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Abstract 

Recent United Nations reports have stressed the growing constraint of food 

supply for Earth's growing human population. Honey bees are a vital part of the food 

chain as the most important pollinator for a wide range of crops. Protecting the 

honey bee population worldwide, and enabling them to maximise productivity, are 

important concerns. This research proposes a framework for addressing these issues 

by considering an inter-disciplinary approach, combining recent developments in 

engineering and honey bee science. The primary motivation of the work outlined in 

this thesis was to use embedded systems technology to improve honey bee health by 

developing state of the art in-hive monitoring systems to classify the colony status 

and mechanisms to influence hive conditions. Specific objectives were identified as 

steps to achieve this goal: to use Wireless Sensor networks (WSN) technology to 

monitor a honey bee colony in the hive and collect key information; to use collected 

data and resulting insights to propose mechanisms to influence hive conditions; to 

use the collected data to inform the design of signal processing and machine learning 

techniques to characterise and classify the colony status; and to investigate the use of 

high volume data sensors in understanding specific conditions of the hive, and 

methods for integration of these sensors into the low-power and low-data rate WSN 

framework. 

It was found that automated, unobtrusive measurement of the in-hive conditions 

could provide valuable insight into the activities and conditions of honey bee 

colonies. A heterogeneous sensor network was deployed that monitored the 

conditions within hives. Data were collected periodically, showing changes in colony 

behaviour over time. The key parameters measured were: CO2, O2, temperature, 

relative humidity, and acceleration. Weather data (sunshine, rain, and temperature) 

were collected to provide an additional analysis dimension. Extensive energy 

improvements reduced the node’s current draw to 150 µA. Combined with an 

external solar panel, self-sustainable operation was achieved. 3,435 unique data sets 

were collected from five test-bed hives over 513 days during all four seasons. 

Temperature was identified as a vital parameter influencing the productivity and 

health of the colony. It was proposed to develop a method of maintaining the hive 
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temperature in the ideal range through effective ventilation and airflow control 

which allow the bees involved in the activities above to engage in other tasks. An 

actuator was designed as part of the hive monitoring WSN to control the airflow 

within the hive. Using this mechanism, an effective Wireless Sensor and Actuator 

Network (WSAN) with Proportional Integral Derivative (PID) based temperature 

control was implemented. This system reached an effective set point temperature 

within 7 minutes of initialisation, and with steady state being reached by minute 18. 

There was negligible steady state error (0.0047%) and overshoot of <0.25 °C. 

It was proposed to develop and evaluate machine learning solutions to use the 

collected data to classify and describe the hive. The results of these classifications 

would be far more meaningful to the end user (beekeeper). Using a data set from a 

field deployed beehive, a biological analysis was undertaken to classify ten 

important hive states. This classification led to the development of a decision tree 

based classification algorithm which could describe the beehive using sensor 

network data with 95.38% accuracy. A correlation between meteorological 

conditions and beehive data was also observed. This led to the development of an 

algorithm for predicting short term rain (within 6 hours) based on the parameters 

within the hive (95.4% accuracy). A Random Forest based classifier was also 

developed using the entire collected in-hive dataset. This algorithm did not need 

access to data from outside the network, memory of previous measured data, and 

used only four inputs, while achieving an accuracy of 93.5%. 

Sound, weight, and visual inspection were identified as key methods of 

identifying the health and condition of the colony. Applications of advanced sensor 

methods in these areas for beekeeping were investigated. A low energy acoustic 

wake up sensor node for detecting the signs of an imminent swarming event was 

designed. Over 60 GB of sound data were collected from the test-bed hives, and 

analysed to provide a sound profile for development of a more advanced acoustic 

wake up and classification circuit. A weight measuring node was designed using a 

high precision (24-bit) analogue to digital converter with high sensitivity load cells 

to measure the weight of a hive to an accuracy of 10g over a 50 kg range. A 

preliminary investigation of applications for thermal and infrared imaging sensors in 

beekeeping was also undertaken.  
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1 Introduction 

1.1 Motivation 

Humans and honey bees have had an important relationship from the beginning 

of civilisation, with records of honey bee agriculture (apiculture) dating as far back 

as 2400 BC [1] . In modern times, the Western honey bee (Apis mellifera) plays a 

role in a range of human activities, including nutrition, medicine, and agriculture. 

The most vital activity of the honey bee for humans is pollination. The EU 

parliament noted in 2008 (resolution T6-0579/2008) that 79% of human food 

depends on honey bee pollination. As the global human population grows, to secure 

food supplies, the amount of pollinator dependant crops will increase dramatically.  

Aizen et al. [2] found that the volume of pollination dependant crops has grown 

300% in the last 50 years. It is also noted in the same work that wild/feral honey bees 

are increasingly subsidising the pollination requirements of commercial agriculture. 

As pests such as Varroa spread [3], wild native or feral honey colonies have virtually 

disappeared in several countries. To protect food supply, and agriculture-dependant 

economies, honey bee populations need to be maintained in an optimal state of 

health and afforded opportunities to grow. A bee colony costs approximately €250 in 

Ireland and improved monitoring would be significant for beekeepers worldwide. 

The global value of pollination is estimated at €153 billion and improved pollination 

by healthy bees, through hive monitoring, could increase the performance of 

agriculture dependant economies [4]. 
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Wireless Sensor Networks (WSN) consist of embedded sensing, computing, and 

communication devices, and are a key technology of the Internet of Things (IoT) 

concept. WSN have found many applications, including healthcare, environmental 

monitoring and medicine [5, 6]. One of the main challenges of WSN is enabling 

them to perceive and understand the world in a similar way to humans. Perceptive 

low-power sensor devices should be able to interpret the world around them using 

intelligent algorithms. Machine learning technologies have been used with great 

success in many WSN application areas, solving real-world problems in in transport, 

health care, and surveillance [7, 8]. Another important feature of WSN is the 

potential to achieve long life time or, even better, self-sustaining operation through 

energy harvesting [6].  

Agriculture has been identified as one of the key application areas of Wireless 

Sensor Network technologies. Examples include the use of WSN to monitor cattle 

fertility, growth of crops, and irrigation effectiveness [9]. The most useful aspect of 

WSN technology in such applications is the ability to collect data from a wide area 

for feeding into decision support systems. This has value because agriculture 

typically involves labour-intensive actions spread over a wide area. Increased 

information leading to more effective planning, and more efficient use of resources 

has a dramatic impact on both the productivity levels and profitability of almost all 

agricultural activities.  

Traditional beekeeping, or apiculture, is an example of a labour-intensive 

agricultural activity. Beekeeping involves planning, in terms of locating apiaries, 

managing reproduction, inspecting hive health, and harvesting honey. All of these 

actions involve a visit with specialised equipment to hives, which can be located 

many kilometres from each other. As commercial beekeepers can have several 

hundred hives the required resources and time rise exponentially for large scale 

operations.  

Many bee monitoring systems have been reported and described in the literature 

[10]. Automated, precision beehive monitoring has been identified by many as an 

important and feasible goal [11]. It is clear, however, that truly ubiquitous 

monitoring of colonies (monitoring of hives located in apiaries far from access to 

power or established networks and without affecting the colony or beekeepers’ 
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activities) has not been achieved, and that the interdisciplinary analysis of beehive 

data is in its infancy. Hive monitoring systems in the literature use observation hives 

(hives designed to expose the colony for research), wired networks connected to 

data-loggers or PCs, or require mainline power supplies. These requirements make 

these systems effective research techniques, but are not feasible for monitoring real-

world hives maintained by the average beekeeper, or for large scale monitoring of 

many hives simultaneously. 

The primary motivation of the work described in this thesis was to use embedded 

systems technology to improve honey bee health by developing in-hive monitoring 

systems to classify colony status and mechanisms to influence hive conditions. In 

this research, the subspecies of honey bee which was investigated was the European 

dark honey bee (Apis mellifera mellifera), and the beekeeping practices and hive 

conditions were typical of North Western Europe. To demonstrate the usefulness of 

in-hive monitoring systems, such as those described in this work, Table 1.1 shows 

the most important hive conditions for the keeper to know about, how soon they 

need this knowledge, and if they can be detected by the solutions presented in this 

work. 

 

Figure 1.1 – Envisioned application of WSN in apiculture [12] 
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Specific objectives were identified as steps to achieve this goal: to use Wireless 

Sensor networks (WSN) technology to monitor a honey bee colony in the hive and 

collect key information about its activity and environment (Figure 1.1); to use these 

data and resulting insights to propose mechanisms to influence the hive conditions; 

to use the collected data to inform the design of signal processing and machine 

learning techniques to characterise and classify the colony status; and to investigate 

the use of high volume data sensors in understanding specific conditions of the hive, 

and methods for integration of these sensors into the low-power and low-data rate 

WSN framework. 

Table 1.1 – Examples of typical hive conditions and the response required 

Hive condition Speed of response 

required 

Detected using the 

described systems? 

Swarm Immediate Yes 

Queenlessness  Immediate Yes 

Fallen hive Immediate Yes 

Declining population (due to 

disease or starvation)  

Within a few days Yes 

Colony Collapse Disorder Immediately No 

Overcooling Within a few days Yes 

Overheating Within a few days Yes 

Peak honey production Within a few days Yes 

Is honey production happening? Ongoing condition 

– Summer  

Yes 

Is the brood temperature in the 

ideal range? 

Ongoing condition 

– Summer  

No – but can be 

inferred from above 

brood temperature 

Is a Winter cluster forming? Ongoing condition 

– Winter 

Yes 

What are the mite levels in the 

hive? 

Ongoing condition 

– Year round 

No 
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1.2 Thesis Contributions 

The work outlined in this thesis comprises of four main sections: the automated 

collection of data from hives in the field; research improving the airflow and 

temperature control of the National beehive; development of machine learning based 

classification algorithms for the colony; and applications of specialised sensors to the 

beehive.  

To provide a solution in this space it was necessary to gain an understanding of 

the honey bee hive. To design a system which could monitor the colony and its 

environment, an understanding of the hive structure, typical behaviour of the colony 

inside the hive, and typical beekeeper activities were required. It was also necessary 

to understand the typical conditions of: the healthy hive; the hive undergoing 

important events (swarming, clustering, converting nectar to honey); and the 

unhealthy hive to design systems for maintaining ideal conditions and to detect and 

classify important events for the keeper. The outcome of this investigation is 

described to provide the background and context for the contributions. 

The first contribution of this work is the design and implementation of a non-

invasive, self-sustaining Wireless Sensor Network which collected data from inside 

the hive. The mechanical design allowed the in-hive sensors to sample the hive 

conditions effectively, without impeding the beekeeper or bees’ activities. The most 

effective selection of sensors was identified as temperature, humidity, carbon 

dioxide, oxygen, and acceleration. Each of these sensors contributed to an accurate 

understanding of the colony’s condition as identified in the literature review, while 

contributing as little as possible to the overall energy budget of the system. Oher 

gases were also monitored but found not to provide a significantly increased 

understanding of the colony condition. The selected network and energy harvesting 

methods allowed six samples of the hive condition to be collected per day, with one 

upload of each 24-hour period’s aggregated data, while maintaining self-sustaining 

energy performance. A large database (3,435 sets) was collected from in-field 

beehives for validation and further research. 

It can be seen from the literature that temperature in the hive is one of the most 

important parameters for honey bee health [13-15]. During brood rearing, very 

precise temperature control is necessary, and throughout the year temperature is key 
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for influencing the spread of pests and disease. In this research, a modification to the 

traditional design of the National Hive’s “crown board” for improved airflow and 

temperature control was proposed based on numerical modelling and simulation of 

hive airflow. The improved airflow in the proposed design was experimentally 

validated. To use this alternative layout to maximum effect, a novel airflow control 

mechanism was proposed. The final contribution in the space of airflow was the 

design and implementation of a Wireless Sensor and Actuator Network, using this 

mechanism together with the sensor network described above. Experiments validated 

that this mechanism could control the temperature effectively inside the hive to a 

suitable level of accuracy for improving colony health. 

As described above, the natural progression of Wireless Sensor Networks in 

agriculture is towards machine learning and decision support systems for more 

effective management. This feature is particularly important for management of 

beehives. In this research, an initial ID3 decision tree based classification algorithm 

was proposed and developed. The algorithm was trained and tested using the data 

collected from the first deployment of the in-hive sensor network. This algorithm can 

identify ten important hive states with a high level of accuracy. Further work was 

carried out on machine learning using Random Forests to achieve similar levels of 

accuracy with reduced network traffic, memory use, and reduced sensitivity to noise. 

A 95.3% accuracy was achieved by using the entire dataset collected over all five 

deployments for training.  

Some important features of the hive which beekeepers use to understand the 

conditions of their colony could not be determined using the simple sensors utilised 

above. These conditions are: sound, weight, and visual inspection. In this thesis the 

use of microphones, load cells, and cameras to monitor each of these parameters 

respectively is proposed. A focus is maintained on using these high-volume data 

sensors in a low power and resource constrained system. Analysis of sound recorded 

from in-hive microphones led to an audio based wake-up sensor to alert the system 

to important events. A WSN load cell based weighing system was proposed to 

provide accurate high-resolution weight measurement over a large range, as is 

required to measure honey production accurately. A preliminary investigation of 

infrared and thermal imaging of hives to estimate in-hive activity levels and cold 

weather clustering patterns unobtrusively was also described.  
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1.3 Thesis Structure 

The structure of this thesis is as follows: in Chapter 2 a review of the literature is 

presented, in order to describe the expected conditions in the hive, the conditions 

associated with particular changes in the hive such as reproduction, disease, pests, 

and hibernation, and to describe the previous work in the area of automated hive 

monitoring; in Chapter 3 the design, methods, and implementation of an in-hive 

wireless sensor network for automated sampling of the colony’s conditions is 

presented, along with the results collected from five deployments of such networks; 

Chapter 4 presents a study and model of the airflow within a standard National 

beehive, the design and test of a proposed new geometry for the crown board, a 

compound mechanism with this new geometry to adjust airflow in the hive, and the 

design and test of a WSAN to automatically control the in-hive temperature; Chapter 

5 presents the development of machine learning algorithms to classify the condition 

of the colony automatically using the data collected from the deployments described 

in Chapter 2 to train and test decision tree algorithms; Chapter 6 describes 

investigations into using less generic sensors in the hive to monitor important hive 

features including microphones, weight, and infrared and thermal imaging; Chapter 7 

concludes the research and outlines proposed future work. 
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2 Honey Bees & their Environment 

2.1 Introduction 

Honey bees and humans have had an important relationship from the dawn of 

civilisation [1]. In Ireland, the historic role of apiculture in society is shown in “An 

Bechbretha” – “bee judgements”, the oldest surviving Irish legal manuscript, which 

outlines early laws related to beekeeping from the 7
th

 century [16]. In modern times, 

the most important role of the honey bee is pollination. Along with this, honey bees 

produce several important by-products including honey, wax, venom, and propolis 

which are important for nutrition, medicine, and as a sealant [17]. As the human 

population continues to grow, and the pressure on food supply increases 

proportionally, it is vital that bee populations are protected, and the number of 

colonies is provided with opportunities to grow. To achieve this, it is necessary to 

develop technologies to support beekeeping, reducing the workload of the beekeeper 

and maximising the productivity of each hive.   

From the advent of sensor technology, monitoring of honey bee hives has been 

undertaken. This has been driven by the desire to understand and observe honey bee 

behaviour and activity inside the hive; to estimate the productivity of commercial 

beehives; to detect and understand hive problems, diseases, and pests; and to predict 

future behaviour of the colony. Meikle et al. found weight, temperature, humidity, 

respiratory gases, vibration, sound, and forager traffic as suitable parameters for 

continuous monitoring in hives [18].  
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To inform the design flow of this research, an investigation of the state of the art 

in precision apiculture was also required. This provided a base on which the methods 

and experimentation in future chapters were developed. The key areas of precision 

apiculture were identified as: instrumentation of hive interiors, analysis of airflow 

within the hive space, monitoring of hive entrances, and sound monitoring of honey 

bee colonies. The objective of reviewing the literature in the space of hive 

monitoring was to: understand previous work in the field; identify methods for use in 

the research and experimentation to be undertaken; and identify avenues of research 

which have not been thoroughly investigated. In this research, the subspecies of 

honey bee which was investigated was the European dark honey bee (Apis mellifera 

mellifera), and the beekeeping practices and hive conditions were typical of North 

Western Europe.  

To gain an understanding of both honey bees and apicultural activities several 

literature sources were considered, including: 

 Databases of academic papers outlining studies of the honey bee and 

beehive, as well as engineering databases – Scopus®, Science Direct®, 

Web of Science®, and IEEE Xplore®; 

 Manuals of beekeeping recommended by experienced beekeepers and 

beekeeping organisations - [19-21]; 

 Online resources provided for beekeepers by groups such as government 

research groups, beekeeping federations, and expert beekeepers [22-26]. 

2.2 Beehive Temperature and Humidity  

2.2.1 Influence of temperature and humidity of the hive interior 

2.2.1.1 Temperature and humidity inside and outside the hived colony 

Maintaining the colony at a suitable temperature is vital to the health and 

productivity of the hive. The activities and behaviour of the hive change throughout 

the year, in response to changing external conditions, availability of forage, and the 

number of young bees which are required to be reared. The ideal temperature and 

humidity for the colony changes in response to these.  
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Immediately before the Winter months, when the external temperature is too low 

for individual bees to fly, and very little forage is available, the colony prepares to 

survive by building up large stores of honey, and ceasing brood production. Once the 

external temperature starts dropping below 10°C, the bees in the colony begin to 

“cluster” together, forming a ball in the hive interior to conserve heat. The cluster 

will be formed completely as the external temperature reaches 6-8 °C. The minimum 

temperature of the surface of the cluster is 8 °C, and the average temperature of the 

core is 21.3 °C [27]. During this time, the size of the colony will be at its lowest 

point (15,000 bees at minimum). When possible, the bees will leave the hive to 

collect water to dilute honey for consumption. They will also occasionally leave the 

hive to defecate or collect winter pollen if the temperature is suitable [22]. The 

optimal internal humidity for a broodless hive is 40 % relative humidity as described 

by Human et al. [28]. 

In early Spring, the colony uses the external temperature and weather to estimate 

when to begin foraging. The new honey bees begin to emerge and the foraging 

activities begin to resume as soon as the weather is clear and the temperature rises to 

10 °C [23]. This time is a period of intense growth for the colony, as the brood is 

rapidly reared to establish the colony to produce the main honey flow effectively. 

The colony is susceptible at this time to fluctuations in the weather, a sudden drop in 

temperature can easily kill many of the young foragers around the hive [19]. It was 

found by Gebremedhn et al. that flight intensity (number of bees entering and 

leaving the hive) is negatively influenced by increased relative humidity [29]. The 

flight intensity level of foragers directly impacts the amount of honey produced. 

The ideal temperature for the brood is 33 °C – 36 °C. A deviation of more than 

1 °C in either direction will lead to deformities in the developing larvae, which can 

have a significant impact on the productivity of the hive [30]. When the colony is 

broodless then a significantly cooler core temperature (29 °C – 32 °C) is acceptable 

[31]. Doull found that the optimal humidity range for hatching larvae was 90-95 % 

relative humidity (RH) [32]. Outside of this range the number of healthy larvae 

which hatched without abnormalities decreased from 98.8 % - 92.4 % (90 – 95 % 

RH) to 65.4 % healthy hatches at 100 % RH, and 59.5 % healthy hatches at 80 % 

RH. During brood rearing the worker bees bring water droplets into the hive to 

evaporate for temperature control [33]. This evaporation also increases the humidity 
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of the hive to suit the hatching of healthy larvae. 

2.2.1.2 Heating and Cooling 

Honey bees have a variety of physiological processes in which they can engage 

to cool or heat the hive as needed. When the hive is in danger of overheating (in 

warmer climates such as during summer months in Mediterranean countries 

(subspecies Apis mellifera ligustica)), the bees will spread out and move to the 

outside of the hive to create more space for ventilation in the hive. They also have a 

process known as “fanning”, where the individual bees stand at the entrance of the 

hive and on the comb, then move their wings in a repeated motion to force air 

throughout the hive for cooling, and for removal of humid air from the hive during 

honey production [34]. Fanning is a highly energy intensive activity for the bees, 

which takes away workers from other activities such as rearing brood or foraging. 

They also can bring extra water droplets into the hive and place them on cells and the 

hive interior to encourage cooling through evaporation [35]. If the hive temperature 

drops too low (external temperatures of <10 °C) then the bees begin to cluster 

together as described above. The lower temperature limit for a honey bee is 7 °C, at 

which they are unable to move their wing muscles for flight [30]. They can warm the 

brood by “shivering” and pressing their bodies against the brood cells. “Shivering” 

involves rapidly moving their wing muscles to dramatically increase their core body 

temperature. Engaging in shivering during winter months is energy intensive and 

therefore will cause the colony to use its food stores faster [36]. If the external 

weather varies between 7-14 °C during the Winter months the colony can run out of 

food stores quickly, as the colony will not cluster effectively. 

2.2.1.3 Diseases and pests 

Nosema is recognised as the most widespread bee disease globally [37]. It 

consists of two species – Nosema apis and Nosema ceranae which are 

microsporidian organisms. The former is a parasite of the western European honey 

bee, while the latter parasitizes the Asian honey bee (A. cerana). However, N. 

ceranae has also been found recently in the European honey bee where it is 

considerably more virulent that in its typical host A. cerana. Nosema affects the gut 

of the bee, impacting its ability to digest pollen and thereby reducing the lifetime of 

the bee [38]. This disease causes the colony to fail to build up well in the spring, and 

in extreme cases can cause the colony to dwindle and die. The only current method 
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of identification of Nosema is through microscopic examination. Nosema is spread 

quickly through hives also infected with dysentery, as bees carry many infected 

spores in their gut cells [39]. Woyciechowski et al. found that the rate of infection of 

honey bees with N. apis maintained at 25 °C was much higher than those maintained 

at 30 °C and 35 °C [40]. Chen et al. found that the N. ceranae pathogen load was 

also inversely related to temperature, with the highest spore count at 15 °C and 

infection levels matching the average hive at 23.8 °C [13]. No relationship between 

N. ceranae and humidity levels has been reported.  

Acarapis woodi, also known as Tracheal mite, or Acarine, is a small mite which 

reproduces in the trachea of the honey bee. An infestation of Acarine slows the 

growth of the colony and reduces the lifespan of individual bees. This disease causes 

bees to cluster outside the hive, and become disoriented/confused [41]. The most 

effective identification method for Acarine is through microscopic examination. 

Acarine can cause colony losses during winter, where the infestation grows during 

the winter, and there are not sufficient bees available to raise the brood in early 

Spring [42]. Acarine is killed by the same treatments which are effective on the 

Varroa mite so products based on Thymol paste work well, as do synthetic miticides. 

Keepers often also re-queen colonies which show a susceptibility, as there is 

evidence that some bees have a genetic resistance to Acarine [43]. Mc Mullan et al. 

found that honey bees raised from brood maintained at 30 °C were more susceptible 

to Tracheal mite than those raised at 34 °C by a factor of two [44].  

Varroa destructor is a parasitic mite of the honey bee which has emerged as the 

most serious pest of the honey bee globally. Australia is the only continent to which 

Varroa has not spread. The female Varroa mite lives on the adult honey bee, where it 

feeds on its haemolymph, and has a flat, brown, oval, body, typically 1.6 by 1.1 mm 

long [45]. To reproduce, a mite enters a brood cell and lays one male and up to seven 

female larvae. The female larvae mate with the male and feed on the bee pupae. 

Usually two to three mites successfully emerge attached to the abdomen of the newly 

hatched honey bee where they can live for up to six months. As the mite larvae feed 

on the bee pupae they stunt its growth and lifespan, leading to deformed bees as well 

as weakened colonies.  

Varroa also spread several viruses throughout hive populations, including 
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Deformed Wing Virus (DWV) which can lead to colony loss [3]. Control of Varroa 

levels is achieved by monitoring the number of mites in the hive, to apply treatments 

at the most effective time. No available treatment completely eradicates Varroa, so 

limiting the mite count in the hive is the best possible outcome for these treatments 

[19].  

There are several widely-accepted methods of Varroa control: chemical 

varroacides which generally use thymol and other essential oils, these cannot be 

applied until after honey has been harvested and before winter feeding; synthetic 

miticides such as Bayvarol (active ingredient: Flumethrin) in some regions this 

method is now restricted because Varroa have developed resistance to such 

miticides; and other chemical methods using organic acids (formic acid, oxalic acid, 

etc.) which can only be applied to hives during the winter phase, as the damage 

brood and contaminate honey stores; and biotechnical controls which can be used 

during the honey flow season as they do not use chemicals [46, 47].  

Hou et al. monitored temperature and humidity of hived colonies with and 

without V. destructor infestation and found that infected hives had a higher 

temperature of on average 1.69 °C and a lower humidity of as much as two 

percentage points [15]. Annoscia et al. found that bees infested with V. destructor 

exposed to a lower humidity environment had an increased mortality rate [48]. As 

well as this, it was found by Kraus et al. that 2 % of Varroa produced offspring 

successfully when present in brood maintained at 79-85 % RH compared to 53 % of 

mites in brood maintained in the 59-68 % RH range [49].  

Another pest of the honey bee is the Small Hive Beetle (Aethina tumida) that 

originated in Africa, but has spread to cause major problems Australia and the USA, 

and has recently been detected in Europe in Italy posing a major threat to European 

apiculture. This beetle reproduces inside the hive, and scavenges for the eggs, brood, 

honey, and pollen inside. They defecate in the hive causing the honey to ferment and 

destroying comb. Chemical controls are of limited use in controlling Small Hive 

Beetle, and prevention is identified as the most effective means of control. Small 

Hive Beetle can be identified through visual inspection of the hive interior [50]. 

Guzman et al. found that the Small Hive Beetle eggs hatched faster, and hatched 

beetles were significantly larger when maintained at a higher temperature (34 °C) 
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than in a cooler environment (24-28 °C) [51]. 

Chalkbrood (Ascosphaera apis), a minor infection of the brood, is a fungal 

infection which kills sealed brood and mummifies the larvae. Regularly replacing 

brood combs reduces incidence [52]. Flores et al. studied effects of temperature and 

humidity on the development of chalkbrood, and low brood temperatures (25 °C) 

and high humidity (87 % RH) were identified as producing maximum infestation 

[53]. Chilled Brood is the name given when the brood becomes too cool (10 °C, or 

lower), this can be caused by the bees not covering the brood sufficiently due to 

starvation, poisoning, late frosts in Spring, or mishandling by the keeper, and this 

can be prevented through careful attention of the keeper [25].  

2.2.1.4 Swarming 

Swarming is the natural method by which honey bee colonies reproduce. It is 

described in detail in Section 2.5.2. It is an event normally associated by beekeepers 

with distinct sound patterns, but Ferrari et al. found that temperature and humidity 

drop by 2 °C and 5 percentage points respectively before a swarm [54]. This was 

identified as due to the increased fanning and activity of the bees as they prepare to 

leave the hive. 

2.2.1.5 Summary of temperature’s influence on colony 

The typical temperatures for a healthy colony, together with the typical external 

conditions, and the temperatures associated with overheating and cooling are 

summarised in Table 2.1. 

Table 2.1 – Influence of temperature on colony 

Situation External Temperature Internal temperature 

Winter Cluster <10 °C 21.3 °C 

Brood Rearing Summer Temperatures 33 – 36 °C 

Spring – Foraging  >10 °C Rising 

Broodless  End of Summer 29 – 32 °C 

Swarming  Summer Temperatures > 36°C 

Overcooling  Hot Summer < 10 °C 

Overheating  Cold Winter > 46 °C 
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2.2.2 Instrumentation of hive interiors for temperature and 

humidity 

The conditions within the hive interior are not typically measured as part of 

traditional beekeeping practices, as they can be difficult parameters to measure 

without specialised equipment. These conditions provide vital information about the 

colony and reflect its health, activities, condition, and brood size. When a beekeeper 

inspects a hive (often using smoke to calm the bees), the act of removing the roof 

changes the in-hive conditions (temperature, humidity, gases, and airflow) within the 

hive, as well as interrupting the activities of the bees within and around the hive. 

