widely used in construction applications, such as critical buildings, cables,

rails, et cetera. However, they can be applied in industrial scenarios as well. These consist of a

small wire organized in a zigzag placed on a thin material applied directly on the equipment to be

monitored. The sensor orientation has to be parallel to the direction of deformation/vibration to

be monitored [4].

Assuming tension as the amount of deformation suffered, we can characterize it mathemati-

cally as a fractional length variation [27]:

ε =
∆L
L

(2.38)

Thus, the fundamental parameter to consider regarding strain gauges is known as Gauge factor

(Gf) and reflects the device voltage sensitivity:

G f =
∆R/R
∆L/L

=
∆R/R

ε
(2.39)

To guarantee an accurate measurement, the devices are usually inserted in a Wheatstone bridge

with a power source (as illustrated in the figure 2.14), allowing the detection of even small changes

in the resistance of the strain gauge.

The generic electrical output voltage (V) of a Wheatstone bridge is given by the equation:

V =

(
R4

R4 +R2
− R3

R3 +R1

)
·Vi (2.40)

If R1 = R3, R4 is replaced by the strain gauge (modeled as standard resistance Rg with a
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variation ∆Rg = Rg ·Gf · ε), and assuming that R2 = Rg, the following equation is obtained:

V =

(
Rg +∆Rg

Rg +∆Rg +Rg
− 1

2

)
·Vi (2.41)

V =

(
∆Rg

4
· 1

Rg +
∆Rg

2

)
·Vi (2.42)

V =

(
G f · ε

4
· 1

Rg +
G f ·ε

2

)
·Vi (2.43)

To deal with some uncertainties or noise caused by temperature variations or vibrations in dif-

ferent directions other, more complex configurations that use more strain gauges can be employed.

Figure 2.14: Wheatstone bridge diagram with a strain gauge - Source:[22]

Finally, the proximity probes distinguish from the above-mentioned as they do not need direct

contact with the equipment to be monitored. In some cases where it is not possible to directly

install sensors on the equipment, this characteristic can be of great value. These work according

to the eddy currents principle.

Figure 2.15: Proximity probe functioning principle - Source:[24]
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The probe consists of a coil exposed to an alternating current, generating a magnetic field that

will induce a current on the equipment surface, which is then responsible for creating a magnetic

field opposite to the first one, as shown figure 2.15. By monitoring the interaction of these two

magnetic fields, the sensor is able to detect equipment movement (vibration), as the sensor output

voltage will be proportional to this interaction, varying with the equipment movement.

When implementing a vibration analysis, regardless of the sensor used, it is crucial to un-

derstand that vibrations, specifically in motors, have two main origins: mechanical (typical of

all rotating machines) and electromagnetic (specific for electric machines). Mechanical vibra-

tions are usually associated with shaft imbalance, misalignment, wear, discrepancies in bearings

or couplings, or belt errors. Vibrations of electromagnetic origin, on the other hand, result from

electromagnetic functions imposed on the motor rotor and stator and can be grouped into two

types: radial and tangential. The imposed functions are usually due to power supply poor quality

(causing current and voltage asymmetries) or variations in the load [77] [78].

In addition, it is also crucial to consider the component dimensions and working conditions,

such as load and power supply, so that the sensors can be properly placed and the acquisition noise

can be reduced. Concerning the specific case of motors, vibrations are usually transmitted from

the shaft to the bearings, so it may be necessary to measure both bearings, through the bearings

housing, if the motor has big dimensions.

The principal difficulty using this method relies on the acquired signal complexity and the

necessary treatment it requires in order to properly extract the signal characteristics that reflect the

equipment’s health status. Assuming the component to be monitored by the system is a bearing

(as it is one of the most common ones submitted to this kind of analysis), some precautions must

be taken in order to ensure that the system is capable of performing correct analysis. As seen

in [56], there may be some variations in the methods used, yet they all use filtering and signal

segmentation and convert the signal to the frequency domain using a Fast Fourier Transform,

in order to evaluate the frequencies amplitudes associated with certain faults in the component.

Techniques like envelope spectrum analyses are highly valued for this in this matter. As mentioned

in section 2.1.2, this analysis may require some feature extraction from the raw signal, as it is hard

to extract valuable information directly from the raw signal.

Bearing in mind that irregular vibrations cause noise, another way of detecting anomalies

can be performed by the acquisition of sound using a specific microphone and relating that same

noise to certain anomalies. This method implies isolating specific frequencies from the rest of the

spectrum, which makes this solution barely feasible in a manufacturing environment, taking into

account the high noise level.

2.3.2.3 Chemical Analysis

Lubricating oil chemical analysis allows checking the consistency of the oil additives, water

levels, and viscosity, these being factors that in case of deviation from the standard values may

indicate the need for an oil change. Using the same analysis, the quantity of metal present in the

oil can serve as a good indicator of metallic components wear. However, this technique is not used
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widely as it has a very high-cost and difficult implementation associated, and is only applicable to

machines with continuous oil supply.

2.3.2.4 Ultrasonic Measurement

Ultrasonic measurement is mainly used to detect leaks in air or steam systems, however, some-

times it is also used to measure temperatures, as mentioned previously. The instruments utilized

seek to detect and present high frequencies sounds, inaudible by humans, produced by the referred

leaks. Therefore, it is a solution appropriated only for specific cases and generally does not justify

a permanent detection system setup.

2.3.2.5 Current Signal Analysis

The method of analyzing the current signal, in specific, Motor Current Signature Analysis

(MCSA), has been highly valued recently since it generates a lot of information about the system

to be obtained and does not require the installation of any sensors, as most machine drives already

provide this data. However, in some cases where the drives do not have this function incorporated,

it may be necessary to use current meters. These do not present great adversities as they are usually

easy to install and low cost.

The mentioned technique implies a good application of data mining concepts since it is re-

quired signal processing in order to gather valuable information. Similar to what is performed

in vibration analysis, the current signal must be initially filtered to eliminate, as much as possi-

ble, noise, and unnecessary information. Thereafter, we can analyze the frequencies amplitudes

that correspond to certain faults and extract the significant harmonics, guaranteeing a correct fault

detection and estimation of the Remaining Useful Life (RUL).

Furthermore, it is also essential to define a normal working condition for the equipment, de-

velop an evolution historic, recording the failures associated with certain occurrences, thus estab-

lishing a solid basis to compare with the occurring trends [16].

Regarding the methods to treat and analyze the obtained signal, several are mentioned in [21]

and [68]. All methods are based on the assumption that the anomalies, whether they are of me-

chanical or electromagnetic origin, are reflected in changes in the current signal, which must then

be "separated" from the base signal so that the anomalies can be correctly identified. For example,

as mentioned in [21], the motor mechanical vibration caused by defects in bearings results in an

eccentricity of the air gap, these variations in the air gap cause variations in the flow density which

in turn affect the inductances of the machine, producing harmonics in the stator current. Using the

wavelet decomposition technique and defined formulas for the bearing components working fre-

quencies, it is possible to extract these frequencies from the acquired signal, allowing the detection

of an anomaly in the motor bearing.

In the case presented in [68], a model based on a Decision Tree to classify certain anomalies is

defined. This model has as inputs power spectrum harmonics, to which the Fast Fourier Transform
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(FFT) algorithm is applied before being applied to the model. In this case, 3 current meters are

used to acquire the signal.

2.3.2.6 Pressure Measurement

Pressure measurement is used in liquids and gas circuits and has many industrial applications

such as leak detection in a compressed air system or water circuit. The pressure (P) is normally

defined as the force (F) exerted per unit area (A):

P =
F
A
(N/m2) (2.44)

Pressure units used are Pascal (1 Pa = 1 N/m2), Bar (1 bar = 105 Pa) or PSI (1 psi = 6 894.757 Pa).

There exist several types of pressure sensor technologies, such as piezoelectric, electromag-

netic, and capacitive. Its behavior is very similar to vibrations sensors, as they seek to convert a

force applied to a diaphragm or membrane into an electrical signal, using a transducer. The signal

amplitude will be proportional to the force applied by the fluid [5].

The technology is applied through 3 different types of sensors, each one with a different ob-

jective:

• Absolute sensors - measure fluid absolute pressure of the fluid, i.e., comparing to vacuum

pressure (0 Pa).

• Gauge sensors - measure fluid pressure compared to atmospheric pressure (101325 Pa stan-

dard)

• Differential sensors - measure the pressure difference between two different spots in a cir-

cuit.

Besides pressure measurement, sensors can be used to measure the liquid level inside of a

tank, according to the formula, where Pt is the fluid abolute pressure, Pe the external pressure

(atmospheric), ρ fluid density, and g the gravity acceleration:

Pt = Pe +(ρ ·g ·h) (2.45)

h =
Pt −Pe

ρ ·g
(2.46)

In the case of a closed tank (in vacuum) Pe = 0.

It is also possible to measure the fluid flow according to the venturi effect, A1 and A2 being

the areas of the surface where pressure is measured, D1 and D2 the respective diameters, and P1

and P2 the actual pressures:

Q =
A2

A1
· π

4
·D2

2 ·
√

2
ρ
· P1−P2

1− (D2
D1
)4

(2.47)
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2.3.2.7 Displacement Detection

Detecting displacement or misalignment of components is highly valued for rotating machines,

as this type of failure can cause severe damages to the entire machine and low-quality output

products. Apart from rotating machines, this method can be viable in other types of machines,

when a certain alignment precision is required to correctly operate.

Regarding rotating machines, e.g., motors, the principal components to monitor concerning

misalignment are the shaft and the connection between the motor and the gearbox. Vibration mon-

itoring is an indirect method to detect displacement as this type of error usually causes increasing

vibrations. In specific cases, laser or eddy current sensors can be used too, as they can detect a

variation in the distance between the sensor and the monitored object, indicating a misalignment.

