239 research outputs found

    Fourier analysis of the aerodynamic behavior of cup anemometers

    Get PDF
    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic forc

    Analysis of calibration results from cup and propeller anemometers. Influence on wind turbine Annual Energy Production (AEP) calculations

    Get PDF
    The calibration coefficients of several models of cup and propeller anemometers were analysed. The analysis was based on a series of laboratory calibrations between January 2003 and August 2007. Mean and standard deviation values of calibration coefficients from the anemometers studied were included. Two calibration procedures were used and compared. In the first, recommended by the Measuring network of Wind Energy Institutes (MEASNET), 13 measurement points were taken over a wind speed range of 4 to 16  m  s−1. In the second procedure, 9 measurement points were taken over a wider speed range of 4 to 23  m  s−1. Results indicated no significant differences between the two calibration procedures applied to the same anemometer in terms of measured wind speed and wind turbines' Annual Energy Production (AEP). The influence of the cup anemometers' design on the calibration coefficients was also analysed. The results revealed that the slope of the calibration curve, if based on the rotation frequency and not the anemometer's output frequency, seemed to depend on the cup center rotation radius

    Cup Anemometer's loss of performance due to ageing process, and its effect on Annual energy Production (AEP) estimates

    Get PDF
    The deviation of calibration coefficients from five cup anemometer models over time was analyzed. The analysis was based on a series of laboratory calibrations between January 2001 and August 2010. The analysis was performed on two different groups of anemometers: (1) anemometers not used for any industrial purpose (that is, just stored); and (2) anemometers used in different industrial applications (mainly in the field—or outside—applications like wind farms). Results indicate a loss of performance of the studied anemometers over time. In the case of the unused anemometers the degradation shows a clear pattern. In the case of the anemometers used in the field, the data analyzed also suggest a loss of performance, yet the degradation does not show a clear trend. A recalibration schedule is proposed based on the observed performances variation

    The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute

    Full text link
    The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor’s geometry, climatic conditions during calibration, and anemometers’ ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor’s geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometer’s output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies

    Optical In-Process Measurement Systems

    Get PDF
    Information is key, which means that measurements are key. For this reason, this book provides unique insight into state-of-the-art research works regarding optical measurement systems. Optical systems are fast and precise, and the ongoing challenge is to enable optical principles for in-process measurements. Presented within this book is a selection of promising optical measurement approaches for real-world applications

    Remotely measuring the wind using turbine-mounted lidars: Application to power performance testing

    Get PDF

    Development and qualification of a room used to investigate component and system performance characteristics of heating, ventilating, and air-conditioning systems

    Full text link
    An environmentally controlled room that can be used to investigate component and system performance characteristics of heating, ventilating, and air-conditioning (HVAC) systems was developed and qualified. The room has two air supply distribution systems, one is a conventional air distribution system where conditioned air is delivered from the ceiling diffusers, and the second is an underfloor air distribution system where conditioned air is delivered through diffusers located in the floor. The development required extensive construction work for the two air distribution systems and the surface temperature control, data acquisition, and recording systems. The room surfaces were divided into thirteen separate zones that can be independently maintained at specified temperatures. This was accomplished through the use of a Daikin central condenser unit and thirteen separate Daikin fan-coil units that supplied conditioned air to each of the thirteen zones. A computer-controlled instrumentation measurement system was implemented per the ASHRAE standards for testing. The under floor air distribution system was tested and shown to have a leakage rate that was within acceptable limits. Other tests, which included the measurement of airflow velocities around baseboard heaters and from ceiling and floor air distribution diffusers and the ability to control room surface temperatures over an extended period of time, were conducted to qualify the environmentally controlled room

    Development and Application of Disjunct Eddy Covariance Techniques for the Measurement and Interpretation of Fluxes of Volatile Organic Compounds from Urban and Rural Canopies.