This has led to the use of automated monitoring of hive interiors to evaluate the 

colony condition without disturbing it. Several studies have focused on the 

monitoring of hive interiors. This involves the use of sensors inside the hive interior, 

to monitor one or more parameters which can describe the activities of the colony 

inside.  

Van Nerum et al. described the automatic collection of temperature data from 

demonstration hives using wired temperature probes connected to a PC. Humidity, 

CO2, and O2 levels were also recorded manually during this study [55]. Vornicu et 

al.  described a wired network of temperature and humidity sensors embedded in 

three demonstration hives [56]. Human et al. used humidity and temperature sensors 

interfaced with dataloggers to study the humidity changes in a hive resulting from 

the colony activity (brood development, fanning/cooling the hive, ripening honey) 

[28]. Bacher et al. described a wired temperature sensor array for monitoring the 

temperatures of individual brood cells [57]. Zacepins et al. proposed a method of 

detecting brood rearing in the hive using a single temperature sensor in each hive on 

a wired network [58]. This was proposed as a solution to detect and alert the 

beekeeper to early brood rearing in late Winter/early Spring, allowing them to act to 

save the colony. Stalidzans et al. also used a single wired temperature sensor in 14 

hives, placed directly above the brood to create a model for the expected hive 

temperature throughout different beekeeping seasons [59]. Recently, Marković et al. 

implemented a decision support system for beekeeping using an array of temperature 

sensors in each of three beehives which provided an alarm based on any region of 

the hive falling below a defined minimum temperature, or the centre of the cluster 

rising above 36 °C [60].  
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2.2.3 Influence of temperature and humidity in 5 km foraging range 

Foraging is a vitally important activity for the survival of the colony – worker 

bees need to be able to leave the hive to collect the nectar for honey production, 

pollen, resins for propolis, and water. As described previously, honey bees begin to 

die as their temperature falls below 7 °C due to being unable to move [30]. Heinrich 

highlighted that honey bees are capable of flight in a temperature range of 10 °C to 

46 °C, though with difficulty and for extremely short periods at each extreme of this 

range [61]. It was noted by Joshi et al. that atmospheric humidity had very little 

effect on the flight capabilities of the honey bee, however it influenced the amount of 

nectar available in crops, directly influencing the productivity levels of foraging 

[62]. Traditional methods of collecting temperature and humidity include the use of 

weather stations and commercially available sensors. Highly accurate records of 

temperature, humidity, and other factors affecting these parameters such as sunshine 

hours and rainfall levels are available from meteorological services such as Met 

Éireann in Ireland [63].  

2.3 Oxygen (O2) and Carbon Dioxide (CO2) within the Hive  

2.3.1 Respiratory gases within the hived honey bee colony 

Respiratory gas levels have long been used as a measure of the activity and status 

of the honey bee colony. The amount of CO2 produced by the colony can be used to 

estimate the number of bees inside the hive, and to determine whether the colony is 

dead or alive. Honey bees adjust their behaviour, including fanning to maintain 

suitable temperature and oxygen concentration in the hive. Carbon dioxide, however, 

is a far more variable parameter. Nagy et al. noted the changing CO2 concentration 

in the hive in proportion to the recorded brood temperature, as a result of the 

colony’s thermoregulation activities [64]. Seely observed that the colony was able to 

distinguish the CO2 concentration in the hive, and that the bees took actions to 

regulate it [65]. The bees increased fanning (described in Section 2.2.1.2) to ventilate 

the hive when the CO2 concentration rose above 3%.  

2.3.1.1 Relationship of in-hive CO2 with disease and pests  

Infection rate of Nosema (see Section 2.2.1.3) was associated with carbon 

dioxide in [66]. It was found that both the infection rate of N. apis and the mortality 
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rate of infected bees were increased in high CO2 environments. This was suggested 

as a possible cause of the higher Nosema infection rates during the Winter, when 

CO2 levels in the hive are higher.  

Carbon dioxide has been suggested as a non-invasive method of control for 

Varroa (see Section 2.2.1.3). Bahreini found that increasing the CO2 concentration in 

the hive to 200 % of typical winter values through restriction of the ventilation holes 

in the hive increased Winter Varroa mortality rates from 23 % to 37 %, without 

increasing mortality of the bees themselves [67].To maintain the necessary average 

temperature of 21.3 °C in the Winter cluster, the exchange of air with the outside 

environment often needs to be reduced to almost zero. This considerably increases 

the carbon dioxide in the cluster, and to survive in these conditions honey bees are 

not susceptible to hypoxia. Eskov et al. found that the minimum concentration of 

CO2 needed to increase the mortality rate of honey bees was two orders of magnitude 

higher than ambient levels [68]. Excessive CO2 was found to lead to deformities in 

the brood in terms of body symmetry and wing size (brood rearing does not take 

place in the Winter cluster). 

Chalkbrood (see Section 2.2.1.3) infection rates are directly influenced by carbon 

dioxide levels. Heath et al. found that the almost all of the chalkbrood fungal spores 

were activated at 12.5 % CO2 concentration, compared to just 50 % at 5 % CO2 [69].  

2.3.2 Instrumentation of hive interiors for CO2 and O2 

Automated monitoring of oxygen (O2) and carbon dioxide (CO2) is a topic that 

has not been widely explored, due to the sensor technologies in this space not 

advancing at the same pace or with the same price reduction as the other sensor 

technologies described in this chapter. However, several studies have used other 

manual methods to observe the gas levels in colonies. In 1921 Milner et al. used a 

respiration calorimeter to measure the carbon dioxide and oxygen percentage in air 

extracted from a beehive every 30 minutes for 12 days to measure the energy 

consumed and work done by the colony [70]. Seely used a CO2 analyser attached to 

a tube with flowing air extracted from the hive for continuous monitoring in an 

experiment demonstrating the fanning response of a colony to an introduced stream 

of CO2 [65]. This experiment demonstrated that honey bees can detect the CO2 level 

in the hive and take actions to control it. Nerum et al.used preinstalled syringes to 
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extract defined volumes of air from the hive without disturbing the colony in a study 

to evaluate the use of hypoxia (oxygen deficiency) to control the metabolic rate of 

the colony in winter [55]. It was found that honey bees use hypoxia to control the 

colony metabolism during the winter months. A study by Ohashi et al. used 

automated CO2 monitoring to compare in-hive values to the ambient climate, where 

three sensors were integrated into a two frame observation hive as part of a multi-

sensor wired network designed to enable high quality data collection [71].  

2.4 Airflow in Hived Colonies 

2.4.1 Airflow in the National beehive 

2.4.1.1 Airflow, and its effect on the hived colony 

The normal method of ventilation for the hive is natural ventilation driven by the 

differing temperatures between the colony and the air outside the hive [72]. 

Ventilation holes at the top and bottom of the National hive [73] allow both thermal 

buoyancy and external wind to act on the hive. During mild weather, this natural 

ventilation is sufficient to keep the hive’s temperature, respiratory gas, and water 

vapour levels within a suitable range for a healthy colony. Poor temperature control 

has been linked with several diseases including chalkbrood and Nosema [74].  

During extreme weather (cold or heat), or when a very specific temperature is 

required (during brood rearing: 33 °C – 36 °C) honey bees have a variety of 

physiological processes in which they can engage to change the airflow within the 

hive, which are described above in Section 2.2.1.2. The process of fanning is used by 

the colony both to cool the hive through forced convection and to remove water 

vapour or waste gases by significantly increasing the exchange of air between the 

hive and the outside environment [75]. When the hive temperature is too low, the 

bees work to reduce the size of the ventilation holes by blocking them with wax and 

propolis to restrict the air exchange, and they can engage in shivering to increase the 

heat energy in the colony and directly on the surface of the brood [20].  

A recent trend in hive floor design is known as an “open mesh floor”, where the 

floor of the hive is made of a mesh together with a removable board. This gives the 

beekeeper extra control over the airflow in the hive to reduce the need for the colony 

to engage in the intense airflow control mechanisms described above. The board’s 
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position can be adjusted to dramatically increase or reduce the airflow in the hive.  

This removable board has another important use, it can be used to monitor the level 

of Varroa infestation by counting the number of mites falling to the bottom of the 

hive [76]. 

2.4.1.2 The National Hive 

The hive structure design selected for use in this work was the National hive [73] 

(Figure 2.1). The national hive is the most common hive style used in the Republic 

of Ireland and the United Kingdom. The hive is made of several individual pieces 

which are stacked together [77]. The national hive is typically made out of wood 

(originally cedar) but in recent years polystyrene National hives have also become 

widely available as they are considered to be warmer in NW European climates and 

they can be manufactured in such a way that their components form an almost air-

tight seal.  

The floor, which supports the rest of the hive. It has three raised sides and one 

open (forming an entrance to the hive) the open side can be reduced to adjust the size 

of the entrance to facilitate defence of the hive by guard bees, reduce airflow, or 

close the hive.  

The brood box is the main area of the hive, including eleven large removable 

frames, which contains the queen bee and the developing larvae. Frames are 

removable sheets of comb in which brood rearing is undertaken (in the brood box) 

and honey is stored (in the supers).  

The Queen excluder is a mesh which prevents the larger queen from moving 

from the brood box to the supers and laying eggs in the frames intended for honey, 

but does not restrict the other, smaller bees from access to the supers.  

The supers are boxes of smaller frames than the brood box, which are placed 

above the queen excluder. These boxes are where the bees store honey in ten frames 

that are shallower than those in the brood box, up to seven supers can be required per 

hive depending on the amount of honey being stored by the honey bees in a season.  

The crownboard, is the inner cover of the hive. It seals the top of the hive, and 

traditionally has either one or two holes for feeding and ventilation. The roof, is an 

additional cover which creates a waterproof shield for the hive. 
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Figure 2.1 – Dimensions of the National beehive 

2.4.2 Analysis of hive airflow 

Evaluating the airflow within the hive has been a major focus throughout the 

literature. The hive is a complex thermodynamic system with several air inlets and 

outlets, varying density, and with several heat sources. As temperature is widely 

acknowledged as one of the most influential parameters within the hive, many 

studies have attempted to model the temperature and airflow accurately within the 

hive. 

One of the most complex aspects of modelling the beehive is that throughout the 

different seasons the colony exhibits different shapes, densities, and behaviours, 

requiring several different models to reflect each scenario. Lemke et al. proposed a 

thermal model for bees in the winter cluster [78]. Basak et al. proposed a thermal 
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model for a recently escaped swarm of bees [72]. Fehler et al. proposed a model for 

the summer hive, which considered the brood as well as the colony, as the winter and 

recently swarmed colonies would not have any brood to consider [79]. Sudarsan et 

al. [80] performed a computer aided simulation of the airflow and thermal regulation 

in a Langstroth beehive [81], and described a comprehensive overview of the 

equations and techniques used.  

In recent years advances in sensor technology have enabled more in-depth 

analysis of hive airflow and temperature. Stalidzans et al. placed a wired temperature 

sensor in the roof cavity of each of 14 colonies to develop a model for the above-

brood temperature of the colony throughout its daily and yearly cycles [59]. Meikle 

et al. collected temperature data using thermocouples interfaced with data loggers 

from eight hives [82]. They proposed a model for calculating brood mass using 

average measured temperature. Most recently, Kridi et al. used a wireless sensor 

network to measure the hive core temperature, and proposed a model based on 

collected data for generating alerts when the temperature deviated from the typical 

range [83].  

Following this review, it was found that extensive work has focused on 

modelling the thermodynamics of the Langstroth hive, but not the National hive 

which is used in this work. Also, that all of the studies found focused on modelling 

the existing structure of the hive, but had not considered the possibility of changing 

the hive geometry to improve air and heat transfer from or to the hive. 

2.5 Sounds in Hived Colonies 

2.5.1 Hive activities 

2.5.1.1 Alarm sounds of the colony  

Honey bees use sounds to spread information rapidly throughout the hive. 

Lefebvre et al. exposed honey bees to two chemicals which are produced by honey 

bees when alarmed [84].  It was found that these chemicals caused one, two, and 

three week old bees to produce an alarm response centred at 140 Hz, 152 Hz, and 

166 Hz respectively. The normal spectrum of honey bee noises is in the 190-250 Hz 

range.   
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Poisoning can occasionally present a problem for colonies, usually due to 

agricultural activity in the local area. Bees can pick up agricultural sprays that are 

used on the plants which they forage from, or as they pass through agricultural land 

on their way to or from other forage [85]. They can be found dead at the entrance to 

the hive having being repelled by the guard bees, and poisoning can be confirmed 

through toxicological analysis [26]. In extreme cases, up to 30,000 bees have been 

found dead at the entrance of the hive [86]. Pérez et al. proposed under “future 

work” to monitor the alarm sound of honey bees to detect the use of pesticides in the 

area local to the hive (5 km radius) [87]. 

2.5.2 Colony reproduction 

Swarming is the natural method by which honey bee colonies reproduce. During 

high levels of productivity in-hive an additional queen bee (or several queens) may 

be reared [88]. The old queen will then leave the hive to form a new colony 

elsewhere, taking half of the existing colony with her, and two newly emerged 

queens will fight for control of the remaining colony. Successful swarming will 

result in the establishment of two or more colonies, which successfully survive the 

following winter. If unchecked, swarming is allowed to happen and many new 

queens may be reared sequentially, leading to successively smaller swarms, or casts 

[89]. 

Newly formed queens produce specific sounds known as “piping” at and just 

prior to their hatching which allows them to find each other within the beehive.  

Emerging virgin queens can also kill other emerged as well as developing 

(unhatched) queens which are sometimes used to form new colonies. Piping has two 

components – “tooting” and “quacking” which are described in Table 2.2. When the 

swarming process is in its early stages, the existing free queen toots. In response to 

tooting, worker bees will confine other queens to their cell. If the hive is not 

preparing to swarm, the free queen will find the other queen cells and kill the 

occupants [90].  

Tooting also helps the emerged queen prepare for future fights. Workers become 

still when they hear tooting, and engage in less aggressive actions towards the newly 

hatched free queen [91]. When confined queens hear other confined queens 

quacking, they will join in and synchronise their quacking, and eventually many 
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queens will join to form a “Quacking chorus” or “concert”. Confined queens, upon 

hearing tooting (from a free queen) will slow its efforts to cut the cap of its cell (i.e. 

open the entrance to its cell in order to escape). It will delay its emergence from the 

cell until another stimulus occurs, for example a swarm [92]. 

If swarming is not managed effectively by a beekeeper it can lead to large scale 

losses of both colonies and honey stocks. If several swarms occur in one season 

unchecked, then the beekeeper can be left with a significantly diminished colony 

size. If this occurs at the end of the Summer then the remaining colony has little 

chance to rebuild before Winter. Allen found a colony to be reduced from 10,500 

bees to 1,500 as a result of a prime swarm and two subsequent casts [93].  

The value of a honey bee colony is in the order of several hundred euro (~€200 in 

Ireland) and the reduced population in a post-swarm beehive loses much of its honey 

producing capacity. A colony will prepare to swarm zero, once, or several times per 

season, and there is no reliable, widely-available method to predict in advance which 

colonies will swarm or not without opening the hive and examining the frames for 

queen cells [20]. This means that the keeper must manage all colonies with the 

assumption that they will swarm. This is a contributor to the keeper’s labour load 

during the Spring and Summer seasons.  

Table 2.2 – Sound components of swarming 

Piping Component Tooting Quacking 

Type of queen 
New queen has emerged 

from her cell 

New queen is confined to her 

cell 

Temporal 

description of signal 

One long (~1 s) syllable, 

followed by a series of 

increasingly shorter syllables 

Short, similar (but not 

identical), length syllables of 

approximately 0.1 s duration 

Occurs 
When hive is preparing to 

swarm 

In response to tooting. Can 

also be spontaneous 

Frequency (Hz) 
~350-500Hz, Rising with 

age of queen 

~200-400Hz, slightly rising 

with age of queen 

Frequency 

(instance) 
Twice per minute N/A 
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2.5.3 Instrumentation of hive interiors for sound 

Despite the large amount of information it can provide, very few beekeepers 

monitor the sound of their hive. Sound analysis can be one of the most useful ways 

to identify the condition of a hive. Listening to the hive can help to identify and 

evaluate several important features of the colony without disturbing the hive by 

opening it. By listening carefully to the hive, the beekeeper can identify: if the 

colony is surviving well during the winter; if queen cells are being produced; if 

swarming is an immediate concern; and if the bees are fanning for honey production 

or to cool the hive effectively. It is not surprising that the first automated 

applications of sensors and electronics to honey bee colonies were in the space of 

sound monitoring. The very first recorded example of hive monitoring through 

electronics is a patent filed in 1957 [94]. The device used microphones and band 

pass filters to detect the changing frequencies in a hive in the weeks leading up to a 

swarm.  

Using microphones to monitor the sound and vibrations produced by the colony 

was the earliest documented example of using electronics in research to monitor the 

typical behaviour of honey bees. Wenner manually recorded [95] the sound produced 

by honey bees during the waggle dance using the von Frisch experiment (the classic 

experiment designed by von Frisch to demonstrate the waggle dance [96]). A 

Magnemite 610-E high-fidelity tape recorder (15 inches per second) and American 

Microphone Company D33A microphone were used to record bees performing the 

waggle dance in a demonstration hive. The recordings were used to confirm the 

findings of von Frisch and calculate the frequencies of the various stages of the 

waggle dance. Fanning was noted as a source of interference in his recordings. A 

microphone and a laser vibrometer were used by Michelsen et al. to record the 

“tooting” and “quacking” of an observation hive [90] which allowed for an in-depth 

analysis of the specific sounds produced by the colony before swarming. In further 

research into sound in honey bee colonies, an experiment is described by Eren et al. 

where a frequency analysis of both worker honey bees and a large group of queen 

bees was performed [97]. The results were then used to generate audio files, which 

could be played to the hive during honey harvesting. The generated sound caused the 

bees to expect a swarming event and group together outside the hive entrance, 

allowing the keeper reduce bee loss during harvest.  
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More recently, since 2008, continuous, automatic monitoring of honey bee 

sounds has become possible through improved technology, including wireless sensor 

networks, smaller microphones, and increased storage capacity. A wired network of 

microphones, humidity, and temperature sensors to monitor hives automatically 

during the swarming phase were used by Ferrari et al. [54]. In 2009, an experiment 

was described by Mezquida et al. where a wired network of microphones and 

temperature sensors were used to monitor the daily sound activities of 15 hives in a 

Spanish apiary [98]. The RMS (root mean square) power of the waveform, and the 

frequency components in five identified important frequency bands were collected to 

compare patterns over time. Further, the continuous collection of sound data from in-

field hives in Uruguay on an SD card for analysis was described by Pérez et al. [87].  

Following the investigation into the state of the art in this space, it was clear that 

monitoring the sounds of the hive as a tool for detecting its activities and conditions 

would be of value for beekeeping. Both the everyday sounds produced by the 

colony, and the specific sounds related to swarming should be considered. The main 

area for improvement in this space would be to use signal processing techniques to 

improve both the data size and processing performance to the point where sound 

monitoring is viable as part of a wireless sensor network. This would allow truly 

ubiquitous remote monitoring of hive sounds. 

2.6 Honey Production, Winter Stores, and Hive Weight 

2.6.1 Honey production and weight changes in the hive 

2.6.1.1 Weight changes in the hive 

Throughout the year the weight of the hive changes dramatically, as the number 

of bees in the hive and amount of brood changes, as foraged pollen and nectar are 

stored in the hive, and as stored nectar is converted into honey. The total hive 

weight, as well as the individual weights of honey, brood etc. from May – September  

were recorded for hived colonies in the south of Scotland by McLellan [99]. It was 

found that the max weight (mean 23.1 kg) was reached in June, when the colony 

population was at its largest and peak foraging had been reached. The lowest mean 

weight (12.5 kg) was in May, as the hive was repopulating and beginning to 

replenish food stores following overwintering.  
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Many commercial and private beehives throughout the world are kept primarily 

for honey production. Honey is a valuable commodity, with global annual 

consumption predicted to reach 2.4 million tons by 2022 [100]. The most accurate 

way for keepers to estimate the productivity of their hives is through weight 

measurement. The weight of honey produced by each colony varies dramatically in 

relation to weather, hive size, and colony health. Chauzat et al. described the 

variation in honey production throughout Europe in 2010 [101]. Europe wide, there 

was an average production of 1.6 tons/100 colonies, with extremes in the 

Netherlands (0.5 tons/100 colonies), and Finland (4 tons/100 colonies).  

2.6.1.2 Foraging and honey production 

To maintain the hive and build up food stores, honey bees collect four substances 

from the area local to their hive: pollen, propolis, water, and nectar [102]. These are 

important to have available to the colony to ensure good health and condition. 

Pollen is collected from plants and stored in cells to be used as a food source for 

young bees. Its high protein, lipids, and vitamin content help newly emerged worker 

bees develop and grow effectively [103]. Each larva requires 125 mg of pollen, and 

the average colony will require 20 kg of pollen over a year [21]. 

Propolis is generally pine resin (or resin from other conifers), or a sticky 

substance which is collected from tree buds. It is used for a variety of applications in 

the maintenance of the hive, including: reinforcing the hive structure; blocking gaps 

to make the hive water and air tight; providing an antiseptic layer in brood cells for 

improved brood health; and to mummify large intruders which die in the hive such 

as slugs, moths, or mice [104]. 

Nectar is the key substance collected by the honey bees. It is the primary 

ingredient in honey production as well as a direct source of food for the bees. Raw 

nectar is converted into honey as it has a long lifetime to provide nourishment during 

the winter and poor weather. Collected nectar has a high water content (up to 70%) 

as well as bacteria which would lead to mould and decay if stored as is. To create 

honey, the bees first evaporate water from the nectar to reduce the water content to 

between 17 and 18 % by exposing it to the flow of air in the colony, which can be 

increased by “fanning” (2.4.1.1) [21]. Two enzymes are then added from the bees’ 

digestive systems: Invertase and Glucose Oxidase which break the sucrose in the 
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nectar down into simple sugars (glucose and fructose) and produce hydrogen 

peroxide to kill bacteria. The final product is stored in sealed cells as a readily 

available source of easily digestible food for the colony [105]. 

Water is collected and used to dilute honey for consumption, particularly during 

brood rearing as larvae need highly diluted food, as well as for cooling the hive.  

2.6.1.3 Winter honey stores 

At the start of the winter season, the beekeeper must prepare the colony to 

survive the winter. This involves ensuring the colony is free from disease and pests, 

has a healthy laying queen, and has sufficient food stores to survive the winter [21]. 

The beekeeper will typically ensure that the queen is less than two years old, that 

there are plenty of bees in the colony, and provide additional food stores to the 

colony in the form of sugar syrup to supplement the remaining honey. Depending on 

the size of the colony it requires between 18 and 27 kg of honey to survive an 

average winter season. Honey can be supplemented with a 2:1 mixture of sugar to 

water which can then be supplied to the colonies through various types of feeder 

[106]. Once the Spring weather begins, and external temperatures begin to rise, the 

activity level in the hive increases. The queen begins to lay brood, increasing the 

activity levels and core temperature of the hive. This new brood increases the 

number of bees in the hive dramatically, and the extra activity increases the honey 

consumption of the colony by up to 400% [21].  

Ensuring that there are sufficient stores left over after the winter for the colony to 

survive this rapid growth is a key concern for the beekeeper and emergency feeding 

may be necessary. Traditionally keepers “heft” their hives by lifting them on one 

side to estimate the weight of the honey stores inside [19]. Many beekeepers will 

keep beds of early-flowering plants which flower at this crucial time nearby their 

apiary so that the bees have extra access to pollen and nectar. 

2.6.2 Instrumentation for weight measurement 

Accurate measurement of the changing weight of a hive (recorded manually) was 

used by Gates in 1914 to estimate the health of honey bee colonies throughout a 

winter season [107]. Several studies have focused on using weight sensors to 

measure honey bee colonies automatically and accurately. The first example of 
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automation was an industrial scale interfaced with a PC to achieve continuous 

monitoring of hive weight in in 1990 [108]. Lecocq et al. used an SMS enabled scale 

(range of 200 kg with a resolution of 100 g) to compare the productivity of 31 hives 

across Denmark [109]. They found that beehives in urban areas were able to build up 

greater stores than those in mainly rural areas.  

Meikle et al. monitored four hives for 17 months using weighing scales 

connected to data loggers, with a 100 kg range and ±30 g resolution [110]. They 

observed the weight changes during several swarms of 3.77 kg of bees and estimated 

the honey loss of 0.94 kg. A wireless sensor network-based hive weighing system 

was described Gil-Lebrero et al. [111], they used a load cell with an 150 kg range 

and a resolution of 100 g to estimate the ideal time for honey harvesting by 

observing the end of the main honey flow.  

This investigation led to the conclusion that automated hive monitoring is a 

valuable resource for both beekeepers and for research. It was noted that the 

weighing scales with a suitable range for monitoring hive (variations of greater than 

100 kg) do not generally have a sufficient resolution to measure the small changes 

which can occur during foraging, honey production, and colony growth (as little as 

10’s of grams). 

2.7 Monitoring of Hive Entrances  

Monitoring the entrance of the hive is an important consideration for beekeepers 

to estimate foraging levels and honey production, as well as the overall health and 

size of the colony. Important features to note are: the number of bees entering and 

leaving the hive, as well as the timing of their movement; the number of bees 

gathering outside the hive in clumps; and the appearance and condition of the bees 

entering and leaving of the hive. Several studies have focused on automating this 

process using a variety of technologies. The earliest example of automated bee 

counting was by Spangler [112], where photocells and a digital counter were placed 

at the hive entrance to count bees entering and leaving the hive as they blocked the 

light entering the photocell. Throughout the following years several other studies 

focused on using photocells and phototransistors to count bees entering and leaving 

the hive [113-115]. This method of bee counting can produce a lot of error due to 

dirt/debris on the surface of the sensor; or bees clustering around sensors or moving 
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around at the entrance without leaving to forage, as was shown in 2007 by Danka et 

al. following the comparison of a photocell based counter with manually recorded 

bee activity [116].  

In more recent years, focus has moved to more accurate methods of automated 

bee counting. Streit et al. first proposed the use of RFID tags attached to honey bees 

for detecting the entry/exit of individual bees. This method, though invasive, 

expensive, and time consuming, had the additional benefit of identifying specific 

entry and exit events for individual bees [117]. Campbell et al. proposed the use of a 

capacitive sensor to detect bees at the hive entrance, which avoided the error which 

occurred in optical based counters when the photosensitive surface became dirty or 

obstructed [118].  

Video and computer vision based systems have become the most widely 

investigated methods of honey bee counting. Automatic detection of bees entering 

and leaving the hive through processing of video data was first proposed by 

Campbell et al. [119]. Computer vision together with symbols attached to the 

dorsum of the bees were used by Chen et al. to track 100 bees successfully, as well 

as measure the length of time each bee spent outside the hive [120]. Computer vision 

for honey bee monitoring has now matured to the stage that enter/exit activity, total 

number of bees, as well as inter-bee social interaction can be identified, detected, and 

counted on beehives in the field, as described by Tu et al. [121]. 

The outcome of the bee counting review was that the technology in this space is 

quite mature. Current trends point to the use of computer vision and automatic image 

processing for estimating the activities of the colony. All studies focused on image 

processing at the hive entrance. A potential avenue for further work would be in 

applying camera or video technology to other regions of the hive. 

2.8 Other Conditions of Note in the Honey Bee Colony 

Other important conditions of the colony, which are not known to be detectable 

with the sensor technology explored in this work, are outlined in Table 2.3. It is 

important to understand these problems, and to be able to understand them for future 

work. The in-hive monitoring systems developed in this work will be deployed on 

hives with these conditions to investigate if they can be detected using such sensors.  
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Table 2.3 – Other hive conditions of note 

Hive Condition Brief Description Reference 

Drone Laying 

Queen 

Queen has insufficient sperm. This leads to the 

production of unfertilised eggs, which become drone 

bees. No new bees are produced, and without 

intervention the colony will weaken and die 

[122, 123] 

Queenlessness 

Queen is either lost or dead. The colony will respond 

within 24 hours by starting construction of new queen 

cells. If no worker eggs or larvae are present the 

colony will not be able to produce a new queen. 