The direct method most commonly used is via inclinometers [25]. This type of sensor mea-

sures the tilt angle considering the gravity direction, regarding one or two-axis (usually orthogonal

and parallel to the floor). Basic inclinometers operate using an accelerometer, which measures the

change in acceleration caused by gravity when the object tilts.

The output value can be affected by certain factors, such as temperature, vibrations, and shock.

Therefore, the most recent inclinometers use a specific algorithm to deal with non-linearities

caused by temperature variation and combine the accelerometer with a gyroscope, as this is less

sensitive to external vibrations, reducing their impact on the output signal.

2.3.3 Sensors Placement

Regarding sensor installation and placement, it is crucial taking into account the system struc-

ture and performance restrictions, as well as maintaining a balance between the relevance of the

information acquired and the economic viability installing the necessary sensor. In theory, the

more sensors are installed, the more and better data is collected. However, in practice, increased

acquired data causes a rise of complexity related to data analysis, which may not be supported

by the system. Also, some data can be obtained through linear interpolation through neighbor

sensors, reducing the number of sensors required [17].

Figure 2.16: Sensors choosing and placement process - Adapted from [17]
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As demonstrated in figure 2.16, the sensor choice and placement process must begin with the

selection of appropriate sensor types, taking into account the parameters to be measured. Given

the machine’s structure, a location for installing the chosen sensor should be defined considering

operation conditions. After this process is complete, it is possible to start data acquisition and

analysis. If the obtained data does not correspond to what is expected, the sensor must be replaced

until the expected information is obtained, i.e., until it is possible to correctly detect the occurrence

of an anomaly or failure.

By installing the necessary sensors, it is possible to carry out adequate data acquisition, and

after the correct data treatment, it is possible to implement reliable PM models.

2.4 Human-Machine Interface

With the evolution and automation of components and machines, the manufacturing scenarios

have become more complex, which requires an improvement of the human-machine interfaces

(HMI), since these are the bridge between the operator and the system [30]. This integration must

be carried out without disturbing the distributed control system functioning, while faithfully rep-

resenting its state and presenting the operation control options. The distributed control system

represents the concept of Cyber-Physical Systems (CPS) in which the control of a given physical

process is carried out using a complex computational infrastructure that takes into account ap-

propriate physical and computational models [47]. According to [59], the implementation of an

HMI for a CPS can take advantage of the concept of service-oriented architecture, allowing the

organization of the system to be a set of entities that invoke services among themselves.

HMI’s main objective is to provide information about the system to the user and receive feed-

back [29], for example through operation logs and configuration files. Functionalities at the in-

dustrial level may vary depending on the type of industry, its flexibility, or even the type of main-

tenance used. However, some features are considered standard when it comes to operator-process

interaction [10]:

• Real-time process visualization and control;

• Process values storage and display;

• Management of parameters related to machines;

• Warnings and listing of alarms and other occurrences.

Taking into account the increasing complexity of industrial systems, HMI development should

focus on guaranteeing process comprehension and helping the operator decision making. There-

fore, some criteria and characteristics must be taken into account when developing the HMI [29]:

• System accessibility and usability, considering the interface several pages;

• Information display organized in graphs and tables;
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• Page coordination and organized element distribution, distinguishing between main and sec-

ondary elements;

• Different color utilization, taking into account the meaning of each one.

2.5 Conclusion

A PM system implementation implies the correct understanding and functioning of several

parts related to it. Initially, it is usual to choose the proper ML algorithm to be applied considering

the available data. Then, it is necessary to train the system with this algorithm so faults and anoma-

lies are correctly detected. The definition of a machine reliability model starts from an analysis

of the machine critical components and respective failures. In certain cases, information on the

availability is valued more than the reliability of the machine, as it gives concrete information to

the engineering and production teams.

For data acquisition, defining the relevant quantities to be measured is crucial, ensuring correct

sensor and communication protocol selection and installation. This involves a detailed study on

types of sensors and their characteristics, taking into account the situations they will be undergo-

ing.

To successfully present the information acquired to the operator, building a simple and ef-

fective HMI is essential, since it allows the necessary maintenance operations to be carried out

effectively.

Table 2.1 summarizes the technologies studied and the respective quantities that are monitored.

Table 2.1: Studied technologies summary

Quantity Technologies
Temperatue Mechanical, Electric, Ultrasonic, Thermography
Vibration Accelerometer, Strain Gauge, Proximity probe (eddy current)
Chemics Oil analysis

Ultrasonics Ultrasonic sensors for leak detection
Current Current/Voltage sensors, via Motor drive
Pressure Absolute, Gauge, Differential

Displacement Inclinometers, Vibration sensors (indirect method)



Chapter 3

Maintenance Analysis

This chapter provides an analysis of the maintenance operations of specific parts of interest in

the plant in which this work is based on. We start by describing the system, analyzing the type of

faults and failures that occur, their impact in downtime, the most relevant ones for maintenance

purposes and selecting the components that are object of our proposed PM approach. We end this

chapter with an overview of the methodology to be used.

3.1 Maintenance analysis and component selection

Currently, the CST plant produces two major types of tires: AGRO and Big Radial (BR)

and is organized in three large groups of machines: preparation, construction, and vulcanization.

The work to be carried out will be focused on the first two. The preparation group includes ma-

chines responsible for the extrusion, cutting, and assembly of tire components. The second group,

construction, includes machines in charge of assembling and fixing the various parts produced,

resulting in a final sketch that is then followed by vulcanization. Recipes for components and

tire production are taken directly from the Continental Global Manufacturing System (CGMS).

This system is also in charge of receiving and presenting the alerts generated by the occurrence of

failures or stops.

3.1.1 Production Process Contextualization

As mentioned, the project focus is on the preparation and construction machine groups. In the

first, the machines are divided into two groups: hot preparation (machines that include extrusion

in their process) and cold preparation (machines used for material cutting and splicing, with no

extrusion).

The following machines are included in the hot preparation group:

• Combi Extruder - wall extrusion for AGRO tires and BR profiles;

• Innerliner - profiled and non-profiled layer extrusion;

30
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• 2 Bead Winder (AGRO and BR) - construction of beads by winding wire impregnated with

rubber;

• 2 APEX (AGRO and BR) - application of rubber wedge on the beads;

Regarding cold preparation, the following machines are considered:

• Combi Cutter - textile ply and break cutting;

• Ply Steel Cutter - wire mesh cut;

• Breaker Steel Cutter - metal breaker cutting;

Construction machines are defined in Construction Modules (1st and 2nd Stage) or Carcass

Machine and Green Tire Machine - responsible for assembling the various ARO tires components.

Three modules of each type are installed. Also, two TBM OTR or OTR Construction Machine are

installed - in charge of assembling the BR tires components.

By studying the process inherent to each machine and developing a representative block di-

agram, it was possible to define blocks common to several machines and their criticality in the

production process, as well as to identify standard components, described in the section 3.1.3.

3.1.2 Data Classification

The data to be acquired can be organized into three groups, depending on the type of informa-

tion you want to retrieve and the purpose it may serve.

The first group is related to utility consumption by each machine, with the objective of iden-

tifying and studying trends over time. Compressed air, water, and electricity are the three utilities

considered. By analyzing the acquired data, it is expected to relate consumption patterns with

certain modes of operations or interventions performed.

The second group deals with issues of energy efficiency improvement, i.e., data that allows

identifying unnecessary use of utilities. It can be taken directly from components consumption,

which will allow determining whether these components are consuming more than supposed when

the machine is not producing, or by monitoring the utility inputs on the machines, which may even

serve as a means to identify possible leaks in the system.

Finally, the third group relates to components behavior and operation and the data to be ac-

quired will be the basis for detecting anomalies or wear, which may lead to equipment failures.

This type of data can also be based on components consumption or it can be obtained through

specific sensors that allow acquiring certain specific quantities such as vibration frequencies, tem-

peratures, or composition of substances such as water or oil.
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3.1.3 Identification and Selection of Components to Monitor

The information related to components existing in each machine was collected via visual ob-

servation and analysis of their manuals.

One of the main components identified was the electric motor and associated components

(gearbox, shaft, bearing, and belt). Taking into account the different levels of existing power

supplies and the different tasks each one is associated with, electric motors were grouped into

classes to facilitate identification and selection:

• Elevated power (111kW to 403kW):

– Larger extruders: Combi Extruder, Innerliner, Module - 2nd Stage

– Mills: Combi Extruder

• High power (17kW to 60kW):

– Smaller extruders: Apex and Bead Winder

– Calender: Innerliner

• Average power (2kW to 16kW):

– Building rings: Bead Winder

– Conveyors

– Rollers

– Component translation movements

– Calenders: Module - 2nd Stage

– Tensioners and cooling drum: Bead Winder

– Cutting systems

• Low power (0.042kW to 1.9kW):

– Component translation movements

– Conveyors

– Rollers

The extruders were also divided into components: cylinder, head, spindle, die, motor, and gear-

box. Some complementary systems to their operation were also identified, such as the hydraulic

unit, temperature control unit (TCU), and water circuit.

Regarding pneumatic systems, the main components identified correspond to the portion di-

rectly connected to the actuation, i.e., the air preparation unit, valves, piping and actuators or

cylinders. In the conveyor system belts and rollers were considered, in addition to the components

associated with its movement, i.e., the motor, gearbox, shaft, and bearings.
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Cutting systems with a rotating blade, knife and scissors were also identified, as well as sys-

tems for measuring and controlling weight, temperature, centering, and rubber thickness. PLCs,

I/O cards, fuses, and circuit breakers for control and protection of all the elements mentioned

above were also found.

Based on the systems identified, in order to select the most relevant components we defined a

classification system using the following criteria:

• Systems/components common to several machines;

• Process criticality;

• Downtime/replacement time;

• Maintenance costs.

