7,164 research outputs found

    Queuing with future information

    Full text link
    We study an admissions control problem, where a queue with service rate 1p1-p receives incoming jobs at rate λ(1p,1)\lambda\in(1-p,1), and the decision maker is allowed to redirect away jobs up to a rate of pp, with the objective of minimizing the time-average queue length. We show that the amount of information about the future has a significant impact on system performance, in the heavy-traffic regime. When the future is unknown, the optimal average queue length diverges at rate log1/(1p)11λ\sim\log_{1/(1-p)}\frac{1}{1-\lambda}, as λ1\lambda\to 1. In sharp contrast, when all future arrival and service times are revealed beforehand, the optimal average queue length converges to a finite constant, (1p)/p(1-p)/p, as λ1\lambda\to1. We further show that the finite limit of (1p)/p(1-p)/p can be achieved using only a finite lookahead window starting from the current time frame, whose length scales as O(log11λ)\mathcal{O}(\log\frac{1}{1-\lambda}), as λ1\lambda\to1. This leads to the conjecture of an interesting duality between queuing delay and the amount of information about the future.Comment: Published in at http://dx.doi.org/10.1214/13-AAP973 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Delay, memory, and messaging tradeoffs in distributed service systems

    Get PDF
    We consider the following distributed service model: jobs with unit mean, exponentially distributed, and independent processing times arrive as a Poisson process of rate λn\lambda n, with 0<λ<10<\lambda<1, and are immediately dispatched by a centralized dispatcher to one of nn First-In-First-Out queues associated with nn identical servers. The dispatcher is endowed with a finite memory, and with the ability to exchange messages with the servers. We propose and study a resource-constrained "pull-based" dispatching policy that involves two parameters: (i) the number of memory bits available at the dispatcher, and (ii) the average rate at which servers communicate with the dispatcher. We establish (using a fluid limit approach) that the asymptotic, as nn\to\infty, expected queueing delay is zero when either (i) the number of memory bits grows logarithmically with nn and the message rate grows superlinearly with nn, or (ii) the number of memory bits grows superlogarithmically with nn and the message rate is at least λn\lambda n. Furthermore, when the number of memory bits grows only logarithmically with nn and the message rate is proportional to nn, we obtain a closed-form expression for the (now positive) asymptotic delay. Finally, we demonstrate an interesting phase transition in the resource-constrained regime where the asymptotic delay is non-zero. In particular, we show that for any given α>0\alpha>0 (no matter how small), if our policy only uses a linear message rate αn\alpha n, the resulting asymptotic delay is upper bounded, uniformly over all λ<1\lambda<1; this is in sharp contrast to the delay obtained when no messages are used (α=0\alpha = 0), which grows as 1/(1λ)1/(1-\lambda) when λ1\lambda\uparrow 1, or when the popular power-of-dd-choices is used, in which the delay grows as log(1/(1λ))\log(1/(1-\lambda))

    Redundancy Scheduling with Locally Stable Compatibility Graphs

    Get PDF
    Redundancy scheduling is a popular concept to improve performance in parallel-server systems. In the baseline scenario any job can be handled equally well by any server, and is replicated to a fixed number of servers selected uniformly at random. Quite often however, there may be heterogeneity in job characteristics or server capabilities, and jobs can only be replicated to specific servers because of affinity relations or compatibility constraints. In order to capture such situations, we consider a scenario where jobs of various types are replicated to different subsets of servers as prescribed by a general compatibility graph. We exploit a product-form stationary distribution and weak local stability conditions to establish a state space collapse in heavy traffic. In this limiting regime, the parallel-server system with graph-based redundancy scheduling operates as a multi-class single-server system, achieving full resource pooling and exhibiting strong insensitivity to the underlying compatibility constraints.Comment: 28 pages, 4 figure

    Telemetry downlink interfaces and level-zero processing

    Get PDF
    The technical areas being investigated are as follows: (1) processing of space to ground data frames; (2) parallel architecture performance studies; and (3) parallel programming techniques. Additionally, the University administrative details and the technical liaison between New Mexico State University and Goddard Space Flight Center are addressed

    On-board B-ISDN fast packet switching architectures. Phase 2: Development. Proof-of-concept architecture definition report

    Get PDF
    For the next-generation packet switched communications satellite system with onboard processing and spot-beam operation, a reliable onboard fast packet switch is essential to route packets from different uplink beams to different downlink beams. The rapid emergence of point-to-point services such as video distribution, and the large demand for video conference, distributed data processing, and network management makes the multicast function essential to a fast packet switch (FPS). The satellite's inherent broadcast features gives the satellite network an advantage over the terrestrial network in providing multicast services. This report evaluates alternate multicast FPS architectures for onboard baseband switching applications and selects a candidate for subsequent breadboard development. Architecture evaluation and selection will be based on the study performed in phase 1, 'Onboard B-ISDN Fast Packet Switching Architectures', and other switch architectures which have become commercially available as large scale integration (LSI) devices
    corecore