[124, 125] 

Starvation 

Colony does not have sufficient food stores. Can be 

recognised by bees staggering and lying outside the 

hive, and very still or dead bees sitting with their heads 

inside the cells of the comb within the hive 

[106] 

Colony 

Collapse 

Disorder 

(CCD) 

Decimated honey bee populations in North America 

during 2006 and 2007, and continues to be responsible 

for approximately 30% of reported annual wintering 

losses in the region. Not a well understood 

phenomenon, but its symptoms are well documented as 

a sudden loss of the worker bees of a hive without 

many dead bees remaining. 

[126, 127] 

Chronic Bee 

Paralysis Virus 

(CBPV) 

Virus of Apis mellifera which lies dormant in colonies 

throughout the year though asymptomatic bees. CBPV 

can cause the death of colonies due to lost worker bees 

[128, 129] 

American Foul 

Brood (AFB) 

Caused by the bacterium Paenibacillus larvae, which 

releases spores which infect larvae when ingested. The 

bacteria reproduce rapidly, eventually killing it and 

reducing the remains to a sticky mass. 

[130] 

European Foul 

Brood (EFB) 

Caused by the bacterium Melissococcus plutonius, 

which also enter the brood as spores are ingested by 

larvae. These bacteria remain in the gut of the larvae, 

where they multiply and compete with the larvae for 

food. This starves the larvae to death. 

[131] 
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2.9 Summary 

 In this chapter, the existing literature on the changing conditions inside the hive, 

and the state of the art in beehive monitoring were presented and analysed. The first 

topic explored was hive temperature and humidity, which was found to be a key 

indicator of the hive status. These parameters influence the health, reproduction, and 

disease levels of the hive. The state of the art in monitoring temperature and 

humidity uses arrays of wired and wireless sensors to study demonstration hives.  

Respiratory gasses (CO2 and O2) can be used to estimate the productivity and size 

of the colony, as well as being a factor in the development of several diseases. Very 

little work has been undertaken in utilising such gas sensors in hive instrumentation. 

Airflow is also a key factor in heating and cooling the hive throughout the year. 

Previously extensive work has aimed to model the hive at various stages of the year, 

but not on modifying hive structures to improve the thermodynamics of the hive.  

Sound is a key indicator of the colony activity and status, but has not been 

utilised very well by beekeepers to manage their hives. Recent developments have 

focused on detecting hive events such as swarming and alarms from the colony using 

data loggers and microphones. Hive weight and activity at the hive entrance are 

parameters which beekeepers use to estimate honey stores, activity/foraging levels, 

and colony health. Several examples of hive weight measurement and hive entrance 

monitoring were identified.  
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3 Wireless Sensor Networks for 

Instrumentation of Beehives 

3.1 Introduction 

Recently, technological advances have caused embedded sensing, computing and 

communication devices to become an integral part of daily life. WSN have been 

recognised as a critical component of the emerging internet of things (IoT) concept.  

WSN have found applications in nearly every aspect of human life in developed 

countries, including smart homes, security, and personal healthcare [6, 132-134]. 

This versatility has greatly increased its popularity in industrial and academic 

research [135, 136]. New WSN products from leading technology companies are 

fuelling the next wave of exponential growth in the consumer market [137]. For this 

reason there is an increasing quantity of off-the-shelf WSN devices which can be 

bought as ad hoc solutions to act as specific or generic wireless sensor nodes for a 

wide range of applications [138]. From the review of the literature described in 

Chapter 2 it was understood that automated, unobtrusive measurement of the in-hive 

conditions (temperature, humidity, carbon dioxide, oxygen) could provide valuable 

insight into the activities and conditions of honey bee colonies. It was also clear that 

in-hive sensing was a suitable application for WSN technology, fitting many of the 

ideal characteristics for a WSN deployment. 

This chapter discusses the instrumentation of honey beehives in the field. 

Heterogeneous sensors were deployed, monitoring the conditions within a hive 
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(temperature, CO2, pollutants). Data were collected periodically, showing how the 

colony behaviour changed over time. This posed a range of challenges, including 

multi-radio communications, low energy performance, and novel combinations of 

sensors. The key research questions during development were:  

 What combination of sensors will provide an accurate understanding of the 

hive conditions? 

 How can the system be integrated into the hive for minimal impact on the 

colony? 

 How to effectively transmit data from remote locations to a beekeeper? 

 How to provide sufficient energy to collect and transfer these data? 

3.2 Sensor Selection for the Hive Environment  

3.2.1 Requirements 

As identified in Chapter 2, sensing inside the beehive is a complex challenge for 

several reasons. Firstly, the interior of a beehive is not a suitable environment for 

electronics to operate. The internal temperature of the beehive can vary greatly 

throughout the season from as low as 10°C up to 50°C. When combined with damp 

external weather and a poorly insulated sheet metal roof, these temperature 

fluctuations can cause condensation in the hive interior. During honey production, 

the bees intentionally “fan” the honey combs to remove water from nectar they have 

collected and this further increases the amount of water vapour in the hive interior. 

Secondly, honey bees cover many parts of the hive interior with wax and/or propolis. 

This is part of the bees’ natural activities, in some cases related to draught-proofing 

and cannot be prevented. These would prevent most sensors from operating, 

particularly gas detection sensors that require air flow, and could damage circuitry. 

Another barrier to the instrumentation of beehives is the fact that beehives are 

often placed in remote locations and in a variety of environments. This limits the 

networking and connectivity options for the system of in-hive sensors. Additionally, 

this property makes energy harvesting and low energy operation a high priority, as 

power sources are unavailable and replacing battery packs etc. may cause increase in 

beekeeping costs due to the need to visit hives more frequently. 
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One of the most important considerations in the design of a beehive monitoring 

solution is that of the beekeeper. As part of their normal activities the beekeeper 

needs to be able to regularly disassemble the beehive to undertake inspections, feed 

the bees, apply treatments, etc. Speed can be an important factor for some of these 

activities, as during cold or wet weather, leaving the interior of the hive exposed can 

be detrimental to the colony.  

Therefore, the beehive monitoring system should not prevent these inspections, 

or make the beehive more time consuming to disassemble. In the peak beekeeping 

season, keepers typically visit their hives once per week, and during the winter hives 

may not be inspected for up to four months. The system needs to send data more 

often than visits during the summer to be useful to the keeper, and have a suitable 

lifetime to survive overwintering. Several necessary properties were identified for 

the system: 

 Non-invasive, minimum impact on hive and honey bee colony.  

 No impediment or disruption to beekeeper activities.  

 Robust and resistant to hive conditions.  

 Energy harvesting for self-sustainable operation. 

 Suitable for remote deployment. 

 

Figure 3.1 – Envisioned layout of hive monitoring sensor network 
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To satisfy all of these requirements, an unobtrusive in-hive wireless sensor node 

was envisioned, working as part of a multi-radio network, with a low-power network 

for local aggregation of data, and a long-range network for remote data collection. 

From Chapter 2 the minimum sensor range was identified as temperature, humidity, 

CO2, and O2. The sampling rate would need to accurately reflect the well 

documented diurnal behaviour of the honey bee [139]. The envisioned in-hive 

monitoring system is shown in Figure 3.1. 

3.2.2 Sampling schedule 

Honey bees live by a diurnal cycle. When the weather is suitable for pollen 

collection for feeding young bees and nectar gathering for honey production, the 

worker bees typically leave the hive during the warmest and brightest parts of the 

day to make repeated foraging visits to habitats within about 5km radius of the hive.  

Foraging visits cease at dusk or when it rains. During the night, the honey bees 

remain inside the hive. This cyclical behaviour informed the design of the desired 

sampling schedule for an in-hive sensor system.  

Six samples/day were collected from the sensors, to minimise use of power 

hungry sensors while giving a clear picture of the changing parameters throughout 

the day. This sampling rate was the minimum sampling interval required to monitor 

conditions in the hive at key moments during the 24-hour cycle during the honey 

production season, (pre-nectar/pollen honey collection in the morning, peak of 

nectar/pollen collection at noon/early afternoon, end of nectar/pollen collection 

period, night time when all the bees are in the hive). It was important to sample at 

these times each day, particularly given the changeable Irish climate, with the 

weather changing almost hourly, which could affect colony behaviour.  

To upload all of the data generated in the multi-node network, all data was 

aggregated on a single “base node” which compiled a single file for upload. To 

minimise packet loss due to collisions, and the resulting energy waste, each end 

device was given a dedicated 5-Minute time slot within the 12:00 – 12:55 period to 

join the local network and transfer its data to the base station. The base station 

therefore was only awake from 12:00 – 13:00, to listen to the available data, then 

after listening, aggregate and upload. An illustration of the nodes’ daily software 

schedule can be seen in Table 3.1 and Table 3.2. 
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Table 3.1 – Firmware Schedule for end devices 

TIME ACTION 

02:00 – 02:04 Wake, sample sensors, store data, sleep 

06:00 – 06:04 Wake, sample sensors, store data, sleep 

10:00 – 10:04 Wake, sample sensors, store data, sleep 

12:XX – 12:XX Wake at designated staggered timeslot, send data via local 

network to base station, sleep 

14:00 – 14:04 Wake, sample sensors, store data, sleep 

18:00 – 18:04 Wake, sample sensors, store data, sleep 

22:00 – 22:04 Wake, sample sensors, store data, sleep 

 

Table 3.2 – Firmware Schedule for base station 

TIME ACTION 

12:00 – 13:00 Wake, receive data from local network during staggered timeslots, 

compile file with all data, upload to servers via long-range 

network, sleep 

 

3.2.3 Sensor selection 

The critical in-hive parameters which may indicate the status of the colony have 

been identified in the literature as: temperature, humidity, Carbon Dioxide (CO2) 

levels, and Oxygen (O2) levels [69, 140]. These are known to vary in response to one 

or more of these scenarios: the number of honey bees in the hive, the health of the 

colony, and the weather. These observations motivated the sensor choice. In order to 

eliminate noise from the sensors, for each sample the average of 10 sensor readings 

was selected. 

The gas monitoring node had five sensors measuring the composition of the air in 

the prototype hive. These sensors were: molecular oxygen (O2) sensor SK-25 from 

Figaro; carbon dioxide (CO2) sensor TGS4161 from Figaro; nitrogen dioxide (NO2) 

sensor MiCS-2710 from E2V Technologies; and two air contaminants sensors 
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TGS2600 and TGS2602 from Figaro which sensed a range of contaminant gases the 

most significant of which are ethanol (CH3CH2OH), hydrogen sulphide (H2S), 

ammonia (NH3), carbon monoxide (CO), and methane (CH4).  

The general hive conditions node utilised three external sensors: particle dust 

(GP2Y1010AU0F) from Sharp; humidity (808H5V5) from Sencera Co; and 

temperature (MCP9700A) from Microchip Technology. This node also utilised the 

Waspmote platform's built in 3-axis accelerometer (LIS331DLH) from 

STMicroelectronics. The NO2, contaminant, and dust sensors were not identified in 

the literature review (Chapter 2), but were included in Deployment I(a) and I(b) to 

investigate if they had a response to the hive airflow.  All sensors were calibrated 

and tested in University College Cork, Ireland before deployment. 

 Following the results of deployments I(a) and I(b) (described in Section 0) 

the sensor selection was reduced to 5 of the previously used sensors which were 

identified as important to describe the in-hive environment, and the hive’s position: 

oxygen, carbon dioxide, humidity, temperature, and acceleration. The dust sensor 

was not found to provide any useful response to the hive environment, and the gasses 

detected by the NO2 and air contaminant sensors were not present at detectable 

levels in deployment I(a) or I(b), possibly due to the rural location of the apiary used 

for the study. These sensors may be useful in a deployment on a beehive in a city 

environment, where particle matter and pollutant gasses are more prevalent. 

3.3 System Design 

3.3.1 Platform 

To achieve the goals outlined above a preliminary WSN system was envisioned, 

with two types of low power in-hive node supporting a variety of sensors (network 

architecture is shown in Figure 3.7). The system also included a single base station 

which collected data from the local network of in-hive nodes, then used a long-range 

radio to relay results to a cloud based server. The two developed end device nodes 

were: a gas detection node, which measured the concentration of various gases 

within the hive; and a general hive conditions node, which measured other important 

parameters, including temperature and humidity. 

The platform used to develop the system utilised an 8-bit ATmega1281 
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microcontroller. Low power sleep modes (0.7 µA @ 3.7 V) with duty cycling and 

energy harvesting were used to permit an extended lifetime. The platform had a 

modular architecture allowing a combination of over 70 sensors and 11 radio 

technologies, a built-in SD card slot, real time clock, and accelerometer. It had sleep 

and hibernate modes, and an energy harvester adapter. The radio solutions utilised 

were ZigBee® and 3G/GPRS, the selection criteria and properties for the networking 

solution are described in detail in Section 3.4. An encapsulated version of the 

platform was available with an IP65 enclosure. An outline of all node architectures 

are shown in Figure 3.2.  

 

Figure 3.2 – Node architecture version 1[141] 

Following the results of deployments I(a) and I(b) (described in Section 0) the 

system was redesigned to include a single in-hive node with the above identified key 

sensors. This allowed for a greater number of future deployments by reducing the 

amount of materials required per hive. The revised system included improved 

firmware with lower energy requirements, better sensor calibration, and more data 

backups for redundancy. The revised system also included an external solar panel 

instead of the previous integrated solar panels (described in Section 3.5). An outline 

of the revised system can be found in Figure 3.3. 
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Figure 3.3 – Node architecture version 2 

3.3.2 Hive roof design 

To satisfy the above-described system requirements a prototype system was 

proposed (Figure 3.4) and developed.  

 

Figure 3.4 – Proposed layout for prototype 

These nodes were integrated into the existing hive roof as shown in Figure 3.5. 

The barrier (crown board) between the roof and main hive allowed the sensors to 

monitor the hive conditions without allowing the honey bees to access the sensors. 

Air flowed through the hive naturally through a mesh covered hole in the crown 

board, allowing the gas sensors to collect accurate data about the respiration in the 

hive. This hole is a typical feature of the crown board, and the addition of a mesh 

prevents the bees from crawling into the roof cavity to reach the electronics to place 
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wax, honey, or propolis on them. It was initially necessary to occasionally check the 

mesh for build-up of wax, pollen, or dust and clear it out with a wire brush.  

An improved solution for sealing the hole in the crown board was found, a 

perforated plastic sheet placed over the hole, which the honey bees were found not to 

interfere with, and therefore did not need to be cleaned. This layout did not change 

the beekeeper’s typical activities in any way, as the system was entirely integrated 

into a single section of the hive. Inspections, treatments, and feedings could be 

performed as normal by removing the roof and placing it to one side. The only 

addition to the beekeeper’s routine was a quick inspection of the mesh as described 

above. The developed prototype can be seen in Figure 3.5. 

 

Figure 3.5 – Prototype of sensor system version 1 installed in a hive roof 

After deployments I(a) and I(b) (described in Section 0) the system was 

redesigned to improve performance, and 5 prototypes were developed (Figure 3.6). 

The key features of the design remained the same, with the entire system integrated 

into the hive roof. However, several important improvements were made: 

Sensors 

Hive Roof 



Wireless Sensor Networks for Instrumentation of Beehives  

44 

 

1. The entire sensor node was placed within the hive roof rather than 

extruded through. This change was made because in deployment I(a) and 

I(b) the temperature gradient across the node led to condensation within 

the node enclosure. 

2. A custom hive roof was manufactured with an extended depth (7” 

(17.78 cm) rather than the traditional 4.5” (11.43 cm)). This improved the 

design by increasing the space available for electronics and sensors, and 

increasing the weight and stability of the system, thereby reducing the 

likelihood of the hive being blown or knocked over. Greater depth also 

reduced the possibility of condensation in the roof cavity due to rain or 

mist entering the roof space.   

3. A fully waterproof external solar panel was utilised, and mounted on the 

hive roof at an optimal angle for improved energy harvesting (further 

details in Section 3.5).  

4. Other general design improvements included better cable layout to 

maximise waterproofing, and improved mounting of the antenna.   

 

Figure 3.6 – Prototype of sensor system version 2 installed in a hive roof 

Sensors 

Hive Roof 
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3.4 Network Topology and Connectivity 

3.4.1 Multi-network solution 

To satisfy the design requirements outlined in Section 3.2.1 a multi radio system 

was envisioned. A single network solution has not been developed that satisfies the 

various requirements of a beehive monitoring solution. The necessary properties 

identified for each network are described below: 

3.4.2 Local (apiary level) network: 

1. Low power – The apiary level radio had to be integrated into the hive 

with the sensor node. Therefore, the radio should not significantly 

increase the energy requirements of the system. 

2. Data rate – The data rate requirements for the network were low. Single 

data points from each sensor were collected several times per day, 

creating data in the 10s of kB per day. 

3. Flexible – Flexibility should be an important feature of the apiary level 

network. The network needed to be able to adapt when the hives are 

moved and as various hives are removed and introduced. 

4. Range – The apiary level network needed to be able to communicate over 

a short distance. The width of the typical Irish apiary which the network 

needed to cover was approximately 25 metres.  

3.4.3 Wide (data aggregation) network 

1. Range – As apiaries are often located in remote and rural areas, it was 

important for the wide network to use an ultra-long range radio.    

2. Ubiquitous – As beekeepers often have hives in a variety of locations, and 

regularly move hives between sites, it was important that a ubiquitous 

networking solution was selected. 

3. Interface with servers – The data collected from the hives was aggregated 

in an FTP server (detailed description Section 3.4.5) so it could be 

accessed remotely for processing. It was therefore important for the 

networking solution to be able to access such a server.  
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4. High data rate – Long range networking solutions are typically energy 

hungry. Therefore, it was important to select a solution with a sufficient 

data rate that allows the radio to be off for most of the system cycle for 

improved system life.  

3.4.4 Radio selection 

The communication protocol selected for the local (in-hive) network was 

ZigBee®, as energy performance was a critical parameter for in-hive nodes which 

cannot be accessed easily post-deployment. The XBee-ZB-PRO module from Digi 

International was selected to achieve this. The XBee-ZB-PRO was a low power full 

Zigbee enabled radio which can be reprogrammed easily into gateway, router, or 

end-device mode.  

 

Figure 3.7 – Network structure 

For the long-range communication in the base station node, 3G was selected for 

its widespread availability, including rural areas where beehives, in Ireland, are 

typically kept. The SIM900 (SIMCom) GSM/GPRS module was selected for 

networking. This module had ultra-low power operation (30µA) and provided phone 

call, SMS and FTP upload/download operations.  GSM/GPRS networking was 

selected to suit the remote deployments of many beehives. Other possible solutions 
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such as WiFi and High-Power ZigBee were considered, but did not satisfy the long 

range and ubiquitous requirements as well as GSM.  

The Zigbee network synchronised and end devices sent collected data to the base. 

Data were transmitted by a 3G radio to a server (cloud storage). This combination of 

networks allows the smart hive to be a fully IoT enabled system, relaying data from 

the beehive to the laboratory. The network structure can be seen in Figure 3.7.  

3.4.5 Data storage 

Each data point was time stamped as it was sampled, and as it was transferred 

through each stage of each network. This ensured an accurate record of the changing 

beehive conditions was obtained. It also allowed for reconstruction of data in the 

case of jumbled packets.  

Each of the nodes in the network were enabled with a 4 GB SD card. A record of 

each data point passing through every node was stored on this SD card in a CSV file. 

This guaranteed maximum recovery of data in the case of any network or device 

failure.  

The primary location for data storage in the system was a 1.11 TB LINUX 

Debian server based in the Department of Electrical and Electronic Engineering at 

University College Cork. The base station of the apiary level network connected to 

this server once per day (at 12pm) and uploaded the newest CSV data to the server 

via FTP. Two backups of this server were maintained on external hard drives stored 

in a locked laboratory in the Department of Electrical and Electronic Engineering, in 

case of server failure or accidental deletion. The total size of data transferred per day 

to the server was approximately 6 datasets (42 datapoints) 4 KB per active hive. This 

allowed a large amount of insight into each hive while remaining low cost and 

without excessive bandwidth usage.  

3.5 Energy Efficient Design 

3.5.1 Prototype design 

The first design of the system featured an internal solar panel integrated into each 

of the two end-device’s waterproof casing (size 111 mm x 91 mm, maximum output 

6.5V at 205mA). The nodes were extruded through the roof of the beehive in order 
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to expose the panel to sunlight. The nodes were mounted at an angle of 11° from 

horizontal to prevent rain from accumulating on its surface and to allow the panels to 

be oriented facing a southerly direction to increase performance (Figure 3.8) 

For the more power-hungry base station of the network a larger, external solar 

panel was utilised to provide more energy (234 mm x 160 mm, maximum output 7 V 

at 500 mA). This solar panel was mounted on a bracket with a 30° angle from 

horizontal, and always oriented due south. This angle was selected as it is the 

average of the yearly ideal solar panel angles for maximum solar energy collection in 

Ireland as advised by the Irish Solar Energy Association [142]. The final solar panel 

brackets for the in-hive nodes can be seen in Figure 3.10. 

 

Figure 3.8 – Solar panel orientation version 1 

3.5.2 Preliminary energy challenges 

The performance of the solar energy harvesting throughout the deployments I(a) 

and I(b) was observed by monitoring the recorded battery level. The energy 

harvester did not provide enough energy for the gas sensing node, due to the power-

hungry gas sensors which need to be powered for an extended time before they 

provided an accurate result.  

The options for improving this node’s energy performance were explored, 

including reducing the rate of sampling from 6 samples per day to 3 or 2 samples per 

day (labelled A), maximising solar panel efficiency at each of these sampling rates 

(η) by deploying it at on a customised mount which moves the panel to an angle 

optimised for the deployment location (labelled B) (38° from vertical for Ireland, 

 
Hive Roof 

Antenna 

Fixed Solar Panel 

Base Station 
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latitude ~50°), and then, additionally improving the power consumption of node 

operation by 30% through reducing the node’s idling time and changing the order of 

sensor readings so they used energy more effectively (labelled C) (Figure 3.9). It can 

be seen in graph C that these three techniques combined lead to a self-sustaining 

node [143]. 

 

Figure 3.9 – Simulated energy performance  
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It was estimated that by using one or more of these techniques it would be 

possible to improve energy performance to achieve self-sustainable operation. The 

hardware and software were redesigned to achieve this for subsequent deployments.  

3.5.3 Hardware improvements 

The primary improvement in hardware which could be implemented was 

improved energy harvesting. This was achieved by replacing the integrated solar 

panels used in deployments I(a) and I(b) with dedicated solar panels external to the 

hive (Figure 3.10). The dimensions were 234 mm X 160 mm with a maximum 

output 7 V at 500 mA compared to the 111 mm X 91 mm 6.5 V at 205 mA solar 

panel used in deployments I(a) and I(b). These solar panels provided far more energy 

to the sensor nodes than the previous panels, even during winter deployments at high 

latitudes.  

 

Figure 3.10 – Hive roofs with fixed solar panels 

These improved solar panels were mounted on the roof of the hive to increase the 

amount of exposure to sunlight, as optimal beehive placement in colder climates 

involves placing the hives facing in a southerly direction in areas exposed to 

sunlight. The solar panels were mounted on brackets with a 38° angle from vertical 

to maximise energy harvesting as outlined in Section 3.5.2 (Figure 3.10). An 

adjustable mounting was designed, which allowed the angle of the solar panel to be 

Hive Roof Solar Panel angled at 38° 

Antenna 
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changed to match the seasonal changes in the sun’s position. This mounting was 

used in all subsequent deployments for the solar panel of the base station, but it was 

not necessary for the in-hive nodes as the fixed bracket described above combined 

with other energy improvements as discussed below in Section 3.5.4 provided excess 

energy in all seasons.  

Another hardware change designed to improve energy performance was the 

identification of the most important sensors following deployments I(a) and I(b). 

Several sensors, including three power hungry gas sensors, were removed. Namely: 

nitrogen dioxide (NO2) sensor MiCS-2710; two air contaminants sensors TGS2600 

and TGS2602, and the particle dust sensor (GP2Y1010AU0F). 

3.5.4 Software energy improvements 

Several improvements were made in the firmware of the nodes which 

significantly improved their energy performance. A power analysis of the gas 

sensing node used in deployments I(a) and I(b) found that when the device was in 

sleep mode it consumed an average current of 10.2 mA. This is an unsustainable 

current for the device to operate on using a 6600 mAh battery for long term 

deployments. It was also several orders of magnitude higher than the 55 µA sleep 

current expected based on the platform datasheets. Problems in the platform libraries 

for the SD card, radios, and sleep modes were identified: 

 An error with the function designed to switch off the SD card. The SD card and 

the Xbee ZigBee radio shared an SPI line. This error in the SD library led to 

random behaviour on the SPI line and increased current consumption when using 

the Xbee radio’s sleep modes once the SD card was initialised. This problem was 

overcome by using low level code to put the Xbee module to sleep and close the 

connection, rather than the library functions provided.  

 There was a problem with the library code for the sockets of the sensor 

expansion board, where current was constantly leaking as long as the board was 

initialised, even when in deep sleep mode (the board should disconnect when the 

deep sleep function is called). This issue was resolved by disconnecting the 

expansion socket using low level code when the sensors were not in use.  

 The length of time when the power-hungry sensors were drawing current was 
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reduced. This was achieved by rearranging the order in which the sensors were 

sampled to allow non-energy hungry sensor readings to overlap with the gas 

sensors heating. The gas sensors which required heating were initialised before 

the other sensors were sampled, allowing the sensor board to be turned off 

earlier.  

 

Figure 3.11 – Current profile - software version 0.17 

 

Figure 3.12 – Current profile - software version 0.22 

The improvements described above were implemented, and found to markedly 

improve the energy performance of the system. The current draw in the deep sleep 
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mode was improved from 10.2 mA to 150 µA. This represents a reduction by a 

factor of 66. The estimated lifetime of the node in deep sleep mode while utilising a 

6,600 mAhour battery was extended from 18.8 days to 1,233 days. This leads to the 

conclusion that a significantly smaller battery could be used in future versions of the 

system. During the Winter months, a hive may not be visited by the keeper is 

approximately 4 months. This suggests that a 700 mAhour battery would be suitable 

to supply the system, reducing the cost of the node. 

The improved energy performance made it unnecessary to reduce the sampling 

frequency as suggested in Section 3.5.2. A plot of the current profile of the gas 

sensing node before (Software version 0.17) and after (version 0.22) the software 

revision can be seen in Figure 3.11 and Figure 3.12.  

3.5.5 Energy performance in-field 

To evaluate the effectiveness of the energy improvements above, the battery level 

throughout Deployments III – V was monitored. The in-hive nodes were found to be 

self-sustaining. i.e. they used less energy in their operation than they collected from 

their energy source. Figure 3.13 shows the battery level of four nodes over the 66 

days of Deployment V.  

 

Figure 3.13 – Battery level for deployment V 
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It is worth noting that this deployment took place during Winter months, which is 

the worst-case scenario for solar based harvesting in Ireland. Other possible energy 

sources were considered and identified as suitable for future deployments of the in-

hive monitoring system, including wind power from a small turbine (due to the rural 

and often exposed positioning of apiaries), and thermoelectric charging (utilising the 

often-large temperature differential between the core of the hive and the external 

weather). 

3.5.6 Energy aware adaptive sampling algorithms 

A major obstacle for WSN in harsh applications is energy availability. Battery 

life is limited, and improvements have not matched the rate of advancements in other 

WSN technologies, such as memory, networking and processing. Energy harvesting 

provides a partial solution by recharging the battery. However, this energy is 

unpredictable which can lead to node failure. This is particularly true for the 

application of WSN nodes to beehives. The energy harvesting method used was solar 

panels which are unreliable in overcast regions. As well as this, the gas sensors 

required to evaluate the colony were extremely power hungry, and needed to be 

powered for extended periods of time (up to 40 seconds each) to provide an accurate 

reading.  