The above-mentioned classification considers as the main objective of the project the develop-

ment of a standard solution that is applicable in the largest number of machines possible and there-

fore the first parameter (system/components common to several machines) reflects the number of

machines/systems in which each component is found, considering the total of the 15 installed ma-

chines for counting purposes. Another important characteristic is the component criticality for the

process, i.e., the impact on the creation of scrap material. In addition, the average downtime for

component replacement or repair, which indirectly reflects availability, and the maintenance costs

associated with its repair and replacement are also taken into account.

By assigning a score from 0 to 5 to each criterion, each identified component receives a final

classification, with the highest one being then prioritized in the PM system development.

The evaluation related to the parameter of common systems was performed by counting in

how many machines a component can be found, assuming 15 machines in total, as referred. The

obtained number was then converted into a 0 to 5 scale.

To assign values regarding downtime, an analysis of the 2019 breakdown reports was carried

out. To reduce the volume of data, only the stops with downtime over an hour were taken into

consideration.

The classification obtained taking into account the defined criteria is exemplified in table 3.1.

In annex A the table A.1 with all components identified is presented.

Table 3.1: Components classification example concerning relevance for the maintenance process

Sistema Componente Blocos comuns Criticidade Tempo de par-
agem

Custos de
manutenção

Extrusoras Corpo 3,00 5,00 4,00 4,00
Extrusoras Fuso 3,00 5,00 4,00 4,00
Acionamento Motores PM (2kW a 15,7kW) 5,00 3,00 3,00 3,50
Complementos TCU 3,00 4,00 2,00 4,00
Complementos Unidade hidraulica 3,00 4,00 2,00 4,00
Acionamento Motores PME (111kW a 403kW) 1,33 5,00 3,00 5,00
Acionamento Rolamento 5,00 2,00 3,00 2,00
Extrusoras Cabeça 3,00 4,00 1,00 4,00
Acionamento Motores PE (17,5kW a 60kW) 1,67 5,00 1,00 4,00
Componentes elétricos Fusíveis 5,00 1,00 5,00 1,00
Componentes elétricos Disjuntores 5,00 1,00 5,00 1,00
Componentes elétricos PLC 5,00 1,00 5,00 1,00
Componentes elétricos Cartas I/O 5,00 1,00 5,00 1,00
Componentes elétricos Módulos de controlo 5,00 1,00 5,00 1,00
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As some components are strongly associated and their classification is the same, in order to

simplify the table these were grouped into systems resulting in table 3.2 (full table in A.2). For

example, the extruder body and spindle were merged into one and all control components (PLC,

I/O section, and control modules) were also grouped.

Table 3.2: Example of reduced components list - grouped by system

Sistema Componente Blocos comuns
(25%)

Criticidade
(25%)

Tempo de par-
agem (25%)

Custos de
manutenção (25%)

Avaliação Fi-
nal

Extrusoras Corpo e Fuso 3,00 5,00 4,00 4,00 4,00
Acionamento Motores PM (2kW a 15,7kW) 5,00 3,00 3,00 3,50 3,63
Acionamento Motores PME (111kW a 403kW) 1,33 5,00 3,00 5,00 3,58
Complementos TCU 3,00 4,00 2,00 4,00 3,25
Complementos Unidade hidraulica 3,00 4,00 2,00 4,00 3,25
Acionamento Rolamento 5,00 2,00 3,00 2,00 3,00
Extrusoras Cabeça 3,00 4,00 1,00 4,00 3,00
Componentes elétricos Proteção Elétrica (Fusíveis e Disjuntores) 5,00 1,00 5,00 1,00 3,00
Componentes elétricos Controlo (PLC, I/O, Mód. de controlo) 5,00 1,00 5,00 1,00 3,00

Initially, we considered a common arithmetic mean to obtain a final value for the component,

i.e., equal weights for all criteria are considered, which resulted in the list presented in 3.3 (full

table in A.3).

Table 3.3: Example of final classification considering the same weight for every criteria

Sistema Componente Blocos comuns
(25%)

Criticidade
(25%)

Tempo de par-
agem (25%)

Custos de
manutenção (25%)

Avaliação Fi-
nal

Extrusoras Corpo e Fuso 3,00 5,00 4,00 4,00 4,00
Acionamento Motores PM (2kW a 15,7kW) 5,00 3,00 3,00 3,50 3,63
Acionamento Motores PME (111kW a 403kW) 1,33 5,00 3,00 5,00 3,58
Complementos TCU 3,00 4,00 2,00 4,00 3,25
Complementos Unidade hidraulica 3,00 4,00 2,00 4,00 3,25
Acionamento Rolamento 5,00 2,00 3,00 2,00 3,00
Extrusoras Cabeça 3,00 4,00 1,00 4,00 3,00
Componentes elétricos Proteção Elétrica (Fusíveis e Disjuntores) 5,00 1,00 5,00 1,00 3,00
Componentes elétricos Controlo (PLC, I/O, Mód. de controlo) 5,00 1,00 5,00 1,00 3,00

Thereafter, we considered that the first 2 parameters should have a greater influence on the

final assessment, so the weights were changed to:

• Systems/components common to several machines - 30%;

• Process criticality - 30%;

• Downtime/replacement time - 20%;

• Maintenance costs - 20%.

The classification obtained through the weighted average with the above-mentioned weights

is found in table 3.4 (full table in A.4).

Table 3.4: Example of final classification with a weighted average

Sistema Componente Blocos comuns
(25%)

Criticidade
(25%)

Tempo de par-
agem (25%)

Custos de
manutenção (25%)

Avaliação Fi-
nal

Extrusoras Corpo e Fuso 3,00 5,00 4,00 4,00 4,00
Acionamento Motores PM (2kW a 15,7kW) 5,00 3,00 3,00 3,50 3,70
Acionamento Motores PME (111kW a 403kW) 1,33 5,00 3,00 5,00 3,50
Complementos TCU 3,00 4,00 2,00 4,00 3,30
Complementos Unidade hidraulica 3,00 4,00 2,00 4,00 3,30
Acionamento Rolamento 5,00 2,00 3,00 2,00 3,10
Extrusoras Cabeça 3,00 4,00 1,00 4,00 3,10
Componentes elétricos Proteção Elétrica (Fusíveis e Disjuntores) 5,00 1,00 5,00 1,00 3,00
Componentes elétricos Controlo (PLC, I/O, Mód. de controlo) 5,00 1,00 5,00 1,00 3,00
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After an analysis of component classification, the ones prioritized (chosen for our PM ap-

proach) are listed below with the main quantities to be measured in each one taken into account.

• Extruder (body and spindle) - temperature, pressure, and vibrations;

• Motors with supply power between 2kW and 403kW (the two motor classes were grouped

even though they do not belong to the same types of system, because they obtained a very

similar classification and the monitoring method is the same) - current, temperature and

vibrations;

• TCU - temperature and water pressure;

• Hydraulic Unit - temperature, pressure, level, and fluid composition;

• Bearings - vibrations.

Regarding the bearings, in addition to those included in the motors, others associated with shafts

are also critical and therefore must be monitored.

In addition to components directly included in machines, utility consumption (water, com-

pressed air, and electricity) per machine and the position (open or closed) of some critical valves

were also considered as a possibility for monitoring.

3.1.3.1 Previously Installed Maintenance Support Systems

At this moment, there are already some monitoring systems in place based on the sensor in-

stallation to monitor specific quantities such as pressure, flow, or temperature. Other systems

implemented are based on monitoring data directly obtained from the control system. Relying on

this data, alarms are sent to the CGMS system when certain events occur. While some systems

are oriented towards helping to equipment maintenance, others are oriented towards reducing con-

sumption and improving energy efficiency. The 5 monitoring systems implemented, installed in

the APEX - AGRO machine, are:

• Malfunction Prevention

– Water pressure measurement before and after the filter placed in the supply system

- when the pressure difference between the two points reaches a certain value, an

indication that the filter needs to be cleaned is given.

– Temperature measurement of the main electrical cabinet for overheating control -

alarm signal is triggered when the detected temperature exceeds a certain value.

– Pressure measurement in the extruder to detect the presence of rubber - if the extruder

is stopped for a certain time and rubber is detected in it, a signal is sent to indicate the

need to act, to prevent damaging the extruder screw.
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• Energy Efficiency

– TCU’s eco mode control - when the extruder has not been producing for a certain time

and the TCU’s are not in eco mode, an alarm signal is triggered.

– Measurement of compressed air flow before the air preparation unit (FRL) to detect

possible leaks in the pneumatic system - when this flow remains high with the machine

stopped, an alarm signal is sent, indicating the possibility of leakage in the actuation

circuit.

– Detection of opening electrical panel doors to automatically turn off air conditioning,

saving energy.

3.1.4 Failure Report Analysis

For a better understanding of the breakdowns that occur and have a high impact in production,

in order to focus and adapt the solutions to be implemented in the most critical systems and com-

ponents, we analyzed the 2019 failure report. The report includes stops on all machines and has an

indication of the zone/system that caused the shutdown, the repairing time, and a brief description

regarding the cause and how it was solved. In that year, 2929 malfunctions were recorded, result-

ing in 890 hours and 16 minutes of total downtime, with an average of approximately 18 minutes

per stop.

Initially we carried out a study regarding the number of stops and total stop time per month,

taking into account the average, variance, and standard deviation of these values. It is relevant to

consider that in 1023 cases (34,93% of the total number of cases) the downtime was not recorded

which affects the representativity of these data. Since the production system architecture is not

aligned in series, the breakdown of a machine might not affect the rest of the production and other

components may continue to be built on machines that are on parallel branches.

An average of 244 stops per month was calculated, with a standard deviation of 93.7, which

leads us to conclude that there is a wide variation in values over the months relative to the average.