    Get PDF
    Two disjunct eddy covariance systems for the measurement of volatile organic compound (VOC) fluxes were developed. The first, disjunct eddy covariance (DEC), was validated against the standard eddy covariance (EC) technique, in a study of CO2 and H2O fluxes from a grassland field (Easter Bush, Edinburgh, Scotland). The comparison convincingly showed fluxes measured by the DEC technique to be comparable to those measured using the EC technique. A second, simplified approach, virtual disjunct eddy covariance (vDEC), was developed and compared against standard DEC during the CityFlux project, where measurements of VOC fluxes were made from Portland Tower in Manchester. Averaged daily fluxes measured by the vDEC system typically ranged between 19 and 90 microg m-2 h-1 for individual VOC species and were comparable to those measured by the DEC system, but were typically 19% higher than the latter. The discrepancies between the two methods were thought to relate to both the reduced response time of the DEC system which attenuated higher frequency flux contributions and the high level of noise in the covariance function which may have led to a systematic overestimation of the flux. The vDEC technique was subsequently deployed on the Telecom Tower in central London to give very detailed flux information on seven VOC species. Individual average fluxes ranged between 5 and 100 microg m-2 h-1 and were well correlated with traffic density. Fluxes of benzene were extrapolated to give an annual emission estimate for the city, which was found to be 1. 8 times lower than that suggested by the National Atmospheric Emission Inventory. Finally, two vDEC systems, one using a high sensitivity (HS) proton transfer reaction mass spectrometer (PTR-MS) and the other a standard model (Std), were used alongside each other to measure biogenic VOC fluxes from macchia vegetation at the Castelporziano nature reserve near Rome, Italy. The two systems compared well, although the HS system appeared to give fluxes with greater amplitude than the Std model. This highlighted the importance of the allocation of correct lag times when using vDEC, particularly at night. Fluxes of isoprene and monoterpenes were compared with the Guenther algorithm of 1995 and showed excellent agreement between the modelled and measured values. The results presented in this study have convincingly demonstrated the capacity of the DEC and vDEC techniques to give very detailed VOC flux information over a range of non-ideal canopies, which can be used to both validate and constrain "bottom-up" style emission inventories

    Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer

    Get PDF
    In this thesis, consisting of five scientific papers, I investigate the potential of unmanned aircraft systems (UAS) in stable boundary layer (SBL) research, by developing and applying a new innovative observation strategy. In this strategy we supplement ground-based micrometeorological observations from masts and remote-sensing systems with a number of different UAS. To achieve good agreement between the different systems employed in this approach, I further investigate the quality and intercomparability of UAS-based observations of atmospheric temperature, humidity, pressure and wind, and develop and apply common, best-practice data processing methods. In Paper I we give a brief introduction to the ISOBAR project and provide an overview over the first SBL campaign at Hailuoto and the prevailing synoptic, sea-ice and micrometeorological conditions. We demonstrate the quality of our measurement approach by combining UAS profile data with observations from the wind and temperature sensing systems. Repeated UAS temperature profiles give detailed insight into the temporal evolution of the SBL, which we find was often subject to rapid temperature changes affecting the entire depth of the SBL. We further highlight the potential of the sampled data by detailed investigations of a case study, featuring rapid shifts in turbulent regimes and strong elevated thermal instabilities, which were likely to result from the instability of an elevated internal gravity wave. In Paper II we assess the quality and intercomparability of UAS-based atmospheric observations from the most extensive intercomparison experiment to date. We evaluate the precision and bias of temperature, humidity, pressure, wind speed and direction observations from 38 individual UAS with 23 unique sensor configurations based on observations next to a 18-m mast equipped with reference instruments. In addition, we investigate the influence of sensor response on the quality of temperature and humidity profiles. By grouping the different sensor–platform combinations with respect to the type of aircraft, sensor type and sensor integration (i.e., measures for aspiration and radiation shielding), we attempt to draw general conclusions from the intercomparison results. Overall, we find most observation systems in good agreement with the reference observations, however, some systems showed fairly large biases. In general, hovering multicopters showed less variability than fixed-wing systems and we attribute this finding to the difference in sampling strategies. The most consistent observations of the mean wind were achieved by multicopter-mounted sonic anemometers. Sensor response errors were smaller for fine-bed thermistors compared to temperature sensors of integrated-circuit type, and sensor aspiration proofed to be substantially relevant. We conclude, that sensor integration considerations, like radiation shielding and aspiration, are likely to be as important as the choice of the sensor type, and give a couple of recommendations for future perspectives on UAS-based atmospheric measurements. Paper III presents the ISOBAR project to a broader scientific audience, including a description of the two measurement campaigns, ISOBAR17 and ISOBAR18 and the contrasting meteorological and sea ice conditions. We further provide an overview on the micrometeorological conditions during the 13 intensive observational periods (IOPs), which resulted in detailed data sets on the SBL in unprecedented spatiotemporal resolution. Numerous cases with very-stable stratification under clear-sky and weak-wind conditions were observed, featuring a variety of different SBL processes. These processes resulted in rapid changes in the SBL’s vertical structure. Based on selected in-depth case studies, we investigate the interactions of turbulence in the very stable boundary layer (VSBL) with different processes, i.e., a shear instability, associated with a low-level jet; a rapid and strong cooling event, observed a couple of meters above the ground; and a wave-breaking event, caused by the enhancement of wind shear. In a first qualitative model validation experiment we use data from one IOP to assess the performance of three different types of numerical models. Only the turbulence resolving large-eddy simulation model is found capable of reproducing a VSBL structure similar to the one observed during the IOP. The other models, i.e., an operational weather prediction and a single-column model, substantially overestimated the depth of the SBL. Paper IV introduces a new fixed-wing UAS for turbulence observations and first results from validation experiments carried out during ISOBAR18. Airborne observations of mechanical turbulence from straight horizontal flight paths are compared to corresponding eddy-covariance measurements mounted on a 10-m mast during weakly stable conditions with moderate wind speeds. Different average and spectral turbulence quantities, as well as mean wind speed and direction were computed for both systems and compared to each other. The UAS observations of mean wind and turbulence are in good agreement with the reference observations and the turbulence spectra agree qualitatively in the onset of the inertial subrange and the turbulence production range. Minor differences are likely to be caused by a slightly elevated UAS flight level and additional small altitude variations in the presence of relatively strong vertical gradients. In a second comparison, vertical profiles of mean wind and turbulence variables, determined from straight horizontal UAS flights at several different levels are compared qualitatively to profile observations from the 10-m mast and a phased-array sodar system providing 10-min averaged wind and vertical velocity variance profiles above 35 m. Qualitatively, the results agree well for the first two out of three profiles. During the third profile, the UAS data indicate the existence of a low-level jet but not an upside-down boundary layer structure, which would be expected due to the elevated source of turbulence. This observation is, however, not supported by the other measurement systems. Instead, the sodar data indicate a strong decrease in wind speed during the time of this profile. The fact that the lower part of the UAS profile was sampled before the start of the strongest transition, resulted in a seemingly wrong shape of the vertical profiles. This finding highlights the relevance of non-stationarity and the importance of additional reference systems for the correct interpretation of UAS sampled turbulence profiles. Paper V explores the potential of a new method to estimate profiles of turbulence variables in the SBL. In this method we apply a gradient-based scaling scheme for SBL turbulence to multicopter profiles of temperature and wind, sampled during ISOBAR18. We first validate this method by scaling turbulence observations from three levels on a 10-m mast with the corresponding scaling parameters, and comparing the resulting non- dimensional parameters to the semi-empirical stability functions proposed for this scheme. The scaled data from the three levels largely collapse to the predicted curves, however, minor differences between the three levels are evident. We attribute this discrepancy to the non-ideal observation heights for the determination of vertical gradients at the upper turbulence observation level. After the successful validation we apply this method to UAS profiles, by computing profiles of the gradient Richardson number to which we then apply the stability functions to derive turbulence variables. We demonstrate this approach based on three case studies covering a broad range of SBL conditions and boundary layer heights. Since the application of this scaling scheme is only valid within the SBL, we estimate the boundary layer height from the sodar and two different methods based on UAS data. Comparisons at the lowest levels against turbulence variables from the 10-m mast and at higher levels against a Doppler wind lidar, which also provides estimates of some turbulence variables, indicate broad agreement and physical meaningful results of this method. Supplementing the findings from the five scientific papers, this thesis also provides the detailed description on the methodology and data processing procedures, I applied for the synthesis of observations from UAS, micrometeorological masts and boundary layer remote-sensing systems. Furthermore, I present results on the validation of the different wind observation methods, using lidar wind observations as the common reference. Finally, I provide an outlook on future perspectives of SBL and UAS-based boundary-layer research, and how further developments in SBL observation strategies may benefit from recent and future developments.Doktorgradsavhandlin
    • …
    corecore