The most demanding gas sensor was the CO2 TGS4161, which needed to be 

powered for 40 seconds to reach a suitable level of accuracy. This caused the sensors 

to be the most energy demanding component of the sensor nodes, compared to other 

WSN examples, where the radio was the most demanding component. These 

properties identified the beehive sensor network as an ideal application to 

demonstrate adaptive sampling algorithms.  

The approach used was a novel energy-aware adaptive sampling algorithm 

(EASA) designed by Bruno Srbinovski, a PhD candidate in the Department of 

Electrical and Electronic Engineering at University College Cork. This combines 

adaptive sampling techniques with an energy harvesting management technique to 

increase the node lifetime, achieving self-sustainability. The design and development 

of the EASA are outlined by Srbinovski et al. [144]. The EASA had a generic design 

for calculating the desired sampling frequency as outlined in equations 1 and 2, and 

could easily be implemented on the existing WSN platform.  
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𝑓𝐸𝐴𝑆𝐴 = 𝑓𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔𝐾 
(1) 

{

𝐾 = 1 ,  𝑖𝑓 𝐸𝑏𝑎𝑡𝑡 ≥ 𝑋

𝐾 = 1 − (
𝑋𝑙𝑒𝑣𝑒𝑙 − 𝐸𝑏𝑎𝑡𝑡

100
)

𝑚

, 𝑖𝑓 𝐸𝑏𝑎𝑡𝑡 < 𝑋
 (2) 

Where fEASA was the new sampling frequency, fsampling was the previous sampling 

frequency, K was the energy cost function, Ebatt was the measured percentage level 

of the battery, Xlevel was the selected fixed critical battery level in percentage, and m 

was a parameter used to tune the rate of frequency change. A MATLAB simulation 

of the EASA algorithm applied to the beehive gas sensing node used in deployment 

I(a) and I(b)  was run using the actual solar energy harvested and energy 

requirements of the node.  

The frequency changes throughout the EASA simulation for different values of m 

(1/3, 0.5, and 1) and the frequency changes for a traditional ASA (no energy 

harvesting management) were recorded. Each of the EASA simulations responded 

faster to the dropping battery level than the ASA, with m=1/3 having the fastest 

response time. This response makes the EASA more effective at preserving battery, 

but results in less data being collected during a given period. The frequency changes 

throughout the simulation are shown in Figure 3.14.   

The measured battery level throughout the deployment was compared with the 

simulated battery level. It was found that the EASA was more effective than the 

ASA at preserving battery life (Figure 3.15). The EASA with m=1/3 leading to a 

battery level of 40% in the same time a node with no adaptive sampling would 

completely deplete.  

The battery levels throughout the simulations compared to the measured values 

(EFSR – “Fixed Sampling Rate”) are shown in Figure 3.15. Based on this, it was 

identified that Energy Aware Adaptive Sampling Algorithms are an effective method 

of energy conservation for in-hive sensor network. This could help greatly extend the 

lifetime of each node, particularly as the times when energy harvesting is less 

effective (e.g. winter and night in the case of solar harvesting) are also times when 

less frequent collection of hive data is likely to be more acceptable.  
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Figure 3.14 – Simulated sampling rate for ASA and EASA[144] 

 

 

Figure 3.15 – Simulated battery level for fixed rate, ASA, and EASA[144] 
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3.6 In-field Deployments  

Throughout the research described in this thesis, five deployments of the in-hive 

sensor network were performed over 513 days on up to five hives simultaneously. 

This facilitated the collection of 3435 datasets, where one “dataset” is defined as a 

set of seven values describing: temperature, humidity, CO2, O2, acceleration, 

timestamp, and node battery level; for a single node collected within the same 3-

minute window. The primary sampling frequency for these deployments was three 

times per day (4 hour intervals, 0.694 µHz), with one deployment (deployment I (b)), 

which sampled the gas sensors three times per day (8 hour intervals, 0.347 µHz) to 

evaluate the impact on energy performance.  

To validate that the sensor nodes were not influencing the colonies they were 

monitoring, several hives in the apiary were intentionally not monitored using the 

sensor nodes. Throughout the various deployments the condition and productivity 

levels of the monitored and non-monitored hives were compared by an experienced 

beekeeper, and no differences between the groups were identified.  

3.6.1 Deployment I, (a) & (b) 

The first deployment, termed Deployment I(a), of the prototype beehive 

monitoring system took place on a single beehive with a healthy bee colony near 

Banteer, Co. Cork, Ireland on 29/06/2014 and continued until 13/07/2014. The 

prototype was adjusted and redeployed (termed Deployment I(b)) from 11/08/2014 

onwards on the same hive until 27/08/2014. Weather conditions were recorded 

throughout the deployment for analysis (Figure 3.25). Weather data were obtained 

from the Irish national meteorological service Met Éireann. The temperature, wind 

speed, atmospheric pressure, and rainfall were recorded from the nearest automatic 

station at Moorepark, Co. Cork, Ireland (39 km from deployment) and the sunlight 

data were recorded from Cork Airport, Co. Cork (40 km from deployment), Ireland 

(Figure 3.16).  

Daily rainfall data were also collected manually at the apiary. Both nodes were 

sampled 6 times per day during Deployment I(a). The sampling rate was adjusted to 

sample general conditions six times per day (4 hour intervals, 0.694 µHz), and gas 

levels three times per day (8 hour intervals, 0.347 µHz) during Deployment I(b). 

These sampling frequencies were selected to provide a picture of the hive at the 
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critical times (i.e. at night when bees are in the hive, during the morning when 

foraging is taking place, and in the evening when foraging has ended).  

 

Figure 3.16 – First assembled prototype deployed in-field 

The data collected during deployment I(a) show large fluctuations in temperature 

from 12 °C to 42 °C and CO2 from 370 ppm to 445 ppm initially, with both 

parameters stabilising, with temperature fluctuating around 18 °C by ±~5 °C and 

rising towards 470 ppm for CO2, towards the end of the deployment. Over the first 

deployment O2 was found to remain steady between 20% and 21.5%, while humidity 

varied between 65% and 95%. In deployment I(b) the CO2, temperature, and O2 

readings were quite constant over the duration of the readings with values of 

approximately 472 ppm, 12 °C ± ~ 7 °C  and 21.5% respectively, with humidity 

fluctuating between 80% and 100%. These data are summarised as graphs, with time 

on the X-axis, the vertical gridlines marking the 2 pm point in each 24-hour period, 

allowing the diurnal pattern in almost every dataset to be seen clearly. Figure 3.17, 

Figure 3.18, Figure 3.19, and  Figure 3.20 show the results collected from 

deployment I(a), Figure 3.21, Figure 3.22, Figure 3.23, and Figure 3.24 show the 

results collected from deployment I(b), and Figure 3.25 shows the related weather 

data.  

Solar Panel  

Hive Roof 

Antenna 
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Figure 3.17 – Temperature Deployment I(a) 

 

 

Figure 3.18 – Humidity Deployment I(a) 
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Figure 3.19 – Carbon dioxide Deployment I(a) 

 

 

Figure 3.20 – Oxygen Deployment I(a) 
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Figure 3.21 – Temperature Deployment I(b) 

 

 

Figure 3.22 – Humidity Deployment I(b) 
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Figure 3.23 – Carbon dioxide Deployment I(b) 

 

 

Figure 3.24 – Oxygen Deployment I(b) 
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Figure 3.25 – Weather data Deployments I(a) and I(b) 

 

3.6.2 Deployment II - Empty beehive deployment 

In order to perform accurate observations on the data collected from the beehive, 

and to correctly validate future data/signal processing and machine learning, a 

deployment on an empty beehive was undertaken. This deployment took place on an 

empty beehive near Wilton, Co. Cork from 13/03/2016 to 20/03/2016 the collected 

data can be seen in Figure 3.26, Figure 3.27, Figure 3.28, and Figure 3.29. It was 

necessary in this case to deploy the hive much nearer a weather station, rather than at 

the existing apiary, to accurately observe the effect of the weather on the hive 

structure. This was required to identify that the changes observed in hives with 
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colonies were a result of the colony behaviour, rather than changing weather 

patterns.  

The relevant weather data were collected from the nearest Met Éireann automatic 

weather station at Cork Airport, 3km from the instrumented hive This provided 

accurate temperature, and sunshine readings for the area, which can be seen in 

Figure 3.30. The small difference between the temperatures at the weather station 

and at the hive can be seen in Figure 3.30 on day six, where the hive reached 0 °C, 

but the minimum recorded at the weather station was 1 °C. No rainfall was recorded 

at the weather station throughout this deployment.  

The first step was to compare the external weather with the conditions recorded 

inside the hive. The measured internal and external temperatures had a linear 

correlation coefficient of r = 0.65, which is considered a strong correlation. The 

remaining temperature relationship is explained by the effect of sunshine on the 

metal roof of the hive. Sunshine, external temperature, and internal temperature are 

graphed in Figure 3.30. A proportional spike in hive temperature can clearly be seen 

on days with high levels of sunshine. The correlation coefficients between internal 

temperature and measured CO2, humidity, and O2 levels were r = -0.59, r = -0.64, 

and r = -0.94. 

When compared with the data collected from a hive with live bees (Sections 0, 

3.6.3, 3.6.4, and 3.6.5) a clear difference can be seen. The empty beehive’s 

temperature, humidity, and gas levels varied based on the effect of the external 

weather. The carbon dioxide and oxygen levels were at relatively constant levels of 

~416 ppm and 24.76% respectively, with the average carbon dioxide level being 

significantly lower than measured inside a healthy beehive. The spikes in 

temperature and humidity were seen to reflect the changes in the external 

environment including the ambient external heat and humidity, as well as changing 

due to the sun shining on the hive exterior and rainfall. 
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Figure 3.26 – Temperature Deployment II 

 

 

Figure 3.27 – Humidity Deployment II 
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Figure 3.28 – Carbon dioxide Deployment II 

 

 

Figure 3.29 – Oxygen Deployment II 
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Figure 3.30 – Weather and hive temperature Deployment II 

3.6.3 Deployment III - Summer deployment  

Following the initial deployments I and II described above, the in-hive sensor 

system was revised extensively (as described in Sections 3.3 through 3.5). A further 

deployment of the technology was undertaken during Summer months to gather 

more data about the activity and conditions of colonies at this time. This deployment 

was undertaken on three hives at the apiary near Banteer, Co. Cork from 24/07/2016 

to 05/08/2016.  The same five hives were used for deployments III through IV, to 

compare and contrast the changes in the same colonies throughout the different 

datasets. To facilitate this the hives were given numerical identifiers 1 to 5, which 

were physically written on the hive exteriors, and included in the data packets 

transmitted from each sensor node. 

Throughout this deployment the average temperature in all three hives remained 

constant, at 17-19 °C with the typical diurnal fluctuation seen in previous 

deployments, in this case the fluctuation was ±~4 °C.  The humidity in all three hives 

remained quite constant in the 65 – 80% range, despite one extremely rainy day with 

21 mm of rain, which can be seen reflected in the humidity data of all three hives. 
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The carbon dioxide (CO2) in all three hives fluctuated between ambient levels 

(400 ppm) and 500 ppm for the first 4 days of the deployment, before reaching a 

steady value in the 450 – 500 ppm range. This reflects the previous observation that 

a healthy, normal sized colony  regulates it’s carbon dioxide levels, and works to 

maintain it at a constant level, which is slightly higher than the ambient level found 

outside the hive.  

As in previous experiments the oxygen levels remained constant around 23%, 

with diurnal fluctuations. A possible explanation for this fluctuation would be 

airflow changes as a result of fanning, which would be expected at this time of year. 

In particular, a dramatic drop in O2 can be observed on day eight, which was the day 

with high rainfall. On such a day, most of the bees would have not left the hive to 

forage, is it would be unsafe for them to fly, extra fanning would be expected to 

prevent the hive from overheating due to the warm weather. The data collected can 

be seen in Figure 3.31, Figure 3.32, Figure 3.33, and Figure 3.34. Weather data was 

collected from the weather stations at Moorepark, Co. Cork and Cork Airport, and 

can be found in Figure 3.35.  

 

Figure 3.31 – Temperature Deployment III 
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Figure 3.32 – Humidity Deployment III 

 

 

Figure 3.33 – Carbon dioxide Deployment III 
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Figure 3.34 – Oxygen Deployment III 

 

 

Figure 3.35 – Weather Deployment III 
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3.6.4 Deployment IV - Autumn/Winter deployment 

For deployment IV, the late autumn/early winter season was selected for 

observation of a hive preparing for the winter season. Three in-hive sensor systems 

were deployed on the same three hives near Banteer, Co. Cork as in Deployment III, 

from 12/10/2016 to 18/11/2016.  Again, relevant weather data was collected from the 

Moorepark, Fermoy, Co. Cork and Cork Airport automatic Met Éireann weather 

stations for comparison with the in-hive recordings.  

The temperature in all three hives was constant for the first 13 days, at 

approximately 14 °C ±~4 °C. Following this the average temperature drops off to an 

average of 6 °C, peaking once more to 15 °C on day 32, and falling back to ~3 °C by 

the end of the deployment. The humidity remained in the 60 – 85 °C range for all 

three hives throughout the deployment. The carbon dioxide levels fluctuated over a 

very wide range from 350 ppm (minimum sensor reading, sensors saturated at this 

point multiple times) to peaks of >2500 ppm. Again, the oxygen levels were constant 

with fluctuations throughout around 23%. The collected temperature, humidity, 

carbon dioxide, and oxygen data is plotted in Figure 3.36, Figure 3.37, Figure 3.38, 

and Figure 3.39, and the weather data is shown in Figure 3.40.  

 

Figure 3.36 – Temperature Deployment IV 
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Figure 3.37 – Humidity Deployment IV 

 

 

Figure 3.38 – Carbon dioxide Deployment IV 
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Figure 3.39 – Oxygen Deployment IV 

 

Figure 3.40 – Weather Deployment IV 
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3.6.5 Deployment V – Late Winter/Early Spring  

The final deployment was during late Winter and early Spring, to measure the 

parameters within the hive as the colony prepared to restock the hive population and 

begin foraging. This deployment took place on 5 hives at the apiary near Banteer, 

Co. Cork, over 66 days from 12/01/2017 to 18/03/2017. The colony in Hive 4 during 

this deployment was very weak, and died shortly after the deployment ended. The 

internal temperatures recorded was consistent across all five hives, fluctuating 

around 5 °C until day 30 of the deployment. Following this the average temperature 

of all hives rose to ~10 °C for 8 days, dropped to ~5 °C again for 12 more days, and 

rose to ~10 °C for the remainder of the deployment. All hives maintained a humidity 

of 70 – 90%, except Hive 1, which showed a humidity of >90%. The carbon dioxide 

levels in Hives 3 and 5 started at high constant levels (3,100 and 2700 ppm 

respectively) before dropping rapidly to the 350 – 1500 ppm range, this is expected 

to be as a result of the formation of a Winter cluster (Section 2.3.1). The CO2 in Hive 

1 remained constant at high levels (500 – 700 ppm) throughout the deployment. In 

Hive 2, the measured CO2 remained in the 450 – 550 ppm range. In Hive 4 the CO2 

remained in the rural ambient range (350 – 410 ppm). The oxygen levels in all hives 

remained between 21 – 23% throughout the deployment. The hive data, and the data 

collected from the Met Éireann weather stations at Moorepark and Cork Airport are 

shown in Figure 3.41, Figure 3.42, Figure 3.43, Figure 3.44, and Figure 3.45. 

 

Figure 3.41 – Temperature Deployment V  
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Figure 3.42 – Humidity Deployment V 

 

 

Figure 3.43 – Carbon dioxide Deployment V 
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Figure 3.44 – Oxygen Deployment V 

 

 

Figure 3.45 – Weather Deployment V 
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3.7 Discussion 

This chapter discussed the successful design, test, and in-field deployment of a 

Wireless Sensor Network system for in-hive monitoring of honey bee colonies.  

Key design considerations were used to ensure that the sensor nodes did not 

impact the activities of the colony, or the beekeeper’s typical hive maintenance and 

inspections. This included: selecting a platform with an IP65 rated waterproof 

enclosure to reduce node replacement, installing the node inside the hive roof to 

allow the keeper to remove it easily during hive visits, and including a mesh to 

prevent the bees from accessing the sensors. 

Nine sensors were initially tested in deployments I and II, before being reduced 

to five (temperature, humidity, carbon dioxide, oxygen, and acceleration). These five 

identified sensors provided an accurate reflection of the hive conditions and position 

using only one node per hive.  

A multi-radio solution utilising a local ZigBee network for in-hive data collection 

and aggregation on a base station, with a 3G radio for remote upload of aggregated 

data, was selected. This allowed the in-hive sensor nodes to achieve low power 

communication for extended lifetime, while also enabling rural deployment through 

long range 3G communication. 

Extended system lifetime, and self-sustainable operation was achieved through 

energy harvesting (solar panels), low energy operation, and restricted use of long 

range radios. An Energy-Aware Adaptive Sampling Algorithm (EASA) was 

proposed and explored as an option for increased node lifetime in future studies. 

Alternative solutions for energy harvesting sources were proposed for future 

deployments.  

The comprehensive dataset collected from five separate deployments of these 

sensors, throughout the different key beekeeping seasons were presented, together 

with the local weather conditions for each deployment. The recorded data from the 

hives was  analysed with consideration for the observations from Chapter 2, and 

many of the expected behaviours such as fanning, swarming, clustering, foraging, 

and overwintering were observed. 
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These results were used to develop, train, and test the proposed hive geometry 

changes, signal processing techniques, and machine learning algorithms described 

throughout Chapters 4 through 5 of this thesis. Parts of this chapter were published 

in peer reviewed conference proceedings [143] and a peer reviewed journal paper 

[144] 
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4 Actuation for Airflow & 

Temperature Control in Beehives 

4.1 Introduction 

The temperature of a honey bee hive is identified in Chapter 2 a key parameter 

influencing almost every aspect of the colony’s behaviour and conditions. Unsuitable 

temperature conditions can lead to: proliferation of disease or infestation; chilling of 

the brood (bee larvae); comb instability; delayed/reduced honey production; or in 

extreme cases, bees dying from overheating or cooling.  Throughout the year, a 

significant portion of the colony’s activities are dedicated to controlling the hive 

temperature. Honey bees have a variety of physiological processes they can engage 

in to either increase or decrease the temperature or airflow within the hive [140].  

A method of maintaining the hive temperature in the ideal range through 

effective ventilation and airflow control would allow the bees involved in the 

activities above to engage in other tasks. This could improve the productivity and 

condition of the beehive considerably throughout the year. This work outlined in this 

chapter proposed to design an energy efficient actuator system as part of the hive 

monitoring WSN described in Chapter 3 to control the airflow within the hive in 

response to the recorded temperature changes. Parts of the work described in this 

chapter were undertaken in conjunction with MEngSc students in the Department of 

Electrical and Electronic Engineering at University College Cork [145, 146], and one 

journal paper based on this chapter is currently in the peer review process [147]. 
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To achieve effective control of beehive airflow an accurate model of beehive 

airflow and geometry was required. To achieve this a comprehensive study of 

beehive ventilation was undertaken [146]. Finite Element Analysis was used to 

develop a model for simulating the flow of air inside a beehive. A 3D geometric 

model of a National hive was created and Computational Fluid Dynamics (CFD) 

modelling software was used for analysis. The airflow in a real hive was tested using 

heating elements to represent the internal temperature conditions of an actual colony. 

Using these studies, the potential impact of changing hive geometry to improve the 

colony conditions and improve colony productivity was explored. A compound 

mechanism was designed to control the ventilation of the hive through multiple 

inlets. A lead screw based mechanism was selected for its simplicity, efficiency and 

accuracy [145]. A prototype was designed and fabricated for test and calibration on a 

deployment beehive.   

This prototype mechanism, and the improved beehive geometry, were used 

together with a Wireless Sensor Network (WSN) to implement a temperature control 

system for beehives. The control algorithm utilised was based on the classic 

Proportional Integral Derivative (PID) controller. An experimental prototype of the 

control system was deployed and tested in the laboratory on a cedar wood National 

beehive. The response of the system to the hive temperatures recorded during the 

WSN deployments described in Chapter 3 were also simulated. The control system 

was found to be effective for controlling the in-hive temperature detected by the 

WSN to a high accuracy, and reducing the temperature control actions required from 

the colony. 

The key research questions in this chapter were:  

 How can the ventilation and thermoregulation behaviours of the hive 

structure be modelled?  

 Are there alternative hive geometries for the typical beehive which would 

provide more effective airflow?  

 Can a mechanism be designed to control the hive environment effectively and 

remotely, to reduce the amount of regulation activities required from the 

bees?  
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 Can this mechanism be designed with a suitably low energy profile to be 

deployed in an energy aware constrained system? 

4.2 Thermoregulation Within the Beehive 

The temperature of a beehive is a vitally important parameter, influencing almost 

every activity and process undertaken inside the beehive. During honey production 

the temperature and airflow within the hive are controlled by the worker bees to 

evaporate water, a key step in turning nectar into honey [148]. During reproduction, 

in order for larvae to develop correctly the brood must be maintained at a 

temperature of 33 °C – 36 °C [30]. Variations from this temperature range can lead 

to reduced numbers of brood surviving the season, as well as developmental issues 

in the young bees including poor foraging behaviours and poor sensory reception 

[14, 149].  

Overheating within the hive can cause the wax frames to lose quality, weaken, 

and collapse, beeswax has a melting point of 61 °C [150].  Several diseases and pests 

can infest the hive as a result of poor temperature control, including: chilled brood, 

chalkbrood, and dysentery [139]. Temperature has been identified as a predicting 

factor in over-winter colony losses by Switanek et al. [151]. Several studies have 

investigated the use of temperature sensors within the hive to evaluate and predict 

the status of a colony [82, 83, 152]. 

Honey bees have developed several physiological processes which they engage 

in to control the temperature and airflow within the hive. When the ambient 

temperature is high, the bees will move their wings in a "fanning" motion to force air 

throughout the hive for cooling [75]. In cool ambient temperatures, the bees can 

vibrate the muscles of their wings to increase their body heat dramatically to as high 

as 43 °C [75]. This is known as “shivering”, the bees then press their bodies against 

the brood cell to increase the temperature of the larvae inside. Bees also use their 

bodies to reduce the temperature of the hive in warm conditions by pressing 

themselves against the overheating surfaces to absorb heat energy. They can also 

carry water droplets into the hive to reduce the temperature of cells through 

evaporation [30]. During cold winter months, when the external temperature drops 

below 7 °C, the bees engage in an activity called “clustering”. When clustering, the 

bees move to the centre of the hive and form a well-insulated ball, using their body 
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heat to increase the likelihood of survival until spring [153].  

Ventilation in the hive has two main purposes for the colony: removal of waste 

gases and moisture, and thermal regulation of the hive [30]. The primary method of 

ventilation within the beehive is natural ventilation through the ventilation holes at 

the top and bottom of the hive, due to thermal buoyancy and the effect of external 

wind. These holes can be opened and closed by the bees using wax and propolis in 

order to increase and decrease the flow rate. This method of ventilation is key, as it 

doesn’t require the bees to actively expend energy to move air through the hive, 

freeing them to work on other activities required.  

4.3 Simulation of Beehive Airflow  

4.3.1 Requirements 

To simulate the heat and mass transfer within the beehive accurately, a suitable 

model for the colony within the hive was required. Several varieties of model were 

found in the literature, including a cluster of bees inside the hive [154], and a cluster 

outside the beehive [72]. The most useful model of a honey bee colony was 

described by Fehler et al. [79]. In this model, the colony is treated as a porous 

medium made up of honeybees and air with a fixed shape. For the simulations 

described in this chapter the colony was considered to be evenly distributed over the 

face of each beehive frame. This colony layout is a preliminary assumption as the 

positioning and density of the bees are known to vary throughout the hive, but have 

not been thoroughly investigated or modelled previously.  

Another consideration for accurate simulation of beehive airflow is the 

dimensions of the hive used in the model. The dimensions of a National beehive are 

outlined in Figure 2.1 in Chapter 2. This was the design of all the beehives on which 

the hive monitoring WSN described in Chapter 3 was deployed. The simulations 

considered a typical National beehive consisting of one brood chamber, one honey 

super, an open mesh floor, and a roof. 

4.3.2 Numerical modelling 

The model of the beehive used for numerical modelling was developed based on 

the dimensions shown in Figure 2.1 in the SolidWorks® computer aided design 
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software [146]. To create a full 3D beehive model, the individual components of the 

beehive were developed and combined. SolidWorks is an ideal environment to 

accurately draw the model, but not to run the flow simulations. Therefore, the model 

was exported from SolidWorks to ANSYS Fluent 12.0, a dedicated CFD solution 

suite. The model build and CFD simulation work was undertaken by Donal O’Brien, 

a MEngSc student in the Department of Electrical and Electronic Engineering at 

University College Cork [146]. The parameters of the CFD simulation are outlined 

below: 

 Humidity, swarm volume, base mesh, and queen excluder were not 

considered in the model. 

 Internal hive surface temperature of 35 °C. 

 Temperature of inlet air was varied between 12-25 °C with a velocity of 

1 m/s. 

 Activities of the bees to control the temperature were not considered. 

Figure 4.1 is a graphical representation of the air flow with the Velocity Path 

lines indicating how the air flows through the hive from the entrance through to the 

outlets. The results indicated that the air flow velocities increase rapidly near the 

hive outlets due to the pressure difference in the external air. 

From the ANSYS simulation results, it was clear that ambient air temperature 

affects fluid flow in a beehive. At low ambient air temperature (12 °C), the beehive 

was passively ventilated by the temperature difference between the external 

environment and the internal surface of the hive (35 °C). This temperature gradient 

creates buoyancy forces and free convection currents that push the warm air out of 

the hive through the vents in the hive roof and pull ambient external air into the hive 

through the entrances, thereby cooling the internal surfaces. The greater the 

temperature gradient, the more the hive is ventilated. As the internal temperature of 

the hive remains constant with very little variation (35 °C), this factor is therefore 

mainly dependent on the temperature of the external air.  

From the simulation results, it was found that when the ambient air temperature 

rose from 15 °C to 25 °C, the air flow from the hive reduced by 35%. In such 
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conditions, bees must engage in fanning to increase the air flow through the hive by 

forced convection. This activity is energy intensive, potentially reducing the 

productivity of the colony in terms of foraging and brood rearing, may use honey 

stores, and may affect the ability of the bees to maintain stability and the health of 

the colony. 

 

Figure 4.1 – Air flow in the National hive [146] 

4.3.3 Experimental modelling 

The next stage of the study was to perform experimental work on an actual 

beehive. The objective of this stage was to perform experiments on a beehive in a 

laboratory and compare the recorded data with the theoretical results achieved in 

ANSYS Fluent simulations. The air flowing inside and outside the beehive was 

measured using a testo 435 vane anemometer. The external air temperature was 

varied between 12-25 °C, and the internal temperature of the hive was maintained at 

35 °C using heating elements. These results agreed with the results from ANSYS 

simulations to within a margin of 10%. This allowed the developed model to be used 

as a preliminary model of a National beehive for future work. 
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4.4 Hive Geometry 

An alternative geometry for parts of the hive was proposed based on the results 

of the 3D model. The internal cover of the hive is known as a “crown board”. It 

typically contains one or two outlets which allow the keeper to place buckets of 

syrup with sugar solution to feed the bees; they also allow hot air and pollutants to 

exit the hive.  

An alternative model of this part with five outlets was proposed and tested in 

simulations and laboratory experiment This, if effective, would be an easily 

implemented change that could be made by beekeepers of all skill levels to their 

National hives to improve airflow. The prototype of the proposed crown board 

change can be seen below in Figure 4.2, the classic National hive model is labelled 

“Model A”, and the proposed alternative geometry is labelled “Model B”. 