In addition to some discrepancies in the records, these variations may also be associated with the

variation of production volume in different months. It is noteworthy that generally the number of

monthly stops is between 150 and 250 but there are some significant outliers, these being, July,

September, October, and November, as observed in the graph in Figure 3.1.

Moreover, as the graph in Figure 3.1 shows, the stoppage time variation is relatively consistent

with the number of stops, i.e., when the number of stops is higher, the stoppage time is too.
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Figure 3.1: Monthly breakdown of number of stops and their duration (in min)

3.1.4.1 Machine Failure Analysis

Figure 3.2: Breakdwons recorded by machine
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The graph in Figure 3.2 shows that the machine with the highest number of stops was the

APEX1, however, the machine with the longest total downtime was the TBM OTR 1. As one

would expect, the machines with the highest number of stops are also the ones with the longest

downtime. The table with the exact values used for the building the graph can be found in the

annex B.

From this machine analysis, it is possible to estimate the inherent availability per machine

(section 2.2.3).

Table 3.5: Inherent Availability by machine

Machine MTBF
(h)

MTTR
(h)

Inherent
Availability

APEX 01 26,792 0,278 0,9897
APEX 02 243,049 0,052 0,9998
Belt Cutter 205,283 0,491 0,9976
Extrusora 01 46,409 0,327 0,9930
Innerliner 91,014 0,477 0,9948
Máquina Carcaças 01 30,223 0,237 0,9922
Máquina Carcaças 02 28,636 0,246 0,9915
Máquina Carcaças 03 24,395 0,325 0,9869
Máquina Corte Têxtil 01 50,934 0,316 0,9938
Máquina de construção OTR
01

27,809 0,300 0,9893

Máquina de construção OTR
02

37,891 0,300 0,9922

Máquina de Talões 01 53,095 0,206 0,9961
Máquina de Talões 02 163,823 0,136 0,9992
Máquina Pneus em Verde 01 53,848 0,174 0,9968
Máquina Pneus em Verde 02 49,139 0,254 0,9949
Máquina Pneus em Verde 03 46,325 0,259 0,9944
Máquina Strip Winding 01 252,732 0,405 0,9984
Ply Cutter 223,622 0,255 0,9989
Máquina Strip Winding 02 371,289 0,222 0,9994

Although the plant is in continuous operation, many machines are not and are only used with

specific timings to meet the needs of other machines with slower production processes. Therefore,

the inherent availability can provide wrongful estimates about the effective use of the machines.
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3.1.4.2 Systems Breakdown Analysis

Bearing in mind that one of the project objectives is to develop and implement solutions that

can be integrated in different machines, it is essential to identify which systems and components

common to several machines have higher malfunctions tendencies and consequently cause longer

downtime. Therefore, we performed a study focused on systems.

Figure 3.3: Breakdowns recorded per system/component

For reasons of data simplification, only systems with a higher number of stops (greater than

30) were considered to build the graph in Figure 3.3. As highlighted, most errors are associated

with electrical and control systems, concerning the number of stops and the average time per stop.

This is an indication that most malfunctions are associated with control errors, such as software

failures in drives.



40 Maintenance Analysis

3.1.4.3 Breakdown Categorization

For a better understanding of the faults per analyzed system in Figure 3.3, we decided to

classify these faults and study their impact.

In order to simplify the data processing and focus the work on the most relevant failures, only

over 1-hour stops were considered. This classification was then carried out based on the failure

cause, reported in its description, and the categories defined are as follows:

• System Errors - mainly associated with software problems, such as PLC errors, drive con-

figurations, errors in production recipe parameters. These are usually solved by correcting

the error detected in the software or by resetting the system.

• Mechanical failures - related to misplacement or deviation of machine equipment or to com-

ponent failure due to wear or incorrect use.

• Electrical failures - related to electrical components breakdowns, such as power sources and

drives.

• Sensor errors - associated with poor sensor positioning or displacement, giving wrong indi-

cations to the system.

• Valve failure - related to filters that fail to fulfill their purpose and need to be replaced and

wrong valve positioning, which prevents machine correct functioning.

• Undefined (?) - in addition to the cases above, it was not possible to determine the cause of

the problem by reading the associated description in these cases. Thus, in these cases, the

cause was considered as undefined, for data processing purposes.

Figure 3.4: Error categorization Pareto chart

The graph in Figure 3.4 shows that the system errors and mechanical failures are the most

relevant, as they show a higher number of occurrences, having a large impact on total downtime.

Thus, concerning the downtime parameter, the components associated with these failures should

be the most valued.
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3.2 Methodology

Beyond the analysis of the manufacturing process, which we presented in the previous section,

the methodology must ensure the highest standardization in the development of the various moni-

toring subsystems so that all information is available to the operator and easily accessible, helping

in the maintenance interventions decision making process.

Figure 3.5: System framework to be implemented

For this purpose, we aim at developing a PM system like the one represented in figure 3.5.

This type of system is usually divided into three main blocks [48]:

• CPS - where production machines are integrated with sensors for data acquisition;

• Data Mining - where all the acquired data is processed and anomalies or faults are detected

• Human-Machine Interface - responsible for presenting to the user the analyzed information

and the anomalies detected to the user, as support for decision-making.

Regarding the anomaly detection method, this may vary for each situation, taking into account

the degree of precision required and the information available in each one. In some cases, this

detection can be made by setting thresholds for certain quantities, triggering alarms when these

are exceeded. In other cases, a trend analysis of the data may be carried out and with the support

of an ML algorithm to identify different types of faults.

After testing and implementing this solution on the selected machine, we target its extension

to other machines.
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3.3 Conclusion

This chapter showed a study based on historical data, namely, breakdowns reports and feed-

back from the engineering team, to develop a better understanding of the process and identification

of critical components and the respective quantities to be monitored. The breakdown reports are

also relevant to establish an availability model of the machines, which is beneficial for the engi-

neering and production team. At the end of this analysis, we selected the APEX - AGRO machine

for the application of our PM approach.

After having selected the components to be monitored, this chapter ended with a generic main-

tenance methodology that we will follow in our PM approach.



Chapter 4

Solution Proposal

In this chapter a predictive maintenance system is projected and presented, based on the tech-

nologies and algorithms studied in chapter 2 and the maintenance analysis and methodology de-

scribed in chapter 3. The following sections will describe in detail the system structure and be-

havior, considering its applicability to a specific machine.

To design a solution it is crucial to have into consideration which technologies have already

been installed and how they can work in parallel with the new ones, to optimize the solution. This

solution has to be properly structured, in order to simplify the implementation and usability.

4.1 Solution Overview

The machine selected to illustrate the designed system is APEX - AGRO. This machine was

chosen because it was identified as critical andit already contained some monitoring systems in-

stalled on it.

4.1.1 Machine Architecture and its Maintenance

As mentioned in section 3.1.3 the principal components to be monitored (extruders, engines,

TCUs, hydraulic units and bearings) are all included in the part of the machine shown in Figure 4.1.

To monitor and predict faults in bearings the best method is via vibrations. Usually, one or two

accelerometers (one in each axis) are used for this purpose. It is possible to use oil inspection in

some cases too, but this technique implies stopping machine operation and can only be performed

periodically while vibration monitoring can be done continuously while operating. In this case,

bearings are associated with conveyor’s pulley, as an example, but can be inserted in many other

systems.

Supervising motors is crucial as they are difficult to repair or replace and are constituted by

various components that can be damaged and cause damages on the rest of the motor. The main

failures observed are mechanical wear or cracks in components, such as bearings or the shaft, but

misalignment with the gear box or electrical unbalance can also be found. The best way to identify

all these failures is by monitoring vibrations in certain points or by monitoring electric current. By

43
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Figure 4.1: APEX components, respective types of failures and relevant signals to monitor

extracting some features of the acquired signals it is possible to detect patterns or tendencies and

associate these with potential failures, using ML algorithms.

The focal piece to monitor in the extruder is the screw as it is the moving component and there-

fore the most susceptible to damage due to the overstaying of rubber, misalignment, or mechanical

wear. The presence of rubber inside the extruder can be controlled by continuously monitoring

pressure inside. Assuring the correct temperature at the various stages of the extruder is also

significant since this has direct impact on the quality of the extruded rubber.

In this case, the hydraulic system is used to assure that the die installed on the head of the

extruder is kept in the right place while extracting rubber. On other machines, it may be associated

with actions that compressed air actuators are unable to perform. The main flaws correlated with

this system are problems in the oil circulation, like oil leaks or clogging, due to valves and filters

damage. Therefore, pressure and oil level are the key measurements to be carried out. Temperature

variations and peaks can also be a good indicator of some form of error.

Regarding the TCUs, responsible for heating the different sections of the extruder through a

water circuit, the primary faults or malfunctioning are associated with filter clogging and valves

in the wrong positions thus, pressure and valve position are the fundamental conditions to keep

track of. Although it is also important to guarantee that the system reaches the correct temperature

levels, the department of metrology is responsible for that matter and therefore should not be

considered when developing the system.

Lastly, tracking the utilization of consumables is relevant to establish operation trends and

hopefully optimize the respective consumption. Furthermore, it can be used indirectly to detect

leaks in the distribution system or in the front-end system.
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4.1.2 Pre-installed Monitoring System

Some systems are already equipped with sensors purposefully placed to monitor specific fea-

tures within these systems, as it is highlighted in figure 4.2. The same type of sensors can be found

on different systems and have different applications in each one.

Figure 4.2: Pre-installed monitoring on the APEX machine

As previously mentioned in section 3.1.3.1, the pressure sensor in the extruder is used to

detect the presence of rubber inside of it and when this detection happens while the machine is

not operating the system should trigger an alarm. The hydraulic system also has the necessary

sensors installed. However, no data analysis is being done with the information gathered from

them. The TCUs have two pressure sensors at the water entry point to detect filter ware and at the

time the difference between the two increases above a certain point, the system triggers an alarm.

Temperature sensors are used only as a provider of information to the operator and not as a PM

tool. Concerning the consumables mentioned above, some quantities are already being measured

regarding electricity and compressed air. These quantities are highly related to improving energy

consumption efficiency but can be adapted to implement PM. The water meter is installed in some

machines but the collected data is not being analysed.

4.1.3 Monitoring Systems to be Installed

Figure 4.3 shows the sensors that should be installed to accomplish the target PM system,

specifically one or more accelerometers on bearings and motor to monitor vibration, and an incli-

nometer to detect misalignment in the motor. Motor misalignment can be detected indirectly from

vibration monitoring turning inclinometers dispensable. However, since the current system has no

historical data to develop a precise detection algorithm for misalignment, using inclinometers is a

safer option. Regarding the motor, the acquisition of electric current is also important because this

method can be used to replace other methods referred previously and does not require any type of
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Figure 4.3: Additional monitoring hardware to be installed on the APEX - AGRO machine

sensor installation, as it can be acquired via motor drive. The above-mentioned techniques can be

alternatives to each other or can be combined. This combination should grant a better solution.

In addition to the installation of the previously mentioned sensors, it is crucial to develop the

software (i.e., data cleaning and analysis using ML algorithms) related to the various subsystems.

There are mainly two types of software monitoring rules that can be applied: defining thresholds

based on manufacturers’ information and triggering alarms when these are exceeded or, analyzing

the behavior of a certain characteristic over time, establishing tendencies and clusters, and asso-

ciating these with specific failures. The latter gives more accurate results, however, it is harder to

implement as it requires a vast collection of data over time and more complex algorithms. The

implementation and applicability in every case will be thoroughly described in the following sec-

tions.

4.2 Sensors Listing

To analyze the proposed PM approach before actual industrial deployment, it is relevant to

present a list of the necessary equipment. Concerning software, the necessary programs to acquire

data are already integrated into the manufacturing process, and only MATLAB is used to deal with

data treatment and ML algorithm implementation.

Regarding the monitoring systems already implemented, there are three main types of sensors

to be considered:

• Air flow meter - compressed air monitoring - [66]

• Pressure meter - filter status in water distribution - [3]

• Temperature meter - temperature control in switchboard - [69]
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The sensors related to the hydraulic system and TCUs are not mentioned as they are primarily

used for control purposes and therefore are directly integrated into the system. As already stated,

the information from these sensors only needs to be treated and adapted to condition monitoring

purposes and no change to the hardware is needed.

Thus, the only hardware that needs to be installed is accelerometers and inclinometers, to mon-

itor vibration and inclination, respectively. Concerning the accelerometers, there may be some

differences between the ones used on motors and the ones used on separate bearings, but in most

cases, standard accelerometers serve both purposes. As mentioned, to provide a more accurate

prediction it might be needed one accelerometer for each axis. There are many variations, special-

ized in specific working conditions, but, in this case, accelerometers for general purposes such as

those presented below are adequate.

• Quartz based single axis accelerometer - [31]

• Quartz bases triaxial accelerometer - [32]

When choosing an inclinometer it is crucial to consider resistance to vibration. Since it is

supposed to be mounted on a motor, it must be prepared to handle the vibration produced by the

motor, so that it does not have an impact on the inclination measurement. A good example of an

inclinometer for our purposes is the one show in [1].

4.3 Detection Methods

As referred in section 4.1 there are mainly three types of detection methods, in terms of soft-

ware, to be implemented: detection via threshold setting (basic monitoring), applying ML algo-

rithms to collected data (advanced monitoring) and tracking the consumables and their respective

evolution over time (consumables monitoring).

4.3.1 Basic monitoring

Basic monitoring corresponds to defining threshold points related to a certain component be-

havior characteristic. It is an elementary type of solution regarding industrial systems monitoring

with several limitations since it is not able to provide detailed information about the state of the

respective component, particularly when the state is continuous. However, it can be a very use-

ful solution when only the manufacturer information is available and no data was yet collected.

Therefore, in most cases, this would only be a transitory PM implementation while an ML algo-

rithm is developed and trained. Merely in simpler cases, basic monitoring would be a permanent

solution, such as when the component state is limited to a few discrete values

Concerning threshold setting, as above-mentioned, it should be conducted based on manufac-

turer information, i.e., using values referred to in component’s datasheet and a possible tolerance.

By way of illustration, when monitoring the oil level in a hydraulic system, the manufacturer
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should provide the standard values for the lowest and highest accepted levels and from there we

can set the threshold values for oil level control.

Figure 4.4: Projected implementation for oil level monitoring in PLC programming environment
(TwinCat2) using function blocks

The implementation shown in figure 4.4 is an example of a basic monitoring approach already

used in the systems mentioned in section 3.1.3.1. This case considers as input the height value of

a sensor acquiring the oil level in the hydraulic system tank (SENSOR_H). Moreover, two thresh-

olds, bottom and upper, are defined. As exemplified, if the height value is greater than or equal

to the established upper threshold (UPPER_TH) or is lower than or equal to the bottom threshold

(BOTTOM_TH) the system triggers a signal used as input in the function block responsible for

communicating with the CGMS (f_CGMS_AL2Str). This function has as input the referred sig-

nal, criticality (integer number representing the alarm importance), delay sending the alarm, and a

string (containing the information to be displayed on the CGMS).

This solution can be adaptable to different cases, containing a greater number of sensors and

more complex operations. It is also noteworthy to take into account that values acquired from

sensors may need some previous adjustment, depending on the manufacturer’s indications.

An elementary case where this approach is adequate as a permanent solution, is valve position

control, because it is a discrete information with two or few more values. By using a valve position

sensor, e.g., an on-off switch or a rotary switch with various positions, applying a program similar

to the preceding example already provides a reliable monitoring solution.

4.3.2 Advanced monitoring

We designate as advanced monitoring the combination of data acquisition and analysis based

on ML algorithms, which is particularly relevant when components have a continuous state. Con-

sidering vibration acquisition through an accelerometer as an example, it is essential to understand

that the acquired signal is very complex and needs to be simplified and reduced to the significant

information to condition monitoring. This process is known as feature extraction and selection.

In some cases, before executing the mentioned procedure it is critical to clear the noise generated

from outside sources or the sensor itself.
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Figure 4.5: Fault type detection using density estimation via GMM - Source: [7]

Figure 4.5 reflects vibration data clustering based on a Gaussian Mixture Model, after feature

extraction performed by PCA [7]. As there is no historical data, at first we can only hypothesize

about the different computed states. Clusters 2, 3, and 4 as normal operation patterns since they

are regular overtime. Conversely, cluster 1 should be considered as a faulty state. In fact, after

observing the machine in this state, it was confirmed that there was a faulty component indeed,

which was replaced. Cluster 5 reflects the new regular operation condition after switching the

defective component.

This system should improve over time as new data is acquired and new faults are found, allow-

ing the system to reduce the time to predict and detect failures by observing patterns and trends

that were witnessed previously.

In addition to vibration monitoring, this advanced monitoring approach is also well suited to

monitor the electric current because it is also a highly complex signal.

4.3.3 Consumables monitoring

Consumables monitoring identifies utility consumption and relates it with operation schedules

and patterns to optimize plant consumption. The system should be designed to allow easy and

intuitive access to consumables current and historical information, allowing the user to adapt the

history time window and compare different periods. Artificial intelligence can be applied to iden-

tify and highlight certain patterns to the user, supporting the decision-making process. Moreover,

this monitoring approach should observe all the machines separately, allowing the plant manage-

ment to make decisions about the best schedule for every machine.

Additionally, consumption monitoring may be applied to components condition monitoring,

too, as an indirect method. It is possible to recognize a possible failure, by pinpointing unexpected

changes to certain utility consumption.
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4.4 Software Development

A part from the basic control method to be implemented at PLC level concerning simpler

signals referred in section 4.3.1, other methods for detection, diagnosis and prediction must be

implemented regarding complexer signals, for instance, vibration or current. This section focus

on software development and algorithm implementation to deal with these signals, identifying and

predicting specific failures. The platform used for this purpose is MATLAB, as it provides built-in

tools and functions to predictive maintenance problems. The following implementation is based

on the tutorials associated with the used datasets [74, 75].

4.4.1 Fault Detection

Considering a vibration signal acquired from a bearing provided by a MATLAB R© support

dataset [74], it is possible to detect a failure without historical data based on the manufacturer’s

datasheet. This dataset reflects the evolution of a fault in a bearing overtime.

Figure 4.6: Healthy Bearing signal

Figure 4.7: Faulty Bearing signal

Figure 4.6 and 4.7 reflect the signal for two different bearing conditions, healthy and faulty,

respectively. As shown, the raw signal does not present a noticeable difference, and for that reason

it is important to extract specific features in order to detect a failure.
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As mentioned before, the proposed project does not include historical data, so only simple

detection will be possible in the beginning. For this purpose, straightforward time and frequency-

domain features such as mean peak values are enough, as they provide an overview on the signal

evolution. It is important to mention that the relevant features to fault detection may vary with

different signal behaviours, and therefore it is important to analyze specific characteristics to de-

termine which features to consider.

Analyzing signal characteristics is also essential to understand what kind of filtering is needed

before applying any kind of feature extraction and detection. By looking at the signal spectrogram

shown in Figure 4.8 it is possible to recognize a lot of high frequency noise that can affect the

process and therefore some filtering must be applied.

Figure 4.8: Unfiltered Bearing Signal Spectrogram

The areas with a lighter color indicate higher signal energy in the respective frequencies. After

applying a median filter, the high frequency noise is suppressed, as shown in Figure 4.9, and

feature extraction is now possible, without the risk of compromising the detection result.
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Figure 4.9: Filtered Bearing Signal Spectrogram

As mentioned above, average peak frequency is a good indicator of bearing condition and this

is confirmed looking into the spectrogram and observing that the energy is mostly concentrated in

a specific frequency. Therefore, after filtering the signal, we extract the average peak frequency

for every time instance and the result is demonstrated in Figure 4.10.