 

Figure 4.2 – Crown board geometries 

Model B was simulated in ANSYS using the same parameters as the simulation 

of Model A described above in Section 4.3.2. Results from the ANSYS simulations 

illustrated in Figure 4.1 and Figure 4.3 indicate the effect of altering the beehive 

geometry. The additional outlets from the beehive increased the overall volumetric 

flow rate of the air exiting the hive, with the air velocity at each outlet remaining 

constant, thereby allowing for easier removal of waste gases and excess heat. The 
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ambient temperature of the outside air was found to have a much smaller impact on 

the internal temperature of model B than on model A. This improved ventilation 

suggests that model B is better in terms of effective air transfer from the beehive to 

the environment.  

A crown board matching the design of Model B was fabricated in order to 

perform an in-laboratory experiment on the new model. The volume of air exiting 

the hive (in total) in model B was found to be greater than that of model A. This 

agreed with the simulation in showing that the overall transfer of air from the hive 

was more effective for model B.  

 

Figure 4.3 – Air flow in the modified National hive [146] 

4.5 Mechanical design for Beehive Ventilation 

Based on the simulations and experimentation on the airflow in the hive, it was 

proposed that a ventilation mechanism could be designed based on these insights. 

This mechanism would provide a higher level of control over the airflow within the 

hive. This mechanism, based on the proposed five outlet design above, could adjust 
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the airflow and ventilation within the hive in order to optimise the conditions within 

the hive, thereby reducing the amount of temperature control actions required by the 

colony. This mechanism could be integrated with the WSN outlined in Chapter 3 to 

create a Wireless Sensor and Actuator Network (WSAN), using the sensor data to 

achieve real time control of the colony conditions.  

4.5.1 Lead screw mechanism design 

A lead screw design was proposed for the design of the ventilation mechanism. 

Other mechanisms were considered (namely, the iris mechanism [155] and slider 

crank mechanism [156]), but the lead screw design was selected as it provided a high 

level of accuracy while maintaining a low complexity design with a low number of 

parts which were easy to fabricate. This is a simple mechanism design which can 

translate rotary motion from a motor to linear motion. The mechanical design of the 

mechanism was undertaken by Danny Morgan, a MEngSc student in the Department 

of Electrical and Electronic Engineering at University College Cork [145].  

 

Figure 4.4 – Mechanism design [145] 

The lead screw design utilises a single motor, and by using a stepper motor it 

would be possible to achieve a high level of precision in the width of the outlet. An 

8mm diameter, 75mm lead, 10 turn per inch, 2.5 mm pitch, single start, ACME 

thread was selected for the core lead screw part of the mechanism [145]. An 

orthographic projection of the final mechanism design can be seen in Figure 4.4. 
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These design considerations guaranteed the core design requirements of the 

mechanism for this application, which were: 

 High torque, to overcome friction between the mechanism and the crown 

board of the hive. 

 High precision and repeatability, to guarantee the size of the openings, 

even after many cycles. 

 Quiet and low speed operation, to not disturb the colony or crush bees. 

4.5.2 Motor selection 

The motor selected to drive the designed mechanism was selected based on the 

following initial considerations: 

 High torque to overcome friction between the mechanism and crown board. 

The minimum torque required to rotate the screw was calculated to be 

0.0111 Nm. This torque must be provided at a low speed to reduce noise and 

avoid damaging the bees passing between the hive and the roof cavity. 

 Suitable physical dimensions to both fit inside the hive roof cavity, and match 

the mechanism design. 

 Drive interface which can receive commands from the Waspmote platform, 

for integration into the existing WSN.  

 Extremely high accuracy and resolution to adjust the ventilation openings 

with a high level of precision. 

 Robust design, to survive in the harsh conditions within a beehive, including 

exposure to moisture and wax, being glued to the crown board by the bees 

with propolis and temperature variations of up to 45 °C. 

A stepper motor was selected as a suitable motor design for such an application, 

as it can provide high torque at a low speed, and provide a high level of precision, 

accuracy, and repeatability. One disadvantage with stepper motors which would need 

to be overcome is that they continuously draw a large amount of current, even in 

static mode. This feature is particularly bad for use with energy harvesting systems. 

The issue was resolved for the hive ventilation system by disconnecting the motor 



 Actuation for Airflow & Temperature Control in Beehives 

91 

 

when not in use using a technique known as power gating as described Magno et al. 

[157], and heavily duty cycling the use of the motor.  

The Radionics Pro Hybrid Stepper Motor (1.8°, 260mNm, 5 V dc, 1 A, 8 Wires) 

[158] was selected as a stepper motor which suited the physical dimensions of the 

mechanism design. It provided a minimum holding torque of 0.26 Nm which far 

outreached the identified torque requirements. In future iterations of the mechanism 

a lower torque motor could be used to drastically reduce the energy consumption of 

the system.  

A drive card was required to interface this motor with the WSN node for control 

applications. The drive card selected was the DRV8825 [159]. This drive card was 

designed for use on bipolar stepping motors capable of driving the motor with an 

accuracy of 1/32 of a step. It also had a current limiter to protect the stepper motor 

from damage.  

4.5.3 Calibration, precision, and accuracy 

In order to design an effective control system for ventilating beehives it was vital 

to test and calibrate the mechanism. It was necessary to test the system in both the 

open loop and closed loop configurations to collect a comprehensive result of the 

system. A photograph of the fabricated prototype used to perform the tests can be 

found below in Figure 4.5.  

An experiment was undertaken to evaluate the accuracy and precision of the 

mechanism. In this experiment, the mechanism was controlled by a Waspmote 

device (described in Section 3.3.1) via the motor driver card. The original position of 

the motor was marked on the crown board, so that any displacement from this 

position could be measured by use of a Vernier calliper. In the procedure of the 

experiment, the software implemented on the Waspmote instructed the motor to step 

4000 times right (50 mm displacement), then 4000 times left, to return the 

mechanism to its original position. This cycle was allowed to repeat 50 times. The 

position of the mechanism in relation to its initial state was measured at the end of 

each cycle. The distance from the original position was found to drift by 0.3 mm 

over 50 cycles.  

This displacement was small compared to the size of the outlets, and the probable 
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cause was identified as “backlash”. Backlash describes the error in threaded systems 

due to the gap between the inner and outer threads of the system, and the lag it 

causes in the system during direction changes. It is a common source of error for 

lead screw mechanisms and other threaded systems. This error however, does have a 

limited impact on the system (defined by the size of the selected thread) that is more 

than compensated for by the fact that the mechanism’s inlet covers were designed to 

be 10% larger than the holes on the crown board.  

 

 

Figure 4.5 – Mechanism prototype  

4.6 Control of Beehive Temperature 

As described above in Sections 2.2 and 2.4, a suitable uniform temperature is one 

of the most vital properties of the hive. Temperature influences almost every feature 

of the hive including the health and activity of the bees, the condition of the brood, 

and the stability of the hive structure itself. Temperature was a parameter directly 

measured by the WSN described above. It was proposed to implement the 

mechanism described in this paper as part of the WSN together with a control loop, 

with the aim of maintaining an ideal temperature within the hive, thereby, 

Ventilation hole 

Motor 

Lead Screw 

Motor Control 

Circuit 



 Actuation for Airflow & Temperature Control in Beehives 

93 

 

implementing a WSAN which could identify temperature problems in the hive and 

taking steps to remedy them with no input form the beekeeper.  

4.6.1 Design of control loop 

The control loop design selected for use in the system was the classic PID 

controller. The classic Proportional, Integral, Derivative (PID) controller, originally 

developed in the 19
th

 Century by Maxwell [160], is one of the most common control 

loop designs used throughout the world  due to its flexibility and effectiveness. The 

taxonomy of a PID control loop is outlined below in Figure 4.6 and the fundamental 

equations describing a PID controller are shown in (3) and (4). In the beehive 

WSAN system the controller was to be implemented on the microcontroller of the 

node operating the ventilation mechanism. 

 

Figure 4.6 – PID control loop 

𝑂𝑈𝑇𝑃𝑈𝑇𝑃𝐼𝐷 = 𝐾𝑃𝐸 + 𝐾𝐼 ∑(𝐸 × ∆𝑡) + 𝐾𝐷 [
∆𝐸

∆𝑡
] 

(3) 

𝐸 = 𝑅 − 𝑌 (4) 

Where R is the set point, Y is the sensor reading, KP is the proportional gain 

constant, KI is the integral gain constant, Δt is the time step, and KD is the derivative 

gain constant. It can be seen form the above formulae that the design and operation 

of a PID controller is based purely on the changes in the measured process variable, 

not on any underlying knowledge of the system operation. This was ideal for the 

application of controlling beehive temperature, as no suitably comprehensive 
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knowledge of the thermodynamics of the beehive interior was available. For the PID 

loop implemented in this work the process variable to be measured was the 

temperature of the hive interior.  

The Error (2), measured in °C, was taken to be the set point temperature (R) 

minus the current temperature measured by the sensor network (Y). The output was 

set to be the position of the mechanism (width 25mm) in relation to the hive 

ventilation holes (width 20mm). To achieve this the maximum distance to be moved 

(completely opened to completely closed) was divided into 10 discrete positions of 

2.5mm. The output of the PID controller would then vary between 0 and 10. This 

reduced the energy requirements of the system by only switching on the motor when 

a movement of 2.5mm or greater was required.  

4.6.2 Simulation 

The behaviour of the proposed system (PID controller, mechanism, and sensor 

node) was simulated in Matlab® to understand the performance of the system. The 

outputs of the simulation when applied to the temperature datasets of deployment 

I(b) and deployment IV were used to evaluate the behaviour of the mechanism in 

such environments. The results are shown in Figure 4.7 and Figure 4.8. 

 

Figure 4.7 – Simulated PID response to Deployment I(b)  
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Figure 4.8 – Simulated PID response to Deployment IV 

4.6.3 Implementation  

The PID controller described above was implemented in software on a single 

Waspmote device for an experimental evaluation of the WSAN system. The 

controller, and the motor driver code were implemented in embedded C and added to 

the existing WSN node code for sampling the temperature of the hive. The 

assumptions included in the code were: 

 A regular sample time, defined in the code, to simplify the calculations 

performed on-node 

 A fixed maximum and minimum output of 0 and 10 respectively, to 

match the mechanism’s limits. This was required to prevent the classic 

PID error of “integral windup” where the integral component attempts to 

push the output of the system further than is possible. In the case of this 

system this would cause major problems by moving the mechanism out of 

the effective range of the ventilation holes.  

 At the start time, the position of the mechanism was assumed to be 

“position 0” i.e. the vents were completely open.  

 The PID constants and set point were stored as variables which could be 

changed for tuning. 
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 When moving to a new position the motor applied multiples of 200 steps 

to the mechanism which resulted in displacements of 2.5mm.   

4.7 Experimental Design 

To evaluate the performance of the WSAN system, a controlled experiment was 

implemented. A demonstration hive, including brood box, super, base, queen 

excluder, and frames with wax were set up. The prototype crown board with the 

mechanism placed on top, and the WSN node with temperature sensor was placed 

inside the hive space. Heating elements were used to simulate the effect of the honey 

bee colony providing heat energy to the hive space in a constant and controlled 

manner. The temperature of the laboratory space was controlled to simulate changing 

external conditions, and to maintain a constant temperature for testing and tuning the 

system. The experimental setup can be seen in Figure 4.9, the hive is suspended over 

a space as they are typically deployed in the field to allow air intake for ventilation.  

 

Figure 4.9 – Experimental setup 

To implement the PID controller effectively, a suitable value for the three gain 

constants (KP – proportional gain, KI – integral gain, and KD – derivative gain) 

needed to be selected and applied through tuning. This is a difficult step in the 
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implementation of a PID controller, as these gains are difficult to determine when the 

transfer function of the system is unavailable. The Ziegler-Nichols tuning method is 

a practical experimental method for finding a suitable set of constants for a PID 

controller [161]. This method was applied to the system to get the preliminary 

constants. The KI and KD constants were set to zero and the KP value was adjusted 

until the output of the system was found to oscillate. This K value was then selected 

as KU (ultimate gain), and the oscillation period was measured (TU), which allowed 

an effective set of gain parameters to be calculated using the following formulae: 

𝐾𝑃 = 𝐾𝑈 × 0.6 (5) 

𝐾𝐼 =
1.2 × 𝑇𝑈

𝐾𝑈
 (6) 

𝐾𝐷 =
3𝐾𝑈𝑇𝑈

40
 (7) 

Application of this method to the experiment resulted in KU = 5.5 and TU = 1 

which resulted in calculated gains of KP = 3.3, KI = 1.5, and KD = 1.375. Further 

manual tuning of the system during experimentation led to gain parameters of: 

KP = 4, KI = 0.1, and KD = 0.075. These parameters were found to give faster 

response to temperature changes in the hive, with less overshoot and oscillation, as 

well as responding well to external changes in temperature. To demonstrate the 

effectiveness of the system, experiments were run using the hive setup described 

above (Figure 4.9). These experiments simulated real life scenarios which the 

beehive would encounter and tested the response of the WSAN to them. The 

parameters which were varied included the ambient temperature in the laboratory, 

the temperature of the heating elements simulating the colony, and the set point 

temperature which the controller worked to achieve.  

4.8 Results 

The experiment described in Section 4.7 was an in-laboratory simulation of a 

real-world application of the temperature WSAN. This real-world scenario was a 

typical Irish summer hive, with a warm external temperature, and honey bees active 

inside the hive. The key requirement in such a scenario would be maintaining the 

brood at a suitable temperature for optimal development (33 °C – 36 °C [30]). The 
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experiment had the following parameters:  

 Ambient external temperature 18.7 °C,  

 temperature of the heating elements 33.87 °C (based on the typical 

temperature of a honey bee colony in the hive),  

 set point temperature 35.5 °C (suitable temperature for healthy brood),  

 mechanism starting position 0 (vents open),  

 fixed time step of 60 seconds.  

The mechanism moved immediately to the closed position and raised the core 

temperature of the hive to the suitable range within 7 minutes. The temperature 

peaked at 35.75 °C at Minute 7 of the run. After 15 minutes, the system reached a 

steady state, with an average value of 35.483 °C. This temperature was achieved 

while using minimum energy, as the motor remained switched off for 18 out of 30 

cycles, due to the output signal changing by less than 1 (not reaching the 2.55 mm 

step requirement). The output position of the PID controller and the core temperature 

of the hive detected by the sensor are plotted in Figure 4.10. 

 

 

Figure 4.10 – Experimental results: hive temperature and mechanism position 
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Figure 4.11 – Energy draw over experiment 

The energy required for the motor to move the mechanism one step of 2.5 mm 

was measured to be 33.6 J. The total energy draw of the motor for each movement 

throughout the experiment above is shown in Figure 4.11. 

4.9 Applications for In-Field Beehives  

The results of the experiment indicated that the designed WSAN system was a 

suitable method of temperature control in beehives. An appropriate temperature for 

brood development was achieved within 7 minutes of initialisation, and with steady 

state being reached by minute 18. There was negligible steady state error (0.0047%) 

and overshoot of <0.25 °C. These results indicate that PID is an appropriate control 

mechanism for this system, and that the gain parameters used in the experiment are 

suitable. 

Application of this WSAN system to a real-world beehive would have several 

benefits for the colony. Firstly, the hive automatically maintaining a suitable 

temperature throughout the year would free up a large portion of worker bees, who 

would typically be involved in heating or cooling activities. These bees would then 

be free to engage in other useful hive activities, such as foraging, rearing brood, or 

maintenance of the hive. This would improve the health of the hive by freeing bees 
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for maintenance and grooming, as well as significantly increasing the productivity of 

the colony from the beekeeper’s perspective in terms of honey production and 

pollination. Maintaining the hive at a constant temperature within the suitable range 

has been shown to lead to a healthier brood and more productive bees [44, 139, 149]. 

The WSAN system could facilitate this level of temperature control. 

The energy draw of the system was 33.6 J per movement of the mechanism 

(Figure 4.11). Providing this level of energy to the hive in a real-world application is 

achievable, with a 1.2 Ah battery being a sufficient source for the experiment above. 

However, for long term, energy harvesting powered deployments of the technology 

this draw would need to be reduced as much as possible. It has been identified that 

the motor used in this experiment could be replaced with one providing 1/10th of the 

torque without impacting the performance of the mechanism. This motor change 

could be used to select a motor with properties which would dramatically reduce the 

current draw of the system. The stepping time of the system could also be reduced 

compared to this experiment. To move one 2.5 mm step, the system required the 

motor to be powered for 4 seconds, this time could be reduced further through 

careful motor selection. Increased power gating [157] and duty cycling could be 

utilised to improve energy performance.  Finally, a larger solar panel setup could be 

utilised to provide a large surplus of energy, which could be utilised by the motor. 

Other future steps for improving the performance and applications of the WSAN 

system have also been identified. Studies refining the understanding of the wattage 

and energy profile of the honey bees would inform a further improved geometry of 

the crown board. The shape and size of the outlets may not be optimal for effective 

heat transfer and ventilation of the hive interior. As well as this, the ideal 

temperature of the hive can be different depending on the season, the external 

conditions, and the current activities of the hive. A method of identifying and 

classifying the status of the hive would allow the required set point for the control 

system to be selected and applied.  

4.10  Discussion 

Considering the importance of thermoregulation and airflow to the condition and 

health of honey bee hives, a first step towards air conditioning systems for smart bee 

hives was investigated. The temperature of the hive is a crucial factor for the overall 
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health of the colony and brood. The aim was to mimic natural processes where 

temperature is regulated through collaboration of airflow control and biological 

activity within the hive. Although the results and deployments use laboratory 

idealised conditions, this is the first step towards an in-field deployment where 

behaviours and impact could be further assessed. 

To investigate and develop methods of controlling temperature and airflow 

within the hive, a model of simulated airflow within the hive was developed using 

SolidWorks CAD software and ANSYS Fluent CFD suite. This simulation model 

was compared with the results of experimental airflow analyses and found to 

conform to within a margin of 10%. This allowed the software model to be used as a 

preliminary model for the airflow within a National hive structure. Using the airflow 

models, an alternative geometry for the “crown board” of the hive was proposed, 

which provided improved overall air transfer from the hive, with a reduced air 

velocity at each individual outlet.  

A mechanism to control the airflow in the hive, based on the alternative crown 

board geometry was designed. The purpose of this mechanism was to control the 

airflow rate from the vents to change the in-hive environment. A single motor, lead 

screw design was selected for this mechanism for its high accuracy and low design 

complexity. The mechanism was fabricated and tested for accuracy, precision and 

repeatability.  

A control system was proposed to utilise the above mechanism together with the 

existing hive monitoring WSN (described in Chapter 3) to maintain a suitable 

temperature within the hive by adjusting the airflow. The combination of actuators 

and the WSN created a temperature control WSAN for the hive. A PID controller 

design was selected for the controller system. This controller was implemented on 

one of the network nodes which provided the input to the mechanism. The controller 

was experimentally tested in a controlled environment on a demonstration beehive 

and found to be highly effective when suitable PID gain parameters were selected. 

The design of the WSAN was identified as suitable for real world control of beehive 

conditions. Several methods of reducing the energy requirements of the system, to 

make it more suitable for remote, energy harvesting driven deployments were 

identified.  
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A machine learning algorithm using the in-hive sensor data to classify the state of 

the hive was identified as an ideal method of selecting such set points and is 

described in Chapter 5. Parts of this chapter have been submitted for publication in 

the IEEE Sensors Journal. Some of the presented work is a result of collaboration 

with MEngSc (Mechanical Engineering) students [145, 146]. Parts of this chapter are 

currently undergoing peer review for journal publication [147]. 
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5 Machine Learning for Honey Bee 

Health  

5.1 Introduction 

In Chapter 3 several deployments of an in-hive WSN were described, and the 

resulting datasets were presented. Over five node deployments on five hives a 

significant number of data were collected. In real-world, year-round deployments 

with many hives (up to several hundred hives per beekeeper), the volume of data 

generated would be too large for any individual person to comprehend and extract 

value from. It was proposed to develop and evaluate machine learning solutions to 

use the collected data to classify and describe the hive. The results of these 

classifications would be far more meaningful to the end user (beekeeper). 

Classification was also identified as an ideal enabling technology for the hive 

temperature control WSAN described in Chapter 4. The classifications can be 

associated with individual ideal colony temperatures, and the set point of the PID 

controller could be adjusted to suit the current hive state.  

WSN have been applied in many information rich environments, including 

healthcare, environmental monitoring, and medicine [5, 6]. One of main challenges 

of WSN is enabling them to perceive and understand the world in a similar way to 

humans. Perceptive low-power sensor devices should be able to interpret the world 

around them using intelligent algorithms. Machine learning technologies have been 

used with great success in many WSN application areas, solving real-world problems 
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in entertainment systems, robotics, health care, and surveillance. Another important 

feature of WSN is the potential to achieve long life time, or even better, self-

sustaining operation through energy harvesting [6].  

A system which used threshold-based algorithms in a WSN was described 

Gutierrez et al. [162]. The objective was to optimise water use in an agricultural 

irrigation system. In this paper threshold-based algorithms were utilised to generate 

interrupts describing the beehive status. For improved performance in the in-hive 

monitoring system, a machine learning algorithm known as a “decision tree” was 

utilised as well as threshold-based algorithms, and the results of both methods were 

compared. An example of a system designed to use decision trees for agricultural 

decision support was described by Tang et al. [163].  

The classification tree developed for the in-hive monitoring system has been 

deployed in a real system and the performance has been analysed. A unified and 

efficient model of decision trees was described by Criminisi et al. [164]. Machine 

learning algorithms are used in a variety of areas to solve problems through making 

decisions and predictions. One subdivision of machine learning is called, “supervised 

learning” which uses previous examples of inputs and outputs of a system to train an 

algorithm which can effectively estimate or “classify” future outputs of the system 

based on known inputs.  

The key parameters which describe a given machine learning technique are: 

training speed; memory usage; predictive accuracy; and transparency. Decision trees 

were initially selected for this work due to their very small memory requirements, 

and high transparency. Subsequently, Random Forests were used for their greater 

levels of accuracy in return for increased memory usage and reduced transparency 

[165]. Training speed was also greatly increased for Random Forests compared to 

individual decision trees, but this was not a major concern as in both cases training 

took place outside of the WSN system.  

Many bee monitoring systems can be found in literature [10]. Automated, 

precision beehive monitoring has been identified by many as an important and 

feasible goal [11]. It is clear, however, that the interdisciplinary analysis of beehive 

data is in its infancy. In this chapter, data have been analysed from biological, 

meteorological, and engineering perspectives. This analysis informed the design of 
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three classification algorithms, two for classifying the condition of the hive, and one 

preliminary algorithm which attempts to predict the weather local to the hive. These 

algorithms can be used with the data collected from the in-field hive to provide 

information on the status of the bee colony and external conditions in real time 

through network alerts.  

The system described can be used to provide feedback and prediction for 

beekeepers, as well as the general agriculture sector local to the hive (covering an 

area of up to 113 sq. km - the typical home range of bees in a hive is 6 km [166]), 

which relies on accurate short term weather prediction.  This would be important to 

economies such as Ireland where agriculture is primarily grass-based (beef and dairy 

production) [167].  

Such agricultural activities can be strongly influenced by weather, making 

accurate forecasting vital. There are strict environmental protection requirements 

relating to weather and farming practices, including spreading of slurry and fertiliser. 

Identifying incoming weather is also crucial for other farming activities, including 

optimising silage harvest and preventing spread of diseases such as potato blight.  

The key research questions explored in this chapter were: 

 How do the collected data described in Chapter 3 reflect biological and 

beekeeping knowledge? 

 Can simple threshold algorithms provide a suitable level of accuracy for 

understanding the conditions of the hive? 

 Can machine learning techniques be applied to the data collected from the 

hive, and if so do they provide a higher level of accuracy than threshold 

algorithms? 

 Can the in-hive data be used to understand and classify the conditions outside 

the hive?  

 Can the developed algorithms be integrated into the in-hive WSN system 

without significantly impacting its energy performance? 
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5.2 Analysis of Hive Data 

The results gathered from the first two deployments I(a), I(b), and II (Section 3.6) 

were analysed, firstly from a biological and beekeeping perspective. Secondly, they 

were analysed with a view to exploring meteorological implications.  

5.2.1 Biological and beekeeping analysis 

The first observation from the collected data was that the temperature of the hive 

roof cavity typically remained in a steady range of min 9 -12 °C, max. 20 - 30 °C, 

with a diurnal fluctuation. These temperatures were achieved regardless of external 

weather, which indicates that the activities of the bees, during day and night, 

maintained a desired internal temperature within this range. Temperatures varied 

more during the day than at night. It is suggested that this is due to the majority of 

the adult honey bees leaving during the day to forage, thus reducing the number of 

bees available to maintain stable and higher temperatures.  

Cyclical temperature fluctuations throughout the day of about 8 – 15 °C were 

seen to be typical of a normal, healthy hive. Departure from this behaviour should 

indicate decreased honey bee numbers. The humidity within the hive appeared to 

respond to the external meteorological conditions. During both deployments, the 

humidity rose on days when high levels of rainfall were recorded (> 95 % RH). At 

the end of the second dataset, with rainfall of <17 mm per day, extreme humidity to 

the point of condensation within the roof space was recorded (100 % RH). 

At the surface of Earth, atmospheric concentrations of CO2 are normally 

measured at approximately 400 ppm and respiration by the bees in the hive raised the 

CO2 concentration to levels of between 400 and 500 ppm with a diurnal cycle of 

lower levels during daytime, though these differences tended to become reduced as 

the time increased. In deployment I(a) the CO2 levels were initially similar to 

ambient conditions (recorded as ~400 ppm in an empty adjacent hive) with a diurnal 

pattern. They rose until they were consistently measured at 460 – 480 ppm and in 

deployment I(b) they were remarkably constant at this 460 – 500 ppm level. It is 

noteworthy that while oxygen levels continuously matched those of the external 

environment (~ 20-21 %), CO2 built up in the hive. This suggests that the hive 

activity ensured equal to ambient O2 levels while permitting CO2 to build up almost 

20% above ambient (460 – 480 ppm).  
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A swarming event (half of the colony's population left to form a new colony 

which is a typical biological phenomenon) was observed prior to deployment one. It 

is suggested that the low and fluctuating CO2 levels (350 -450 ppm) at the start of 

the June-July deployment was due to having insufficient adult bees to maintain 

stable airflow conditions within the hive as a result of this swarm. In this way, 

observing the CO2 levels within the hive can provide the beekeeper with an 

indication of whether or not the colony has a sufficient number of bees.  

The pattern observed in the pollutant sensors (nitrogen dioxide, and raw pollutant 

sensor data) was that initially low levels were detected, with the volume growing 

over time from that point. This suggests that removal of the roof ventilated the 

beehive of some pollutants, and the same gases then built up within the hive when 

the roof is in place.  

5.2.2 Meteorological and environmental analysis 

When the local meteorological data were analysed, it was observed that in-hive 

CO2 levels of a healthy hive varied in a similar manner to weather patterns. A 

healthy colony (consistent number of bees) would be expected to produce stable CO2 

levels. The variation in CO2 levels recorded was expected to be caused by local air 

pressure changes influencing the airflow of the hive. This is a very early observation, 

and data from more hives will need to be collected for validation. 

5.3 Algorithms and Classification 

5.3.1 Threshold-based algorithms 

Initially, a threshold-based algorithm was proposed to automatically detect the 

factors described above in the beekeeping and biological analyses. These algorithms 

are shown in Figure 5.1 and Figure 5.2. In Figure 5.1 C0, C1, C2, C3, and C4 are the 

current and previous four CO2 readings, and TEXT is the external temperature. In 

Figure 5.2 T0, T1, T2, T3, T4, T5, and T6 are the current and previous six in-hive 

temperature readings. These algorithms were validated using deployment data and 

produced accurate alarms, warning of possible poor colony health. Another proposed 

alarm was triggered when the Z-axis (vertical) of the hive, as measured by the 

accelerometer, varies from the typical value expected due to gravity (1 G). These 

algorithms provided a simple description of the hive, based on a single parameter. A 
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beehive, however, is a complex system where a change in one parameter could 

signal different scenarios when placed in context of other parameters. This prompted 

the implementation of machine learning algorithms capable of utilising different 

datasets simultaneously.  