Figure 4.10: Average Peak Frequency Overtime

Figure 4.10 clearly shows a trend in average peak frequency, which can be an indication of a

fault increase. Consulting the manufacturer’s datasheet it is possible to define a threshold regarding

the normal operation frequency limit which the bearing can sustain, triggering an alarm when this

limit is reached.
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4.4.2 Fault Diagnosis

After gathering data overtime and observing different types of failures related to a component

it is possible to associate specific trends and signal behaviour to these types of failures, allowing a

focused maintenance intervention.

The MFPT Fault dataset [14] provides a vibration signal concerning a bearing under 3 different

conditions: healthy, with outer race fault, and with inner race fault. This data set provides 3 normal

conditions signals, 7 inner race fault conditions signals, and 10 outer race conditions signals,

that will be separated into training and testing data. Moreover, each signal has certain classes

associated with it, such as the sampling rate, the test load, the 4 different fault frequencies and

the respective fault condition label. The tested bearing is used at 25 Hz and has the following

dimensions:

• Number of rolling elements (spheres) (n): 8;

• Roller (sphere) diameter (dB): 0.235;

• Pitch diameter (inner diameter of the outer ring) (dA): 1.245;

• Contact angle of the spheres φ : 0.

With this information, we can calculate the main frequencies to monitor in order to detect the

referred failures, using the formulas mentioned in section 2.3.1.2.

• f OR = 8
2 ·25 · (1− 0.235

1.245 · cos(0)) = 81,1245Hz

• f IR = 8
2 ·25 · (1+ 0.235

1.245 · cos(0)) = 118,8755Hz

• f SPH = 1.245
2·0.235 ·25 · (1− (0.235

1.245 · cos(0))2) = 63,864Hz

• f C = 1
2 ·25 · (1+ 0.235

1.245 · cos(0)) = 10,1406Hz

Concerning algorithm development, this will be focused on the first two frequencies, as the

used dataset only has data regarding these types of failures. As mentioned in the previous section,

not much information is obtained from studying the raw vibration signal. In some cases, not even

a envelope spectrum analysis of the raw signal is enough to guarantee that every failure is correctly

identified.
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Figure 4.11: Vibration Signal for a normal bearing, a bearing with inner race fault, and a bearing
with outer race fault

Observing the three signals shown in Figure 4.11 we can identify different impulsiveness for

each signal. Therefore, studying the impulsiveness of the vibration signal can be a reliable way

to diagnose which kind of failure is present. To characterize impulsiveness we use kurtosis. After

identifying the frequency band with highest kurtosis we can apply a bandpass filter to the raw

signal to provide a clearer signal to use in envelope analysis [75].

As referred, we splitted the data into training data and testing data. Training data contains 2

normal sets, 5 inner race fault sets and 7 outer race fault sets. Test data contains 1 normal set, 2

inner race fault sets and 3 outer race fault set.

Table 4.1: Training data amplitudes related to calculated fault frequencies

fIR Amplitude fOR Amplitude Fault Type
0.0036798 0.0050208 Normal
0.00359 0.0069449 Normal
0.33918 0.082296 Inner Race Fault
0.31488 0.026599 Inner Race Fault
0.52356 0.036609 Inner Race Fault
0.52899 0.028381 Inner Race Fault
0.13515 0.012337 Inner Race Fault
0.004024 0.03574 Outer Race Fault
0.0044918 0.1835 Outer Race Fault
0.0074993 0.30166 Outer Race Fault
0.013662 0.12468 Outer Race Fault
0.0070963 0.28215 Outer Race Fault
0.0060772 0.35241 Outer Race Fault
0.011244 0.17975 Outer Race Fault
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The amplitudes presented in table 4.1 are calculated as part of the fault diagnosis algorithm.

By performing a kurtogram, which computes local kurtosis within certain frequency bands, we

can highlight the modulated amplitude regarding specific frequencies, enhancing the envelope

spectrum analysis. An example of this application is given below.

Figure 4.12: Kurtogram of a inner race fault vibration signal

Figure 4.12 shows a kurtogram regarding a vibration signal of a bearing with a inner race fault.

It indicates that the highest kurtosis of 69.82 is at the frequency band (Center frequency - Cf) of

13.73 kHz with a bandwith (BW) of 1.02 kHz. With this information we can design and apply a

suitable bandpass filter for every signal, using a bandwith between [Cf-BW/2] and [Cf+BW/2].

Figure 4.13: Vibration signal comparison (unfiltered and filtered)
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Figure 4.13 demonstrates that a filtered signal regarding the computed central frequency and

bandwith has clearer envelope and higher kurtosis, highlighting the impulsiveness of the intended

frequency. Then, after filtering the signal, we can perform an envelope spectrum analyses with the

confidence of a reduced noise signal and better diagnosis capability.

Figure 4.14: Inner race fault bandpass filtered signal envelope spectrum analyses

As expected for a inner race fault bearing vibration signal with the above-mentioned dimen-

sions, the peak amplitude is found around 118.9 Hz, with a value of 0.35 (similar to the values

registered concerning the training data).

Regarding table 4.1 it is important to notice the relationship between both amplitudes concern-

ing the three different conditions, as they can be a good indicator to use in order to identify and

separate incoming new data. By plotting the training dataset (Figure 4.15) we can clearly identify

three clusters, each one related to a specific fault.
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Figure 4.15: Scatter plot regarding fIR and fOR amplitudes of the training data

Predictably, outer race fault bearings have high amplitude regarding fOR frequency and low

amplitude in fIR frequency. The opposite happens in inner race fault bearings, i.e., low amplitude

in fOR and high amplitude in fIR. Normal bearings have low amplitude concerning both frequency

bands, as expected.

With this, we can establish a ratio between the two amplitudes for each dataset and use it as a

classification method. Based on [75] a logarithmic ratio is defined as:

• Outer race fault bearing: log( f IR
f OR

)≤−1.5

• Normal bearing: −1.5 < log( f IR
f OR

)≤ 0.5

• Inner race fault bearing: log( f IR
f OR

)> 0.5

The classification presented above is applied having into consideration that the used data set only

includes bearings with one fault type. To utilize this classification in bearings that present both

fault types, we would need to verify the specific fault amplitudes for bearings classified as normal

and if both amplitudes were elevated we should change the classification from "normal bearing"

to "inner and outer race fault bearing". Moreover, to consider the four types of faults regarding

bearings, the best way to identify these faults would be by defining thresholds for each amplitude.

These thresholds can be static or can variate, in order to adapt to incoming data and optimize the

classification.

We can now test the developed algorithm using the remaining vibration data chosen to testing.

The test data fIR and fOR computed amplitudes as well as the log ratio between these amplitudes

are presented in table 4.2.
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Table 4.2: Test data amplitudes and log ratio

fIR Amplitude fOR Amplitude Log Ratio Fault Type
0.0043813 0.0070156 -0.47079 Normal
0.65627 0.04334 2.7175 Inner Race Fault
1.1497 0.059562 2.9602 Inner Race Fault

0.0035644 0.10248 -3.3586 Outer Race Fault
0.0087894 0.13508 -2.7323 Outer Race Fault
0.074398 0.54605 -1.9933 Outer Race Fault

The test results validate the filter and classification algorithm implemented, as all datasets fall

into the expected log ratio interval, i.e., the normal bearing is between -1.5 and 0.5, inner race fault

bearings are over 0.5, and outer race fault bearings are under -1.5. To provide a visual description

of the results we computed a histogram with train and data results for comparison purposes.

Figure 4.16: Train and test results histogram

The histogram shown in Figure 4.16 confirms the results demonstrated in tables 4.1 and 4.2,

as the various datasets fall into the expected categories.

The next step would be deploying this algorithm into a real world situation and monitor its

behaviour, looking for new fault types in order to adjust and optimize the algorithm and its bound-

aries, improving its ability to deal with a more complex environment.
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4.4.3 Fault Prediction

Fault prognostics are usually performed based on a developed component behaviour model.

Accomplishing a reliable fault prediction model is a very complex task as it requires high quantities

of historical data.

Utilizing the dataset used in section 4.4.1 to build a detection algorithm, we try to develop a

prediction model that uses historical data and incoming new data to perform an estimate of the

component behaviour evolution, in order forecast a failure before it happens. Since we already

verified that signal mean peak frequency is a viable feature to condition monitor, we use this same

feature to build the prognostics model. However, as mentioned, in other cases it may be required

combining several features to guarantee a proper solution.

We use the first 200 data points of the extracted feature to establish a initial model, as it is

guaranteed that the bearing has not any type of fault during this time window. We defined a

threshold on 2000 Hz to trigger an alarm when the prediction data surpasses it, according to [74].

In addition, we set the dynamic model to be updated every 30 new data points calculated, using

the last 200 points stored. Moreover, we set the forecasting time limit to 100, i.e., the model is

limited to estimating 100 data points ahead. These parameters can be adjusted to fulfill client

preferences, bearing in mind that increasing the prediction time window will reduce precision

and vice-versa, while reducing the number of new data points received to update the model will

increase the computational effort.

We can compute a discrete-time series state space model, based on the following equations:

x(t +Ts) = Ax(t)+Be(t) (4.1)

y(t) =Cx(t)+ e(t) (4.2)

Figure 4.17: Initial dynamic model graph representation

Figure 4.17 shows a representation of the initial computed model, based on the first 200 values.

As expect, a very linear and stable behaviour is represented and the prediction indicates that this
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behaviour should continue. We are now able to run the algorithm responsible for receiving new

data and updating the above-mentioned dynamic model.

Figure 4.18: Final dynamic model graph representation (after predicting a failure)

After running the algorithm, a fault is predicted approximately 550 minutes before it happens,

with a 80.85% fit. As observable, the 95% confidence interval has widened in comparison to the

initial computed model, due to the increase of data variation.

4.5 Conclusion

In this chapter, we identified the essential sensors to be installed in order to acquire the neces-

sary data to be used as inputs in the ML algorithms. We then identified three types of monitoring,

regarding software, that can be implemented: basic, advanced, and consumables. Finally, we de-

veloped three algorithms using MATLAB to detect, diagnose, and predict failures. To train and

test these algorithms we used datasets provided by MathWorks. We obtained positive results, as

we were able to detect and identify different types of faults, as well as predicting future faults.



Chapter 5

Conclusions and Future Work

The work developed regarding the situation at the CST plant at Continental Mabor - Indústria

de Pneus, S.A., was aligned with the Industry 4.0 context. This new industry philosophy is directed

to increase production efficiency by reducing failures and downtime, through maintenance plan

improvement and PM systems implementation.

PM systems are usually divided into two major parts: hardware and software. Hardware

includes all the sensors used to acquire data from the monitored components. It is essential to

select the proper sensors for each component, considering what quantities are relevant to monitor,

the ranges in which these quantities vary, and the working conditions the sensor will be exposed to.

Software comprehends acquired data processing and analysis as well as information display via a

HMI. Before applying any type of analysis on the acquired data it is crucial to treat and filter the

data to ensure that the analysis results are not compromised by errors regarding unfiltered data. To

properly implement a ML algorithm is crucial to define specifically the inputs and outputs of the

system and the expected behavior regarding certain situations. In this case, components reliability

models should be considered when building the algorithm, to obtain precise results.

To understand the plant production process and identify the critical components of this process,

an analysis of the 2019 breakdown report was conducted. With this investigation, we were able

to determine the critical components in which the PM system implementation should focus, using

a specific classification. We then defined the methodology to structure, develop, and deploy the

mentioned system.

Regarding the proposed system, three types of monitoring were thought out: basic monitoring,

advanced monitoring, and consumables monitoring. The first one consists of defining thresholds

related to the acquired data and triggering alarms when these thresholds are reached, on a PLC

level. Consumables monitoring is designed to pinpoint specific patterns and trends regarding

utility consumption to optimize general plant consumption. Advanced monitoring is adequate

for complex data analysis using ML algorithms and is the preferred method to perform component

thorough monitoring. For this reason, we focused the software development in this type of system.

We started software development by implementing an algorithm capable of distinguishing

a healthy bearing vibration signal from a faulty bearing vibration signal, i.e., an algorithm for
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fault detection. This method requires feature extraction regarding time and frequency domains,

as it is not possible to identify clear differences by investigating the raw signals. Furthermore,

to guarantee a proper feature extraction, we noticed a necessity to use a filtering method before

applying the algorithm. A more complex algorithm was implemented to perform fault diagnosis,

i.e., identifying specific faults in the component. We used a more complete dataset to train and test

this algorithm as it requires more data to identify different fault scenarios. Based on the dimensions

of the bearing used to generate the dataset we established the main frequencies to monitor in order

to identify different failures and applied a filter around them, based on the indications given from

the kurtogram function. Finally, we developed an algorithm with the intent of predicting a fault

before it happens, by analyzing the historical and incoming data. The reliability of this prognostic

model may vary with parameters defined regarding the prediction time window.

At this stage, we were able to study the processes inherent to the machines and breakdown re-

ports, identifying the critical components to focus our PM system development. We also identified

some sensors to be installed to acquire the desired data for monitoring the selected components.

Finally, we developed ML algorithms to detect, diagnose, and predict faults. Due to the constraints

imposed by the COVID-19 pandemic, we were not able to implement a real system. Therefore, as

future work, we would like to install adequate sensors in the selected machine to start acquiring

real data. With this, we would be able to deploy the developed algorithms into a real situation and

perform the necessary adjustments. We would then be able to extend these algorithms to other

signals such as current. Furthermore, implementing a HMI to provide clear information concern-

ing the status of the components would be essential to ensure proper machine maintenance by the

maintenance team.



Appendix A

Components Classification

Table A.1: Components classification concerning relevance for the maintenance process

Sistema Componente Blocos comuns Criticidade Tempo de par-
agem

Custos de
manutenção

Extrusoras Corpo 3,00 5,00 4,00 4,00
Extrusoras Fuso 3,00 5,00 4,00 4,00
Acionamento Motores PM (2kW a 15,7kW) 5,00 3,00 3,00 3,50
Complementos TCU 3,00 4,00 2,00 4,00
Complementos Unidade hidraulica 3,00 4,00 2,00 4,00
Acionamento Motores PME (111kW a 403kW) 1,33 5,00 3,00 5,00
Acionamento Rolamento 5,00 2,00 3,00 2,00
Extrusoras Cabeça 3,00 4,00 1,00 4,00
Acionamento Motores PE (17,5kW a 60kW) 1,67 5,00 1,00 4,00
Componentes elétricos Fusíveis 5,00 1,00 5,00 1,00
Componentes elétricos Disjuntores 5,00 1,00 5,00 1,00
Componentes elétricos PLC 5,00 1,00 5,00 1,00
Componentes elétricos Cartas I/O 5,00 1,00 5,00 1,00
Componentes elétricos Módulos de controlo 5,00 1,00 5,00 1,00
Acionamento Caixa redutora 5,00 1,50 2,00 3,00
Outros Tambor de construção 1,00 4,00 3,00 4,00
Outros Tambor de expansão 1,00 4,00 3,00 4,00
Alimentação (Utilidades) Circuito de ar comprimido 5,00 1,00 1,00 4,00
Acionamento Motores PB (0,042kW a 2,9kW) 5,00 1,50 1,00 3,00
Acionamento Veio 5,00 1,50 1,00 3,00
Ferramentas de corte Lâmina rotativa 1,67 4,00 3,00 2,00
Outros Prensa 1,00 3,00 3,00 4,00
Extrusoras Fieira 3,00 4,00 1,00 1,50
Passadeiras Cintas 4,33 1,00 3,00 1,50
Outros Anel de construção 1,00 3,00 4,00 2,50
Alimentação (Utilidades) Circuito de água 3,00 1,00 2,00 4,00
Passadeiras Rolos 4,00 1,00 3,00 1,50
Pneumático Unidade de preparação de ar - FRL 5,00 1,00 1,00 2,00
Pneumático Válvula 5,00 1,00 1,50 1,00
Pneumático Tubagem 5,00 1,00 1,50 1,00
Pneumático Atuadores/Cilindros 5,00 1,00 1,00 1,50
Ferramentas de corte Lâmina quente 1,67 4,00 1,00 1,50
Medição e Controlo Sistema de visão (centragem e deteção) 1,67 3,50 1,00 2,00
Outros Tambores de arrefecimento 1,33 2,00 3,00 2,00
Medição e Controlo Controlo de espessura 0,33 3,50 1,00 2,00
Medição e Controlo Balança 1,00 2,50 1,00 2,00
Medição e Controlo Termómetro 1,00 2,50 1,00 1,00
Acionamento Correias 1,00 1,50 2,00 1,00
Ferramentas de corte Tesoura 0,67 1,00 1,00 1,50
Outros Tensores 0,67 1,00 1,00 1,00
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Table A.2: Reduced components list - grouped by system

Sistema Componente Blocos comuns
(25%)

Criticidade
(25%)

Tempo de par-
agem (25%)

Custos de
manutenção (25%)

Avaliação Fi-
nal

Extrusoras Corpo e Fuso 3,00 5,00 4,00 4,00 4,00
Acionamento Motores PM (2kW a 15,7kW) 5,00 3,00 3,00 3,50 3,63
Acionamento Motores PME (111kW a 403kW) 1,33 5,00 3,00 5,00 3,58
Complementos TCU 3,00 4,00 2,00 4,00 3,25
Complementos Unidade hidraulica 3,00 4,00 2,00 4,00 3,25
Acionamento Rolamento 5,00 2,00 3,00 2,00 3,00
Extrusoras Cabeça 3,00 4,00 1,00 4,00 3,00
Componentes elétricos Proteção Elétrica (Fusíveis e Disjuntores) 5,00 1,00 5,00 1,00 3,00
Componentes elétricos Controlo (PLC, I/O, Mód. de controlo) 5,00 1,00 5,00 1,00 3,00
Outros Tambor de construção 1,00 4,00 3,00 4,00 3,00
Outros Tambor de expansão 1,00 4,00 3,00 4,00 3,00
Acionamento Motores PE (17,5kW a 60kW) 1,67 5,00 1,00 4,00 2,92
Acionamento Caixa redutora 5,00 1,50 2,00 3,00 2,88
Alimentação (Utilidades) Circuito de ar comprimido 5,00 1,00 1,00 4,00 2,75
Outros Prensa 1,00 3,00 3,00 4,00 2,75
Ferramentas de corte Lâmina rotativa 1,67 4,00 3,00 2,00 2,67
Acionamento Motores PB (0,042kW a 2,9kW) 5,00 1,50 1,00 3,00 2,63
Acionamento Veio 5,00 1,50 1,00 3,00 2,63
Outros Anel de construção 1,00 3,00 4,00 2,50 2,63
Alimentação (Utilidades) Circuito de água 3,00 1,00 2,00 4,00 2,50
Passadeiras Cintas 4,33 1,00 3,00 1,50 2,46
Extrusoras Fieira 3,00 4,00 1,00 1,50 2,38
Pneumático Unidade de preparação de ar - FRL 5,00 1,00 1,50 2,00 2,38
Passadeiras Rolos 4,00 1,00 3,00 1,50 2,38
Pneumático At. Pneumática(Válvula, Tubagem, Cilindros) 5,00 1,00 1,50 1,00 2,13
Outros Tambores de arrefecimento 1,33 2,00 3,00 2,00 2,08
Ferramentas de corte Lâmina quente 1,67 4,00 1,00 1,50 2,04
Medição e Controlo Sistema de visão (centragem e deteção) 1,67 3,50 1,00 2,00 2,04
Medição e Controlo Controlo de espessura 0,33 3,50 1,00 2,00 1,71
Medição e Controlo Balança 1,00 2,50 1,00 2,00 1,63
Medição e Controlo Termómetro 1,00 2,50 1,00 1,00 1,38
Acionamento Correias 1,00 1,50 2,00 1,00 1,38
Ferramentas de corte Tesoura 0,67 1,00 1,00 1,50 1,04
Outros Tensores 0,67 1,00 1,00 1,00 0,92