 

Figure 5.1 – Threshold based CO2 algorithm  

 

Figure 5.2 – Threshold based temperature algorithm 

5.3.2 Decision tree algorithms 

To provide a more comprehensive and accurate reflection of the in-hive 

conditions, the use of a decision tree algorithm was proposed to “classify” the 

condition of the hive. Decision tree algorithms were selected for use as they are an 
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effective method of modelling in resource-constrained systems, as discussed by 

Rokach et al. [168] and Zia et al. [169]. The objective was to implement the final 

algorithm on the on-board 8-bit ATmega1281 microcontroller and for the system to 

remain self-sustaining. As well as this, decision tree algorithms are more effective 

when large datasets are available for training, as was the case here.  

The hive states of highest priority for detection were identified in conjunction 

with the beekeeper, using established apicultural knowledge about the optimum 

parameters within the hive, and parameters associated with disease or ill health [140, 

162]. The results of the biological analysis in section 5 above were also used to 

inform the specific values used in the class descriptions. The classes were selected to 

maximise identification of crucial colony activities, including healthy and unhealthy 

conditions, to provide a clear description at all times. The following classes of hive 

status were identified: 

1. Normal hive with typical humidity, temperature, and CO2 characteristics 

as observed in Chapter 3.  

2. Hibernating hive, during the winter the colony will hibernate by forming 

“clusters” to preserve heat and food. 

3. Fanning bees working to generate evaporation and ripen nectar, to make 

honey. 

4. Low humidity hive, ideal for pest and mite treatment application during 

winter. 

5. A hive with no diurnal temperature fluctuation, which would indicate the 

colony has absconded, or is dead.  

6. A hive with an extremely large (> 20 °C) diurnal temperature fluctuation, 

which would indicate that the colony is diminished or ill, and cannot 

engage in important ventilation and temperature control activities. This 

hive is likely to suffer large losses if not addressed 

7. A hive with an extremely large (> 15 ppm) diurnal CO2 fluctuation, which 

also indicates a diminished or ill colony. 
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8. A hive which does not have the expected average CO2 levels which 

would indicate that the population of the hive is reduced (reduced 

respiration) 

9. A hive with an unusually high internal temperature which requires 

attention from the keeper to improve ventilation. 

10. A damp hive due to high humidity which can damage the colony if not 

addressed 

The 10 possible classes were split into two groups: conditions which do not 

require a response from the beekeeper, and conditions which do require action from 

the keeper. This grouping allows the algorithm to trigger alarms, as well as providing 

an in-depth picture of the hive status. The expected hive parameters (provided by 

biological analysis) associated with the above classifications were used as the 

decision tree attributes and inserted into the training table shown in Table 5.1.  

The decision tree shown in Figure 5.3 was generated using the 10 examples in 

Table 5.1, together with 40 of the raw hive datasets collected during deployments 

I(a), I(b), and II, which provided a number of examples of the various classes. A 

preliminary decision tree training algorithm developed in Matlab was used, which 

was based on the ID3 decision tree algorithm described by Quinlan [170].  

This is a simple decision tree algorithm, which does not utilise pruning measures, 

or handle missing data. Due to deployment restrictions (time of year of the 

deployments, and the hive did not experience every possible condition), some classes 

had an extremely limited number of dataset examples (including hibernating hive, 

and overheating hive). Compounding this, all data were collected from a single 

beehive.  

The decision tree was generated by calculating the information gain of each 

attribute (i.e. the amount of information provided by that attribute), as given in (8), 

and selecting the attribute which maximises the result. This allowed the more 

important attributes to always be tested first. In (8) “I(Y;X)” is information gain, 

“H(A)” in (9) is the entropy of A, “EH(B)” in (10) is the is the expected remaining 

entropy remaining after decision B. 
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Table 5.1 – Training table for classification decision tree 

 Attributes Goal 

 
HAVG 

(%RH) 

TEXT 

(°C) 

> 5 mm of 

Rain in last 

24 h 

ΔTINT24 

(°C) 
TINT (°C) 

ΔCO2 24 

(ppm) 
CO2 (ppm) 

Requires 

hive visit? 
Classes 

X1 70 - 95 9 -35 N 5 -20 10 - 37 < 15 440 - 500 N Normal Hive 

X2 70 - 95 < 9 N 5 -20 < 10 < 15 440 - 500 N 
Hibernating 

Hive 

X3 > 95 9 -35 N 5 -20 10 - 37 < 15 440 - 500 N 
Evaporating 

Nectar 

X4 < 70 9 -35 N 5 -20 10 - 37 < 15 440 - 500 N 

Ideal humidity 

to treat for 

pests 

X5 70 - 95 9 -35 N < 5 10 - 37 < 15 440 - 500 Y 
Colony no 

longer in hive 

X6 70 - 95 9 -35 N >20 10 - 37 < 15 440 - 500 Y 

Diminished 

population – 

Poor 

temperature 

control 

X7 70 - 95 9 -35 N 5 -20 10 - 37 > 15 440 - 500 Y 

Diminished 

population –

Fluctuating 

CO2  

X8 70 - 95 9 -35 N 5 -20 10 - 37 < 15 < 440 Y 

Diminished 

population – 

Reduced CO2 

production 

X9 70 - 95 9 -35 N 5 -20 > 37 < 15 440 - 500 Y Hive is too hot 

X10 > 95 9 - 35 Y 5 -20 10 - 37 < 15 440 - 500 Y 
Hive is too 

damp 
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By maximising the information gain of each step as described above, the number 

of steps to reach a conclusion is minimised. The hypothesis generated the final hive 

classification decision tree as shown in Figure 5.3. The TEXT attribute was found to 

provide no additional information about the classification of the hive and was 

eliminated from the tree.  
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Figure 5.3 – Hive classification decision tree  

When implemented in the network, the decision tree analysis was performed in 

real time, re-evaluating the classification each time data were collected from the 

sensors (every 4 hours). This allowed alerts to be sent to the beekeeper within 4 

hours of a change in hive conditions in the worst-case scenario. 

A second decision tree was developed using the CO2 levels of a healthy hive to 

predict external weather. This decision tree was developed based on the preliminary 

observation (from the demonstration hive) that changing external pressure influences 

hive ventilation, which can be measured through changes in CO2 from the sensor 

inside the hive roof. Monitoring pressure changes over time to predict local rainfall 

is one of the oldest methods of weather prediction.  Three classifications describing 

future rain patterns: 
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1. An unhealthy hive which cannot be used to predict rain. 

2. CO2 levels indicate rain in the next 6 hours 

3. CO2 levels indicate no rain in the next 6 hours 

Table 5.2 – Training table for weather decision tree 

Example 
Are C0, C1, 

or C2 < 440? 
C1 > C0? C2 > C0? C2 < C1? Classification 

X1 Y ~ ~ ~ Can’t Predict 

X2 N Y Y ~ Clear 

X3 N
 

N ~ N Clear 

X4 N Y N ~ Rain 

X5 N N ~ Y Rain 

 

Table 5.2 describes the training set used to generate the decision tree shown in 

Figure 5.4, 5 of the 15 available raw CO2 datasets from were also used in training 

using the same decision tree training algorithm described above. This tree compares 

the changing CO2 levels measured over the previous 16 hours to provide a prediction 

on whether or not rain is expected local to the hive over the next 6 hours. Unlike the 

first decision tree, this algorithm provided one result per day at 6am. This decision 

tree was not trained with a suitable amount of data to create a reliable algorithm, and 

all data were collected from a single site, but it can be taken as an indicator that 

future work in this space is worthwhile. 

5.4 Experimental Results and Analysis 

5.4.1 Analysis of classification algorithm 

The final step in the development of the decision tree classification algorithm 

was to select a test set, apply the decision tree to them, and evaluate the performance 

of the tree. The data collected during deployments I(b), I(b), and II were used as part 

of the test set. In Figure 5.5, the output of the decision tree when applied to these 

results is shown. The results of the decision tree, provided an in-depth picture of the 

colony condition. An overview of the beekeeper’s observations of the hive during 

the deployments are overlaid in Figure 5.5. It was clear in the classification results 
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from Deployment I(a) that the colony had a diminished population up to day 11, and 

that the colony was failing to control its environment. This was due to the swarming 

event which was observed by the beekeeper. In Deployment I(b), the hive was 

performing as expected up to day 12, with several instances of “fanning” observed (a 

typical honey production activity in a healthy hive). After day 12, increased humidity 

was detected, triggering an alarm. This was expected as the weather data showed 

heavy rainfall. 

 

Figure 5.4 – Weather classification decision tree 

The final total test set included 262 dataset examples; an effective test set size for 

evaluating this decision tree’s performance. To evaluate the performance of the 

classification algorithm, a confusion matrix was compiled; shown in Table 5.3. In 

this matrix, the “Actual Class” of the hive throughout the various deployments is 

compared with the “Predicted Class” selected by the algorithm. As there was a lack 

of access to hives matching classes 2, 3, and 9 (i.e. hibernating, fanning, and 

overheating hives) throughout the deployments it was not possible to verify the 

accuracy of these predictions. These classes were therefore omitted form the 

confusion matrix and performance calculations. Future deployments to collect data 

from a variety of hives in such states will be required to verify these classifications.  
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Figure 5.5 – Hive classification results Deployment I(a) and I(b) 

When compiling the confusion matrix, the “Actual Class” was found by selecting 

the class which most closely matched the beekeeper’s recorded description of the 

hive status at that point, without knowledge of the algorithm’s results. In Table 5.3 

the accuracy of identifying each class is found at the bottom of each column; overall, 

the hive condition was successfully identified in 95.38% of cases. For an increased 

understanding of classification performance, the “Sensitivity”, “Specificity”, and 

“Precision” was found for the algorithm’s ability to correctly identify that the hive 

required beekeeper intervention.  

Classes 1-4 do not require a hive visit, while classes 5-10 do. This allowed the 

confusion matrix to be broken down into four regions (true positive, true negative, 

false negative, and false positive) and the classic performance evaluation formulas to 
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be applied. The final result was that the necessity of a hive visit was correctly 

diagnosed with: a Sensitivity of 97.33%, a Specificity of 95.45%, and a Precision of 

96.68%. 

Table 5.3 – Hive classification confusion matrix 

 

The performance of the decision tree algorithm was compared with that of the 

threshold-based algorithms, using both result sets from deployment I(a) (14 days). 

Both algorithms identified the poor conditions within the hive, due to the previously 

mentioned swarm. The classification tree provided equal detail of the issues 

(overheating, poor temperature control, and fluctuating CO2 levels) in a single 

algorithm. For the threshold based algorithms to achieve the same level of detail, two 

algorithms were required. The decision tree also responded faster to changes in the 

hive environment, particularly in response to CO2 variations. This was a result of the 

threshold based CO2 algorithm using an averaged 24-hour value for CO2 levels in-

hive, making its response to sudden changes comparatively slow when compared to 

the more complex decision tree.  

The decision tree responded more quickly to the improved hive conditions as the 

hive restocked (days 8-11), identifying that the hive was normal at some points in the 

day. It also detected the sudden drop in CO2 levels on day 13, which the threshold 

based algorithm failed to identify. The results of the threshold based algorithm were 

compared with the “Actual Class” results, using the same process which was used to 

evaluate the decision tree performance. It was found that the threshold based 

1 4 5 6 7 8 10

87 0 0 0 4 0 0 1

0 18 0 0 0 0 0 4

0 0 28 0 0 1 0 5

0 0 0 11 0 0 0 6

4 0 0 2 47 0 0 7

0 1 0 0 0 42 0 8

0 0 0 0 0 0 15 10

95.6 94.7 100 84.6 92.1 97.7 100

Predicted Class

Actual 

Class

Accuracy %
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algorithm accurately described the hive in 89.28% of cases. The decision tree 

accuracy found above was 95.38%, which represents a considerable improvement.  

5.4.2 Analysis of weather prediction algorithm 

The CO2 data collected during the two deployments were used to validate the 

rainfall decision tree. These data provided a test set of 31 examples. This test set was 

enough to show that this algorithm is accurate for the specific hive used for the 

deployments. A reliable test set will be required from future deployments (in various 

locations) to further validate this decision tree, and create a general model applicable 

to any hive. A general rule of thumb for decision trees is a minimum of 20 cases per 

predictor, making the minimum effective test set 100 examples.  

The performance of this decision tree was evaluated by comparing the output of 

the decision tree when applied to the dataset above with the hourly rainfall records 

from Met Éireann [63]. The decision tree was found to predict incoming rain 

correctly, or identify that the hive population was too low to predict weather, in 

96.87% of cases. Excluding low colony population cases, the tree could predict rain 

with 95.4% accuracy. 

The same CO2 sensor is used to assess the status of the colony and predict local 

rain. This is a first step in optimising the number of sensors within the hive. This 

minimisation will lead to reduced cost and improved energy performance by using 

single sensor providing several different kinds of information – bee health, 

productivity, weather prediction. 

5.4.3 Energy performance analysis 

The decision trees were implemented on the base station of the sensor network as 

described in Section 3.3. This allowed the algorithm to access data from all sensor 

nodes, as well as the necessary weather data from cloud storage. Deploying the 

algorithms on the base station also allowed text alerts to be sent to the beekeeper 

using the 3G radio. The energy consumption of the node was found to increase by 

5.35% (from 360.3 J per cycle to 379.57 J for the base station node) when the 

decision tree algorithms were implemented, allowing the network to remain self-

sustaining. 
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5.5 Applications in Apiculture 

Following the validation and analysis of the classification tree, the results were 

presented to the beekeeper to assess the value of these predictions to beekeeping. A 

summary of the value of identifying each class in a timely and accurate manner is 

below. In the case of the hive requiring immediate attention from the beekeeper 

(classes 5-10), the beekeeper identified the typical hive issues associated with the 

detected state.  

It was noted that by dividing the unhealthy hive status into 5 classes and 

presenting the current class in the alarm, the beekeeper could prepare more 

appropriately for the hive visit. The alarms would also vastly increase the response 

time, especially during winter months, when opening the hive for inspection is 

usually avoided. 

1. Normal Hive/2. Hibernation: Identifying which hives are behaving normally 

(as expected based on season) will allow the beekeeper to prioritise resources and 

hive visits far more effectively. 

3. Evaporating Nectar: Traditionally, louder sounds from the colony due to 

fanning are noted be beekeepers as a sign of high nectar input, that is being fanned 

by a full hive of bees, to produce honey. Automatic detection of when fanning 

occurred will allow for more accurate predictions of nectar flow from several hives 

at once. 

4. Ideal humidity to treat for pests: Humidity levels can have a strong influence 

on many hive treatments including some organic acids and Thymol dust. 

Identification and notification of good conditions will lead to more effective 

treatment. 

5. Colony no longer in the hive: Though there is little that a beekeeper can do in 

this case, it does, however, alert that missing stock in the apiary should be replaced.  

The alert may be an indication of theft of the entire internal contents of a hive, which 

is a concern for many beekeepers who have apiaries far from their homes. 

6. Diminished population – Poor temperature control: Temperature control is 

crucial for laying and the development of brood. In summer, honey bees have only a 
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6-week lifespan, it is crucial that optimal conditions (principally temperature) be 

maintained to ensure continuous birth of young bees. Lower hive temperatures in 

winter are also known to promote higher infestations of diseases and pests, 

particularly the Tracheal mite pest [44].  

7. Diminished population – fluctuation in CO2/8. Low CO2 levels: This could 

indicate losses of bees due to pests, disease, poisoning, attack by predatory animals, 

or a failing queen. Such diminished populations are a serious problem which require 

immediate action by the beekeeper in terms of: disease/pest control, replacement of 

the queen, and/or combining the weak hive with another to give a single viable hive 

which is more likely to survive. 

9. Hive is too hot: In extreme cases, the wax can melt and spill honey on the 

brood frames that are situated below them, and impede access by bees to frames with 

uncapped brood.  When temperatures are very high the honey bees divert their 

activities from foraging to cooling by fanning and by collecting water. This re-

orientation of activities decreases foraging for nectar and decreases honey 

productivity. 

10. Hive is too damp: Damp leads to the proliferation of fungi in the hive as well 

as the presence of slugs neither of which are acceptable for honey production. Fungal 

honey bee diseases that kill developing bee larvae, such as chalkbrood and 

Stonebrood, proliferate in damp conditions.  Damp also leads to pollen, which has 

been gathered by bees, becoming mouldy inside in the hive and ignored as a food 

source for developing larvae. 

5.6 Random Forests for Hive Classification 

5.6.1 Motivation 

The single decision tree hive classification algorithm described above in Section 

5.3.2 achieved an acceptable level of accuracy (95.38%). However, it required 

external weather data to make accurate predictions, and could not be considered 

reliable for other honey bee colonies, as it was trained using a limited dataset from a 

single hive. As well as this, it needed both past and present measurements to monitor 

changes in hive conditions.  
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Following Deployments II – V (Section 3.6) a large database of hive information 

had been collected (3,435 unique datasets) from five different hives. These datasets 

had been collected over a variety of different seasons and hive conditions (see 

Section 3.6 for details). 

It was proposed to train a new algorithm for classifying the hive status using only 

the most recent set of measured conditions from the in-hive sensor systems described 

in Chapter 3. Classification using the in-hive data only would pose an improvement 

in network and node performance by eliminating the need for a downstream flow of 

data, and using only the current dataset would reduce the memory requirements of 

the system. To achieve effective classification within these constraints it was 

proposed to use a more accurate classification algorithm known as Random Forest 

[164].  

5.6.2 Method 

Random Forest [171] is an ensemble method which uses a large group of  

decision trees (a forest) which are trained using a random selection of features. These 

individual decision trees are grown in the same way described above in Section 

5.3.2. To perform a classification, the output of each tree for the current input is 

calculated, and the class with the most “votes” is selected as the result.  

Random Forest is a very accurate classification method, designed to run 

efficiently even when processing large amounts of data. It also has various 

techniques for improving the accuracy when developing a specific forest, including 

feature importance and error calculations. Forests can also be trained, tested, and 

stored for implementation in a different environment, which is ideal for application 

in WSN, as training is often too complex for in-network implementation. 

Six classes were identified for the Random Forest to be able to identify. The 

number of classes was reduced from the ten used in the single decision tree in 

Section 5.3.2. The concept of a “normal hive” was removed, as the ideal conditions 

for the hive are different during the varying seasons and activities throughout the 

year (described in Chapter 2). There is no single ideal condition for any colony that 

can be expected throughout the year.  

The three “diminished population” classes were replaced with an “unhealthy 
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colony” and “shrinking colony” class, to differentiate between when the colony is 

declining because of problems or disease, and when it is shrinking because it is 

preparing for overwintering which is a normal annual behaviour. The high humidity, 

high heat, and damp (condensation in the hive) classes were removed. These alerts 

could be implemented as equally accurate threshold based alarms based on a single 

sensor reading rather than increasing the complexity of the classification algorithm. 

The goal of this work is to create algorithms which can be implemented locally on 

the in-hive node, so reducing complexity is a key concern. The classes to be 

identified were: 

1. Unhealthy colony – An unproductive colony which has a reduced 

population, as a result of swarming, disease, or pest infestation. 

2. Growing colony – Colony is rapidly rearing brood to increase size 

3. Productive colony – A colony which is behaving as expected during the 

main honey flow, including foraging, brood rearing, and fanning to 

evaporate nectar to produce honey 

4. Dead colony/empty hive – A colony with no live bees; they have died or 

left the hive entirely 

5. Shrinking colony – A colony which is not rearing any brood and is 

shrinking, typically to prepare for overwintering 

6. Hibernating colony – A colony which has formed a cluster in the centre of 

the hive in response to cold external conditions 

The features for each class which were used for training were five of the values 

(temperature, humidity, CO2, O2, time of day) captured by the in-hive sensor nodes 

described in Chapter 3. No other values were used to train, allowing the decision tree 

to be stored in-node and applied to data as it is collected for maximum efficiency and 

speed for alarms. The features used were: 

1. Time of dataset collection (hour: minute) 

2. Temperature (°C) 

3. Relative humidity (%) 
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4. Carbon dioxide level (ppm) 

5. Oxygen level (ppm) 

The 3,435 unique datasets collected during Deployments I – V (Section 3.6) were 

used to train and test the Random Forest classifier. These data were randomly sorted 

into a 70:30 ratio to create the training and test data respectively. Sound data was 

identified as a suitable sixth feature, but was not included due to the limited 

availability of sound data to match the large dataset described above.  

5.6.3 Results 

 

Figure 5.6 – Testing number of leaves from 5 to 100 

Initially, six Random Forest algorithms were trained with a large number of trees 

(200) and with varying minimum leaf sizes (5 to 100 leaves). The results are shown 

in Figure 5.6. A leaf size of 5 was found to have the lowest steady state error. In 

Random Forest, small minimum leaf sizes are known to create algorithms 

susceptible to noise. Extensive testing of the final algorithm was required for such a 

low leaf size. The error was found to level out at approximately 70 trees, which was 

selected as the size of the final forest. The error curve for the final parameters 
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(minimum leaf size of 5, and tree count of 70) is shown in Figure 5.7. The mean 

squared error was found to be 0.115 at the maximum forest size of 70 trees.  

 

Figure 5.7 – Error of decision trees for 5 leaves, 70 trees 

5.6.4 Analysis 

The key aspect of Random Forests is the removal of features which do not 

provide strong predictions. The randomly selected feature used for generating each 

tree will then be guaranteed to provide an accurate prediction. The importance of 

each of the 5 features were calculated, and 1 (time of day – feature importance 0.65) 

was found to be significantly less important than the other 5 features (importance 4.3 

– 5.79) as shown in Figure 5.9. 

The “Time of Day” feature was removed, and the random forest was trained 

again with a minimum leaf size of 5, and using 70 trees. The error for the revised 

Random Forest increase marginally to 0.121. This increase in error was acceptable 

when compared to the increase in noise resistance.  



Machine Learning for Honey Bee Health  

126 

 

 

Figure 5.8 – Feature importance 

 

 

Figure 5.9 – Increase in error without time of day as a feature 

To test the performance of the decision tree, it was applied to the test dataset 

(30% of collected hive data). A confusion matrix of the results is shown below in 
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Table 5.4 and Table 5.5 in both absolute results and percentage format respectively. 

Class 4 (no colony/dead colony) was found to have the highest accurate prediction 

rate (100%) and Class 6 (hibernating colony) was found to have the least accurate 

prediction rate (74%).  The most common error was a hibernating hive misclassified 

as a growing hive (Class 2). The total accuracy of the classifier on the test data was 

88.1%. This was an acceptable accuracy rate for identifying the state of the hive.  

Table 5.4 – Confusion matrix – test data 

 

Table 5.5 – Percentage matrix – test data 

 

The fully trained Random Forest based classifier was then applied to the entire 

collected in-hive dataset. The confusion matrix for total results and percentages are 

shown in Table 5.6 and Table 5.7. Class 4 (no colony/dead colony) again had an 

accuracy of 100%, and Class 6 (hibernating colony) had the lowest prediction rate 

(86%). The overall accuracy of the classifier was found to be 93.5%.  
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Table 5.6 – Confusion matrix – all data 

 

Table 5.7 – Percentage matrix – all data 

 

Class 4 (no colony/dead) had an accuracy of 100%, which was a far more 

accurate rate than the other classes. This was expected, as the conditions measured 

inside the hive with and without the colony are quite different, even at a casual 

glance. However, as it was also the class with the fewest training and testing datasets 

(42), more examples to further train the algorithm, and validate the high level of 

accuracy are necessary. 

Class 6 (hibernating colony) had the lowest overall accuracy (86%). This lower 

accuracy was a result of the low number of example datasets (184) available for 

training. The hibernating colony did not have as much of a dramatic change in 

conditions as was seen in the case of the dead colony, leading to the low number of 

datasets causing a dramatic drop in accuracy. The accuracy of this classifier could be 

significantly improved with the inclusion of more examples of hibernating hives.  
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The Random Forest classifier had a total accuracy of 93.5%. This represented a 

small drop when compared the 95.38% accuracy of the single decision tree described 

above in Section 5.4.1. However, the Random Forest did not require external data 

(weather), thus reducing network traffic; did not need to be aware of any previous 

datasets, thus reducing memory and node complexity requirements; and the 

algorithm required only 4 inputs (compared to 7 for the decision tree classifier), 

which made it more resistant to noise. These three improvements, together with the 

small decrease in accuracy, make the Random Forest algorithm a more appropriate 

classifier for use in resource constrained in-hive WSN nodes.  

The Random Forest classifier algorithm was too large to be implemented on the 

microcontroller used in the in-hive WSN node described in Chapter 3 (122 kB max 

binary file size). However, it would be very suitable for implementation in future 

nodes which are suggested in Section 7.3. 

5.7 Discussion 

The results of two deployments from Chapter 3 were analysed from biological, 

meteorological and engineering perspectives. A threshold-based algorithm was first 

proposed to detect important hive changes and alert the beekeeper. The algorithms 

were verified by comparing the outputs from the deployments to observations from 

the beekeeper and official weather records.  

Using the analysis, a decision tree was developed which classified the hive as 

being in one of ten possible states. The algorithm was found to classify the hive 

accurately in 95.38% of cases. From the meteorological analysis a short term, local, 

weather prediction decision tree was proposed using in-hive CO2 levels (95.4% 

accuracy, to be validated in future studies). This algorithm predicted rain patterns 

local to the specific hive monitored. These algorithms were deployed on the 

3G/GSM enabled node and increased energy requirements by just 5.35%. Machine 

learning is used to automatically apply established beekeeping knowledge to the 

collected data, allowing early identification of poor health for improved colony 

health, as well as analysis of behaviour.  

A second hive classification algorithm was developed using Random Forest 

techniques. This algorithm did not need access to data from outside the networks, 
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memory of previous measured data, and used only four inputs, while achieving an 

accuracy of 93.5%. While it was not possible to implement this algorithm on the 

existing node described in Chapter 3 due to code size restrictions on the 8-bit 

ATmega1281 microcontroller. It is proposed to expand the processing capabilities to 

allow for implementation in future work (Section 7.3).  

A summary of the value of these classifiers for beekeepers was also presented. It 

was noted that by presenting the current class in the alarm, the beekeeper could 

prepare more appropriately for the hive visit. The alarms would also vastly increase 

the beekeeper’s response time to hive problems, especially during winter months, 

when opening the hive for inspection is usually avoided. Parts of this chapter were 

published in a peer reviewed journal paper [172]. 
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6 Big Brother for Bees – Advanced 

Monitoring in the Hive 

6.1 Introduction 

There are several important hive parameters which were identified in Chapter 2, 

namely sound, weight, and visual inspection, which were not addressed by the in-

hive WSN described on Chapter 3. In the case of sound and visual inspection, the 

signal processing and networking requirements of such sensors are far higher than 

can be achieved in a low energy system for long term deployments. In the case of 

weight monitoring, this was not included in the system firstly because load cells with 

the range (200 kg), resolution (10’s of grams), and low energy performance was not 

available, and secondly because adding load cells to the system would make it much 

harder to deploy on hives in the field, by requiring them to be moved. 

These parameters however, provide valuable information about the conditions of 

the colony which may not be detected by the existing in-hive sensor node. In this 

chapter the preliminary use of microphones, load cells, and cameras to monitor each 

of these parameters is proposed. A focus is maintained on using these high-volume 

data sensors in a low power and resource constrained system. Techniques for 

integrating these high-volume data sensors together with the in-hive WSN described 

in Chapter 3 without excessively reducing node performance or lifetime have been 

explored.  
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The key research questions addressed in this chapter are: 

 How can the knowledge relating colony conditions, productivity, and activity 

with sound, weight, and visible changes be captured through the use of sensor 

technology? 