Table A.3: Final classification considering the same weight for every criteria

Sistema Componente Blocos comuns
(25%)

Criticidade
(25%)

Tempo de par-
agem (25%)

Custos de
manutenção (25%)

Avaliação Fi-
nal

Extrusoras Corpo e Fuso 3,00 5,00 4,00 4,00 4,00
Acionamento Motores PM (2kW a 15,7kW) 5,00 3,00 3,00 3,50 3,63
Acionamento Motores PME (111kW a 403kW) 1,33 5,00 3,00 5,00 3,58
Complementos TCU 3,00 4,00 2,00 4,00 3,25
Complementos Unidade hidraulica 3,00 4,00 2,00 4,00 3,25
Acionamento Rolamento 5,00 2,00 3,00 2,00 3,00
Extrusoras Cabeça 3,00 4,00 1,00 4,00 3,00
Componentes elétricos Proteção Elétrica (Fusíveis e Disjuntores) 5,00 1,00 5,00 1,00 3,00
Componentes elétricos Controlo (PLC, I/O, Mód. de controlo) 5,00 1,00 5,00 1,00 3,00
Outros Tambor de construção 1,00 4,00 3,00 4,00 3,00
Outros Tambor de expansão 1,00 4,00 3,00 4,00 3,00
Acionamento Motores PE (17,5kW a 60kW) 1,67 5,00 1,00 4,00 2,92
Acionamento Caixa redutora 5,00 1,50 2,00 3,00 2,88
Alimentação (Utilidades) Circuito de ar comprimido 5,00 1,00 1,00 4,00 2,75
Outros Prensa 1,00 3,00 3,00 4,00 2,75
Ferramentas de corte Lâmina rotativa 1,67 4,00 3,00 2,00 2,67
Acionamento Motores PB (0,042kW a 2,9kW) 5,00 1,50 1,00 3,00 2,63
Acionamento Veio 5,00 1,50 1,00 3,00 2,63
Outros Anel de construção 1,00 3,00 4,00 2,50 2,63
Alimentação (Utilidades) Circuito de água 3,00 1,00 2,00 4,00 2,50
Passadeiras Cintas 4,33 1,00 3,00 1,50 2,46
Extrusoras Fieira 3,00 4,00 1,00 1,50 2,38
Passadeiras Rolos 4,00 1,00 3,00 1,50 2,38
Pneumático Unidade de preparação de ar - FRL 5,00 1,00 1,50 2,00 2,38
Pneumático At. Pneumática(Válvula, Tubagem, Cilindros) 5,00 1,00 1,50 1,00 2,13
Outros Tambores de arrefecimento 1,33 2,00 3,00 2,00 2,08
Ferramentas de corte Lâmina quente 1,67 4,00 1,00 1,50 2,04
Medição e Controlo Sistema de visão (centragem e deteção) 1,67 3,50 1,00 2,00 2,04
Medição e Controlo Controlo de espessura 0,33 3,50 1,00 2,00 1,71
Medição e Controlo Balança 1,00 2,50 1,00 2,00 1,63
Medição e Controlo Termómetro 1,00 2,50 1,00 1,00 1,38
Acionamento Correias 1,00 1,50 2,00 1,00 1,38
Ferramentas de corte Tesoura 0,67 1,00 1,00 1,50 1,04
Outros Tensores 0,67 1,00 1,00 1,00 0,92
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Table A.4: Final classification with a weighted average

Sistema Componente Blocos comuns
(25%)

Criticidade
(25%)

Tempo de par-
agem (25%)

Custos de
manutenção (25%)

Avaliação Fi-
nal

Extrusoras Corpo e Fuso 3,00 5,00 4,00 4,00 4,00
Acionamento Motores PM (2kW a 15,7kW) 5,00 3,00 3,00 3,50 3,70
Acionamento Motores PME (111kW a 403kW) 1,33 5,00 3,00 5,00 3,50
Complementos TCU 3,00 4,00 2,00 4,00 3,30
Complementos Unidade hidraulica 3,00 4,00 2,00 4,00 3,30
Acionamento Rolamento 5,00 2,00 3,00 2,00 3,10
Extrusoras Cabeça 3,00 4,00 1,00 4,00 3,10
Componentes elétricos Proteção Elétrica (Fusíveis e Disjuntores) 5,00 1,00 5,00 1,00 3,00
Componentes elétricos Controlo (PLC, I/O, Mód. de controlo) 5,00 1,00 5,00 1,00 3,00
Acionamento Motores PE (17,5kW a 60kW) 1,67 5,00 1,00 4,00 3,00
Acionamento Caixa redutora 5,00 1,50 2,00 3,00 2,95
Outros Tambor de construção 1,00 4,00 3,00 4,00 2,90
Outros Tambor de expansão 1,00 4,00 3,00 4,00 2,90
Alimentação (Utilidades) Circuito de ar comprimido 5,00 1,00 1,00 4,00 2,80
Acionamento Motores PB (0,042kW a 2,9kW) 5,00 1,50 1,00 3,00 2,75
Acionamento Veio 5,00 1,50 1,00 3,00 2,75
Ferramentas de corte Lâmina rotativa 1,67 4,00 3,00 2,00 2,70
Outros Prensa 1,00 3,00 3,00 4,00 2,60
Extrusoras Fieira 3,00 4,00 1,00 1,50 2,60
Outros Anel de construção 1,00 3,00 4,00 2,50 2,50
Passadeiras Cintas 4,33 1,00 3,00 1,50 2,50
Pneumático Unidade de preparação de ar - FRL 5,00 1,00 1,50 2,00 2,50
Alimentação (Utilidades) Circuito de água 3,00 1,00 2,00 4,00 2,40
Passadeiras Rolos 4,00 1,00 3,00 1,50 2,40
Pneumático At. Pneumática(Válvula, Tubagem, Cilindros) 5,00 1,00 1,50 1,00 2,30
Ferramentas de corte Lâmina quente 1,67 4,00 1,00 1,50 2,20
Medição e Controlo Sistema de visão (centragem e deteção) 1,67 3,50 1,00 2,00 2,15
Outros Tambores de arrefecimento 1,33 2,00 3,00 2,00 2,00
Medição e Controlo Controlo de espessura 0,33 3,50 1,00 2,00 1,75
Medição e Controlo Balança 1,00 2,50 1,00 2,00 1,65
Medição e Controlo Termómetro 1,00 2,50 1,00 1,00 1,45
Acionamento Correias 1,00 1,50 2,00 1,00 1,35
Ferramentas de corte Tesoura 0,67 1,00 1,00 1,50 1,00
Outros Tensores 0,67 1,00 1,00 1,00 0,90
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2019 Breakdown Report

Table B.1: Number of errors and total and average downtime sorted by error type

Tipos de
Erros

Contagem Tempo Total de
Paragem

Tempo Médio de
Paragem

? 37 59,65 96,73
Electric 20 42,46 127,38
Mechanical 38 81,13 131,56
Sensor 14 25,79 110,53
system 50 95,44 114,53
Valve 4 8,81 132,15
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Table B.2: Number of errors and total and average downtime sorted by machine

Máquina Número de
Paragens

Tempo total de
Paragem

Tempo Médio de
Paragem

Apex 01 346 96,07 16,66
Apex 02 27 1,41 3,13
Belt Cutter 39 19,14 29,45
Extrusora 01 182 59,47 19,61
Innerliner 46 21,92 28,59
Máquina Carcaças 01 307 72,82 14,23
Máquina Carcaças 02 324 79,82 14,78
Máquina Carcaças 03 310 100,73 19,50
Máquina Corte Têxtil 01 173 54,59 18,93
Máquina de construção OTR #1 338 101,54 18,02
Máquina de construção OTR #2 65 19,48 17,98
Máquina de Talões 01 167 34,47 12,38
Máquina de talões 02 26 3,54 8,17
Máquina Pneus em Verde 01 157 27,25 10,48
Máquina Pneus em Verde 02 178 45,14 15,22
Máquina Pneus em Verde 03 159 41,23 15,56
Máquina Strip Winding 01 34 13,77 24,30
Ply Cutter 37 9,45 15,32
Strip Winding Machine 02 13 2,88 13,29

Table B.3: Number of errors and total and average downtime sorted by system

Sistema Número de
Paragens

Tempo Total de
Paragem

Tempo médio de Par-
agem

Automação e controlo geral 539 226,66 25,23
SM - Shaping Machine 32 11,33 21,24
CM - Carcass Machine 51 16,42 19,32
Alimentação elétrica geral 437 122,76 16,85
BM - Belt Machine 49 13,03 15,96
Alimentação pneumática geral 140 36,82 15,78
Extrusora 95 24,49 15,47
Estação de carretilhagem 105 25,65 14,66
Alimentador móvel 105 23,89 13,65
Downstream 31 6,64 12,85
Cabeçote móvel 34 7,18 12,67
Cabeçote fixo 75 15,14 12,11
Estação de construção 46 8,36 10,90
Alimentador da camada 51 9,11 10,72
Unidade laser de posicionamento 48 7,71 9,64
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