 Can the processing power of an in-hive WSN node be sufficient to extract 

valuable information for such sensors? 

 Is there a way to implement the relevant sensors in an unobtrusive way that 

follow the identified design requirements in Section 3.2.1? 

 Can this information be extracted from the hive in an energy efficient way, 

that does not significantly reduce the lifetime of the in-hive WSN node 

described in Chapter 3? 

 Can the information and alerts created be conveyed to the end user 

(beekeeper) using the existing ZigBee and 3G networks described in Section 

3.4? 

6.2 Sound Recording in Hives 

6.2.1 Introduction 

It is possible to gain a large amount of information from monitoring the varying 

sounds occurring within a beehive. In this chapter, the first section of work describes 

the expansion of the in-hive WSN node described in Chapter 3 to monitor amplitude 

of the sound within the hive and generate an alert for large changes in volume. A 

sudden rise in noise levels from the honey bees could reflect a variety of events 

which may result in loss of profit to the bee keeper, such as alarm sounds around 

invasion by a pest or swarming. Following this, the design was further developed 

into an in-hive WSN node for detecting the signs of an imminent swarming event by 

observing the sounds coming from the honey bee colony. This node detects both the 

specific “piping” noise emitted by queens, as well as the louder sounds produced by 

the rest of the colony prior to swarming. When an imminent swarming event is 

suspected the node made a short, high quality recording of the hive sound as well as 

sending an alert to the beekeeper through the network. This node was designed to 

work together with the larger sensor network designed for monitoring the health and 
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conditions of the beehive described in Chapter 3.  

Finally, to enable development of a generic in-hive WSN node for monitoring 

and detection of other events in the hive using sound a long-term experiment was 

undertaken to record the sounds of hives in the field. Audio based data loggers were 

installed in hives for long term deployments to generate a large database of colony 

sounds throughout the varying colony events and seasonal changes. An analysis of 

these data is presented with identification of the key frequency ranges and magnitude 

for future classification work. Throughout this work, conventional electret and 

MEMS microphones were used for collection of sound data, due to their ease of 

deployment, ability to be mounted inside or outside the hive if necessary, and as they 

do not need to be fixed to the comb of the hive. Accelerometers were also explored 

as a potential solution, as described by Bencsik et al. [173], but were not used due to 

the requirement to fix them on the comb. A radar based microphone has also recently 

been explored by Aumann et al. [174], which offers another effective method for 

hive sound monitoring. 

6.2.1.1 Swarming 

An important part of a beekeeper’s activities during the reproductive season is to 

monitor for “swarming”, which is the method by which a natural colony of Apis 

mellifera reproduces. The process of swarming is described in detail in Section 2.5.2. 

Sequential hatching of new queens can lead to secondary or further swarming events 

with progressively fewer numbers of bees in each swarm and the original colony 

which are unlikely to survive winters.  All such swarming events, if not managed, 

represent considerable losses to beekeepers in terms of lost colonies, reduced 

numbers of bees in remaining colonies and reduced honey production. Newly formed 

queens produce specific sounds known as “piping” at or just prior to their hatching. 

Traditional beekeeping methods involve managing swarming (prime or secondary 

swarms) to avoid losses of bees from an apiary. Such management requires close 

monitoring of the formation of virgin queens by the colony with frequent (weekly) 

visits by the beekeeper.  Emerging virgin queens can also kill other emerged as well 

as developing (unhatched) queens which are sometimes used to form new colonies. 

This makes swarm management a labour intensive and time critical activity for the 

beekeeper.  
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6.2.2 Colony volume alerts 

One of the most important aspects of the sound emitted from the hive it its 

volume. A sudden increase in volume from the hive may not only indicate swarming, 

but that the bees were showing aggression towards an intruder in the hive, for 

example a mouse creating a nest in the hive, or a larger animal or human 

approaching the hive. In the first step of this research, a microphone was used to 

identify an increase of the sound levels within the hive. This microphone was 

implemented as part of a dedicated sound monitoring WSN node external to the hive, 

in the same network as that described in Section 3.4. 

6.2.2.1 Implementation 

The microphone used was the SparkFun Electret Microphone Breakout. 

Accompanying the microphone was an amplification circuit with an op amp 

(OPA344). Using this microphone circuit, together with the ADC input of the 

microcontroller as part of the in-hive WSN node, the volume of the colony sound 

could be measured. As the volume of the sound was required, rather than frequency 

detection, the microphone circuit was sampled at 100Hz, which is far below quality 

sound recording, or even the ideal range for monitoring honey bees. A more suitable 

sampling frequency would be greater than 700 Hz. As a major aim of the project was 

to provide a low power platform suitable for remote deployment, this low sampling 

rate reduced the energy requirements of the solution.  

6.2.2.2 Signal Processing 

The objective of the sound detection node was to pick up major sound 

disturbances within the hive. Once a disturbance occurred, and was found to be 

sustained over several seconds, an alert would be generated and sent via the network 

to the user. To design an algorithm to detect this, several recordings of calm, 

aggravated and swarming hives were analysed and compared. Tests were carried out 

in relation to distance of microphone from the sound source to give the best results 

and to reduce clipping false positives. An optimum distance of 0.75 m was reached, 

which was used throughout the rest of the experiment.  

In the software implemented on the WSN node microprocessor, the magnitude of 

the sound detected by the microphone was first calculated, and then a threshold was 

applied to each resulting data point where the value was kept if it met the threshold, 
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or forced to zero if it did not. The remaining points were put through a moving 

average filter. If the output of this filter confirmed that the increased noise levels 

were in fact sustained over time (rather than say one bee flying near the 

microphone), it was confirmed that the colony was indeed increasing its volume and 

a network alert was generated.  

6.2.2.3 Results 

The response of the sound detection node to a high-quality recording of a 

“piping” beehive is shown in Figure 6.1. In Figure 6.1 the elevated noise levels 

during the piping can be clearly seen, as well as the response of the filter which 

triggered an alert.  

 

Figure 6.1 – Response of sound detection node to “piping” 

6.2.3 Frequency Based Acoustic Interrupt Node 

Simple volume alerts as described above are of limited use to the end user, as 

they do not capture any data describing the sound which triggered the alarm. As well 

as this, there are specific frequencies (piping) which are key indicators of swarming. 

These sounds are not detected by the volume alert circuit, as reducing the volume 

level to trigger an alarm when they occur would cause a dramatic increase in false 
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alarms.  

It was proposed to resolve these problems by increasing the complexity of the 

sound detection WSN node in three ways. Firstly, to implement the volume alarm in 

hardware as an acoustic wake-up signal using a low power comparator. Secondly, to 

add a second feature to the acoustic wake-up – a lower threshold volume alert, 

limited to the key piping frequencies by a band pass filter. And finally, to add a 

dedicated sound recording circuit with a dedicated processor which can be woken up 

to create a short high-quality recording when the acoustic wake-up circuit is 

triggered. A block diagram of the revised acoustic interrupt node is shown in Figure 

6.2, and a schematic overview of the wake-up circuit is shown in Figure 6.3. 

 

Figure 6.2 – Acoustic wake-up WSN node 

6.2.3.1 Design 

Eren et al. showed that the majority of sounds produced by honey bees (workers 

and queen) lie in the <3 kHz range [97]. Based on these findings a high sampling 

was required to get a high-quality representation of the in-hive activity (6.3 kHz). 

Due to this required sampling rate, the files generated are relatively large and not 

suitable for transmission though the low-power, low data rate ZigBee network 

utilised by the existing sensor network in Chapter 3. Local storage of the sound data 

on an SD card (secure digital non-volatile memory card) was selected instead, an 

alarm message was also sent though the network to the beekeeper, notifying them 

that an event was detected. When the beekeeper receives this alarm he/she can go to 
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the hive to inspect the condition of the colony.  If no source of the alert can be 

identified, the SD card can be extracted from the hive. The file, containing the 

sounds which triggered the alarm, can be analysed for an explanation of the alarm. 

For testing the developed prototype, the sounds of different hives in various 

stages of the swarming process were required. A mature beehive typically only 

produces between one and three swarms per year, so, to get a clear indication of the 

prototype performance, a series of high quality recordings of swarming hives and 

piping hives were used in a controlled laboratory environment to simulate the sounds 

and volume levels of a live beehive.  

 

Figure 6.3 – Schematic overview of acoustic wake-up circuit 

6.2.3.2 Sensors 

Two microphones were selected for use in the node, for separate audio 

applications. The first was a low power (17 µA at 0.9 V) analogue MEMS 

microphone INMP801 for use in the interrupt circuit. It allowed for continuous 

(24/7) monitoring of the sound levels in the hive with a low energy consumption 

rate. This microphone was combined with an interrupt circuit designed to detect 

sound levels and frequencies of interest in the hive. In laboratory tests an alternative 

MEMS microphone was used (ADMP401) but which is now obsolete. The second 

microphone selected for use in the prototype was a high quality omni-directional foil 

electret microphone (CEM - C9745JAD462P2.54R), it had a higher power 
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consumption (max 0.5 mA at 1.5 V). The output was amplified to give a high-quality 

output for sampling. This microphone was used in the high frequency, high energy 

consumption sound recording circuit, which was duty cycled to maximise energy 

performance. Energy harvesting from a solar panel was also included to extend the 

lifetime of the node.  

The prototype was developed using off-the-shelf solutions for processing, energy 

harvesting, and networking. Separate processing units were used - one to achieve the 

frequency requirements of the more intense activities (sampling and storage of audio 

data), and one low power unit to preserve battery life during less demanding 

activities (energy harvesting, networking, and controlling sleep cycles as described 

in Chapter 3).  

6.2.3.3 Acoustic interrupt circuit implementation 

To design the acoustic interrupt circuit for detecting in-hive events a power 

spectral density analysis of several high-quality recordings was performed. These 

recordings were sampled at 6.3 kHz, which was also the frequency of the WSN 

node. The results of this analysis are shown in Figure 6.4. A calm, healthy beehive 

(A) where swarming is not happening has one very distinct peak in the 200-300 Hz 

range, this was expected, as the vast majority of bees, excepting the queen bees, 

produce sounds in this frequency range when they move their wings during their 

typical hive activities. 

In Figure 6.4 (B) the frequency spectrum of a hive with a cell containing a new 

“virgin” queen is presented. The feature of most interest was the peak at 

approximately 500 Hz. This is the frequency range of the “piping” action, which 

occurred when the new queen is preparing to hatch. In Figure 6.4 (C) a single “toot” 

produced by the queen was analysed and the peak around 480 Hz was clear. There 

are also various sounds detected in the analysis at higher (>1 kHz) frequencies, these 

were produced by the bees present in the hive as it prepared for the swarming event 

to begin.  

The piping sound usually started 6-8 hours before the swarming action begins 

and is an important indicator for the beekeeper. This sound was selected as important 

to identify immediately. A band pass filter on the output of the MEMS microphone 

in the range 300-700 Hz selected the relevant frequencies for piping sounds, and a 
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comparator provided a wake-up signal for the microcontroller when the sound 

volume reached the desired threshold.  

 

Figure 6.4 – Power-spectral density of beehive sounds 

The frequency spectrum of an actively swarming hive is shown in Figure 6.4 (D), 

the frequency components were in the same range as in the earlier piping hive, but 

the power levels had increased for most frequencies. This showed that the volume of 

the sound during a swarm was much higher than for a calm beehive. There were 

other important events which cause the bees to increase the power level of their 

sound, including interference from intruders (humans or animals).  

A series of distinct peaks in the 1 kHz and higher range can be seen in each PSD 

example. This is a result of the short recordings used, individual bees interfering 

with the recording, and background noise/interference, all frequencies commonly 

associated with honey bees lie in the less than 1 kHz range (see higher quality, 

longer recordings in Section 6.2.4). 

These events are important for the beekeeper to address as quickly as possible. 

For these reasons, a second wake up signal to the microcontroller was required, 
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based solely on the amplitude of the sound detected by the MEMS microphone. This 

was developed using another comparator with a set threshold. A block diagram of 

the interrupt circuit is shown in Figure 6.2, along with the wake-up signal’s response 

to a recording of a swarming hive in Figure 6.7.  

6.2.3.4 Node architecture 

Figure 6.2 shows the architecture of the sound based wake-up node. The interrupt 

circuit generated a wake-up signal as described in the section above. This signal was 

passed to the off-the-shelf ATmega based platform as an interrupt. This platform 

could not operate at a high enough frequency to sample the microphone output at the 

desired rate of at least 6 kHz while storing the data on an SD. This platform acts as 

the “master” processor in the system.  

The processing unit used for recording and storing the in-hive sounds was 

another off-the-shelf platform. This system was based on a Freescale Semiconductor 

MK20DX256VLH7 which had an ARM Cortex-M4 architecture, and featured a 72 

MHz clock speed, 64 KB of RAM, and a 16-bit analogue to digital converter. These 

features made it ideal for sampling high quality audio, and storing these data in an 

SD card adaptor (microSD Card PROTO Board). This system was far more power 

hungry than the master processor (up to 185 mA vs. 15 mA) and did not have a built 

in RTC.  

6.2.3.5 Energy harvesting and power performance 

The interrupt circuit was the only part of the system designed for continuous use 

and was therefore designed to operate at a minimum power level. The “master” 

processor utilised its ultra-low power sleep mode to minimise consumption until an 

interrupt. The radio, sensors, and sound recording circuit were all duty cycled as they 

were power hungry. A solar panel (111 X 91 mm, Max output 6.5V at 205 mA) was 

utilised to harvest energy. The goal was to achieve energy neutral operation. The 

results of a power analysis can be found in Section 6.2.3.8.  

6.2.3.6 System software 

The node sampled the sound within the beehive four times per day, as well as any 

time an interrupt was generated by the circuit. The “Master” processor handled the 

interrupts, communication, RTC and duty cycling. Firmware for the operation of the 

master processor had a schedule as follows: 
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 Wait for sound interrupt or RTC interrupt 

 Turn on the sound recording circuit and processor 

 Turn on XBee module and connect to network 

 Send RTC time and date to recording processor via UART. 

 Sample temperature sensor (average over 10 samples) 

 Sample humidity sensor (average over 10 samples) 

 Send temperature, humidity, and RTC data to base station 

 Delay 40 seconds, turn off all peripherals and sleep 

Separate software was required for the audio recording processor, which was 

completely shut down in between sampling events to preserve energy. The time and 

date were passed to the recording processor over the UART connection to effectively 

name SD files. Firmware was written for the audio recording processor as follows: 

 When turned on, set ADC resolution to 12 bits, and averaging to 4 samples 

 Initialise SD card 

 Receive time and date over UART and create new file on SD card with these 

data. 

 Sampling loop for 30 seconds: 

o Read ADC and write value to SD file 

o Delay 70 µs 

 Check average sample time = 158 µs 

 Close SD file and wait to be shut down 

6.2.3.7 Results - recorded audio  

An example of a normalised recording of a calm beehive during the summer 

season is shown in Figure 6.5. Some examples of the audio files recorded by the 

demonstration system in experiments are plotted in Figure 6.6 (piping taking place) 

and Figure 6.7 (swarming hive). It can be seen that the audio recording block of the 



Big Brother for Bees – Advanced Monitoring in the Hive  

144 

 

demonstration was operating at a high enough frequency to observe the sounds 

effectively and that the microphone input was correctly set up to capture all of the 

events successfully. The difference in volume levels between the calm and swarming 

colonies can be observed easily, and the distinct frequency change associated with 

piping can also be seen. These collected recordings demonstrate the effectiveness of 

the acoustic wake-up node. 

 

Figure 6.5 – Normalised recording of a calm beehive 

 

Figure 6.6 – Normalised recording of a piping queen 
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Figure 6.7 – Normalised recording of a swarming hive  

6.2.3.8 Results - power and energy analysis 

To confirm that the system was low power and self-sustaining, a power analysis 

and energy budget calculation were performed. For the power analysis (Table 6.1) a 

worst-case scenario (highest current draw) for each of the systems operations was 

taken. It is clear that design of the interrupt circuit was quite low power, as desired. 

It was also confirmed that the recording block consumed a large amount of power, as 

predicted. 

Table 6.1 – Power analysis – acoustic wake-up node 

Unit 
Power Results 

Task Current (mA) Voltage (V) Power (mW) 

Interrupt On 0.85 3.00 2.55 

Master µC 
Awake 15.00 3.70 55.50 

Asleep 0.55 3.70 2.05 

Recording 

µC 

Processor & 

Microphone 
115.00 5.00 

773.00 

SD 60.00 3.30 

Radio On 220.00 3.30 726.00 

The aim of the energy budget (Table 6.2) was to confirm that the system was 

energy neutral when used in conjunction with the solar panel described above 
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(maximum output 6.5 V at 205 mA). To achieve this, the energy consumed by the 

system in a typical day (5 scheduled recordings) was calculated based on the power 

analysis results. The energy of each additional recording (e.g. triggered by the 

interrupt circuit) was calculated. The energy provided by the solar panel with an 

average Irish day’s amount of direct sunshine (2 hours) at an efficiency of ƞ=0.44 

(3.5.2) was also calculated. It was found that the solar energy provided in one day 

exceeded the energy consumed, and the system is therefore energy neutral. 

Table 6.2 – Energy budget – acoustic wake-up node 

Unit 
Energy Budget for one 24-hour cycle 

Task Power (mW) On Time (mins) Energy (J) 

Interrupt On 2.55 1440.00 220.32 

Master µC 
Awake 55.50 15.00 49.95 

Asleep 2.05 1435.00 177.12 

Recording 

µC 

Processor & 

Microphone 
773.00 5.00 231.90 

Radio On 726.00 15.00 653.40 

Total Expenditure:  1272.00 

Each additional 

Recording: 

773.00 1.00 
186.96 

781.50 3.00 

Income from Solar Panel 

@ ƞ=0.44 
586300.00 120.00 4220.00 

6.2.4 Long term monitoring of colony sounds 

One of the objectives suggested in Section 6.2.1 was to inform the design of a 

node which could use sound to detect and classify the status of the hive. The most 

effective method for achieveing this in a low power WSN based system with 

restricted processing power is to use a custom designed audio processing circuit 

expanded significantly from the one described in Section 6.2.3. This would avoid the 

significant processing load of implementing a machine learning technique with audio 

classification capabilites (such as neural networks). It would also allow for interrupts 

similar to those demonstrated in 6.2.3 when rare, asynchronous, hive events such as 

piping occur, which software techniques would need to run continuously to detect.  
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To enable this design, a long term sound data collection experiment was 

performed on several hives over 12 months. The objective was to collect an 

extensive set of high quality recordings for several important hive states which are 

associated with different colony sounds.  

6.2.4.1 Design 

To gather the large amount af data required for this analysis, 30 Yulass USB 

sound recording devices were used. These off-the-shelf devices used a MEMS 

microphone (frequency response: 20 Hz – 20 kHz) to record sound and store it on 

their on-board 8 GB Flash memory. Each of these devices were powered using an 

external 2,200 mAh rechargable battery to allow for continuous sound collection for 

the lifetime of the battery. Each recording device was installed in a hive of interest 

and had enough memory to collect data for 48 hours, after which time it was 

removed, replaced with another device, and taken back to laboratory for data 

extraction, analysis, and recharging. 

Each device was installed in the same position in each of the hives – inside the 

roof cavity. This guranteed that changes in recorded volume or frequency were due 

to colony behaviour. It also allowed and developed nodes based on these recordings 

to have an estimate of performance when placed in the roof cavity. The sound files 

generated were .WAV files sampled at 16 kHz, which provides high quality data for 

the <3 kHz range of interest when analysing honey bee colonies.  

The collected data files were stored on two 2 TB hard drives for backup. The 

files were stored by date together with notes documents outlining time periods of 

interest and the general conditions of each subject hive.  

6.2.4.2 Results and Analysis 

The first set of recordings collected were from healthy hives, during the main 

honey flow in May 2016. The power spectral density (PSD) of six randomly selected 

5-minute samples throughout this deployment are shown in Figure 6.8 A, and the 

average PSD for the entire deployment is shown in Figure 6.8 B. 

The key peak which was identified in the average PSD file was found to be in the 

50 – 100 Hz range, with a magnitude of -54 dB. The overall magnitude of the PSD 

dropped off to below -80 dB in the higher frequency range. 
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Figure 6.8 – PSD of typical summer colony recordings 

Another key set of recordings were those collected from hibernating colonies, 

where the colony has stopped brood rearing, and has formed a Winter cluster with 

the queen bee at its centre. These were collected from hives in January of 2017. 

Figure 6.9 A shows the PSD of six 5-minute examples, and Figure 6.9 B shows the 

average PSD of the deployment. 

The overall magnitude of the PSD for the hibernating colonies was found to be 

far lower than that of the active hive described above. The average PSD remained 

below -85 dB in most of the frequency range. Two peaks were identified at -74 dB in 

the 0-100 Hz range, and -77 dB in the 250-300 Hz range. 

 

Figure 6.9 – PSD of hibernating colony recordings 
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Another key colony condition of interest is swarming, which was captured in 

June 2016. A large amount of data were collected from a hive immediately after the 

queen had left with the primary swarm. In this hive, there were two new queens 

preparing to hatch and fight, possibly leading to another swarm. Figure 6.10 A 

shows six 5-minute examples of a post-swarm hive, and Figure 6.10 B shows the 

average PSD over the 48 hours following the departure of the prime swarm.  

The post-swarm hive had a significantly higher magnitude than the normal 

summer hive described above in the 200 – 600 Hz range. The peak of the PSD was 

found to be at -47 dB in the 50-150 Hz range.  

 

Figure 6.10 – PSD of recordings of a post-swarm colony 

Supersedure is another colony event relating to queens. Towards the end of the 

active season, a colony with an old queen will remove her and replace her with a 

daughter without swarming. This was observed in a hive in September 2016, Figure 

6.11 A shows the PSD of six 5-minute samples from the 76 hours following the 

removal of the queen, and Figure 6.11 B shows the average PSD for this 76 hours.  

The PSD of a superseded hive has an almost identical profile to that of a post-

swarm hive, with the exception of the 600-800 Hz range, which was found to be 

approximately 5 dB higher in the superseded hive. This is unsurprising as in both 

hives new queens are being reared and will fight for control of the hive upon 

hatching.  

A B 
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Figure 6.11 – PSD of recordings of a superseded colony 

In July of 2016, one of the observed hives was found to be filled primarily with 

drones. It was observed that the colony population was made up of more than 50% 

drones. This is an important problem to be able to identify, as it is associated with 

both queen and worker problems. Figure 6.12 A shows the PSD of six 5-minute 

sound examples, and Figure 6.12 B shows the average PSD for the entire duration of 

the recording. In the drone filled hive, two distinct peaks were detected at -41 dB in 

the 100-200 Hz range, and -44 dB in the 250-350 Hz range. The drone filled hive has 

the highest recorded magnitude of any of the recordings made during the experiment 

in the <800 Hz range, but had typical characteristics above that range.  

 

Figure 6.12 – PSD of recordings from a primarily drone filled colony 
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A 
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Throughout the recording of the swarming in June 2016 hive described above 

and illustrated in Figure 6.10, several instances of piping were noted. These 

instances were extracted from the sound files and analysed separately to help 

compare piping and non-piping colonies. Figure 6.11 A shows the PSD of six 

examples of piping, and Figure 6.11 B shows the average PSD of all of the collected 

examples. The PSD shows a clear peak at -50 dB in the 75-175 Hz range, which 

would be typical from previous observations in a swarming hive. There is also a 

distinct peak in the 350-450 Hz range of -58 dB, this is expected to be the impact of 

the piping noise itself, similar to the distinct peak observed in Figure 6.4. It is 

expected that the location of this peak could be used together with the information 

from Chapter 2 and Table 2.2 to estimate the age and number of queens in the hive.  

 
Figure 6.13 – PSD of a piping colony  

6.2.5 Summary 

The results of the development of a solution for detecting sudden increases in the 

sound volume from a colony in the case of colony alarm or swarming, as well as the 

specific sounds associated with piping are presented. When an imminent swarming 

event is suspected the node made a short, high quality recording of the hive sound as 

well as sending an alert to the beekeeper through the network. This system was 

successfully integrated into the WSN described in Chapter 3, while increasing the 

energy requirements of the node by only 186.96 J per recording.  

Many recordings from hives in the field were collected to facilitate future 

development of the wake-up circuit into a classification circuit. An analysis of these 

data is presented together with an analysis into the peaks and characteristics which 
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Big Brother for Bees – Advanced Monitoring in the Hive  

152 

 

define each colony status. The average PSD analyses for each of the six hive states 

observed are shown together for comparison in Figure 6.14: : A – Summer colony; B 

– hibernating colony; C – post-swarm colony; D – superseded colony; E – drone 

filled colony; F – piping colony. 

 

Figure 6.14 – Comparison chart of all six average PSD analyses 
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6.3 Weight Monitoring of Beehives 

6.3.1 Introduction 

Beehive weight is a key indicator of the productivity and condition of the honey 

bee colony; studies on how to effectively determine beehive weight have been 

carried out since the birth of apiculture. The USA Department of Agriculture 

released a document in 1925 outlining the effects of the weather on apiaries. It 

concluded that factors like ambient temperature, hours of sunshine, variation in 

temperature, and humidity can affect the weight of the beehive.  The most commonly 

utilized method of weighing is to place a mechanical balance under the beehive, then 

adjust the scale as the weight changes.  

A simple rule of thumb developed by beekeepers, is to use a basic tension scale 

e.g. a luggage weight scale, tilt the beehive on one side and double the value 

determined. The objective of weighing the colony during the honey production 

season is to determine when the hive’s honey stores have reached maximum 

capacity, and then harvest them. This is difficult to achieve with the traditional, 

inaccurate weighing methods. The main difficulty surrounding hive weight 

measurement is that to gain an accurate picture of the hive status it is necessary to 

weigh several tens of kilograms but to an accuracy of tens of grams. The high 

resolution is necessary to measure honey production, colony size, and colony health, 

which can cause weight changes of 10’s of grams.  

6.3.2 Weight measurement 

One of the most utilized sensors used in weighing applications are load cells. The 

combination of both mechanics of materials and resistive theory has produced a 

sensor design that can be used to measure changes in weight reliably. The load cell 

utilised in this work operated by measuring the deflection of a beam upon which the 

load to be measured had been placed. The beam adhered to Poisson’s ratio, where a 

beam, when in tensile straining, extends in length in the direction of the force, but its 

cross-sectional area (CSA) contracts. When a beam experiences bending, its top 

surface experiences a tensile strain and its bottom surface experiences a compressive 

strain (depending on the direction of bending). If the beam is behaving elastically, 

then the strain is directly proportional to stress, and hence to the applied force. These 
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changes in the beam can be used to measure the force applied precisely, using strain 

gauges. 

 

Figure 6.15 – Strain gauge Wheatstone bridge circuit 

The circuit that is traditionally used with load cells is the Wheatstone-Bridge. 

The circuit design of the bridge can vary, depending on the number of strain gauges 

used. A greater quantity of cells provides greater precision. Figure 6.15 describes a 

Half Wheatstone Bridge circuit, utilizing two strain gauges on a beam, where one is 

fixed to the top surface, while the other is bonded to the lower surface. The two 

measured strains are usually equal and opposite, doubling the output of the bridge 

circuit. This arrangement can be considered a single load cell. The difference in 

current drawn between the positive strain gauge and the negative strain gauge can 

describe an applied force with great accuracy, in terms of a voltage output 

difference. This value can then be used to describe the varying weight. 

6.3.3 Hardware and system design 

6.3.3.1 Load sensor 

For the prototype described in this paper, an AMS-750 Load Cell was used 

(Figure 6.16). Developed by Hanyu, the AMS was a Single Point Impact Cell 

(SPIC). The design of a SPIC differed greatly from other configurations, to allow 

greater deflection of the beam. This not only increased the range of loads it can 

withstand but can also be used to introduce a safety stop to protect the strain gauges 

from overloading. The AMS was a four-wire load sensor, with two excitation wires 

(power and ground) and two signal wires (positive and negative signal). The 

Wheatstone-Bridge circuit was integrated into the sensor. It had a rated loading of 
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750 kg and an accuracy grade of 0.02% full scale. For outdoor applications, such as 

the one described in this paper, the load cell was also rated IP65, which guaranteed 

protection from dust and water jets.  

 

Figure 6.16 – AMS load sensor [175] 

6.3.3.2 Analogue to digital converter 

To create a weight sensing node which was extremely accurate over a large input 

range (up to 200 kg) an ultra-accurate analogue to digital converter (ADC) was vital. 

For this system, the Analog Devices AD7190 was selected, which is an ultra-low 

noise, 24-bit ADC with 2 differential inputs, designed for accurate weighing scales 

applications. It also had an SPI interface which made it ideal for use in an embedded 

system such as the one described in this paper. At the desired gain (G = 128) the 

AD7190 had 16 bits of noise free output. The maximum output of the AMS-750 load 

cell was 750 kg; therefore the minimum theoretical detectable weight change was 

calculated to be 11.4 g. 

 

Figure 6.17 – Platform weighing scale 
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6.3.3.3 Wireless platform and node architecture 

A dedicated weight measurement node was developed using the same platform as 

described in Chapter 3. The platform was interfaced with the ADC and load sensor 

via SPI (Serial Peripheral Interface), and firmware was written to wake up, sample 

the weighing scales, transmit the reading to the base station, and return to sleep mode 

four times in a 24 hour cycle. These readings correspond to the four weight levels of 

interest every day: night-time when all bees are in the beehive, the morning before 

foraging for pollen and nectar has begun, midday when the maximum number of 

bees are out foraging, and the evening when all of the pollen and nectar for the day 

have been collected and the bees are returning to the beehive.  

6.3.3.4 Mechanical design 

The load cell was designed to operate as a platform weighing scale (mechanical 

design implemented by Darren Fitzgerald, a MEngSc student in the Department of 

Electrical and Electronic Engineering at University College Cork [176]) that would 

be fitted to the base of the brood chamber, as shown in Figure 6.17. This was 

achieved by fixing the load cell to two spacer blocks and two aluminium plates (base 

and platform). The recommended power supply to the load cell was 10 V.  

 

Figure 6.18 – Output voltage of scales 
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6.3.4 Results 

The output voltage of the load cell system varied as expected in response to loads 

of 0 to 50 kg. Using standard, calibrated 1 kg weights, incrementally applied to the 

platform, the output voltage for the bridge was recorded. The data points plotted 

confirmed the load cell was linear. The noise at kg level increments was low, with 

little or no effect on the output value, making it very suitable for applications in 

estimating honey productivity. From the initial experiment, Figure 6.18, was 

generated. 

For the second experiment, known weights were applied to the load cell when 

connected to the WSN node, and the output of the system was recorded. Table 6.3 

was produced and the error of the ADC readout was calculated. This method of 

weighing proved to have low variation between the actual weight and the ADC’s 

weight, with slight variation with the 5 kg weights.  

Table 6.3 – Experimental results 

Weight (Kg) 
Average ADC 

Reading (kg) 
Error (%) 

0 0.0024 - 

1 0.9967 0.33% 

2 1.9975 0.12% 

3 3.0153 0.51% 

4 4.0155 0.39% 

5 4.9418 1.16% 

10 10.0184 0.18% 

15 14.9397 0.40% 

20 20.0186 0.09% 

25 24.936 0.26% 

30 29.98 0.07% 

35 34.93 0.20% 

40 39.98 0.05% 

45 44.91 0.20% 

50 49.97 0.06% 
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The minimum detectable weight calculated was estimated to be 11.4 g. To 

confirm that the system could detect weight changes in this range the lowest 

available standard weights, in steps of 10 g were applied to the scale while observing 

the ADC and node output. Figure 6.19 shows the output response to a series of 10 g 

weights being applied. The changes of 10 g were identified by the system, with a 

small amount of noise. It is possible, together with some with some signal processing 

(low pass filters) to reduce the impact of this noise and by also averaging the ADC 

output, that changes of the beehive weight in the range of tens of grams could be 

detected. 

 

Figure 6.19 – Output voltage of 0 to 40g, in steps of 10g 

A power analysis of the dedicated weight measurement WSN node was 

performed to confirm that the final prototype had suitable low power performance; 

the results of this analysis are shown in Table 6.4. The load cell was found to be the 

most power hungry component, as expected. To prevent this sensor from 

dramatically affecting the energy performance of the system the design of the 

prototype was revised to instruct the microcontroller to disconnect the load cell from 

the power supply when it was not actively being read.  

All other components in the system are low power, or heavily duty cycled to 

maximise energy performance. A solar panel (234 x 160 mm, maximum output 7 V 

at 500 mA) was included in the final design of the system to allow a long term, self-

sustaining deployment of the system in remote locations with little or no access to 

power lines.  

0 g 
10 g 

20 g 

30 g 

40 g 
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Table 6.4 – Power analysis – weight node 

System 

Block 

Power Results 

Task Current (mA) Voltage (V) Power (mW) 

Load Cell On 20.00 10.00 200.00 

ADC On 10.00 5.00 50.00 

Xbee Radio Send 220.00 3.30 726.00 

Master µC 
Awake 15.00 3.70 55.50 

Asleep 0.55 3.70 2.05 

 

Table 6.5 – Energy budget - weight noide 

Unit 
Energy Budget for one 24-hour cycle 

Task Power (mW) On Time (mins) Energy (J) 

Load Cell On 200.00 15.00 180.00 

Master 

µC 

Awake 55.50 15.00 49.95 

Asleep 2.05 1425.00 177.27 

ADC On 50.00 15.00 45.00 

Radio On 726.00 15.00 653.40 

Total Expenditure:  1105.62 

Income from Solar 

Panel @ ƞ=0.44 
586300.00 120.00 4,220.00 

 

6.3.5 Summary 

This section outlines the design and development of a platform weighing scale, 

for deployment as part of  the sensor network described in Chapter 3. The results of 

the tests led to the conclusion that this design of platform scale, along with the 

infrastructure of data collection and distribution was a viable solution to accurately 

measure weight levels of the beehive. A significant aspect of the experiment was the 

ability to characterise and read small weight change, in the order of 10 g. The system 

was integrated into to a WSN node to provide a flow of information between the 

smart weighing scale and the base station. To provide an self-sustaining solution, a 
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solar cell, along with a lithium ion polymer battery was used to deliver power to the 

system.  

6.4 Image Processing of Beehives 

6.4.1 Introduction 

Visual inspection of the hive is one of the most important activities in which a 

beekeeper engages, it is used to examine the condition of the honey bees, including 

the number of workers and drone bees, the development of the bees, and examine for 

queens. Visual inspection also allows the keeper to detect a range of diseases by 

removing frames and examining them. However, a thorough inspection is a time 

consuming and invasive process, which aggravates the honey bees, exposes the 

inside of the colony to the external weather conditions, and can lead to bees being 

crushed when the keeper moves frames. Infrared cameras providing high quality 

images of the hive interior to the beekeeper remotely, such as the ones described in 

this work, have the potential to provide information on colony condition and disease, 

thereby reducing the frequency of physical inspections. Many beehives are kept in 

remote or rural locations. Inspections of hives in such locations require long 

journeys. They are also often placed in farmland or forests where they may be near 

livestock or other animals which can knock over a hive. Hives can also be knocked 

over in high winds. In all such cases, it is vital to reassemble the hive as soon as 

possible after falling to minimise losses. The system in this paper eliminates the need 

to inspect every hive for such damage regularly.  

6.4.2 System functionality 

6.4.2.1 Sensor node architecture 

Two different development platforms were used in the prototype, the off-the-

shelf platform used to develop the WSN nodes described in Chapter 3. To use 

camera sensors effectively, a second, more powerful processor was required. The 

controller chosen was the Raspberry Pi Model B. It had 512 MB of RAM, HDMI 

connection, 2 USB ports and 26 GPIO pins. It also had an SD card slot, which was 

used to store the image data. Similarly to the dedicated audio processing unit in 

Section 6.2.3 the existing platform is used as a low power “Master” which can turn 

off the Raspberry Pi to save energy.  



 Big Brother for Bees – Advanced Monitoring in the Hive 

161 

 

The imaging node had a dedicated SIM900 (SIMCom) GSM/GPRS module to 

facilitate the higher networking load of imaging. This module has ultra-low power 

operation (30uA) and provided phone call, SMS and FTP upload/download 

operations.  GSM/GPRS networking was selected to suit the remote deployments of 

many beehives. 

6.4.2.2 IR Camera 

In this research, an infrared sensor allows the tracking of the activity in the hive 

throughout the winter months so as to gain a better picture of the overall activity in 

the hive. During the summer months, the beekeeper often opens the beehive roof to 

visually inspect the colony. During the winter, bad weather, or at night opening the 

hive can damage the colony by allowing it to get cold or damp. A thermal imaging 

node with a Raspberry Pi was developed to provide the keeper with an image that 

describes the activity within the hive. The sensor used was the FLiR Lepton Thermal 

Camera, which is a longwave infrared imager (Figure 6.20). It has an 80 X 60 pixel 

resolution, is sensitive to wavelengths in the 8 – 14 µm range, has SPI and I2C 

(Inter-Intergarted Circuit) connectivity and a low operating power of 150 mW. 

 

Figure 6.20 – Infrared camera module and thermal imaging module 

Bees are not able to see light in the infrared spectrum (1 mm – 750 nm). Using 

infrared light to flood the inside of the hive, then taking an IR picture of the colony’s 

activities, allows monitoring of the bee hive, even during the night, while remaining 

completely undisruptive to the bees in a live deployment. The camera chosen for the 

prototype was the Pi NoIR camera (Figure 6.20). The sensor had a 5 megapixel 

resolution and supports video up to 1080p. The NoIR was designed to interface with 
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the Raspberry Pi board, and there were many existing libraries available to use the 

camera and Pi together for video and image capture.  

6.4.3 Implementation  

To implement both cameras into the design, the software deployed on the 

Raspberry Pi modules were turned on and took a picture five times per day and 

stored them on an SD card with a time stamp. The image files were saved to the SD 

card so the beekeeper could collect them for inspection. The images could also be 

retrieved from the SD through the network by the GSM/GPRS module and uploaded 

to a server via FTP. It was calculated that with an average jpeg image size of 3 MB, 

and an SD card of 8 GB then the beekeeper would only have to replace the SD every 

111 days. A lossless image format such as PNG should be used to allow more 

effective processing of the collected images. This would lead to a significant 

increase in file size, which could be handled by deleting images with similar outputs, 

or replacing the SD more often.  

6.4.3.1 Fall and movement detection 

As part of the GPRS enabled WSN node which was described above, it was 

proposed to alert the beekeeper via SMS, and trigger an image capture of the camera 

system above when crucial physical beehive events are detected. This was achieved 

with an accelerometer interrupt when the hive is found to be moving (for beehive 

security). The accelerometers measure the tilt and orientation of the hive lid, and, 

using these data the sensor node can alert the bee keeper if this tilt reached a critical 

point. The accelerometer used was the LIS331DLH. This is a “nano” 16 bit digital 

output, low-power, linear accelerometer which detects up to ±8g. It measured 

acceleration values in the range of ±2g at a 16 bit resolution. The equation used to 

calculate the angle of tilt of the hive on each axis was as follows: 

𝐴𝑛𝑔𝑙𝑒𝑥,𝑦,𝑧 =
180

𝜋
× (sin−1

𝐴𝑉𝑥,𝑉𝑦,𝑉𝑧

1000
) (11) 

Where AVx,Vy,Vz is the output of the accelerometer for the X, Y, or Z axis 

respectively. This angle was monitored and, if it was found to be changing, an 

interrupt was generated and an alert was sent to the bee keeper. This is accomplished 

within the design by either sending a message through the Zigbee network or a SMS. 
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6.4.4 Results 

6.4.4.1 Infrared camera 

A test was run of the camera within an empty hive in a laboratory for 4 days. It 

was found that little to no change in quality of the pictures throughout the course of 

the day, even as the amount of light in the surrounding room changed. These images 

were clear and of high enough quality for the beekeeper to identify bees and assess 

their condition. Careful placement of the cameras within the hive space to capture 

the frames at an angle which would be of most use to the keeper will be required in 

future deployments. 

  

Figure 6.21 – Images captured by thermal imaging FLIR camera 

6.4.4.2 Thermal imaging node 

The thermal imaging node was tested by bringing it to the site of the live apiary 

used in previous experiments and capturing an image of a specific hive on several 

different days from a selected location 5 metres from the hive. to capture the 

changing hive conditions during different weather patterns. Two such images can be 

seen in Figure 6.21. In Figure 6.21 (A) the temperature of the hive is much higher 

and the hot air escaping through vents at the top of the hive allowing the bees to 

control their conditions can be seen. In Figure 6.21 (B) the ambient temperature is 

far cooler and the bees gathering together in the centre of the hive can be clearly 

seen.  In both images, the lower temperature of the surrounding environment is 

easily distinguishable from the hot areas created by the honey bee clusters in the 

hive. Image processing to estimate the size of these “hot spots” could be used in 

A B 
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conjunction with the data from the other sensors (temperature, humidity, sound, 

CO2) to estimate a variety of factors, such as: number of bees foraging, health of the 

hive, hibernation, or swarming. 

6.4.4.3 Fall/movement detection 

To test the fall/movement detection node several laboratory tests were run of the 

hive being knocked over and opened. In the experiment, the hive was set up in the 

laboratory as it would be in the field. The hive was then moved and knocked over 

repeatedly. Finally, it was brought to rest again. The resulting movement detected by 

the node is shown in Figure 6.22.  

 

Figure 6.22 – Results of movement detection test 

6.4.4.4 Power and energy analysis 

For the system to be truly autonomous it was necessary for it to be energy 

neutral. This was achieved through the implementation of energy harvesting through 

solar panels and energy storage in a 1000 mAh battery (storage in the case of several 

days with no sunshine). To test that the system would be energy neutral for long 

deployments with little sunshine such as Ireland a power analysis and energy budget 

were undertaken. This power analysis assumed the worst-case scenario of maximum 

current draw for each of the nodes’ operations over 5 samples per day.  
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For the energy budget, the total energy used by the nodes in the worst case was 

calculated. Sufficient energy was harvested by the solar panel (525 x 345 mm max 

operating output of 20W) in 2 hours of typical direct sunshine in Ireland, where an 

efficiency of η=0.44 can be expected (determined in chapter 3). The result was that 

the energy provided by the solar panel exceeded the requirements, and the system 

was energy neutral. The results of the power and energy analysis are shown in Table 

6.6 and Table 6.7. 

Table 6.6 – Power analysis – imaging node 

Unit 
Power Results 

Task Current (mA) Voltage (V) Power (mW) 

Movement 

µC on + 

Sense 
30.00 3.70 111.00 

µC Sleep 0.55 3.70 2.03 

Send 220.00 3.30 726.00 

Thermal 

Imaging 

µC on + 

Sense 
780.00 5.00 3900.00 

µC Sleep 0.55 5.00 2.75 

Send 220.00 3.30 726.00 

Infrared 

Imaging 

µC on + 

Sense 
765.00 5.00 3820.00 

µC Sleep 0.55 5.00 2.75 

Send 220.00 3.30 726.00 

 

Table 6.7 – Energy budget– imaging node 

Unit 

Energy Budget for one 24-hour cycle 

Task Power (mW) 
Function 

Time (min) 
Energy (J) 

Movement 

Sense 111.00 15.00 99.90 

Send 726.00 5.00 217.80 

Sleep 2.03 1420.00 175.30 

Thermal 

Imaging 

Sense 3900.00 5.00 1170.00 

Send 726.00 5.00 217.80 

Sleep 2.75 1430.00 237.60 

Infrared 

Imaging 

Sense 3820.00 5.00 1146.00 

Send 726.00 5.00 217.80 

Sleep 2.75 1430.00 237.60 

Total Expenditure: 3719.00 
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6.5 Discussion 

In Chapter 2 the value of sound measurements, visual inspection, and weight 

measurement were highlighted. The solution presented in Chapter 3, while providing 

a valuable dataset about the conditions inside the hive, did not provide access to any 

of these three values. The main challenge for implementing these solutions was the 

computational complexity and energy demand of measuring sound and imagery, and 

the lack of available solutions for wide range weight measurement with high 

resolution.  

In this chapter, a solution for detecting sudden increases in hive volume due to 

swarming or alarm, as well as piping sounds associated with swarming is presented. 

This is implemented using a combination of a dedicated acoustic wake up circuit, 

and a dedicated audio processor which could be disabled unless required to save 

energy. Using this combination of techniques, important hive sounds could be 

detected and recorded without dramatically reducing the energy or networking 

performance of the WSN solution. Analysis and data collection which form the 

preliminary work for a larger circuit with a classification wake up is also presented.  

To enable weight measurement as part of the hive WSN, a wide range Single 

Point Impact load cell was utilised together with an ultra-low noise, 24-bit ADC. The 

combination of a wide range load cell and a high accuracy ADC allowed for 

detection of weight changes as low as 11.4 g. The load cell had a dedicated power 

supply which was heavily duty cycled when weight measurement was not taking 

place to reduce the energy draw to suit the low-energy WSN concept.  

Preliminary work demonstrating the usefulness of thermal and infrared imaging 

in the hive was also presented. A thermal camera and an IR camera were each 

implemented on an individual WSN node. Each node used a Raspberry Pi for image 

collecting, processing, and storage, which was disabled by the core WSN node 

architecture described in Chapter 3 to reduce energy demand. 

With some further work, each of these solutions could be seamlessly integrated 

into the WSN described in Chapter 3 and 4. The data and alerts collected from the 

weight, sound, and imaging sensors could be utilised together with the software 

classification techniques described in Chapter 5 to create a comprehensive solution 
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for both research into honey bee biology and behaviour, as a tool for evaluating and 

improving beekeeping practices, and as an automated beekeeping tool using 

actuation and a comprehensive awareness of hive conditions to maintain an ideal 

hive temperature. Parts of this work were published in several peer reviewed 

conference proceedings [177-179]. 
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7 Conclusions 

7.1 Overview 

This thesis presents the use of embedded systems technology to improve honey 

bee health and therefore, productivity; by developing in-hive monitoring systems and 

algorithms to classify the colony status as well as mechanisms to influence and 

improve hive conditions. In-hive monitoring, together with actuation, also enables 

the beekeeper to change hive parameters such as airflow, which, in turn, permits bees 

to engage in activities linked to production instead of modifying conditions within 

the hive. 

Specific tasks were achieved to realise this goal: Wireless Sensor Network 

(WSN) technology was used successfully to monitor a honey bee colony in the hive 

and collect a database of key information about its activity and environment; these 

data and resulting insights were used together to propose and demonstrate 

mechanisms to influence the hive conditions for effective control of beehive 

temperature; these collected data were also used to successfully inform the design of 

signal processing and machine learning techniques to characterise and classify the 

colony status using collected data and audio signals; and the use of high data volume 

sensors was investigated to aid in understanding specific conditions of the hive, 

which was presented together with integration of these high volume data sensors into 

the low-power and low-data rate WSN framework without reducing reliability or 

energy performance was also investigated. 
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7.2 Contributions 

7.2.1 Wireless sensor networks for instrumentation of beehives 

The use of an in-hive wireless sensor network for monitoring of hive conditions 

was proposed and explored. An in-hive end device node with five sensors 

(temperature, humidity, carbon dioxide, oxygen, and 3-axis acceleration), solar 

energy harvesting, and low-power ZigBee connectivity was designed and developed. 

A sink node with solar energy harvesting and multi radio connectivity (ZigBee and 

3G/GPRS) was also developed, to aggregate data from multiple hives and store them 

in a secure database. Key mechanical design considerations for the in-hive nodes 

included: protecting the platform from the harsh in-hive temperatures and humidity 

while allowing the sensors to sample effectively using and IP65 rated enclosure; 

integrating the end node into the roof of the hive to allow the beekeeper to continue 

normal hive maintenance throughout long-term deployments; and preventing the 

bees from accessing the sensors. 

The design and performance of this sensor network was evaluated following in-

field testing on beehives, leading to self-sustaining energy performance and a 

sampling frequency which collected data at the important times in the colony’s 

diurnal cycle. An Energy-Aware Adaptive Sampling Algorithm (EASA) was 

proposed and explored as an option for increased node lifetime in future studies. 

The comprehensive dataset collected from five separate deployments of these 

sensors, throughout the different key beekeeping seasons were presented, together 

with the local weather conditions for each deployment.   

7.2.2 Actuation for airflow and temperature control in beehives 

The importance of airflow and thermoregulation in the beehive is well 

documented in the literature as being important to both the health and productivity of 

the colony. To propose improved methods of ventilation and temperature control, a 

computer simulation of the thermodynamics in the standard National beehive was 

undertaken. The results of this simulation were validated through comparison of the 

results with the results of an experimental hive, and were found to comply to within 

a margin of 10%. 
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An alternative geometry for the crown board component of the hive, using five 

ventilation holes instead of the standard one-hole layout, was proposed to improve 

the ventilation and temperature in the National beehive. The two geometries were 

compared in simulations and experimentally. The five-hole design was found to 

provide significantly improved ventilation in simulations and laboratory 

experiments, but will require further validation on hives with bees inside to examine 

the response of the colony. A lead-screw based mechanism was proposed, in 

conjunction with this alternative geometry, to create a method of adjusting the 

airflow within the hive to suit the requirements of the colony, and to allow accurate 

control methods to be implemented. The mechanism was fabricated and evaluated 

experimentally in the laboratory, and found to have a limited error of 0.3 mm after 

50 complete cycles. This error is well within the tolerance level of the design, which 

included inlet covers 10% larger than required.  

A control system was proposed to utilise the above mechanism together with the 

already implemented hive monitoring WSN to maintain a suitable temperature 

within the hive by adjusting the airflow. These elements used together formed a 

temperature control WSAN for the hive. A PID controller design was selected for the 

controller system. This controller was implemented on one of the network nodes 

which provided the input to the mechanism. The controller was experimentally tested 

in a controlled environment on a demonstration beehive and found to be highly 

effective. An appropriate temperature for brood development was achieved within 7 

minutes of initialisation, and with steady state being reached by minute 18. There 

was negligible steady state error (0.0047%) and overshoot of <0.25 °C. The design 

of the WSAN was identified as suitable for real world control of beehive conditions. 

7.2.3 Machine learning for honey bee health 

A decision tree was developed which classified the hive as being in one of ten 

possible states. The algorithm was found to classify accurately the hive in 95.38% of 

cases. From the meteorological analysis a short term, local, weather prediction 

decision tree was proposed using in-hive CO2 levels (95.4% accuracy, to be 

validated in future studies). This algorithm predicted rain patterns local to the 

specific hive monitored. These algorithms were deployed on the 3G/GSM enabled 

node and increased energy requirements by just 5.35%. Machine learning is used to 
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apply established beekeeping knowledge automatically to the collected data, 

allowing early identification of poor health so as to take remedial action, as well as 

analysis of behaviour.  

A second hive classification algorithm was developed using Random Forest 

techniques. This algorithm did not need access to data from outside the networks, 

memory of previous measured data, and used only four inputs, while achieving an 

accuracy of 93.5%. While it was not possible to implement this algorithm on the 

existing node described in Chapter 3 due to code size restrictions on the 8-bit 

ATmega1281 microcontroller, this algorithm could be implemented on a larger 

microcontroller in a future system. 

7.2.4 Advanced monitoring in the hive 

The design, development, and test of a wireless senor network node for 

continuously monitoring the audio events within a live beehive were described. To 

achieve this, the range of frequencies related to important in-hive events (specifically 

swarming) was identified through analysis of high quality recordings of beehives in 

various stages of the swarming process.  

An interrupt circuit was designed to provide an acoustic wake-up signal to the 

node when an event within the defined frequency range occurred, or when the 

overall volume of the colony’s activity rose above a specified threshold. This wake-

up circuit allowed the solution to be ultra-low power, by turning on the power-

hungry recording circuits only when they were explicitly required. The developed 

solution was powered by a 6600 mAH rechargeable battery with a solar panel for 

energy harvesting. A power analysis and energy budget confirmed that the final 

solution was energy neutral, providing additional energy to the battery for 

recharging, even in the case of several recording alerts in a single day. 

To enable weight measurement as part of the hive WSN, a wide range Single 

Point Impact load cell was utilised together with an ultra-low noise, 24-bit ADC. The 

combination of a wide range load cell and a high accuracy ADC allowed for 

detection of weight changes as low as 11.4 g. The load cell had a dedicated power 

supply which was heavily duty cycled when weight measurement was not taking 

place to reduce the energy draw to suit the low-energy WSN concept.  
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Preliminary work demonstrating the usefulness of thermal and infrared imaging 

in the hive was also presented. A thermal camera and an IR camera were each 

implemented on an individual WSN node. Each node used a Raspberry Pi for image 

collecting, processing, and storage, which was disabled by the core WSN node 

architecture described in Chapter 3 to reduce the node’s energy demand. 

7.3 Future Work 

It would be very valuable as a first future step to engage in further deployments 

of the in-hive WSN described in Chapter 3. This would not just provide an expanded 

dataset to further train and validate the decision trees described in Chapter 5, but also 

provide datasets demonstrating the hive conditions during events that were not 

monitored during this research. For example, it would be valuable to monitor hives 

during each of the conditions identified as important in Table 2.3. This was not 

possible to achieve during this research due to these problems not affecting the hives 

used in the current research. It is essential to be able to detect or anticipate such 

conditions using the in-hive sensors utilised Chapter 3. 

The microcontroller used as the core processing platform for the system (8-bit 

ATmega1281) reached its limit for memory and processing several times during this 

research. A key step in future work will be to redesign the system with a more 

powerful 16 or 32-bit processor with more memory and program space. Further 

energy harvesting may be required to support this increase while maintaining self-

sustaining operation. 

For the WSAN system described in Chapter 4, it would be useful to build a water 

proof version of the prototype. This would enable an in-field deployment on a 

beehive to observe the temperature and airflow effects, and how the mechanism 

itself affects the behaviour of the colony. It would also be valuable to implement the 

identified energy saving techniques form Chapter 4 to allow the deployment to have 

an extended lifetime. Finally, to further improve the airflow, ultra-silent fans could 

be embedded in the roof of the hive. 

In the future, it will be important to collect an extensive dataset using multiple 

deployments (>100 datasets) on a variety of different beehives. This will provide an 

extensive pool of training data, on which it will be suitable to apply other 
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classification techniques such as Bayesian classification [180] or Neural Networks 

[181]. To implement these algorithms, and the Random Forest described in this 

work, it will be necessary to design a new in-hive WSN platform with better 

processing abilities, such as an ARM based system. The output from the sensor 

nodes described in Chapter 6 will need to be incorporated into the classification 

decision tree, for more in-depth analysis.  

Future work for the acoustic wake-up node described in Chapter 5 needs to 

include miniaturisation of the node, and introducing other energy harvesting sources. 

A demonstration deployment of the node at the same site of the existing bee sensor 

network will also need be put in place to show the system’s response to a live 

beehive. The analysis described in Section 6.2.4 should be used to design a new 

interrupt circuit which both detect changes in the hive sounds, and attempt to classify 

the sound it is detecting, using hardware for energy performance.  

Before the weight sensor node described in Chapter 6 can be integrated into a 

hive, the scale must be completely weather protected. Future work needs to address 

stabilisation of the platform against wind, and improvement of the noise performance 

of the system. Techniques for monitoring hive weight without needing to manually 

lift and move the hive itself will also need to be explored, as hive weight is the 

fundamental measure of honey production.  

For the infrared and thermal imaging nodes described in Chapter 6, consideration 

needs to be given to: improving the prototype’s physical design to allow long term 

deployments and data collection for analysis; investigating utilising a dedicated 

microcontroller for improved energy performance; and applying some machine 

learning image classification to detect changes in the hive, such as the waggle dance 

inside the hive using the infrared camera, and the onset of winter clustering or 

fanning, using the thermal camera.  
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